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RHOMBIC EMBEDDINGS OF PLANAR QUAD-GRAPHS

RICHARD KENYON AND JEAN-MARC SCHLENKER

Abstract. Given a finite or infinite planar graph all of whose faces have
degree 4, we study embeddings in the plane in which all edges have length 1,
that is, in which every face is a rhombus. We give a necessary and sufficient
condition for the existence of such an embedding, as well as a description of
the set of all such embeddings.

Résumé. Etant donné un graphe planaire, fini ou infini, dont toutes les faces
sont de degré 4, on étudie ses plongements dans le plan dont toutes les arêtes
sont de longueur 1, c’est à dire dont toutes les faces sont des losanges. On donne
une condition nécessaire et suffisante pour l’existence d’un tel plongement, et

on décrit l’ensemble de ces plongements.

1. Introduction

Definition 1.1. Given a planar graph G all of whose faces (except possibly for the
outer face if G is finite) have degree 4, called a quad-graph, a rhombic embedding
is an embedding of G in R

2 with the property that all edges are line segments and
have length 1 (and hence each bounded face is a rhombus).

Such embedding arises in discrete complex analysis [1], [5] and in statistical
mechanics [3], [6], [4]. Here we study the spaces of such embeddings.

Our main results are the following:
(1) We give a simple necessary and sufficient condition (Theorem 3.1) for a

planar graph to have a rhombic embedding in R
2.

(2) We show that the space of rhombic embeddings of an infinite graph (with
no unbounded faces) is a convex set when parametrized by the rhombus
angles. There is a simple description of the extreme points of the closure
of this convex set. (Section 4.1 and Theorem 4.10.)

(3) We consider the space of periodic rhombic embeddings of a periodic planar
graph. It is the interior of a convex polyhedron. The area of the funda-
mental domain provides a strictly convex functional on this polyhedron; we
give a geometric description of the unique critical point (Theorem 5.2).

Instead of rhombic embeddings, one can consider the more general notion of
parallelogram embeddings, in which each face is mapped to a parallelogram. Some
of the results of this paper extend to parallelogram embeddings; this is explained
in section 6. Parallelogram embeddings arise in the study of discrete non-linear
integrable models and discrete conformal maps (see [2]).
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2. Background and motivations

2.1. Discrete complex analysis and statistical mechanics. Rhombic embed-
dings first appeared in Duffin [1], in the context of discrete complex analysis. In-
deed, as Duffin shows, there is a natural way to define discrete analytic functions on
graphs with rhombic embeddings, which do not appear to generalize to arbitrary
embeddings.

Duffin’s ideas were rediscovered by Mercat [6], [5] who used them to build up an
extended theory of discrete holomorphy in one complex dimension.

In [3], the closely related concept of isoradial embeddings (see the next sec-
tion) was shown to be useful in the study of the so-called dimer model of statistical
mechanics. By choosing edge interactions to be a particular function of the cor-
responding edge lengths in the isoradial embedding, certain simplifications (com-
mutation relations) appear which do not appear for more general energies. These
allow one to give explicit solutions to correlation functions in the dimer model on
isoradial graphs.

Other statistical mechanical models such as the Ising model and more generally
the random cluster model also become simpler on isoradial graphs [6], [4]. In fact,
even the simple random walk behaves nicely, as is evidenced by an explicit formula
for the Green’s function [3].

2.2. Isoradial embeddings. An isoradial embedding (see [3]) of a planar graph
Γ is a locally finite embedding in R

2 with the property that each bounded face f is
a cyclic polygon (inscribable in a circle) with circumcircle of radius 1. The center
of the circumcircle C is also called the center of f . The embedding is said to be
convex if the center of a face is contained in the closure of the face. It is strictly
convex if the center is in the interior of the face.

Given a planar graph Γ, the diamond graph G associated to Γ is the graph
whose vertices are the union of the vertices and faces of Γ, and with an edge between
each face and vertex on that face. The faces of G are the edges of Γ. The faces of
G are of degree 4.

It is clear that a strictly convex isoradial embedding of a graph Γ gives a rhombic
embedding of G. Conversely, a rhombic embedding of G defines a strictly convex
isoradial embedding of Γ. Furthermore every quad-graph arises as the diamond
graph not only of the graph Γ, but also of its Poincaré dual Γ′, where the faces of
one graph correspond to the vertices of the other. So the study of strictly convex
isoradial embeddings and rhombic embeddings is equivalent. Therefore, we will
work only with the quad-graph G.

There is an underlying relation between isoradial embeddings, in particular the
periodic ones, and hyperbolic geometry. This is particularly apparent in [3]. Those
relations are however not of primary importance for the aspects which we have
considered here, so we will not mention them further.

3. Rhombic embeddings

In this paper a planar graph will mean a graph with a preferred isotopy class
of embeddings in the plane. An embedding of such a graph will always mean an
embedding in the same isotopy class.

