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ON NON-LOCAL REFLECTION FOR ELLIPTIC EQUATIONS

OF THE SECOND ORDER

IN R2 (THE DIRICHLET CONDITION)

TATIANA SAVINA

Abstract. Point-to-point reflection holding for harmonic functions subject to
the Dirichlet or Neumann conditions on an analytic curve in the plane almost
always fails for solutions to more general elliptic equations. We develop a
non-local, point-to-compact set, formula for reflecting a solution of an analytic
elliptic partial differential equation across a real-analytic curve on which it
satisfies the Dirichlet conditions. We also discuss the special cases when the
formula reduces to the point-to-point forms.

1. Introduction

The Schwarz symmetry principle is one of the celebrated tools in analysis and
mathematical physics that has been attracting the attention of many mathemati-
cians [1]– [14], [17]–[20], [22]–[28]. From the point of view of applications it is
important to have an explicit reflection formula for a specific problem ([7], [10],
[22]). One of the open questions is the following: for what partial differential equa-
tions, boundary conditions and spatial dimensions does such a formula exist and
what is the structure of this formula, in other words, whether it is a point-to-point
formula (see, for example [8]) or it has a more complicated structure, for example,
a point to a finite set [20] or a point to a continuous set (see, for example, [2] and
the references therein).

In this paper, we derive a reflection formula for solutions of elliptic equations
in R2 with respect to a non-singular real-analytic curve and study the obtained
formula. We call this formula non-local, since unlike the classical point-to-point
reflection (see Theorem 1.1 below) this is a point to compact set reflection, gener-
alizing the following celebrated Schwarz reflection principle for harmonic functions.

Theorem 1.1 ([17], Chapter 9, p. 51; [28], Chapter 1, p. 4). Let Γ = {(x, y) :
f(x, y) = 0} ⊂ R2 be a non-singular real-analytic curve and P ′ ∈ Γ. Then, there
exists a neighborhood U of P ′ and an anti-conformal mapping R : U → U which is
the identity on Γ, permutes the components U1, U2 of U \ Γ and relative to which
any harmonic function u(x, y) defined near Γ and vanishing on Γ is odd; i.e.,

(1.1) u(x0, y0) = −u(R(x0, y0))

for any point (x0, y0) sufficiently close to Γ. Note that if the point (x0, y0) ∈ U1,
then the “reflected” point R(x0, y0) ∈ U2.

Received by the editors April 21, 2009 and, in revised form, April 14, 2010.
2010 Mathematics Subject Classification. Primary 35J15; Secondary 32D15.
Key words and phrases. Elliptic equations, reflection principle, analytic continuation.

c©2012 American Mathematical Society

2443



2444 TATIANA SAVINA

Here the mapping R can be described by considering a complex domain UC in
the space C2, such that UC ∩ R2 = U , to which the function f , defining the curve
Γ, is continued analytically. After the transformation of the variables, z = x+ iy,
ζ = x− iy, the equation of the complexified curve ΓC can be rewritten in the form

(1.2) f

(
z + ζ

2
,
z − ζ

2i

)
= 0.

If grad f(x, y) �= 0 on Γ, (1.2) can be solved with respect to z or ζ; the corresponding

solutions we denote as ζ = S(z) and z =
∼
S(ζ). The function S(z) is called the

Schwarz function of the curve Γ ([6], Chapter 5, p. 21). The mapping R is given by

(1.3) R(x, y) = R(z) = S(z).

Formula (1.1) has been generalized to cover several other situations including
the Helmholtz equation and wave equation, and the polyharmonic functions (see,
for example, [25], [1], [20] and the references therein). The purpose of this paper is
to obtain an explicit reflection formula for solutions to the elliptic equation

(1.4) Lu ≡ Δx,yu+ a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
+ c(x, y)u = 0

with respect to a real analytic curve in R2, where the solution vanishes, and to
investigate the properties of the mapping induced by this formula. Here a(x, y),
b(x, y) and c(x, y) are real-analytic functions in the domain U ⊂ R2.

