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IRREGULAR HYPERGEOMETRIC SYSTEMS ASSOCIATED
WITH A SINGULAR MONOMIAL CURVE

MARÍA ISABEL HARTILLO-HERMOSO

Abstract. In this paper we study irregular hypergeometric systems defined
by one row. Specifically, we calculate slopes of such systems. In the case of
reduced semigroups, we generalize the case studied by Castro and Takayama.
In all the cases we find that there always exists a slope with respect to a
hyperplane of this system. Only in the case of an irregular system defined by
a 1 × 2 integer matrix we might need a change of coordinates to study slopes
at infinity. In the other cases slopes are always at the origin, defined with
respect to a hyperplane. We also compute all the L-characteristic varieties of
the system, so we have a section of the Gröbner fan of the module defined by
the hypergeometric system.

1. Introduction

Algebraic analysis or D-module theory studies systems of linear partial differ-
ential equations from the point of view of algebra and it generalizes the classical
theory of ordinary differential equations with holomorphic coefficients in one com-
plex variable x.

A basic concept in the theory of ordinary linear differential equations with holo-
morphic coefficients is that of regular singular point. Fuch’s theorem [8] gives a
combinatorial method to determine when a singular point is regular or irregular.
Given an ordinary linear differential equation

am(x)∂m + am−1(x)∂m−1 + · · · + a0(x), with am(x) �= 0,

we associate to it a combinatorial object, the Newton polygon, defined as

convex hull

 m⋃
j=0

(j, j − val(aj(x))) + (−N)2

 ,

where val(aj(x)) is the order of the holomorphic function aj(x) at x = 0.
Fuch’s theorem assures that the ordinary differential equation has a regular sin-

gular point at the origin if and only if its Newton polygon is a quadrant. The
notion of slope arises from this theorem: if the Newton polygon has a slope, then
the origin is an irregular singular point. We say that the equation is regular if it
has no irregular singular points.
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To generalize the theory of linear partial differential equations we introduce the
Weyl algebra:

An = C〈x1, . . . , xn, ∂1, . . . , ∂n〉,
that is, the ring of differential operators with polynomial coefficients in n variables.
This ring is not commutative and the above elements verify the following relations:
[xi, xj ] = 0, [∂i, ∂j ] = 0, and [∂i, xj ] = δi,j , where δi,j is the Kronecker delta.

We also need to introduce the ring Dn:

Dn = C{x1, . . . , xn}〈∂1, . . . , ∂n〉,
with the same relations between the generators.

The first differential equation we considered can be seen as an operator in this
ring. Every system of linear partial differential equations can be represented as
a left ideal in Dn, or in An if the coefficients are polynomial. This can be done
because a solution of such a system is also a solution for every element which comes
from a combination (as left ideal) of those operators.

In general we denote by 〈M〉 the left ideal generated by the elements of M . To
simplify notation we usually note A, D and x and ∂ instead of (x1, . . . , xn) and
(∂1, . . . , ∂n), if there is no confusion.

The generalization of irregularity in several variables is not obvious. The equiv-
alent notion is that of irregular sheaf, a concept due to Mebkhout (see [13]). Given
a system, we consider the left ideal associated and the module defined by this ideal;
if the irregular sheaf with respect to every hypersurface associated to this module
is zero, we say that the system is regular.

There also exists a generalization of the concept of slope; it is due to Laurent [9]
and it describes an invariant associated to a D-module with respect to a hypersur-
face in one of its points.

As in the case of one variable, those concepts are related, for holonomic modules.
The slopes of a module describe the jumps in the Gevrey filtration of that sheaf
[10]. We have that a holonomic D-module in several variables is regular if and only
if it has no slopes for all the hypersurfaces ([10]).

The slopes are used very often to determine if a module is irregular. There
exists an algorithm, due to Assi, Castro and Granger [2], which calculates, using
non-commutative Gröbner basis, the slopes of a D-module with respect to a hyper-
surface. In our work, we shall not use this algorithm because, although it is very
useful in particular cases, it seems untreatable (so many Gröbner basis calculations)
in general ones.

The aim of our study are the hypergeometric systems defined by one row. The
hypergeometric systems, in general, are systems of partial differential equations
with polynomial coefficients, so it defines a left ideal in the Weyl algebra. Given a
d × n integer matrix A with rank(A) = d and a complex vector β ∈ Cd, let HA(β)
denote the left ideal generated by

∂u − ∂v, u, v ∈ Nn such that Aut = Avt,(1.1)
n∑

j=1

aijxj∂j − βi, i = 1, . . . , d.(1.2)

The operators defined in (1.1) are called toric operators, and the ideal defined
by them in the commutative subring C[∂1, . . . , ∂n] is called the toric ideal and it is
usually denoted by IA. We shall also use the notation IA to denote the extension of
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that ideal in the Weyl algebra or in D. On the other hand, for the operators defined
in (1.2), that are usually called homogeneity operators, we shall use the notation
θi = xi∂i and we represent those operators as the vector of operators Aθt − β.

