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WEAK EHRENFEUCHT-FRAÏSSÉ GAMES

TAPANI HYTTINEN AND VADIM KULIKOV

Abstract. In this paper we define a game which is played between two play-
ers I and II and two mathematical structures A and B. The players choose
elements from both structures in α moves, and at the end of the game player
II wins if the chosen structures are isomorphic. Thus the difference between
this and the ordinary Ehrenfeucht-Fräıssé game is that the isomorphism can
be arbitrary, whereas in the ordinary EF-game it is determined by the moves
of the players. We investigate determinacy of the weak EF-game for different
α (the length of the game) and its relation to the ordinary EF-game.

1. Introduction

1.1. History and motivation. The following question arises very often in mathe-
matics: Does a given description of a mathematical structure describe the structure
up to isomorphism? Or equivalently: Is the structure satisfying given conditions
unique? Also, if it is unique, can we further weaken the description or the condi-
tions? Or if it is not unique, then how good is the description? Model theory and
mathematical logic in general have a long history in studying these questions. In
particular, classifying the ways of description which never lead to a unique solu-
tion, studying how much information these descriptions provide, studying various
equivalence relations between structures which are weaker than (but as close as
possible to) isomorphism, constructing strongly equivalent non-isomorphic models
and giving methods to establish such weak equivalences between structures which
under some conditions may lead to a unique description.

On the other hand, mathematicians often seek methods to distinguish between
structures (invariants), which would be mathematically simple but which would still
classify the structures of a certain class well enough. In many cases, for example,
the isomorphism type is too hard an invariant, although it is the best possible
for distinguishing structures. If one can show that a strong invariant does not
distinguish between structures in a certain class of structures, then one knows
that any invariant that would distinguish should be even more powerful. Winning
strategies in various Ehrenfeucht-Fräıssé games provide such invariants.

One of the most celebrated problems solved that was in this area, and which was
also one of the starting points for further investigation, was Whitehead’s problem,
which asks whether all Whitehead groups1 are free abelian. Saharon Shelah proved

Received by the editors October 17, 2008 and, in revised form, October 11, 2009.
2010 Mathematics Subject Classification. Primary 03C55; Secondary 03C52.
The first author was partially supported by the Academy of Finland, grant 1106753.
1A group G is Whitehead if it is abelian and: For all abelian groups B and surjective homo-

morphism f : B → G with ker(f) ∼= Z there exists a homomorphism g : G → B with f ◦ g = idG.

c©2011 American Mathematical Society
Reverts to public domain 28 years from publication

3309



3310 TAPANI HYTTINEN AND VADIM KULIKOV

in 1974 that the answer is independent of ZFC. A similar question that has been
studied is whether an almost free group is free. An almost free group is such a group
that all its countable subgroups (or more generally, all subgroups of size < κ for
κ an uncountable cardinal) are free, and similarly for free and almost free abelian
groups. Many other properties of free and almost free groups are studied in this
context; they also appear in the present article (Section 5).

In the 1950s A. Ehrenfeucht and R. Fräıssé introduced back-and-forth systems
and what we call the Ehrenfeucht-Fräıssé games. They showed in particular that
player II has a winning strategy in this game of length n < ω on structures A
and B in a finite relational vocabulary if and only if the structures satisfy exactly
the same first-order formulas of quantifier rank n. Carol Karp proved in 1965 that
having a winning strategy (of player II) in an EF-game of length ω is equivalent to
L∞ω-equivalence. These characterizations have already proved to be very useful.
Instead of the property where the structures satisfy the same L∞ω-formulas, which
is very subtle and difficult to handle, we have back-and-forth systems or winning
strategies, which are (almost) always easier and more intuitive concepts.

In 1977, Kueker introduced countable approximations which are closely related
(as we shall see in Section 4) to EF-games. Kueker studied how much information
about a model can be obtained by looking at its countable submodels. It turns
out that two structures have a closed unbounded set of isomorphic countable sub-
structures if and only if they are L∞ω-equivalent, which by the above discussion is
equivalent to having a winning strategy for player II in the EF-game of length ω.

There is a natural modification of EF-games (the weak EF-games), which in a
special case gives an equivalence to Kueker’s approach. This modified game however
seems easier for player II, i.e. provides a weaker equivalence. But in fact it is not
the case (see Theorem 4.1).

The concept of weak EF-games is a natural modification of EF-games, also in a
more technical way: In literature when one proves that player I wins the EF-game
of some length, the given argument is often stronger than is actually needed – it in
fact provides a winning strategy for him already in one of the weak EF games (it
depends on the situation which one). This raises in particular the question as to
whether the games are equivalent.

This article can be seen as an investigation of the idea of this new game, gener-
alizing the concept of countable approximations to “uncountable approximations”,
giving new viewpoints on characterizations of equivalences, introducing new simi-
larity relations between structures and finally constructing models with interesting
properties with respect to the given similarities. For example, we give a method to
construct structures on which the weak game of length κ can be non-determined
for certain κ, and this method also provides structures with non-reflecting winning
strategies (see Section 6).

The authors wish to express their gratitude to Jouko Väänänen who suggested
the topic of this paper.

1.2. The weak game and a sketch of the results. We introduce a similar-
ity2 relation on the class of first order L-structures for some vocabulary L. We
define a two player game, the weak Ehrenfeucht-Fräıssé game, which defines this
relation in the same manner as the ordinary Ehrenfeucht-Fräıssé game defines the

2We use the word similarity relation instead of equivalence relation, because the relations we
consider are not necessarily transitive.
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EF-similarity relations.3 In the weak Ehrenfeucht-Fräıssé game of length α on
structures A and B, players I and II choose points from both structures. In the
end player II wins if and only if the chosen substructures of size � |α| are isomor-
phic; notably the isomorphism can be arbitrary to contrast the ordinary EF-game.
We denote the weak EF-game of length α on structures A and B by EF∗

α(A,B).
In the case of game length ω, the question of whether EF∗

ω is determined and
whether it has any difference to the ordinary Ehrenfeucht-Fräıssé game was essen-
tially solved – in a somewhat different context and formulation – in [Kue]. Our
proof however does not rely on Kueker’s, and we carried it out before we actually
noticed the coincidence. It turns out that a player wins EFω if and only if he or
she wins EF∗

ω, and since EFω is determined, EF∗
ω is also determined.

Using this game we are able to generalize Kueker’s equivalence relation to longer
games. In fact, we define two weak games. The other one is denoted EF◦. EF◦ is
weaker than EF, and EF∗ is weaker than EF◦. We concentrated more on studying
EF∗, because it has clear model theoretic and set theoretic interpretations (see
Theorem 2.14 and Section 5, where a connection to the cub-game is drawn), it is
easier to study and, most importantly, since the game EF◦ falls in between the two
other games, many results for EF∗ imply results for EF◦. When we say the weak
EF-game, we mean EF∗.

To sum up, we give the results listed below. If for any X ∈ {I, II} we have that
X wins the game G if and only if X wins G′, then we say that these games G and
G′ are equivalent, and if not, we say that they are different.

• (Theorem 3.2) If κ<λ = κ, then if player I has a winning strategy in
EFλ(A,B), then he also has it in EF∗

κ(A,B).
• (Theorem 4.1) The games EFω and EF∗

ω are equivalent.
• (Examples 4.2 and 4.3) If ω < α < ω1, then EF∗

α is properly weaker than
EFα.

• (Corollary 5.2) It was shown in [MekSheVää] that if the existence of a certain
large cardinal is consistent, then it is consistent that CH holds and EFω1

is determined on structures of size � ℵ2. This implies (using Theorem 3.2)
that it is consistent that all the games EFω1

, EF◦
ω1

and EF∗
ω1

are equivalent
on structures of size � ℵ2 and are all determined.

• (Theorems 5.8 and 5.9) Assuming �ω1
in [MekSheVää], groups F and G of

cardinality ℵ2 were constructed so that EFω1
(F ,G) is not determined. On

these structures EF∗
ω1

is determined and II wins. This is easy to generalize
to �κ and EFκ, EF

∗
κ.

• (Theorems 5.10, 5.11, 5.15 and 5.14) Using these structures F and G we
can construct structures F ′, G′, M(F) and M(G) (under GCH all are of
cardinality ℵ2) such that EFω1

(F ′,G′) is non-determined, but player II wins
EF◦

ω1
(F ′,G′); the game EF◦

ω1
(M(F),M(G)) is non-determined, but II wins

EF∗
ω1
(M(F),M(G)).

• (Theorem 5.21) It is consistent with ZFC that there are structures A and
B of cardinality ℵ2 such that EF∗

ω1
(A,B) is not determined.

• (Theorem 5.22) In ZFC, there are structures A and B (of course larger than
ℵ2) such that EF∗

ω1
(A,B) is non-determined.

3The relations being “player I does not have a winning strategy in the EF game between A
and B” and “player II has a winning strategy in the EF game between A and B”.
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• (Example 4.4 and Theorems 6.1, 6.2) In ZFC there are structures A and
B such that player II has a winning strategy in EF∗

β(A,B) but not in
EF∗

α(A,B), where α < β are ordinal numbers. It is consistent with ZFC
that the above holds with α and β both being cardinals.

Notation

In this paper structures are ordinary structures of a first-order vocabulary L
unless stated otherwise. They are denoted by letters A, B, C, and their domains,
respectively, by A, B, C. Also, dom(A) is the domain of A. If f : X → Y is a
function, we denote X = dom(f), the domain of f , f [A] or fA, the image of a set
A ⊂ X, as well as f−1B = f−1[B] as the inverse image of a set B ⊂ Y . Range is
denoted as ran(f) = f [X].

