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A LIOUVILLE THEOREM

FOR VECTOR VALUED SEMILINEAR HEAT EQUATIONS

WITH NO GRADIENT STRUCTURE

AND APPLICATIONS TO BLOW-UP

NEJLA NOUAILI AND HATEM ZAAG

Abstract. We prove a Liouville theorem for a vector valued semilinear heat

equation with no gradient structure. Classical tools such as the maximum
principle or energy techniques break down and have to be replaced by a new
approach. We then derive from this theorem uniform estimates for blow-up
solutions of that equation.

1. Introduction

This paper is concerned with blow-up solutions of the semilinear heat equation

(1.1) ∂tu = Δu+ F (u),

where u(t) : x ∈ RN → RM , Δ denotes the Laplacian and F : RM → RM is not
necessarily a gradient. We say that u(t) blows up in finite time T if u(t) exists for
all t ∈ [0, T ) and

lim
t→T

‖u(t)‖L∞ = +∞.

We note that an extensive literature is devoted to the study of equation (1.1). Many
results were found using monotonicity properties, the maximal principle (valid for
scalar equations) or energy techniques (valid when F is a gradient). See for example
[Wei84], [Fuj66], [Bal77], [Lev73]. Unfortunately, there are important classes of
PDEs where these techniques break down. For example, equations of the type
(1.1), where F is not a gradient, or PDEs coming from geometric flows; see for
example a review paper by Hamilton [Ham95].

In this work, we would like to develop new tools for a class of equations where
classical tools do not work, in particular, vector valued equations with no gradient
structure. More precisely, we will consider the following reaction-diffusion equation:

(1.2) ut = Δu+ (1 + iδ)|u|p−1u, u(0, x) = u0(x),
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where u(t) : RN → C, δ ∈ R and

(1.3) p > 1 and (N − 2)p < (N + 2).

Note that the nonlinearity in this equation is not a gradient. Note also that (1.2)
is a particular case of the complex Ginzburg-Landau equation

(1.4) ∂tu = (1 + iβ)Δu+ (ε+ iδ)|u|p−1u− γu, where (x, t) ∈ R
N × (0, T ),

β, δ and γ real, p > 1 and ε = ±1.
This equation is mostly famous when ε = −1. It appears in the study of various

physical problems (plasma physics, nonlinear optics). It is in particular used as
an amplitude equation near the onset of instabilities in fluid mechanics (see for
example Levermore and Oliver [LO96]). In this case, Plecháč and Šverák [PŠ01]
used matching techniques and numerical simulations to give strong evidence for the
existence of blow-up solutions in the focusing case, namely βδ > 0.

The case ε = 1 is less famous. To our knowledge, there is only the work of
Popp, Stiller, Kuznetsov and Kramer [PKK98], who use a formal approach to find
blow-up solutions. More recently, Masmoudi and Zaag [MZ08a] gave a constructive
method to show the existence of a stable blow-up solution under some conditions
for the parameters.

Let us present in the following the known results for equation (1.2) and most
importantly the research directions and open problems. In the study of the blow-up
phenomenon for equation (1.2), we believe that there are two important issues:

Construction of examples of blow-up solutions: In this approach, one has
to construct examples of solutions that blow up in finite time. In particular, one has
to find conditions on initial data and/or parameters of the equation to guarantee
that the solution blows up in finite time. For equation (1.2), we recall the result
obtained by Zaag [Zaa98] (the range of δ has been widened in [MZ08a]):

For each δ ∈ (−√
p,
√
p),

i) equation (1.2) has a solution u(x, t) on RN × [0, T ) which blows up in finite time
T > 0 at only one blow-up point a ∈ RN ,
ii) moreover, we have

(1.5) lim
t→T

‖(T − t)
1+iδ
p−1 u(a+ ((T − t)| log(T − t)|) 1

2 z, t)− fδ(z)‖L∞(RN ) = 0

with

fδ(z) = (p− 1 +
(p− 1)2

4(p− δ2)
|z|2)−

1+iδ
p−1 ,

iii) there exists u∗ ∈ C(RN\{a},C) such that u(x, t) → u∗(x) as t → T uniformly
on compact subsets of RN\{a} and

u∗(x) ∼
[
8(p− δ2)| log |x− a||

(p− 1)2|x− a|2

] 1+iδ
p−1

as x → a.

Remark 1.1. In [MZ08a], the same result was proved for equation (1.4), where the
linearized operator around the expected profile is much more difficult to study.

Asymptotic behavior for any arbitrary blow-up solution: In this ap-
proach, one takes any arbitrary blow-up solution for equation (1.2) and tries to
describe its blow-up behavior. More precisely, it consists in the determination of
the asymptotic profile (that is, a function from which, after a time-dependent scal-
ing, u(t) approaches as t → T ) of the blow-up solution.
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In earlier literature, the determination of the profile is done through the study
of entire solutions (defined for all time and space) of the equation. See for example
Grayson and Hamilton [GH96] for the case of the harmonic map heat flow and
Giga and Kohn [GK85] for the heat equation (that is, δ = 0 in (1.2); there, the
authors prove a Liouville theorem which turns out to be the trivial case of the
Liouville theorem proved by Merle and Zaag in [MZ98a] and [MZ00] and stated
in Proposition 3.4 below). Let us remark that the use of Liouville theorems was
successful for elliptic equations (see Gidas and Spruck [GS81a] and [GS81b]).

More recently, the characterization of entire solutions by means of Liouville theo-
rems allowed us to obtain more than the blow-up profile, namely uniform estimates
with respect to initial data and the singular point. See for the heat equation Merle
and Zaag [MZ98b], [MZ98a], [MZ00], for the modified Korteweg-de Vries equa-
tion Martel and Merle [MM00], for the nonlinear Schrödinger equation Merle and
Raphael [MR04], [MR05] and for the wave equation Merle and Zaag [MZ08b] and
[MZ08b].

The existence of a Lyapunov functional is traditionally a crucial tool in the proof
of Liouville theorems, such as for the heat equation [MZ00] or the wave equation
[MZ08b]. One wonders whether it is possible to prove a Liouville theorem for a
system with no Lyapunov functional. The first attempt was done by Zaag [Zaa01]
for the following system:

∂tu = Δu+ vp, ∂tv = Δv + uq,(1.6)

and its self-similar version

∂sΦ = ΔΦ− 1
2y · ∇Φ+Ψp −

(
p+1
pq−1

)
Φ,

∂sΨ = ΔΨ− 1
2y · ∇Ψ+Φq −

(
q+1
pq−1

)
Ψ.

(1.7)

This is the result of [Zaa01]:
Consider p0 > 1 such that (N−2)p0 < N+2 and M > 0. Then, there exists η > 0

such that if |p−p0|+ |q−p0| < η, then for any nonnegative (Φ,Ψ) solution of (1.7)
such that for all (y, s) ∈ RN ×R, Φ(y, s)+Ψ(y, s) ≤ M , then either (Φ,Ψ) = (0, 0)

or (Φ,Ψ) = (Γ, γ) or (Φ,Ψ) =
(
Γ (1 + es−s0)

− p+1
pq−1 , γ (1 + es−s0)

− q+1
pq−1

)
for some

s0 ∈ R, where (Γ, γ) is the only nontrivial constant solutions of (1.7) defined by

(1.8) γp = Γ

(
p+ 1

pq − 1

)
and Γq = γ

(
q + 1

pq − 1

)
.

Before [Zaa01], Andreucci, Herrero and Velázquez addressed the same question
in [AHV97] but could not determine explicitly the third case. In some sense, they
just gave the limits as s → ±∞ (for a statement, see the remark after Proposition
2.3 below). The characterization of that third case is far more difficult than the rest.
The lack of a Lyapunov functional was overcome thanks to an infinite dimensional
blow-up criterion.

Following system (1.6), it was interesting to address the case of equation (1.2)
for δ 
= 0. As for system (1.6), there is no Lyapunov functional. On the contrary,
no blow-up criterion is available and the set of nonzero stationary solutions for
the self-similar version is a continuum (see Proposition 2.1 below). For these two
reasons, new tools have to be found, which makes our paper meaningful.
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Another reason for our work is the full Ginzburg-Landau model (1.4) with β 
= 0.
That case has one more difficulty since the linearized operator in the self-similar
variable becomes nonselfadjoint, as one can see from [MZ08a]. Thus, this paper is
a fundamental step towards the proof of a Liouville theorem for the full Ginzburg-
Landau model (1.4), which we believe to be an open problem of great importance.

1.1. A Liouville theorem for system (1.2). Our aim in this paper is to prove
a Liouville theorem for equation (1.2). In order to do so, we introduce for each
a ∈ R

N , the following self-similar transformation:

(1.9) wa(y, s) = (T − t)
(1+iδ)
p−1 u(x, t), y =

x− a√
T − t

, s = − log(T − t).

If u is a solution of (1.2), then the function w = wa satisfies for all s ≥ − log T and
y ∈ RN :

(1.10) ws = Δw − 1

2
y · ∇w − (1 + iδ)

(p− 1)
w + (1 + iδ)|w|(p−1)w.

We introduce also the Hilbert space

L2
ρ = {g ∈ L2

loc(R
N ,C),

∫
RN

|g|2e−
|y|2
4 dy < +∞}, where ρ(y) =

e−
|y|2
4

(4π)N/2
.

If g depends only on the variable y ∈ RN , we use the notation

‖g‖2L2
ρ
=

∫
RN

|g(y)|2e−
|y|2
4 dy.

If g depends only on (y, s) ∈ RN × R, we use the notation

‖g(., s)‖2L2
ρ
=

∫
RN

|g(y, s)|2e−
|y|2
4 dy.

The main result of the paper is the following Liouville theorem, which classifies
certain entire solutions (i.e. solutions defined for all (y, s) ∈ RN × R) of (1.10):

Theorem 1 (A Liouville theorem for equation (1.10)). Assuming (1.3), there exist
δ0 > 0 and M : [−δ0, δ0] → (0,+∞] with M(0) = +∞, M(δ) → +∞ as δ → 0 and
the following property:

If |δ| ≤ δ0 and w ∈ L∞(RN×R,C) is a solution of (1.10) with ‖w‖L∞(RN×R,C) ≤
M(δ), then, either w ≡ 0 or w ≡ κeiθ0 or w = ϕδ(s− s0)e

iθ0 for some θ0 ∈ R and

s0 ∈ R, where ϕδ(s) = κ(1 + es)−
(1+iδ)
(p−1) and κ = (p− 1)−

1
p−1 .

Going back to the original variables u(x, t), we rewrite this Liouville theorem as
the following:

Theorem 2 (A Liouville theorem for equation (1.2)). Assuming (1.3), there exist
δ0 > 0 and M : [−δ0, δ0] → (0,+∞] with M(0) = +∞, M(δ) → +∞ as δ → 0 and
the following property:

If |δ| ≤ δ0 and u is a solution of (1.2) satisfying u(x, t)(T − t)
1

p−1 ∈
L∞(RN × (−∞, T ),C) and ‖u(x, t)(T − t)

1
p−1 ‖L∞(RN×(−∞,T ),C) ≤ M(δ), then,

u ≡ 0 or there exists T0 ≥ T and θ0 ∈ R such that for all (x, t) ∈ RN × (−∞, T ),

u(x, t) = κ(T0 − t)−
1+iδ
p−1 eiθ0 .
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Remark 1.2. This result has already been proved by Merle and Zaag [MZ98a] and
[MZ00] (see also Nouaili [Nou08]) when δ = 0.

In that case, M(0) = +∞, which means that any L∞ entire solution of (1.10),
with no restriction on the size of its norm, is trivial (i.e. independent of space).

When δ 
= 0, this conclusion holds only for “small” L∞ norms (i.e. bounded
by M(δ)). We suspect that we cannot take M(δ) = +∞. In other words, we
suspect that equation (1.10) under the condition (1.3) has nontrivial solutions in
L∞ with a high norm. We think that such solutions can be constructed in the
form w(y, s) = w0(y)e

iωs with high ω and high ‖w0‖L∞ , as Popp et al. did through
formal arguments on page 96 in [PKK98] when δ ∼ ±3 (which is outside our range).

Remark 1.3. Since this result was already known from [MZ98a] and [MZ00] when
δ = 0, the case δ 
= 0 may appear as a not surprising interesting perturbation
technique of the case δ = 0. If this is clearly true for the statement, it is certainly not
the case for the method and the techniques, mainly because the gradient structure
breaks down and the linearized problem is no longer selfadjoint (see the beginning
of Section 2 for more details). We have to invent new tools which are far from being
a simple perturbation technique. This comprises the main innovation of our work.

Remark 1.4. One may think that our result is completely standard in the context
of dynamical systems. It happens that already in the case δ = 0, standard methods
such as the center manifold theory do not apply in our case as pointed out by
Filippas and Kohn in [FK92], pp. 834-835. In particular, Proposition 3.8 below,
whose statement is standard, does not follow from center manifold theory because
the nonlinear term is not quadratic in the function space L2

ρ.

1.2. Applications to type I blow-up solutions of (1.2). As in previously cited
recent blow-up literature ([MZ00], [MM00] and [MZ08b]), Liouville theorems have
important applications to blow-up for the so-called ‘type I’ blow-up solutions of
equation (1.2), that is, solutions satisfying

∀t ∈ [0, T ), ‖u(t)‖L∞ ≤ M(T − t)−
1

p−1 ,

where T is the blow-up time. In other words, the blow-up rate is given by the
associated ODE u′ = (1 + iδ)|u|p−1u.

We know that the solution of (1.2) constructed in [Zaa98] is of type I (and the
same holds for the solution of the Ginzburg-Landau equation (1.4) constructed in
[MZ08a]). However, we have been unable to prove whether all blow-up solutions
of (1.2) are of type I or not. Note that when δ = 0, Giga and Kohn [GK85] and
Giga, Matsui and Sasayama [GMS04] prove that all blow-up solutions are of type
I, provided that p is subcritical ((N − 2)p < N + 2). When δ 
= 0, the methods
of [GK85] and [GMS04] break down because we no longer have positivity or a
Lyapunov functional.

However, following [MZ00] and [Zaa01], we can derive the following estimates
for type I blow-up solutions of (1.2):

Proposition 3 (Uniform blow-up estimates for type I solutions). Assume (1.3),
consider |δ| ≤ δ0 and a solution u of (1.2) that blows up at time T and satisfies

∀t ∈ [0, T ), ‖u(t)‖L∞ ≤ M(δ)(T − t)−
1

p−1 ,
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where δ0 and M(δ) are defined in Theorem 1. Then,

• (i) (L∞ estimates for derivatives)

‖u(t)‖L∞(T − t)
1

p−1 → κ and ‖∇ku(t)‖L∞(T − t)
1

p−1+
k
2 → 0

as t → T for k = 1, 2 or 3.

• (ii) (Uniform ODE behavior) For all ε > 0, there is C(ε) such that ∀x ∈
RN , ∀t ∈ [T2 , T ),∣∣∣∣∂u∂t (x, t)− (1 + iδ)|u|p−1u(x, t)

∣∣∣∣ ≤ ε|u(x, t)|p + C.

Remark 1.5. When δ = 0, this result was already derived from the Liouville theorem
in [MZ98a] and [MZ00]. It happens that adapting that proof to the case δ 
= 0 is not
straightforward, because the gradient structure is missing. However, unlike for the
Liouville theorem, the adaptation is mainly technical. For the reader’s convenience,
we show in Section 4 how to adapt the proof of [MZ98a] and [MZ00] in the case
δ 
= 0.

Our paper is organized as follows: Section 2 and Section 3 are devoted to the
proof of the Liouville theorem (we only prove Theorem 2 since Theorem 1 follows
immediately from the self-similar transformation (1.9)). Note that Section 2 con-
tains the main arguments with no details and Section 3 includes the whole proof
with all the technical steps. Finally, we prove in Section 4 the applications to
blow-up stated in Proposition 3.

2. The main steps and ideas of the proof of the Liouville theorem

In this section, we adopt a pedagogical point of view and explain the main steps
and ideas of the proof with no technical details. These details are presented in
Section 3. The reader may think that our result is an interesting perturbation of
the Liouville theorem proved in [MZ00] for δ = 0. If this is true for the statement,
it is certainly not the case for the proof for three structural reasons:

- The gradient structure breaks down when δ 
= 0, which prevents us from using
any energy method or blow-up criteria. To show blow-up, we need to find a very
precise asymptotic behavior of the solution and show “by hand” that it cannot stay
bounded.

