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RIGHT-ANGLED MOCK REFLECTION
AND MOCK ARTIN GROUPS

RICHARD SCOTT

ABSTRACT. We define a right-angled mock reflection group to be a group G
acting combinatorially on a CAT(0) cubical complex such that the action is
simply-transitive on the vertex set and all edge-stabilizers are Z>. We give a
combinatorial characterization of these groups in terms of graphs with local
involutions. Any such graph I' not only determines a mock reflection group,
but it also determines a right-angled mock Artin group. Both classes of groups
generalize the corresponding classes of right-angled Coxeter and Artin groups.
We conclude by showing that the standard construction of a finite K(m,1)
space for right-angled Artin groups generalizes to these mock Artin groups.

1. INTRODUCTION

A right-angled Coxeter group W is a group defined by a presentation in which
every generator is an involution and the relations consist of commutation relations
between pairs of generators. Given such a group W, there is a natural CAT(0)
cubical complex ¥ (the so-called Davis complex) on which W acts isometrically.
The action has the further property that it is simply transitive on the vertices of
¥ and all edge stabilizers are isomorphic to Zs. In [5] it was observed that the
universal covers of certain symmetric blow-ups of real reflection arrangements have
group actions with these same properties. Generalizing both classes of groups we
define a right-angled mock reflection group to be any group that acts isometrically
on a connected CAT(0) cubical complex such that the action restricts to a simply
transitive action on the vertex set and has Zs edge stabilizers. The main result of
this paper (Theorem [310) is to give a combinatorial characterization of right-angled
mock reflection groups analogous to (and extending) the standard presentation for
right-angled Coxeter groups.

The presentation data for a right-angled Coxeter group can be encoded in a
graph whose vertices correspond to the generators and whose edges correspond to
pairs of commuting generators. This graph appears in the Davis complex as the
1-skeleton of the link of a vertex. For a right-angled mock reflection group G acting
on a cubical complex X, we obtain a similar presentation encoded by a graph with
local involutions. This graph is the 1-skeleton of the link of a vertex in X, and the
local involutions keep track of “parallel translation” along paths in the 1-skeleton of
X (these involutions are all trivial in the case of a right-angled Coxeter group acting
on the Davis complex). We show in Section Plthat this graph with involutions must
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satisfy a certain “4-periodicity” condition as well as a °
and we call such a graph a mock reflection system.

Conversely, any mock reflection system I' determines, in a natural way, a pre-
sentation for a group W(T'). If all the local involutions are trivial, this group (and
its presentation) is precisely the right-angled Coxeter group corresponding to the
graph I', hence its action on the Davis complex makes it a mock reflection group.
More generally we have the following.

‘no holonomy” condition,

Theorem 1. G is a right-angled mock reflection group if and only if G = W (I")
for some mock reflection system T.

A key step in the proof of this theorem is showing that for any mock reflection
system T, the generators of the group W(T') are distinct. This follows from a simple
isoperimetric inequality which we give in Theorem [3.8] Having distinct generators
allows one to attach “missing” cells to the Cayley graph to obtain a CAT(0) cubical
complex X(I') on which W(T') acts. Since this action generalizes the action of a
right-angled Coxeter group on its Davis complex, we call X(T") the Davis complex
associated to the mock reflection group W (I').

The last section of the paper describes the mock Artin group associated to a
right-angled mock reflection group. In the case of an ordinary Coxeter group W,
there is a cell complex Y called the “Salvetti complex” which is related to the
Davis complex. The Coxeter group acts freely on the Salvetti complex, and one
manifestation of the Artin group corresponding to W is that it is the fundamental
group of the quotient Y/W. In [2] it is shown that in the right-angled setting
Y is nonpositively curved, a consequence of which is that the universal cover is
contractible. This implies that Y/W is a K(r, 1) complex for the Artin group.

In the case of a mock reflection group W(I'), the CAT(0) complex X(I') on
which it acts can also be used to construct a space Y (I') analogous to the Salvetti
complex. Again, W(I') acts freely, and the fundamental group A(I") of the quotient
space has a presentation given entirely in terms of the graph I'. (As in the Coxeter
group setting, the mock reflection group W (T') is obtained by adding the involution
relations to the presentation for A(T').) We call the group A(T') the mock Artin
group corresponding to the mock reflection system I', and extend the proof in [2]
to obtain the following.

Theorem 2. The group W = W(T') acts freely on Y (I') and the quotient space is
a finite K(r,1) for A(T).

2. RIGHT-ANGLED MOCK REFLECTION GROUPS

Preliminaries. A right-angled Coxeter group (or right-angled reflection group) is
a group W that has a presentation of the form

W= (S| (st)"* =1)

where S is a set and m : S x S — {1,2,00} satisfies m(s,s) = 1 and m(s,t) =
m(t,s) € {2,00} otherwise. In particular, W is generated by involutions, and any
pair of distinct elements either commutes or has no specified relation.

Given a right-angled Coxeter group (W, S), the Cayley 2-complex of the presen-
tation can be completed to a cubical complex X, called the Davis complex ([3]).
The complex ¥ has a natural piecewise-Euclidean metric with nonpositive curva-
ture, and since the 2-skeleton of ¥ is a Cayley complex, ¥ is simply-connected.
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It follows that ¥ is a CAT(0) cubical complex (we refer the reader to [I] for de-
tails about CAT(0) complexes). Moreover, the action of W on the Cayley complex
extends to an isometric action on . Since the action on the Cayley complex is
simply-transitive on the vertex set and has Zs edge stabilizers, the action on X also
has these properties.

Remark 2.1. Nonpositive curvature in the context of cubical complexes takes the
following purely combinatorial form. Given a simplicial complex L, we say that L
is a flag complez if every collection of pairwise adjacent vertices spans a simplex
in L. In other words, if the 1-skeleton of a simplex is in L, then so is the entire
simplex. Now if X is a cubical complex, then the link of every vertex is a simplicial
complex. A well-known result of Gromov’s states that a cubical complex X is
nonpositively-curved if and only if the link of every vertex is a flag complex.