We will only deal with either finite graphs, all of whose faces except the outer
face have degree 4, or with infinite graphs with no unbounded faces, that is, all
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of whose faces have degree 4. In either case we refer to such graphs as planar
quad-graphs, with the understanding that we exclude the outer face from this
restriction in the case of a finite graph. Although the results in this section apply
in greater generality, for simplicity we deal only with these cases.

In a planar quad-graph G, a train-track is a path of faces (each face being
adjacent along an edge to the previous face) which does not turn: on entering
a face it exits across the opposite edge. We assume that the train-tracks extend
in both directions as far as possible, that is, they are not embedded in a longer
train-track. This means they are either periodic, or extend infinitely far in both
directions, or extend until they enter the outer face of G if G is finite. Let Tr(G)
denote the set of train-tracks of G. In a rhombic embedding, each rhombus in a
train-track has an edge parallel to a fixed unit vector u. In an oriented train-track
we choose the direction of u so that when the train runs down, the track u points
from the right to the left. The vector u is called the transversal of the oriented
train-track. Those notions should be easily identified in figure 1, which was made
following a suggestion of the referee.

Figure 1. Rhombic embedding of the infinite planar graph with
faces of degree 4 and vertices of degree 5.

Theorem 3.1. A planar quad-graph G has a rhombic embedding in the plane if
and only if the following two conditions are satisfied:

(1) No train-track path crosses itself or is periodic.
(2) Two distinct train-tracks cross each other at most once.

The conditions are clearly necessary: in a rhombic embedding each train-track is
a monotone path (in the direction perpendicular to its common parallel). Therefore
a train-track cannot cross itself. If two oriented train-tracks with transversals u and
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v cross (with the first crossing from right to the left of the second), the rhombus
on which they cross has edges u and v and u∧ v > 0. If they crossed again the first
would cross from the left to the right of the second and the rhombus would have
the same two edges but in the reverse orientation, that is, it would have negative
area.

It remains to construct a rhombic embedding for any graph satisfying the condi-
tions. Enumerate the distinct train-tracks {t1, t2, . . . }. Let Gk be the union of the
faces contained in the first k train-tracks {t1, . . . , tk}. The Gk are subgraphs of G
and G =

⋃∞
k=1 Gk. Similarly let G′

k be the subgraph of the 4-valent dual G′ which
is the union of its edge paths comprising the first k train-tracks.

Lemma 3.2. There exists a topological embedding ρ of G′ in the unit disk D, such
that the image of each path of G′ (which corresponds to a train-track in G) is a
smooth path connecting distinct boundary points of the disk.

Proof. Since G′ is planar, first choose a topological embedding of G′ in the disk.
For each k, by removing all but the first k train-tracks from this embedding, we get
topological embeddings of G′

1, G
′
2, . . . , in which the embedding of G′

k is an extension
of that of G′

k−1.
To make a sequence of smooth embeddings, with appropriate boundary behavior

of the train-tracks, proceed inductively as follows. Choose any non-trivial chord for
G′

1. Suppose now that the smooth embedding of G′
k has been defined, isotopic to

the original topological embedding. The graph G′
k+1 is obtained from G′

k by adding
a single line tk+1 which has a finite number of intersections with the lines present
in G′

k. On top of the smooth embedding of G′
k draw in the train-track tk+1 as a

smooth path, respecting its intersections (and their order) with each of the tj for
j ≤ k, that is, so that the resulting embedding of G′

k ∪ tk+1 = G′
k+1 is topologically

equivalent to the original topological embedding of G′
k+1. Since tk+1 has only a

finite number of intersections with G′
k, it can be chosen so that its endpoints are

distinct points on the boundary of the disk. This defines the smooth embedding
of G′

k+1. The union of these embeddings over all k is a planar embedding of G′:
the image of any finite piece of G′ is fixed after a finite number of steps of this
algorithm. �

To each oriented train-track tj we associate the unit vector uj which is perpen-
dicular to the chord joining its two endpoints in the above embedding. We construct
the rhombic embedding of G as follows. Each face of G is crossed by exactly two
train-tracks, tj and tk. To this face associate the rhombus with edges uj and uk.
Its angles are positive. Glue two rhombi together along an edge if they are adjacent
faces in G; this defines a simply connected locally Euclidean surface. It remains to
show that it is isometric to a subset of the plane.

This surface has a natural projection φ to the plane, which clearly is locally
injective. We have to prove that φ is injective.

Lemma 3.3. Let v, w be two vertices of G, and let tk1 , · · · , tkn
be the train-tracks

separating v and w; assume these tracks are oriented so that v is on the right and
w is on the left. Then

(3.1) φ(w) − φ(v) =
n∑

j=1

ukj
.
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Proof. Let Γ be any path going from v to w in the 1-skeleton of G. Γ is a sequence of
edges of G, each corresponding to a train-track. Each of the train-tracks tk1 , · · · , tkn

appears an odd number of times, and is crossed one more time from right to left
than from left to right. All the other train-tracks are crossed the same number of
times in both directions. So the total translation vector of Γ is a sum of terms
which pairwise cancel, except those in (3.1). �

Let X and Y be two distinct faces of G. We will show that their φ-images have
disjoint interiors. X and Y correspond to vertices x and y, respectively, in the
graph G′. We choose k so large that the train-tracks containing X and Y , as well
as the train-tracks which go between X and Y , are in {t1, · · · , tk}.

