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ON THE HYPERBOLICITY
OF THE PERIOD-DOUBLING FIXED POINT

DANIEL SMANIA

Abstract. We give a new proof of the hyperbolicity of the fixed point for
the period-doubling renormalization operator using the local dynamics near a
semi-attractive fixed point (in a Banach space) and the theory of holomorphic
motions. We also give a new proof of the exponential contraction of the Feigen-
baum renormalization operator in the hybrid class of the period-doubling fixed
point: our proof uses the non-existence of invariant line fields in the period-
doubling tower (C. McMullen), the topological convergence (D. Sullivan), and
a new infinitesimal argument.

1. Introduction and statement of results

A unimodal map is an even (real-analytic) map f : [−1, 1] → [−1, 1], with
f(−1) = f(1) = 1, so that 0 is its unique critical point, which is quadratic. A
unimodal map is period-doubling renormalizable if there exists an interval [ρ,−ρ] ⊂
[−1, 1] satisfying:

i. f2(ρ) = f2(−ρ) = ρ,
ii. f2([ρ,−ρ]) ⊂ [ρ,−ρ],
iii. 0 is the unique critical point for f2 in [ρ,−ρ].

Define the period-doubling renormalization of f as the unimodal map

Rf(z) :=
1
ρ

f2(ρ z).

Roughly speaking, one of the main objectives of renormalization theory is to study
the behavior of operators like the period-doubling renormalization operator.

The renormalization theory in one-dimensional dynamics had its origin in the
observation of universality in families of unimodal maps by Feigenbaum and Coullet-
Tresser. They conjectured that such universality could be explained by the exis-
tence of a hyperbolic fixed point (the so-called period-doubling fixed point) for
the period-doubling renormalization operator (defined in the “space of unimodal
maps”) and the characterization of its stable manifold. Lanford [Lan] proved exis-
tence of such fixed point, and Sullivan [Su] introduced quasiconformal methods in
renormalization theory and proved uniqueness of such a fixed point. He also proved
that the renormalizations of maps in the so-called hybrid class (see the definition
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in Section 2.2) of the period-doubling fixed point converges to this fixed point. Mc-
Mullen [McM96] proved that in the hybrid class of the period-doubling fixed point
the convergence to the period-doubling fixed point is indeed exponentially fast.

Finally, Lyubich [Lyu99] proved the Feigenbaum-Coullet-Tresser conjecture as-
serting that the period-doubling fixed point is hyperbolic, with a codimension one
stable manifold. Furthermore, Lyubich proved that the hybrid class of the period-
doubling fixed point studied by Sullivan and McMullen coincides with the stable
manifold of this fixed point. The results cited above make deep use of methods of
complex dynamics and represent a sample of the importance of such methods in
the development of one-dimensional dynamics in the last two decades. The main
goal of this work is to provide a simpler and shorter proof to part of McMullen
and Lyubich’s results in [McM96] and [Lyu99], in order to make these results more
accessible to a wider audience.

We will provide a new approach to the following result:

Main Theorem ([Lyu99]; see also [Lan], [Su], [McM96]). The period-doubling
renormalization operator restricts to a compact operator on an open set of a Banach
space B of holomorphic functions. This operator has a hyperbolic fixed point f∗, with
codimension one stable manifold. Renormalizations of any infinitely renormalizable
real-analytic unimodal map eventually belong to the stable manifold of f∗ in B.

We will postpone the precise definitions and statements until Section 2.2. The
reader will observe that we assume the period-doubling combinatorics just to sim-
plify the notation: the argument in the proof of the Main Theorem works as well
to prove the hyperbolicity of real periodic points of the renormalization operator.

2. Preliminaries and precise statements

2.1. Notation. For a subset V ⊂ C and λ ∈ C, denote λV := {λx : x ∈ V }. If
f is a holomorphic function, we will use the notation f−1V |0 for the connected
component of {x : f(x) ∈ V } which contains 0. If xn converges to x when n goes
to infinity, we will write xn →n x or simply xn → x. In this work we will deal with
a smooth operator R, whose domain is in a (affine) Banach space of functions. To
avoid confusion, we will denote by DRf the derivative of the operator R at f , and
by D(Rf) the derivative of the function Rf .

2.2. Period-doubling renormalization. Despite its origins in the real setting,
the renormalization operator actually “lives” in complex-analytic spaces. We need
to introduce some notation before giving precise statements.

Let g : U → V be a quadratic-like map. This means that g is a ramified holomor-
phic covering map of degree two, where U and V are simply-connected domains,
where U is compactly contained in V , U � V . The annulus V \ U is called the
fundamental annulus of g. The filled-in Julia set of a quadratic-like map g is the
set

K(g) :=
⋂
n

g−nV.

Quadratic-like maps have two fixed points counted with multiplicity. If K(g) is
connected, then one of them, called α, is either non-repelling or disconnecting (i.e.,
K(g) becomes disconnected after removing α). The other fixed point is called β.

We say that g is period-doubling renormalizable in Douady-Hubbard sense if
there exist simply-connected sub-domains U1, V1 so that g1 := g2 : U1 → V1
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is also a quadratic-like map with connected filled-in Julia set and, furthermore,
K(g1)∩g(K(g1)) is the β-fixed point of g1. The renormalization in Douady-Hubbard
sense is related to the period-doubling renormalization for unimodal maps in the
following way: deep renormalizations of infinitely renormalizable real analytic uni-
modal maps have quadratic-like extensions which are infinitely renormalizable in
Douady-Hubbard sense.

Two quadratic-like maps h : Uh → Vh and g : Ug → Vg, both with connected
filled-in Julia set, define the same quadratic-like germ if K(h) coincides with K(g)
and h coincides with g in a neighborhood of K(g). If g is renormalizable, then the
renormalization of the germ defined by g, denoted Rg, is the unique quadratic-like
germ defined by the normalization of any possible induced map g2 : U1 → V1 which
is a quadratic-like map with connected filled-in Julia set (normalize the germ using
an affine conjugacy, setting the critical point at zero and the β-fixed point in g1 to
1).

The operator R is called the period-doubling renormalization operator. In the
setting of quadratic-like germs which have real values on the real line, there ex-
ists a unique fixed point to the period-doubling renormalization operator (proved
by D. Sullivan; see also [McM96]), denoted by f�. This fixed point satisfies the
functional equation ρf�(z) = f� ◦ f�(ρz), for some −1 < ρ < 0 so that f�(ρ) = ρ.
Indeed ρ is the α-fixed point of f� or, what is the same, the β-fixed point of the
quadratic-like restriction of the second iteration of f� prior to its normalization to
1 in the definition of the renormalization operator above.

Given an analytic function f : U → C, where U is an open set, define the open
set

Dn
U (f) :=

n−1⋂
i=0

f−iU.

In other words, Dn
U (f) is the complex domain where fn is defined.