Another class of groups that is formally similar to right-angled Coxeter groups
was studied in [5]. These groups arise as automorphism groups of certain tilings
obtained by taking the universal covers of symmetric blow-ups of real hyperplane
arrangements. For the sake of brevity, we omit the details of this construction and
refer the reader to [5]. We will, however, give a brief description of the group that
arises in one prototypical case.

Let M, be the (n — 2)-dimensional manifold obtained by taking the so-called
minimal blow-up of the braid arrangement in RP"~2. The symmetric group S,, acts
on the braid arrangement and also on M,,, and we let J,, be the lifted group acting
on the universal cover M,,. The collection of hyperplanes in RP™~2 induces a (Sp-
invariant) regular cell decomposition of M,, whose dual cellulation is a nonpositively
curved cubical complex (Theorem 4.3.1 in [4]). The universal cover M,, being
simply connected and nonpositively curved, is a CAT(0) cubical complex on which
Jn acts combinatorially. This action is simply transitive on the vertices of M,, and
the edge stabilizers are all Z,. The group J,, has a presentation with generators s;;
for 1 < i < j < n, and relations

(2) sijSk = sg18i for all i < j < k <, and

(3) sijSki = sprsij wherei <k <l<j,k=i+j—landl'=i+j—k
(this is a special case of Theorem 4.7.2 in [5].) Notice that, as for right-angled
Coxeter groups, J, is generated by involutions, and all (non-involution) relations
have length 4.

Remark 2.2. By results of Kapranov [7] and [8], the manifold M,, is homeomorphic
to both (1) a certain compactification of the quotient space C,,11/PGLy where
Cpn+1 denotes the set of generic configurations of (n + 1)-points in RP! and (2)
the real points of the Grothendieck-Knudsen-Deligne-Mumford moduli space of
stable curves of genus 0 with (n 4 1)-marked points. Since M,, is CAT(0), it is
contractible, so M, is a K(m,1)-space. The fundamental group 7 = m (M) is a
finite index subgroup of .J,,. Because of this connection to stable real curves with
marked points, the group J,, is sometimes called the cactus group and 71 (M) the
pure cactus group. The cohomology of M (and, hence, of the pure cactus group)
has recently been computed in [6].

The two types of groups described above, right-angled Coxeter groups and groups
acting on universal covers of blow-ups, motivate the following definition.
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Definition 2.3. A group G is a right-angled mock reflection group (RAMRG) if it
acts isometrically on a connected CAT(0)-cubical complex X such that the action
is simply-transitive on the 0-skeleton, and the stabilizer of every edge is isomorphic
to ZQ.

Generators and relations. Suppose G is a RAMRG with corresponding cubical
complex X. By fixing a basepoint zo € X, we obtain a bijection G — X©) given
by a — a - xg. Let V denote the set of vertices adjacent to xg, and for each v € V|
let s, € G denote the element of G such that s, - £g = v. This element s, is unique
(simple transitivity) and has order 2 (it stabilizes the edge {zg,v}).

Proposition 2.1. G is generated by the set of involutions {s, | v € V'}.

Proof. Given g € G, let © = a-xy, and let g, x1,...,2, = x be a path (sequence of
adjacent vertices) joining xg to . If n =1, then € V, so a = s,. Otherwise, we
can assume by induction that x,_1 = b-xg where b can be expressed as a product
of the s,’s. Let ¢ be the (unique) element of G such that x = ¢- z,_1. Then
b~lchb maps zo to an adjacent vertex, say v’, hence b~ 'ch = s,.. It follows that
r=a-x9g=ch-xg = bSy - xg, SO a = bs,» by simple-transitivity. (I

It follows from this proposition that the 1-skeleton of X can be identified with
the Cayley graph of G with respect to the generating set {s, | v € V}. In other
words, if we identify G with the 0-skeleton of X by the map a — a -z, then two
vertices a - ¢p and a’ - ¢ are joined by an edge if and only if ' = as, for some
generator s, (since s, is an involution, this edge is undirected). In particular, each
edge in X acquires a unique label from the set V: the edge {a,da’} is labeled by
the unique v such that a’ = as,. Since the group acts on the left, this labeling is
G-invariant.

Given 2 vertices v and v in V, we say that v and v span a square at xg if there
exists a vertex w in X and a 2-cell (i.e., a square) R such that the vertices of R are
u, o, v, w (in order). Since u = s, - g and v = s, - xp, it follows (as in the proof
above) that there exists a (unique) generator s, such that w = s,/ - v = 8,8, - To
(Figure[l). The element v’ € V actually depends on both u and v, so we adopt the
notation v’ = j,(u). Notice that, in general, since the edge labels are G-invariant,

SuSu’ - Lo
u R u' = jy(u)
i) v
FIGURE 1

Ju(u) can be determined from the labels on any square that has labels u and v on
consecutive edges (whether these edges meet at xy or not). Namely, by traveling
the boundary of the square starting at the edge labeled u, then continuing to v, the
next edge must have the label j,(u). As a consequence, we have the following.
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Proposition 2.2. Let V, denote the set of vertices w € V' such that u and v span
a square at xg. Then

(i) u > jy(u) defines an involution j, : Vi, — V.
(ii) The sequence v, v1,... defined by vo = u, v1 = v, and Vp41 = Jo, (VE—1)
for k > 1 is periodic with period 4.

Proof. Let R be a square in X with consecutive edge labels u and v as in Figure 2l
Since v and j,(u) are also consecutive labels in the square R, we have j,(u) € V,,.
Traveling the boundary of R in the opposite direction starting at j,(u), we see that
Juju(u) = u, 80 j, is an involution. This proves (i). For (ii), just observe that the

sequence vy, U1, Vs, - . . i the sequence of edge-labels as we travel around the square
R. O
U3
Vo= U R vy = Jy(u)
vy =0
FIGURE 2

The involutions j, also satisfy a “trivial holonomy” condition, which we now
describe. Let u,v,w € V be three vertices such that any pair of them spans a
square at xg. Then in the link of xg, the vertices u,v,w are pairwise joined by
edges. Since X is nonpositively curved, it follows by Gromov’s condition that there
must be a 3-cube at zy whose link “fills in” this triangle. That is, there exists a
3-cube in X with edges {zg,u}, {zg,v}, and {xg,w}. In this case, we say that
u, v, w span a cube at xg.