- When δ 
= 0, the linearized operator of (1.10) around the constant solution w ≡
κ is no longer selfadjoint and no general theory is applicable to derive eigenvalues
directly. A careful decomposition of the solution is needed instead.

- Since equation (1.2) is invariant under rotations in the complex plane (u →
ueiθ), this generates a null eigenvalue for the linear part of equation (1.10), and a
precise modulation technique is needed, unlike the real-valued case when δ = 0.

The proof of the Liouville theorem is the same for N = 1 and N ≥ 2 with
subcritical p (see (1.3)). The only difference is in the multiplicity of the eigenvalues
of the linearized operator of equation (1.10), which changes from 1 when N = 1
to a higher value when N ≥ 2. In particular, one needs some extra notation and
careful linear algebra in higher dimensions. For the sake of clearness, we give here
the proof when N = 1. The interested reader may find in Section 4 (page 128) of
[MZ00] how to get the higher dimensional case from the case N = 1. Clearly, the
following statement is equivalent to Theorem 1.
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For any M > 0, there exists δ′0(M) > 0 such that for all |δ| ≤ δ′0(M), if w(y, s)
is an entire solution of (1.10), defined for all (y, s) ∈ R× R and

(2.1) ‖w(., s)‖L∞ ≤ M,

then w depends only on the variable s.
In the following, we will prove this latter statement. Let us consider M > 0

and w(y, s) satisfying (2.1) and prove that w is trivial provided that δ is small.
As in [MZ00], the starting point is the investigation of the behavior of w(y, s) as
s → −∞.

Part 1: Behavior of w(y, s) as s → −∞.
In the case δ = 0, the method of Giga and Kohn [GK85] proves that w(y, s)
approaches the set of stationary solutions of (1.10)

{
0, κeiθ|θ ∈ R

}
as s → −∞ in

L2
ρ. We would like to do the same here; that is why we give the stationary solutions

of (1.10) in the following.

Proposition 2.1 (L∞ stationary solutions of (1.10)). Consider δ 
= 0 and v ∈
L∞(RN ) a solution of

(2.2) 0 = Δv − 1

2
y · ∇v − 1 + iδ

p− 1
v + (1 + iδ)|v|p−1v.

Then, either v ≡ 0 or there exists θ0 ∈ R such that v ≡ κeiθ0 .

Remark 2.2. When δ = 0, the same result holds only for subcritical p satisfying
(N − 2)p ≤ N + 2, and the proof due to Giga and Kohn is far from being trivial;
see Theorem 1 (page 305) in [GK85].

Proof of Proposition 2.1. Consider v ∈ L∞(RN ) a solution to (2.2). Multiplying
(2.2) by vρ and integrating over RN gives after integration by parts

0 = −
∫

|∇v|2 ρ− (1 + iδ)

p− 1

∫
|v|2ρ+ (1 + iδ)

∫
|v|p+1ρ.

Since δ 
= 0, identifying the imaginary and the real parts gives
∫
|∇v|2 ρ = 0; hence

∇v ≡ 0 and Δv ≡ 0. Plunging this in (2.2) yields the result. �

To prove that the solution approaches the set of stationary solutions, the method
of Giga and Kohn breaks down, since it heavily relies on the existence of the fol-
lowing Lyapunov functional for equation (1.10) in the case δ = 0:

(2.3) E(w) =
1

2

∫
|∇w|2 ρdy +

1

2(p− 1)

∫
|w|2ρdy − 1

p+ 1

∫
|w|p+1ρdy.

When δ 
= 0, we don’t have such a Lyapunov functional. Fortunately, a perturba-
tion method used by Andreucci, Herrero and Velázquez works here and yields the
following:

Proposition 2.3. For any M > 0, there exists δ′0(M) such that if |δ| ≤ δ′0 and w
is an arbitrary solution of (1.10) satisfying for all (y, s) ∈ R × R, |w(y, s)| ≤ M ,
then either
(i) ‖w(., s)‖L2

ρ
→ 0 as s → −∞ or (ii) infθ∈R ‖w(., s)− κeiθ‖L2

ρ
→ 0 as s → −∞.

The next parts of the strategy (parts 2 and 3) investigate cases (i) and (ii) of
Proposition 2.3, which are certainly not of the same degree of difficulty.
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Part 2: Case where w → 0 as s → −∞.
In this case, we have w ≡ 0. Rather than giving a proof, we simply explain here how
the proof works. For the actual proof, we rely again on the method of Andreucci,
Herrero and Velázquez (see Proposition 3.1, in section 3 of [AHV97]). Our argument
is that the stationary solution of (1.10), which is identically zero, is stable in L2

ρ;
hence, no orbit can escape it, except the null orbit. To illustrate this, we write from

equation (1.10) the following differential inequality for h(s) ≡
∫
R
|w(y, s)|2 ρ(y)dy,

h′(s) ≤ − 2

p− 1
h(s) + 2

∫
R

|w(y, s)|p+1 ρ(y)dy.

Using the regularizing effect of equation (1.10), we derive the following delay esti-
mate:

∀s ∈ R,

∫
R

|w(y, s)|p+1ρ(dy) ≤ C∗
(∫

R

|w(y, s− 1)|2 ρ(y)dy
) p+1

2

,

for some positive C∗. Therefore,

∀s ∈ R, h′(s) ≤ − 2

p− 1
h(s) + C(M)h(s− 1)

p+1
2 .

Using the fact that h(s) → 0 as s → −∞ and delay ODE techniques, we show that
h(s) is driven by its linear part; hence for some ε > 0 small enough, we have

∀σ ∈ R, ∀s ≥ σ + 1, h(s) ≤ ε0e
− 2(s−σ)

p−1 .

Fixing s ∈ R and letting σ → −∞, we get that h(s) ≡ 0; hence w ≡ 0.
Now that case (i) of Proposition 2.3 has been handled, we consider case (ii) in

the following.
Part 3: Case where infθ∈R ‖w(., s)− κeiθ‖L2

ρ
→ 0 as s → −∞.

The question to be asked here is the following: Does the solution converge to a
particular κeiθ0 as s → −∞ or not?

The key idea is to classify the L2
ρ behavior of w as s → −∞. We proceed in 5

steps.

Step 1: Formulation of the problem.
Note that the degree of freedom in case (ii) of Proposition 2.3 comes from the

invariance of equation (1.2) under the rotation (u → ueiθ). This invariance gener-
ates a zero mode for equation (1.10), which is difficult to control. The idea to gain
this control and show the convergence of w(y, s) is to use a modulation technique
by introducing the following parametrization of the problem:

(2.4) w(y, s) = eiθ(s)(v(y, s) + κ) with κ = (p− 1)−
1

(p−1) .

A natural choice would be to take θ(s) such that

‖w(., s)− eiθ(s)κ‖L2
ρ
= inf

θ∈R

‖w(y, s)− κeiθ‖L2
ρ
.

This is not our choice. We will instead choose θ(s) such that we kill the neutral
mode mentioned above. More precisely, we claim the following:

Lemma 2.4. There exists s1 ∈ R and θ ∈ C1((−∞, s1],R) such that
(i) ∀s ≤ s1,

∫
( Im (v)− δ Re (v))ρ = 0, where v is defined by (2.4).

(ii) We have ‖v(., s)‖L2
ρ
→ 0 as s → −∞.
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(iii) For all s ≤ s1, we have

(2.5) |θ′
(s)| ≤ C‖v(., s)‖2L2

ρ
.

With the change of variables (2.4), we focus in the following steps on the de-
scription of the asymptotic behavior of v(y, s) and θ(s) as s → −∞. Using (2.4),
we write the equation satisfied by v (= v1 + iv2) as

∂sv = L̃v − iθs(v + κ) +G,(2.6)

where G = (1 + iδ)

{
|v + κ|p−1(v + κ)− κp − v

p− 1
− v1

}
(2.7)

satisfies |G| ≤ C|v|2 and

∣∣∣∣G− (1 + iδ)
1

2κ

{
(p− 2)v21 + v22 + 2v1v2

}∣∣∣∣ ≤ C|v|3.

(2.8)

A good understanding of our operator L̃v = Δv− 1
2y ·∇v+(1+iδ)v1 will be essential

in our analysis. The following lemma provides us with the spectral properties of L̃.

Lemma 2.5 (Eigenvalues of L̃).
(i) L̃ is an R−linear operator defined on L2

ρ and its eigenvalues are given by

{1− m

2
|m ∈ N}.

Its eigenfunctions are given by {(1 + iδ)hm, ihm|m ∈ N}, where

(2.9) hm(y) =

[m2 ]∑
n=0

m!

n!(m− 2n)!
(−1)nym−2n.

We have L̃((1 + iδ)hm) = (1− m
2 )(1 + iδ)hm and L̃(ihm) = −m

2 ihm.

(ii) Each r ∈ L2
ρ can be uniquely written as

r(y) = (1 + iδ)r̃1(y) + ir̃2(y) = (1 + iδ)

(
+∞∑
m=0

r̃1mhm(y)

)
+ i

(
+∞∑
m=0

r̃2mhm(y)

)
,

where:

r̃1(y) = Re {r(y)} and r̃2(y) = Im {r(y)} − δ Re {r(y)}
and for i = {1, 2}, r̃im =

∫
r̃i(y)

hm(y)
‖hm‖2

L2
ρ

ρ(y)dy.(2.10)

Remark 2.6. Note that the eigenvalues 1, 1/2 and 0 have a geometrical interpreta-
tion: they come from the invariance of equation (1.2) to translation in time (λ = 1)

and space (λ = 1/2), dilations uλ(ξ, τ ) → λ
1

p−1 u(ξ
√
λ, τλ) and multiplications by

eiθ (the group S1) for λ = 0.

Remark 2.7. Following (ii), we write each complex quantity (number or function)
z as z = z1 + iz2 and z = (1+ iδ)z̃1 + iz̃2 with zj=1,2, z̃j=1,2 ∈ R. In particular, we
write

v(y, s) = (1 + iδ)ṽ1(y, s) + iṽ2(y, s)
= (1 + iδ)

∑∞
m=0 ṽ1m(s)hm(y) + i

∑∞
m=0 ṽ2m(s)hm(y).

(2.11)
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Proof. Using the notation (2.11), we see that

(2.12) L̃v =

(
L 0
0 L − I

)(
ṽ1
ṽ2

)
,

where

(2.13) Lh = Δh− 1

2
y · ∇h+ h

is a well-known selfadjoint operator of L2
ρ(R,R) whose eigenfunctions are hm (2.9),

which are dilations of Hermite polynomials. Thus, the spectral properties of L̃
directly derive from those of L. The interested reader may find details in Lemma
2.2, page 590, from Zaag [Zaa98]. �

Note from this lemma that operator L̃ has three nonnegative eigenvalues:
• λ = 1, with eigenfunction (1 + iδ)h0(y) = (1 + iδ).
• λ = 1/2, with eigenfunction (1 + iδ)h1(y) = (1 + iδ)y.
• λ = 0, with two eigenfunctions (1+ iδ)h2(y) = (1+ iδ)(y2 − 2) and ih0(y) = i.

From (2.11) and (2.10), the coordinate of v(y, s) along the direction ih0 is

ṽ20(s) =

∫
( Im (v(y, s))− δ Re (v(y, s)))

h0(y)

‖h0‖2L2
ρ

ρ(y)

=

∫
( Im (v(y, s))− δ Re (v(y, s))) ρ(y).

Using (i) of Lemma 2.4, we see that the choice of θ(s) guarantees that

(2.14) ∀s ≤ s1, ṽ20(s) = 0.

In the next step, we will use the spectral information of L̃ to derive the asymptotic
behavior of v, then w as s → −∞.

Step 2: Asymptotic behavior as s → −∞.
As s → −∞, we expect that the coordinates of v on the eigenfunctions for λ ≥ 0 will
dominate. These eigenfunctions are (1 + iδ) when λ = 1, (1 + iδ)y when λ = 1/2,
(1 + iδ)(y2 − 2) or i when λ = 0. Note that for this latter case, the direction along
i already vanishes thanks to the choice of θ(s) (see (2.14)). So, if λ = 0 dominates,
that is, the coordinate of v on (1 + iδ)(y2 − 2) dominates, since the linear part
vanishes, the equation is driven by the quadratic approximation ẋ ∼ −x2, that is,
x ∼ 1

s . Using (iii) of Lemma 2.4, we see that θ(s) has a limit as s → −∞; hence w
converges from (2.4). More precisely, we have:

Proposition 2.8. There exists θ0 ∈ R such that θ(s) → θ0 and ‖w(., s)− κeiθ0‖L2
ρ

→ 0 as s → −∞. More precisely, one of the following situations occurs as s → −∞,
for some C0 ∈ R and C1 ∈ R

∗,
(2.15)

(i) ‖w(., s)− {κ+ (1 + iδ)C0e
s}eiθ0‖L2

ρ
≤ Ce

3
2 s,

(ii) ‖w(., s)− eiθ0{κ− (1 + iδ) κ
4(p−δ2)s (y

2 − 2)− i (1+δ2)δκ2

2(p−δ2)2
1
s}‖L2

ρ
≤ C log |s|

s2 ,

(iii) ‖w(., s)− {κ+ (1 + iδ)C1e
s/2y}eiθ0‖L2

ρ
≤ Ce(1−ε)s.

In Step 3, we show that case (i) yields the explicit solution ϕδ(s− s0) for some
s0. In Steps 4 and 5, we rule out cases (ii) and (iii).

In comparison with the case δ = 0, we can say that the difficulty in deriving
Proposition 2.8 is only technical. One should bear in mind that the difficulty level
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is much lower than the obstacles we have in Steps 4 and 5 to rule out cases (ii) and
(iii) of Proposition 2.8.

Step 3: Case where (i) holds.
As for Step 2, there is no real novelty in this step; the difficulty is purely technical.
First we recall (i) from Proposition 2.8:

(2.16) ‖w(., s)− {κ+ (1 + iδ)C0e
s}eiθ0‖L2

ρ
≤ Ce

3
2 s.

Let us remark that we already have a solution ϕ̂(s)eiθ0 of (1.10) defined in R ×
(−∞, ŝ] for some ŝ ∈ R and which satisfies the same expansion as w:

(2.17)

(a) if C0 = 0, just take ϕ̂ ≡ κ,

(b) if C0 < 0, take ϕ̂ ≡ ϕδ(s− s0), where s0 = − log(−C0(p−1)
κ ),

(c) if C0 > 0, take ϕ̂ ≡ ϕ∗
δ(s− s0), where s0 = log(C0(p−1)

κ )

and ϕ∗
δ(s) = κ(1− es)−

(1+iδ)
(p−1) .

ϕ∗
δ(s) is a solution of (1.10) that blows up at s = 0, but is bounded for all s ≤ −1.

Note that, from (2.16) we have

(2.18) ‖w(., s)− ϕ̂(s)eiθ0‖L2
ρ
≤ Ce

3
2 s.

Since the difference between the two solutions of (1.10) is of order e3s/2 and the

largest eigenvalue of L̃ is 1 < 3
2 , this difference has to vanish leading to w(y, s) =

ϕ̂(s)eiθ0 (remember that the largest eigenvalue matters, since s → −∞). Since case
(c) violates the uniform bound (2.1), only cases (a) or (b) occur. More precisely,
we have the following:

Proposition 2.9. Assume that case (i) of Proposition 2.8 holds. Then, either w ≡
κeiθ0 or there exists s0 ∈ R such that for all (y, s) ∈ R×R, w(y, s) = ϕδ(s−s0)e

iθ0

for some θ0 ∈ R.

Steps 4 and 5: Irrelevance of cases (ii) and (iii) of Proposition 2.8.
Step 4 and the following account for the novelty of our work. Indeed, in the case
δ = 0 treated in [MZ00], cases (ii) and (iii) of Proposition 2.8 were ruled out thanks
to a blow-up criterion based on energy methods. Indeed, when δ = 0, Merle and
Zaag used the Lyapunov functional for equation (1.10) introduced in (2.3). More
precisely, they have the following blow-up criterion (see Proposition 2.1, page 111
in [MZ00]):

Lemma 2.10 (A blow-up criterion for equation (1.10) when δ = 0). Let W be a
solution of (1.10) (with δ = 0), which satisfies:

E(W (y, s0)) <
p− 1

2(p+ 1)

(∫
RN

|W (y, s0)|2ρ(y)dy
) p+1

2

,

for some s0 ∈ R. Then, W blows up at some time S > s0.