Recall that we defined the renormalization of a quadratic-like map as a quadratic-
like germ. We would like to consider the renormalization operator as an operator
acting on holomorphic functions, at least for those close enough to f�. To this
end we need to know a little more about the fixed point f� (see [Lyu99]): It is
a consequence of the so-called a priori complex bounds [Su] that we can choose
simply-connected domains U � Ũ , and N > 0 so that:

i. f� has a continuous extension to U which is holomorphic in U .
ii. There exists an open set V � U with smooth boundary such that f� : V →

f�V is a quadratic-like map.
iii. We have that

ρN Ũ � D2N

(f�)−1V (f�),

in other words we can iterate f� : (f�)−1V → V at least 2N times on the
domain ρN Ũ .

iv. Define W := ρ2NV . Then (f�)iW , for i = 0, . . . , 22N , is disjoint from the
annulus ρNV \ ρN (f�)−1V |0.

Property iii implies that the quadratic-like germ of RNf� can be obtained as
a restriction of the 2N -th iteration of f� : U → C to the sub-domain ρN Ũ after
normalizing it by the factor ρ−N . So this normalized restriction of an iteration of f�

is defined on Ũ , which contains the original domain of the definition of f� : U → C.
This argument is robust in the following way: for maps f : U → C close enough to
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f�, we can also use the same argument to prove that its N -th renormalization is
defined at least on U as a normalized 2n-th iteration of f . This observation will be
crucial to define the renormalization operator as an operator on an open set of a
Banach space of holomorphic functions on U which have a continuous extension to
U .

Property iv says that the first 22N iterations by f� of the fundamental annulus
of the 2N -th renormalization of f� does not intersect the fundamental annulus of
the N -th renormalization of f�. This is a technical property used only in the proof
of an auxiliary result (Lemma 4.1).

Denote by B(U) the Banach space of the complex analytic functions g, Dg(0) =
0, with a continuous extension to U , endowed with the sup norm, and by Bnor(U)
denote the affine subspace of functions g such that g(1) = 1. Choose ε small enough
such that for each f in

B(f�, ε) := {f ∈ Bnor(U), |f − f�|B(U) < ε},

the following holds:

• There exists an analytic continuation ρf of the β-fixed point of the small
Julia set associated with the N -th renormalization of f�. (At first glance
a better notation could be βRN f , but we note that a map f close to f� is
not in general N times renormalizable.)

• The map f : f−1V → V is a quadratic-like map.
• We have ρf Ũ � D2N

f−1V (f).

Such ε does exist due to properties i–iii above.
Define the complex analytic transformation R̃ : B(f�, ε) → Bnor(Ũ) as

R̃f(z) :=
1
ρf

f2N

(ρfz).

If i : B(Ũ) → B(U) is the natural compact inclusion between these Banach spaces,
define the complex analytic extension of the period-doubling operator as R := i◦R̃.
This definition coincides with the previous definition for quadratic-like germs in
the intersection of the domains of these operators. We should be careful here:
maps in B(f�, ε), where the operator R is defined, are not necessarily renormaliz-
able in the Douady-Hubbard sense. To avoid confusion, we will reserve the word
“renormalizable” for quadratic-like maps (or germs) which are renormalizable in
the Douady-Hubbard sense.

Two quadratic-like maps g0 and g1 are in the same hybrid class if there exists
a quasiconformal conjugacy φ between them, in a neighborhood of their filled-in
Julia sets, so that ∂φ ≡ 0 on K(g0). Note that quadratic-like maps in the hybrid
class of f� are infinitely renormalizable. Since there are no invariant line fields
on the Julia set of f�, if there is a quasiconformal conjugacy between f and f�,
then f belongs to the hybrid class of f�. It is well known [Su] that unimodal maps
which are infinitely period-doubling renormalizable have deep renormalizations with
quadratic-like extensions which belong to the hybrid class of f�.

We are ready to make the precise statements. We are going to split the Main
Theorem into two steps:

Theorem 1 (Exponential contraction: [McM96] and [Lyu99]). There exists λ < 1
so that, for every quadratic-like map f which is in the hybrid class of f�, there
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exist n0 = n0(f) and C = C(f) > 0 so that Rnf ∈ B(f�, ε), for n ≥ n0, and
|Rn0+nf − f�|B(U) ≤ Cλn.

The most attractive feature of this new proof is that it is essentially infinitesi-
mal and has a “dynamical flavor”: we will prove that the derivative of the renor-
malization operator is a contraction in the tangent space of the hybrid class (the
contraction of the derivative of the renormalization operator on the hybrid class
was proved by Lyubich [Lyu99], but his proof is not infinitesimal). Moreover, the
method seems to be as general as the previous ones: it also applies to the classi-
cal renormalization horseshoe [Lyu99] and the Fibonacci renormalization operator
[Sm02a], for instance.

We will also obtain, as a corollary of the McMullen theory of towers [McM96],
the local behavior of semi-attractive fixed points [H] and an easy application of the
λ-lemma [MSS] that

Theorem 2 ([Lan], [Lyu99]). The period-doubling fixed point is hyperbolic, with
codimension one stable manifold.

2.3. Parabolic domains for semi-attractive fixed points. Consider a complex
Banach space B, and let F : A → B be a complex analytic operator defined in an
open subset A of B. Suppose that p ∈ A is a fixed point for F . We say that p is a
semi-attractive fixed point for F if:

• The value 1 is an eigenvalue for DFp.
• There exists a Banach subspace Es, with (complex) codimension one, which

is invariant by the action of DFp, and furthermore the spectrum of DFp,
restricted to Es, is contained in {z : |z| ≤ r}, where r < 1.

The following result was proved by M. Hakim [H] for finite-dimensional complex
Banach spaces (Cn), but the proof works just as well for a general complex Banach
space:

Proposition 2.1 ([H]). Consider a compact complex analytic operator F , defined
in an open set of a complex Banach space B. Let p be a semi-attractive fixed point.
Then one of the following statements holds:

(1) Curve of fixed points: There exists a complex analytic curve of fixed
points which contains p.

(2) Parabolic domains (Petals): There exists k ≥ 1 so that, for every ε > 0,
there exists a connected open set U , which is forward invariant by the action
of F and whose diameter is smaller than ε. Moreover,

Fnu →n p, for every u ∈ U,

where the speed of this convergence is subexponential: for each u ∈ U , there
exists C = C(u) so that

1
C

1
n1/k

≤ |Fnu − p| ≤ C
1

n1/k
.

An outline of Hakim’s proof can be found in the Appendix.

3. Infinitesimal contraction on the horizontal space

Let f : V1 → V2 be a quadratic-like map with connected Julia set and with
an analytical extension to Bnor(U), with K(f) ⊂ U . The horizontal subspace
(introduced by Lyubich [Lyu99]) of f , denoted Eh

f , is the subspace of the vectors
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v ∈ B(U) so that there exists a quasiconformal vector field in the Riemann sphere
α satisfying v = α ◦ f − Df · α in a neighborhood of K(f), with ∂α ≡ 0 on K(f)
and α(0) = α(1) = α(∞) = 0. We will not use the following information here, but
certainly it will clarify the spirit of our methods: in an appropriated setting, the
hybrid class is a complex analytic manifold, and the horizontal space is the tangent
space of the hybrid class at f (see [Lyu99]).