The ideal HA(β) ⊂ An is called the A-hypergeometric system with parameter
β. These systems were introduced by Gel’fand, Kapranov and Zelevinski [4]. We
usually denote by HA(β) the module A/HA(β). The module defined by HA(β) is
holonomic; see [4] and [1] for the general case.

A result by Hotta [7] assures that if the toric ideal IA is homogeneous with
respect to the usual grading, the hypergeometric system is regular. This condition,
in the case of A a 1 × n matrix, is equivalent to A being a multiple of the matrix
(1 . . . 1).

In this paper, we treat the case when A is a matrix defined by one row, and
it does not verify this condition. The two main results are theorems 3.3 and 4.2;
we find that, for matrices with at least three different elements the system always
has a slope defined with respect to a hyperplane. We also calculate all the slopes
with respect to the coordinate hyperplanes at the origin. The case with only two
different elements was studied in [6]: in this case if the semigroup defined by the
columns of A is reduced, we have always a slope with respect to a hyperplane; when
this semigroup is not reduced, we must do a change of coordinates and find a slope
at infinity.

This work generalizes the paper [3] by Castro and Takayama which treats the case
of hypergeometric systems defined by one row, with a matrix of the following form
(1 a2 . . . an), with 1 < a2 < · · · < an. In [3] they used a theorem of Laurent and
Mebkhout [11] about restrictions and slopes. They need to compute the restriction
of the hypergeometric system. In this process it is very useful that a1 = 1. If not,
the computation of the b-function (necessary in the known algorithms to compute
restrictions) is very hard. On the other hand, to use the theorem it is also necessary
that the calculation of the slopes in the new D-module obtained must be easier to
do, but if a1 �= 1, it is possible that the presentation of the new module is in Dr,
with r > 1. To generalize this paper we need to use different techniques.

2. Filtrations and slopes

The rings of differential operators A and D admit several filtrations (the anal-
ogous to graduations in non-commutative rings). In this section we define the
F -filtration or filtration by the order of the operator, the V -filtration or Malgrange-
Kashiwara filtration, and a family of filtrations defined as a combination of these.
We give the definition of the filtrations with respect to the ring D. Analogous def-
initions are valid in the Weyl algebra. With these objects we can formally define
what a slope of a D-module is.

Given an operator P ∈ D, P �= 0,

P =
∑

β

aβ(x)∂β.

We define the F -order of this operator as

ordF (P ) = max{|β|, aβ �= 0}

and ordF (0) = −∞.
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For any k we define the vector subspaces of the operators of order k or less than
k, and the operators of order less than k, and we denote them as

Fk(D) = {P ∈ D, such that ordF (P ) ≤ k},
F<k(D) = {P ∈ D, such that ordF (P ) < k}.

This allows us to define the graded algebra

grF (D) =
⊕

k

grF
k (D) =

⊕
k

Fk(D)/F<k(D).

For any operator P we can define its F -symbol, an element in the graded ring, as

σF (P ) =
∑

β, |β|=ordF (P )

aβ(x)ξβ.

Given an ideal I in D we define the graded ideal

grF (I) = 〈σF (P ), P ∈ I〉.
In this case grF (D) ∼= C{x}[ξ] and grF (A) ∼= C[x, ξ].

In an analogous way we can define the V -filtration or Malgrange-Kashiwara
filtration, which is defined with respect to a hypersurface. If we consider the hy-
persurface xj = 0, for a non-zero operator P ,

P =
∑
α,β

aα,βxα∂β .

We define its V -order as

ordV (P ) = max{βj − αj , aα,β �= 0},
and ordV (0) = −∞. The vector subspaces are defined as

Vk(D) = {P ∈ D, such that ordV (P ) ≤ k},
V<k(D) = {P ∈ D, such that ordV (P ) < k}.

Then, the V -graded ring is

grV (D) =
⊕

k

grV
k (D) =

⊕
k

Vk(D)/V<k(D).

For an operator we can define its V -symbol as

σV (P ) =
∑

(α,β), βj−αj=ordV (P )

aα,βxαξβ.

As before we can define the graded ideal. The great difference in this case is that
the graded ring is not commutative as before. Indeed

grV (D) ∼= C[xj ]{x1, . . . , xj−1, xj+1, . . . , xn}〈∂〉
with the usual relations [xi, xj ] = 0, [∂i, ∂j ] = 0, and [∂i, xj ] = δi,j . For the Weyl
algebra, grV (A) ∼= A.