Still for δ = 0, it is shown in [MZ00], when case (ii) or (iii) hold in Proposition 2.8,
that
for some a0 and s0, we have

(2.19) E(wa0
(., s0)) <

p− 1

2(p+ 1)

(∫
wa0

(y, s0)
2ρ(y)dy

) p+1
2

,
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where

(2.20) wa0
(y, s) = w(y + a0e

s
2 , s)

is also a solution of (1.10).
A contradiction then follows since, in the same time, wa0

is defined for all s ∈ R

from (2.20) and has to blow up by condition (2.19) and Lemma 2.10.
When δ 
= 0, all this collapses. No perturbation method can allow us to use in

any sense the Lyapunov functional or the blow-up criterion. We have to invent a
new method to rule out cases (ii) and (iii) of Proposition 2.8. Let us explain our
strategy only for case (ii), since it is quite similar for case (iii). From the rotation
invariance of equation (1.10), we assume that θ0 = 0.

Our source of inspiration is the study of (1.10), when δ = 0 and w → κ as
s → +∞ (and not −∞) by Herrero and Velázquez [HV93] and Velázquez [Vel92],
to obtain the (supposed to be generic) profile, starting with the following profile:

w(y, s) = κ+
κ

2ps
(1− 1

2
|y|2) + o(

1

s
) as s → ∞.

The convergence here takes place in L2
ρ and L∞(|y| < R) for any R > 0.

Herrero and Velázquez extended this convergence to a larger set of the form
|y| ≤ K

√
s, for any K > 0. They obtained:

sup
|y|<K

√
s

∣∣∣∣w(y, s)− f0(
y√
s
)

∣∣∣∣ → 0 as s → +∞,

where f0 =
(
(p− 1) + (p−1)2

4p
|y|2
s

)− 1
p−1

is a solution of

0 =
1

2
ξ · ∇f0(ξ)−

1

p− 1
f0(ξ) + |f0|p−1f0(ξ), where ξ =

y√
s
.

In some sense, we can say that f0 is an approximate solution of (1.10) when s → ∞,
because

‖∂sf0 −
{
Δf0 +

1

2
ξ · ∇f0 −

1

p− 1
f0 + |f0|p−1f0

}
‖L∞ = ‖∂sf0 −Δf0‖L∞ ≤ C

s
.

We note that Velázquez’s method is a kind of method of characteristic applied to
the parabolic equation (1.10), where the Laplacian term is dropped down because
the profile is flat. Here, we will use ideas from Velázquez to find the profiles of the
solution in the variables y√

−s
(yes/2 in Step 5). We hope to find singular profiles,

which violate the upper bound (2.1) on w(y, s). Our candidate for the profile is

G
(

y√
−s

)
, with G(ξ) = κ

(
1− (p−1)

4(p−δ2)ξ
2
)− (1+iδ)

(p−1)

. In fact G is a solution of

0 = −1

2
· ξ∇G(ξ)− 1 + iδ

p− 1
G+ (1 + iδ)|G|p−1G.

We can note (as in the case of f0 defined below) that G is an approximate solution

of (1.10) (for |y| < K0

√
−s, where K0 =

√
4(p−δ2)
(p−1) ). We see also that G is singular

for |y| = K0

√
−s. Using Velázquez’s technique to extend the convergence in (ii) of

Proposition 2.8 from |y| < R to larger regions |y| < ε0
√
−s, with ε0 < K0, we can

prove the following.
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Proposition 2.11. Assume that case (iii) from Proposition 2.8 holds. Then there
exists a0 > 0, such that:

(2.21)
lims→−∞ sup|y|≤ε0

√
−s

∣∣∣w(y, s)−G
(

y√
−s

)∣∣∣ = 0,

where G(ξ) = κ
(
1− (p−1)

4(p−δ2)ξ
2
)− (1+iδ)

(p−1)

.

Imagine for a second that (2.21) holds for any arbitrary ε0 < K0. Since |G(ξ)| →
∞ as ξ → K0, we can fix ε0 large enough so that |G(ε0)| ≥ 3M . Taking |s0| large
enough in (2.21), we then see that

|w(ε0
√
−s0, s0)| ≥ 2M,

which contradicts the upper bound (2.1). It happens that, unlike the case s → ∞,
where ξ = 0 realizes the maximum of the profile f0, here ξ = 0 realizes the minimum,
which obliges us to take ε0 small enough in order to use Velázquez’ method of
convergence extension. Since ε0 is small in our approach, we remark from (2.21)
that w(y, s) is flat (i.e. close to a constant) in a large region, in the sense that

sup
|y− ε0

2

√
−s0|≤4|s0|1/4

∣∣∣w(y, s0)−G(
ε0
2
)
∣∣∣ → 0 as s0 → −∞.

Using a kind of continuity with respect to initial data for equation (1.10), we can
show that for any ε > 0,

(2.22) sup
s0≤s≤s∗0−ε

∣∣∣w(ε0
2

√
−s0, s)−Wε0(s)

∣∣∣ → 0 as s0 → ∞,

where s∗0 < +∞ is the lifespan of Wε0(s), the space independent solution of (1.10),
with Wε0(s0) ≡ G(a0

2 ). It happens that Wa0
can be computed explicitly:

Wε0(s) = κ

(
1− es−s0

(p− 1)ε20
16(p− δ2)

)− (1+iδ)
p−1

and that it blows up at time s = s∗0 − log
(

(p−1)ε20
16(p−δ2)

)
> s0, because ε0 is small.

Taking s∗0 = s0−μ0, where μ0 > 0 is small enough such that |Wa0
(s∗0−μ0)| ≥ 3M ,

we see from (2.22) that |w( ε02
√−s0, s

∗
0−μ0)| ≥ 2M , which violates the upper bound

(2.1).
Conclusion of Part 3 and sketch of proof of the Liouville theorem:

From Steps 4 and 5 we see that cases (ii) and (iii) of Proposition 2.8 are ruled out.
By Step 3, we obtain that w ≡ κeiθ0 or w ≡ ϕδ(s− s0)e

iθ0 for some real s0 and θ0,
where ϕδ is defined in Theorem 1, which is the desired conclusion of Theorem 1.
In Section 3, we give the details of the proof.

3. Details of the proof of the Liouville theorem

In this section, we give the whole proof of the Liouville theorem. We only
prove Theorem 1 since Theorem 2 immediately follows through the self-similar
transformation (1.9). Note that in Section 2, we already gave a sketch of the proof
stressing only the main arguments. Thus this section is intended only for readers
interested in technical details.

We adopt here the same sectioning as in Section 2: three parts and Part 3 is
divided into five steps. Hence, we recommend that the reader first reads a given
step in Section 2 before reading the corresponding step in Section 3. As in Section
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2, we prove Theorem 1 in its form given in the statement around (2.1). We consider
M > 0 and a global solution w(y, s) of (1.10), defined for all (y, s) ∈ R × R such
that

‖w(y, s)‖L∞ ≤ M.

Our goal is to find δ′0(M) > 0, such that if |δ| ≤ δ′0(M), w depends only on the
variable s. We proceed in three parts:

In Part 1, we show that when s → −∞, either w → 0 or w approaches the set
{κeiθ|θ ∈ R}.

In Part 2, we handle the first case and show that w ≡ 0.
In Part 3, we linearize the equation around κeiθ(s), for some well-chosen θ(s),

and show that either w ≡ κeiθ0 or w ≡ ϕδ(s−s0)e
iθ0 for some real s0 and θ0, where

ϕδ is defined in Theorem 1, which concludes the proof.
It happens that we rely on the analysis performed by Andreucci, Herrero and

Velázquez [AHV97] for the system (1.7). That is the reason why we give Part 1
and Part 2 at once.

Parts 1 and 2: Behavior of w(y, s) as s → ∞ and conclusion in
the case where w → 0 as s → −∞.
In these parts, we investigate the behavior of w as s → −∞ and reach a conclusion
in the easiest case. Following what we wrote in Part 1 of Section 2, we know from
Proposition 2.1 that the set of stationary solutions of (1.10) consists of 0 and κeiθ,
where θ ∈ R. In order to prove that w approaches this set as s → −∞, we rely
completely on the analysis performed in [AHV97] for the system (1.7). Indeed,
no extra arguments are necessary for the present equation (1.10). That is why we
only give the main arguments which make the proof of [AHV97] hold for equation
(1.10) and refer the interested reader to [AHV97] for the details. Now, using the
perturbation method of [AHV97], we have the following:

Proposition 3.1 (A primary classification). For any M > 0, there exists δ′0(M)
such that if |δ| ≤ δ′0 and w is an arbitrary solution to (1.10) satisfying for all (y, s) ∈
R×R, |w(y, s)| ≤ M , then, either (i)(‖w(s)‖ ≡ 0) or (ii)

(
infθ∈R ‖w(s)− κeiθ‖ → 0

)
as s → −∞.

Remark 3.2. This result replaces Proposition 2.3 and Part 2 in Section 2.

Remark 3.3. In [AHV97], the conclusion of the authors in Theorem 2 for system
(1.7) is more accurate: either (Φ,Ψ) is (0, 0) or (Γ, γ) defined in (1.8), or

(Φ,Ψ) → (Γ, γ) at −∞ and (Φ,Ψ) → (0, 0) at +∞.

Using the same technique for our equation (1.10), we get Proposition 3.1. Indeed,
due to the fact that the set of nontrivial stationary solutions is a continuum (see
Proposition 2.1), we need a modulation technique to derive the case w ≡ κeiθ. This
case will be treated in Part 3.

Proof of Proposition 3.1. This proposition follows from the arguments developed
for the twin system (1.7) in [AHV97], and no more. To limit our paper to a
reasonable length, we don’t give the proof. However, we should mention the 3
fundamental features of (1.10) that one needs to check to be convinced that the
proof of Andreucci, Herrero and Velázquez works here.

• Both systems are of parabolic type involving the same linear operator

L0v =
1

ρ
div (ρ∇v) = Δv − 1

2
y · ∇v.
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If v = (1 + iδ)ṽ1 + iṽ2 with ṽ1, ṽ2 ∈ R, then

∂sṽ1 = L0ṽ1 − aṽ1 + f1(ṽ1, ṽ2),

∂sṽ2 = L0ṽ2 − bṽ2 + f2(ṽ1, ṽ2)

with a < 0, b < 0 and |fi(ṽ1, ṽ2)| ≤ C|v|α for some α > 1.
• When p = q = p0 in (1.7), the authors give in (3.12) and Lemma 3.2 of
[AHV97] a classification of entire solutions. In our case, when δ = 0 in
(1.10), we have the following Liouville theorem (see Theorem 1 in [MZ00]).

Proposition 3.4 (Merle-Zaag [MZ00]; A Liouvile theorem for equation (1.10) with
δ = 0 and subcritical p). Assume (1.3) and let w ∈ L∞(RN × R,C) be a solution
of

∂w

∂s
= Δw − 1

2
y · ∇w − w

p− 1
+ |w|p−1w.

Then, necessarily, one of the following cases occurs:
a) w ≡ 0,
b) ∃θ ∈ R such that w(y, s) = κeiθ,
c) there exists s0 ∈ R, such that for all (y, s) ∈ RN × R, w(y, s) = ϕ(s − s0)e

iθ0 ,
where θ0 ∈ R and

ϕ(s) = κ(1 + es)−
1

p−1 .

Remark 3.5. Note that ϕ is the unique global solution (up to a translation) of

ϕs = − ϕ

p− 1
+ ϕp,

satisfying ϕ → κ as s → −∞ and ϕ → 0 as s → ∞. The method of Andreucci,
Herrero and Velázquez in [AHV97] is in fact a perturbation method around this
result.

The property of equation (1.2) saying “small L2
ρ norm implies no blow-up locally”

(note that this property replaces the Giga-Kohn property “small local energy im-
plies no blow-up locally”, which breaks down because we no longer have a gradient
structure) becomes the property:

Proposition 3.6. For all M > 0, there exist positive η0, C0 and M0 such that if
|δ| ≤ 1 and v is a solution of (1.2) satisfying

(3.1) ∀t ∈ [0, 1), ‖v(t)‖L∞ ≤ M(1− t)−
1

p−1 and if ∀|x0| ≤ 1, ‖wx0
(., 0)‖L2

ρ
≤ η,

for some 0 < η ≤ η0, where

y =
x− x0√
1− τ

, s = − log(1− τ ), wx0
(y, s) = (1− τ )

1+iδ
p−1 v(ξ, τ ),

then:
(i) for all |x0| ≤ 1 and s ∈ [0,+∞),

(3.2) ‖wx0
(., s)‖L2

ρ
≤ C0ηe

− s
p−1 ,

(ii) for all |x| ≤ 1 and t ∈ [0, 1), we have |v(x, t)| ≤ M0.

Now, we write the following lemma, which will be useful in the proof of the
proposition above.
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Lemma 3.7 (Regularizing effect of the operator L). Assume that ψ(y, s) satisfies

∀s ∈ [a, b], ∀y ∈ R, ψs ≤ (L+ σ)ψ and 0 ≤ ψ(y, s),

for some a ≤ b and σ ∈ R, where

(3.3) Lψ = Δψ − 1

2
y · ∇ψ + ψ =

1

ρ
div (ρ∇ψ) + ψ.

Then for any r > 1, there exists C∗ = C∗(r, σ) > 0 and s∗ = s∗(r) > 0 such that

(3.4) ∀s ∈ [a+ s∗, b],

(∫
R

|ψ(y, s)|rρ(y)dy
)1/r

≤ C∗‖ψ(., s− s∗)‖L2
ρ
.

Proof. See Lemma 2.3 in [Vel93]. �

Proof of Proposition 3.6. Consider M > 0, |δ| ≤ 1 and a solution v of (1.2) such
that (3.1) holds for some η > 0, |x0| ≤ 1.

(i) For simplicity, we write w instead of wx0
. Since w is a solution of (1.10), we

multiply (1.10) by wρ and integrate to get
(3.5)

I
′
(s) ≤ − 2

p− 1
I(s) +

∫
|w(y, s)|p+1ρ(y)dy, where I(s) =

∫
|w(y, s)|2ρ(y)dy.

If we note that w = w1 + iw2, then using Kato’s inequality (Δwi · sgn(wi) ≤ Δ|wi|
with i = 1, 2) and the fact that w is bounded, we obtain by equation (1.10)

∂s(|w1|+ |w2|) ≤ Δ(|w1|+ |w2|)−
y

2
· ∇(|w1|+ |w2|) + C(|w1|+ |w2|),

for some C = C(M) > 0.
Using Lemma 3.7, we see that there exist C∗(M) > 0 and s∗ = s∗(p + 1) > 0

such that for all s ≥ s∗,

(3.6)

∫
|w(y, s)|p+1ρ(y)dy ≤ C∗‖w(., s− s∗)‖p+1

L2
ρ
.

Now, we divide the proof into two steps:

Step 1: 0 ≤ s ≤ s∗. Using (3.5) and the fact that w is bounded by M > 0 (see
(3.1)), we get

I
′
(s) ≤ λI(s) for some λ = λ(M) > 0;

hence I(s) ≤ eλsI(0) ≤ eλsη2 ≤ C2
0

2 η2e−
2s

p−1 , where we define C2
0 = 2e(λ+

2
p−1 )s

∗
.

This gives (3.2) for 0 ≤ s ≤ s∗.

Step 2: s ≥ s∗. In this step, we argue by contradiction to prove (3.2) for all s ≥ s∗.
We suppose that there exists s1 > s∗ such that

I(s) < (C0η)
2e−

2s
p−1 , for all s∗ ≤ s < s1,(3.7)

I(s1) = (C0η)
2e−

2s1
p−1 .(3.8)

Let F (s) = I(s)(C0η)
−2e

2s
p−1 . From (3.5), (3.6), (3.7) and Step 1, we have for all

s∗ ≤ s ≤ s1,

F
′
(s) ≤ C∗(C0η)

−2e
2s

p−1 I(s− s∗)
p+1
2

≤ C∗(C0η)
p−1e

2s
p−1 e−(s−s∗) p+1

p−1 ≤ C∗(C0η)
p−1e

p+1
p−1 s

∗
e−s.
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Since F (s∗) ≤ 1
2 from the step above, we integrate the last inequality to obtain

F (s1) ≤ C∗(Cη)p−1e
p+1
p−1 s

∗
(
e−s∗ − e−s1

)
+ F (s∗)

≤ C∗(Cη)p−1e
2s∗
p−1 +

1

2
≤ 3

4
,

for η ≤ η0(M) small enough. This contradicts (3.8). Therefore, (3.2) holds.