Proposition 3.1 ([ALdM]). Let f be a quadratic-like map with an extension to
Bnor(U) and connected Julia set contained in U . Let V � U be a simply-connected
domain with smooth boundary so that f : V → f(V ) is a quadratic-like map with
connected Julia set. Then there exist C, ε > 0 so that, if |f − g|B(U) ≤ ε and
g : g−1V → V is a quadratic-like map with connected Julia set and no invariant
line fields on K(g), then, for every v ∈ Eh

g there exists a C|v|B(U)-quasiconformal
vector field α in C so that v = α ◦ g − Dg · α on g−1V .

Any family of C-quasiconformal vector fields in C which vanishes at three com-
mon points is relatively compact in the uniform topology (any sequence has a
subsequence which converges uniformly to a quasiconformal vector field). So the
last result implies:

Corollary 3.2 ([ALdM]). Assume that (fn, vn) →n (f∞, v∞) in Bnor(U) × B(U),
where fi : f−1

i V → V , i ∈ N∪{∞}, are quadratic-like maps with connected filled-in
Julia sets K(fi) ⊂ V � U . Furthermore, assume that vn ∈ Eh

fn
, for n ∈ N. If f

does not support invariant line fields in K(f), then v∞ ∈ Eh
f . In particular Eh

f is
closed.

The following result gives a description of the action of the derivative DRf on
horizontal vector fields v = α ◦ f − Df · α in terms of α:

Proposition 3.3. Let V be the neighborhood of K(f�) as in Section 2.2. If f ∈
Bnor(U) is close enough to f� and v = α ◦ f − Df · α on f−1V , where v ∈ B(U)
and α is a quasiconformal vector field in the Riemann sphere normalized by α(0) =
α(1) = α(∞) = 0, then

(1) DRf · v = r(α) ◦ Rf − D(Rf) · r(α),

on U , where

r(α)(z) :=
1
ρf

α(ρfz) − 1
ρf

α(ρf ) · z.

In particular, if f is renormalizable, then DRf (Eh
f ) ⊂ Eh

Rf .

Proof. Let v ∈ B(U) be a vector field. Consider f ∈ B(f�, ε). Denote, for z ∈
Di

f−1V (f),

ai(z) :=
∂

∂t
(f + tv)i(z)

∣∣∣
t=0

.

It is easy to see that

a1(z) := v(z),

ai(x) := v(f i−1(z)) + Df(f i−1(z))ai−1(z).
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Then (we replaced ρf by ρ to simplify the notation)

(DRf · v)(z) =
∂

∂t

1
ρf+tv

(f + tv)2
N

(ρf+tvz)
∣∣∣
t=0

=
−Dρ · v

ρ

1
ρ
f2N

(ρz) +
1
ρ

(
a2n(ρz) + Df2N

(ρz)(Dρ · v)z
)
.

Note that the right-hand side makes sense for z ∈ 1/ρfD2N

f−1V (f), in particular on
U . Since v is equal to α ◦ f − Df · α on f−1V , by the above recursive expression
for ai and an inductive argument we obtain that, for i > 1,

ai = α ◦ f i − Df i · α on Di
f−1V (f).

It follows that DR · v can be rewritten as

(DRf · v)(z)

=
−Dρf · v

ρ

1
ρ

f2N

(ρz) +
1
ρ

(
α ◦ f2N

(ρz) − Df2N

(ρz) · α(ρz)

+ Df2N

(ρz)(Dρ · v)z
)

=
−Dρ · v

ρ
Rf(z) +

1
ρ

α(ρRf(z)) − D(Rf)(z) · 1
ρ

α(ρz) + D(Rf)(z) · Dρ · v
ρ

z,

so DRf · v = r(α) ◦ Rf − D(Rf) · r(α) on U , where

r(α)(z) :=
1
ρf

α(ρfz) − Dρf · v
ρf

z.

Since ρf is the analytic continuation of a periodic point of f with period 2N , we
have f2N

(ρf ) = ρf , so

Dρf ·v = a2N (ρf )+Df2N

(ρf )Dρf ·v = α(ρf )−Df2N

(ρf )α(ρf)+Df2N

(ρf )Dρf ·v,

hence Dρf · v = α(ρf ) and

r(α)(z) :=
1
ρf

α(ρfz) − 1
ρf

α(ρf )z.

Note that r(α)(0) = r(α)(1) = r(α)(∞) = 0. Now the invariance of the horizontal
subspace is an immediate consequence of Proposition 3.1 and Corollary 3.2. �

Note that, apart from the normalization by a linear vector field, r(α) is just
the pullback of the vector field α by a linear map. In particular, if α is a C-
quasiconformal vector field, then r(α) is also a C-quasiconformal vector field: this
will be a key point in the proof of the infinitesimal contraction of the renormalization
operator in the horizontal subspace (Proposition 3.9).

Let f� : V1 → V2 be a quadratic-like representative of the fixed point. The period-
doubling tower is the indexed family of quadratic-like maps f�

i : ρ−i
f�V1 → ρ−i

f�V2,
i ∈ N, defined by f�

i (z) := ρ−i
f�f�(ρi

f� · z).

Proposition 3.4 ([McM96]). The period-doubling tower does not support invariant
line fields: this means that there is not a measurable line field which is invariant by
all (or even an infinite number of) maps in the period-doubling tower.
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Proposition 3.5 ([Su] and [McM96]). Let f be a quadratic-like map which admits
a hybrid conjugacy φ with f�. Then

φn(z) := ρ−n
f� · φ(ρRn−1f · · · ρf · z)

converges to identity uniformly on compact sets in the complex plane. In particular,
there exists n0 = n0(f) so that Rnf ∈ B(f�, ε), for n > n0, and Rnf →n f� on
Bnor(U).

Theorem 1 says that this convergence is, indeed, exponentially fast. The follow-
ing proposition has an easy proof:

Proposition 3.6. Let R = i ◦ R̃, where R̃ : V → B̃ is a C1 operator defined in an
open subset V of a Banach space B to another Banach space B̃, and i : B̃ → B is a
compact linear transformation. Let S ⊂ B×B be a set with the following properties:

(1) Vector bundle structure: If (f, v1) and (f, v2) ∈ S, then (f, α ·v1 +v2) ∈
S, for every α ∈ C.

(2) Semicontinuity: If (fn, vn) → (f, v) and (fn, vn) ∈ S, then (f, v) ∈ S.
(3) Invariance: If (f, v) ∈ S, then (Rf, DRf · v) ∈ S.
(4) Compactness: {(R̃f, DR̃f · v) : (f, v) ∈ S, |v| ≤ 1} is a bounded set in

B̃ × B̃.
(5) Uniform continuity: Denote Ef := {(f, v) : (f, v) ∈ S}. There exists

C > 0 so that, for every f and n ≥ 0, |DRn
f |Ef

≤ C.
(6) If (f, v) ∈ S, then |DRn

f · v| →n 0.