Using the above filtrations F and V (with respect to xj = 0), we can define an
ordered family of filtrations. Given (p, q) �= (0, 0), non-negative integers, we define
the linear form over Q2, given by L(a, b) = pa + qb. Then, given an operator as
before, we define the L-order of a non-zero operator:

ordL(P ) = max{L(|β|, βj − αj), aα,β �= 0},
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as usual ordL(0) = −∞. We also define the vector subspaces:

Lk(D) = {P ∈ D, such that ordL(P ) ≤ k},
L<k(D) = {P ∈ D, such that ordL(P ) < k}.

The L-symbol of an operator is defined as

σL(P ) =
∑

(α,β), L(|β|,βj−αj)=ordL(P )

aα,βxαξβ.

As before, we define the L-graded ideal and the graded ring grL(D). If p �= 0, then
grL(D) ∼= C{x}[∂] and grL(A) ∼= C[x, ∂].

We can always consider the F -filtration as an L-filtration for (p, q) = (1, 0), and
also the V -filtration as the L-filtration for (p, q) = (0, 1). In general, to simplify
notation, we shall write L = pF + qV to note the filtration L defined as before.

We can define an order among the L-filtrations. Given two L-filtrations, L1

defined by (p, q) and L2 by (p′, q′), L1 < L2 if −p/q < −p′/q′. Given a L-filtration
we define its slope as the ratio −p/q.

Definition 2.1. Given a left ideal I and an L-filtration L �= V , we define the
L-characteristic variety, denoted ChL(D/I), as the analytic variety of C2n defined
by its graded ideal grL(I), i.e.,

ChL(D/I) = {(x, ξ) ∈ C2n|σL(P )(x, ξ) = 0, for all P ∈ I}.

If the left ideal I is in the Weyl algebra we define similarly the L-characteristic
variety.

Definition 2.2 ([9]). Let I be an ideal of D. The slopes of the D-module D/I
with respect to xj = 0 are the slopes of the linear forms L �= F, V (with V defined
with respect to xj = 0) such that

√
grL(I) is not bihomogeneous for the F and V

filtrations.

In the Weyl algebra, we can define a filtration for a given vector (u, v) ∈ R2n

such that ui + vi ≥ 0:

ord(u,v)(P ) = max{αu + βv, aα,β �= 0},
Wk = {P ∈ A such that αu + βv ≤ k}, W<k = {P ∈ A such that αu + βv < k},

gr(u,v)(A) =
⊕

k

grW
k (A) =

⊕
k

Wk(A)/W<k(A),

in(u,v)(P ) =
∑

(α,β) αu+βv=ord(u,v)(P )

aα,βxαξβ.

For this weight vector we shall use the notation of initial ideals:

in(u,v)(I) = 〈in(u,v)(P ), P ∈ I〉.

It is clear that, if we consider the filtration L = pF + qV , defined with respect
to the hyperplane xi = 0, then

grL(I) = in(0,...,0,−q,0,...,0,p,...,p,p+q,p,...,p)(I)

with −q in the i-th coordinate and p + q in the i + n-th coordinate.
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3. Hypergeometric systems defined by a reduced semigroup

In this section, we consider a 1 × n integer matrix A = (a1 a2 . . . an), such that
the semigroup defined by its elements is reduced or, equivalently, such that all the
elements ai are positive.

First of all we introduce some notation and a theorem from [14]. Here we do not
consider that the ideal IA is homogeneous: the result is true without this hypothesis.

Definition 3.1 ([14]). Given a d×n integer matrix A and a complex vector β ∈ Cd,
we define the (u, v)-fake initial ideal, when ui + vi ≥ 0, as

fin(u,v)(HA(β)) = inv(IA) + 〈in(u,v)(Aθt − β)〉,
where in(u,v)(f) denotes the initial terms of f , or the initial ideal, with respect to
the weight vector (u, v).

In general we have the following result:

Theorem 3.2 (Thm. 4.3.5 of [14]). Given a d×n integer matrix A and a complex
vector β ∈ Cd, for a fixed weight vector (u, v), such that ui+vi > 0, if in(u,v)(Aθt−β)
forms a regular sequence over the ring gr(u,v)(A)/inv(IA), then

in(u,v)(HA(β)) = fin(u,v)(HA(β)).

Proof. We consider as in [14] the following exact sequence of modules over the
algebra gr(u,v)(A)/inv(IA):

d⊕
i=1

(
gr(u,v)(A)/inv(IA)

)
·ei

d̄1→ gr(u,v)(A)/inv(IA)→gr(u,v)(A)/fin(u,v)(HA(β))→0,

where d̄1(
∑n

i=1 Piei) =
∑n

i=1 Piin(u,v)((Aθt − β)i).
Since in(u,v)((Aθt −β)j)ei − in(u,v)((Aθt −β)i)ej clearly belongs to the kernel of

d̄1, we can extend the exact sequence to the Koszul complex Kβ
• (gr(u,v)(A/IA)):

· · · d̄2−→ Kβ
1 (gr(u,v)(A/IA)) d̄1−→ Kβ

0 (gr(u,v)(A/IA)) −→ 0,

where
Kβ

p (gr(u,v)(A/IA)) =
⊕

1≤i1<···<ip≤n

gr(u,v)(A/IA)ei1···ip

and

d̄p(ei1···ip
) =

p∑
r=1

(−1)r−1in(u,v)((Aθt − β)ir
)ei1···îr···ip

.

