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AN IDEAL SEPARATING EXTENSION OF AFFINE SPACE

PAUL S. PEDERSEN

Abstract. In affine space the set of solutions to a system of polynomial equa-
tions does not uniquely determine the system. We extend affine space so that
the solutions (in the extension) to a system of equations uniquely determines
the system.

1. Statement of the problem

In particular, for field R let elements of R[x] = R[x1, ..., xn] act on the set of
power series R[[T ]] = R[[T1, ..., Tn]] by way of the linear extension of the action
xk(Tm) = Tm−k for m − k in Nn and xk(Tm) = 0 for m − k /∈ Nn. For the
ideal I ∈ � (the set of all ideals in R[x]) let N(I) = {f(T ) ∈ R[[T ]] | P (x)f(T ) =
0∀P (x) ∈ I} (which we call the “generalized solutions” of I). We also set Z(I) =
{r ∈ Rn | P (r) = 0∀P (x) ∈ I}. The injection ρ : Rn → R[[T ]] given by ρ(r) =
ρ(r1, ..., rn) =

∑
rkT k is such that ρ(Z(I)) ⊂ N(I) and so ρ maps the affine

solutions to a system of equations into the generalized solutions of that system.
Let N be the set of all N(I) for I ∈ �. We show that N is a one-to-one order
reversing bijection from � to N which implies that the generalized solutions to a
system of equations uniquely determines the system.

2. Introduction

Let � denote the set of all ideals in the polynomial ring R[x] ≡ R[x1, x2, ..., xn]
where R is a field, let

Z(I) ≡ {r = (r1, ..., rn) ∈ Rn|P (r) = 0 for all P (x) ∈ I}
be the algebraic set corresponding to any I ∈ �, and let

ζ ≡ {Z(I)|I ∈ �}
be the set of all the algebraic sets in Rn. We will say that Rn “separates” a set of
ideals �̂ ⊂ � if we have I1 = I2 whenever we have Z(I1) = Z(I2) for I1, I2 ∈ �̂.

While working on problems in invariant theory, Hilbert proved the powerful
theorem (called Nullstellensatz) that rad(�) is separated in Rn when R is an alge-
braically closed field (where rad(I) ≡ {g = g(x) ∈ R[x]|∃m ∈ N so that gm ∈ I} is
the radical of the ideal I and where rad(�) is the set of all radical ideals).

When n = 1 the radical ideals are of the form 〈P (x)〉 where P (x) has distinct
roots. Hilbert’s Nullstellensatz implies that 〈P (x)〉 has as many solutions as the
degree of P (x). Consequently, Hilbert’s Nullstellensatz theorem has been called an
n-dimensional generalization of the fundamental theorem of algebra.
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A consequence of Hilbert’s Nullstellensatz is that when R is algebraically closed
there is a one to one order reversing correpondence between the lattice of radical
ideals and the lattice of algebraic sets of Rn (both partially ordered by inclusion).

In this paper we describe an extension of affine space having enough points to
separate all ideals. In fact we show that to separate all ideals it is sufficient to
consider an extension of affine space which only separates the zero ideals (those
having Z(I) = {0}). An added feature of the method is that the field need
not be algebraically closed.

To do this we use the R linear space of power series R[[T ]] = R[[T1, T2, ..., Tn]]
on which we allow the elements of R[x] to operate by the linear extension of the
action (for k, j ∈ Nn) given by xj(T k) = T k−j if k − j ∈ Nn and by xj(T k) = 0 if
k − j /∈ Nn. We use

(1) N(I) = {f(T ) ∈ R[[T ]]|P (x)f(T ) = 0∀P (x) ∈ I}
to denote the algebraic nullspace associated with the ideal I and we let N denote
the set of all algebraic nullspaces of R[[T ]].

We embed Rn in R[[T ]] by way of the injection

(2) ρ(r) = ρ(r1, ..., rn) =
∑

k∈Nn

rkT k

where T k = T1
k1 ...Tn

kn . It is easily checked that

ρ(Z(I)) ⊂ N(I).

We prove that for any ideals in �
(3) I1 ⊃ I2 if and only if N(I1) ⊂ N(I2).

In other words the lattice of ideals in R[x] is in one to one order reversing corre-
spondance with the lattice of algebraic nullspaces of R[[T ]]. As a consequence we
have that R[[T ]] separates the ideals in �.

For a set V ⊂ R[[T ]] let I(V ) denote the smallest ideal in � containing V .
Another consequence of (3) is the theorem

(4) I(N(I)) = I for all I ∈ �.