Then for all λ < 1, there is N ∈ N so that |DRN
f |Ef

≤ λ, for every f so that
Ef �= ∅.

Proof. Since {(R̃f, DR̃f · v) : (f, v) ∈ S, |v| ≤ 1} is a bounded set in B̃ × B̃, and
i : B̃ → B is a compact linear transformation, we have that

K = {(Rf, DRf · v) : (f, v) ∈ S, |v| ≤ 1}

is compact in B. By the invariance of S and the Semicontinuity property, K ⊂ S.
We claim that, given a positive λ < 1, then for every (f, v) ∈ K, there exist an
open set in K

B(f,v) := {(g, w) ∈ K satisfying |g − f | < ε(f,v), |w − v| < δ(f,v)}

and N(f,v) ∈ N so that |DRN
g · w| < λ, for every (g, w) ∈ B(f,v) and N ≥ N(f,v).

Indeed, due to property (6), for each (f, v) ∈ K, there exists N(f,v) ∈ N such that

|DRN
f · v| ≤ λ/3C,

for all N ≥ N(f, v). Because R is C1, we can choose ε(f,v) so that if |f −g| < ε(f,v),
then

|DRN(f,v)
f − DRN(f,v)

g |B < λ/3C2.

Suppose that (g, w) ∈ K, with |f − g| ≤ ε and |v − w| ≤ δ(f,v) := λ/3CM , where

M := |DRN(f,v)

f |B. Then, using the uniform continuity property, for N ≥ N(f,v) we
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have (note that |v|, |w| ≤ C)

|DRN
g · w| ≤ C|DRN(f,v)

g · w|

≤ C|DRN(f,v)
g · w − DRN(f,v)

f · w|

+ C|DRN(f,v)

f · w − DRN(f,v)

f · v| + C|DRN(f,v)

f · v|
≤ λ.

Since K is compact, we can choose a finite open covering for K, say B(fi,vi), i =
1, . . . , L. Take N = 1 + maxi N(fi,vi). This completes the proof. �

Proposition 3.6 is a generalization of the following fact about compact linear
operators T : B → B: if Tnv → 0, for every v ∈ B, then the spectral radius of T is
strictly smaller than one.

Let ε > 0, U and V as defined in Section 2.2. Recall that K(f�) ⊂ V � U . Given
K > 0, denote by A(ε/2, K, V ) the set of maps f ∈ Bnor(U) so that there exists a
K-quasiconformal map φ in the complex plane so that φ(V ) ⊂ U and φ◦f� = f ◦φ
on V ; moreover, for n ≥ 0, we have |Rnf − f�|B(U) ≤ ε/2. Note that A(ε/2, K, V )
is closed.

Lemma 3.7. Let Ṽ be a simply-connected set with smooth boundary so that V �
Ṽ � f�V . For K small enough, the following holds: if f belongs to the hybrid
class of f� and there exists a K-quasiconformal map φ : C → C so that φ ◦ f� =
f ◦ φ on (f�)−1Ṽ |0, then the germ Rif has a representative in B(U) and Rif ∈
A(ε/2, K, V ), for all i ≥ 1.

Proof. Let M be a constant so that |f�(z1) − f�(z2)| ≤ M |z1 − z2|, for all z1, z2 ∈
Ũ . Choose K small enough such that, for all K-quasiconformal map φ : C → C

satisfying φ(0) = 0, φ(1) = 1 and φ(∞) = ∞, we have
• maxz∈ Ũ∪f�(Ũ) { |φ(z) − z|, |φ−1(z) − z| } ≤ ε/4M ,
• U ⊂ φ(Ũ),
• U ⊂ φ−1(Ũ) and
• φ(V ) ⊂ U .

We are going to prove, by induction, that Rif ∈ B(U), |Rif − f�| ≤ ε and that
there exists a K-quasiconformal map φi : C → C such that φi ◦ f� = Rif ◦ φi on
U . Since φi(V ) ⊂ U , we will get Rif ∈ A(ε, K, V ).

For i = 1, note that the assumptions imply that

φ1 ◦ f� = Rf ◦ φ1 on
1

ρf�

D2N

(f�)−1V |0(f
�),

which contains Ũ . Here
φ1(z) :=

1
ρf

φ(ρf�z).

By our choice of K, U ⊂ φ1(Ũ), so Rf has a representative in B(U), and for z ∈ U ,

|Rf(z) − f�(z)| = |φ1 ◦ f� ◦ φ−1
1 (z) − f�(z)|

≤ |φ1 ◦ f� ◦ φ−1
1 (z) − f� ◦ φ−1

1 (z)| + |f� ◦ φ−1
1 (z) − f�(z)| ≤ ε

2
.

Assume the inductive hypothesis for i = n. Then

φn+1 ◦ f� = Rn+1f ◦ φn+1 on
1

ρf�

D2N

(f�)−1U (f�),
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which contains Ũ . Here

φn+1(z) :=
1

ρRnf
φn(ρf�z).

As in the case i = 1, our choice of K implies U ⊂ φn+1(Ũ), so Rn+1f has a
representative in B(U) and for z ∈ U ,

|Rn+1f(z) − f�(z)| = |φn+1 ◦ f� ◦ φ−1
n+1(z) − f�(z)|

≤ |φn+1 ◦ f� ◦ φ−1
n+1(z) − f� ◦ φ−1

n+1(z)| + |f� ◦ φ−1
n+1(z) − f�(z)| ≤ ε

2
.

�

Lemma 3.8. For K small enough the set A := A(ε/2, K, V ) is invariant by the
action of R and furthermore for every g in the hybrid class of f�, there exists a
complex analytic path ft ∈ A, for |t| ≤ 1, and N = N(g) such that f1 := RNg and
f0 = f�.

Proof. Choose K as in the proof of Lemma 3.7. We claim that A(ε/2, K, V ) is
invariant. Indeed, if f ∈ A, then φ ◦ f� = f ◦ φ on V , for some K-quasiconformal
φ satisfying φ(0) = φ(1) = φ(∞). But then

(2) φ̃(z) :=
1
ρf

φ(ρf�z)

satisfies
φ̃ ◦ f� = Rf ◦ φ̃ on 1/ρf�D2N

(f�)−1V (f�),

which contains V . Furthermore φ̃ is K-quasiconformal with the same normalization
at the points 0, 1 and ∞, so φ̃(V ) ⊂ U . Of course

|RiRf − f�|B(U) = |Ri+1f − f�|B(U) ≤ ε/2,

for i ≥ 0. So Rf ∈ A, proving that A is invariant.
Let Ṽ be a simply-connected domain with smooth boundary such that V � Ṽ �

f�V . Choose δ > 0 such that if f ∈ B(f�, δ), then f : f−1Ṽ |0 → Ṽ is a quadratic-
like map, where Ṽ \ f−1Ṽ |0 is a holomorphic moving annulus. Using an argument
similar to the proof of Lemma 2.2 in [Lyu02], we can reduce δ, if necessary, such
that for every f ∈ B(f�, δ) in the hybrid class of f� there exists a K-quasiconformal
map φ : C → C such that φ ◦ f� = f ◦ φ on (f�)−1Ṽ |0.