Proposition 2.3. Suppose u,v,w span a cube at xg, and let vg,v1,... be the se-
quence defined in Proposition 2.2

(i) Then the triple v, j,(u), j,(w) spans a cube at xq.
(ii) The sequence wg,ws,... defined by wy = w and wi = jy, (Wk—1) s also
periodic with period 4.

Proof. Let @ be the 3-cube at z¢ spanned by u,v,w as in Figure Bl For (i) note
that each pair from v, j,(u), j,(w) occurs as consecutive labels in a square face of @,
hence the triple v, j,(u), j,(w) must also span a cube. The second part (ii) follows
from the fact that traveling around the bottom square, the labels on the vertical
edges perpendicular to each vertex form the sequence wq, w1, . . .. O

The first proposition above determines some additional relations for the group
G. Namely, given a pair of vertices u,v € V that span a square at xq, let u,v,u’, v’
be the edge labels on this square. Then the group element s,,5,S,/ S,y maps zy to
itself, so by simple transitivity, it must be the identity. It turns out that, together
with the involution relations, these relations suffice.
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w3

Wo w1

FIGURE 3

Proposition 2.4. The group G is determined by the relations
(1) spsy =1 for everyv € V, and
(ii) $ypSuSy Sy = 1 whenever u and v span a square at xo (and u' = j,(u) and

v = ju(v).

Proof. If we identify X () with the Cayley graph of G, then to construct the Cay-
ley 2 complex associated to this presentation, we glue in a square whenever we
have 4 vertices of the form a, as,, as,sy,, as,s,s, (up to cyclic permutations and
inversions) where v and v span a square at zo (= 1 € G). It follows that X(®
can be identified with the Cayley complex of the group defined by the generators
{sv} and the relations (i) and (ii). (Strictly speaking, one must first reduce the
set of relations so there are no cyclic conjugates or inverses among the list.) Any
relation among the generators of G would determine a loop in X(? and hence a
loop in this Cayley complex. But any loop in a Cayley complex is a composition of
loops corresponding to the relators (and their conjugates). It follows that any such
relation is a consequence of the relations listed above. O

3. MOCK REFLECTION SYSTEMS

4-periodic graphs and holonomy. Let I' be a simple graph with vertex set V.
For each v € V, let ', denote the induced subgraph on the neighbors of v, and let
jv : Ty — T, be an automorphism such that (j,)? = Id. We illustrate this data
by drawing the graph I" with edges paired up at each vertex; that is, we connect
two edges {u,v} and {v,u'} by an arc at the vertex v whenever j,(u) = u’. For
example, in Figure @ the local involution j, fixes e and ¢ and interchanges b and
d. We call the pair (T',{j,}) (or just T, if the involutions are implied) a graph with
local involutions.

Let ' be a graph with local involutions. Then any pair u, v of adjacent vertices
determines a sequence 7(u,v) = vp,v1,... where vg = u, v1 = v, and Vg1 =
Ju, (Vk—1) for k > 2. We call 7(u, v) a trajectory. Since V is finite, every trajectory
will eventually repeat, and we say that I' is 4-periodic if v, = v,44 for all n > 0.
Note that for such a trajectory, vg, vy, v2, v3,vg,v1, - . ., consecutive vertices will be
distinct, but we could still have v; = v; o for i even or ¢ odd (or both). In terms of
the diagram for I', this means that the edges of I' can be partitioned into sets of 3
types: a single edge not paired at either endpoint, two edges paired only with each
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e a b

d ¢

FIGURE 4

other (at a shared vertex), or 4-cycles of edges paired in cyclic order (Figure [H).
We call such a grouping of edges in the partition an edge set, and an edge set with

V=N LS

FIGURE 5

k-edges a k-edge set.

Given a graph I' with local involutions, we also have the notion of parallel trans-
port along trajectories. Given a trajectory 7(u,v) = vg,v1,va,..., SUPPOSE Wy
is a vertex adjacent to both vy (= u) and v; (= v). Then since the involution
Ju, preserves adjacency, the vertex wy = j,, (wp) will be adjacent to both v; and
V2 = Ju, (Vo). Proceeding by induction, we define wy = j,, (wg—1), which will in
turn be adjacent to both vy and vg41 (Figure [6]).

wo wy Wa

FIGURE 6

Now assume I' is 4-periodic, and let T'y, denote the induced subgraph on the
set of vertices adjacent to both u and v. Then the map wg — w4 defines an
automorphism ¢, : I'yy — [y We call this map the holonomy corresponding to
the pair (u,v). (Of course, there is an analogous notion of holonomy for any graph
with local involutions, not just 4-periodic ones.)

Definition 3.1. Let I be a graph with local involutions. Then T is a (right-angled)
mock reflection system if it is 4-periodic and all holonomy maps are trivial.

The example in Figure [§ shows that a 4-periodic graph need not have trivial
holonomy (the holonomy map j4 o j, © jp © j, interchanges the vertices ¢ and d). On
the other hand, suppose I' is obtained from the action of a mock reflection group
G on its cubical complex X. In other words, I' is the 1l-skeleton of the link of
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zo € X, and for each vertex v of T, j, is the involution defined in Section 2l Then
by Proposition 2.2 T" is 4-periodic, and by Proposition [2.3] all holonomy maps are
trivial. Hence I' is a mock reflection system.

The group W(T'). Suppose I' is a 4-periodic graph, and let F(V) denote the
free group on the vertex set V. For any pair (u,v) € V x V, define the element
r(u,v) € F(V) by

u? if u=w,
r(u,v) = ¢ wou'v’ if u and v are adjacent, v’ = j,(u) and v/ = j,(v),
1 otherwise.

Let W(I') be the group defined by the generators v € V' and relations r(u, v). That
is, W(I') = F(V)/N where N is the normal subgroup generated by r(u,v) for all
(u,v) e Vx V.