As other corollaries to (3) we show that

N(I1 ∩ I2) = N(I1) + N(I2),

N(I1 + I2) = N(I1) ∩N(I2),

I(N(I1) + N(I2)) = I(N(I1)) ∩ I(N(I2)),

and
I(N(I1) ∩ N(I2)) = I(N(I1)) + I(N(I2))

where Ii, i = 1, 2, are arbitrary ideals in R[x].
Our proof of (3) will rely on a construction which gives an explicit countable

basis for N(I) for any given I ∈ �. We refer to this set as a basis because it has
the property that any element of N(I) can be written as a unique countable R
linear combination of its elements.

We now give a rough outline of how we prove our theorems (in particular the
Nullspace Basis Theorem). Let R[α] = R[α1, ..., αn] ∼= R[y]

I(y) , which is to say

that R[α] is isomorphic to the residue class ring R[y]
I(y) where αi ↔ [yi]. Using

lexicographic ordering on Nn we totally order the monomials in R[α]. Using
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these monomials and this total ordering we define an R ordered vector space basis
B for R[α] as follows: αk ∈ B if αk cannot be written as an R linear combination
of monomials preceding it in the lexicographic ordering. So there exists a subset J
of Nn so that B = {αk|k ∈ J} is a vector space basis for R[α] with the property
that every monomial in R[α] which is not in B can be written as a unique, linear
combination of monomials preceding it in B.

After forming

w(T ) =
∑

k∈Nn

T k ⊗ αk

we replace every αk �∈ B in w(T ) by its unique R linear combination of preceding
basis elements. Collecting terms we get an expression of the form∑

αk∈B

wk(T ) ⊗ αk

where the wk(T ) are real formal power series in T1, ..., Tn. We will show that every
element of N(I) can be written as a unique, countable, R linear combination of the
wk(T ). Additionally, we show how one can compute the coefficients of this linear
combination. In particular, the elements of Z(I) are easily expressed as linear
combinations of the wk(T ).

In section 10 we give an example of a pair of inequivalent finite dimensional ideals
having the same radical, having the same Hilbert Characteristic Function, and
having identical Z(I) with identical arithmetic multiplicity. From this example we
conclude that affine space cannot separate all ideals even if we include multiplicity
information.

As used in this paper, R[[T ]] can be thought of as the dual space of R[x]. Al-
though he did not consider “generalized solutions”, Macaulay in his famous book [1]
used the dual space in the form of inverse systems to give (amongst other things) an
algebraic characterization of intersection multiplicity for finite dimensional ideals.

3. Notation

The relation ≡ will be used when making definitions. N will represent the non-
negative integers, N1 will denote the nonzero natural numbers, δk,m ∈ {0, 1} is
defined for all k, m ∈ Nn and δk,m ≡ 1 if k = m and δk,m ≡ 0 if k �= m. For
k ∈ Nn,|k| ≡

∑
1≤i≤n ki. For the set of objects um, m ∈ N , SpanR{um|m ∈ N} ≡

{
∑

m∈N amum|am ∈ R}. For 1 ≤ i ≤ n, εi ≡ (0, ..., 0, 1, 0, ...0), the ith standard
basis vector. R[T ] ≡ R[T1, ..., Tn] is the set of polynomials (with coefficients from
R) in (T1, ..., Tn). R[[T ]] ≡ R[[T1, ...Tn]] is the set of formal power series (with
coefficients from R) in (T1, ..., Tn). Similarly, R[β][[T ]] is the set of power series
with coefficients from the ring R[β]. For symbols x1, ..., xn, � is the set of all
ideals in R[x] and �0 will be the set of zero ideals (those only having 0 for their
solution set). For I ∈ �, Z(I) = {r ∈ RN |P (r) = 0∀P (x) ∈ I}. B will be a
lexicographically totally ordered basis for the algebra R[α] and B̃ is its complement
in the set {αk|k ∈ Nn}. J ⊂ Nn is the set of exponents of α which lie in B and
J̃ is its complement in Nn. In addition to its usual meaning over the reals, <
will be used to denote (compatible) total orders on the elements of Nn and on
the monomials of R[α]. ≤≤ will be used for a partial order on Nn and on the
monomials of R[α].
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4. Properties of R linear spaces

In this section we discuss the consequences of having elements of R[x] act as
linear operators on an R linear space. We then describe conditions which must be
met for an R linear space to separate the zero ideals (those having Z(I) = {0}).
For the ideal I of R[x] whose elements act on R linear space U we will use the
notation NU (I) = {f ∈ U |P (x)f = 0∀P (x) ∈ I}.