We use standard notation from cardinal arithmetic, e.g. κ<λ =
⋃

α<λ κ
α for κ

and λ cardinals, and AB means the set of all functions with domain B and range a
subset of A. Sometimes, though, κλ really means |κλ|, i.e. the cardinality of the set
of all functions λ → κ, but it should be clear from the context which one is being
considered. There is no difference between 2ℵ0 and 2ω except that when we write
in the latter way, we want to emphasize that we are dealing with a well ordering
rather than a cardinal number.

For a subset A of an ordinal, OTP(A) (order type) denotes the ordinal which is
order isomorphic to A. We follow [MekSheVää, HytSheVää] and many others in
the notation Sκ

λ = {α < κ | cf(α) = λ}, and cf(α) is the least ordinal which can be
mapped into α cofinally, i.e. so that the image has no strict upper bound in α.

2. Definitions

2.1. Definition. A game Gγ(S) consists of a set S, game length γ (an ordinal) and
a winning set W ⊂ (S × S)γ . It is played between two players, I (he) and II (she).
On the move β < γ player I chooses aβ ∈ S and then II chooses bβ ∈ S. Player II
wins if and only if (ai, bi)i<γ ∈ W . Otherwise I wins.

2.2. Definition. Let A and B be structures and γ an ordinal. The Ehrenfeucht-
Fräıssé game of length γ, EFγ(A,B), is played as follows. On the move α, α < γ,
player I chooses an element aα ∈ A (or bα ∈ B). Then II answers by choosing an
element bα ∈ B (resp. aα ∈ A). Player II wins if the function f which takes aα to
bα for each α < γ is a partial isomorphism A → B. Otherwise player I wins.

2.3. Definition. Let A, B and γ be as in Definition 2.2. The weak Ehrenfeucht-
Fräıssé game of length γ, EF∗

γ(A,B), is played as follows. At the move β < γ

Player I: chooses an element aβ ∈ A ∪B.
Player II: chooses an element bβ ∈ A ∪B.

Let X = {aβ | β < γ} ∪ {bβ | β < γ} be the set of all chosen elements. Player II
wins if the substructures generated by X ∩A and X ∩B are isomorphic. Otherwise
I wins.

Remark. Definition 2.3 makes sense only for relational vocabularies. If there are
function symbols, then we should talk about the generated substructures 〈X ∩ A〉
and 〈X∩B〉 which might be more homogeneous and more likely isomorphic than the
actual sets X∩A and X∩B. That is why we use relational vocabularies throughout
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the paper except at one point (which may also demonstrate the difference), in
Section 5.

2.4. Definition. The game which is exactly as in Definition 2.3, but where II has
to play from the different structure than I did on the same move, will be denoted
EF◦

γ(A,B).

By the weak Ehrenfeucht-Fräıssé game we will refer to the game EF∗ defined in
Definition 2.3, and by the weak EF-games we will refer to both EF∗ and EF◦.

2.5.Definition. A strategy for player I in some game Gγ(S) is a function τ : S<γ →
S. A strategy τ of player I is winning if player I always wins the game Gγ(S) by
playing the element τ ((bα)α<β) on the βth move, where bα are the elements that
player II has chosen before the βth move, for each β < γ. Analogously for player
II.

Note that in the case of Ehrenfeucht-Fräıssé games on structures A and B, a
strategy is a function τ : (A∪B)<γ → (A∪B). A game is said to be determined if
one of the players has a winning strategy; otherwise, it is said to be not determined
or non-determined.

2.6. Definition. Assume that τ is a strategy for player I and σ is a strategy for
player II. Consider the game where I uses τ and II uses σ. If II wins, we say that
σ beats τ , and vice versa.

2.7. Lemma. A game G is non-determined if and only if for every strategy τ of I
there exists a strategy for II that beats τ , and for every strategy σ of II there exists
a strategy for I that beats σ.

Proof. Straight from the definitions. �

Let us introduce some notation that will be used throughout the paper:

X ↑G Player X has a winning strategy in the game G,

A ∼= B A and B are isomorphic,

A ∼γ B means the same as II↑EFγ(A,B),
A ∼◦

γ B means the same as II↑EF◦
γ(A,B),

A ∼∗
γ B means the same as II↑EF∗

γ(A,B).
All of the relations, ∼γ , ∼◦

γ and ∼∗
γ are equivalence relations on the class of

L-structures.
It is clear that

II↑EFγ(A,B) ⇒ II↑EF◦
γ(A,B) ⇒ II↑EF∗

γ(A,B)
and

I↑EFγ(A,B) ⇐ I↑EF◦
γ(A,B) ⇐ I↑EF∗

γ(A,B).
The converses are those which are hard to prove or disprove.

An easy example shows that EFk(A,B) and EF∗
k(A,B) are non-equivalent games

for finite k > 1.

2.8. Example. Let A = N and B = Z equipped with the usual ordering on both.
Then I wins EFk(A,B) by first playing 0 ∈ N and then n − 1 ∈ Z, where n is the
first move by II, so I↑EFk(A,B). On the other hand all finite linear orderings are
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isomorphic if and only if their cardinality is the same. Thus II ↑ EF◦
k(A,B) and

II ↑EF∗
k(A,B). In fact II ↑EF∗

k(A,B) holds for all k < ω and for linear orders A
and B.

Let us now turn our attention to infinite games. Let κ be a cardinal. Consider the
game EF∗

κ(A,B). We will show that under the assumption κ<κ = κ player II has a
winning strategy in EF∗

κ(A,B) if and only if the set of isomorphic substructures of
A and B of size κ (see (∗) below) contains a κ-cub set, and player I has a winning
strategy if and only if there is a κ-cub set of non-isomorphic such substructures.
The used concepts will be defined first.

2.9. Definition. Let (X,<) be a partial order. We say that a subset C ⊂ X is a
λ-cub if the following conditions are satisfied:

Closeness: Assume that (ci)i<λ is an <-increasing chain of elements of C and
there exists an element c ∈ X such that ∀(i < λ)(ci < c) and for all c′ ∈ X if
c′ < c, then c′ < ci for some i < λ. Then c ∈ C. The element c is called the
supremum of the chain (ci)i<λ.

Unboundedness: For each c ∈ X there exists c′ ∈ C such that c < c′.

Notation. [X]<κ+

= {Y ⊂ X | |Y | < κ+}. This is not to be confused with the

already used (X)<γ = {f : α → X | α < γ}. The set [X]<κ+

= {Y ⊂ X | |Y | < κ+}
equipped with the proper subset relation Y < Y ′ ⇐⇒ Y � Y ′ is a partially

ordered set, and it is understood what is meant by a λ-cub subset of [X]<κ+

. A

set C ⊂ [X]<κ+

is cub if it is λ-cub for all λ < κ+.

Let A and B be two structures and let

(∗) S = {X ⊂ A ∪B | |X| � κ, X ∩ A ∼= X ∩ B} ⊂ [A ∪B]<κ+

.

Continuing this approach let us define:

2.10. Definition. Let A and B be some structures of the same vocabulary and
λ, μ � κ non-zero cardinals, the length of the game κ being infinite. Let us define

the game
∗
EFλ,μ

κ (A,B) which is played between I and II as follows. On the move
α < κ,

Player I: chooses Xα ⊂ A ∪B so that |Xα| � λ, and then
Player II: chooses Yα ⊂ A ∪B so that |Xα| � μ.

In the end II wins if the substructures generated by A ∩
⋃

α<κ Xα ∪ Yα and B ∩⋃
α<κ Xα ∪ Yα are isomorphic. Otherwise I wins.

In Definition 2.3, EF∗
α was defined for ordinals α. We shall now see that when

α = κ is an infinite cardinal, the defined games coincide.

2.11. Theorem. Let λ, μ and κ be non-zero cardinals such that λ, μ � κ and κ is

infinite. Player I (II) wins the game
∗
EFλ,μ

κ (A,B) if and only if he (she) wins the
game EF∗

κ(A,B).
Proof. Fix a bijective map f : κ× κ → κ such that for each α we have f(α, β) � α.

Assume first that II has a winning strategy in the game
∗
EFλ,μ

κ . Then the strategy

of II in EF∗
κ(A,B) is as follows. She imagines that she is playing

∗
EFλ,μ

κ against
I. On each move she chooses Xα ⊂ A ∪ B according to her strategy in the game
∗
EFλ,μ

κ , and when he chooses an element xα ∈ A ∪ B, she considers it as the set
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{xα} being played by I in her imaginary game. Also, she enumerates all these sets
Xα = {xα,β | β < κ} (enumeration need not be one-to-one), and on the γth move
she plays xf−1(γ) in the actual game. Thus she eventually picks the same set as she

would in
∗
EFλ,μ

κ .

On the other hand, if II wins EF∗
κ(A,B) the strategy for her in

∗
EFλ,μ

κ is a
reasoning somewhat converse to the previous: She imagines that they are playing
EF∗

κ. Every time he chooses a set Xα ∈ A ∪ B, she enumerates it, Xα = {xα,β |
β < κ}, and imagines that he played xf−1(α) in the game EF∗

κ. In the actual game
she plays {xγ}, where xγ is according to the winning strategy in EF∗

κ. Eventually
the same sets are enumerated as if they were playing the imaginary game of II. So
the resulting substructures are isomorphic, as she used a winning strategy.

The proofs for player I are completely analogous. �

Remark. This shows that actually all games
∗
EFλ,μ

κ (A,B), λ, μ � κ, are equivalent

to the game
∗
EFκ,κ

κ (A,B).
It is also not difficult to see that in

∗
EFκ,κ

κ (A,B) we could require player II to
choose on each move an X ⊂ A ∪ B such that X ∩ A ∼= X ∩ B and that it would
not change the game (i.e. II wins exactly on the same structures as before, as well
as I).