We can also define the Koszul complex (with non-homogeneous elements)
Kβ

• (A/IA) as

· · · −→ Kβ
2 (A/IA) d2−→ Kβ

1 (A/IA) d1−→ Kβ
0 (A/IA) −→ 0,

where
Kβ

p (A/IA) =
⊕

1≤i1<···<ip≤n

A/IAei1···ip

and

dp(ei1···ip
) =

p∑
r=1

(−1)r−1((Aθt − β)ir
)ei1···îr···ip

.
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This complex can be filtered by

Fq(Kβ
p (A/IA)) =

⊕
1≤i1<···<ip≤n

Fq−
∑p

k=1 cik
A/IAei1···ip

,

where cik
= ord(u,v)((Aθt − β)ik

).
Clearly

Kβ
• (gr(u,v)(A/IA)) = gr(u,v)(Kβ

• (A/IA)).

Using this filtration it is easy to see that the sequence

Kβ
1 (gr(u,v)(A/IA)) −→ Kβ

0 (gr(u,v)(A/IA)) −→ gr(u,v)(HA(β)) −→ 0

is exact if H1(K
β
• (gr(u,v)(A/IA))) = 0.

If this sequence is exact, we have proved the statement, so all we need to prove
is that H1(K

β
• (gr(u,v)(A/IA))) = 0, or it is enough to see that the elements in

{in(u,v)((Aθt − β)1), . . . , in(u,v)((Aθt − β)d)} form a regular sequence in the com-
mutative graded ring gr(u,v)(A)/inv(IA). �

First, we consider a1 < a2 < · · · < an, and we study a generalization of the case
considered in [3], where the condition a1 = 1 was added.

Theorem 3.3. Given A, a 1×n matrix, and β ∈ C , such that A = (a1 a2 . . . an),
with 0 < a1 < a2 < · · · < an, the hypergeometric system HA(β) has no slopes
with respect to the hyperplanes xi = 0, i < n, and has only the slope an−1

an−1−an
with

respect to xn = 0. The singular locus of the system is {xn = 0}.
(i) If we consider a filtration L = pF + qV , p > 0, with V defined with respect

to xi = 0, i < n, then

ChL(HA(β)) = V(ξ1, . . . , ξn−1, xnξn).

(ii) If we consider a filtration L = pF + qV , p > 0, with V defined with respect
to xn = 0, with L < an−1F + (an − an−1)V , then

ChL(HA(β)) = V(ξ1, . . . , ξn−1, xnξn).

(iii) If L > an−1F + (an − an−1)V , then

ChL(HA(β)) = V(ξ1, . . . , ξn−2, ξn, xn−1ξn−1).

Proof. In first place we shall prove the first part of the theorem. Given A =
(a1 a2 . . . an), we consider the set of elements in the toric ideal IA:

Ci,j = ∂
aj

i − ∂ai
j , i < j.

First of all, we prove that if we consider the hyperplane xj = 0 with j < n, there
are not slopes of the system with respect to this hypersurface. Let L be a filtration
defined with respect to xj = 0, such that L = pF +qV , with p �= 0. We consider the
operators Ck,n. If k = j, then σF (Cj,n) = ξan

j , so it is clear that σL(Cj,n) = ξan
j .

If k �= j, we have that σL(Ck,n) = σF (Ck,n) = ξan

k . Finally,

{ξan
1 , ξan

2 , . . . , ξan
n−1} ⊂ grL(HA(β)) ⇒ {ξ1, ξ2, . . . , ξn−1} ⊂

√
grL(HA(β)).

Now, if we consider the element Q = a1x1∂1 + a2x2∂2 + · · ·+ anxn∂n − β, we have

σL(Q) = a1x1ξ1 + a2x2ξ2 + · · · + anxnξn ∈ grL(HA(β)),
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so

{ξ1, ξ2, . . . , ξn−1, xnξn} ⊂
√

grL(HA(β)),

and L does not define a slope of the system. This fact comes from the property of
the module HA(β) being holonomic; see [1]. So for L �= V we have that grL(HA(β))
is holonomic too, and then the L-characteristic variety can be decomposed in irre-
ducible components, all of dimension n, and each of those components is included in
some of those defined before by {ξ1, ξ2, . . . , ξn−1, xnξn}. But all these components
are bihomogenous, hence L does not define a slope. For further details see [5].