Theorem 1. Let U be any R linear space on which the elements of R[x] =
R[x1, ..., xn] act as R linear operators. Then

(i) NU (R[x]) = {0}.
(ii) NU (I1) ⊂ NU (I2) for any ideals I1, I2 in � satisfying I1 ⊃ I2.
(iii) For m = (m1, ..., mn) ∈ Nn, mi �= 0 we have xi : NU 〈xm〉 → NU 〈xm−εi〉.

Proof. (i) Suppose v ∈ NU (R[x]). Then since 1 ∈ R[x] we get 1(v) = 0.
(ii) Let f ∈ NU (I1); then P (x)f = 0 for all P (x) ∈ I1. In particular, if

P (x) ∈ I2, then P (x)f = 0, so that f ∈ NU (I2).
(iii) If v ∈ NU 〈xm〉, then xm−εi(xiv) = 0 so that xiv ∈ NU 〈xm−εi〉. �

Remark 1. The simplest vector space satisfying the conditions of the theorem is
U = {0}.

Now we consider a linear space which separates all zero ideals:

�0 ≡ {I ∈ �|Z(I) = {0}}.

Let U be an R linear space on which the elements of R[x] act as linear operators,
and for I ∈ �0 let NU (I) ≡ {f ∈ U |If = 0} (where If = 0 means that P (x)f =
0 for all P (x) ∈ I). We say that U separates the ideals in �0 if I1 �= I2 implies
NU (I1) �= NU (I2).

We will say that U is a minimal separating R linear space for the set of ideals
�0 if every separating vector space U∗ contains an isomorphic copy of U . We now
consider the consequences of U being a minimal linear space that separates the
ideals of �0.

Since
〈xm+k〉 ⊂�= 〈xm〉 for all k such that |k| > 0

we must also have that
NU 〈xm〉 ⊂�= NU 〈xm+k〉.

Hence for every k such that |k| > 0 there exists Tm+k ∈ N〈xm+k〉 so that Tm+k /∈
N〈xm〉. Therefore the smallest possible R linear space which separates the ideals
in �0 has all Tm+k equal to one another for all |k| > 0. We now construct an R
linear space satisfying this condition.

Let {Tm|m ∈ Nn} be a set of distinct symbols related to one another by

xkTm = Tm−k if (m − k) ∈ Nn and

xkTm = 0 otherwise .

Theorem 2. The R linear space

R[T ] ≡ SpanR{Tm|m ∈ Nn}

separates the ideals in �0.
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Proof. For m ∈ Nn, N〈xm〉 ≡ NR[T ]〈xm〉 = SpanR{T k|k ∈ Nn, (k − m) /∈ Nn}.
In particular, Tm /∈ N〈xm〉. However, for all k such that |k| > 0, we have Tm ∈
N〈xm+k〉. By construction a ·Tm (a ∈ R, a �= 0) are the only elements in all of the
N〈xm+k〉 which are not in N〈xm〉. Hence R[T ] separates the ideals in �0 and is
minimal. �

Remark 2. In Section 6 we show that R[[T ]] (the completion of R[T ]) separates all
ideals of R[x].

Now

R[[T ]] = {
∑

k∈Nn

akT k|ak ∈ R}

and for every m ∈ Nn there exists a linear functional

πm : R[[T ]] → R

so that

πm(
∑

k∈Nn

akT k) ≡ am.

One major difference between Z(I) and N(I) is already apparent: N(I) is always
an R linear space whereas Z(I) is a linear space only for very special cases of I.
Generally speaking N(I) contains a multitude of points which are not of the form
ρ(r), r ∈ Rn. As a simple example of this last statement we offer the following: Let
n = 1 and let P (x) = (x − 1)2. Then Z〈P (x)〉 = {1} whereas N〈P (x)〉 contains
the R linearly independent points

∑
0≤kT k and

∑
0≤kkT k. In fact these linearly

independent points form a basis for N〈P (x)〉

5. A basis for N(I)

In this section we give an algorithm which is used to find a countable basis for
N(I) for any I ∈ � which is then used to prove various versions of Nullstellensatz
and related theorems.

5.1. A total order. We totally order Nn as follows: For k ∈ Nn we set

|k| = k1 + · · · + kn.

For k, m ∈ Nn we write k < m if either (i) |k| < |m| or (ii) if |k| = |m| and
the leftmost nonzero element of m − k is negative.

It follows that < is a total order on Nn. It also follows that if u, v, w ∈ Nn and

(5) if u < v, then u + w < v + w.