Lemma 3.4. There exists an embedded path γ : [0, 1] → D
2, with endpoints on the

boundary of the disk, which goes through ρ(x) and ρ(y), and crosses each ρ(tj), 1 ≤
j ≤ k, at most once.

Proof. Consider the restriction of the embedding ρ to G′
k. We continuously deform

it so that the path corresponding to each tj becomes a chord of the circle with the
same endpoints. Under this deformation some topological changes may take place:
a path may move past an intersection of two other paths as in Figure 2. As a result
the deformed graph G̃′

k is not necessarily isomorphic to G′
k, but can be obtained

from G′
k by a finite sequence of these triple-crossing moves. Moreover, there is a

natural bijection between the vertices of G̃′
k and those of G′

k. In G̃′
k draw γ as

a chord passing through ρ(x) and ρ(y). By a general position argument we can
assume that no three chords meet at a point, and γ does not meet any other chord
intersections. Now undo the deformation, passing from G̃′

k ∪ γ to G′
k, undoing the

triple-crossing moves in sequence. It is clear how to deform γ at the same time,
keeping the property of γ passing through ρ(x) and ρ(y), so that γ never crosses
any path more than once; see Figure 3 which shows how γ may be deformed at
each triple crossing. This completes the construction of γ. �

Figure 2. Moving a strand past an intersection.

The fact that X and Y have disjoint images, and therefore the proof of Theorem
3.1, follows from the next lemma.
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γ
γ

γ
γ

Figure 3. Moving γ at a triple intersection.

Lemma 3.5. Let v and w be vertices of X and Y , respectively. The orthogonal
projection of φ(w) − φ(v) on the oriented line (γ(0)γ(1)) has positive orientation.

Proof. Let tk1 , · · · , tkn
be the oriented train-tracks which have v on their right and

w on their left. By the choice of k above, tkj
≤ k for all j ∈ {1, · · · , n}. By Lemma

3.3,

φ(w) − φ(v) =
n∑

j=1

ukj
.

But, for all j ∈ {1, · · · , n}, tkj
intersects γ, so it has γ(0) on its right and γ(1) on its

left. By construction of ukj
, it implies that the orthogonal projection on (γ(0)γ(1))

of ukj
is positively oriented, and the result follows. �

4. The space of rhombic embeddings

In this section we suppose that G is infinite. We will study the space of rhombic
embeddings of G, and show that its closure is parametrized by F≥(Tr(G), S1), a
quotient of a space of maps from the train-tracks of G to the circle, forming a
convex polytope (of infinite dimension). We will describe its vertices, which are
ways to flatten the graph on the line Z. We will then consider the periodic case.

4.1. Linear parametrization. A wedge in a planar graph is a pair consisting of
a face and a vertex on that face. We let W denote the set of wedges of a quad-graph
G.

A rhombic embedding determines an angle in (0, π) for each wedge of G, satis-
fying some simple linear conditions. The converse is also true.

Theorem 4.1. Let α : W → (0, π) be a map such that:
• adjacent wedges on the same face have angles summing to π.
• the sum of the angles around each vertex is 2π.

Then α is obtained on a unique rhombic embedding φ of G in R
2, up to an isometry.

The image of φ is either a plane, a half-plane, or an infinite strip.
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Note that φ(G) can indeed be a half-plane or a strip. it is easy to find examples
of this when G = Z

2 (see Figure 4). The proof of this theorem will be given after
the next lemmas.

Figure 4. An embedding of Z
2 with image a strip.

Lemma 4.2. Let G0 be a finite quad-graph. Let v0 be a vertex of G0 which is at
(combinatorial) distance k from the outer face. For each ε > 0, there exists α > 0
such that, if φ is a rhombic immersion of G0 in R

2 and each face has area at most
α, then:

• φ(G0) is ε-close to a line L containing φ(v0).
• there exists a segment of L of length 2k, centered at φ(v0), which is ε-close

to φ(G0).

Proof. φ is uniquely determined (up to translation) by the transverse directions of
the train-tracks in G0. Moreover, if two intersecting train-tracks have transverse
directions which are neither close nor almost opposite, the area of the faces cannot
all be small. Therefore, the transverse directions of all train-tracks in G0 are close
to either u or to −u, for some u ∈ S1.

This already shows that φ(G0) remains close to the line containing φ(x0) and of
direction u. In addition, if v is a vertex of G0 which is not adjacent to the outer
face, then the edges starting from v cannot all be pointing in directions close to u or
all in the directions close to −u—there must be some pointing in both directions.
Since v0 is at distance at least k from the outer face, the segment of length 2k
centered at φ(v0) and directed by u is close to φ(G0). �

Lemma 4.3. Let (φt)t∈[0,1] be a 1-parameter family of rhombic immersions of G
(i.e. not necessarily globally injective). Suppose that, for all t ∈ [0, 1), φt is an
embedding. Then φ1 is an embedding, and φ1(G) is either a plane, a half-plane or
a strip.