We prove now, at the same time, parts (i) and (ii). We fix the hyperplane
xn = 0. We choose a filtration L defined as L = pF + qV , such that L < an−1F +
(an − an−1)V (the same results are true in the (i) case). We have that σL(Ci,n) =
ξan
i , and the operators {C1,n, C2,n, . . . , Cn−1,n} are a Q-basis of ker(A).

We are interested in the toric ideal, IA. Due to the fact that all ai > 0, we have
that the toric ideal IA is homogeneous with respect to the grading defined by A. If
we note ÎA the ideal generated by Ci,n, then it is also graded, and ÎA ⊂ IA.

To compute a set of generators of IA we use the ideal quotients. Using lemma
12.1 of [15] we can obtain (ÎA : ∂∞

i ). First of all, we calculate (ÎA : ∂∞
n ) so that,

choosing the monomial order ≺, graded with respect to this grading such that
∂1  ∂2  · · ·  ∂n, the set {C1,n, . . . , Cn−1,n} forms a Gröbner basis (with respect
to such a monomial ordering) of ÎA. In the same way, if we fix an i < n, we can
consider the new monomial ordering ≺′, defined as the graded monomial ordering
such that ∂1 ′ ∂2 ′ · · · ′ ∂i−1 ′ ∂i+1 ′ · · · ′ ∂n ′ ∂i. So, finally we obtain

(〈C1,n, C2,n, . . . , Cn−1,n〉 : (∂1 · · · ∂n)∞) = 〈C1,n, C2,n, . . . , Cn−1,n〉.

Both ideals IA and ÎA are saturated, and ÎA ⊂ IA. We have defined ÎA from a
Q-basis of ker(A), hence we have that for any ∂u+ − ∂u− ∈ IA there always exists
an element ∂v+ − ∂v− ∈ ÎA, and an a ∈ N such that au = v.

On the other hand, it is clear that

{ξan
1 , ξan

2 , . . . , ξan
n−1}

forms a regular sequence in C[ξ], so using proposition 4.3.2 of [14] we have that

〈ξan
1 , ξan

2 , . . . , ξan
n−1〉 = in(p,...,p,p+q)(ÎA).

This implies, with the above properties,

〈ξan
1 , ξan

2 , . . . , ξan
n−1〉 = in(p,...,p,p+q)(ÎA) ⊂ in(p,...,p,p+q)(IA)

⊂ 〈ξ1, ξ2, . . . , ξn−1〉 =
√

in(p,...,p,p+q)(ÎA) =
√

in(p,...,p,p+q)(IA).

We want to prove that σL(a1x1∂1 + · · ·+ anxn∂n − β) forms a regular sequence
over C[x, ξ]/grL(IA), that is, this element is not a zero divisor in this ring. But, if
we prove that this element is not a zero divisor over C[x, ξ]/grL(ÎA), we obtain the
desired result.

The ring C[x, ξ]/grL(ÎA) is a graded ring; we must see that σL(Aθ − β) is not a
zero divisor, that is, if hσL(Aθ − β) ∈ grL(ÎA), then h ∈ grL(ÎA). But grL(ÎA) is a
monomial graded ideal, so all the monomials in hxnξn ∈ grL(ÎA), thus h ∈ grL(ÎA).
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So, we have proved that, for any L filtration, with L < an−1F + (an − an−1)V ,

grL(HA(β)) = fin(0,...,0,−q,p,...,p,p+q)(HA(β))

= in(p,...,p,p+q)(IA) + σL(a1x1∂1 + · · · + anxn∂n − β)

and it is clear that this is also true for any filtration L defined with respect to the
Malgrange-Kashiwara filtration with respect to a hypersurface xi = 0 with i < n.

In particular we have that

ChL(HA(β)) = V
(√

fin(0,...,0,−q,p,...,p,p+q)(HA(β)
)

= V
(√√

in(p,...,p,p+q)(IA) +
√

σL(a1x1∂1 + · · · + anxn∂n − β)

)
= V (ξ1, . . . , ξn−1, xnξn) .

Finally, we prove part (iii). We now consider a new filtration L defined with
respect the Malgrange-Kashiwara filtration, with respect to the hypersurface xn =
0, such that L > an−1F + (an − an−1)V . In this case, we obtain that

in(p,...,p,p+q)(ÎA) = 〈ξan
1 , ξan

2 , . . . , ξan
n−2, ξ

an−1
n 〉.

Using the same argument as before, we have that σL(a1x1∂1 + · · · + anxn∂n − β)
is also a regular sequence over C[x, ξ]/in(p,...,p,p+q)(IA), so

grL(HA(β)) = fin(0,...,0,−q,p,...,p,p+q)(HA(β))

= in(p,...,p,p+q)(IA) + σL(a1x1∂1 + · · · + anxn∂n − β).