2.12. Lemma. Let A be any set of size > κ, κ a regular cardinal, and α an ordinal
such that κ<α =

∣
∣⋃

β<α κβ
∣
∣ = κ. Let f : A<α → A be any function. Then the set

W = {X ⊂ A | X is closed under f and |X| � κ}

is κ-cub in [A]<κ+

.

Proof. We have to verify closeness (i) and unboundedness (ii):

(i) If X ∈ [A]κ
+

, then by κ<α = κ there exist X ′ ⊂ A such that |X ′| = κ, X ′ is
closed under τ and X ∪ {τ (∅)} ⊂ X ′. So X < X ′ ∈ W .

(ii) Assume (Xβ)β<κ is increasing and each Xβ is closed under τ . To see that
⋃

β<κ Xβ is also closed under τ , let k ∈
(⋃

β<κ Xβ

)<α

. Then k ∈ (Xβ)
γ for

some β < κ and γ < α � κ, but Xβ is closed under τ . �

2.13. Lemma. Let τ (resp. σ) be a winning strategy for I (resp. II) in any of
the three Ehrenfeucht-Fräıssé games of length κ, and suppose X ⊂ A ∪B is closed
under τ (resp. σ) and |X| = κ. Then X ∩ A �∼= X ∩ B (resp. X ∩A ∼= X ∩ B).

Proof. Assume first that τ is a winning strategy for I.
We will show that if X = Y ∪ Z (Y ⊂ A, Z ⊂ B), then Y and Z cannot be

isomorphic. Assume without loss of generality that τ is a winning strategy for I in
EFκ(A,B). If there were an isomorphism f : Y ∼= Z, then II could win the game
EFκ(A,B) when I uses τ : She plays according to the isomorphism f . Note that
the first move of I τ (∅) is in Y ∪ Z, as are all the subsequent moves, which is a
contradiction.

On the other hand, assume that σ is a winning strategy for II without loss of
generality in EF∗

κ(A,B). If it were X∩A �∼= X∩B, then I would win by enumerating
all of X. �
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By using the new Definition 2.10, previous lemmas and Theorem 2.11, it is not
difficult to see the following (recall from (∗) that S = {X ⊂ A∪B | |X| � κ, X∩A ∼=
X ∩ B}).

2.14. Theorem. If S (resp. [A ∪ B]<κ+ \ S) contains a κ-cub set, then II (resp.
I) has a winning strategy in EF∗

κ(A,B). If κ<κ = κ, then the converse is also true:

If II (resp. I) wins the game EF∗
κ(A,B), then S (resp. [A ∪B]<κ+ \ S) contains a

κ-cub set. �
Proof. Assume that S contains a cub set C. Then player II can pick an increasing
sequence of elements of C when playing EFκ,κ

κ (A,B), which leads to a win. Assume
κ<κ = κ and that player II has a winning strategy σ in EF∗

κ(A.B). Then C = {X ⊂
A ∪ B | X is closed under σ} is a κ-cub set by Lemma 2.12. Moreover, if X ∈ C,
then X ∈ S by Lemma 2.13. �
2.15. Corollary. If I (resp. II) does not have a winning strategy in EF∗

κ(A,B),
then S (resp. [A ∪B]<κ+ \ S) is κ-stationary (intersects all κ-cub sets). �

3. Similarity of EFκ and EF∗
κ

Since the weak game is easier for the second player, the implications which are
shown in Figure 1 are immediately verified.

II↑EF∗
κ(A,B)

��
¬I↑EF∗

κ(A,B)

¬I↑EFκ(A,B)

���������������
II↑EFκ(A,B)��

����������������������

Figure 1. Implications that follow directly from the definitions
of the games.

One more implication can be proved under κ<κ = κ:

3.1. Theorem. Let A and B be any structure and κ a cardinal such that κ<κ = κ.
Then I↑EFκ(A,B) ⇒ I↑EF∗

κ(A,B).
For later needs we shall prove a slightly more general result:

3.2. Theorem. Let A and B be any structure κ a cardinal and α an ordinal satis-
fying κ<α =

∣
∣⋃

β<α κβ
∣
∣ = κ. Then I↑EFα(A,B) ⇒ I↑EF∗

κ(A,B).
Proof. Assume that τ : (A ∪ B)<α → (A ∪ B) is the winning strategy for player I
in EFα(A,B). We now claim that the set

W = {X ∈ [A ∪B]<κ+ | X is closed under τ and τ (∅) ∈ X} ⊂ [A ∪B]κ
+

is κ-cub by Lemma 2.12, and for any X ∈ W we have X ∩ A �∼= X ∩ B by Lemma
2.13. Thus W is a κ-cub outside S.

Now by Theorem 2.14 I has a winning strategy in the game EF∗
κ(A,B), and so

also in the game EF◦
κ(A,B). �



WEAK EHRENFEUCHT-FRAÏSSÉ GAMES 3317

3.3.Corollary. If κ satisfies κ<κ=κ and EFκ(A,B) is determined, then EF∗
κ(A,B)

as well as EF◦
κ(A,B) are determined and

A ∼κ B ⇐⇒ A ∼◦
κ B ⇐⇒ A ∼∗

κ B.

Proof. When the EF-game is determined, we can add the implication ¬I↑EFκ(A,B)
→ II↑EFκ(A,B) to the diagram of Figure 1, and by Theorem 3.2 we can add the
implication ¬I ↑ EF∗

κ(A,B) → ¬I ↑ EFκ(A,B). After completing all implications
which follow by combining the existing ones, we obtain that all are equivalent:

II↑EF∗
κ(A,B)
��

��

��

���
��

��
��

��
��

��
��

��
��

�

¬I↑EF∗
κ(A,B)

¬I↑EFκ(A,B)
��

���������������		



��������������������
II↑EFκ(A,B)����

��

�������������

�

4. Countable games

The shortest infinite game EF∗
ω. Let S = {X ⊂ A ∪ B | X ∩ A ∼= X ∩

B and |X| � ω} ⊂ [A ∪B]<ω1 for some structures A and B. Recall that A ≡∞ω B
means that for all ϕ ∈ L∞ω, A |= ϕ ⇐⇒ B |= ϕ. It was proved in [Kue] (Theorem
3.5) that

(a) A ≡∞ω B ⇐⇒ S contains a cub-set,
(b) A �≡∞ω B ⇐⇒ [A ∪B]<ω1 \ S contains a cub-set.

This can be reformulated by Theorem 2.14 as follows:

(a′) A ≡∞ω B ⇐⇒ II↑EF∗
ω(A,B),

(b′) A �≡∞ω B ⇐⇒ I↑EF∗
ω(A,B).

4.1. Theorem. The games EF◦
ω(A,B) and EF∗

ω(A,B) are determined for every A
and B, and

A ∼ω B ⇐⇒ A ∼◦
ω B ⇐⇒ A ∼∗

ω B.

Proof. It is well known that EFω is determined, because it is a closed game. Because
ω<ω = ω, we can apply Corollary 3.3. �

Remark. One can also obtain Theorem 4.1 also from (a′), (b′) and the characteri-
zations of L∞ω-equivalence by Karp:

(a′′) A ≡∞ω B ⇐⇒ II↑EFω(A,B),
(b′′) A �≡∞ω B ⇐⇒ I↑EFω(A,B).

Counterexamples for game length α, ω < α < ω1. As mentioned, the result
of Theorem 4.1 does not work for finite ordinals (Example 2.8) and it does not
generally extend, for example, to ordinals ω < α < ω1 either.

4.2. Example. Let A = B = ω1, R be a unary relation satisfying RA = ω and
RB = ω1 \ ω. Now clearly A ∼ω B. Also if I fills the set ω ⊂ A during the
first ω moves, the second player loses the ordinary EF game on the next move, i.e.
I ↑ EFω+1(A,B). But II survives in the weak game. She survives as long as the



3318 TAPANI HYTTINEN AND VADIM KULIKOV

length of the game is countable, because the only thing she has to do is to choose
the same amount of points with properties R and ¬R as I does.

4.3. Example. Consider the structures constructed in [NadSta]: For B ⊂ ω1 let

Φ(B) =
⋃

α<ω1

{α} × τα,

where τα = 1+Q if α ∈ B and τα = Q if α /∈ B. The order on Φ is lexicographical;
that is, (α, q) < (β, p) if α < β or α = β and q < p. We now set A = Φ(∅) and
B = Φ(ω1 \ ω). The game EFω+2(A,B) is a win for I, which implies the same for
EFω+n(A,B), where n � 2.

On the other hand it is easy to see that II↑EF∗
ω+n(A,B).

The following example is given to manifest that player II can lose a shorter game
and win a longer one.

4.4. Example. Let A = 〈R, <〉 be the real numbers with the usual ordering and B
with domain B = R × ω1 and lexicographical ordering ((x, α) < (y, β) ⇐⇒ α <
β ∨ (α = β ∧ x < y)). These are dense linear orderings and are EFω-equivalent
as a simple back-and-forth argument shows; thus II ↑ EF∗

ω(A,B). However I ↑
EF∗

ω+1(A,B): He can play so that an unbounded set of A is chosen during the first
ω moves. But since any countable subset of B is bounded, he can play an upper
bound on the last move, ω+1. But when the length of the game is increased to ω+ω,
player II wins again by picking countable elementarily equivalent substructures. In
fact I↑EF∗

α(A,B) for successors ω < α < ω1 and II ↑EF∗
α(A,B) for limit ordinals

ω � α < ω1.