Proof. Define a boundary point of φ1 as a point x ∈ R
2 such that any neigh-

borhood of x intersects an infinite set of rhombi of φ(G). If φ1 has no boundary
point, then it is a local homeomorphism and it is proper, so that it is a global
homeomorphism; thus it is an embedding, with image R

2. So we suppose that φ1

has a boundary point x0.
Since the φt are embeddings for t < 1, for any k ∈ N, the sum of the areas

of the rhombi of φ1(G) which are within Euclidean distance at most k from x0 is
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finite (bounded by the area of the disk of radius k + 1). However, by definition
of a boundary point, there is a sequence of vertices vn of G, n ∈ N, such that
(φ1(vn)) → x0 and that the disks Dn of (combinatorial) radius k centered on the
vn are disjoint in G. Then the area of the φ1(Dn) go to 0 as n → ∞.

By the lemma above, for n large enough, the φ1(Dn) are each close to a line
going through x0. By construction of t0, they are disjoint, so they are all close to a
fixed line L � x0. Moreover, still by the lemma, there is a segment σ of L of length
2k centered at x0 which is arbitrarily close to the φ1(Dn) for n large enough.

Therefore, all points of σ are boundary points of φ1. This is true for all k ∈ N,
so the line L is completely made up of boundary points of φ1. What is more, φ1(G)
cannot be on both sides of L, since otherwise G could not be connected. Since the
same can be said of all the boundary points of φ1, we have that φ1(G) is bounded
by disjoint lines. There can be either one or two of those lines; in the first case
φ1(G) is a half-plane, in the second case it is a strip. This description shows that
φ1 is globally injective, so it is an embedding. �

It is now possible to prove Theorem 4.1.

Proof. Given a set of angles satisfying these two linear conditions, there corresponds
at most one rhombic embedding up to global isometry. Conversely, it is clear that
such a choice of angles determines a locally injective map from G to R

2, but it
remains to show that it is globally injective.

The space of maps α : W → (0, π) satisfying the two linear conditions is convex.
We know from Theorem 3.1 that there exists a choice of angles, say α0, giving
an embedded graph. We call (αt)t∈[0,1] the affine parametrized segment of maps
αt : W → (0, π) between α0 and α1 = α, and (φt)t∈[0,1] the associated 1-parameter
family of rhombic immersions of G.

We will show that φt is an embedding — i.e. is globally injective — for all
t ∈ [0, 1). Lemma 4.3 then shows that φ1 is an embedding, with image a plane,
half-plane or strip. Suppose φt is not an embedding for all t; let t0 be the infimum
of the t ∈ [0, 1] such that φt is not globally injective, and we suppose that t0 < 1.

Lemma 4.3, applied to the 1-parameter family (φt)t∈[0,t0], shows that φt0 is an
embedding, and that its image is either a plane, a half-plane or a strip. Moreover,
the definition of (φt) from the affine segment (αt)t∈[0,1] shows that no rhombus
angle goes to 0 as t → t0. Therefore φt0 cannot have boundary points, and its
image is a plane. For t ≥ t0 close enough to t0, each of the rhombus angles remains
bounded from below, so φt is still proper, and thus an embedding. This contradicts
the definition of t0. So φt is an embedding for all t ∈ [0, 1]. �

4.2. Convexity. Theorem 4.1 proves that the space of rhombic embeddings is
parametrized by the choice of an angle for each wedge, satisfying the above linear
conditions. Thus the space of rhombic embeddings is the intersection of a cube
(0, π)W with the set of linear subspaces defined by these constraints. Thus it is a
convex set, which we denote Rh(G).

Given a quad-graph G, we will call Tr+(G) the set of oriented train-tracks. So
Tr+(G) has two elements for each train-track t ∈ Tr(G), one for each choice of
orientation of t. For each t ∈ Tr+(G), we call −t the oriented train-track which is
the same as t but with the opposite orientation.

We consider now only graphs which satisfy the hypothesis of Theorem 3.1. In
particular, two oriented train-tracks t, t′ with t 	= ±t′ intersect at most once. Given
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two distinct oriented train-tracks t, t′ ∈ Tr+(G), with t′ 	= ±t, we will say that
t′ has positive intersection with t if t and t′ intersect, and the intersection has
positive orientation, that is, if t′ crosses t from right to left.

Let D be the directed graph whose vertices are the oriented train-tracks, with
an edge going from t to t′ if and only if t′ intersects t positively. In particular, if t′

intersects t positively, then D has a cycle t → t′ → −t → −t′ → t.
Let φ ∈ Rh(G) be a rhombic embedding of G. Then each oriented train-track

has a transversal, which is a unit vector, i.e. an element of S1. Thus φ induces a
map Tr+(G) → S1, with the property that φ(−t) = φ(t) + π. We will see below
that this map is strictly order-preserving in the following sense.

Definition 4.4. (1) We call F (Tr(G), S1) the space of maps θ from Tr+(G)
to S1 such that, for all t ∈ Tr+(G), θ(−t) = θ(t) + π.