The ordering given by < is called a graded lexicographic ordering on Nn with
T1 < T2 < · · · < Tn. It is described on page 17 of [4]. We also introduce the partial
order ≤≤ on Nn defined by k ≤≤ m if ki ≤ mi for 1 ≤ i ≤ n. Similarly we write
k << m if k ≤≤ m and ki < mi for some 1 ≤ i ≤ n. It follows that if k << m,
then k ≤≤ m and that the orderings ≤≤, < are compatible in the sense that if
k ≤≤ m, k �= m, then k < m.
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5.2. Extreme terms. We define the maps lt : R[[T ]] − {0} → R[[T ]] and elt :
R[[T ]] − {0} → Nn by

lt

( ∑
k∈Nn

akT k

)
≡ amTm and elt

( ∑
k∈Nn

akT k

)
≡ m

if am �= 0 and ak = 0∀k < m. The term lt stands for least term and elt stands for
exponent of least term. The function elt is well defined for all elements of R[[T ]]−{0}
since the exponents of these elements are bounded below by 0.

We also define the map ht : R[x] − {0} → R[x] by

ht
(∑

bkxk
)
≡ bmxm

if bm �= 0 and bk = 0 k > m. The function ht stands for highest term. The function
ht is well defined for all elements of R[x] − {0} since a polynomial contains only a
finite number of terms.

5.3. An algebra and its ordered basis. Given a finitely generated, commuta-
tive, and associative algebra R[α] = R[α1, α2, ..., αn], the αi will solve a system of
polynomial relations:

I(y) = {Q(y) ∈ R[y] = R[y1, ..., yn]|Q(α) = 0},

and I(y) is easily seen to be an ideal.
Conversely, if I(y) is any ideal in R[y], there exists a finitely generated, commu-

tative, and associative algebra R[α] so that I(y) is exactly the set of polynomial
relations which α1, ..., αn jointly solve. The following theorem describes the rela-
tionship between these two concepts.

Theorem 3. Given an algebra R[α] there exists an ideal I(y) so that R[α] ∼= R[y]
I(y) .

Conversely, given an ideal I(y) in R[y] there exists an algebra R[α] so that I(y) =
{Q(y) ∈ R[y]|Q(α) = 0} and R[α] ∼= R[y]

I(y) .

Proof. This is a standard result in algebra. The isomorphism is αi ↔ [yi] where
[yi] is the residue class corresponding to yi in R[y]

I(y) . �

We now inductively define an ordered basis B for the vector space R[α]. B will
be a subset of B∗ ≡ {αk = αk1

1 · · ·αkn
n |k ∈ Nn}. We say that αj precedes αk in B∗

if j < k in the total order <.
Now for every k ∈ Nn one of the following two conditions holds for αk: either

(i) there exists ck,i ∈ R(i < k) so that αk =
∑

i<k ck,iα
i or

(ii) αk cannot be written as a R linear combination of preceding
elements.

We define an ordered basis B of R[α] by

(6) B ≡ {αk| � ∃ck,i ∈ R so that αk =
∑
i<k

ck,iα
i} .

(Note: α0 = 1 ∈ B since no term precedes 1 in B∗.) Corresponding to B is the set
of exponents of the basis elements:

(7) J ≡ {k ∈ Nn|αk ∈ B} .
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We will refer to B as the ordered basis defined in terms of the total order <. It
follows that every αk �∈ B can be written uniquely in the form

(8) αk =
∑

i∈J,i<k

ck,iα
i

where ck,i ∈ R.

5.4. The unique reduced Grobner basis for an ideal.

Lemma 1. Let B, J be defined as in (6) and (7). Then there exists a unique, mini-
mal, and finite set of incomparable (with respect to ≤≤) exponents V = {v1, ..., vt} ∈
J̃ (= the complement of J in Nn) so that αj �∈ B if and only if vi ≤≤ j for some
1 ≤ i ≤ t.

Proof. The proof uses Dickson’s Lemma and is given in [2]. �

We will refer to the unique set {αvi |1 ≤ i ≤ t} as the reduced, generating set of
B̃ = {αk|k ∈ J̃}. Recalling the definition of I, we see that αvi �∈ B for 1 ≤ i ≤ t.
So there exists a unique cvi,k ∈ R so that

αvi=
∑

k∈J,k<vi

cvi,kαk.

Hence, letting

(9) Qi(y) = (yvi−
∑

k∈J,k<vi

cvi,kyk),

we see that Qi(y) ∈ I(y) for 1 ≤ i ≤ t and that

ht(Qi(y)) = yvi .

Although we won’t use the fact we note that {Qi(y)|1 ≤ i ≤ t} is the unique,
reduced Grobner basis for I(y).

5.5. The Hilbert Characteristic Function. For ideal I having index set J let

χm(I) ≡ |{k ∈ J ||k| ≤ m}|

where | · | of a set is its cardinality. χm(I) is the Hilbert Characteristic Function of
I and is a polynomial in m for large m.