5. Longer games

In this section we will show that it is consistent with ZFC that
• EFω1

and EF∗
ω1

are equivalent on structures of cardinality � ℵ2 and are
both determined, provided that the existence of a certain large cardinal is
consistent.

• There are structures A and B such that |A| = |B| = ℵ2, and A �∼ω1
B but

A ∼∗
ω1

B.
• There are structures A, B, A′ and B′ such that |A| = |B| = |A′| = |B′| = ℵ2,
and A �∼ω1

B but A ∼◦
ω1

B and A′ �∼◦
ω1

B′ but A′ ∼∗
ω1

B′.
• There are structures A and B such that |A| = |B| = ℵ2 and EF∗

ω1
(A,B) is

not determined.
• There are structures A and B and cardinals α0 < β0 < α1 < β1 < · · · such
that |A| = |B| = ℵω·ω+1, for all n < ω, αn is regular and βn is singular, and
A �∼∗

αn
B but A ∼∗

βn
B for all n < ω.

Finally, in ZFC we prove that there are structures A and B (of course larger than
ℵ2) such that EF∗

ω1
(A,B) is non-determined.

All games can be determined on structures of size ℵ2. In [HytSheVää] the
following was proved (Corollary 13):

5.1. Theorem. It is consistent, relative to the consistency of a weakly compact car-
dinal, that CH and the game EFω1

(A,B) is determined for all A and B of cardinality
� ℵ2. �
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5.2. Corollary. Assuming the consistency of a weakly compact cardinal, it is con-
sistent that CH holds and the games EFω1

and EF∗
ω1

are equivalent and that both
games are determined on all structures of cardinality ℵ2.

Proof. By Theorem 5.1 and CH we can use Corollary 3.3 to obtain the result. �

A ∼∗
κ B �⇒ A ∼κ B on structures of size κ+. Let us fix an uncountable reg-

ular cardinal κ. We shall construct groups F and G such that EFκ(F ,G) is non-
determined. In fact F is the free abelian group of cardinality κ+ and G will be an
almost free abelian group of the same cardinality constructed using the combina-
torial principle �κ. This construction was done in [MekSheVää] in the case κ = ω1

and is almost identical. The proof that EFκ(F ,G) is non-determined is exactly the
same as is the proof for κ = ω1 in [MekSheVää]. Formally in this section, these
groups will be models of a relational vocabulary.

5.3. Definition. The statement �κ says that there exists a sequence 〈Cα | α <
κ+,

⋃
α = α〉 of sets with the properties

(i) Cα is a closed and unbounded subset of α.
(ii) If cf(α) < κ, then |Cα| < κ.
(iii) If γ is a limit point of Cα, then Cγ = Cα ∩ γ.

For the proof of the next theorem the reader is referred to [Jech] or to the primary
source of this result by Jensen [Jen].

5.4. Theorem. If V = L, then �κ holds. �

This square principle, �κ, implies the existence of a non-reflecting stationary set

E on κ+ which we will use to construct our groups. Recall the notation Sκ+

ω =
{α < κ+ | cf(α) = ω}.

5.5. Lemma. Assume �κ. Then there exists an ω-stationary set E ⊂ Sκ+

ω such
that for every ordinal γ < κ+ of cofinality κ, the set E ∩ γ is non-stationary on γ.

Proof. This is standard and can be found, for example, in [Jech]. �

Now we are ready to construct the groups we talked about at the beginning of
this section. We shall use some well-known facts about free abelian groups, direct
products, etc. As we already noted, in this section groups will be models of a
relational vocabulary. Substructures are not necessarily groups.

As both �κ and GCH hold if V = L, the use of GCH makes no contradiction.
The first group F will be the free abelian group generated by κ+:

F =
⊕

i<κ+

Z.

Another group will be a so-called almost free abelian group. The idea is that an
almost free group G is the union G =

⋃
i<κ+ Gi of its subgroups Gi satisfying:

• Each Gi is free.
• Gi ⊂ Gj whenever i < j.
• G is not free.

5.6. Definition. A subgroup S of an abelian group G (write it additively) is pure
if for all x ∈ S (∃y ∈ G(ny = x)) → (∃y ∈ S(ny = x)). That is, if x ∈ S is divisible
in G, it has to be divisible in S.
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Let Z
κ+

stand for the direct product Πα<κ+Z of κ+ copies of integers. By xγ

we shall denote the element of Zκ+

which is zero on coordinates �= γ and 1 on the
coordinate γ.

For each δ ∈ E (of Lemma 5.5) let us fix an increasing cofinal function ηδ : ω → δ
so that ηδ[ω] ∩E = ∅ (for instance take successor ordinals only). Define

zδ =

∞∑

n=0

2nxηδ(n) ∈ Z
κ+

.

For each α � κ+ let Gα be the smallest pure subgroup of Zκ+

which contains the
set {xγ | γ < α} ∪ {zδ | δ ∈ E ∩ α}. We set G = Gκ+ . Also let Fα be the free
abelian group generated by {xγ | γ < α} and set F = Fκ+ . We shall denote by
〈yα | α < β〉 the group generated by the set {yα | α < β}.

The proof of the following lemma and the following theorem are exactly as in
[MekSheVää], with ω1 changed to κ.

5.7. Lemma. For each α < κ+ the group Gα is free, and if β ∈ α \ E, then any
free basis of Gβ can be extended to a free basis of Gα. �

5.8. Theorem. If �κ and GCH, in particular if V = L, then EFκ(F ,G) is not
determined.

Remark. GCH can be avoided; see [MekSheVää].

Proof. (Sketch.) Player I does not win: The set S = {α | E ∩ α is non-stationary}
is stationary. Given a strategy τ of I, the set {α | Fα ∪ Gα is closed undet τ}
intersects S being cub and there is an isomorphism Fα

∼= Gα. So II just follows the
isomorphism.

Player II doe not win: Assume that σ is a winning strategy for player II. Player
I takes such an α ∈ E that Fα ∪ Gα is closed under the first ω moves of II. In
those first ω moves player I picks {xηα(n) | n < ω} and a direct summand of Fα.
Let J be the set played so far in Gα. In the next ω moves I picks the smallest pure
subgroup of G containing J ∪ {zδ}. Denote it by A. Now A/J is not a free group,
but the corresponding structure K/I in F (I are the first ω moves in F , and K
are the first ω+ω moves) is free. In the ordinary EF-game the isomorphism has to
respect the order of moves, hence a contradiction. �

5.9. Theorem. Player II wins EF∗
κ(F ,G).

Proof. Recall Theorem 2.11. In the game
∗
EF1,κ

κ player II can choose on each move
the set Fβ ∪ Gβ , where β is such that all elements played before this move are in
Fβ ∪ Gβ . Eventually substructures Fα and Gα are picked at the end of the game.
By Lemma 5.7 they are isomorphic. �

Remark. In the article [HytSheVää], the authors construct linear orders I and J so
that EFω1

(I, J) is non-determined using a weaker assumption than we did for the
construction of F and G. However, it seems to the authors that there is no reason
why player II would win the game EF∗

ω1
(I, J). Also the theory of abelian groups

is more interesting in this context, because it is stable.
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A ∼∗
κ B does not imply A ∼◦

κ B, and A ∼◦
κ B does not imply A ∼κ B

for A and B of cardinality κ+. Here we shall show that all these games can
be different on structures of size κ+. In all parts of this section κ is a regular
uncountable cardinal.

To prove that EF◦
κ is different from EFκ, we use a vocabulary with function

symbols.

A ∼◦
κ B does not imply A ∼κ B. In this section we will use groups as models of

a functional vocabulary. Thus instead of relation +R we have function symbols +
and − whose interpretations satisfy +(x, y) = z ⇐⇒ (x, y, z) ∈ +R, etc.

5.10. Theorem (GCH). Let F ′ and G′ be the groups constructed in the previous
section presented with function symbols +, −. Then EFκ(F ′,G′) is non-determined.

Proof. The same reason as to why EFκ(F ,G) is non-determined. �

5.11. Theorem (GCH). Let F ′ and G′ be the groups constructed in the previous
paragraph presented with function symbols +, −. Then player II wins EF◦

κ(F ′,G′).

Proof. Note that now any substructure is a subgroup. Let us provide a winning
strategy for II by induction. Assume that on the move α the position of the game
is such that the players have chosen X ⊂ F ′ and Y ⊂ G′ and the subgroups 〈X〉
and 〈Y 〉 are isomorphic. Assume that I next picks x ∈ F ′. The dimension of a free
abelian group is the cardinality of its basis. Note that it is unique, and in the case
of abelian groups the dimension of a subgroup is always less than or equal to the
dimension of the super-group. If

dim〈X ∪ {x}〉 > dim〈X〉,
then obviously

dim〈X ∪ {x}〉 = dim〈X〉+ 1,

wherefore let II pick an element y ∈ G′ such that

dim〈Y ∪ {y}〉 = dim〈X ∪ {x}〉
(it is possible since X and Y are still subsets of dom(F ′) and dom(G′) of size
κ, while | dom(F ′)| = | dom(G′)| = κ+). On the other hand, if x is such that
dim〈X ∪ {x}〉 = dim〈X〉, then we have three cases:

C1: dim〈X〉 < ω. She has to pick an element which is already in 〈Y 〉.
C2: dim〈X〉 � ω and x ∈ 〈X〉. She has to pick an element which is already in

〈Y 〉.
C3: dim〈X〉 � ω and x /∈ 〈X〉. She has to pick an element which is in G′ \ 〈Y 〉.

If I picks an element from G′ instead of F ′, the reasoning for player II would be
exactly the same, with the structures switched.