Consider the following Beltrami path ft between f and f�, induced by φ: if φt,
|t| ≤ 1, is the unique normalized quasiconformal map such that ∂/∂φt = t · ∂/∂φ,
define ft = φt ◦ f� ◦ φ−1

t on φt(f�)−1Ṽ |0. So φt ◦ f� = f ◦ φt on (f�)−1Ṽ |0. By
Lemma 3.7, Rift ∈ A, for |t| ≤ 1. It is easy to check that Rft is a complex analytic
path.

By the topological convergence, for all g in the hybrid class of f� there exists
N(g) such that RN(g)g ∈ B(f�, δ). This finishes the proof. �

We are ready to prove:

Proposition 3.9 (Infinitesimal contraction; cf. [Lyu99]). There exist λ < 1 and
N > 0 such that |DRN

f |Eh
f
≤ λ, for every f ∈ A(ε/2, K, V ).
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Proof. Consider the set S := {(f, v) : f ∈ A, v ∈ Eh
f }. It is sufficient to verify

the properties in the statement of Proposition 3.6. Since A is closed, property 2
follows from Corollary 3.2. Since A is invariant by R, property 3 follows from
Proposition 3.3. The compactness property is obvious, if ε is small enough. To
prove the uniform continuity property, by Propositions 3.1 and 3.3, we have that,
for (f, v) ∈ S and n ≥ 1,

(3) DRn
f · v = αn ◦ Rnf − D(Rnf) · αn

on U , with

αn(z) :=
1

ρn−1 . . . ρ0
α(ρn−1 . . . ρ0z) − 1

ρn−1 · · · ρ0
α(ρn−1 . . . ρ0)z,

where ρi = ρRif and αn are K · |v|B(U)-quasiconformal vector fields. Note that K
does not depend on (f, v) ∈ S or n ≥ 1. By the compactness of K-quasiconformal
vector fields (recall that αn(0) = αn(1) = αn(∞) = 0), we get |αn(z)| ≤ M on the
disk with center 0 and radius 1+ ε+diam f�(U)+diam U , where M depends only
on K. Since |Rnf − f�| ≤ ε/2, for n ≥ 0, there exists C, which depends only on ε,
so that |Rnf(z)| and |DRnf(z)| are bounded by C, for z ∈ U . So, if v ∈ Eh

f , we
have that

| DRn
f · v |B(U) ≤ | αn ◦ Rnf |B(U) + | D(Rnf) · αn |B(U)

≤ 2MC | v |B(U),

so |DRn
f |Eh

f
≤ 2MC.

We are going to prove assumption 6. By Eq. (3), it is enough to show that
αn →n 0 uniformly on C. Due the precompactness of the family αn, it is sufficient
to prove that any convergent subsequence converges to zero.

Suppose αnk
→ α∞. Define, for 1 ≤ i ≤ n, the maps

gi,n ∈ Bnor(
1

ρn−1 . . . ρn−i
U)

by

gi,n(z) :=
1

ρn−1 . . . ρn−i
Rn−if(ρn−1 . . . ρn−i z).

We claim that ∂αn is an invariant Beltrami field on the finite tower g1,n, g2,n, . . . ,
gn,n. Indeed, define the K-quasiconformal vector field

ηi,n(z) :=
1

ρn−1 . . . ρ0
α(ρn−1 . . . ρ0z) − 1

ρn−i−1 · · · ρ0
α(ρn−i−1 . . . ρ0)z.

Note that

(4) ηi,n(0) = ηi,n(∞) = ηi,n(
1

ρn−1 · · · ρn−i
) = 0.

Eq. (3) implies

(5) vi,n = ηi,n ◦ gi,n − Dgi,n · ηi,n

on ρ−1
n−1 . . . ρ−1

n−i U , where vi,n is a holomorphic vector field. So ∂ηi,n = ∂αn is an
invariant Beltrami field for gi,n. This completes the proof of the claim.

By the topological convergence ρn−1 · · · ρn−i →n ρi
f� , so for n large, we have that

gi,n and vi,n belong to B(ρ−i
f�V ). The topological convergence (Proposition 3.5) also

implies gi,n →n f�
i . Due to Eq. (4), if we fix i, ηi,n is a relatively compact family
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of K-quasiconformal vector fields. By the usual diagonalization method, we can
choose a subsequence of nk, if necessary, such that there exists a quasiconformal
vector field ωi, satisfying ηi,nk

→k ωi uniformly on compact sets, for all i. Eq. (5)
implies

(6) wi = ωi ◦ f�
i − Df�

i · ωi

on ρ−i
f�V . Here wi is a holomorphic vector field.

By definition ηi,n = αn + γi,n, where γi,n is a conformal vector field on the
Riemann sphere. Once αnk

→k α∞ on C, we get that γi,nk
also converges to

a conformal vector field σi. So ∂ωi = ∂α∞ + ∂σi = ∂α∞. Therefore, Eq. (6)
implies that the Beltrami field ∂α∞ is invariant on the period-doubling tower.
Because there is no existence of invariant line fields in the period-doubling tower
(see Proposition 3.4), ∂α∞ ≡ 0 everywhere and, since α∞ vanishes at three points,
α∞ ≡ 0.

Hence αn → 0 uniformly on compact sets in the complex plane, so we get by Eq.
(3) that Rn

f · v → 0. (We saw that |Rnf | and |D(Rnf)| are uniformly bounded on
U , for n ≥ 1.) This finishes the proof. �

Proof of Theorem 1. Let g be a quadratic-like map in the hybrid class of f�. By
Lemma 3.7, there exist N(g) such that RN(g)g ∈ A and a complex analytic path
ft ∈ A, |t| ≤ 1, such that f0 = f� and f1 = RN(g)g. We are going to prove that

(7)
dft

dt

∣∣∣
t=t0

∈ Eh
ft0

,

for |t0| ≤ 1. Recall that we choose ε so that V \ f−1V |0 is a holomorphic moving
annulus on f ∈ B(f�, ε). Consider the new parametrization ft0+t. Then V \f−1

t0+tV |0
is a holomorphic moving annulus defined for Dt0 := {t : |t| ≤ 1 + ρ − |t0|}. By the
usual arguments, we can extend this holomorphic motion ht : C → C, with t ∈ Dt0 ,
h0(z) = z, so that

ft0+t ◦ ht = ht ◦ ft0

on f−1
t0 V |0. Derive with respect to t to obtain

dft0+t

dt
◦ ht + Dft0+t ◦ ht ·

dht

dt
=

dht

dt
◦ ft0 .