In light of the partition of the edges, we can eliminate many of the relations
in the defining presentation for W (T"). Given any two edges {u,v}, {w,z} in an
edge set the relation r(u,v) can be obtained from r(w, z) by cyclically permuting
letters and taking inverses (since all generators are involutions). Hence, it suffices
to specify, in addition to the relation (s,)? for each vertex, exactly one relation for
each edge set.

Example 3.2. If I is a triangle, there are exactly two possibilities. These are both
mock reflection systems and are shown in Figure[ll The corresponding presentations
for W(T') are

(a,bc|a®?=b*=c*=1,(ab)? = (be)? = (ac)? =1)
and
{a,b,c| a® =b* = = 1,abac = 1, (bc)? = 1),
which are the groups (Zz)? (a right-angled Coxeter group) and Dy, (the dihedral
group of order 8), respectively.

FIGURE 7

Example 3.3. Let I be the graph K4 with local involutions defined as in Figure 8l
In this case I' is not a mock reflection system since it has nontrivial holonomy.
Nonetheless, it determines a group W (I') by the presentation

{a,b,c,d | a®> = b* = ¢* = d* = 1, abad = bdbc = cacd = 1).
By eliminating b and ¢ from the presentation we obtain
(a,d|a®> =d?> =1, (ad)” = 1);
thus, the group W(T'") is the dihedral group D7 of order 14.
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a

FIGURE 8

Suppose W is any right-angled Coxeter group, and let I' be the graph with one
vertex for each generator and an edge joining two vertices whenever the correspond-
ing generators commute. For each vertex v, let j, be the trivial local involution.
Then T is 4-periodic (in fact, it is 2-periodic), and the group W (T') is precisely W.

More generally, suppose G is a RAMRG acting on its cubical complex X. Let
I" be the 1-skeleton of the link of xy € X, and for each vertex v of I, let j, be the
involution defined in Section Then as mentioned above, I" is a mock reflection
system, and by Proposition 224 G is isomorphic to the group W(T).

Example 3.4. As mentioned in the Preliminaries in Section 2] the cactus group J
acting on the universal cover M of the moduli space of genus zero curves with (n+3)-
marked points is an example of a RAMRG. The corresponding mock reflection
system I' is shown in Figure [@ in the first two cases (n = 1,2). For general n,

23

13

n=1

FIGURE 9. Mock reflection systems for cactus groups

suppose A is the simplex with vertex set {s12,523,...,5n+1n+2}. Let s;; denote
the barycenter of the face {s; j41, Si+1i+2,...5j—1;}. Then I' can be viewed as the
1-skeleton of the stellar subdivision of A obtained by iteratively stellating on these
barycenters starting with the deepest barycenter si ,, 42 first. The involutions js,;
are induced by the involution in the symmetric group (acting on A) that reverses
the order of the interval 4,4+ 1,...,j. (A detailed explanation of the relationship
between blow-ups of subspace arrangements and stellar subdivisions can be found
in Section 3.3 of [4].)

van Kampen diagrams. Let I' be a mock reflection system. It turns out that
4-periodicity and trivial holonomy have nice implications for the topology of van
Kampen diagrams for the group W(I'). This leads to an explicit isoperimetric
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inequality which we shall use to prove that the generators of W(T') are distinct. First
we reformulate some basic facts from combinatorial group theory in the context of
groups generated by involutions.

Let V be a finite set and let F»(V') denote the free amalgamation #y Zo with one
factor for each element of V. Letting v denote the free generator corresponding to
an element v € V, we say that an element vivs---v, € F5(V) is a reduced word
if v; # viq4q for i =1,...,n —1 and is cyclically reduced if in addition v, # v;.
We define the length of an element w € F5(V') to be the number of generators in a
reduced expression for w.

For any collection R C Fy(V), let N be the normal subgroup generated by R,
and let G = F5(V)/N. Any element w € N can be written in the form

m

1, —1
Hwirii w;
i=1

where r; € R and w; € F3(V) (of course w; = vy -+ - v, implies w;~ = vy, -+ - v1).
Corresponding to any such representation for w there exists a connected simply-
connected planar cell complex called the van Kampen diagram: each 1-cell in this
complex is labeled by a generator, the labels around any 2-cell determine a word in
R (up to cyclic permutations and inversions), and the boundary cycle for the entire
complex (with respect to some fixed boundary vertex) is the word wl] Conversely,
for any such diagram, the full boundary label determines an element of N.

For any given word w € N, we define its area a(w) to be the minimal number
of 2-cells needed for a van Kampen diagram for w. That is,

1

m
a(w) =min{m | w = Hwirjtlwfl r; € R}.
i=1

For the groups we are interested in, the set of relators R will consist only of 4-
letter words. In this case, any word in NV has a van Kampen diagram whose 2-cells
are all squares. The planar dual of such a diagram can be drawn as a collection
of closed smooth immersed curves such that all intersections are transverse double
points with the possible exception of the single point * corresponding to the exterior
face of the van Kampen diagram. By cutting out a disk that separates * from the
van Kampen diagram, we obtain a collection of curves in the disk that are closed
or start and end on the boundary circle (see Figure [I0). We call such a picture a
chord diagram.

Now assume I' is a mock reflection system with vertex set V. Let R be the
set of 4-term relations (in F»(V')) corresponding to trajectories in I', and let N
be the normal subgroup generated by R. Note that each of the relations in R is
cyclically reduced; hence in any van Kampen diagram, the boundary cycle of a
2-cell never has consecutive repeated labels. (In particular, a pendant vertex like
the one occurring in the van Kampen diagram of Figure cannot occur.) We
then have the following two types of “moves” for van Kampen diagrams (and their
duals).