In section 9 we discuss the relationship between N(I) and χm(I).

5.6. The solution space of an ideal I. Let I be an ideal in R[x]. We define

N(I) = {f = f(T ) ∈ R[[T ]]|P (x)f = 0 for all P (x) ∈ I} .

N(I) is an R linear subspace of R[[T ]]. One goal of this paper is to find an explicit
basis for N(I) for any I in �. We solve this problem by finding an ordered basis for
the algebra R[α] ∼= R[y]

I(y) and then rewrite the expression w(T ) =
∑

k∈Nn T k ⊗αk in
terms of this basis (say w(T ) =

∑
k∈J wk(T ) ⊗ αk). We show that {wk(T )|k ∈ J}

forms a basis for N(I) meaning that if f ∈ N(I), then there exists a unique ak ∈ R
so that f =

∑
k∈J akwk(T ).
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5.7. Construction of the nullspace basis. We fix I and define α by R[α] ∼= R[y]
I(y) .

We explore the expression

(10) w(T ) =
∑

k∈Nn

T k ⊗ αk

where P (α) = 0 for all P (y) ∈ I(y) (and only P (y) ∈ I(y)). In (10), for each
αk �∈ B, we replace αk by its unique R linear combination of preceding elements∑

i∈J,i<k ck,iα
i (see (8)). So

w(T ) ≡
∑
k∈J̃

T k ⊗ (
∑

i∈J,i<k

ck,iα
i) +

∑
k∈J

T k ⊗ αk

=
∑
k∈J

(
∑

k<i,i �∈J

ci,kT i) ⊗ αk +
∑
k∈J

T k ⊗ αk

=
∑
k∈J

gk(T ) ⊗ αk +
∑
k∈J

T k ⊗ αk(11)

=
∑
k∈J

wk(T ) ⊗ αk(12)

where (11) and (12) also serve as the definitions of gk(T ) and wk(T ) for k ∈ J .
Now gk(T ) =

∑
k<i,i �∈J ci,kT i and

(13) wk(T ) = T k + gk(T )

are defined for all k ∈ J (and only k ∈ J).
Also by (11) and (12) and by the definition of wk(T ), gk(T ) we have

πjgk(T ) = 0 for all j, k ∈ J,(14)

elt(gk(T )) > k , and(15)

πjwk(T ) = δj,k for all j, k ∈ J .(16)

5.8. The Nullspace Basis Theorem. We can now state and prove:

Theorem 4 (The Nullspace Basis Theorem). Let I be an ideal in R[x]. If f =
f(T ) ∈ N(I), then f =

∑
k∈J (πkf)wk(T ) is the unique representation for f as a

real, linear combination of wk(T ), k ∈ J .

5.8.1. Proof that wk(T ) are linearly independent and are in N(I). Let φ : R[y] →
R[α] be the homomorphism mapping yi → αi (and so P (α) = 0 for all P (y) ∈ I(y)).
Hence

(17) w(T ) = (1 ⊗ φ)(
∑

k∈Nn

T k ⊗ yk) .

We also note that (for m ∈ Nn)

(18) (xm ⊗ 1)

( ∑
k∈Nn

T k ⊗ yk

)
=

∑
k∈Nn

T k ⊗ yk+m .

Let P (x) =
∑

i∈F bix
i ∈ I (where F is the finite set of nonzero exponents

occurring in P (x)).
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We compute (P (x) ⊗ φ)(
∑

k∈Nn T k ⊗ yk) in two different ways. Now

(P (x) ⊗ φ)(
∑

k∈Nn

T k ⊗ yk) = (1 ⊗ φ)(
∑

k∈Nn

T k ⊗ ykP (y)) (by (18))

=
∑

k∈Nn

T k ⊗ αkP (α) = 0 (since P (α) = 0).

So

0 = (P (x) ⊗ φ)(
∑

k∈Nn

T k ⊗ yk) = (P (x) ⊗ 1)w(T )

= (P (x) ⊗ 1)(
∑
k∈J

wk(T ) ⊗ αk) (by (12))

=
∑
k∈J

P (x)wk(T ) ⊗ αk.

Since {αk|k ∈ J} is a linearly independent set over R we conclude that P (x)wk(T )
= 0 for all k ∈ J . This argument shows that wk(T ) ∈ N(I) for all k ∈ J and that
{wk(T )|k ∈ J} is a linearly independent set over R.