Define the quasiconformal vector field

α(z) :=
dht

dt
(z).

So for t = 0 we have
dft

dt

∣∣∣
t=t0

= α ◦ ft0 − Dft0 · α

on f−1
t0 V |0, which implies Eq. (7).

So, by the infinitesimal contraction, there exists N so that

|DRN
f · v| ≤ 1

2

for every f ∈ A, v ∈ Eh
f . Define M := max|t|≤1|dft/dt| and recall that |DRf |Eh

f

is uniformly bounded by some constant C, for every f ∈ A. If n = Nq + r, where
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0 ≤ r < N , we have

|Rnf1 − f�|B(U) ≤
∫ 1

0

∣∣∣d Rnft

dt

∣∣∣ dt ≤
∫ 1

0

∣∣∣DRn
ft
· dft

dt

∣∣∣ dt

≤
∫ 1

0

∣∣∣DRn
ft
· dft

dt

∣∣∣ dt ≤ 2−qCNM ≤ 2CNM 2−
n
N ,

which finishes the proof. �
Remark 3.10. The first step in the above proof of Theorem 1, to prove that αn → 0
(in the proof of Proposition 3.9), must be compared with the proof of Lemma
9.12 in [McM96]. In C. McMullen’s argument, additional considerations should be
taken to arrive at exponential contraction; first, it is proved that quasiconformal
deformations (as the quasiconformal vector field α in the definition of the horizontal
vectors) are C1+θ-conformal at the critical point (Lemma 9.12 in [McM96] and the
deepness of the critical point have key roles in this proof), and then it is necessary
to integrate this result. In M. Lyubich’s argument [Lyu99], first it is proved that the
hybrid class is a complex analytic manifold and then the topological convergence
is converted in exponential contraction via Schwartz’s Lemma.

4. Hyperbolicity of the period-doubling fixed point

Let f be a quadratic-like map which is renormalizable with period k: there
exists a domain W , which contains the critical point, so that fk : W → fkW is
a quadratic-like map with connected filled-in Julia set K. The sets K0 := K,
K1 := f(K), . . . , Kk−1 := fk−1K are called the small Julia sets of period k. This
renormalization is simple if for every 0 ≤ i, j < k, either Ki ∩Kj = ∅ or Ki ∩Kj =
{p}, where p does not cut Kj in more than one piece. In the last case p must be
the so-called β-fixed point on Kj .

If f is infinitely renormalizable, we say that f satisfies the unbranched complex
bounds property for an increasing sequence of renormalizations ij if there exists
µ > 0 so that Rij f has a quadratic-like extension Rij f : Wj → Rij f(Wj) satisfying

i. mod Rij f(Wj) \ Wj > µ, and
ii. (Rijf(Wj) \ Wj) ∩ P (f) = ∅, for all j > 0.

Here P (f) := {fk(0), k > 0}. The following lemma was proven by Lyubich (see
Lemma 5.8 in [Lyu99]), but for sake of completeness we included a proof.

Lemma 4.1. There exists δ > 0 so that the following holds: let f ∈ Bnor(U) be a
map so that Rnf is defined and |Rnf −f�| ≤ δ for all n ≥ 0. Then f has infinitely
many simply renormalizations satisfying the unbranched complex bounds.

Proof. Recall that in Section 2.2 we choose ε so that if W := ρ2N (f�)−1V |0, then
(f�)iW , for i = 0, . . . , 22N , is disjoint from the annulus

ρNV \ ρN (f�)−1V |0.
By the continuity of R, if δ is small, then f iWf is disjoint from ρfV \ρf (Rf)−1V |0,
for i = 0, . . . , 22N , where

Wf := ρRfρf (R2f)−1V |0.
To prove that f is infinitely renormalizable, it is enough to prove that f : f−1V |0 →
V is a quadratic-like map with a connected filled-in Julia set. Once Rif satisfies
the same assumption as f , we will get that f is infinitely renormalizable.
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Indeed, it is easy to prove by induction that

(8) ρRi−1f . . . ρfU ⊂ D2iN

f−1V (f)

and

(9) Rif(z) :=
1

ρRi−1f . . . ρf
f2iN

(ρRi−1f . . . ρfz) on U.

So f j(0) is well defined for j ≥ 0, hence f : f−1V |0 → V has a connected filled-in
Julia set.

Define Wi := ρRi−1f . . . ρf (Rif)−1V |0. Note that

f2iN

: Wi → f2iN

(Wi)

is a quadratic-like map with connected Julia set. Moreover

mod f2iN

(Wi) \ Wi ∼ V \ (f�)−1V |0 > 0.

Denote by P (i) the postcritical set of this quadratic-like map. To prove the un-
branched complex bounds it is enough to check that

P (i) ∩ f2(i+1)N

Wi+1 = P (i + 1),

for every i. Since f2(j+1)N

Wj+1 ⊂ f2jN

Wj , for j ≥ 0, this implies

P (0) ∩ f2iN

Wi = P (i).

Indeed, by our choice of δ, for

WRif := ρRi+1fρRif (Ri+2f)−1V |0,

we have that

(10) (Rif)jWRif ∩ ρRifV \ ρRif (Ri+1f)−1V |0 = ∅,

for j = 0, . . . , 22N . Due to Eq. (9), we have

(11) f j2iN

Wi+2 ∩ (f2(i+1)N

Wi+1 \ Wi+1) = ∅

for j = 0, . . . , 22N . Since f2(i+2)N

: Wi+2 → f2(i+2)N

Wi+2 has a connected Julia set,

P (i) ⊂
2N⋃
j=0

f j2iN

Wi+2,

so Eq. (11) gives P (i) ∩ f2(i+1)N

Wi+1 ⊂ Wi+1. The forward invariance of P (i) by
the action of f2(i+1)N

implies P (i) ∩ f2(i+1)N

Wi+1 = P (i + 1).
It remains to prove that these renormalizations are simple. Because Rif satisfies

the same assumptions as f , it is enough to prove that the renormalization with
period 2N is simple. Indeed, if δ is small, the β-fixed point (α-fixed point) of the
Julia set of f2N

: W1 → f2N

W1 is the analytic continuation of the β-fixed point
(α-fixed point) of the Julia set of (f�)2

N

: ρNf−1V → ρNV . The same happens
with the other small Julia sets in the same level. So two small Julia sets for f
intersect in a β-fixed point if and only if the corresponding small Julia sets of f�

intersect in a β-fixed point. Since all renormalizations of f� are simple, we have
finished the proof. �
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Proof of Theorem 2. First, we will prove that

(12) σ(DR2
f�) ∩ S

1 ⊂ {1}.

