Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Steinberg symbols modulo the trace class, holonomy, and limit theorems for Toeplitz determinants
HTML articles powered by AMS MathViewer

by Richard W. Carey and Joel D. Pincus PDF
Trans. Amer. Math. Soc. 358 (2006), 509-551 Request permission

Abstract:

Suppose that $\phi =\psi z^\gamma$ where $\gamma \in Z_+$ and $\psi \in \operatorname {Lip}_\beta ,\,{1\over 2}<\beta <1$, and the Toeplitz operator $T_\psi$ is invertible. Let $D_n(T_\phi )$ be the determinant of the Toeplitz matrix $((\hat \phi _{i,j}))=((\hat \phi _{i-j})),\quad 0\leq i,j\leq n ,$ where $\hat \phi _k={1\over 2\pi }\int _0^{2\pi } \phi (\theta )e^{-ik\theta }\, d\theta$. Let $P_n$ be the orthogonal projection onto $\ker {S^*}^{n+1}=\bigvee \{1,e^{i\theta }, e^{2i\theta },\ldots , e^{in\theta }\},$ where $S=T_z$; set $Q_n=1-P_n$, let $H_\omega$ denote the Hankel operator associated to $\omega$, and set $\tilde \omega (t)=\omega ({1\over t})$ for $t\in \mathbb {T}$. For the Wiener-Hopf factorization $\psi =f\bar g$ where $f, g$ and ${1\over f },{1\over g}\in \operatorname {Lip}_\beta \cap H^\infty (\mathbb {T}), {1\over 2}<\beta <1$, put $E(\psi )=\exp \sum _{k=1}^\infty k(\log f)_k(\log \bar g)_{-k}$, $G(\psi )=\exp (\log \psi )_0.$

Theorem A. $D_n(T_\phi )=(-1)^{(n+1)\gamma } G(\psi )^{n+1}E(\psi ) G({\bar g\over f})^\gamma \cdot \det \bigg ((T_{{f\over \bar g}z^{n+1}}\cdot [1-H_{\bar g\over f} Q_{n-\gamma } H_{({\frac {f}{\bar g}})^{\tilde {}}} ]^{-1}z^{\alpha -1},z^{\tau -1})\bigg )_{\gamma \times \gamma } \cdot [1+O(n^{1-2\beta })].$

Let $H^2(\mathbb {T})= {\mathcal X}\dotplus {\mathcal Y}$ be a decomposition into $T_\phi T_{\phi ^{-1}}$ invariant subspaces, ${\mathcal X}= \bigcap _{n=1}^\infty \operatorname {ran} (T_\phi T_{\phi ^{-1}})^n$ and ${\mathcal Y}=\bigcup _{n=1}^\infty \ker (T_\phi T_{\phi ^{-1}})^n$, so that $T_\phi T_{\phi ^{-1}}$ restricted to ${\mathcal X}$ is invertible, ${\mathcal Y}$ is finite dimensional, and $T_\phi T_{\phi ^{-1}}$ restricted to ${\mathcal Y}$ is nilpotent. Let $\{w_\alpha \}_1^\gamma$ be the basis $\{T_f z^\alpha \}_0^{\gamma -1}$ for the null space of $T_\phi T_{\phi ^{-1}}$, and let $u_\alpha$ be the top vector in a Jordan root vector chain of length $m_\alpha +1$ lying over $(-1)^{m_\alpha }w_\alpha$, i.e., $(T_\phi T_{\phi ^{-1}})^{m_\alpha }u_\alpha =(-1)^{m_\alpha }w_\alpha$ where $m_\alpha =\max \{m\in Z_+:\exists x\,\text {so that} (T_\phi T_{\phi ^{-1}})^mx=w_\alpha \}^{-1}$.

Theorem B. $E( \psi ) G({\bar g\over f})^\gamma =$ ${\prod _{\lambda \in \sigma (T_{\phi } T_{\phi ^{-1}})\setminus \{0\}}\,\lambda }\over \det ( u_\alpha ,T_{1\over g}z^{\tau -1})$ $=\left (\bar g\cup f\times {\bar g\over f}\cup z^\gamma \right )(\mathbb {T})$, the holonomy of a Deligne bundle with connection defined by the factorization $\phi = f\bar gz^\gamma$.

Note that the generalizations of the Szegö limit theorem for $D_n(T_\phi )$ which have appeared in the literature with $1$ instead of $[1-H_{\bar g\over f} Q_{n-\gamma } H_{({f\over \bar g})^{\tilde {}}}]^{-1}$ have the defect that the limit of ${D_n(T_\phi )\over (-1)^{(n+1)\gamma } G(\psi )^{n+1} \det (T_{{f\over \bar g}z^{n+1}}z^{\alpha -1},z^{\tau -1})}$ does not exist in general. An example is given with $D_n(T_\phi )\neq 0$ yet $D_{\gamma -1}(T_{{f\over \bar g}z^{n+1}})=0$ for infinitely many $n$.

References
Similar Articles
Additional Information
  • Richard W. Carey
  • Affiliation: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40511
  • Email: carey@ms.uky.edu
  • Joel D. Pincus
  • Affiliation: 806 Hunt Lane, Manhasset, New York 11030
  • Email: joelppp@earthlink.net
  • Received by editor(s): January 23, 2004
  • Published electronically: September 9, 2005
  • © Copyright 2005 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 358 (2006), 509-551
  • MSC (2000): Primary 47A55, 47B30, 47A53, 47B35, 46L87, 19C20
  • DOI: https://doi.org/10.1090/S0002-9947-05-03858-4
  • MathSciNet review: 2177029