(2) A map θ ∈ F (Tr(G), S1) is strictly order preserving if, for each t, t′ ∈
Tr+(G) such that t′ has positive intersection with t, θ(t′) ∈ (θ(t), θ(t)+ π).
We call F>(Tr(G), S1) the space of strictly order-preserving elements of
F (Tr(G), S1).

(3) A map θ ∈ F (Tr(G), S1) is order-preserving if:
• For each t, t′ ∈ Tr+(G) such that t′ intersects t positively, θ(t′) ∈

[θ(t), θ(t) + π].
• Each subgraph of D consisting of train-tracks having a fixed θ-value is

acyclic (has no oriented cycles).
We call F≥(Tr(G), S1) the space of order-preserving elements of
F (Tr(G), S1).

Lemma 4.5. A map θ ∈ F (Tr(G), S1) determines a rhombic embedding of G if
and only if it is strictly order-preserving.

Proof. Given a rhombic embedding of φ of G, we have already mentioned that
it induces a map u ∈ F (Tr(G), S1). If two oriented train-tracks t, t′ ∈ Tr+(G)
intersect, then the intersection rhombus has positive orientation and this means
that, if t′ has positive intersection with t, then u(t′) ∈ (u(t), u(t) + π). Thus u is
strictly order-preserving.

Conversely, let u ∈ F>(Tr(G), S1). Let w = (f, v) be a wedge in G, where f is
a face and v is a vertex of f . Let t1 and t2 be the two oriented train-tracks such
that the oriented edges e1 and e2 of f starting from v are the oriented transverse
directions of t1 and t2, respectively. Define a map α : W → R by setting α(w) equal
to the oriented angle between u(t1) and u(t2). Since u is strictly order-preserving,
α takes its values in (0, π). It is clear that α satisfies the two linear conditions in
Theorem 4.1.

Thus Theorem 4.1 shows that α : W → (0, π) is obtained on a rhombic embed-
ding of G, for which — up to an isometry in R

2 — the transverse direction of each
oriented train-track t is given by u(t). �

Clearly two maps θ, θ′ ∈ F>(Tr(G), S1) determine the same rhombic embedding,
up to a global isometry, if and only if there exists a constant θ0 such that, for all
t ∈ Tr+(G), θ′(t) = θ(t) + θ0. Therefore, Rh(G) is the quotient of F>(Tr(G), S1)
by S1.

Lemma 4.6. The closure of F>(Tr(G), S1) is F≥(Tr(G), S1).
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Proof. Let θ ∈ F (Tr(G), S1). We want to show that the following statements are
equivalent:

(1) θ is order-preserving.
(2) For all ε > 0, there exists θ′ ∈ F>(Tr(G), S1) which is strictly order-

preserving and such that, for all t ∈ Tr+(G), |θ′(t) − θ(t)| < ε.
It is clear that (2) implies (1), so we only have to prove the converse. Let

θ ∈ F (Tr(G), S1) be order-preserving.
We can partition the set of train-tracks into sets which are the maximal compo-

nents of D having the same θ-value. Without loss of generality we assume that the
value of θ is different on each component. Enumerate the components C1, C2, . . . ;
we can further assume by perturbing θ slightly (keeping the value constant on each
Ci) that for i < j the θ values of Ci and Cj are at least ε/2j apart.

We now perturb the θ-values within each Ci so that the new values lie in
(θ − ε/2i+1, θ + ε/2i+1). But D restricted to Ci is an acyclic connected graph;
as such it represents a partial order of its (at most countably many) vertices. As-
sign values in (θ − ε/2i, θ + ε/2i) to the train-tracks in a way which is compatible
with this (strict) partial order. This completes the construction. �

Lemma 4.7. The natural map from F>(Tr(G), S1) to Rh(G) extends continously
to a map from F≥(Tr(G), S1) to the closure of Rh(G) (for its affine structure). The
induced map from F≥(Tr(G), S1)/S1 to Rh(G) is one-to-one.

Proof. It is clear that the map from F>(Tr(G), S1) to Rh(G) extends continously
to a map from F≥(Tr(G), S1) to Rh(G), which is surjective by construction.

Given u ∈ F≥(Tr(G), S1), u is uniquely determined — up to an isometry in R
2

— by the angles at the wedges, which are now in [0, π], i.e. by the image of u in
Rh(G). So the induced map from F≥(Tr(G), S1)/S1 to Rh(G) is injective. �

As a consequence, the affine structure on Rh(G) can be obtained from the
parametrization by the wedge angles, but also from the affine structure on
F>(Tr(G), S1) through the quotient by S1. This second description will be use-
ful below to understand the extreme points of this convex set.

4.3. The group of circle homeomorphisms. A consequence of the definitions
of F (Tr(G), S1), F≥(Tr(G), S1) and F>(Tr(G), S1) is that, for each G, there is a
canonical action on each of those convex sets of the group of homeomorphisms of
the circle.

Definition 4.8. We call H the group of homeomorphisms φ : S1 → S1 such that,
for all x ∈ S1, φ(−x) = −φ(x).