Indeed, if DRf� ·v = λv, then the vector ṽ(z) := v(z) is a solution to DRf� ·ṽ = λṽ.
So if λ ∈ S1 \ {−1, 1}, then codimEh > 1, which is a contradiction (Eh has
codimension one [Lyu99]. The same result can be proven in an easy way using
the argument explained in section 12 of [Sm02a]). Indeed, we can prove, using
the contraction on the horizontal direction and results of [Sm03], which uses only
elementary methods, that σ(DRf�) ∩ S1 ⊂ {1}, but the proof is more involved.

Furthermore σ(DRf�) is not contained in D (see Lyubich[Lyu99]. We can also
use the results in [Sm03] to prove this claim). So either f� is a hyperbolic fixed
point (with a one-dimensional expanding direction) or it is a semi-attractive fixed
point, since by Proposition 3.9 the derivative of the renormalization operator at
the fixed point is a contraction on the horizontal space, which has codimension
one. Assuming f� is semi-attractive, we will arrive at a contradiction. Indeed, by
Proposition 2.1, one of the following statements holds:

Case i. There exists a connected open set of maps U ⊂ Bnor(U), whose diameter
can be taken small, which is forward invariant by the action of R2 and so that each
map in U is attracted at a subexponential speed to the fixed point f�. Because
the maps in U are very close to f� and U is forward invariant, all the maps in U
are infinitely renormalizable (Lemma 4.1). Therefore, their filled-in Julia sets have
empty interior. Consider two maps g, g̃ in U which admit a complex analytic path
g : D → U between them (g0 = g and, for some |λ| < 1, g̃ = gλ). Moreover, provided
U is small enough, if V is as in Section 2.2, then we can define a holomorphic motion
h : D × ∂V ∪ ∂g−1V → C as

h(λ, z) = z, for z ∈ ∂V and

gλ(h(λ, z)) = g(z), for z ∈ ∂g−1V,

for each |λ| < 1. We can extend this holomorphic motion to a holomorphic motion
h : D × V \ g−1V → C so that h(λ, V \ g−1V ) = V \ g−1

λ V and h(λ, z) = z, for
every z outside V . As usual, we are going to extend this holomorphic motion to a
holomorphic motion h : D × C \ K(g) → C in the following way: denote

Aλ
n := g−n

λ V \ g
−(n+1)
λ V

and assume that we had defined hλ := h(λ, ·) on A0
n. Then define by induction hλ

on A0
n+1 as the unique map h̃λ so that gλ ◦ h̃λ = hλ ◦ g on A0

n+1 and h̃λ = hλ on
A0

n ∩ A0
n+1. Note that h̃λ exists, once gλ : g−1

λ V → V has a connected Julia set, so
gλ : Aλ

n+1 → Aλ
n are unbranched coverings of degree two.

So we have defined a holomorphic motion h on the everywhere dense set C\ K(g)
which commutes with the dynamics: we have gλ ◦ hλ = hλ ◦ g on V \K(g). By the
λ-lemma [MSS], this holomorphic motion extends to the whole Riemann sphere,
so all maps gλ are quasiconformally conjugate. Since there is a piecewise complex
analytic path between any two maps in U , we conclude that all maps in U are
in the same quasiconformal class. Note that the above construction does not give
any upper bound for the quasiconformality of the conjugacy: the quasiconformality
could be large when the Kobayashi distance between g and g̃ on U is large.

We claim that, provided U is small enough, it is possible to choose a quasi-
conformal conjugacy between any two maps in U so that the quasiconformality
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is uniformly bounded outside their filled-in Julia sets, using the argument in the
proof of Lemma 2.3 in [Lyu02]: in a small neighborhood V ⊂ Bnor(U) of f�,
g : g−1V → V is a quadratic-like restriction of g (but note that the Julia sets of
these quadratic-like restrictions are not, in general, connected). This defines the
holomorphic moving fundamental annulus V \ g−1V . In particular, provided U is
small enough, there exists B > 0 so that for every g0 and g1 which belongs to U ,
there exists a B-quasiconformal mapping h between C\g−1

0 V and C\g−1
1 V so that

h ≡ Id on C \V and g1 ◦h = h ◦ g0 on ∂g−1
0 V . Since the Julia sets of g0 and g1 are

connected, we can extend h, as in the previous paragraph, to a B-quasiconformal
map

h : C \ K(g0) → C \ K(g1)

which is a conjugacy on g−1
0 V \K(g0). The advantage of this new conjugacy is that

B is uniform for every g1 and g0 in U . Once by the previous paragraph we already
know that g0 and g1 are in the same quasiconformal class and h has a quasiconformal
extension hg0,g1 to C (this follows as in the proof of Lemma 1, in [DH, p. 302]: if
h̃ is a quasiconformal conjugacy between g0 and g1, then h̃−1 ◦ h commutes with
g0 outside K(g0), which implies that h̃−1 ◦ h extends to a homeomorphism in C

which coincides with Id on K(g0). By the Rickmann removability theorem (see
the statement in [DH]), this map is a quasiconformal homeomorphism, so h is a
quasiconformal homeomorphism). This finishes the proof of the claim.

By Lemma 4.1, for every g0 ∈ U , the quadratic-like map g0 : g−1
0 V → V has infin-

itely many simply renormalizations with unbranched complex bounds. In particular
there are no invariant line fields supported on their filled-in Julia sets (Theorem
10.2 in [McM94]), and hence the quasiconformality of the conjugacy hg0,g1 : C → C

is uniformly bounded on the whole complex plane by B.
But f� is a boundary point of U , so there exists a sequence gn ∈ U so that

gn →n f� on B(U). By the previous paragraph, for each n there exists a B-
quasiconformal map hn : C → C so that

(13) gn ◦ hn = hn ◦ g0 on g−1
0 V.

Furthermore hn(0) = 0, hn(1) = 1 and hn(∞) = ∞. By the compactness of B-
quasiconformal maps, we can assume that hn →n h uniformly on compact sets
in C, where h is a B-quasiconformal map. Taking the limit in Eq. (13), we get
f� ◦ h = h ◦ g0 on g−1

0 V . Since there are no invariant line fields supported on the
filled-in Julia set of f�, the map h is a hybrid conjugacy between f� and g0. But
this implies that the subexponential speed of convergence given by Proposition 2.1
is impossible, since by Theorem 1 the iterations of the renormalization operator of
maps in the hybrid class of f� converges to f� exponentially fast.