This strategy guarantees that at each move the groups generated by the played
sequences remain isomorphic, and simultaneously it guarantees that if player I picks
at the end of the game κ points from one of the structures, then the same amount is
picked from the other one and moreover the chosen groups are isomorphic, because
their sets of generators are of the same cardinality. �

5.12. Corollary. In the class of structures of size κ+, A ∼◦
κ B does not imply

A ∼κ B. �
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A ∼∗
κ B does not imply A ∼◦

κ B. Let us consider two structures, A and B, such
that

• EFκ(A,B) is non-determined,
• II↑EF∗

κ(A,B),
• |A| = |B| = κ+.

Such structures A and B of cardinality κ+ exist by the previous section (the free
and almost free abelian groups of cardinality κ+).

Using these structures, we shall construct new structures M(A) and M(B) such
that EF◦

κ(M(A),M(B)) is non-determined but II↑EF∗
κ(M(A),M(B)).

We have |M(A)| = |M(B)| = 2κ. If GCH holds, then |M(A)| = |M(B)| = κ+.

5.13. Definition. Let A be an L-structure. Let

L+ = L ∪ {<} ∪ {Pα | α < κ, Pα is a unary relation symbol},
where the new symbols are not in L. See the remark at the end of this section as
to how to get rid of an infinite vocabulary. We define M(A) to be the L+-structure
with the domain

dom(M(A)) = {f : α+ 1 → A | α < κ},
and if fi ∈ dom(M(A)), i < n, and R is an n-place relation symbol of the vocabu-
lary, we define

(f0, . . . , fn−1) ∈ RM(A) ⇐⇒ (f0(α0), . . . , fn−1(αn−1)) ∈ RA,

where αi is the maximum of the domain of fi. The partial order f < g is defined
for f, g ∈ M(A) so that f <M(A) g if f ⊂ g; that is, g � dom(f) = f. The relations

Pα are interpreted as P
M(A)
α = {f | dom f = α+ 1}.

Note that if A and B are isomorphic, then M(A) and M(B) are isomorphic. Also
if (fi)i<α is an increasing chain, then the reduction of the substructure {fi | i <
α} ⊂ M(A) to L is isomorphic to the substructure {fi

(
max(dom(fi))

)
| i < α} ⊂

A. But if we have a chain {fi | i < α} in M(A) and another chain {gi | i < α} in
M(B), then if there is an isomorphism {fi | i < α} → {gi | i < α}, then it has to
be order preserving.

Recall that A and B are chosen so that EFκ(A,B) is non-determined but II ↑
EF∗

κ(A,B). We now claim that player II does not win EF◦
κ(M(A),M(B)).

5.14. Theorem. Player II does not have a winning strategy in EF◦
κ(M(A),M(B)).

Proof. Let us make a counter assumption: σ is a winning strategy for II in

EF◦
κ(M(A),M(B)).

We will find a strategy for I which beats this strategy, which is a contradiction.
Let us assume that players pick only increasing <-chains and at the move α they

pick elements from P
M(A)
α ∪ P

M(B)
α . Here there is no loss of generality, since if

player I picks only such elements, then player II is forced to do the same.
Let us define σ∗: A strategy for player II in EFκ(A,B) by

σ∗((xi)i�γ) = md[σ(〈fα〉α�γ)], where:

(xi)i�γ is the sequence of the moves previously played by I; fα is defined so that
dom fα = α + 1, fα(α) = xα, and if xα ∈ A, then for every i < α we have that
fα(i) is the ith move from A (made by I or II) and if xα ∈ B, then fα(i) is the ith
move from B; and finally md[f ] = f(max dom(f)).
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By the assumption there is a strategy τ∗ of player I in EFκ(A,B) which beats
σ∗. Let us define the strategy for I in EF◦

κ(M(A),M(B)) as follows. Assume that
(fi)i<γ is the sequence of functions ∈ M(A) ∪M(B) that player II had chosen in
the γ first moves. Let C stand for A if τ∗

(
(fi(i))i<γ

)
is in A and for B if it is in B.

Then define

τ ((fi)i<γ)=
⋃

{g∈M(C) | g is played at some move β<γ}∪
{(

γ, τ∗
(
(fi(i))i<γ

))}
.

Let us show that τ beats σ. Because τ∗ beats σ∗, the function between the
played sets which respects the moves is not an isomorphism. But there cannot be
any other isomorphism as well, since an isomorphism should respect the order <
and the levels Pα, so the only possible isomorphism would be the one induced by
the order of the moves. �

However, it is necessary for I to be able to choose from which structure to play:

5.15. Theorem (GCH). Player II has a winning strategy in EF∗
κ(M(A),M(B)).

Proof. Again, the only thing we use about A and B is that EFκ(A,B) is non-
determined but II↑EF∗

κ(A,B).
If X ⊂ A ∪ B, let

N(X) = {f ∈ M(A) ∪M(B) | ran f ⊂ X},
and if Y ⊂ M(A) ∪M(B), then

N−1(Y ) = {x ∈ A ∪ B | x ∈ ran f for some f ∈ Y }.
Realize that for all X,X ′ ⊂ A ∪ B, Y, Y ′ ⊂ M(A) ∪M(B) we have

• |X| � κ ⇐⇒ N(X) � κ,
• N(N−1(Y )) ⊃ Y ,
• N−1(N(X)) = X,
• N(X ∩ A) = N(X) ∩M(A) and N(X ∩ B) = N(X) ∩M(B),
• X ∼= X ′ ⇐⇒ N(X) ∼= N(X ′).

By Theorem 2.14 it is enough to show that there is a κ-cub set

C ⊂ S = {X ⊂ M(A) ∪M(B) | X ∩M(A) ∼= X ∩M(B), |X| � κ}.
We know that S′ = {X ⊂ A ∪ B | X ∩ A ∼= X ∩ B, |X| � κ} contains a cub set.
Let it be denoted by C ′. We claim that the set

C = {Y ⊂ M(A) ∪M(B) | Y = N(X), X ∈ C ′}
is cub and contained in S. Because X ∼= Y ⇒ N(X) ∼= N(Y ), it is clear that
C ⊂ S. Let us show that it is cub.

Let Y ∈ C. Then there is X ∈ C ′ such that X ⊃ N−1(Y ). Then N(X) ⊃
N(N−1(Y )) ⊃ Y . On the other hand, because X ∩A ∼= X ∩ B, we get

N(X) ∩M(A) = N(X ∩ A) ∼= N(X ∩ B) = N(X) ∩M(B).
Thus C is unbounded.

Assume that (Yi)i<κ = (N(Xi))i<κ is an increasing chain in C. ThenXi is in fact
an increasing chain in C ′. Thus we know

⋃
i<κ Xi ∈ C ′. But thenN

(⋃
i<κ Xi

)
∈ C,

and it easy to see that

N

(
⋃

i<κ

Xi

)

=
⋃

i<κ

N(Xi).
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It is easy to see because the functions always have a domain of cardinality less than
κ, so if f ∈ N

(⋃
i<κ Xi

)
, then surely f ∈ N

(⋃
i<α Xi

)
for some α < κ, and since

the chain is increasing this implies f ∈ Xα. �

5.16. Corollary. In the class of structures of size κ+, A ∼∗
κ B does not imply

A ∼◦
κ B. �

Remark. We used an uncountable vocabulary L+ as the vocabulary of M(A) and
M(B) because we wanted to fix the levels of the <-tree. However, we can do that
by using only a finite extension of the vocabulary, assuming that κ is a successor
cardinal. By Theorem 0.4 of Chapter VIII of [She], if T is not a superstable theory,
then there are models Ai of T , i < 2κ, for which we have |Ai| = κ for all i, and for
all distinct indices i, j the model Ai cannot be elementarily embedded in Aj .

Because the theory of dense linear orderings without end points is unstable and
has quantifier elimination, there exist 2κ (we need only κ) pairwise non-embeddable
to each other linear orderings of cardinality κ. Let {Qi | i < κ} be a collection of
such linear orderings. Let L, A and B be as at the beginning of this section and
define L+ = L∪{<,<∗, R}, where the new symbols are binary relations. Let M(A)
and M(B) be the structures defined in this section except without the relations Pα.
Let us now define M ′(A) (M ′(B) is similar). The domain is the disjoint union

dom(M ′(A)) = dom(M(A)) ∪
⋃

{Qi | i < κ}.

The symbol <∗ is interpreted as the ordering of the linear orderings Qi and R is
interpreted as follows:

(f, q) ∈ R ⇐⇒ f ∈ dom(M(A)) ∧ dom(f) = i+ 1 ∧ q ∈ Qi;

i.e. we fix the (i+1)st level by the linear ordering Qi. Now if at any move player II
plays at a different level than I, then he will play the corresponding linear ordering
and II will not be able to embed it to any other than the same one, thus losing the
game.

EF∗
ω1

can be non-determined on structures of size ℵ2. Recall that, by Corol-
lary 2.15, in order to construct A and B such that EF∗

ω1
(A,B) is non-determined,

we have to find such models A and B that the set {X ⊂ A∪B | X ∩A ∼= X ∩B} is
at least ω1-bistationary; i.e. a stationary set whose complement is also stationary
(if CH, then it is enough).

5.17. Definition. Let ω � λ � α < μ be such that λ and μ are regular cardinals
and α is an ordinal. Then let S ⊂ μ. The cub-game Gα

λ(S) is the following game
played by players I and II. On the move γ < α first player I picks xγ ∈ μ so that
xγ is greater than any element played so far in the game, and then player II chooses
yγ ∈ S so that yγ > xγ . Finally, sequences (xγ)γ<α and (yγ)γ<α are formed. Player
II wins if

(1) she has played according to the rules and
(2) clλ{yγ | γ < α} ⊂ S,

where clλB is the smallest λ-closed set which contains B.