(ii) Applying parabolic regularity to equation (1.10) and using estimate (3.1),

we get for all |x0| ≤ 1, R > 0 and |y| < R, |wx0
(y, s)| ≤ M0e

− s
p−1 ; hence for

all t ∈ [0, 1), |v(x0, t)| ≤ M0, for some M0 = M0(M). This ends the proof of
Proposition 3.6. �

Part 3: Case where infθ∈R ‖w(., s)− κeiθ‖L2
ρ
→ 0 as s → −∞.

We study case (ii) of Proposition 3.1. As we wrote in Part 3 of Section 2, the
natural question is to know whether w converges to a particular κeiθ0 as s → −∞
or not. A modulation technique will be essential to classify the L2

ρ behavior for w
and prove the convergence. We proceed in five steps.

• Step 1 is intended to be the modulation technique.
• In Step 2, we show that the linearized problem of (1.10) around κeiθ has
3 nonnegative directions as s → −∞ (λ = 1, 1/2 or 0), and that the
component along one direction dominates the others. This gives a kind of
profile for w with a uniform convergence on every compact set.

• In Step 3, we show that the case where λ = 1 dominates corresponds either
to w = κeiθ0 or w = ϕδ(s− s0)e

iθ0 for some θ0 ∈ R and s0 ∈ R, where ϕδ

is defined in Theorem 1.
• Steps 4 and 5: To rule out cases where the directions λ = 1/2 or λ = 0
dominate, we use a geometrical method where the key idea is Velázquez’s
work [Vel92] to extend the convergence from compact sets to larger zones,
where the profile appears to be singular, which violates the uniform bound
(2.1) in w. These steps are innovative to our work.

Step 1: Formulation of the problem.
Let us recall Lemma 2.4 from Section 2.

Lemma 2.4. There exists s1 ∈ R and θ ∈ C1((−∞, s1],R) such that
(i) ∀s ≤ s1,

∫
( Im (v)− δ Re (v))ρ = 0, where v is defined by

(3.9) w(y, s) = eiθ(s)(v(y, s) + κ) with κ = (p− 1)−
1

(p−1) .

(ii) We have ‖v(., s)‖L2
ρ
→ 0 as s → −∞.

(iii) For all s ≤ s1, we have

(3.10) |θ′
(s)| ≤ C‖v(., s)‖2L2

ρ
.

Proof of Lemma 2.4. (i) Since infθ∈[0,2π] ‖w(., s) − κeiθ‖L2
ρ
→ 0 as s → −∞ and

‖w(., s)−κeiθ‖L2
ρ
is continuous as a function of θ and w, there exists θ̃(s) such that

‖g‖2L2
ρ
=

∫
RN

|g|2e−
|y|2
4 dy,

‖w(., s)− κeiθ̃(s)‖L2
ρ
= inf

θ∈[0,2π]
‖w(., s)− κeiθ‖L2

ρ
→ 0 as s → −∞.(3.11)
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We will slightly modify θ̃(s), so that if we define v(y, s) by (3.9) for some θ(s) close

to θ̃(s), then we have (i) of Lemma 2.4. We apply the implicit function theorem to
F : L2

ρ × R → R defined by F (w, θ) =
∫ (

Im
(
we−iθ − κ

)
− δ Re

(
we−iθ − κ

))
ρ.

Since we have F
(
κeiθ̃, θ̃

)
= 0 and ∂F

∂θ = −
∫ (

Re
(
we−iθ

)
+ δ Im

(
we−iθ

)
ρ
)
,

hence ∂F
∂θ

(
κeiθ̃, θ̃

)
= −κ 
= 0, using the implicit function theorem and (3.11),

we obtain the existence and uniqueness of C1 θ(w) such that F (w, θ(w)) = 0 and

|eiθ(w) − eiθ̃| ≤ C0‖w(., s)− κeiθ̃‖L2
ρ
.

(ii) Since we have from (3.9),

‖v(., )‖L2
ρ
= ‖w(., s)− κeiθ(s)‖L2

ρ
≤ ‖w(., s)− κeiθ̃‖L2

ρ
+ κ|eiθ − eiθ̃|

≤ (1 + C0κ)‖w(., s)− κeiθ̃(s)‖L2
ρ
,

using (3.11), we conclude that ‖v(., s)‖L2
ρ
→ 0 as s → −∞.

(iii) Writing v = (1 + iδ)ṽ1 + iṽ2, we rewrite (2.6) as follows:

ṽ1s = Lṽ1 + θ
′
(s)(δṽ1 + ṽ2) + G̃1,(3.12)

ṽ2s = (L − 1)ṽ2 − θ
′
(s)((1 + δ2)ṽ1 + δṽ2 + κ) + G̃2,(3.13)

where L is given in (3.3),

G̃1 =
p− δ2

2κ
ṽ21 +

1

2κ
ṽ22 +O(|v|3),(3.14)

G̃2 = (1 + δ2)
ṽ1(δṽ1 + ṽ2)

κ
+O(|v|3).(3.15)

Note that (1 + iδ)G̃1 + iG̃2 = G is defined in (2.7).
Now, we multiply (3.13) by ρ and integrate over R to get∫

ṽ2sρ =

∫
div (ρ∇ṽ2)−

∫
θ
′
(s)((1 + δ2)ṽ1 + δṽ + κ)ρ+

∫
G̃2ρ.

From (2.10), we have ṽ2 = Im (v) − δ Re (v). We get from (i) of Lemma 2.4 that∫
ṽ2sρ = 0.
Since

∫
div (ρ∇ṽ2) = 0 we obtain

(3.16) θ
′
(s)

∫
((1 + δ2)ṽ1 + δṽ2 + κ)ρ =

∫
G̃2ρ.

Using (3.15), we have

(3.17)

∣∣∣∣
∫

G̃2ρ

∣∣∣∣ ≤ C

∫
|v|2ρ.

Recalling from (ii) that lims→−∞ ‖v‖ = 0, we have∫
((1 + δ2)ṽ1 + δṽ2 + κ)ρ →

∫
κρ as s → −∞.

Thus, the conclusion follows from (3.16) and (3.17). �

Step 2: Asymptotic behavior of v as s → −∞.
First, we recall the decomposition (2.11):

v(y, s) = (1 + iδ)ṽ1(y, s) + iṽ2(y, s)
= (1 + iδ)

∑∞
m=0 ṽ1m(s)hm(y) + i

∑∞
m=0 ṽ2m(s)hm(y),
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and introduce

v−(y, s) = (1 + iδ)

∞∑
m=3

ṽ1m(s)hm(y) + i

∞∑
m=1

ṽ2m(s)hm(y).

As we saw in Step 2 of Section 2, the modulation techniques give ṽ20(s) = 0.
Therefore, we have

v(y, s) = (1 + iδ)(ṽ10(s)h0(y) + ṽ11(s)h1(y) + ṽ12(s)h2(y)) + v−(y, s).

Using ODE techniques, we are able to prove the following:

Proposition 3.8 (Classification of the behavior of v(y, s) as s → −∞). As s →
−∞, one of the following situations occurs:

(i) |ṽ11(s)|+ |ṽ12(s)|+ ‖v−(., s)‖L2
ρ
= o(ṽ10(s)),

‖v(., s)− (1 + iδ)C0e
s‖L2

ρ
= O(e

3
2 s) and |θ′

(s)| = O(e2s) for some C0 ∈ R.

(ii) |ṽ10(s)|+ |ṽ12(s)|+ ‖v−(., s)‖L2
ρ
= o(ṽ11(s)),

‖v(., s) − (1 + iδ)C1e
s/2y‖L2

ρ
= O(e(1−ε)s) and |θ′

(s)| = O(es) for some C1 ∈ R \
0 and ε > 0.

(iii) |ṽ10(s)|+ |ṽ11(s)|+ ‖v−(., s)‖L2
ρ
= o(ṽ12(s)),

‖v(., s) + (1 + iδ)
κ

4(p− δ2)s
(y2 − 2)‖L2

ρ
= O(

log |s|
s2

) and θ
′
(s) =

(1 + δ2)δκ

2(p− δ2)

1

s2
+

O(
log |s|
s3

).

Proof. As already pointed out by Filippas and Kohn on pp. 834-835 in [FM95] in
the case δ = 0, we can’t use center manifold theory to get the result. In some sense,
we are not able to say that the nonlinear terms in (3.12) and (3.13) are quadratic in
the function space L2

ρ. However, using ODE techniques similar to those of [MZ98a]
and [FM95], we manage to conclude the proof. Since we add no real novelty, we
leave the proof to Appendix A. �

Now, we recall Proposition 2.8 as it is a direct consequence of the proposition
above.

Proposition 2.8. There exists θ0 ∈ R such that θ(s) → θ0 and ‖w(., s)− κeiθ0‖L2
ρ

→ 0 as s → −∞. More precisely, one of the following situations occurs as s → −∞,
for some C0 ∈ R and C1 ∈ R∗:
(3.18)

(i) ‖w(., s)− {κ+ (1 + iδ)C0e
s}eiθ0‖L2

ρ
≤ Ce

3
2 s,

(ii) ‖w(., s)− eiθ0{κ− (1 + iδ) κ
4(p−δ2)s (y

2 − 2)− i (1+δ2)δκ2

2(p−δ2)2
1
s}‖L2

ρ
≤ C log |s|

s2 ,

(iii) ‖w(., s)− {κ+ (1 + iδ)C1e
s/2y}eiθ0‖L2

ρ
≤ Ce(1−ε)s.

Proof of Proposition 2.8. From Proposition 3.8, we have ‖v(., s)‖L2
ρ
= o (1/|s|) in

all cases. Then using (3.10), we obtain |θ′
(s)| ≤ C/s2. Consequently, there exists

a θ0 such that θ(s) → θ0 as s → −∞. Using the definition (3.9), we get the
convergence for w.

We will just prove (ii), since the proofs for (i) and (iii) are the same and even
easier.

Integrating the estimate for θ
′
(see (iii) of Proposition 3.8), we get

(3.19) θ(s) = θ0 −
(1 + δ2)δκ

2(p− δ2)2
1

s
+O(

log |s|
s2

)
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and

(3.20) eiθ(s) = eiθ0
{
1− i

(1 + δ2)δκ

2(p− δ2)2s
+O(

log |s|
s2

)

}
.

Using the fact that w(y, s) = eiθ(s)(κ + v(y, s)) (see(3.9)), the desired estimate
follows from (3.20) and the L2

ρ expansion of v from (ii) of Proposition 3.8. This
concludes the proof of Proposition 2.8. �

Step 3: Case where (i) of Proposition 2.8 holds.
We prove Proposition 2.9. More precisely, we will prove that either w ≡ κeiθ0 or
there exists s0 ∈ R such that w = ϕδ(s− s0)e

iθ0 .
As we wrote in Step 3 of Section 2, if ϕ̂ is defined by (2.17), then we have

(3.21) ∀s ≤ ŝ, ‖w(., s)− ϕ̂(s)eiθ0‖L2
ρ
≤ Ce

3
2 s.

Our goal is to prove that w ≡ ϕ̂ on R× (−∞, s∗]. If we introduce V = w − ϕ̂eiθ0 ,
then we see from (1.10) that V satisfies:

(3.22) ∂sV =
(
L̃+ l(s)

)
V +B,

where
(3.23)

L̃V = ΔV − 1

2
y · ∇V + (1 + iδ)V , |l(s)| ≤ Ces and |B| ≤ C|V |2 for all s ≤ s1.

As we saw in Lemma 2.9 and (2.12), L̃ is diagonal with respect to (Ṽ1, Ṽ2) such

that V = (1 + iδ)Ṽ1 + iṼ2 and 1 is its largest eigenvalue.

Therefore, if we define ‖V ‖�=
√∫

(Ṽ 2
1 +Ṽ 2

2 )ρ, an equivalent norm to ‖V (., s)‖L2
ρ
,

then we get from (3.22) and (3.23),

∂s‖V ‖� ≤ (1 + Ces)‖V ‖� + C‖V 2‖�.

To estimate ‖V 2‖�, it is easy to see from (3.22) and the fact that V is bounded
that

∂s(|Ṽ1|+ |Ṽ2|) ≤ Δ(|Ṽ1|+ |Ṽ2|)−
y

2
· ∇(|Ṽ1|+ |Ṽ2|) + C(|Ṽ1|+ |Ṽ2|).

Therefore, we can apply the regularizing effect of Lemma 3.7 to |Ṽ1| + |Ṽ2| and
obtain the existence of C∗ > 0 and s∗, such that ‖V (., s)2‖� ≤ C∗‖V (., s− s∗)‖2�.
Then, we obtain

(3.24) ∀s ≤ s2, I ′(s) ≤ 5

4
I(s) + CI(s− s∗)2,

where I(s) = ‖V (., s)‖�. Since I(s) ≤ Ce3/2s from (3.21), the following lemma
from [MZ98a] allows us to conclude the proof.

Lemma 3.9. Consider I(s) a positive C1 function such that (3.24) is satisfied and
0 ≤ I(s) ≤ Ce3/2s for all s ≤ s2, for some s2. Then, for some s3 ≤ s2, we have
I(s) = 0 for all s ≤ s3.

Proof. By a trivial induction, we prove that

∀n ∈ N
∗ and s ≤ s2 I(s) ≤

(
Ce3/4s

)2n
C

.
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Taking s ≤ s3, where Ce3/4s3 = 1/2 and making n → +∞, we see that for all
s ≤ s3, I(s) = 0. �

Using Lemma 3.9, we see that V ≡ 0 on R× (−∞, s3]. Consequently, we have

(3.25) ∀(y, s) ∈ R× (−∞, s3], w(y, s) = ϕ̂(s)eiθ0 .

From the uniqueness of the Cauchy problem for equation (1.10) and since w is
defined for all (y, s) ∈ R×R, ϕ̂ is also defined for (y, s) ∈ R×R and (3.25) holds for
all (y, s) ∈ R× R. Therefore, case (c) in (2.17) cannot hold and for all (y, s) ∈ R

2,
w(y, s) = κeiθ0 or w(y, s) = ϕδ(s− s0)e

iθ0 . This concludes the proof of Proposition
2.9 and finishes Step 3.

Step 4: Irrelevance of case (iii) of Proposition 2.8.
As we said in Step 4 of Section 2, it is enough to prove Proposition 2.11 (which we
recall here) to conclude this case:

Proposition 2.11. Assume that case (iii) from Proposition 2.8 holds. Then there
exists ε0 > 0, such that:

(3.26)
lims→−∞ sup|y|≤ε0

√
−s

∣∣∣w(y, s)−G
(

y√
−s

)∣∣∣ = 0,

where G(ξ) = κ
(
1− (p−1)

4(p−δ2)ξ
2
)− (1+iδ)

(p−1)

.

Indeed, let us first use Proposition 2.11 to find a contradiction ruling out case
(iii) of Proposition 2.8, and then prove Proposition 2.11.

We define us0 by
(3.27)

us0(ξ, τ ) = (1− τ )−
1+iδ
p−1 w(y, s), where y =

ξ + ε0
2

√
−s0√

1− τ
and s = s0 − log(1− τ ).

We note that us0 is defined for all τ ∈ [0, 1) and ξ ∈ R. us0 satisfies equation (1.2).
The initial condition at time τ = 0 is us0(ξ, 0) = w(ξ + ε0

2

√
−s0, s0). From (2.1),

we have

(3.28) ∀τ ∈ [0, 1), ‖us0(., τ )‖L∞ ≤ M(1− τ )−
1

p−1 .

Using Proposition 2.11, we get:

sup
|ξ|<4|s0|1/4

∣∣∣us0(ξ, 0)−G(
ε0
2
)
∣∣∣ ≡ g(s0) → 0 as s0 → −∞.

If we define v, the solution of:{
v′ = (1 + iδ)|v|p−1v,
v(0) = G

(
ε0
2

)
,

then v(τ ) = κ
(
1− (p−1)ε20

16(p−δ2) − τ
)− (1+iδ)

p−1

, which blows up at time 1 − (p−1)ε20
16(p−δ2) < 1.

Therefore, there exists τ0 < 1, such that |v(τ0)| = 2M(1 − τ0)
− 1

p−1 . Now, we
consider the function z = |�{us0 − v}| + |�{us0 − v}|. Then we have for all
τ ∈ [0, τ0]:

(3.29) ∂τz ≤ Δz + C(ε0)z.

We recall Lemma 2.11 (page 1063) from [MZ98b].



3412 NEJLA NOUAILI AND HATEM ZAAG

Lemma 3.10. Assume that z(ξ, τ ) satisfies for all |ξ| ≤ 4B1 and τ ∈ [0, τ∗]:{
∂τz ≤ Δz + λz + μ,
z(ξ, 0) ≤ z0, z(ξ, τ ) ≤ B2,

where τ∗ ≤ 1. Then, for all |ξ| ≤ B1 and τ ∈ [0, τ∗],

z(ξ, τ ) ≤ eλτ (z0 + μ+ CB2e
−B2

1/4).