There is a natural action of H on F (Tr(G), S1), defined as follows. Let φ ∈ H.
For each θ ∈ F (Tr(G), S1) and each t ∈ Tr+(G), let φ∗(θ)(t) := φ(θ(t)). It is clear
that this defines an action of H on F (Tr(G), S1). Moreover, given φ ∈ H, it is also
clear that an element θ ∈ F (Tr(G), S1) is (strictly) order-preserving if and only if
φ(θ) is (strictly) order-preserving, and therefore H also acts on F≥(Tr(G), S1) and
F>(Tr(G), S1). Note that the action of φ on F (Tr(G), S1) is not affine.

By Lemmas 4.5 and 4.6, F≥(Tr(G), S1) is a closed convex set. Thus it has a
natural stratification, with one codimension 0 cell corresponding to F>(Tr(G), S1),
and higher-dimensional stratums corresponding to some intersecting train-tracks
having the same image in S1.
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Lemma 4.9. The action of H preserves each stratum of F≥(Tr(G), S1).

Proof. This is again a consequence of the definitions. �

4.4. Vertices. The previous considerations lead to two interpretations of the ex-
treme points of Rh(G), one in terms of maps from Tr+(G) to {±1}, the other in
terms of “flattenings” of the graph on a line.

Theorem 4.10. The extreme points of Rh(G) are in one-to-one correspondence
with the maps θ : Tr+(G) → {−1, 1} satisfying θ(−t) = −θ(t), such that the
subgraphs D1 and D−1 of D, consisting of vertices with values ±1, respectively,
are acyclic.

This theorem is a direct consequence (through the quotient by S1) of the follow-
ing lemma on the geometry of F≥(Tr(G), S1). To state it, we introduce a simple
notation. Let T ⊂ Tr+(G) be a subset such that, for each t ∈ Tr+(G), either t ∈ T
or −t ∈ T , but not both (T is a choice of orientation for each train-track). Then,
for α ∈ S1, define

θT,α : Tr+(G) → S1,

t �→
{

α if t ∈ T,
α + π if t 	∈ T.

Clearly, for all T and α, θT,α ∈ F (Tr(G), S1).

Lemma 4.11. If θT,α ∈ F≥(Tr(G), S1), then the set of θT,β for β ∈ S1 is a 1-
dimensional stratum of F≥(Tr(G), S1). Moreover, all 1-dimensional stratums of
F≥(Tr(G), S1) are of this form.

Proof. The first point is obvious. Given θ ∈ F≥(Tr(G), S1), the orbit Hθ is 1-
dimensional if and only if θ takes only two values, β and β + π for some β ∈ S1.
Therefore the stratum is 1-dimensional only in this case. This proves the second
point. �

A more geometric interpretation is that each extreme point of Rh(G) corresponds
to one way of “flattening” G on the line Z.

4.5. Extreme points when G is periodic. In this subsection we consider a
quad-graph G embedded in the torus and its lift G̃ to a periodic graph in R

2. We
wish to understand the rhombic embeddings of G̃ in R

2 which are not necessarily
periodic.

The extreme points of the space of rhombic embeddings of G̃ are described by
Theorem 4.10 above. Associated to an extreme point θT,0 is a map from the vertices
of G̃ to Z with the property that the difference between the values at the endpoints
of each edge differ by either 1 or −1: the difference of the map along an edge e
which is the transversal of train-track t ∈ T is 1 (and −1 if t 	∈ T ).

Let ±t1, . . . ,±tk be the train-tracks of G. Let D(G) be the finite directed graph
of positive intersections.

Theorem 4.12. The extreme points T of Rh(G̃) can be described as follows. Assign
elements of {+,−, 0} to vertices of D(G) so that the subgraph consisting of {0, +}
has no directed cycle and the subgraph consisting of {0,−} has no directed cycle.
To each such assignment is associated a collection of extreme points of G̃, where T
is the union of the set of train-tracks projecting to +-train-tracks of D(G) and an
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arbitrary subset of the train-tracks projecting to 0-train-tracks of D(G). Conversely
any extreme point of Rh(G̃) arises in this fashion.

Proof. The graph D(G̃) is obtained by replacing each vertex of D(G) by a copy of
Z and each edge from v to v′ by the collection of all edges from the copy of Z at
v to that at v′. To a subset T of vertices of D(G̃), assign elements of {0, +,−}
to D(G) as follows: if every vertex of D(G̃) over v ∈ D(G) is in T , assign + to
v. If no vertex is in T , assign −. In the remaining case assign 0. Then a “+”
component of D(G̃) contains a cycle if and only if a {0, +}-component of D(G)
contains a cycle, and similarly a “−” component of D(G̃) contains a cycle if and
only if a {0,−}-component of D(G) contains a cycle. �

This result can be formulated differently (and in a slightly more precise way) in
terms of the directions of the train-tracks, which can be either 1 or −1, in an extreme
point of Rh(G̃). Given two non-intersecting oriented train-tracks t, t′ on G, they
bound an annulus; we say that they have the same orientation if the oriented path
corresponding to one can be deformed to the oriented path corresponding to the
other within this annulus. If t and t′ have the same orientation and another oriented
train-track t′′ intersects both, then it intersects both with the same orientation.