5.8.2. Proof that wk(T ) spans N(I). We now show that every f ∈ N(I) can be
written as a linear combination of the wk(T ). We calculate πkf for all k ∈ J and
then we form

f̂ = f −
∑
k∈J

(πkf)wk(T )

and so we know that f̂ ∈ N(I). We will show that f̂ = 0 by showing that πkf̂ = 0
for all k ∈ Nn from which we can conclude that f =

∑
k∈J (πkf)wk(T ) .

We suppose by way of contradiction that f̂ �= 0. So it must be that either
∃j ∈ J so that πj f̂ �= 0 or ∃j ∈ J̃ so that πj f̂ �= 0. Now for j ∈ J we have
πj f̂ = πjf −

∑
k∈J (πkf)(πjwk(T )) = πjf −

∑
k∈J (πkf)δj,k (by (16)). So πj f̂ =

πjf − πjf = 0.
Hence it must be that πj f̂ �= 0 for some j ∈ J̃ . So we assume that f̂ =∑
k∈J̃ akT k, ak ∈ R, where some ak �= 0. Let lt(

∑
k∈J̃ akT k) = amTm be the least

term (in the total order <). So am �= 0. By Lemma 1 there exists s, 1 ≤ s ≤ t so
that vs ≤≤ m. We now look at Qs(x)f̂ where Qs(x) is defined in (9).

Claim. lt(Qs(x)f̂) = amTm−vs (so that f̂ �∈ N(I) which gives us our contradiction).
For simplicity we write f̂ = amTm+

∑
i∈M aiT

i and Qs(x) = xvs+
∑

j∈U bjx
j where

these expressions define the subsets M and U of Nn and where

(19) m < i∀i ∈ M, j < vs∀j ∈ U, and vs ≤≤ m .

So

Qs(x)f̂ = amTm−vs +
∑
i∈M

aiT
i−vs +

∑
j∈U

ambjT
m−j +

∑
i∈M

∑
j∈U

aibjT
i−j .

But (5) and (19) imply the following:

m − vs < i − vs∀i ∈ M, so we have πm−vs
(T i−vs) = 0 ∀i ∈ M ,

m − vs < m − j∀j ∈ U, so we have πm−vs
(Tm−j) = 0∀j ∈ U ,
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and

m − vs < i − j∀i ∈ M, ∀j ∈ U, so we have πm−vs
(T i−j) = 0∀i ∈ M, ∀j ∈ U .

Hence lt(Qs(T )f̂) = amTm−vs �= 0. This contradiction proves the theorem. �

6. R[[T ]] separates the ideals of R[x]

In section 4 we showed that if I1 ⊂ I2, then N(I1) ⊃ N(I2). In this section we
show that N(I1) ⊃ N(I2) implies I1 ⊂ I2.

Let R[β] ∼= R[y]
I1(y) .

Lemma 2. Let gk(β) ∈ R[β] for k ∈ Nn. If
∑

k∈Nn T kgk(β) = 0, then gk(β) =
0∀k ∈ Nn.

Proof. We extend the definition of R[[T ]] to R[β][[T ]] which is to say that R[β][[T ]]
is the set of all functions from Nn to R[β]. So g ∈ R[β][[T ]] has the unique
representation g(T ) =

∑
k∈Nn gk(β)T k. Consequently g(T ) = 0 if and only if

gk(β) = 0 for all k ∈ Nn. �

Theorem 5. I1 ⊃ I2 if and only if N(I1) ⊂ N(I2).

Proof. We need only show that if N(I1) ⊂ N(I2) and if q(y) ∈ I2(y), then q(y) ∈
I1(y).

As before we form
∑

k∈Nn T k ⊗ βk =
∑

k∈J1
wk(T )⊗ βk. So wk(T ) ∈ N(I1) for

all k ∈ J1 (where J1 is the set of exponents which correspond to the basis elements
in R[β]).

Since N(I1) ⊂ N(I2) we conclude that wk(T ) ∈ N(I2) for all k ∈ J1. Hence
q(x)wk(T ) = 0∀k ∈ J1 which implies that q(x)

∑
k∈J1

wk(T ) ⊗ βk = 0 so that
q(x)

∑
k∈Nn T k ⊗ βk = 0. Hence

∑
k∈Nn T k ⊗ q(β)βk = 0. In particular, by using

Lemma 2, this implies that q(β)β0 = 0. Whence q(y) ∈ I1(y) by Theorem 3. �

7. The Nullspace Theorem

For this discussion of Hilbert’s Nullstellensatz, let R be an algebraically closed
field, let I be an ideal in R[x], and as before we let Z(I) = {r ∈ Rn|P (r) =
0∀P (x) ∈ I}. Additionally the radical of I is defined by

rad(I) = {g = g(x) ∈ R[x]|∃m ∈ N so that gm ∈ I}.
One version of Hilbert Nullstellensatz says that

rad(I) = I(Z(I))

where the I of a subset of points of Rn is the smallest ideal in � containing those
points as zeros. (Similarly, we will let I of a subset of points of R[[T ]] be the smallest
ideal in � containing those points in its nullspace.)