Using the fact that z is bounded for all τ ∈ [0, τ0], by B2 = B2(ε0) (use (3.28)),
we apply this lemma with B1 = |s0|1/4, τ∗ = τ0, z0 = g(s0) and λ = 0. Then, we
get for all τ ∈ [0, τ0],

sup
|ξ|≤|s0|1/4

z(ξ, τ ) ≤ g(s0) + C(ε0)e
−|s0|1/2/4 → 0 as s0 → −∞.

For |s0| large enough and ξ = 0, we get z(0, τ0) ≤
M

2
(1− τ0)

−1/(p−1) and

|us0(0, τ0)| ≥ |v(τ0)| − |z(0, τ0)| ≥
3M

2
(1− τ0)

− 1
p−1 ,

which is in contradiction with (3.28). Thus case (iii) of Proposition 2.8 cannot
occur. It remains to prove Proposition 2.11.

Proof of Proposition 2.11. If we note f(y, s) = G

(
y√
−s

)
. Then f satisfies

−y

2
· ∇f − (1 + iδ)

(p− 1)
f + (1 + iδ)|f |p−1f = 0.

Consider some arbitrary ε0 ∈ (0, R∗), where R∗ =

√
4(p− δ2)

(p− 1)
. The parameter ε0

will be fixed small enough later in the proof. If we note

(3.30) F (y, s) = f(y, s) + (1 + iδ)
κ

2(p− δ2)

1

s
− i

(1 + δ2)δκ2

(p− δ2)2
1

s
,

then we see from (iii) of Proposition 2.8 that

(3.31) ‖ (F (., s)− w(., s)) (1− χε0)‖L2
ρ
= O

(
log |s|
s2

)
as s → −∞,

where

(3.32) χε0(y, s) = 1 if
|y|√
|s|

≥ 3ε0 and zero otherwise.

The formal idea of this proof is that F solve in an approximate way the same
equation as w for s → −∞. By (3.31), w and F are very close in the region |y| ∼ 1.
Our task is to prove that they remain close in the larger region |y| ≤ ε0

√
−s, for

some ε0 to be chosen later. Let us consider a cutoff function

(3.33) γ(y, s) = γ0

(
y√
−s

)
,

where γ0 ∈ C∞(R) is such that γ0(ξ) = 1 if |ξ| ≤ 3ε0 and γ0(ξ) = 0 if |ξ| ≥ 4ε0. We
introduce

(3.34) ν = (w − F ).
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We note that ν = (1 + iδ)ν̃1 + iν̃2 and Z = γ(|ν̃1|+ |ν̃2|). Our proof is the same as
Velázquez [Vel92], except for the fact that we need to perform a cutoff, since our
profile F (y, s) defined by (3.30) is singular on the parabola y = R∗√−s. The cutoff
function will generate an extra term, which is difficult to handle. Let us present
the major steps of the proof in the following. The proof of the presented lemmas
will be given at the end of this step.

Lemma 3.11 (Estimates in modified L2
ρ spaces). There exists ε0 > 0 such that the

function Z satisfies for all s ≤ s∗ and y ∈ R:
(3.35)

∂sZ−ΔZ+
1

2
y ·∇Z−(1+σ)Z ≤ C

(
Z2 +

(y2 + 1)

s2
+ χε0

)
−2div ((|ν̃1|+ |ν̃2|)∇γ) ,

where s∗ ∈ R, σ = 1/100 and χε0 is defined in (3.32). Moreover,

(3.36) N2

2ε0
√

|s|(Z(s)) = o(1) as s → −∞,

where the norm Nq
r (ψ) is defined, for all r > 0 and 1 ≤ q < ∞, by

(3.37) Nq
r (ψ) = sup

|ξ|≤r

(∫
|ψ(y)|q exp(− (y − ξ)2

4
)dy

)1/q

.

Using the regularizing effect of the operator L, we derive the following pointwise
estimate, which allows us to conclude the proof of Proposition 2.11:

Lemma 3.12 (An upper bound for Z(y, s) in {|y| ≤ ε0
√
−s}). We have

sup
|y|≤ε0

√
−s

Z(y, s) = o(1) as s → −∞.

Indeed, we have by definition of Z, for all |y| < ε0
√
−s, |w−F | = ν̄ ≤ CZ(y, s).

Thus, Proposition 2.11 follows from Lemma 3.12. It remains to prove Lemma 3.11
and Lemma 3.12.

Proof of Lemma 3.11. The proof of (3.35) is straightforward and a bit technical.
We leave it to Appendix B. Let us then prove (3.36). We take s0 < s∗ and

s0 ≤ s < s∗ such that e
s−s0

2 ≤
√
−s. We use the variation of constants formula in

(3.35) to write

Z(y, s) ≤ Sσ(s− s0)Z(., s0)

+

∫ s

s0

Sσ(s− τ )

(
C

{
Z+

(y2 + 1)

τ2
+ χε0

}
− 2div ((|ν̃1|+ |ν̃2|)∇γ)

)
dτ,

where Sσ is the semigroup associated to the operator Lσφ = Δφ− 1
2y ·∇φ+(1+σ)φ,

defined on L2
ρ(R). The kernel of the semigroup Sσ(τ ) is

(3.38) Sσ(τ, y, z) =
e(1+σ)τ

(4π(1− e−τ ))1/2
exp

[
−|ye−τ/2 − z|2

4(1− e−τ )

]
.

Setting

(3.39) r ≡ r(s, s0) = 2ε0e
s−s0

2 = R1e
s−s0

2
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and taking the N2
r−norm we obtain

N2
r (Z(., s)) ≤ N2

r (Sσ(s− s0)Z(., s0)) + C

∫ s

s0

N2
r (Sσ(s− τ )Z(., τ )2)dτ

+C

∫ s

s0

N2
r (Sσ(s− τ )

(
(y2 + 1)

τ2

)
)dτ

+C

∫ s

s0

N2
r (Sσ(s− τ )χε0(y, τ ))dτ + C

∫ s

s0

N2
r (Sσ(s− τ )(div ((|ν̃1|+ |ν̃2|)∇γ))dτ

≡ J1 + J2 + J3 + J4 + J5.

In comparison with [Vel92], we have a new term J5 coming from the cutoff terms.
Therefore, we just recall in the following claim the estimates on J1, . . . J4 from
[Vel92], and treat J5, which is a new ingredient in our proof.

Claim 3.13. We obtain as s → −∞,

|J1| ≤ Ce(1+σ)(s−s0)
log |s0|
|s20|

,

|J2| ≤ C

∫ s0+((s−R0)−s0)+

s0

e(1+σ)(s−τ−R0)

(1− es−τ−R0)1/20
(
L2
r(Z(., τ )2)

)
dτ + C

e(s−s0)(1+σ)

s20
,

with R0 = 4ε0,

|J3| ≤ C
e(s−s0)(1+σ)

s20

(
1 + (s− s0)

)
,

|J4| ≤ Ce(s−s0)(1+σ)eαs, where α > 0,

|J5| ≤ Ce(s−s0)(1+σ)eβs, where β > 0.

Proof. See page 1578 in [Vel92] for J1, . . . , J4.
Now, we treat J5. We have from (3.38):

(3.40)
Sσ(s− τ ) (−div ((|ν̃1|+ |ν̃2|)∇γ))

= − Ce(s−τ)(1+σ)

(1− es−τ )1/2

∫
R

exp

(
− (ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
div ((|ν̃1|+ |ν̃2|)∇γ)dλ

=
Ce(s−τ)(1+σ)

(1− es−τ )1/2

∫
R

− (ye−(s−τ)/2 − λ)

2(1− e−(s−τ))
exp

(
− (ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
(|ν̃1|+ |ν̃2|)∇γdλ.

Since w and F are bounded for |y|√
−τ

≤ R∗

2 and supp(∇γ) ⊂ (−4ε0
√
−τ ,−3ε0

√
−τ)

∪ (3ε0
√
−τ , 4ε0

√
−τ ), we have

|(|ν̃1|+ |ν̃2|)∇γ | ≤ C(|ν̃1|+ |ν̃2|)I{3ε0≤ |y|√
−τ

≤4ε0}

≤ C(I
3ε0≤ |y|√

−τ
≤4ε0

) ≤ Cχε0 .

Using the Cauchy-Schwarz inequality, we obtain

|Sσ(s− τ ) (−div ((|ν̃1|+ |ν̃2|)∇γ))| ≤ Ce(s−τ)(1+σ)

(1− es−τ )3/2
I1I2,
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where

I1 =

(∫
R

(ye−(s−τ)/2 − λ)2 exp

(
− (ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
dλ

)1/2

,

I2 =

(∫
R

exp

(
− (ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
χε0dλ

)1/2

.

Doing a change of variables, we obtain I1 = C(1 − e−(s−τ))3/4. Furthermore, we
have

I2
2 ≤ I3

(∫
R

χε0e
−λ2

4 dλ

)1/2

,

where

I3 =

(∫
exp

(
− (ye−(s−τ)/2 − λ)2

2(1− e−(s−τ))
+

λ2

4

)
dλ

)1/2

.

We introduce θ = ye−(s−τ)/2 and, by completing squares, we readily check that

λ2

4
− (θ − λ)2

2(1− e−(s−τ))
= − (1 + e−(s−τ))

4(1− e−(s−τ))
(λ− 2θ

(1 + e−(s−τ))
)2 +

θ2

2(1 + e−(s−τ))
.

Then we obtain

I2
3 = C

(
(1− e−(s−τ))

(1 + e−(s−τ))

)1/2

exp

(
θ2

2(1− e−(s−τ))

)
.

Therefore,

∣∣N2
r (Sσ(s− τ )div ((|ν̃1|+ |ν̃2|)∇γ))

∣∣ ≤ C
e(s−τ)(1+σ)

(1 + e−(s−τ))1/8(1− e−(s−τ))5/8
‖χε0‖1/2I4,

where

I4 = N2
r

(
exp(

y2e−(s−τ)

8((1− e−(s−τ)))
)

)
.

Let us compute I4. Using the fact that

− (y − μ)2

4
+

y2e−(s−τ)

4(1− e−(s−τ))

=
1

4

(
−

(
y(1 + e−(s−τ))−1/2 − μ(1 + e−(s−τ))1/2

)2

+ μ2e−(s−τ)

)
,

and doing a change of variables, we obtain∫
R

exp

(
− (y − μ)2

4
+

y2e−(s−τ)

4(1− e(s−τ))

)
dy

≤ C exp

(
μ2e−(s−τ)

4

)∫
R

exp

(
−1

4

(
y(1 + e−(s−τ))−1/2 − μ(1 + e−(s−τ))1/2

)2
)
dy.

Hence I4 ≤ C(1 + e−(s−τ))1/8 and

N2
r (Sσ(s− τ )div ((|ν̃1|+ |ν̃2|)∇γ)) ≤ C

e(s−τ)(1+σ)

(1− e−(s−τ))5/8

(∫
|λ|≥R1

√
−τ

e−
λ2

4 dλ

)
.
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This gives

|J5| =

∫ s

s0

N2
r (Sσ(s− τ )(div (|ν̃1|+ |ν̃2|))) dτ ≤ C(η)e(s−s0)(1+σ)eαs0 ,

where α > 0. This concludes the proof of the claim 3.13. �

Summing up Ji=1..5, from claim 3.13 we obtain

N2
r (Z(., s)) ≤

e(s−s0)(1+σ)C log |s0|
s20

+ C

∫ s0+((s−R0)−s0)+

s0

e(s−τ−R0)(1+σ)

(1− es−τ−R0)1/20
(
N2

r (Z(., τ ))
)2

dτ.

Now, we recall the following from [Vel92]:

Lemma 3.14. Let ε, C, R, σ and α be positive constants, 0 < α < 1 and assume
that H(s) is a family of continuous functions satisfying:

H(s) ≤ εes(1+σ) + C

∫ (s−R)+

0

e(s−τ)(1+σ)H(τ )2

(1− e(s−τ−R))α
dτ for s > 0.

Then there exists ξ = ξ(R,C, α) such that for any ε ∈ (0, ε1) and any s for which
εes(1+σ) ≤ ξ, we have

H(s) ≤ 2εes(1+σ).

Proof. See the proof of Lemma 2.2 from [Vel92]. Note that the proof of [Vel92] is
done in the case σ = 0, but it can be adapted to some σ > 0 with no difficulty. �

We conclude that N2
r(τ,s0)

(Z(., s)) ≤ Ce(s−s0)(1+σ) log |s0|
s20

as s → −∞. If we

fix s = −e(s−s0), then we obtain s ∼ s0, log |s| ∼ log |s0| and N2
R1

√
−s

(Z(., s)) ≤

Cs1+σ log |s0|
s20

≤ C log |s|
s1−σ → 0 as s → −∞. Since σ =

1

100
, we get N2

R1

√
−s(Z(., s)) =

o(1), as s → −∞.
This concludes the proof of Lemma 3.11. �

Proof of Lemma 3.12. We aim at bounding Z(y, s) for |y| ≤ R2

√
−s in terms of

NR1

√
−s′(Z(s′)), where R2 = ε0 and R1 = 2ε0, for some s′ < s. Starting from

equation (3.35), we do as in [Vel92]:

Z(., s) ≤
{
eCR0S(R0)Z(., s−R0)

}
+

{
C

∫ s

s−R0

eC(s−τ)S(s− τ )

(
(y2 + 1)

τ2
+ χε0

)
dτ

}

−
{
2

∫ s

s−R0

eC(s−τ)S(s− τ ) (div ((|ν̃1|+ |ν̃2|)∇γ)) dτ

}
= M1 +M2 +M3, where R0 = 4ε0,

where S is the semigroup associated to the operator L defined in (3.3). The terms
M1 and M2 are estimated in the following:

Claim 3.15 (Velázquez). There exists s0, such that for all s ≤ s0,
(3.41)

sup
|y|≤R2

√
−s

|M1| = sup
|y|≤R2

√
−s

∫ s

s−R0

( |y|2+1
s2 + χε0

)
≤ C

|s| ,

sup
|y|≤R2

√
−s

|M2| = sup
|y|≤R2

√
−s

|eCR0S(R0)Z(., s−R0)| = o(1) as s → −∞.
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Proof. See page 1581 from [Vel92] and Lemma 6.5 in [HV93] in a similar case. �

It remains to estimate M3. Using the same calculus in (3.40), we write

|S(s− τ ) (−div ((|ν̃1|+ |ν̃2|)∇γ))|

=

∣∣∣∣ Ces−τ

(1− es−τ )1/2

∫
R

exp

(
− (ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
div ((|ν̃1|+ |ν̃2|)∇γ)dλ

∣∣∣∣
=

∣∣∣∣ Ces−τ

(1− es−τ )1/2

∫
R

− (ye−(s−τ)/2 − λ)

2(1− e−(s−τ))
exp

(
− (ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
(|ν̃1|+ |ν̃2|)∇γdλ

∣∣∣∣
≤ Ces−τ

(1− es−τ )3/2

∫
R

|ye−(s−τ)/2 − λ| exp
(
− (ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
χε0dλ

≤ Ces−τ
√
−τ

(1− es−τ )3/2

∫
R

exp

(
− (ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
χε0dλ.

We make the change of variables z = (1 − e−(s−τ))−1/2(λ − e−(τ−s)/2y) and we
obtain ∫

R

exp

(
− (ye−(s−τ)/2 − λ)2

4(1− e−(s−τ))

)
χε0dλ ≤ (1− es−τ )1/2

∫
Σ

e−z2/4dz,

where

Σ =
{
z ∈ R :

∣∣∣z + e−(τ−s)/2(1− es−τ )−1/2y
∣∣∣ ≥ 3ε0(1− es−τ )−1/2

√
−τ

}
.

Since |ye−(τ−s)/2| ≤ ε0
√
−s, we readily see that Σ ⊂

{
z ∈ R : |z| ≥ ε0

√
−s

}
. Then

we conclude that

|S(s− τ ) (−div ((|ν̃1|+ |ν̃2|)∇γ))| ≤ Ces−τ

(1− es−τ )
eβs, where β > 0,

and we obtain

sup
|y|≤R2

√
−s

|M3| = o(
1

|s| ) as s → −∞.