Case ii. There exists a connected complex analytic curve of fixed points which
contains f . This case can be ruled out by the Rigidity Theorem from [Lyu97],
but instead we will apply essentially the same argument used in Case i: Note that
in a similar way we can prove that all these fixed points of the operator R2 are
quadratic like maps which are infinitely renormalizable: in particular their filled-in
Julia sets have empty interior. Use the λ-lemma [MSS] to conclude that all these
fixed points are quasiconformaly conjugated (the argument is as in Case i). Since
the fixed point f� does not support invariant line fields in its filled-in Julia set,
we conclude that all these fixed points are hybrid conjugated, which is impossible,
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since iterations of the renormalization operator of maps in the hybrid class of f�

converges to the fixed point f�.
So we have concluded that f� must be a hyperbolic fixed point with codimension

one stable manifold. �

Appendix A. Outline of Hakim’s proof

To convince the reader of the existence of parabolic petals for semi-attractive
compact operators in Banach spaces, we will give an outline of Hakim’s proof of the
existence of parabolic domains: we do not claim any sort of originality for ourselves
in the following exposition and we refer to the quite clear work [H] for details.
We will use the notation introduced in Section 2.3. Consider a complex analytic
operator T with a semi-attractive fixed point 0. Assume DT0 · v = v, v �= 0. In the
following lines, we will identify B with C×Es by the isomorphism (x, y) → x ·v+y.

By the Stable Manifold Theorem for compact operators (see Manẽ [M]), for δ > 0
and ε > 0 small the set

W s
δ,ε = {x : ∃ C s.t. |Tnx| < δ and |Tnx| ≤ C(1 − ε)n, for n ≥ 0}

is a codimension one complex analytic manifold. More precisely, there exists a
holomorphic function ψ : V → C, where V is a neighborhood of 0 on Es, with
Dψ(0) = 0, so that

W s
δ,ε = {(ψ(y), y) : y ∈ V }.

In particular, after the local biholomorphic change of variables

X = x + ψ(y),
Y = y,

(14)

it is possible to represent T as T : C×Es → C×Es, where T (x, y) = (x′, y′), with

x′ = F (x, y) = a1(y)x + Oy(x2),

y′ = G(y) + xh(x, y),
(15)

where G is a (compact) contraction around 0 and a1(0) = 1. After the local
biholomorphic change of variables

X = v(y)x,

Y = y,
(16)

where
v(y) :=

∏
i≥0

a1(Gi(y)),

we can assume that a1 ≡ 1.
Note that, for every n, T has the form

x′ = F (x, y) = x +
∑

2≤i≤n

ai(y)xi + Oy(xn+1),

y′ = G(y) + xh(x, y),
(17)

where G is a (compact) contraction around 0. We claim that we can assume, after
certain biholomorphic changes of variables, that a2, a3, . . ., an do not depend on



1844 DANIEL SMANIA

y. Indeed, assume by induction that T can be put in the form

x′ = F (x, y) = x +
∑

2≤i≤n

ãix
i + ãn+1(y)xn+1 + Oy(xn+2),

y′ = G(y) + xh(x, y).
(18)

Then after the local change of variables

X = x + v(y)xn+1,

Y = y,
(19)

where v(y) :=
∑

i≥0(ãn+1(Gi(y)) − ãn+1(0)), T will have the form

x′ = F (x, y) = x +
∑

2≤i≤n

ãix
i + ãn+1(0)xn+1 + ãn+2(y)xn+2 + Oy(xn+2),

y′ = G(y) + xh(x, y).
(20)

Now we are going to introduce the concept of multiplicity of the fixed point 0 for
transformations on the form of Eq. (17). By the implicit function theorem, for each
transformation in that form there exists a complex analytic curve y : U ⊂ C → Es,
with 0 ∈ U and y(0) = 0, which is the unique solution for the equation

y(x) = G(y(x)) + xh(x, y(x)).

Consider the function q : U → C defined by

q(x) := F (x, y(x)) − x.

The multiplicity of T at 0 is defined as the order of q at 0. Note that the multiplicity
of T at 0 is finite if and only if 0 is an isolated fixed point, and infinite if and only if
q(x) vanishes everywhere and (x, y(x)) is a complex analytic curve of fixed points
for T (which contains all the fixed points in a neighborhood of 0). Moreover, if T
has the form Eq. (18), with ã2 = · · · = ãn−1 = 0 and ãn �= 0, then the multiplicity
of T is exactly n.

Consider a transformation T as in Eq. (17) and a biholomorphic change of
variables W (x, y) = (X, Y ) of the type

X = x + v(y)xk,

Y = y,
(21)

where v is a holomorphic function and k > 1. Then W−1 ◦T ◦W has also the form
in Eq. (17). Moreover

Proposition A.1. The multiplicity of W−1 ◦T ◦W at 0 is equal to the multiplicity
of T at 0.

Proof. (suggested by M. Lyubich) Assume that it is finite (otherwise the invariance
is trivial): then 0 is an isolated fixed point. Consider the one-parameter family of
change of variables Wλ defined by

X = x + λv(y)xk,

Y = y.
(22)

Then W−1
λ ◦ T ◦ Wλ has the form

x′ = Fλ(x, y) = x + Oy,λ(x2),

y′ = Gλ(y) + xhλ(x, y).
(23)
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Note that we can choose δ0 small enough so that for all |λ| ≤ 1, 0 is the unique
fixed point for W−1

λ ◦T ◦Wλ on {(x, y), |x| ≤ δ0, |y| ≤ δ0}. Moreover, by the implicit
function theorem and the compactness of {λ : |λ| ≤ 1} there exists a holomorphic
function yλ(x) = y(λ, x), defined on

{λ : |λ| < 1 + δ1} × {x : |x| < δ2}
so that

yλ(x) = Gλ(y) + xhλ(x, yλ(x)).
Choosing δ1, δ2 small enough, for each λ the point 0 is the unique solution for the
equation

qλ(x) := Fλ(x, yλ(x)) − x = 0
on {x : |x| ≤ δ1}. By Rouché’s Theorem, ord0 qλ does not depend on λ. �

Assume that T has the form of Eq. (17) and finite multiplicity n. After appro-
priated changes of variables, we can assume that a2, . . . , a2n−1 does not depend on
y. Since the multiplicity is invariant by the above changes of variables, we conclude
that a2 = · · · = an−1 = 0 and an �= 0. Doing appropriated changes of variables in
the form of Eq. (21) (indeed, in this case v does not depend on y) and replacing
the variable x by θx, for some θ �= 0, if necessary, it is possible to put T in the form

x′ = x − 1
n − 1

xn−1 + ax2(n−1) + Oy(|x|2(n−1)+1),

y′ = G(y) + xh(x, y).
(24)

Under the above form, the set

PR,ρ = {(x, y) : |xn−1 − 1
2R

| <
1

2R
and |y| < ρ}

is a parabolic domain, provided R and ρ are small enough. Here Hakim’s proof is
very similar to the one-dimensional situation: make the “change of variables”

X = xn−1,

Y = y,
(25)

and
X = 1/x,

Y = y,
(26)

to put T in the form

x′ = x + 1 + c
1
x

+ Oy(
1

|x|1+1/(n−1)
),

y = G(y) + Oy(
1

|x|1/(n−1)
),

(27)

and now the proof is easy.
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[M] R. Mañé. Lyapounov exponents and stable manifolds for compact transformations. in
Geometric dynamics (Rio de Janeiro, 1981), Lectures Notes in Math. 1007, 522-577.
MR0730286 (85j:58126)
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