For more on these games, see [HytSheTuu] and [Hyt].
Let us consider the following construction. Let μ be an uncountable cardinal

and S ⊂ Sμ
ω . In the following μ×ω is equipped with reversed lexicographical order
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and prμ and prω are projections, respectively, onto μ and ω. Then let

A(μ, S) = {f : α+ 1 → μ× ω | α < μ,

f is strictly increasing, according to the reversed lexicographical order,

for each n < ω the set prμ[ran(f) ∩ (μ× {n})]
is ω-closed in μ and is contained in S}

and

B(μ, S) = {f : α+ 1 → μ× ω | α < μ,

f is strictly increasing,

for each n < ω the set prμ[ran(f) ∩ (μ× {n})]
is ω-closed as a subset of μ, and if n > 0, then is contained in S}.

The structures A(μ, S) and B(μ, S) are L-structures with universes A(μ, S) and
B(μ, S), L = {�} and f � g ⇐⇒ f ⊂ g. Their cardinality is 2<μ.

Because we need to mark the levels, we will temporarily add μ-many unary
relation symbols to the vocabulary {Pα | α < μ} and interpret them to fix the
levels

PA(μ,S)
α = {f ∈ A(μ, S) | dom(f) = α+ 1}

and

PB(μ,S)
α = {f ∈ B(μ, S) | dom(f) = α+ 1}.

In the end we will show how this can be avoided and done with a finite vocabulary.
The idea is of the same nature as that of Theorems 5.14, 5.15 and the remark which
followed.

If f : γ → μ × ω, denote by fμ = prμ ◦ f and fω = prω ◦ f . The intention here
is that the structures A(μ, S) and B(μ, S) are trees and that the subtrees Aα =
{f ∈ A | ran(fμ) � α} and Bα = {f ∈ B | ran(fμ) � α} are isomorphic if and only
if α ∩ S contains a cub. If S is complicated enough, we get structures on which
EF∗

ω1
is not determined.

5.18. Theorem. Let μ > ω1 and S ⊂ Sμ
ω. If player I does not have a winning

strategy in Gω1
ω (S) and S contains arbitrarily long ω-cub sets, then he does not

have one in EF∗
ω1

(
A(μ, S),B(μ, S)

)
.

Remark. The existence of arbitrarily long cub sets means that for every α < μ,
cf(α) � ω1 there exists a subset of S which is ω-closed and of order type α.

Proof. For simplicity denote A = A(μ, S) and B = B(μ, S),
Aα = {f ∈ A | ran(fμ) � α},

and similarly

Bα = {f ∈ B | ran(fμ) � α}.
We inform the reader that this proof is probably the longest one in the present
article. We will first proof three claims and then complete the actual proof using
them.

Claim 0. For each β < μ and λ ∈ {ω, ω1}, there is an α � β such that cf(α) = λ,
α < μ, and there is an ω-cub subset of α ∩ S of order type α.
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Proof of Claim 0 (Sketch). We will give a proof for the case λ = ω1, which is longer
than the proof for the other case.

W.l.o.g. assume that cf β = ω1 and denote α0 = β. By the assumption, there
exists α1 � α0 such that there is an ω-closed (but not necessarily unbounded) set
of order type α0 in S ∩ α1. If α1 = α0, then we are done. Otherwise, find α2 > α1

such that α2∩S \α1 contains an ω-closed set of order type α1. Assume we continue
doing this until we have an increasing sequence (αi)i<ω. We could have chosen αi’s
so that supi αi ∈ S, because if we could not, then this would provide a winning
strategy for player I in Gω1

ω . Let αω = supi αi and continue until one has (αi)i<ω1

and αγ = supi<γ αi ∈ S for all γ < ω1 of cofinality ω, which is possible by the same
argument as above.

Let Ci be the ω-closed subset of αi+1 \ αi which is of order type αi. Denote
α = supi<ω1

αi. We claim that

C = {αγ | cf γ = ω} ∪
⋃

i<ω1

Ci

is an ω-cub set of order type α in α ∩ S. Clearly C ⊂ S ∩ α, because we chose
αi’s such that the limits fall in S. Also it is clearly unbounded, since for every αi

the set Ci is above αi. Let (ci)i<ω be an increasing sequence of elements of C. If
there exist i and m so that cj ∈ Ci for all j > m, then supi ci is in Ci. Other-
wise suppose ci ∈ Cmi

and (mi)i<ω is increasing. Then supi ci = αsupi mi
∈ C.

The order type of C is �
∑

i<ω1
αi � supi αi = α, but since supC = α, we have

OTP(C) = α. �Claim 0

A map g : α → α is ω-continuous if for every increasing sequence (xk)k<ω in α
we have g(

⋃
k<ω xk) =

⋃
k<ω g(xk). Thus the image of such a function is ω-closed.

Define C to be the set of such functions h:

C = {h : α → S ∩ α | α ∈ S and h is ω-continuous, increasing and unbounded}

and

Cα = {h ∈ C | dom(h) < α}.
Note that by Claim 0 C is not empty.

Claim 1. For each h ∈ C with dom(h) = α there exists an isomorphism Fh : Aα
∼=

Bα in such a way that if h ⊂ h′, then Fh ⊂ Fh′ .

Proof of Claim 1. Let h : α → S ∩α be as in the assumption. Then in particular h
is an order isomorphism α → h[α] and the latter is an ω-closed unbounded subset of
α. Hence we can write h−1 for the inverse h[α] → α. For defining the isomorphism
Fh : Aα → Bα, let f ∈ Aα be arbitrary, say f : δ → α× ω, δ < α. Put

βf = min
(
{β | f(β) /∈ h[α]× {0}} ∪ {δ}

)
.

Now for all γ < βf let Fh(f)(γ) = (h−1(fμ(γ)), 0), and for all γ � βf define

Fh(f)(γ) =

{
(fμ(γ), fω(γ) + 1), if fμ(βf ) /∈ h[α],
(fμ(γ), fω(γ)) = f(γ), if fμ(βf ) ∈ h[α].

Clearly Fh(f) ∈ Bα and in fact Fh(f) : δ → α× ω (the same domain as that of f).
We will show that Fh is an isomorphism.
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(1) Fh is one-to-one and onto. It suffices to define a working inverse map: Let
g ∈ Bα be arbitrary, g : δ → α × ω. Let βg = min

(
{β | gω(β) �= 0} ∪ {δ}

)

and let F−1(g) = u : δ → α× ω be such that

u(γ) =

⎧
⎨

⎩

h(g(γ)), if γ < βg,
g(γ), if γ � βg and gμ(βg) ∈ h[α],
(gμ(γ), gω(γ)− 1), if γ � βg and gμ(βg) /∈ h[α].

It is not difficult to check that f ∈ Aα and Fh(u) = g.
(2) Fh preserves ordering and relations Pα. For the Pα, it was already men-

tioned that ∀f [dom(f) = dom(Fh(f))]. Assume f � g. If βg � dom(f),
then for all γ < dom(f) we have Fh(f)(γ) = h−1(f(γ)) = h−1(g(γ)) =
Fh(g)(γ); thus Fh(f) � Fh(g). So assume then that βg < dom(f), in
which case βf = βg and fμ(βf ) ∈ h[α] ⇐⇒ gμ(βg) ∈ h[α]. Hence clearly
Fh(f)(γ) = Fh(g)(γ) whenever βf � γ < dom(f). The case γ < βf is as
above.

By (1) and (2) Fh is an isomorphism.
Assume that h ⊂ h′. Then by definition Fh′�dom h = Fh, so the claim fol-

lows. �Claim 1

Claim 2. Let h ∈ C and γ � dom(h). Then there exists h′ ∈ C which extends h
and γ � dom(h′).

Proof of Claim 2. Denote α = domh and let β be an ordinal satisfying
• β > γ,
• cf(β) = ω1,
• there is an ω-cub-set W ⊂ S ∩ β of order type β,
• h ∈ Cβ.

This is possible by the assumption of the theorem. Assume η : β → W is an ω-
continuous order isomorphism. Let α0 = min(W \ γ) and

αn+1 = η(αn) and αω =
⋃

n<ω

αn.

Then η � (α, αω) is a function from (α, αω) to W ∩ (α, αω). Thus we can define

h′ = h ∪ {(α, α)} ∪ η � (α, αω).

Then h′ : αω → S ∩ αω (note that because h ∈ C, α = domh ∈ S) and h′ ∈
Cβ. �Claim 2

For each γ let us define a function K(γ) : h �→ h′, where h′ = h if γ < domh and
where if γ � domh, then h′ is obtained from h using Claim 2 and the choice of η
(in the proof of Claim 2).

Now let τ be any strategy for player I in
∗
EFω1,ω1

ω1
(A,B). For simplicity let us

assume without loss of generality that τ (〈Xi〉i<β) ⊂ τ (〈Xi〉i<α) whenever β < α.
Recall that [A∪B]<μ = {F ⊂ A∪B | |F | < μ}. Define a functionG : [A∪B]<μ →

μ so that G(F ) = sup{ran(fμ) | f ∈ F}.
Notation. If f : X → X is a function and J ⊂ X, let fcl[J ] denote the closure of J
under f :

fcl[J ] = the smallest subset of X which contains P and is closed under f.
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Let τ∗ be a strategy of I in Gω1
ω (S) which will be defined using τ .

First step:

τ∗(∅) = G(τ (∅)).