In what follows, a formula, expressing the value of a function u(x, y) at an arbi-
trary point (x0, y0) ∈ U1 in terms of its values at points in U2, is called a reflection
formula. It is more often an integro-differential operator than a point-to-point re-
flection (1.1), which seems to be quite rare for solutions of partial differential equa-
tions. In particular, for solutions of the Helmholtz equation (Δx,y + λ2)u(x, y) = 0
vanishing on a curve Γ, point-to-point reflection holds only when Γ is a line, while
for harmonic functions in R3 it holds only when Γ is either a plane or a sphere
[8], [18]. The paper by P. Ebenfelt and D. Khavinson [8] is devoted to the further
study of point-to-point reflection for harmonic functions. There it was shown that
point-to-point reflection in the sense of the Schwarz reflection principle for n > 2
is very rare in Rn when n is even, and that it never holds when n is odd, unless
Γ is a sphere or a hyperplane. Reflection properties of solutions of the Helmholtz
equation have also been considered in [9], [23], [25]. Two later papers are devoted to
the derivation of non-local formulas for the Helmholtz equation subject to Dirichlet
and Neumann conditions respectively. Recently a reflection formula for harmonic
functions subject to the Robin condition, α∂nu+ β u = 0, on a real-analytic curve
was derived in [2], and it was shown that the obtained (non-local) formula re-
duces to well-known point-to-point reflection laws corresponding to the Dirichlet
and Neumann boundary conditions when one of the coefficients, α or β, vanishes.

The structure of the paper is as follows: in Section 2 we describe some prelim-
inaries; in Section 3 we formulate the main theorem, which is proven in Section
4. Conclusions and the special cases, when the point-to-point reflections hold, are
discussed in Section 5.
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2. Preliminaries

We are starting this section by recalling a classical B. Riemann result for hyper-
bolic equations (see [13], Chapter 2, p. 65 or [12], Chapter 4, p. 127 for detailed
explanations; here we follow a short version [17], Chapter 9, p. 55).

Consider a hyperbolic differential equation with entire coefficients

(2.1) Hu ≡ ∂2u

∂x∂y
+ a(x, y)

∂u

∂x
+ b(x, y)

∂u

∂y
+ c(x, y)u = 0;

its adjoint equation is

(2.2) H∗u ≡ ∂2u

∂x∂y
− ∂(au)

∂x
− ∂(bu)

∂y
+ cu = 0.

The Riemann function RH(x, y;x0, y0) of the operator H is defined as the solution
to the Goursat problem:

(2.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

H∗RH = 0 near (x0, y0),

RH(x0, y;x0, y0) = exp
{ y∫
y0

a(x0, τ )dτ
}
,

RH(x, y0;x0, y0) = exp
{ x∫
x0

b(t, y0)dt
}
.

Note thatRH is an entire function of all four variables; moreover, RH(x, y;x0, y0) =
RH∗(x0, y0;x, y), RH(x0, y0;x0, y0) = 1 and the following Riemann’s lemma holds.

Lemma 2.1. Let Γ := {(x, y)| y = s(x)} be a non-characteristic with respect to H
real-analytic curve that divides a domain U ⊂ R2 into two connected components U1

and U2, and let u(x, y) be a solution of (2.1) near Γ. For all points P (x0, y0) ∈ U
sufficiently close to Γ we have

(2.4) u(P ) =
1

2
u(M)RH(M) +

1

2
u(N)RH(N)−

N∫
M

(Udy −Vdx),

where M = (s−1(y0), y0), N = (x0, s(x0)) and

U = aRH +
1

2
RH

∂u

∂y
− 1

2

∂RH

∂y
u,

V = bRH +
1

2
RH

∂u

∂x
− 1

2

∂RH

∂x
u.

If in addition the solution to the equation Hu = 0 vanishes on Γ, formula (2.4)
reduces to

(2.5) u(P ) =
1

2

N∫
M

RH(
∂u

∂x
dx− ∂u

∂y
dy).

Remark 2.2. For the wave equation, a = b = c = 0 in (2.1), the Riemann function
equals 1 identically. Consider a point P (x0, y0) ∈ U1 and a solution of the wave
equation vanishing on Γ. Let’s allow the path of integration MN in (2.5) to de-
generate to a pair of segments (in U2) of a vertical and a horizontal characteristic
through points M and N , which intersect at a point Q(s−1(y0), s(x0)) ∈ U2. Then
formula (2.5) becomes

u(P ) = −u(Q).
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Since the points P and Q are located on the opposite sides of the curve Γ, the
latter formula states a point-to-point reflection law for the wave equation.

Remark 2.3. If for a solution of the wave equation vanishing on Γ we allow the
path of integration MN in (2.5) to degenerate to a polygonal line consisting of
vertical and horizontal segments with vertices M = Q1, Q2, Q3, . . . , Qn = N such
that Q2k+1 ∈ Γ and Q2k ∈ U2 \Γ, k = 1, . . . , (n− 1)/2, then a version of a point to
finite set reflection will be obtained [20]

u(P ) = −
(n−1)/2∑

k=1

u(Q2k)

(see [20] for other examples of point to finite set formulas).