We want to calculate the L-characteristic variety as before. In this case,

ChL(HA(β)) = V (ξ1, ξ2, . . . , ξn−2, ξn, xn−1ξn−1) .

This change in the characteristic variety tells us that L = an−1F + (an − an−1)V
is a slope of the hypergeometric system. It is also clear, as before, that any other
filtration L is not a slope of our system. �

In theorem 3.3, we had the hypothesis a1 < a2 < · · · < an. We now describe the
general case.

Given a 1×n integer matrix, which defines a reduced semigroup, we can always
order its elements. We consider, in the first place, that one of the elements in the
matrix is repeated, and the repeated element is not the largest one. To simplify
notation, we suppose that a1 is the repeated element, and it is written twice. It is
clear that it can be easily generalized. So,

A = (a1 a1 a2 a3 · · · an−1) a1 < a2 < · · · < an−1.

If we consider the following elements in the toric ideal:

C1,n = ∂
an−1
1 − ∂a1

n , Ci,n = ∂
an−1
i − ∂ai−1

n , 2 ≤ i ≤ n − 1,

they form a Q basis of ker(A). Repeating the process in the proof of theorem 3.3,
we obtain that the L-symbol of the homogeneity operator forms a regular sequence,
for every filtration L �= an−2F + (an−1 − an−2)V . We see that theorem 3.3 can be
rewritten in this case.

On the other hand, if the repeated element is the largest one, and we suppose
that it is written twice, we have

A = (a1 a2 . . . an−1 an−1), a1 < a2 < · · · < an−1.
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If we do the following change of coordinates:

x1 = x′
1 x2 = x′

2 · · · xn−1 = x′
n−1 x′

n = xn−1 + xn

we obtain
∂1 = ∂′

1 ∂2 = ∂′
2 · · · ∂n−1 = ∂′

n−1 + ∂′
n ∂n = ∂′

n.

If we calculate the slopes of the new system obtained with this change of coordi-
nates, we are studying the slopes of our system with respect to x1 = 0, x2 = 0, . . .,
xn−1 = 0 or xn−1 + xn = 0.

If we do the change of coordinates we obtain the new left ideal generated by

C1,n = ∂′
1
an−1 − ∂′

n
a1 , . . . , Cn−2,n−1 = ∂′

n−2
an−1 − ∂′

n
an−2 , Cn−1,n = ∂′

n−1

a1x
′
1∂

′
1 + a2x

′
2∂

′
2 + · · · + an−1x

′
n−1(∂

′
n−1 + ∂′

n) + an−1(x′
n − x′

n−1)∂
′
n − β

= a1x
′
1∂

′
1 + a2x

′
2∂

′
2 + · · · + an−1x

′
n−1∂

′
n−1 + an−1x

′
n∂′

n − β.

Then the left ideal we have obtained is the same as

〈∂′
n−1, H(a1 a2 ··· an−2 an−1)(β)〉,

if we consider the names of the variables for the Gelfand’-Kapranov-Zelevinski sys-
tem equal to x′

1, x
′
2, . . . , x

′
n−2, x

′
n.

This case has been solved in theorem 3.3. We do not have any slope with respect
to the hyperplanes x′

i = 0 for i < n and we have only one slope for the hyperplane
x′

n = 0, the slope defined by the filtration L = an−2F +(an−1−an−2)V . As we said
before, we have obtained one slope of our system, with respect to the hyperplane
xn−1 + xn = 0.

4. Hypergeometric systems with no reduced semigroup

In this section we shall study hypergeometric systems defined by an integer 1×n
matrix A such that the semigroup S defined by its columns is not a reduced one. In
other words S ∩ (−S) = 0 or, equivalently, the matrix A has positive and negative
elements. The case of an integer matrix with all of its elements negative is the same
as the one with all the elements positive, because if we multiply the d×n matrix A
by a matrix B, such that B ∈ GLd(Q), and BA is an integer matrix too, we have
that HA(β) = HBA(Bβ).

We suppose that A has at least three different elements, because the case with
only two elements was studied in [6]. It is precisely this case, a 1 × 2 matrix with
one positive element and one negative, when there is no slope with respect to the
coordinate hyperplanes, and we must look for the slopes at infinity.

In first place, let us consider A with one negative element −b1 and the other
elements positive, different and ordered.

Lemma 4.1. Given a 1×n matrix A and β∈C, such that A=(−b1 a1 a2 . . . an−1),
with b1 > 0 and 0 < a1 < a2 < · · · < an−1, the hypergeometric system HA(β) has
no slopes with respect to the hyperplanes xi = 0, i < n, and it has only the slope

an−2
an−2−an−1

with respect to xn = 0. The singular locus of the system is {x1 = xn =
0}.