Corollary 4.13. (1) To each extreme point of Rh(G̃) one can associate a max-
imal subset T0 ⊂ Tr+(G) of non-intersecting oriented train-tracks with the
same orientation, such that if a train-track t ∈ Tr+(G̃) has positive (resp.
negative) intersection with any train-track projecting to an element of T0,
then it is mapped to +1 (resp. −1).

(2) Conversely, given a maximal subset T0 ⊂ Tr+(G) of non-intersecting ori-
ented train-tracks with the same orientation, and a subset T̃1 ⊂ Tr+(G̃) of
oriented train-tracks projecting to the elements of T0, there is an extreme
point of Rh(G̃), defined by the following map ε : Tr+(G̃) → {±1}:

• if t projects to an element of T0, ε(t) = 1 iff t ∈ T̃1,
• if −t projects to an element of T0, ε(t) = 1 iff t 	∈ T̃1,
• otherwise, ε(t) = 1 iff t has positive intersection with a train-track

projecting to an element of T0.
(3) Given an extreme point T of Rh(G̃), it is defined as in (2) by a unique

choice of (T0, T̃1), unless the corresponding function from Tr+(G̃) to {±1}
is the lift of a function from Tr+(G) to {±1} — in which case T might be
described by more than one couple (T0, T̃1), always with T̃1 either maximal
or empty. Thus the set of extreme points described by more than one couple
(T0, T̃1) is finite.

Proof. Suppose that (1) is false. Then there are train-tracks t+1 , t−1 , t+2 , t−2 ∈ Tr+(G̃)
such that:

• t−1 and t+1 do not intersect, and have the same orientation.
• t−2 and t+2 do not intersect, and have the same orientation.
• Both t+1 and t−1 intersect t+2 and t−2 .
• For i ∈ {1, 2}, t−i is mapped to −1 and t+i to +1.

This contradicts the definition of F≥(Tr+(G̃), S1) (or the statement of Theorem
4.12), so it is impossible, and this shows (1).

The proof of (2) is straightforward; one only needs to check that the function ε

is in F≥(Tr+(G̃), S1).
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To prove (3), note that T0 is determined as soon as there are two oriented train-
tracks in Tr+(G̃) with different images in {±1}. Thus, given an extreme point
of Rh(G̃), the couple (T0, T̃1) is uniquely determined unless two non-intersecting
train-tracks in Tr+(G̃) with the same orientation always have the same image. But
this is true only for functions from Tr+(G̃) to {±1} which are lifts of functions from
Tr+(G) to {±1}. The result follows. �

Example (Z2). The graph D(Z2) has 4 vertices, corresponding to ±th, the left- and
right-oriented horizontal train-track and ±tv, the up- and down-oriented vertical
train-track, and four edges, th → tv → −th → −tv → th. The extreme points
correspond to one of the following four possible situations:

• all train-tracks projecting to th have image +1, and the image of the train-
tracks projecting to tv are arbitrary,

• all train-tracks projecting to th have image −1, and the image of the train-
tracks projecting to tv are arbitrary,

• all train-tracks projecting to tv have image +1, and the image of the train-
tracks projecting to th are arbitrary,

• all train-tracks projecting to tv have image −1, and the image of the train-
tracks projecting to th are arbitrary.

T0 is equal to {tv} in the first case, to {−tv} in the second case, to {−th} in the
third case and to {th} in the last case.

5. Periodic rhombic embeddings

5.1. Existence. For graphs on a torus we have the following analog of Theorem
3.1.

Theorem 5.1. Suppose G is a finite graph embedded on a torus, and each face has
degree 4. Then G has a rhombic embedding on a torus if and only if the following
two conditions are satisfied:

(1) Each train-track is a simple closed curve.
(2) The lift of two train-tracks to the universal cover intersect at most once.

Proof. The conditions are clearly necessary. The sufficiency is proved by construc-
tion: let (pi, qi) be the integer homology class of ti. Define ui to be the unit vector
perpendicular to (pi, qi). To see that this defines an embedding, it suffices to show
that each rhombus has positive area. However if oriented train-tracks ti and tj
intersect, with ti crossing tj from right to left, then piqj − pjqi > 0 since it counts
the algebraic intersection number. This implies that ui ∧ uj > 0. �

5.2. Asymptotic directions. Consider a graph G with faces of degree 4 embed-
ded on a torus, satisfying the conditions of Theorem 5.1. Each train-track t is a sim-
ple closed curve on the torus; the homology class of this curve is denoted [t] ∈ Z

2.
Two train-tracks of homology classes (p1, q1) and (p2, q2) intersect |p1q2 − p2q1|
times.

Given a rhombic embedding of G on a torus, the lift of an oriented train-track t to
the universal cover R

2 is a periodic curve and hence has an asymptotic direction
a(t) ∈ S1. It also has an asymptotic vector v(t), which is the difference in R

2

between two consecutive lifts of a point of t. The asymptotic vector of a train-track
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t is of course the sum of the transverse vectors of all rhombi comprising t. That is,
we have

v(ti) =
∑

j

bi,juj ,

where the sum is over all train-tracks, uj is the transversal of oriented train-track
j, and bi,j is the number of intersections of train-track j with train-track i: bi,j =
piqj − pjqi. The asymptotic direction is the unit vector a(ti) = v(ti)/‖v(ti)‖.