Type I move. If a diagram contains an interior vertex of degree 2, then there are
2 adjacent regions sharing consecutive edges (Figure [[Tl). Since the labels a, b on
these consecutive edges determine a unique trajectory a,b,c,d, ..., the boundary

IThe usual van Kampen diagram specifies labels for oriented 1-cells (see, e.g., [9]), but since
all of our generators are involutions, there is an obvious reduction to unoriented diagrams.
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FIGURE 10. A 4-term van Kampen diagram and dual chord diagram

cycles are the same for both regions. It follows that the 2 squares can be reduced
to just a pair of incident edges labeled ¢,d. The corresponding move for chord
diagrams is also shown in Figure [I11

F1GURE 11. Type I move

Type II move. If a diagram contains an interior vertex v of degree 3, then three
2-cells meet at v, and the boundary of this configuration is a 6-cycle (Figure [I2)).
The three edges emanating from v meet the 6-cycle in alternate vertices. This
configuration can be replaced with a similar diagram (preserving the outside labels)
but with the three interior edges meeting the other three vertices of the boundary
6-cycle. To see this, note that the interior labels a, b, c must be different generators
and the exterior labels are then given by

b= ja(b),b" = je(b),a" = j(a),a” = je(a), ¢’ = ja(c),c" = ju(c).
The new interior labels are given by
a” = jyr(a") = jer(a), 0" = jar (V") = jo (V') " = ji (') = jur ()
where the equalities all follow from the trivial holonomy condition. We leave it to

the reader to verify that the boundary cycles for the three new 2-cells are, in fact,
relations in R. Again, the dual move for chord diagrams is also shown in Figure

Remark 3.5. In terms of the dual chord diagram, the moves described above co-
incide with the Reidemeister type moves obtained by Sageev [I1] in perturbing a
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FiGurg 12. Type IT move

contracting disk in a CAT(0) cubical complex. Here, however, we make no assump-
tion about the existence of an ambient CAT(0) cube complex. Our only assumption
is that the presentation has no holonomy.

An isoperimetric inequality. We shall now use the moves described above to
deduce an isoperimetric inequality for relators in the group W(I'). Our arguments
will be clearer if we work with chord diagrams instead of van Kampen diagrams,
since for the former the moves described above have nice topological interpretations
as Reidemeister moves for curves in the plane. Note that the number of 2-cells in a
van Kampen diagram corresponds to the number of interior crossings or “vertices”
in the dual chord diagram.

Definition 3.6. A chord diagram D is taut if it satisfies all of the following condi-
tions:

(1) None of the chords or interior curves have self-intersections.

(2) There are no interior closed curves (i.e., D only contains chords meeting
the boundary).

(3) No two chords intersect more than once.

Given a chord diagram D, let C' be any simple closed curve that only intersects
curves in D transversely. Then the region D’ bounded by C' is also a chord diagram,
which we call a subdiagram of D. For chord diagrams and their subdiagrams, we
will often omit the boundary circle.

Our first observation is that a chord diagram that is not taut must contain at
least one subdiagram FE having the following form. FE has two distinct chords «a
and 3 such that

(i) « and B intersect in exactly 2 points p and ¢,
(ii) « and B have no self-intersections, and
(iii) E has no interior vertices (crossings) outside the region enclosed by « and
0 (Figure [13).
The proof of this fact is a little tedious, but not difficult. For example, if condition
(1) in Definition B.6] fails, then there exists a self-intersecting curve «. If this curve
has a loop (Figure [[4]), then some other chord must cross it (if no chords cross it,
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FIGURE 13

then the dual van Kampen diagram would have an interior pendant vertex which
is impossible since the relators in R are all cyclically reduced). The crossing curve
0 might self-intersect inside this loop, but by taking a minimal such loop in D,
we can make sure it doesn’t. In this case we obtain E by taking the smallest
subdiagram containing the region bounded by the crossing curve § and the piece
of a it cuts off (Figure[T4] left side). If the curve « has no loop, then it has at least
two self-intersection points p and ¢, which we can take to be consecutive along one
of the connecting arcs. We can then find a simply connected subregion bounded
by this arc and another connecting arc. We then let F be the smallest subdiagram
containing this region (Figure[I4] right side). The cases where conditions (2) or (3)
fail are similar.

FIGURE 14

If we know that a diagram F of the above type exists, then we can take a minimal
one, i.e., one that has no further subdiagram of this same type. Minimality implies
that E has no self-intersecting curves, no closed curves, and the only two curves
that intersect more than once are o and § (and they intersect exactly twice). In
particular, if v is any chord other than « and 3, then v must cross « precisely once
(and before crossing any other chord) and must cross 8 exactly once (and cross no
other chords after 3). This means we can regard E as a plane projection of a braid
where the strands of the braid correspond to the chords other than « and 3, no
strand self-intersects, and no two strands intersect more than once. In other words,
ignoring a and 3, we obtain a “taut” braid projection (Figure [IH]).

The proof of the following lemma is essentially the same as the proof of Theo-
rem 4.4 in [II]. We include it here for completeness.

Lemma 3.7. Let D be a chord diagram for a word w such that D has the minimal
number of interior crossings (i.e., D has a(w) interior crossings). Then D is taut.
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FIGURE 15

Proof. Suppose D is a such a diagram but is not taut. Then let E be a subdiagram
as above (i.e., satisfying properties (i)-(iii)) that has no further subdiagram of the
same type. Consider the taut braid projection obtained by removing o« and §. If
this braid projection has no crossing strands, then they are all parallel. We can
then modify the subdiagram F using the move of type II to push each strand past
the point ¢ so that the region bounded by « and g is empty (Figure [[6). Then
using the move of type I we can pull a and 3 apart, removing the vertices p and
q. Since this would decrease the number of interior vertices of D without changing
the boundary word w, we obtain a contradiction.

><ﬁq5-<H =

FIGURE 16

We can now assume that the subdiagram E has crossing strands (i.e., there
is at least one vertex inside the region bounded by a and ). We claim that the
corresponding braid projection must have a triangular region along « (i.e., a triangle
at the top). The argument we give here is by induction on the number of strands
(see also [II, Lemma 4.5]). There must be at least two strands since there is at
least one crossing, and in this case there is obviously a triangle at the top. Assume
that any taut braid projection with fewer than m strands has a triangle at the top,
and consider the case of m strands. Form a new braid projection by removing the
intersection point of the first strand with the top bar, deleting everything to the left
and below the first strand, and moving the first strand down parallel to the bottom
bar (Figure [[T7). The new braid is still taut but has fewer strands. If the new braid
has no crossings, then the second strand along the top must cross the first strand
before crossing any others, which means that the first and second strands in the
old braid must bound a triangle at the top. Otherwise, by induction, we know that
the new braid has a triangle at the top, hence so does the old one.