Now, once again, we let R be a field. Then for R[[T ]], R[x] we have

Theorem 6 (Nullspace Theorem). I(N(I1)) = I1 for all I1 ∈ �.

Proof. By definition we have

I(N(I1)) = {Q(x) ∈ R[x]|Q(x)f = 0 for all f ∈ N(I1)}.
Set I2 = I(N(I1)). It follows that I1 ⊂ I2. By way of contradiction we suppose

that I1⊂�=I2 (so that N(I1)⊃�=N(I2)). Then there exists f ∈ R[[T ]] so that I1(f) =
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0 but I2(f) �= {0}. But this implies that there exists P (x) ∈ I2 so that P (x)f �= 0
even though f ∈ N(I1). This contradicts the definition of I(N(I1)) = I2. �

For any set of polynomials Q ⊂ R[x] we define

N(Q) ≡ {f ∈ R[[T ]] | Q(x)(f) = 0∀Q(x) ∈ Q}.

We have the obvious

Corollary 1. N(I(η)) = η for any algebraic nullspace η.

Remark 3. Although Hilbert’s Nullstellensatz requires that R be algebraically
closed, algebraic closure is not required for the Nullspace Theorem.

8. The ideal-algebraic solution space correspondence

Theorem 7. Let I1, I2 be any ideals in � and let N(I1),N(I2) be the corresponding
algebraic nullspaces. Then

(i) N(I1 ∩ I2) = N(I1) + N(I2),
(ii) N(I1 + I2) = N(I1) ∩ N(I2),
(iii) I(N(I1) + N(I2)) = I(N(I1)) ∩ I(N(I2)) = I1 ∩ I2, and
(iv) I(N(I1) ∩ N(I2)) = I(N(I1)) + I(N(I2)) = I1 + I2.

Proof of (i). By the Nullspace Theorem we need only show that

I1 ∩ I2 = I(N(I1) + N(I2)).

Now if Q(x) ∈ I(N(I1) + N(I2)), then Q(x)N(I1) = 0 and Q(x)N(I2) = 0. These
imply that N(I1) ⊂ N〈Q(x)〉 and N(I2) ⊂ N〈Q(x)〉 which imply that Q(x) ∈ I1

and Q(x) ∈ I2 by Theorem 4. Hence Q(x) ∈ I1 ∩ I2. The proofs of the remaining
parts of the theorem are similar and are left to the reader. �

9. wk(T ) is in reduced echelon form

In this section we generalize the matrix concepts of echelon and reduced echelon
form to certain subsets of R[[T ]]. The fact that the rows of a reduced echelon form
matrix form a basis for its row space and the fact that it is easy to write any element
in the row space as a linear combination of these basis elements will generalize to
our new setting. In particular we show that the basis {wk(T )|k ∈ J} we developed
in the Basis Theorem is in reduced echelon form.

As before we have R[[T ]] = Span{T k|k ∈ Nn} where Nn is totally ordered
by lex order < and any f ∈ R[[T ]] can be written uniquely in the form f =∑

k∈Nn πk(f)T k. For f ∈ R[[T ]] we define Support(f) = {k ∈ Nn|πk(f) �= 0} and
elt(f) = {l ∈ Support(f)|l ≤ k∀k ∈ Support(f)}. Support(f) and elt(f) are well
defined for all f ∈ R[[T ]]. We also say that f is monic if πl(f) = 1 for l = elt(f).
Let L be an R linear subspace of R[[T ]]. We call B ⊂ L a basis for L if every element
of L is a unique countable linear combination of elements of B. We say F ⊂ L is
in echelon form if the elements of F are monic and if elt : F → Nn is injective.
Let elt(F ) = {elt(f)|f ∈ F} and for f, g ∈ F we will write f < g if elt(f) < elt(g).
If F is in echelon form, then we totally order it using the total order from elt(F ).
For F in echelon form we define SpanR(F ) = {

∑
j∈elt(F ) ajFj |aj ∈ R}. It follows

easily that if F is in echelon form, then F is a basis for SpanR(F ). We also define
Support(F ) ≡ {Support(f)|f ∈ F}.
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We say that F ⊂ R[[T ]] is in reduced echelon form if F is in echelon form and if
for all k ∈ elt(F ) there is only one f ∈ F so that k ∈ Support(F ). The following
theorems are straightforward applications of the definitions.