Putting together Mi=1,...,3, the proof of Lemma 3.12 is complete. �

This concludes also the proof of Proposition 2.11 and rules out case (iii) of
Proposition 2.8. �

Step 5: Irrelevance of case (ii) of Proposition 2.8.
To conclude the proof of Theorem 1, we consider case (ii) of Proposition 2.8. We
assume as in the previous case that θ0 = 0. We claim that the following proposition
allows us to reach a contradiction in this case.

Proposition 3.16. There exists ε0 > 0 such that
(3.42)

lim
s→−∞

sup
|y|≤ε0e−s/2

∣∣∣w(y, s)−G(yes/2)
∣∣∣ = 0, where G(ξ) = κ(1− C1κ

−pξ)−
(1+iδ)
(p−1) .

Indeed, as in the previous step, first, we will find a contradiction ruling out case
(ii) of Proposition 2.8 and then prove Proposition 3.16.

We define us0 by
(3.43)

us0(ξ, τ ) = (1− τ )−
1+iδ
p−1 w(y, s), where y =

ξ + ε0
2 e

−s0/2

√
1− τ

and s = s0 − log(1− τ ).
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us0 is defined for all τ ∈ [0, 1) and ξ ∈ R. us0 satisfies equation (1.2). The initial
condition at time τ = 0 is us0(ξ, 0) = w(ξ + ε0

2 e
−s0/2, s0). From (2.1), we have

(3.44) ∀τ ∈ [0, 1), ‖us0(., τ )‖L∞ ≤ M(1− τ )−
1

p−1 .

Using Proposition 3.16, we get

sup
|ξ|<4e−s0/4

|us0(ξ, 0)−G(ε0/2)| ≡ g(s0) → 0 as s0 → −∞.

If we define v, the solution of{
v′ = (1 + iδ)|v|p−1v,
v(0) = G( ε02 ),

then v(τ ) = κ
(
1− C1κ

−p ε0
2 − τ

)− (1+iδ)
p−1 , which blows up at time 1−C1κ

−p ε0
2 < 1.

Therefore, there exists τ0 < 1, such that |v(τ0)| = 2M(1 − τ0)
− 1

p−1 . Now, we
consider the function z = |�{us0 − v}| + |�{us0 − v}|. Then we have for all
τ ∈ [0, τ0]:

(3.45) ∂τz ≤ Δz + C(ε0)z.

Using the fact that z is bounded for all τ ∈ [0, τ0] by B2 = B2(ε0) (use (3.44)), we
use Lemma 3.10 with B1 = e−s0/4, τ∗ = τ0, z0 = g(s0) and λ = 0. We obtain for
all τ ∈ [0, τ0],

sup
|ξ|≤e−ε0/4

|z(ξ, τ )| ≤ g(s0) + C(ε0)e
−e−|s0|/2/4 → 0 as s0 → −∞.

For |s0| large enough and ξ = 0, we get |z(0, τ0)| ≤ (M/2)(1− τ0)
− 1

p−1 and

|us0(0, τ0)| ≥
3

2
M(1− τ0)

− 1
p−1 ,

which by (3.43) is in contradiction with (3.44) and case (ii) of Proposition 2.8 is
ruled out. Now, we prove Proposition 3.16.

Proof of Proposition 3.16. The proof is very similar to that of Proposition 2.11.
We note that f(y, s) = G(yes/2). Then f satisfies

(3.46) −∂sf − 1

2
y · ∇f − (1 + iδ)

f

(p− 1)
+ (1 + iδ)|f |p−1f = 0.

Consider an arbitrary ε0 ∈ (0, R
∗

10 ), where R∗ =
κp

C1
. ε0 will be fixed small enough

later. Let us consider a cutoff function γ(y, s) = γ0(ye
s/2), where γ0 ∈ C∞(R) such

that γ0(ξ) = 1 if |ξ| ≤ 3ε0 and γ0(ξ) = 0 if |ξ| ≥ 4ε0. We note ν = (w − f) and
Z = γ (|ν̃1|+ |ν̃2|). From (ii) of Proposition 2.8, we have

(3.47) ‖Z‖ ≤ Ces(1−ε) as s → −∞, for some ε > 0.

As in the previous case, we divide our proof into two parts given in the following
lemmas.

Lemma 3.17 (Estimates in the modified L2
ρ spaces). There exists ε0 > 0 such that

the function Z satisfies for all s ≤ s∗ and y ∈ R,

(3.48) ∂sZ−ΔZ+
1

2
y ·∇Z− (1+σ)Z ≤ C(Z2+es+χε0)−2div ((|ν̃1|+ |ν̃2|)∇γ),
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where s∗ ∈ R, σ = 1
100 and

(3.49) χε0(y, s) = 1 if |y|es/2 ≥ 3ε0 and zero otherwise.

Moreover, we have

(3.50) N2
2ε0e−s/2(Z(s)) = o(1) as s → −∞.

As in Step 4, the following lemma allows us to conclude the proof of Proposition
3.16:

Lemma 3.18 (An upper bound for Z(y, s) in |y| ≤ ε0e
−s/2). We have

(3.51) sup
|y|≤ε0e−s/2

Z(y, s) = o(1) as s → −∞.

It remains to prove Lemmas 3.17 and 3.18 to conclude the proof of Proposition
3.16. Here, we only sketch the proof of Lemma 3.17, since it is completely similar
to Step 4. We don’t give the proof of Lemma 3.18. We refer the reader to Step 4
and Proposition 2.4 from Velázquez [Vel92] for similar situations.

Proof of Lemma 3.17. As in the previous step, we leave the proof of (3.48) to Ap-
pendix B.

Let us now apply the variation of constants formula and take the norm N2
r(s,s0)

,

where r(s, s0) is as in (3.39). Assume that s0 < 2s∗. Then for all s0 ≤ s ≤ s0
2 , we

have

N2
r (Z(., s)) ≤ N2

r (Sσ(s− s0)Z(., s0)) + C
∫ s

s0
N2

r (Sσ(s− τ )(Z(., τ )2))dτ

+C

∫ s

s0

N2
r (S(s− τ )(eτ ))dτ + C

∫ s

s0

N2
r (Sσ(s− τ )(χε0(., τ )))dτ

−2

∫ s

s0

N2
r (Sσ(s− τ )(div ((|ν̃1|+ |ν̃2|)∇γ)))dτ

= J1 + J2 + J3 + J4 + J5.

Arguing as in Step 4 and using (3.47), we prove:

Claim 3.19.

|J1| ≤ Ce(s−s0)(1+σ)es0(1−ε),

|J2| ≤ C

∫ s0+((s−R0)−s0)+

s0

e(s−τ−R0)(1+σ)

(1− es−τ−R0)1/20
(
L2
r(Z(., s)2)

)
dτ

+Ce(s−s0)(1+σ)es with R0 = 4ε0,

|J3| ≤ Ce(s−s0)(1+σ)es,

|J4| ≤ Ce(s−s0)(1+σ)e−αe−s

where α > 0,

|J5| ≤ Ce(s−s0)(1+σ)e−βe−s

where β > 0.

Proof. To estimate Ji=1..4, see page 1584 in [Vel92]. To treat J5, we proceed as in
the proof of Lemma 3.11 of the previous step. �

Summing up Ji=1,...,5, we obtain

N2
r (Z(., s))

≤ Ce(s−s0)(1+σ)e(1−ε)s + C
∫ s0+((s−R0)−s0)+
s0

e(s−τ−R0)(1+σ)

(1−es−τ−R0)1/20

(
L2
r(Z(., s)2)

)
dτ.

Then using Proposition 3.14, we get N2
r(s,s0)

(Z(., s)) ≤ Ce(s−s0)(1+σ)e(1−ε)s as s →
−∞ for s0 ≤ s ≤ s0

2 . If we fix s = s0/2, then we obtain N2
r(s,s0)

(Z(., s)) ≤
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Ces(2(1−ε)−(1+σ)) ≤ Ces(1−(2ε+σ)) → 0 as s → −∞, since ε is small enough and
σ = 1

100 . This concludes the proof of Lemma 3.17. �

As mentioned earlier, we don’t give the proof of Lemma 3.18, and we refer the
reader to Step 4 and Section 2 from [Vel92]. This concludes the proof of Proposition
3.16 and rules out case (ii) of Proposition 2.8. �

Conclusion of Part 3 and the sketch of proof of the Liouville theorem:
As we wrote in Section 2, we conclude from Steps 4 and 5 that cases (ii) and
(iii) of Proposition 2.8 are ruled out. By Step 3, we obtain that w ≡ κeiθ0 or
w ≡ ϕδ(s−s0)e

iθ0 for some real s0 and θ0, where ϕδ is defined in Theorem 1, which
is the desired conclusion of Theorem 1.

4. Applications of the Liouville theorem for a type I blow-up

solution of (1.2)

In this section we describe how to adapt to the case δ 
= 0 the proof of Proposition
3 given in [MZ98a] and [MZ00] in the case δ = 0.

Proof of (i) of Proposition 3. The proof is exactly the same as in the case δ = 0
(see page 148 in [MZ98a]). However, one needs the following lower bound, which is
a bit tricky to get and which we give for the reader’s convenience.

Lemma 4.1 (Sharp lower bound on the blow-up rate). For all t ∈ [0, T ),

‖u(t)‖L∞ ≥ κ(T − t)−
1

p−1 .

Remark 4.2. This bound is sharp, since there is equality for the solutions of the
ODE v′ = (1 + iδ)|v|p−1v, which are particular solutions of (1.2).

Proof. We introduce ρ̃ =
√
1 + |u|2, and we claim that ρ̃ satisfies

(4.1) ∂tρ̃ ≤ Δρ̃+ ρ̃p.

Indeed, we can easily prove that ∂t|u|2 = ūΔu+ uΔū+ 2|u|p+1. Then we have:

∂tρ̃ =
∂t|u|2

2(1 + |u|2)1/2 ,

Δρ̃ =
Δ|u|2

2(1 + |u|2)1/2 − |∇|u|2|2
4(1 + |u|2)3/2

=
ūΔu+ uΔū+ 2|∇u|2

2(1 + |u|2)1/2 − |u · ∇ū+ ū · ∇u|2

4(1 + |u|2)3/2 .

Using the fact that |u · ∇ū+ ū · ∇u|2 ≤ 4|u|2|∇u|2 ≤ 4(1 + |u|2)|∇u|2, we have

Δρ̃ ≥ ūΔu+ uΔū

2(1 + |u|2)1/2 . Hence

∂tρ̃ ≤ Δρ̃+
|u|p+1

(1 + |u|2)1/2 ≤ Δρ̃+ ρ̃p,

which gives (4.1).

Now we prove that ρ̃ ≥ κ(T − t)−
1

p−1 , for all t ∈ [0, T ). For this, we argue by
contradiction.

Assume that ‖ρ̃‖L∞ < κ(T−t0)
− 1

p−1 , for some t0 < T . Then, there exists T0 > T

such that ‖ρ̃(t0)‖L∞ ≤ κ(T0−t0)
− 1

p−1 . Using the maximum principle, the inequality
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remains valid after T0 and we have lim supt→T ‖ρ̃(t)‖L∞ ≤ κ(T0 − T )−
1

p−1 < ∞,
which is a contradiction. This concludes the proof of Lemma 4.1. �

Proof of (ii) of Proposition 3. Consider |δ| ≤ δ0 and a solution u(t) of (1.2) that
blows up in finite time T > 0 such that

(4.2) ∀t ∈ [0, T ), ‖u(t)‖L∞ ≤ M(δ)(T − t)−
1

p−1 ,

where δ0 and M(δ) are defined in Theorem 1. Let us now prove the uniform
pointwise control of the diffusion term by the nonlinear term, which asserts that
the solution u(t) behaves everywhere like the ODE u′ = (1 + iδ)|u|p−1u (up to a
constant).

The plan of the proof is the same as in [MZ98a] and [MZ00]. However, the
Giga-Kohn property “small local energy implies no blow-up locally” breaks down
because we no longer have a gradient structure. The property has to be replaced
by a new idea of ours “small L2

ρ norm implies no blow-up locally”, which is stated
in Proposition 3.6.

We argue by contradiction and assume that for some ε0 > 0, there exists
(xn, tn)n∈N, a sequence of elements of R× [T2 , T ), such that

(4.3) ∀n ∈ N, |Δu(xn, tn)| ≥ ε0|u(xn, tn)|p + n.

From the uniform estimates and the parabolic regularity, since ‖Δu‖L∞ is bounded
on compact sets of [T2 , T ), we have

T − tn → 0 as n → ∞.

Part (i) of Proposition 3 implies that |u(xn, tn)|(T − tn)
1

p−1 is uniformly bounded.
Therefore, we can assume that it converges as n → +∞. Let us consider two cases:

i) Estimates in the very singular region: |u(xn, tn)|(T − tn)
1

p−1 → κ0 > 0. From
(4.3), it follows that

‖Δu(tn)‖L∞ ≥ |Δu(xn, tn)| ≥ ε0
(κ0

2

)p
(T − tn)

− p
p−1 ,

with tn → T , which contradicts (i) of Proposition 3.

ii) Estimates in the singular region: u(xn, tn)(T − tn)
1

p−1 → 0.
We consider n large enough such that

|u(xn, tn)|(T − tn)
1

p−1 ≤ η0
3
, where η0 is defined in Proposition 3.6.

We take t0n → T such that

(4.4) (T − t0n)
− p

p−1 =
√
n.

Using (4.3) and uniform estimates, we obtain

n ≤ |Δu(xn, tn)| ≤ C0(T − tn)
− p

p−1 ;

hence t0n < tn. Now we distinguish two cases:
Case 1. We assume that (up to extracting a subsequence) there exists t′n ∈

(t0n, tn) such that |u(xn, t
′
n)|(T − t′n)

1
p−1 = 2

3η0. If we consider

(4.5) vn(ξ, τ ) = (T − t′n)
1

p−1 u(xn + ξ
√
T − t′n, t

′
n + τ (T − t′n)),
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then, we have from (i) of Proposition 3 and (4.2),

|vn(0, 0)| =
2

3
η0, ‖∇vn(0)‖L∞ + ‖Δvn(0)‖L∞ → 0,(4.6)

∀τ < 1, ‖vn(τ )‖L∞ ≤ M(δ)(1− τ )−
1

p−1 and ∂τvn = Δvn + (1 + iδ)|vn|p−1vn.

Using parabolic regularity, we can extract a subsequence (still denoted by tn) such
that, vn(ξ, τ ) → v̂(ξ, τ ) in C2,1 for every compact set of R× (−∞, 1), with

∂τ v̂ = Δv̂ + (1 + iδ)|v̂|p−1v̂, |v̂(0, 0)| = 2/3η0 and ‖v̂‖L∞ ≤ M(δ)(1− τ )−
1

p−1 .

Using the Liouville theorem (see Theorem 2), we get

v̂(ξ, τ ) = κ

((
3κ

2η0

)p−1

− τ

)− 1+iδ
p−1

eiθ0 , for some θ0 ∈ R.

We claim that it is enough to extend the convergence of vn → v̂ to all τ ∈ [0, 1)
(and ξ = 0), to conclude the proof. Indeed, if we have this extended convergence,
then we write from (4.3) and the definition (4.5) of vn,

|Δvn(0, τn)| = (T − t′n)
p

p−1 |Δu(0, tn)| ≥
ε0
2
|u(0, tn)|p(T − t′n)

p
p−1 ≥ ε0

2
|vn(0, τn)|p,

with τn =
tn−t

′
n

T−t′n
. Letting n → ∞, we obtain

(4.7) 0 ≥ ε0
2

min
τ∈[0,1]

|v̂(τ )|p ≥ ε0
2

(
2

3
η0

)p

,

which is a contradiction.
Let us then extend the convergence. If we consider the following similarity

variables,

(4.8) y =
ξ − ξ0√
1− τ

, s = − log(1− τ ), wn,ξ0(y, s) = (1− τ )
1

p−1 vn(ξ, τ ),

then, we see from (4.6) that for all |ξ0| ≤ 1, ‖wn,ξ0(., 0)‖L2
ρ
≤ η0, for n large

enough. Using Proposition 3.6, we get for all |ξ| ≤ 1 and τ ∈ [0, 1), |vn(ξ, τ )| ≤ M0.
Using the parabolic regularity, we can extend the convergence, and then reach the
contradiction (4.7). This concludes Case 1.

Case 2. We assume that for some n0 ∈ N, for all n ≥ n0 and t ∈ [t0n, tn], we
have

(T − t)
1

p−1 |u(xn, t)| <
2

3
η0.