(i) If we consider a filtration L = pF + qV , p > 0, with V defined with respect
to xi = 0, i < n, then

ChL(HA(β)) = V(ξ1ξn, ξ2, . . . , ξn−1, x1ξ1, xnξn).
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(ii) If we consider a filtration L = pF + qV , p > 0, with V defined with respect
to xn = 0, with L < an−2F + (an−1 − an−2)V , then

ChL(HA(β)) = V(ξ1ξn, ξ2, . . . , ξn−1, x1ξ1, xnξn).

(iii) If L > an−2F + (an−1 − an−2)V , then

ChL(HA(β)) = V(ξ1ξn−1, ξ2, . . . , ξn−2, ξn, x1ξ1, xn−1ξn−1).

Proof. We shall use very similar arguments to those in theorem 3.3. We consider
the following elements in the toric ideal:

C1,n = ∂
an−1
1 ∂b1

n − 1, C2,n = ∂
an−1
2 − ∂a1

n , . . . , Cn−1,n = ∂
an−1
n−1 − ∂an−2

n .

Those elements form a Q-basis of ker(A), and due to the fact of the semigroup not
being reduced, as we have added to our set an element of the form ∂u − 1, if they
form a Z-basis, they generate the toric ideal. Let ÎA denote the ideal generated
by C1,n, C2,n, . . . , Cn−1,n. Then, for any element in the toric ideal IA, ∂u+ − ∂u−

,
there always exist a ∈ N and v = v+ − v− such that ∂v+ − ∂v− ∈ ÎA and v = au.
Let L = pF + qV be a filtration defined by any hyperplane xi = 0 with i < n. The
set

{σL(C1,2) = ξ
an−1
1 ξb1

n , σL(C2,n) = ξ
an−1
2 , . . . , σL(Cn−1,n) = ξ

an−1
n−1 }

forms a regular sequence, therefore they generate the ideal in(p,...,p,p+q,p,...,p)(ÎA).
We want to prove that the L-symbol of the homogeneity operator forms a regular

sequence over C[x, ξ]/in(p,...,p,p+q,p,...,p)(IA). If we prove that the L-symbol of the
homogeneity operator forms a regular sequence over C[x, ξ]/in(p,...,p,p+q,p,...,p)(ÎA)
we are done. The ring C[x, ξ]/in(p,...,p,p+q,p,...,p)(ÎA) is a graded ring. We must
see that the element σL(Aθ − β) is a not a zero divisor, that is, if hσL(Aθ − β) ∈
in(p,...,p,p+q,p,...,p)(ÎA), then h ∈ in(p,...,p,p+q,p,...,p)(ÎA). But in(p,...,p,p+q,p,...,p)(ÎA) is
a monomial graded ideal, so for all the monomials in hx1ξ1 ∈ in(p,...,p,p+q,p,...,p)(ÎA)
and hxnξn ∈ in(p,...,p,p+q,p,...,p)(ÎA), then h ∈ in(p,...,p,p+q,p,...,p)(ÎA).

Then as we saw before,

ChL(HA(β)) = V(ξ1ξn, ξ2, . . . , ξn−1, x1ξ1, xnξn).

This is also true for any filtration L defined with respect to xn = 0 if L < an−2F +
(an−1 − an−2)V , so we have proved the parts (i) and (ii).

To see the (iii) part, we now fix a filtration L, defined with respect to the
hyperplane xn = 0, and such that L > an−2F + (an−1 − an−2)V . We take the
elements in the toric ideal IA:

C1,n−1 = ∂
an−2
1 ∂b1

n−1 − 1, C2,n = ∂
an−1
2 − ∂a1

n , . . . , Cn−1,n = ∂
an−1
n−1 − ∂an−2

n .

These elements form a Q-basis of ker(A). We call Î ′A the ideal generated by
C1,n−1, C2,n, . . . , Cn−1,n. The L-symbols of those elements form a regular se-
quence, they generate in(p,...,p,p+q)(Î ′A), and the L-symbol of the homogeneity op-
erator is a regular sequence over C[x, ξ]/in(p,...,p,p+q)(Î ′A). We have again that the
fake initial ideal is equal to the initial ideal of the hypergeometric system. Hence

ChL(HA(β)) = V(ξ1ξn−1, ξ2, . . . , ξn−2, ξn, x1ξ1, xn−1ξn−1).

�
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The only case we have not studied yet is the one with more than one element
negative and more than one element positive. To simplify notation we shall asume
A is a 1 × (m + n) integer matrix with all its elements different and ordered.