Next define τ∗(〈yi〉i<α) for α = β + 1 < ω1, where yi are answers of II:
If β = 0, then let h0 be an arbitrary element of C, with the property y0 <

dom(h0). Because y0 > τ∗(∅) this implies τ (∅) ⊂ Adom(h0) ∪ Bdom(h0). Then
(independently of whether β = 0 or not) define

Xβ = (Fhβ
∪ F−1

hβ
)cl

⎡

⎣
⋃

δ�β

τ (〈Xi〉i<δ) ∪ {idyβ
}

⎤

⎦ ,

τ∗((yi)i<α) = G(τ (〈Xi〉i�β)),

hα = K(yα)(hβ).

Finally define τ∗(〈yi〉i<α) for α a limit < ω1:

Xα =
⋃

i<α

Xi ∪ {idyα
},

τ∗((yi)i<α) = G(τ (〈Xi〉i<α))

hα =
⋃

i<α

hi if
⋃

i<α

domhi ∈ S, i.e. such exists and is otherwise arbitrary.

Now let σ∗ be a strategy of II which beats τ∗, and finally the strategy σ of II in
∗
EFω1,ω1

ω1
is obtained from σ∗ by induction as follows:

σ((Xi)i<α) = Xα as defined above.

Because σ∗ beats τ∗, it is obvious that hα exists for all limit α, since
⋃

i<α domhi ∈
S. Thus for all i < ω1 we have Xi ∩ A ∼= Xi ∩ B, and moreover the isomorphisms
extend each other; i.e.

i < j ⇒ Xi ⊂ Xj and Fi ⊂ Fj ,

where Fi is the isomorphism between Xi ∩ A ∼= Xi ∩ B and Fj is the isomorphism
between Xj ∩A ∼= Xj ∩ B. Thus σ beats τ , and τ is not winning. �

5.19.Theorem. Let μ be a cardinal, S⊂Sμ
ω and Ŝ={α∈Sμ

ω1
| α∩S contains a cub}.

If player II does not have a winning strategy in

Gω1
ω1
(Ŝ),

then she does not have one in EF∗
ω1

(
A(μ, S),B(μ, S)

)
.

Proof. Let σ be any strategy of II in
∗
EFω1,ω1

ω1

(
A(μ, S),B(μ, S)

)
. Without loss

of generality, assume that whenever a sequence (Ei)i<γ is played, it holds that
i < j → Ei ⊂ Ej .

Let C be the cub set {α < μ | ∀β < α(β + β < α)}. Let G : [A ∪ B]<μ → μ

be as in the proof of the previous theorem and Ĝ a similar function with a little
modification:

Ĝ(F ) = min
{
α ∈ Ŝ ∩ C | α � G(F ))

}
.

In the first part it only matters that Ĝ(F ) ∈ Ŝ and Ĝ(F ) � G(F ).
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Let σ∗ be the strategy of player II in Gω1
ω1
(Ŝ) which is obtained from σ and Ĝ as

follows:

σ∗((αi)i<γ) = Ĝ
(
σ(({idαi+1}

︸ ︷︷ ︸
⊂B

)i<γ)
)
;

i.e. II imagines that I played the set {idαi+1} instead of αi in Gω1
ω1
(Ŝ). Let τ∗ be

the strategy of I in Gω1
ω1
(Ŝ), which beats σ∗. Then let the strategy τ be such that

if Ei ⊂ A ∪B for each i < γ are the moves of II in
∗
EFω1,ω1

ω1
, then

τ ((Ei)i<γ) = {idβ+1} ⊂ B, where β = τ∗((Ĝ(Ei))i<γ)}.
Assume the players picked X ⊂ A ∪ B. Because τ∗ beats σ∗, X ∩ B ⊂ BG(X)

contains an unbounded branch of length ω1, {idβi+1 | i < ω1}, but there is no
unbounded branch of such length in the structure X ∩ A ⊂ AG(X) (because there
is no ω-cub set in G(X)).

It remains to show that the unbounded branch I = {idβi+1 | i < ω1} would be
mapped to an unbounded branch by an isomorphism. For a contradiction assume
F to be an isomorphism. It preserves levels, and the level of idβi+1 is βi, i.e.
idβi+1 ∈ PB

βi
. So if F (idβi+1) = fi, then dom(fi) = βi + 1. Thus

β = sup{dom(f) | f ∈ F [I]} =
⋃

i<ω1

dom(idβi+1) =
⋃

i<ω1

βi,

and its cofinality is ω1. From the definition of Ĝ it follows that β is in C. Hence

(∀γ < β)(γ + γ < β),

and hence if
⋃

i prμ(ran(fi)) < β, then we had an increasing function β → α with
α < β, which is a contradiction. �

By the two theorems above it is enough to find a set S ⊂ Sμ
ω for which

ND1: player I does not have a winning strategy in Gω1
ω (S),

ND2: S contains arbitrarily long ω-cub sets,
ND3: player II does not have a winning strategy in Gω1

ω1
(Ŝ),

where Ŝ = {α ∈ Sμ
ω1

| α ∩ S contains a cub}. Once we have such a set, the game
EF∗

ω1
(A(μ, S),B(μ, S)) is non-determined.

Stationary sets whose complement satisfies ND1 are called strongly bistationary;
see [HytSheTuu]. A generic set S ⊂ Sω2

ω obtained by standard Cohen forcing
provides an example of a set which has intended properties ND1 and ND3. A
set additionally satisfying ND2 can then be obtained with the use of the following
lemma.

5.20. Lemma. Let S ⊂ μ satisfy the properties ND1 and ND3. Then there exists
S∗ ⊂ μ which satisfies ND1, ND2 and ND3.

Proof. Let f : μ → μ be the continuous map defined as follows:

f(0) = 0, f(α+ 1) = f(α) + α, f(γ) =
⋃

α<γ

f(α), when γ is a limit.

This function is clearly continuous. Let

S∗ = μ \ f [μ \ S].
Let us show that S∗ has the intended properties ND1-ND3. Note that f [S] ⊂ S∗.
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ND1: By the assumption, player I does not have a winning strategy in Gω1
ω (S).

Because f [S] ⊂ S∗, it is enough to show that I does not have a winning
strategy in Gω1

ω (f [S]). Define f−1 : μ → μ as follows:

f−1(x) = min
(
{y ∈ μ | f(y) � x}

)
.

Let τ be any strategy of I in Gω1
ω (f [S]). Then τ∗ = f−1 ◦τ ◦f is a strategy

of I in Gω1
ω (S). Now by the assumption there is a strategy σ∗ of player II

which beats τ∗. Now f ◦ σ∗ ◦ f−1 beats τ .
ND2: This is clear from the definitions of S∗ and f .
ND3: For any set A ⊂ Sμ

ω denote A∗ = μ \ f [μ \ A] and Â = {α ∈ Sμ
ω1

|
α ∩ A contains a cub}. Then because f is one-to-one and continuous, we
have that

(Ŝ)∗ = (̂S∗).

Then a similar deduction as for ND1 from the fact that ND3 holds for S
follows. �

5.21. Theorem. It is consistent that there are structures of cardinality ℵ2 such that
the game EF∗

ω1
is non-determined on these structures.

Proof. Forcing with {p : α → ω2 | α < ω2}, starting with the ground model in
which GCH holds, gives a generic set S such that {α ∈ Sω2

ω | α ∩ S contains cub}
is ω1-bistationary. Note that GCH also holds in the generic extension. Now using
GCH it is easy to show the intended properties ND1 and ND3. It is enough to note
that the sets S and {α | S ∩α contains cub} are bistationary. Then by using GCH
the players can take closures of each others’ strategies and beat them this way. For
ND2 one can simply use Lemma 5.20, but in this case it is not necessary.

Conditions ND1 – ND3, i.e. the assumptions of Theorems 5.18 and 5.19, are
now satisfied. �
Remark. We mentioned in the remark after Theorem 5.9 that we suspect that the
linear orders from [HytSheVää] would apply to the theorem above if one uses GCH
(as we do). But the present method is more general and also provides the following
theorems.

5.22. Theorem. Let μ = max{(2ℵ0)+,ℵ4}. From ZFC it follows that there are

models A and B of cardinality 2<μ = max{22ℵ0
, 2ℵ3} such that EF∗

ω1
(A,B) is non-

determined.

Proof. It was shown in [BurMag], Lemma 7.7, that if μ > ω3 (as is ours), then there
is a stationary X ⊂ Sμ

ω2
and sets Dα ⊂ α for each α ∈ X with the properties

(i) Dα is cub in α,
(ii) OTP(Dα) = ω2,
(iii) if α, β ∈ X and γ < min{α, β} is a limit of both Dα and Dβ , then Dα ∩ γ =

Dβ ∩ γ,
(iv) if γ ∈ Dα, then γ is a limit point of Dα if and only if γ is a limit ordinal.

Define X ′ = X ∪ {γ | ∃α > γ(γ ∈ limDα = the limit points of Dα)}, and for each
β in X ′ let

g(β) = min{γ ∈ X | γ � β ∧ β is a limit point of Dγ} ∈ X.

Clearly if β ∈ X, then g(β) = β. Then let

Cβ = β ∩ limDg(β).
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We now have the coherence property: If β ∈ Cα, then Cβ = β ∩ Cα. Moreover,
each Cα is closed, and if cf(α) � ω1, then it is unbounded in α and OTP(Cα) � ω2.
For each α < ω2 define

• Sα = {β ∈ X ′ | OTP(Cβ) = α},
• S�α =

⋃
α�β<ω2

Sβ.

First we observe that for all α < ω2, S�α is ω-stationary and ω1-stationary. To
see this let C be an ω1-cub set (the ω-case is similar). Because X is stationary,
there exists a point ξ ∈ X ∩ limC. Thus now C ∩ ξ is cub in ξ. Hence also C ∩Cξ

is cub and its order type is obviously ω2 (ξ ∈ X ⊂ Sμ
ω2
, and OTP(Cξ) is at most

ω2). This implies the existence of β ∈ Cξ ∩ C such that Cβ is of order type � α
and thus an element of S�α.