Then, we take t′n = t0n and introduce vn by (4.5). As in Case 1, we obtain by
Proposition 3.6 and parabolic regularity:

∀|ξ| ≤ 1 and τ ∈ [0, 1), |vn(ξ, τ )| ≤ M0, |Δvn(0, τn)| ≤ C0η0, where τn =
tn − t0n
T − t0n

.

Therefore, we get from (4.3), (4.5) and (4.4):

n ≤ |Δun(xn, tn)| = (T − t0n)
− p

p−1 |Δvn(0, τn)| ≤ C0η0(T − t0n)
− p

p−1 = C0η0
√
n,

which is a contradiction, as n → ∞. This ends Case 2 and concludes the proof of
Proposition 3. �
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Appendix A. Proof of Proposition 3.8

We prove Proposition 3.8 here. We recall from (3.12),..,(3.15):

ṽ1s = Lṽ1 + θ
′
(s)(δṽ1 + ṽ2) + G̃1,(A.1)

ṽ2s = (L − 1)ṽ2 − θ
′
(s)((1 + δ2)ṽ1 + δṽ2 + κ) + G̃2,(A.2)

where L is given in (3.3) and

G̃1 =
p− δ2

2κ
ṽ21 +

1

2κ
ṽ22 +O(|v|3),(A.3)

G̃2 = (1 + δ2)
ṽ1(δṽ1 + ṽ2)

κ
+O(|v|3).(A.4)

A primary idea to deal with system (A.1),..,(A.4) is to confirm that it is driven
by its linear part ∂s(ṽ1, ṽ2) = (Lṽ1, (L − 1)ṽ2) (except for the neutral modes ṽ12,
where the second-order terms matter, and ṽ20 = 0 by the choice of the modulation
parameter; see (2.14)).

To this end, let us decompose ṽ1 and ṽ2, respectively, with respect to the
spectrum of L (with a positive (λ = 1 or λ = 1/2), zero and nonnegative part
(λ ≤ −1/2)) and L− 1 (with zero eigenvalue and a nonnegative part (λ ≤ −1/2)).
Let us introduce some notation:

ṽ1+(y, s) = ṽ10(s)h0(y) + ṽ11(s)h11(y), z(s) = ‖ṽ1+(., s)‖L2
ρ
,

ṽ1null(y, s) = ṽ12(s)h2(y), x(s) = ‖ṽ1null(., s)‖L2
ρ
,

ṽ1−(y, s) =
∑+∞

3 ṽ1m(s)hm(y), y1(s) = ‖ṽ1−(., s)‖L2
ρ
,

and we denote by

ṽ2⊥(y, s) =
+∞∑
1

ṽ2m(s)hm(y), y2(s) = ‖ṽ2⊥(., s)‖L2
ρ
.

Since we have ṽ20(s) = 0 from (2.14), it follows that

ṽ2⊥(y, s) = ṽ2(y, s) and y2(s) = ‖ṽ2(., s)‖L2
ρ
.

Finally, we define

N1(s) = ‖θs(δṽ1 + ṽ2) + G̃1‖L2
ρ
,

N2(s) = ‖θs((1 + δ2)ṽ1 + δṽ2 + κ) + G̃2‖L2
ρ
.

We proceed in 3 steps:

• In Step 1, we use ODE techniques to show that either z or x dominates as
s → −∞.

• In Step 2, we consider the case where z dominates and show that it leads
to case (i) or (ii) of Proposition 3.8.

• In Step 3, we show that (iii) of Proposition 3.8 holds in the case where x
dominates.

A.1. Step 1: Either ‖ṽ1+(., s)‖L2
ρ
or ‖ṽ1null(., s)‖L2

ρ
dominates as s → −∞.

Projecting (A.1) onto the unstable subspace of L forming the L2
ρ-inner product

with ṽ1+, and using standard inequalities, we get

ż ≥ 1

2
z −N1.
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Working similarly with ṽ10(s), ṽ1−(y, s) and ṽ2(y, s) we arrive at the system

ż ≥ 1
2z −N1,

|ẋ| ≤ N1,
ẏ1 ≤ − 1

2y1 +N1,
ẏ2 ≤ − 1

2y2 +N2.

(A.5)

Using the fact that v is bounded (see (2.1) and (2.4)), and (2.5), we obtain easily

(A.6) N2
1 +N2

2 ≤ C

∫
|v|4ρ,

for some positive constant C. Thus, it follows from (A.5) that

ż ≥ 1
2z − CN,

|ẋ| ≤ CN,
ẏ ≤ − 1

2y + CN,
(A.7)

where

(A.8) y ≡ y1 + y2 and N2 ≡
∫

|v|4ρ.

If we knew that for |s| large enough,

(A.9) N ≤ ε(x+ y + z),

which is equivalent to
∫
|v|4ρ ≤ ε2

∫
|v|2ρ, we could use ODE techniques to conclude

the step. The meaning of estimate (A.9) is essentially that the L2
ρ−norm of the

quadratic term |v|2 is small compared to the norm of the linear term |v|. However,
we do not have this information at this stage. We thus estimate N as follows. Given
any ε > 0, and any α > 0 (both will be chosen small in the sequel), there is a time
s∗ such that:
(A.10)∫

|v|4ρ =

∫
|y|>α−1

|v|4ρ+
∫
|y|<α−1

|v|4ρ ≤ αk

∫
|v|4|y|kρ+ε2

∫
|v|2ρ for all s ≤ s∗.

Here we use the fact that v(y, s) goes to zero uniformly on the compact set |y| <
α−1, which follows from (ii) of Lemma 2.4 and parabolic regularity. The exponent
k which appears in (A.10) is an arbitrary positive integer (later we will choose it
to be large). We set

J2 ≡
∫

|v|4|y|kρ,

so that (A.10) can be rewritten as∫
|v|4ρ ≤ αkJ2 + ε2

∫
|v|2ρ for all s ≤ s∗.

From the inequalities above, we get that

(A.11) N ≤ αk/2J + ε(x+ y + z) for all s ≤ s∗.

We next estimate J . Multiplying (A.1) by ṽ1|v|2|y|kρ, and (3.13) by ṽ2|v|2|y|kρ,
integrating over all R, we get after some calculations:

J̇ ≤ −θJ + ε′(x+ y + z) + c(x+ y + z)2,

where

(A.12) θ =
k

4
− c− kα2

2
(k − 1) and ε′ =

1

2
εα2−k/2k(k + n− 2).
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Using the fact that x, y, z → 0 as s → −∞, we end up with

(A.13) J̇ ≤ −θJ + 4ε′(x+ y + z),

where θ is still given by (A.12) with a different value of the constant c. To end the
proof we choose k large enough (certainly k > 4), so that for some α∗(k) > 0, we
have for 0 < α < α∗, θ ≥ 1

2 . We obtain from (A.7), (A.11) and (A.13):

ż ≥ ( 12 − ε̂)− ε̂(x+ ỹ),
|ẋ| ≤ ε̂(x+ ỹ + z),
˙̃y ≤ −( 12 − ε̂)ỹ + ε̂(x+ z),

where

ỹ ≡ y + J , ε̂ ≡ Cmax(ε+ εα2−k/2, αk/2).

Note that ε̂ can be made arbitrarily small by choosing first α and then ε sufficiently
small. Now, we conclude by using the following lemma.

Lemma A.1. Let x(s), y(s) and z(s) be absolutely continuous, real-valued func-
tions that are nonnegative and satisfy:

i) (x, y, z)(s) → 0 as s → −∞.
ii) For all ε > 0, there exists s0 ∈ R such that for all s ≤ s0,

(A.14)
ż ≥ c0z − ε(x+ y),
|ẋ| ≤ ε(x+ y + z),
ẏ ≤ −c0y + ε(x+ z).

Then either x+ y = o(z) or y + z = o(x), as s → −∞.

Proof. Here, we adapt the proof of Lemma A.1 (page 172) from [MZ98a]. By
rescaling in time, we may assume c0 = 1.
Part 1. Let ε > 0. We show in this part that either

(A.15) ∃s2(ε) such that ∀s ≤ s2, z(s) + y(s) ≤ Cεx(s)

or

(A.16) ∃s2(ε) such that ∀s ≤ s2, x(s) + y(s) ≤ Cεz(s).

We show that for all s ≤ s0(ε), β(s) ≤ 0, where β = y − 2ε(x + z). We argue by
contradiction and suppose that there exists s∗ ≤ s0(ε) such that β(s∗) > 0. Then,

if s ≤ s∗ and β(s) > 0, we have from (A.14) that β̇ = ẏ− 2ε(ẋ+ ż) ≤ 0. Therefore,
for all s ≤ s∗, β(s) ≥ β(s∗) > 0, which contradicts β(s) → 0 as s → −∞. Thus, for
all s ≤ s0(ε),

(A.17) y ≤ 2ε(x+ z).

Therefore, (A.14) yields

ż ≥ 1

2
z − 2εx,(A.18)

|ẋ| ≤ 2ε(x+ z).(A.19)

Let γ(s) = 8εx(s)− z(s). Two cases then arise:

• Case 1. There exists s2 ≤ s0(ε) such that γ(s2) > 0. Then we compute
γ̇ = 8εẋ− ż ≤ 16ε2(x+z)− 1

2z+2εx = γ(s)
(
1
4 + 2ε

)
−z(s)

(
1
4 − 2ε− 16ε2

)
.

Therefore, for all s ≤ s2, γ(s) ≥ γ(s2)e
( 1

4−2ε)(s−s2) > 0, that is, 8εx(s) >
z(s). Together with (A.17), this yields (A.15).



3426 NEJLA NOUAILI AND HATEM ZAAG

• Case 2. For all s ≤ s0(ε), γ(s) ≤ 0, that is, 8εx(s) ≤ z(s). In this case
(A.19) yields

(A.20) ∀s ≤ s0(ε), ż ≥ 1

4
z and ẋ ≤

(
2ε+

1

4

)
z; hence ẋ ≤ (1 + 8ε)ż.

By integration, we get x(s) ≤ (8ε + 1)z(s). We inject this in (A.19) and
get from (A.20) that ẋ ≤ 2ε(x + z) ≤ 2εz(2 + 8ε) ≤ 8ε(2 + 8ε)ż(s), which
gives x(s) ≤ 8ε(2 + 8ε)z(s) by integration.

Part 2. It is easy to see that if for some ε > 0, (A.15) holds, then it holds for all
ε′ < ε and the same with (A.16). This concludes the proof of Lemma A.1. �

Applying Lemma A.1, we get either

‖ṽ12‖L2
ρ
+ ‖ṽ1−(., s)‖L2

ρ
+ ‖ṽ2(., s)‖L2

ρ
= o(‖ṽ1+(., s)‖L2

ρ
)

or
‖ṽ1+(., s)‖L2

ρ
+ ‖ṽ1−(., s)‖L2

ρ
+ ‖ṽ2(., s)‖L2

ρ
= o(‖ṽ12‖L2

ρ
).

A.2. Step 2: Case where ‖ṽ1+(., s)‖L2
ρ
dominates. Now, we focus on the case

‖ṽ1null(., s)‖L2
ρ
+ ‖ṽ1−(., s)‖L2

ρ
+ ‖ṽ2(., s)‖L2

ρ
= o(‖ṽ1+(., s)‖L2

ρ
). We will show that

it leads to either case (i) or case (ii) of Proposition 3.8. We want to derive from
(A.1) the equations satisfied by ṽ10 and ṽ11. For this, we estimate in the following

lemma,
∫
G̃1km(y)ρ(y)dy for m = 0, 1, where

km(y) = hm(y)/‖hm‖2L2
ρ

and G̃1 is given by (A.3).

Lemma A.2. There exists β0 > 0, and an integer k′ > 4 such that for all β ∈
(0, β0), ∃s0 ∈ R such that ∀s ≤ s0,

∫
v2|y|k′

ρ ≤ c0(k
′)β4−k′

z(s)2.

Proof. This lemma is analogous to Lemma A.3, p. 175 from [MZ98a], which handles
the real case with δ = 0. One can adapt with no difficulty the proof of the present
context. �

Proceeding as in Appendix A from [MZ98a] and doing the projection of equation
(3.12), respectively on k0(y) and k1(y), we obtain

ṽ′10(s) = ṽ10(s) +
p− δ2

2κ
(1 + α(s))z2(s)(A.21)

and

ṽ′11(s) =
1

2
ṽ11(s) + η(s)z(s)2,(A.22)

where z(s) = ‖ṽ1+(., s)‖L2
ρ
, α(s) → 0 as s → +∞ and η is bounded. Then, from

standard ODE techniques, we get

(A.23) ∀ε > 0, ṽ10(s) = O(e(1−ε)s) and ṽ11 = C1e
s
2 +O(e(1−ε)s).

Since z(s)2 = ‖ṽ1+(., s)‖2L2
ρ
= ṽ210 + 2ṽ211, we write (A.21) as

ṽ′10(s) = ṽ10(s) +
p− δ2

κ
|C1|2ses(1 + α(s)) + γ(s),

where γ(s) = O(e2(1−ε)s) and α(s) → 0 as s → −∞, which gives by integration

(A.24) ṽ10(s) =
p− δ2

κ
|C1|2ses(1 + o(s)) + C0e

s + O(e2(1−ε)), as s → −∞.
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Two cases then arise:

• If C1 
= 0, then ṽ11 ≡ C1e
s
2 � ṽ10 = O(ses), from (A.24). Note first that

applying Lemma 3.7 to |v1| + |v2| (this is possible from equations (A.1)
and (A.2) and the boundedness of v), we have for all |s| large enough (and
s < 0),

(A.25) N2 =

∫
|v(y, s)|4ρ(y)dy ≤ C ∗ ‖v(., s− s∗)‖2L2

ρ
,

for some positive s∗ and C∗.
Recalling system (A.7) and using (A.25), we obtain ẏ ≤ − 1

2y +

c‖v(., s − s∗)‖2L2
ρ
≤ − 1

2y + ces. Then, we obtain y = O(es); similarly,

we obtain x = ‖ṽ1null(., s)‖L2
ρ
= O(es). We conclude that ‖v(., s) − (1 +

iδ)C1e
s/2y‖L2

ρ
= O(es(1−ε)) as s → −∞, for some ε > 0. Using (2.5), we

get |θs| ≤ Ces. This is case (ii) of Proposition 3.8.
• If C1 = 0, we obtain case (i) of Proposition 3.8. Indeed, let us first improve
the estimate of v. In fact, from (A.24) we have ṽ10 = C0e

s +O(e3/2s) and
from (A.22) we have ṽ11 = O(e3/2s).

We note y = ‖ṽ1−(., s)‖L2
ρ
+ ‖ṽ2(., s)‖L2

ρ
and x = ‖ṽ1null(., s)‖L2

ρ
. Re-

calling system (A.7) and using (A.25), we obtain

ẏ ≤ −1

2
y + c‖v(., s− s∗)‖2L2

ρ
≤ −1

2
y + ce2s.

Then, we have that y = ‖ṽ1−(., s)‖L2
ρ
+ ‖ṽ2(., s)‖L2

ρ
= O(e3/2s). Similarly,

we obtain that

x = ‖ṽ1null(., s)‖L2
ρ
= O(e3/2s)

and we conclude

‖v(., s)− (1 + iδ)ṽ10(s)‖L2
ρ

= ‖(1 + iδ) (ṽ11(s) + ṽ1,null(., s) + ṽ1−(., s)) + iṽ2(., s)‖L2
ρ

= O(e3/2s).

Using (2.5), we get |θ′
(s)|L2

ρ
≤ Ce2s. This is case (i) of Proposition 3.8.

A.3. Step 3: Case where ‖ṽ1null(., s)‖L2
ρ
dominates. In the following we prove

that (iii) of Proposition 3.8 holds. First, we prove the following lemma:

Lemma A.3. Assume that

(A.26) ‖ṽ1+(., s)‖L2
ρ
+ ‖ṽ1−(., s)‖L2

ρ
+ ‖ṽ2(., s)‖L2

ρ
= o(‖ṽ1null(., s)‖L2

ρ
)

holds. Then

v(y, s) = −(1 + iδ)
κ

4(p− δ2)s
(y2 − 2) + o(

1

s
),

in L2
ρ as s → −∞.
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Proof. Since ṽ1null = ṽ12(s)h2(y), we note that ṽ12 =
∫
ṽ1k2ρ. Projecting equation

(A.1) onto h2(y) we get

d

ds
(ṽ12) =

p− δ2

2κ

∫
ṽ21k2(y)ρ(y)

+ θ
′
(s)

∫
(δṽ1 + ṽ2)k2(y)ρ(y) +

∫
1

2κ
ṽ22k2(y)ρ(y) +O(

∫
|v|3k2(y)ρ(y)),

=
p− δ2

2κ

∫
ṽ21nullk2(y)ρ(y)−

p− δ2

2κ

∫
(ṽ21null − ṽ21)k2(y)ρ(y)

+ θ
′
(s)

∫
(δṽ1 + ṽ2)k2(y)ρ(y) +

∫
1

2κ
ṽ22k2(y)ρ(y) +O(

∫
|v|3k2(y)ρ(y)),

≡ (p− δ2)

2κ
8ṽ212 +

p− δ2

2κ
E1 + E2 + E3 + E4,

where we use the fact that
∫
ṽnullk2ρ = ṽ212

∫
h2
2k2ρ = 8ṽ212. We next estimate E1,

E2, E3 and E4. For this, we need the following lemma:

Lemma A.4. There exist α0 > 0 and an integer k′ > 4 such that for all α ∈ (0, α0),
there exists s0 ∈ R such that for all s ≤ s0,∫

|v|2|y|k′
ρdy ≤ c0(k

′)α4−k′
∫

ṽ21nullρdy.