Now that we know we must have a triangle at the top, this means we can perform
a move of type II on the subdiagram FE to decrease the number of interior crossings
(Figure[I8)). Repeating this process, we eventually end up with no interior crossings,
so all of the strands are parallel between o and 3. Applying moves II and I, as
before, we again obtain a contradiction to the minimality of the number of crossings
in D. (]
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Theorem 3.8. Let I' be a mock reflection system and let R be the collection of
4-term relations consisting of one relation for each edge set. Let N be the normal
subgroup of F5(V') generated by R and let w be any element in N. Then the length
A and area o of w satisfy the isoperimetric inequality

A>1++V/8a+1.

Proof. Let D be a chord diagram for w with a minimal number of interior crossings.
Then the number of chords in D (that meet the boundary) is precisely k = \/2.
By Lemma [3.7, we know that D is taut, so there are at most (g) interior crossings.
This gives

1
a< g(AQ —2))
which is equivalent to the desired inequality. ([

The following example shows that the inequality fails without the no holonomy
condition.

Example 3.9. Let I be the graph shown in Figure [[9 with local involutions jg,, 7,
Jes Jds Je as indicated. It is 4-periodic (but has nontrivial holonomy corresponding
to the cycle a,e,c,d). The (reduced) 4-term relations for the group W(I') are
r1 = aecd, ro = bcac, r3 = abab and r4 = bdbe. Figure shows a van Kampen
diagram (and dual chord diagram) with boundary word ab. Here o = 6 while A = 2.
In particular, the generators a and b represent the same element in W(T")

The Davis complex. We have seen that any RAMRG has a presentation of the
form W(I") where I" is a mock reflection system. In the converse direction, one
would like to say when the group W(T") defined by a mock reflection system I is,
in fact, a mock reflection group. More precisely, one would like to know when there
exists a CAT(0)-cubical complex with an action of W(T') such that the 1-skeleton
of the link of a vertex coincides with the 4-periodic graph I'. A partial answer
to this question is given in Section 5.10 of [5] (in a setting more general than the
right-angled case). As in the case of reflection groups, the idea is to “complete” the
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FIGURE 20

Cayley complex of W(T') by attaching cells so that the links of all vertices become
flag complexes. In order for this to work, one needs to be sure that all of the 2-cells
in the Cayley complex are embedded. In [5], this is listed as an extra condition,
but in the right-angled setting it follows from the isoperimetric inequality we just
proved.

Theorem 3.10. Let I’ be a right-angled mock reflection system. Then there exists
a (unique) CAT(0) cubical complex ¥ = X(T') with an isometric action of W (T')
such that

(i) the action of W (T') is simply-transitive on ©(0) and the edge-stabilizers are
all isomorphic to Zs, and
(i) the corresponding 4-periodic graph is T.

Proof. We identify W(T") with the quotient F»(V)/N where N is the normal sub-
group generated by the 4-term relations, and we let X denote the corresponding
Cayley 2-complex for this presentation. If r(u,v) = wvu'v’ is a relation correspond-
ing to adjacent vertices u and v, then any coincidence among the group elements 1,
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i, uw, and v/ = wvu/ in W (I') would give rise to a word w in N of length A < 3. By
Theorem [B.§ such a w would have a van Kampen diagram with area o = 0. This
means the diagram would have to be a tree, and the only tree whose boundary has
length < 3 is a single edge. But in this case the boundary label would have to be
of the form vv for some generator v in F5(V'). So there can be no such relator w.
It follows that the Cayley 2-complex X is a regular square complex. Moreover, the
link of every vertex in X coincides with the graph I', and the local involutions on
I' are determined by edge labels in X as in Figure [l of Section

To obtain the complex 5, one now equivariantly attaches cells to X in such a way
as to fill in all of the empty simplices in the links. The difficulty here is that a priori
one might have to attach orbifold quotients of cubes instead of cubes. Let ¢ be an
empty (k—1)-simplex in the link of a vertex (i.e, a complete subgraph) in X, and let
X, be the subcomplex of X spanned by o. That is, X, is the union of the squares
spanned by the edges of o. Then the no holonomy condition allows one to construct
amap f,: Q? — X from the 2-skeleton of a k cube to X that is a covering map
onto a subcomplex containing X, (see Section 5.7 in [5] for details). In our setting,
this covering map will be the restriction of a quotient map for a group G, acting on
the full cube @. This allows one to attach (in order of increasing dimensions) the
orbifolds Q/G, to X using the maps f,. The resulting space X has the structure
of a piecewise Euclidean orbihedron (see [I0]), and since all of the empty simplices
in links have been filled in, X is nonpositively curved. Since nonpositively curved
orbihedra are developable (see [10] and [1]) and X® = X is simply-connected, X
must be its own universal orbihedral cover. Since such universal covers have trivial
isotropy subgroups, the attached cells must have (a postiori) been cubes. It follows
that ¥ = X gives the desired cubical complex 3. O

The Davis complex %(T') can also be described combinatorially by identifying
which subsets of W(I') correspond to the vertex sets of cubes. Let V' be the vertex
set of T (i.e., the generators of W(T")), and let L denote the collection of subsets
o C V such that o spans a complete subgraph in I'. For each ¢ in L U {0}, we
define an element w, € W (T') as follows. We set wyg = 1 and define the remaining
w,’s by induction on |o|. Given o € L, pick v € ¢ and let w, = vw, , where ¢’ is
the (smaller) subset j, (o — {v}). The 4-periodicity and no holonomy conditions on
I" can be used to show that w, is independent of the choice of vertex v, hence well
defined.

Now for each o, we can define subsets W, ¢ W(T') by W, = {w, | 7 C o}.
Then the cubes in the Davis complex X(T") can be identified with the collection of
subsets of the form wW,, where w € W and o € L U {(}. Note that in the case
where W (T') is an actual reflection group, the subsets W, are precisely the finite
parabolic subgroups of W(T'), but in general they need not even be subgroups.