If we consider the elliptic equation (1.4) in the complex domain UC ⊂ C2, then
the equation and its adjoint in characteristic variables (z, ζ) become similar to the
hyperbolic equation (2.1) and its adjoint (2.2),

LCu ≡ ∂2u

∂z∂ζ
+A

∂u

∂z
+B

∂u

∂ζ
+ Cu = 0,(2.6)

L∗
Cu ≡ ∂2u

∂z∂ζ
− ∂(Au)

∂z
− ∂(Bu)

∂ζ
+ Cu = 0,(2.7)

where the coefficients in (1.4) are replaced with

A(z, ζ) =
1

4

[
a(x, y) + ib(x, y)

]
, B(z, ζ) =

1

4

[
a(x, y)− ib(x, y)

]
,

C(z, ζ) =
1

4
c(x, y).

Analogously, the Riemann function of L is defined as the solution to the Goursat
problem in C2:

(2.8)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L∗
C
R ≡ ∂2

∂z∂ζR− ∂
∂z (AR)− ∂

∂ζ (BR) + CR = 0,

R|z=z0
= exp

{ ζ∫
ζ0

A(z0, τ )dτ
}
,

R|ζ=ζ0
= exp

{ z∫
z0

B(t, ζ0)dt
}
.

By a fundamental solution of operator L we understand a solution of the equation
L∗G(x0, y0, x, y) = δ(x0, y0), where L∗ is the adjoint to L differential operator.
Thus, function G written in the characteristic variables z = x+ iy and ζ = x− iy
is a solution to the equation

(2.9) L∗
Cu =

∂2u

∂z∂ζ
− ∂Au

∂z
− ∂Bu

∂ζ
+ Cu = δ(z0, ζ0).

The following formula (see [13], Chapter 3, p. 72) shows that the Riemann function
is a factor of the logarithm in an expression for the fundamental solution of the
operator LC:

(2.10) G(z, ζ; z0, ζ0) = − 1

4π
R(z, ζ; z0, ζ0) ln[(z − z0)(ζ − ζ0)] + g0(z, ζ, z0, ζ0),

where g0(z, ζ, z0, ζ0) is an entire function.
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Note that the fundamental solution exists (see [15], Chapter 3, p. 50) and is
uniquely determined up to the kernel of the operator L.

There are different representations of the fundamental solution, for example, [5];
[15], Chapter 3, p. 76; [16]. However, for what follows we need a special represen-
tation as a sum of two functions, each of which has a logarithmic singularity on a
single characteristic in C2. This representation is given by the following theorem.

Theorem 2.4 ([26]). There exists a fundamental solution of L that can be repre-
sented in the form

G = − 1

4π
(G1 +G2),(2.11)

Gj =

∞∑
k=0

αj
k(x0, y0;x, y)fk(ψj), j = 1, 2 ,(2.12)

fk(ξ) =

{
(−1)−k−1(−k − 1)!ξk, k ≤ −1,
ξk

k! (ln ξ − Ck), k = 0, 1, ... ,
(2.13)

C0 = 0, Ck =

k∑
l=1

1

l
, k = 1, 2, ... ,

ψ1 = (x− x0) + i(y − y0) = z − z0, ψ2 = (x− x0)− i(y − y0) = ζ − ζ0.

(2.14)

Here the coefficients αj
k are uniquely determined by the recursive transport equations

(2.15)

Lαj
0 = 0, Lαj

k+1 = −L∗
Cα

j
k,

L =
∂ψj

∂z
·
[ ∂

∂ζ
−A

]
+

∂ψj

∂ζ
·
[ ∂

∂z
−B

]
subject to the initial conditions

(2.16)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α1
0|ζ=ζ0

= exp
{ z∫
z0

B(t, ζ0)dt
}
, α1

0|ζ=ζ0
= 0, k = 1, 2, . . . ,

α2
0|z=z0

= exp
{ ζ∫
ζ0

A(z0, τ )dτ
}
, α2

k|z=z0
= 0, k = 1, 2, . . . .

Note that (2.15) and (2.16), in particular, imply that
(2.17)

α1
0 = exp

( ζ∫
ζ0

A(z, τ )dτ +

z∫
z0

B(t, ζ0)dt
)
, α2

0 = exp
( ζ∫
ζ0

A(z0, τ )dτ +

z∫
z0

B(t, ζ)dt
)
.