Theorem 4.2. Given a 1 × (m + n) integer matrix A and β ∈ C, such that A =
(−bm . . . − b1 a1 a2 . . . an), with 0 < a1 < a2 < · · · < an, and 0 < b1 < b2 < . . . <
bm, the hypergeometric system HA(β) has no slopes with respect to the hyperplanes
xi = 0, 1 < i < m + n, and it has only the slope bm−1

bm−1−bm
with respect to the

hyperplane x1 = 0 and the slope an−1
an−1−an

with respect to xm+n = 0. The singular
locus of the system is {x1 = xm+n = 0}.

(i) If we consider a filtration L = pF + qV , p > 0, with V defined with respect
to xi = 0, 1 < i < m + n, then

ChL(HA(β)) = V(ξ1ξm+n, ξ2, . . . , ξm+n−1, x1ξ1, xm+nξm+n).

(ii) If we consider a filtration L = pF + qV , p > 0, with V defined with respect
to x1 = 0, with L < bm−1F + (bm − bm−1)V , or a filtration with respect to
xm+n = 0, with L < an−1F + (an − an−1)V , then

ChL(HA(β)) = V(ξ1ξm+n, ξ2, . . . , ξm+n−1, x1ξ1, xm+nξm+n).

(iii) If the filtration L is defined with respect to the hyperplane x1 = 0 and
L > bm−1F + (bm − bm−1)V , then

ChL(HA(β)) = V(ξ2ξm+n, ξ1, ξ3, . . . , ξm+n−1, x2ξ2, xm+nξm+n).

(iv) If the filtration L is defined with respect to the hyperplane xm+n = 0, such
that L > an−1F + (an − an−1)V , then

ChL(HA(β)) = V(ξ1ξm+n−1, ξ2, . . . , ξm+n−2, ξm+n, x1ξ1, xm+n−1ξm+n−1).

Proof. First, we prove part (i). Let L be a filtration defined with respect to the
hyperplane xi = 0 for 1 < i < m + n. We consider the set of elements in the toric
ideal:

C1,m+n = ∂an
1 ∂bm

m+n − 1, C1,2 = ∂
bm−1
1 − ∂bm

2 , . . . , C1,m = ∂b1
1 − ∂bm

m ,

Cm+1,m+n = ∂an
m+1 − ∂a1

m+n, . . . , Cm+n−1,m+n = ∂an
m+n−1 − ∂

an−1
m+n .

They form a Q-basis of ker(A), and we have an element of the form ∂u − 1, so we
let ÎA be the ideal generated by C1,m+n, C1,i with 1 < i < m+1, and Cj,m+n with
m < j < m + n. For any element in the toric ideal ∂u+ − ∂u−

, there always exist
v = v+−v− and a ∈ N such that ∂v+ −∂v− ∈ ÎA, and au = v. It is also clear that
the L-symbols of those operator form a regular sequence, so they generate grL(ÎA).

We can easily see that the L-symbol of the homogeneity operator is a regular
sequence over C[x, ξ]/grL(ÎA), with a similar argument as the one used in the proof
of lemma 4.1. This implies that the fake initial ideal is equal to the initial ideal, so
we obtain that

ChL(HA(β)) = V(ξ1ξm+n, ξ2, . . . , ξm+n−1, x1ξ1, xm+nξm+n).

To prove the (ii) part, the same argument is valid for any filtration L defined for
x1 = 0 if L < bm−1F + (bm − bm−1)V , or defined for the hyperplane xm+n = 0 if
L < an−1F + (an − an−1)V .
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We now consider a filtration L defined for x1 = 0 such that L > bn−1F +
(bn − bn−1)V , to prove part (iii). We take the elements in the toric ideal:

C2,m+n = ∂an
2 ∂

bm−1
m+n − 1, C1,2 = ∂

bm−1
1 − ∂bm

2 , . . . , C1,m = ∂b1
1 − ∂bm

m ,

Cm+1,m+n = ∂an
m+1 − ∂a1

m+n, . . . , Cm+n−1,m+n = ∂an
m+n−1 − ∂

an−1
m+n .

Those elements form a Q-basis for ker(A). Let Î ′A be the ideal generated by those
elements. Their L-symbols form a regular sequence, and we see as before that the
L-symbol of the homogeneity operator is a regular sequence over C[x, ξ]/grL(IA).
Then,

ChL(HA(β)) = V(ξ2ξm+n, ξ1, ξ3, . . . , ξm+n−1, x2ξ2, xm+nξm+n).

With analogous arguments we obtain the same result for a filtration L defined
for xm+n = 0, and L > an−1F + (an − an−1)V . If we consider the ideal generated
by C1,m+n−1, C1,i with 1 < i < m + 1 and Cj,m+n with m < j < m + n, we get a
very similar argument and obtain

ChL(HA(β)) = V(ξ1ξm+n−1, ξ2, . . . , ξm+n−2, ξm+n, x1ξ1, xm+n−1ξm+n−1).

�

It is clear that for both cases in this section, if we have repeated elements, we can
always calculate its slopes with these results and the arguments of the precedent
section.
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