Remark 3.11. One can give a more combinatorial proof of Theorem B.I0 by defining
Y. to be the geometric realization of the poset of subsets wW,, but some form of
developability will still be needed. In particular, one needs to show that the putative
vertex set wW, for each cube has 29! distinct elements.

Finite RAMRG’s. In this section we characterize all finite right-angled mock
reflection groups.
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Theorem 3.12. Let T be a right-angled mock reflection system. Let W = W(T)
be the associated mock reflection group and let ¥ = X(T) be the Davis complez (of
Theorem BI0)). Then the following are equivalent:

(1) W is finite.

(2) T is a complete graph.

(3) X is a cube.
In particular, if « RAMRG 1is finite, then it is a 2-group.

Proof. Suppose W is finite. Let V be the vertices of I (i.e., the vertices of ¥
adjacent to xg), and for v € V let s, denote the corresponding generator of W.
Suppose two vertices u and v are not adjacent in I'. Then whenever 2-edges in ¥
with labels s, and s, meet at a vertex, they do not span a square at that vertex. It
follows that the sequence zq, Sy, * Tg, Sy Sy * To, SuSvSy - To, - - - determines a geodesic
ray in X. Since CAT(0) spaces have no closed geodesics, this sequence cannot be
periodic, so s, and s, generate an infinite group, contradicting W being finite. It
follows that I" is a complete graph.

If T is a complete graph, the link of every vertex in ¥ must be a simplex. The
only connected cubical complex that has all links isomorphic to an n-simplex is the
(n + 1)-cube, so ¥ must be a cube.

If ¥ is an n-cube, then GG has one element for each vertex; hence W is finite with
order 2. This completes the proof. (I

Example 3.13. If I' is the complete graph K4, there are exactly 4 ways to make it
4-periodic with trivial holonomy. These are shown in Figure 2Il The first group is
the right-angled Coxeter group (Z?)%, the second is Zg x Dy, and the last two groups
coincide (this can be seen by eliminating the generator ¢ from both presentations).
This last group has presentation

(a,b,d | a® = b* = d*> = 1,abab = bdbd, (ad)® = 1).

It is a semidirect product of D4 and Zy. Notice from Example B3] that if the
holonomy condition is dropped, W (T') need not be a 2-group.

a a a a
b () c b c b €

FIGURE 21

4. MOCK ARTIN GROUPS

The group A(T'). Let I be a right-angled mock reflection system with vertex set V',
and let F'(V) denote the free group on V. Recall that to define the mock reflection
group W(T') we introduced relations uvu'v’ = 1 for each trajectory u,v,u’,v',. ..
in I and the involution relations v? = 1 for each vertex v € V. We would like to
define a new group A(T") without the involution relations, but that still has W(T")
as a quotient group. Thus, A(T") will be analogous to the Artin group associated
to a Coxeter group.
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Given a trajectory u,v,u’,v’,... in T, let #(u,v) be the relation in F(V):
Fu,v) = utou/ (v) 7L

Let N be the normal subgroup generated by all 7#(u,v) for each pair of adjacent

vertices u,v in I', and let A(T") be the quotient group F(V)/N. We call A(T') the

(right-angled) mock Artin group associated to T' (or to W(T')). Since each relation

7(u, v) is equivalent to the relation r(u, v) when the generators are involutions, there

is a canonical surjection A(T") — W (T).

As in our definition for W(I') some of the defining relations are redundant
for A(T'). In particular, if v and v are adjacent with corresponding trajectory
u,v,u’,v’, ..., then the relations 7(u,v) and 7(v,u) are equivalent up to inversion
and conjugation. Thus, we will sometimes specify an orientation for each edge of
I" and reduce the list of defining relations so there is precisely one relation for each
edge.

The Salvetti complex. Given an n-dimensional cube @) and an edge e C @, let
Q(e) denote the (n — 1)-dimensional subcube obtained by intersecting @ with the
hyperplane orthogonal to E passing through the midpoint of E. We call Q(e) a
hyperplane in Q. Any hyperplane in ) determines an equivalence relation on edges
by e ~ ¢ & Q(e) = Q(¢'). More generally, given a cubical complex X (i.e., a
regular cell complex all of whose cells are combinatorially isomorphic to cubes),
we consider the equivalence relation on edges generated by this relation on each
cell. That is, e and €’ are equivalent if and only if there exists a sequence of edges
e = ep,e1,...,en, = € and a sequence of cubes Q1,...,Q, in X such that for
0<i<mn,e ~eyrin Q;.

Given any edge e in X, we define the hyperplane H(e) to be the union of all
Q(e') where e’ ~ e and @Q is any cell of X that contains e’. Given a cube Q in X,
we say that a hyperplane H is perpendicular to Q if H = H(e) for some edge e in
Q. Obviously, if a hyperplane is perpendicular to a face of a cube @, then it is also
perpendicular to Q.

Let X be a cubical cell complex. Let X(©) denote the vertex set of X, and let
P(X) denote the poset of cells in X. Let ) be the subset of X(©) x P(X) defined
by

Y={(z,Q) |z €}
We define a partial order on Y by (x1,Q1) < (x2,Q2) if and only if
(1) @1 C Q2.
(2) z1 and o are on the same side of every hyperplane in ()2 that is perpen-
dicular to Q.

That this defines a partial order follows directly from the assumption that X is
regular.

The map Y — P(X) given by (z,Q) — @ is a map of posets, so there is an
induced simplicial map 7 : |Y’| — X’ where |)’| is the geometric realization of )
and X' is the barycentric subdivision of X. Given an n-cube @ in X, the inverse
image 7~ 1(Q) consists of n copies of @, which can be indexed by the vertices of Q.
More precisely, if = is a vertex of @, then the point (z, Q) in |)’| is the barycenter
of the copy of @ corresponding to z. In this way, we can give |)’| the structure of
a cubical cell complex Y. We call this cubical cell complex Y the Salvetti complex
for X. Note that the poset corresponding to Y is ), so we can identify the element
(z,Q) € Y with the cell Q, in Y.
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Theorem 4.1. Let X be a cubical complex and let Y be the corresponding Salvetti
complex, each with its natural piecewise Fuclidean metric. Then'Y is nonpositively
curved if and only if X is nonpositively curved.