Taking into account (2.10), one can interpret αj
k as coefficients in the following

series representations for the Riemann function (2.8) [26]:

(2.18) R(z0, ζ0, z, ζ) =
∞∑
k=0

α1
k(z0, ζ0, z, ζ)

(z − z0)
k

k!
=

∞∑
k=0

α2
k(z0, ζ0, z, ζ)

(ζ − ζ0)
k

k!
.

Remark 2.5. For the Laplace equation, a = b = c = 0, and, therefore, A = B =
C = 0. Thus, α1

0 = α2
0 = 1 and α1

j = α2
j = 0, j ≥ 1, and

(2.19) GL
1 = ln(z − z0) and GL

2 = ln(ζ − ζ0),
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respectively, which leads to a standard fundamental solution:

(2.20) G = − 1

4π
ln[(z − z0)(ζ − ζ0)] = − 1

4π
ln[(x− x0)

2 + (y − y0)
2)].

Remark 2.6. In the case of the Helmholtz equation, a = b = 0 and c = λ2, that is,
∂2

∂z∂ζu
H + λ2

4 uH = 0. Here λ is a real number, and the functions G1 and G2 reduce

to the form used in [23], [25]:

(2.21)

GH
1 =

∞∑
k=0

[−λ2(z − z0)(ζ − ζ0)]
k

4k(k!)2

(
ln(z − z0)− Ck

)
,

GH
2 =

∞∑
k=0

[−λ2(z − z0)(ζ − ζ0)]
k

4k(k!)2

(
ln(ζ − ζ0)− Ck

)
.

Summing up GH
1 and GH

2 and multiplying by − 1
4π one obtains the well-known

fundamental solution of the Helmholtz equation:
(2.22)

− 1

4π
(GH

1 +GH
2 ) =

c+ lnλ/2

2π
J0

(
λ
√
(z − z0)(ζ − ζ0)

)
− 1

4
N0

(
λ
√
(z − z0)(ζ − ζ0)

)
,

where c is the Euler constant, and J0 and N0 are the Bessel and the Neumann
functions of zero order respectively.

3. The main result

Consider a solution of the homogeneous linear elliptic differential equation, writ-
ten in its canonical form [12], Chapter 5, p. 136 (with the Laplace operator, Δx,y,
in the principal part), in a domain U ⊂ R2 vanishing on an algebraic curve Γ,

(3.1)

{
Lu ≡ Δx,yu+ a∂u

∂x + b∂u∂y + cu = 0 near Γ,

u(x, y)|Γ = 0; a, b, c are real-analytic functions of x, y.

Theorem 3.1. Under the above assumptions, the following reflection formula holds
in U :

(3.2)

u(P ) = − c0(P,Γ) u(Q)

+
1

2i

Q∫
Γ

({
u
∂V

∂x
− V

∂u

∂x
− auV

}
dy −

{
u
∂V

∂y
− V

∂u

∂y
− buV

}
dx

)
,

where P = (x0, y0) and Q = R(P ) (see (1.3)), and the integral is computed along
any curve joining Γ with Q. Here

(3.3)

c0(P,Γ) =
1

2

{
exp

[ S̃(ζ0)∫
z0

B(t, S(z0))dt+

S(z0)∫
ζ0

A(z0, τ )dτ
]

+ exp
[ S(z0)∫

ζ0

A(S̃(ζ0), τ )dτ +

S̃(ζ0)∫
z0

B(t, ζ0)dt
]}

,
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where

A(z, ζ) =
1

4

[
a(x, y) + ib(x, y)

]
, B(z, ζ) =

1

4

[
a(x, y)− ib(x, y)

]
,

C(z, ζ) =
1

4
c(x, y), V = V (x0, y0, x, y) = V1(x0, y0, x, y)− V2(x0, y0, x, y).

The functions Vj are solutions of the Cauchy-Goursat problems:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L∗
CVj = 0, j = 1, 2 ,

Vj |ΓC

= R|ΓC

, j = 1, 2 ,

V1 = exp
{ ζ∫
ζ0

A(S̃(ζ), τ )dτ +

z∫
z0

B(t, ζ)dt
}
, on the char. l̃1 = {S̃(ζ) = z0},

V2 = exp
{ ζ∫
ζ0

A(z, τ )dτ +

z∫
z0

B(t, S(z))dt
}
, on the char. l̃2 = {S(z) = ζ0},

where L∗
C
is the adjoint operator to LC and R(z0, ζ0, z, ζ) is the Riemann function

of L.