Theorem 8. If F = {fk|k ∈ elt(F ) ⊂ Nn} ⊂ R[[T ]] is in reduced echelon form,
then g =

∑
k∈elt(F ) πk(g)fk for all g ∈ Span(F ), and this representation is unique.

Theorem 9. If Span(F ) = Span(G) where F and G are in reduced echelon form
(for the same lex order), then F = G.

The point of this discussion is that {wk(T )|k ∈ J} defined in the proof of the
Basis Theorem is in reduced echelon form, it is unique for a given lex order, and it
is a basis for the space that it spans. The proof that {wk(T )|k ∈ J} is in reduced
echelon form follows from the construction given in the Basis Theorem. (To get the
Basis Theorem we would still need to prove that Span{wk(T )|k ∈ J} = N(I).)

Another consequence of our construction (see (12),(7)) is that Hilbert’s Charac-
teristic function describes the number of generalized solutions.

This is also a good place to note that for r ∈ Z(I) we have (by (13), (14), and
(16))

ρ(r) =
∑

k∈Nn

rkT k =
∑
k∈J

rkwk(T ).

Remark 4. We will say that I has finitely many generalized solutions if N(I) is
finite dimensional.

10. Examples

10.1. Multiplicities in Rn and R[[T ]]. When n = 1 every ideal is of the form
〈P (x)〉 and Z(I) is finite for any I ∈ �. To determine an ideal from its solutions
we need to include multiplicity information. Let Z∗(I) be the multiset consisting
of Z(I) with every solution repeated with its proper multiplicity (so |Z∗〈P (x)〉| =
degree(P (x)) for any P (x) ∈ �). There is then a one to one order reversing
correspondence between � and Z∗(�) ≡ {Z∗(I)|I ∈ �}.

When n > 1 the simple idea of including multiplicity information with each
element of Z(I) is not sufficient for separating ideals. So suppose that |Z(I)| is
finite and suppose that we know the appropriate arithmetic multiplicity ( ∈ N1 =
{1, 2, 3, ...}) of each zero. It is easy to find two ideals having Z(I1) = Z(I2), having
identical arithmetic multiplicity information and yet so that I1 �= I2. In particular
let I1 = 〈x1

2, x2
2 − x1〉 and I2 = 〈x1

2, x2
2〉. It is clear that {0} = Z(I1) = Z(I2)

and that (by Bezout’s Theorem) this zero should be repeated 4 times. It is also
easy to check that I1 �= I2. So we cannot determine a finite dimensional ideal if we
are given its solutions along with their multiplicities. Indeed these ideals also have
the same Hilbert characteristic function, so the finer detail given by that function
does not help us distinguish them.

On the other hand N(I1) = Span{1, T1 + T2
2, T2, T1T2 + T2

3} and N(I2) =
Span{1, T1, T2, T1T2}, and both of these sets are subsets of R[T ] (which we know
separates the ideals of �0). These bases can be found either directly or by resorting
to the construction in the basis theorem. In either case, we clearly have N(I1) �=
N(I2). We can also easily read both the arithmetic multiplicity and algebraic
multiplicity from these bases. Arithmetic and algebraic multiplicity are discussed
in the introduction of the paper On the Multiplicities in Polynomial System Solving
[5], pg 3283.
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10.2. Resolving an inconsistency. Z〈x2
2 − x1〉 contains (0, 0) with multiplicity

1. When we add a constraining equation x1
2 = 0 we get the paradoxical result that

(by Bezout’s theorem) Z〈x2
2 − x1, x1

2〉 has 4 solutions at (0, 0). Clearly there are
two different meanings of solution being used here!

When this problem is looked at in R[[T ]] this paradox disappears. So by the Basis
Theorem N〈x2

2 − x1〉 has an infinitely countable basis of the form {wk(T1, T2)|k ∈
J} where J = {(k1, k2)|k1 ∈ N, k2 ∈ {0, 1}}. The first few (by lex order) wk(T )
are 1, T1 + T2

2, T2, T1
2 + T1T2

2 + T2
4, T1T2 + T2

3, and it is easy to check that
these polynomials are indeed annihilated by x2

2 −x1. We also have that N〈x1
2〉 =

Span{T1
k1T2

k2 |k2 ∈ N, k1 ∈ {0, 1}}. By Theorem 7 we have that N〈x2
2−x1, x1

2〉 =
N〈x2

2−x1〉∩N〈x1
2〉 which is easily seen to equal Span{1, T1+T2

2, T2, T1T2+T2
3},

and so we have 4 distinct solutions at the origin.
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