Proof. The restriction of the map 7 : ¥ — X to the vertices is a bijection, hence
the preimage of the link of a vertex z is the link of the preimage y = 7= !(z). Let L
be the link of the vertex z in X, and let L be the link of y. By Gromov’s condition
it suffices to show that L is a flag complex if and only if L is a flag complex.

Let V and V be the vertex sets of L and L, respectively. Each v € V' corresponds
to an edge E in X with endpoints z and, say, ’. The preimage of E in Y consists
of 2 edges E, and E,, which both share the vertex y = {z},. Let v™ and v~ be
the corresponding elements in L. Then we have V = {v* |v € V}. Similarly, by
considering the higher-dimensional cubes at  we see that the simplicial complex L
consists precisely of those subsets {vT,..., v} such that {vi,..., v} is a simplex
of L. (In other words, each simplex in L corresponds to a crosspolytope in I~/)
Hence a subset {vf,...,v} of V is pairwise joined by edges in L if and only if
{v1,..., v} is pairwise joined by edges in L. It follows that L is a flag complex if
and only if L is a flag complex. (I

A finite K(m,1) for mock Artin groups. Now suppose I' is a mock reflection
system with corresponding mock reflection group W = W (T") and mock Artin group
A= A(). Let ¥ = X(T') be the Davis complex, and let Y = Y(T") be the Salvetti
complex for 3. In this case, since the vertex set of ¥ can be identified with the
group W the cell poset ) is a subcomplex of W x ¥, thus the cells of the geometric
realization are of the form @,, for w € ¥. In particular, the vertices in Y can also
be identified with W, and we will often denote the vertex {w},, in Y simply by w.

The (diagonal) W-action on W X X restricts to an action on ) that preserves
the partial order. Since the left action of W on itself is free, so is the action on
Y. Taking the geometric realization we obtain a free action of W on the Salvetti
complex Y. We consider the quotient space Y/W. For each cell Q,, in Y, let [Q.]
denote the image in Y/W. Let L be the link of 1 in ¥. Then L is the (unique) flag
simplicial complex whose 1-skeleton is the graph I'. Each o € L determines a cube
Q(0) in X that contains the vertex 1. Letting Q(@) denote the vertex 1 in Y, we
can define a map s: LU {0} — Y/W by s(o) = [Q(c)1]. Since any cell Q,, can be
translated by w™! to a cell of the form Q, we know that s is surjective. On the
other hand, the only way two cells Q(o); and Q(o’);1 can be w-translates is if w = 1,
in which case o = ¢’. It follows that s is a bijection: Y /W consists of a single vertex
[1] and a single (k-dimensional) cell [Q(o)1] for each (k — 1-dimensional) simplex o
in L.

Lemma 4.2. The fundamental group w1(Y /W) is isomorphic to A.

Proof. Tt suffices to show that the fundamental group of the 2-skeleton of Y/W co-
incides with the presentation complex for the Artin group A. We fix an orientation
for each edge in I', and use the presentation for A consisting of the single relation
7(u,v) for each such oriented edge (u,v).

Since there is only one vertex in Y/W, each vertex in I' determines a loop in
Y/W. Choose an orientation for this loop as follows. Given the vertex v in T, let
(1,v) denote the oriented edge in ¥ that starts at 1 and ends at v. Let (1,v); be
the corresponding orientation for the edge @Q(v); in Y, and let a, be the (oriented)
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image loop in Y/W. Then m (Y/W) is generated by {a, | v € V'}, and the relations
are determined by the boundary cycles of 2-cells. The map s described above tells
us that these 2-cells are in bijection with edges of I'. Let (u,v) be an oriented edge
in I and let @ be the corresponding 2-cell in 3. The vertices of @) in cyclic order are
1,v,w,u where w = vu’ = wv’ (recall v = j,(u) and v' = j,(v)). Let A, B, A’, B’
be the oriented edges (u,1), (1,v), (v,w), (u,w), respectively.

Recall that 1 denotes the copy of @ in Y that corresponds to the vertex 1. The
copies of A, B, A’, B’ that are contained in @)1 are Ay, By, A/ (since v is on the same
side of the hyperplane perpendicular to A’ as the vertex 1 that indexes Q1), and
B!, (see Figure[2Z)). The oriented edge A/ is translated to the oriented edge (1,u);

/
y B, "
Al A Q1 A A; :
1 B, v

FIGURE 22. A 2-cellin Y

by the element v (since A = (v,w), = (v,vu), s0 v(A)) = (VA )y, = (1,u)1).
Similarly, the oriented edge B, is translated to (1,v"); by u. It follows that the
boundary cycle of the 2-cell [Q1] in Y/W is given by the composition of loops
(ay) Yayay (a, )t This is precisely the relation 7(u,v). O

Theorem 4.3. The quotient Y/W is a finite K(m,1) for the mock Artin group A.

Proof. Since the W action on Y is free, the universal cover of Y/W coincides with
the universal cover of Y. By Theorem [.1] the latter is nonpositively curved, hence
contractible by the (generalized) Cartan-Hadamard theorem (see [I], e.g.). O

Letting L denote the flag simplicial complex whose 1-skeleton is I', we have the
following.

Corollary 4.1. The Euler characteristic of A(T') is given by x(A(T)) =1 — x(L).

Example 4.4. Let I' be the second triangle graph in Example Then W is the
dihedral group Dy, and A is the group

A ={a,b,c| ab= ca,ba = ac,bc = cb).

The latter is an HNN-extension of Z2. The generators b and ¢ generate the group
72, and the third generator a conjugates the corresponding Z subgroups. In this
case, the Davis complex X is the 3-cube, the Salvetti complex Y is the 3-torus
with its standard decomposition into eight 3-cubes, and the quotient Y/W is the
quotient of the 3-cube shown in Figure (with opposite sides identified so that
the labeled arrows match).
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