Because S�α is stationary and is a union of ω2 disjoint sets, one of them must
be stationary itself. Thus for every α < ω2 there exists γ > α such that Sγ is
ω-stationary.

Now we refer to Theorem 3.7 of [HytSheTuu] which states as applied to our case:
Let A ⊂ Sμ

ω and assume A =
⋃

i<ω2
Ai, where each Ai is stationary and Ai∩Aj =

∅ if i �= j. Then there is an ordinal j < ω2 such that I does not have a winning
strategy in Gω1

ω (Sμ
ω \

⋃
j�i<ω2

Ai).

In our case Ai are those sets
⋃

γi<ξ�γi+1
Sμ
ω ∩ Sξ where (γi)i<ω2

is a sequence

such that each Sγi
is ω-stationary. There are ω2 of them as concluded, and all

are pairwise disjoint. Let γ be such that I does not have a winning strategy in
Gω1

ω (Sμ
ω \ S�γ) and S = Sμ

ω \ S�γ . The set S clearly satisfies the intended property
ND1.

For ND3 we have to show that player II does not have a winning strategy in
Gω1

ω1
(Ŝ), where Ŝ = S ∪ {α ∈ Sμ

ω1
| α ∩ S contains a cub}. Let us first show that

{α ∈ Sμ
ω1

| α ∩ S does not contain cub} is ω1-stationary. We know that in the
complement of S there is S�γ . Let us show that if C is an ω1-cub, then there is
such an element α ∈ C that S�γ ∩ α contains a cub, which is more than enough.
Let β ∈ X ∩ limC and let α be the (γ + ω1)st element of Cβ and α′ the γth
element. Then all points of Cβ ∩ [α′, α) are in S�γ , because for these points, say
δ ∈ Cβ ∩ [α′, α), we have Cδ = Cβ ∩ δ and it has order type � γ. This implies that
the set {α ∈ Sμ

ω1
| α ∩ S does not contain cub} is stationary.

Assume now that σ is a strategy for II in Gω1
ω1
(Ŝ). The set

R = {ξ ∈ μ | ξ is closed under σ}

is an ω1-cub (to see this it is enough to note that μ<ω1 = μ, which follows from the
definition of μ). Consequently there is α ∈ R ∩ {β ∈ Sμ

ω1
| β ∩ S does not contain

cub}. Player I can now ensure that they play towards α, so σ cannot be winning.
Thus ND1 and ND3 are satisfied, and so by Lemma 5.20 and Theorems 5.18 and
5.19 the game EF∗

ω1
(A(μ, S),B(μ, S)) is non-determined. �

Remark. At the beginning of this section we promised to show how the vocabulary
can be made finite. In order to do this, we have to construct μ structures (Ci)i<μ

such that for i �= j, I↑EF∗
ω1
(Ci, Cj), and add these structures to the levels using one

binary relation. This replaces the use of a unary relation Pα for each level. During
the game player I will make sure that if levels α and β are played, then a ‘subgame’
between Cα in A and Cβ in B is played to show that they are different levels. In the
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end an isomorphism between the picked substructures can only take Cα in A to Cα
in B, as otherwise it contradicts the fact that I won all those ‘subgames’.

It remains to find structures Ci, i < μ, for those μ for which we proved our
theorems, i.e. μ = ω2 and μ = max{(2ℵ0)+,ℵ4}.

In the case μ = ω2 just take all dense linear orders of cardinality ℵ1 as in the
remark after Theorems 5.14 and 5.15. There are 2ℵ1 , of them and all are different.
Because of the small size, then also I ↑ EF∗

ω1
(Ci, Cj) if Ci and Cj are two non-

isomorphic representatives.
Assume now that μ = max{(2ℵ0)+,ℵ4}. It is enough to show that there are

(2ℵ1)++ � μ models for which the intended property holds.
Let the vocabulary consist of four binary relation symbols and one unary relation

P :

L = {R,<,<∗, <#, P}.
Let Q be the disjoint set of well orderings {α | 2ω1 � OTP(α) < (2ω1)+} and let W
be the disjoint set of well orderings {α | (2ω1)+ � OTP(α) < (2ω1)++}. Disjoint
means that α ∩ β = ∅ for all distinct elements α, β ∈ Q or W . We have:

• ∀α ∈ Q(|α| = 2ℵ1),
• |Q| = (2ℵ1)+,
• ∀α ∈ W(|α| = (2ℵ1)+),
• |W| = (2ℵ1)++.

For each α ∈ Q let Fα : P(ω1) → α be a fixed bijection and for each i ∈ W let
Gi : i → Q be another fixed bijection. For each i ∈ W define Ci as follows:

• dom(Ci) = ω1 ∪ Q (disjoint union),
• x<#Ciy ⇐⇒ x, y ∈ ω1 ∧ x < y (in ω1),
• x <Ci y ⇐⇒ (∃α ∈ Q)(x, y ∈ α) ∧ x < y (in α),
• x<∗Ciy ⇐⇒ (∃α, β ∈ Q)

(
G−1

i (α) < G−1
i (β) ∧ x ∈ α ∧ y ∈ β

)
,

• (α, x) ∈ R Ci ⇐⇒ (∃X ∈ P(ω1))(∃β ∈ Q)(α ∈ X ∧ x ∈ β ∧ Fβ(X) = x),
• P Ci = ω1.

Now we claim that I ↑
∗
EFω1,ω1

ω1
(Ci, Cj) (the game, where the players can choose

sets of size ω1; see Theorem 2.11) whenever i �= j. On the first move player I chooses
P Ci ∪P Cj . After that player I picks α and β in Q such that G−1

i (α) < G−1
i (β) and

G−1
j (α) > G−1

j (β); i.e. x ∈ α ∧ y ∈ β ⇒ x <∗ y in Ci and y <∗ x in Cj . Such exist,
because i and j are non-isomorphic orders. Now player I must make sure that if
there is an isomorphism between the played substructures in the end, then it takes
β in Ci to β in Cj and α in Ci to α in Cj . This will result in a contradiction, and
there cannot be any isomorphism. Because every order ζ in Q is different from β
(provided of course ζ �= β), the task is easy for player I. Every time an element is
played from an ordering ζ, player I picks two elements x, y ∈ ζ and x′, y′ ∈ β such
that x < y, y′ < x′, F−1

ζ (x) = F−1
β (x′) and F−1

ζ (y) = F−1
β (y′). Because of the

relation R it follows that β cannot be mapped to ζ by an isomorphism. Similarly
he manages with α.

6. Structures with non-reflecting winning strategies

Let μ = ℵ+
ω·ω. Put A = A(μ, S) and B = B(μ, S), where S ⊂ Sμ

ω is the generic set
obtained by Cohen forcing starting from a model which satisfies GCH as mentioned
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in the proof of Theorem 5.21. It has the following property: The set

♥ Eλ = {α ∈ Sμ
λ | α ∩ S contains a cub}

is λ-bistationary for each regular λ < μ.
For each natural number n let αn = ℵω·n+1 (regular) and βn = ℵω·(n+1) (singu-

lar).

6.1. Theorem (GCH). Let λ < μ be regular (for example αn). Player II cannot
have a winning strategy in the game EF∗

λ(A,B).

Proof. Suppose λ = αn for some n < ω. One can show as in Theorem 5.19 that it
is enough that player II does not have a winning strategy in Gαn

αn
(Eαn

), where Eλ

is defined as in ♥ for λ = αn.
Let σ be any strategy of II in this game. Then the set

{α ∈ Sμ
αn

| α is closed under σ}
is an αn-cub (by GCH), and thus the complement of Eαn

intersects it since it is
stationary. Player I can now easily play towards an element in this intersection. �

6.2. Theorem (GCH). If cf(λ) = ω, λ < μ (for example λ = βn), then player II
has a winning strategy in the game EF∗

λ(A,B).

Proof. Let η : ω → λ be a cofinal increasing map. As in the proof of Theorem 5.18

there are isomorphisms Fβ : Aβ → Bβ for each β in Eω1
. In the game

∗
EF1,λ

λ player
II will play as follows: Assume that Xn is the set of already picked elements. By
the methods of the proof of Theorem 5.18 she can choose an isomorphism Fβn

such
that βn is greater than sup{dom f | f ∈ Xn} and Fβ0

⊂ Fβ1
⊂ · · · . Then she

chooses the set (Fβn
∪ F−1

βn
)[Xn]. At the end of the game

⋃
k<ω Fβk

should be a
partial isomorphism. �

Thus it is consistent that there are models A and B and a sequence

α0 < β0 < α1 < β1 < · · · ,
where αn = ℵω·n+1 and βn = ℵω·(n+1) is such that A �∼∗

αn
B but A ∼∗

βn
B. Note

that Example 4.4 gives a similar result in ZFC for ordinals.
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ω1, Transactions of the American Mathematical Society, 339 (1993), 567–580.
MR1191613 (94a:03058)

[NadSta] M. Nadel and J. Stavi: L∞λ-equivalence, isomorphism and potential isomorphism.
Transactions of the American. Math. Soc. 236 (1978), 51-74. MR0462942 (57:2907)

[She] S. Shelah: Classification Theory, North Holland Publishing Company 1990.
MR1083551 (91k:03085)

Department of Mathematics, University of Helsinki, P.O. Box 68 (Gustav Hällströmin

katu 2b) FI-00014 Finland

Department of Mathematics, University of Helsinki, P.O. Box 68 (Gustav Hällströmin
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