Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The dynamics of Pythagorean Triples
HTML articles powered by AMS MathViewer

by Dan Romik PDF
Trans. Amer. Math. Soc. 360 (2008), 6045-6064 Request permission

Abstract:

We construct a piecewise onto 3-to-1 dynamical system on the positive quadrant of the unit circle, such that for rational points (which correspond to normalized Primitive Pythagorean Triples), the associated ternary expansion is finite and is equal to the address of the PPT on Barning’s (1963) ternary tree of PPTs, while irrational points have infinite expansions. The dynamical system is conjugate to a modified Euclidean algorithm. The invariant measure is identified, and the system is shown to be conservative and ergodic. We also show, based on a result of Aaronson and Denker (1999), that the dynamical system can be obtained as a factor map of a cross section of the geodesic flow on a quotient space of the hyperbolic plane by the group $\Gamma (2)$, a free subgroup of the modular group with two generators.
References
  • Jon Aaronson, An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society, Providence, RI, 1997. MR 1450400, DOI 10.1090/surv/050
  • Jon Aaronson and Manfred Denker, The Poincaré series of $\mathbf C\sbs \mathbf Z$, Ergodic Theory Dynam. Systems 19 (1999), no. 1, 1–20. MR 1676950, DOI 10.1017/S0143385799126592
  • Roy L. Adler, Geodesic flows, interval maps, and symbolic dynamics, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989) Oxford Sci. Publ., Oxford Univ. Press, New York, 1991, pp. 93–123. MR 1130174
  • Roy L. Adler and Leopold Flatto, Cross section maps for geodesic flows. I. The modular surface, Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), Progr. Math., vol. 21, Birkhäuser, Boston, Mass., 1982, pp. 103–161. MR 670077
  • Roy L. Adler and Leopold Flatto, The backward continued fraction map and geodesic flow, Ergodic Theory Dynam. Systems 4 (1984), no. 4, 487–492. MR 779707, DOI 10.1017/S0143385700002583
  • Roy L. Adler and Leopold Flatto, Cross section map for the geodesic flow on the modular surface, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 9–24. MR 737384, DOI 10.1090/conm/026/737384
  • Roger C. Alperin, The modular tree of Pythagoras, Amer. Math. Monthly 112 (2005), no. 9, 807–816. MR 2179860, DOI 10.2307/30037602
  • Viviane Baladi and Brigitte Vallée, Euclidean algorithms are Gaussian, J. Number Theory 110 (2005), no. 2, 331–386. MR 2122613, DOI 10.1016/j.jnt.2004.08.008
  • F. J. M. Barning, On Pythagorean and quasi-Pythagorean triangles and a generation process with the help of unimodular matrices, Math. Centrum Amsterdam Afd. Zuivere Wisk. 1963 (1963), no. ZW-011, 37 (Dutch). MR 190077
  • Patrick Billingsley, Ergodic theory and information, John Wiley & Sons, Inc., New York-London-Sydney, 1965. MR 0192027
  • Johannes Gollnick, Harald Scheid, and Joachim Zöllner, Rekursive Erzeugung der primitiven pythagoreischen Tripel, Math. Semesterber. 39 (1992), no. 1, 85–88 (German). MR 1161588, DOI 10.1007/BF03186460
  • A. Hall, Genealogy of Pythagorean triads. Math. Gazette 54:390 (1970), 377–379.
  • G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125
  • Fritz Herzog and B. M. Stewart, Patterns of visible and nonvisible lattice points, Amer. Math. Monthly 78 (1971), 487–496. MR 284403, DOI 10.2307/2317753
  • Jens Jaeger, Pythagorean number sets, Nordisk Mat. Tidskr. 24 (1976), no. 2, 56–60, 75 (Danish, with English summary). MR 457332
  • A. R. Kanga, The family tree of Pythagorean triples, Bull. Inst. Math. Appl. 26 (1990), no. 1-2, 15–17. MR 1040886
  • Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms. MR 633878
  • Erik Kristensen, Pythagorean number sets and orthonormal matrices, Nordisk Mat. Tidskr. 24 (1976), no. 3-4, 111–122, 135 (1977) (Danish, with English summary). MR 491471
  • A. Lönnemo, The trinary tree underlying primitive pythagorean triples. In: Cut the Knot, Interactive Mathematics Miscellany and Puzzles. Alex Bogomolny (Ed.), http://www. cut-the-knot.org/pythagoras/PT_matrix.shtml.
  • Darryl McCullough, Height and excess of Pythagorean triples, Math. Mag. 78 (2005), no. 1, 26–44. MR 2126355, DOI 10.2307/3219271
  • Paul Préau, Un graphe ternaire associé à l’équation $X^2+Y^2=Z^2$, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 7, 665–668 (French, with English and French summaries). MR 1300066
  • A. Redmon, Pythagorean triples, Master’s Thesis, Eastern Washington University, 1998.
  • Fritz Schweiger, Ergodic theory of fibred systems and metric number theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. MR 1419320
  • Caroline Series, The modular surface and continued fractions, J. London Math. Soc. (2) 31 (1985), no. 1, 69–80. MR 810563, DOI 10.1112/jlms/s2-31.1.69
  • Caroline Series, Geometrical methods of symbolic coding, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989) Oxford Sci. Publ., Oxford Univ. Press, New York, 1991, pp. 125–151. MR 1130175
  • N. J. A. Sloane, editor (2003), The On-Line Encyclopedia of Integer Sequences. http://www. research.att.com/ njas/sequences/.
  • Brigitte Vallée, Dynamical analysis of a class of Euclidean algorithms, Theoret. Comput. Sci. 297 (2003), no. 1-3, 447–486. Latin American theoretical informatics (Punta del Este, 2000). MR 1981160, DOI 10.1016/S0304-3975(02)00652-7
  • A. Wayne, A genealogy of $120^{o}$ and $60^{o}$ triangles. Math. Mag. 55 (1982), 157–162.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 37A45
  • Retrieve articles in all journals with MSC (2000): 37A45
Additional Information
  • Dan Romik
  • Affiliation: Department of Statistics, University of California at Berkeley, 367 Evans Hall, Berkeley, California 94720-3860
  • Address at time of publication: Einstein Institute of Mathematics, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel
  • Email: romik@math.huji.ac.il
  • Received by editor(s): May 26, 2006
  • Received by editor(s) in revised form: November 13, 2006
  • Published electronically: April 22, 2008
  • © Copyright 2008 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 360 (2008), 6045-6064
  • MSC (2000): Primary 37A45
  • DOI: https://doi.org/10.1090/S0002-9947-08-04467-X
  • MathSciNet review: 2425702