5.3. The space of periodic rhombic embeddings. Let Rh(G) be the space of
rhombic embeddings of G on a torus (the flat metric on the torus may be a function
of the embedding). The argument of section 4.1 can still be used, but we now have
to consider only the finite set of train-tracks on the torus. The proof of Theorem
3.1 — in a simplified form — shows that Rh(G) is convex when parametrized by
the rhombus angles, but it is now finite-dimensional, of dimension |Tr(G)| − 1.

The characterization of its extreme points can be done just as in Theorem
4.10 and Lemma 4.11 above. We can still consider Rh(G) as the quotient of
F>(Tr(G), S1) by the action of S1, and the argument using the action of H still
shows that the 1-dimensional stratums of F≥(Tr(G), S1) correspond to its elements
which take only two values β and β + π.

In particular Rh(G) is a convex polyhedron of dimension |Tr(G)| − 1.

5.4. Canonical embedding. On a torus, there is a “best” rhombic embedding of
any given graph; it has a simple geometric characterization but is also obtained as
the rhombic embedding maximizing the area.

Theorem 5.2. On Rh(G) the area function of the torus is a strictly concave func-
tion of the rhombus angles. There is a unique point maximizing the area, which is
characterized by the fact that the transverse direction of each train-track is orthog-
onal to its asymptotic direction.

Proof. The area of a rhombus of angle θ is sin θ, which is a strictly concave function
of θ ∈ (0, π). This implies that the total area, which is the sum of the areas of the
individual rhombi, is concave as a function of the angles. To show strict concavity,
it suffices to show strict concavity under any one-parameter perturbation. But any
perturbation must change the angle of some rhombus, and the contribution from
the area of this rhombus is strictly concave. So the area has at most one critical
point on Rh(G).

Let R be a rhombic embedding of graph G. The area of R is

A(R) =
∑

1≤i �=j≤t

bi,jui ∧ uj

=
∑

1≤i �=j≤t

bi,j sin(θj − θi),
(5.1)

where t is the number of train-tracks in G, ui = eiθi and the sum runs over all
train-tracks in G, with an orientation chosen for each. As a function of ui it is a
constant plus ui ∧ (

∑
j bi,juj) = ui ∧ a(ti). In particular since ui is a unit vector

this quantity is critical if and only if, for each i, ui is orthogonal to a(ti). So, if the
area does have a critical point on Rh(G), it is as described in the theorem.
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For each 1 ≤ i ≤ t, let αi be the angle of the asymptotic direction of ti. We
define a vector field V on Rh(G) by

∀i ∈ {1, · · · , t}, dθi(V ) = cos(αi − θi).

Clearly V vanishes exactly at the critical points of the area. In fact, A is increasing
along the integral curves of V :

dA(V ) =
∑

i

dui(V ) ∧
∑

j

bi,juj =
∑

i

(− cos(θi − αi)Jui) ∧ v(ti),

dA(V ) =
∑

i

cos(θi − αi)〈ui, v(ti)〉 =
∑

i

‖v(ti)‖ cos2(θi − αi) ≥ 0.

To prove that Rh(G) contains a critical point of V , it is therefore sufficient to
prove that, at any point of ∂Rh(G) where the area is positive, V points towards the
interior of Rh(G). Let θ0 = (θ0

i )1≤i≤t ∈ ∂Rh(G); the face of ∂Rh(G) containing θ0

is characterized by a set of equalities of the form θip
= θjp

for different values of p,
where — without loss of generality — tjp

has positive intersection with tip
.

For each 1 ≤ i ≤ t, let α0
i be the angle of the asymptotic direction of ti for θ0.

Then α0
ip

, α0
jp

∈ (θ0
ip

− π, θ0
ip

) and α0
jp

> α0
ip

(because tj has positive intersection
with ti and A > 0). Therefore cos(θ0

jp
− α0

jp
) > cos(θ0

ip
− α0

ip
), and thus V points

towards the interior of Rh(G). �

Corollary 5.3. A rhombic graph on a torus has maximal area if and only if,
for each train-track t, the transverse direction of t is orthogonal to its asymptotic
direction a(t).

6. Parallelogram embeddings

A generalization of rhombic embeddings is parallogram embeddings, wherein
each face is mapped to a parallelogram. Given a parallelogram embedding, a unique
rhombic embedding can be obtained by replacing each edge with the unit length
vector in the same direction. Conversely, the set of parallelogram embeddings
associated to a given rhombic embedding is obtained simply by replacing each edge
in a train-track with a real multiple (a different real multiple for each train-track).
Thus the combinatorial and topological behavior of parallelogram embeddings can
be understood from the underlying rhombic embedding.
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