Proof. See the proof of Lemma C.1 in [MZ98a] (page 187). �

Recalling that ṽ1 = ṽ1− + ṽ1+ + ṽ1null, we write on the one hand:

|E1| ≤
∫
|ṽ1+ + ṽ1−| × |ṽ1 + ṽ1null||k2(y)|ρ,

≤ c

(∫
|ṽ1+ + ṽ1−|2ρ

)1/2
{(∫

ṽ21k
2
2(y)ρ

)1/2

+

(∫
ṽ21nullk

2
2(y)ρ

)1/2
}
.

We have from (A.26) that
(∫

|ṽ1+ + ṽ1−|2ρ
)1/2

= o(ṽ12) and

( ∫
ṽ21k

2
2(y)ρ

)1/2
+

( ∫
ṽ21nullk

2
2(y)ρ

)1/2 ≤
(∫

|v|2k22ρ
)1/2

+ c|ṽ12| ≡ I1 + I2.

On the other hand, we have

E3 =

∫
1

2κ
ṽ22k2(y)ρ(y) ≤ c

(∫
ṽ22ρ

)1/2 (∫
ṽ22k

2
2ρ

)1/2

≤ o(ṽ12)

(∫
|v|2k22ρ

)1/2

︸ ︷︷ ︸
I1

.

To treat I1, we have from A.4:∫
ṽ21k

2
2ρ ≤ c

∫
|v|2ρ+ c

∫
|v|2|y|k′

ρ ≤ c(

∫
|v|2ρ) ≤ cṽ212.

We conclude that E1 = o(ṽ212) and E3 = o(ṽ212). We can see easily that E2 = o(ṽ212),
because of Lemma 2.4.
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It remains to estimate E4. We consider α ∈ (0, α0) and we proceed as in Appendix
C from [MZ98a] (page 189). We write for m = 0 or m = 2:

∫
|v|3|y|mρdy ≤

∫
|y|≤α−1

|v|3|y|mρdy +

∫
|y|≥α−1

|v|3|y|mρdy

≤ εα−m

∫
|y|≤α−1

|v|2ρdy + CMαk′−m

∫
|y|≥α−1

|v|2|y|k′
ρdy

≤ C(εα−m +Mc0(k
′)α4−m)

∫
ṽ2nullρdy,

where we used the fact that |v| → 0 as s → −∞ in L∞(B(0, α−1)), |v(y, s)| ≤ M ,
Lemma A.4 and

∫
|v|2ρdy ≤

∫
ṽ2nullρdy. We can then choose ε and α such that for

s ≤ s0,
∫
|v|3|y|mρ ≤ ε

∫
ṽ2nullρ and we obtain E4 = o(ṽ212).

So finally, we have

d

ds
(ṽ12) =

(p− δ2)

κ
4ṽ212 + o(ṽ212).

Solving the above, we obtain

ṽ1null = − κ

4(p− δ2)s
(1 + o(1))

(
y2 − 2

)
.

This concludes the proof of Lemma A.3. �

In order to finish the proof of (iii) of Proposition 3.8, we need to refine the

estimates of Lemma A.3 to catch the O( |s|s2 ).
Recalling system (A.7) and using (A.25), we obtain

y′ ≤ −1

2
y + c‖v(., s− s∗)‖2L2

ρ
≤ −1

2
y + c

1

s2
.

Then, integrating (yes/2)′ ≤ C
es/2

s2
between −∞ and s, we get y ≤ C

s2 . Doing the

same for z = ‖ṽ1+(., s)‖L2
ρ
, we obtain (ze−s/2)′ ≥ C

es/2

s2
. Integrating between s

and s0 ≥ s, we have z ≤ C

s2
.

Proceeding as in the proof of Proposition A.3, we write:
(A.27)

d

ds
(ṽ12) =

p− δ2

2κ

∫
ṽ21nullk2(y)ρ(y)−

p− δ2

2κ

∫
(ṽ21null − ṽ21)k2(y)ρ(y)

+θ
′
(s)

∫
(δṽ1 + ṽ2)k2(y)ρ(y) +

∫
1

2κ
ṽ22k2(y)ρ(y) +O

(∫
|v|3k2(y)ρ(y)

)
≡ 4(p− δ2)

κ
ṽ212 +

p− δ2

2κ
E1 + E2 + E3 + E4.
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Then, we have

|E1| ≤
∫

|ṽ1+ + ṽ1− + ṽ2| × |v + ṽ1null||k2(y)|ρ

≤
(∫

|ṽ1+ + ṽ1− + ṽ2|2ρ
)1/2

{(∫
v2k22(y)ρ

)1/2

+

(∫
ṽ21nullk

2
2(y)ρ

)1/2
}

≤ ε

(∫
ṽ21nullρ

)1/2
{
c

(∫
v4ρ

)1/4

+ c

(∫
ṽ21nullρ

)1/2
}
.

Using the fact that ‖ṽ1null(., s)‖L2
ρ
∼ C

s
and (A.25), we have∫

v4ρ ≤ c

(∫
v2(., s− s∗)ρ

)2

≤ c

(s− s∗)2
≤ c

s2
.

Thus, E1 ≤ C

s3
. Similarly, we obtain E2 ≤ C

|s|3 , E3 ≤ y2 ≤ C

s4
and E4 ≤ C

|s|3 . Then,
we have from (A.27):

d

ds
(ṽ12) =

4(p− δ2)

κ
ṽ212 +O(

1

s3
) =

4(p− δ2)

κ
ṽ212

(
1 +O(

1

s
)

)
.

By integrating, we conclude that:

ṽ12 = − κ

4(p− δ2)s
+O(

log |s|
s2

).

Finally, we get ‖v(., s) − (1 + iδ) κ
4(p−δ2)s (y

2 − 2)‖L2
ρ
= O( log |s|

s2 ) as s → −∞. It

remains to prove the estimate for θ
′
(s) to conclude the proof.

Integrating equation (A.2) with respect to ρdy, we obtain:

θ
′
(s)

∫
((1 + δ2)ṽ1 + δṽ2 + κ)ρ =

∫
G̃2ρ.

On the one hand, we have ((1 + δ2)ṽ1 + δṽ2 + κ) = κ+O(
1

s
). On the other hand,

using (A.4), we get∫
G̃2ρ =

(1 + δ2)δ

κ

∫
ṽ21ρ+

(1 + δ2)

κ

∫
ṽ1ṽ2ρ,

where we have from (iii) of Proposition 3.8,
∫
ṽ1ṽ2ρ = O( log |s|

s3 ),∫
ṽ21ρ =

∫
ṽ212h

2
2ρ+

∫ (
ṽ21 − ṽ212h

2
2

)
ρ

= 8ṽ212 +

∫
((ṽ1 − ṽ12h2)) (ṽ1 + ṽ12) ρ,

ṽ12 = κ
4(p−δ2)s +O( log |s|

s2 ),
∫
((ṽ1 − ṽ12h2)) (ṽ1 + ṽ12) ρ ≤ C log |s|

s2 × 1
s = C log |s|

s3 ,

θ
′
(s) =

(1 + δ2)δ

κ

(
κ

2(p− δ2)

)2
1

s2
+O(

log |s|
s3

).

Consequently, we obtain the desired estimate for θs. This concludes the proof of
Proposition 3.8.
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Appendix B. Equations of Z in Steps 4 and 5

Equation of Z in Step 4: In this part we establish the equation satisfied by Z
in Step 4 of the proof of Theorem 1. We denote by φ : C → C the function defined
by φ(x) = |x|p−1x. If we introduce ν = (w−F ), where F is defined by (3.30), then
we see from (1.10) that ν satisfies the following equation for all (y, s) ∈ R×R, such
that for |y| < 4ε0

√
−s,

(B.1) ∂sν = (L − 1)ν + l(ν) +B(ν) +R(y, s),

where L is defined in (3.3), ν = ν1 + iν2,

l(ν) = (1 + iδ)

[
− ν

p− 1
+ (p− 1)|F |p−3F (F1ν1 + F2ν2) + |F |p−1ν

]
,

B(ν) = (1 + iδ)
[
φ(F + ν)− φ(F )− (p− 1)|F |p−3F (F1ν1 + F2ν2)− |F |p−1ν

]
,

R(y, s) = −∂sF +ΔF − 1

2
y · ∇F − (1 + iδ)

F

p− 1
+ (1 + iδ)|F |p−1F.

Using Taylor’s formula and the fact that w and F are bounded for |y| ≤ 4ε0
√
−s,

we readily obtain for all s ≤ s0 and |y| < 4ε0
√
−s that

|B(ν)| ≤ C|ν|2,
|R(y, s)| ≤ C

(
|y|2+1

s2 + χε0

)
,

with χε0 defined in (3.32). If we write ν = (1 + iδ)ν̃1 + iν̃2, B = (1 + iδ)B̃1 + iB̃2

and R = (1 + iδ)R̃1 + iR̃2, then we have

∂sν̃1 = Lν̃1 + l1,1ν̃1 + l1,2ν̃2 + B̃1 + R̃1,(B.2)

∂sν̃2 = (L − 1)ν̃2 + l2,2ν̃2 + l2,1ν̃1 + B̃2 + R̃2,(B.3)

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l1,1(y, s) = (1− δ2)(|F |p−1 − 1
p−1 ) + (p− 1)|F |p−3(F1

2 − δ2F2
2)− 1,

l1,2(y, s) = −δ(|F |p−1 − 1
p−1 ) + (p− 1)|F |p−3(F1 − δF2)F2,

l2,1(y, s) = (1 + δ2)(|F |p−1 − 1
p−1 ) + (p− 1)|F |p−3(F1 + δF2)F2,

l2,2(y, s) = (1 + δ2)(|F |p−1 − 1
p−1 ) + (p− 1)|F |p−3F2

2.

Proceeding as in the proof of Lemma B.1 from [Zaa98] (page 615), we obtain for
all |y| ≤ 4ε0

√
−s,

|li,j(y, s)| ≤ Cmin

[
(1 + |y2|)

|s| , 1

]
, for any i, j ∈ {1, 2}.

Therefore, we write for |s| large enough and |y| ≤ 4ε0
√
−s:

|li,j(y, s)| ≤ C

{
(1 + ε20|s|)

|s| + χε0

}
≤ C

{
2ε20 + χε0

}
.



3432 NEJLA NOUAILI AND HATEM ZAAG

Now, we multiply (B.2) and (B.3) respectively by sgn(ν̃1) and sgn(ν̃2). Using Kato’s
inequality, we obtain for z = |ν̃1|+ |ν̃2|, |s| large enough and |y| ≤ 4ε0

√
−s:

∂sz −Δz +
1

2
y · ∇z − (1 + σ)z ≤ C

(
z2 +

(y2 + 1)

s2
+ χε0

)
,

where we fix ε0 small enough so that σ = Cε20 = 1
100 .

Now, we consider the cutoff function γ (3.33), we define Z = zγ and we obtain for
|s| large enough:

∂sZ −ΔZ +
1

2
y · ∇Z − (1 + σ)Z ≤ C

(
Z2 + (y2+1)

s2 + χε0

)
+z

(
∂sγ −Δγ +

y

2
· ∇γ

)
− 2∇γ · ∇z

(here, we used the fact that γz2 = Z2 + (γ − γ2)z2 ≤ Z2 + Cχε0). The last terms
in this equation are the cutoff terms. Using the fact that z

(
∂sγ −Δγ + y

2 · ∇γ
)
−

2∇γ∇z ≤ Cχε0 − 2div (z∇γ), we obtain for |s| large enough:

∂sZ−ΔZ+
1

2
y ·∇Z−(1+σ)Z ≤ C

(
Z2 +

(y2 + 1)

s2
+ χε0

)
−2div ((|ν̃1|+ |ν̃2|)∇γ) ,

which is the desired equation in Lemma 3.11.
Equation of Z in Step 4: In the following, we determine the equation satisfied

by Z in Step 4. We let ν = w − f . We can see from (3.46) that ν satisfies the
following equation for all (y, s) ∈ R× R, such that for |y| < 4ε0e

−s/2,

∂sν = Δν − 1
2y · ∇ν + l(ν) +B(ν) +R(y, s),

where

l(ν) = −(1 + iδ)
ν

p− 1
+ (1 + iδ)

{
(p− 1)|f |p−3f(f1ν1 + f2ν2) + |f |p−1ν

}
,

B(ν) = (1 + iδ)
{
|f + ν|p−1(f + ν)− |f |p−1f

− (p− 1)|f |p−3f(f1ν1 + f2ν2)− |f |p−1ν
}
,

R(y, s) = esΔG(yes/2).

Using a Taylor formula, we prove that for |s| large and |y| ≤ 4ε0e
−s/2,

|B(ν)| ≤ C|ν|2, |R(y, s)| ≤ Ces + χε0(y, s),

with χε0 defined by (3.49). If we write ν = (1 + iδ)ν̃1 + iν̃2, B = (1 + iδ)B̃1 + iB̃2

and R = (1 + iδ)R̃1 + iR̃2, then we have

∂sν̃1 = Lν̃1 + l1,1ν̃1 + l1,2ν̃2 + B̃1 + R̃1,(B.4)

∂s ˜̄ν2 = (L − 1)˜̄ν2 + l2,2ν̃2 + l2,1ν̃1 + B̃2 + R̃2,(B.5)

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l1,1(y, s) = (1− δ2)(|f |p−1 − 1
p−1 ) + (p− 1)|f |p−3(f1

2 − δ2f2
2)− 1,

l1,2(y, s) = −δ(|f |p−1 − 1
p−1 ) + (p− 1)|f |p−3(f1 − δf2)f2,

l2,1(y, s) = (1 + δ2)(|f |p−1 − 1
p−1 ) + (p− 1)|f |p−3(f1 + δf2)f2,

l2,2(y, s) = (1 + δ2)(|f |p−1 − 1
p−1 ) + (p− 1)|f |p−3f2

2.

Proceeding as in the proof of Lemma B.1 from [Zaa98] (page 615), we obtain for
|y|es/2 ≤ 4ε0 and s large,

|li,j(y, s)| ≤ Cmin
[
|y|es/2, 1

]
, for any i, j ∈ {1, 2}.
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If we consider χε0 defined in (3.49), then we write for |s| large and |y| ≤ 4ε0e
−s/2:

|li,j | ≤ C
{
|y|es/2 + χε0

}
≤ C {ε0 + χε0} .

Now, we multiply (B.4) and (B.5) respectively by sgn(ν̃1) and sgn(ν̃2). Using Kato’s
inequality, we obtain for z = |ν̃1|+ |ν̃2|, |s| large enough and |y|es ≤ 4ε0,

∂sz −Δz +
1

2
y · ∇z − (1 + σ)z ≤ C

(
z2 + es + χε0

)
,

where σ = Cε0 = 1
100 . Now, we consider the cutoff function γ, we define Z = zγ

and we obtain for |s| large:

∂sZ −ΔZ +
1

2
y · ∇Z − (1 + σ)Z

≤ C
(
Z2 + es + χε0

)
− z

(
∂sγ −Δγ +

y

2
· ∇γ

)
+ 2∇γ∇z.

The last terms in this equation are the cutoff terms. Using z
(
∂sγ−Δγ+ y

2 ·∇γ
)
−

2∇γ∇z ≤ Cχε0 + 2div (z∇γ), we obtain for |s| large:

∂sZ −ΔZ +
1

2
y · ∇Z − (1 + σ)Z ≤ C

(
Z2 + es + χε0

)
− 2div ((|ν̃1|+ |ν̃2|)∇γ) ,

which is the desired equation in (3.48).
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