4. Proof of Theorem 3.1

4.1. Sketch of the proof. We begin with Green’s formula expressing a solution
of the equation Lu = 0 at a point P via its values on a contour γ ⊂ U1 surrounding
the point P [11]:

(4.1) u(P ) =

∫
γ

ω[u,G],

where

(4.2) ω[u,G] =
{
u
∂G

∂x
−G

∂u

∂x
− auG

}
dy −

{
u
∂G

∂y
−G

∂u

∂y
− buG

}
dx.

Here G = G(x, y, x0, y0) is an arbitrary fundamental solution of L, that is, a so-
lution to the equation L∗G(x0, y0, x, y) = δ(x0, y0). It is well known that G is
a real-analytic function in R2 except at the point P (x0, y0). Its continuation to
the complex space C2 has logarithmic singularities on the complex characteristics
passing through this point, i.e., on KP := {(x − x0)

2 + (y − y0)
2 = 0}. Our proof

is based on the idea suggested by Garabedian [11] to deform contour γ across the
curve Γ from the domain U1 to the domain U2. To be able to realize this defor-
mation, first, we use a special representation for a fundamental solution, that is,
a sum of two functions, each of which has a singularity on a single characteristic
only. This representation is given by Theorem 2.4 above. Next, we replace the fun-
damental solution G with a so-called reflected fundamental solution. After proving
the existence and uniqueness of the reflected fundamental solution, we describe the
deformation of γ and obtain the desired reflected formula. Finally, we simplify the
formula and discuss the cases for which it reduces to the simplest point-to-point
form.
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4.2. The reflected fundamental solution. This section is devoted to the con-
struction of the reflected fundamental solution G̃, which plays a key role by enabling

us to deform the contour γ across the boundary. G̃ depends on the operator L and
the curve Γ.1 As will be shown in the next two sections, the reflected fundamental
solution determines whether the corresponding reflection formula can be reduced
to the point-to-point form.

Function G̃ is a solution of the equation L∗
C
G̃ = 0 subject to the boundary

condition G = G̃ on ΓC and has singularities only on the “reflected” characteristic

lines l̃1 and l̃2 (see Figure 1) intersecting the real space at the reflected point
Q = R(P ) in the domain U2 and intersecting ΓC at KP ∩ ΓC.

We seek the reflected fundamental solution in the form

(4.3) G̃(z0, ζ0, z, ζ) = − 1

4π
(G̃1(z0, ζ0, z, ζ) + G̃2(z0, ζ0, z, ζ)),

where the functions G̃j , j = 1, 2, are defined as the solutions to the following
Cauchy-Goursat problems with prescribed singularities:⎧⎪⎨⎪⎩

L∗
C
G̃j = 0, j = 1, 2,

G̃j|ΓC

= Gj|ΓC

,

G̃j has singularities only on the char. l̃j =: {ψ̃j(z, ζ) = 0},
(4.4)

where ψ̃1 = S̃(ζ) − z0 and ψ̃2 = S(z) − ζ0 are solutions of the Hamilton-Jacobi
equation

(4.5)
∂ψ̃j

∂z
· ∂ψ̃j

∂ζ
= 0.

First, we construct the solutions to the problems (4.4) as some formal expansions.
Then we justify their convergence.

We seek this expansion in the form [21],

G̃1 =
∞∑
k=0

β1
k(z0, ζ0, z, ζ)fk(ψ̃1),(4.6)

G̃2 =
∞∑
k=0

β2
k(z0, ζ0, z, ζ)fk(ψ̃2),(4.7)

where fk(ξ) is defined by (2.13).
Substituting (4.6) and (4.7) into (4.4), we obtain the following recursion for the

coefficients β1
k and β2

k:

(4.8)

(∂β1
0

∂z
−B β1

0

)
S̃′(ζ) = 0,

( ∂

∂z
β1
k+1 −B β1

k+1

)
S̃′(ζ) = −L∗

Cβ
1
k, k ≥ 0,(∂β2

0

∂ζ
−Aβ2

0

)
S′(z) = 0,

( ∂

∂ζ
β2
k+1 −Aβ2

k+1

)
S′(z) = −L∗

Cβ
2
k, k ≥ 0

subject to the following initial conditions:

(4.9) β1
k|ΓC

= α1
k|ΓC

, β2
k|ΓC

= α2
k|ΓC

, k = 0, 1, 2, . . . .

1
˜G depends on the boundary condition as well, but the latter is beyond the scope of this paper;

see [2], [25] and [27] for some relevant results.
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Note that both S′(z) and S̃′(ζ) do not vanish on ΓC ([6], Chapter 7, p. 42). Indeed,

functions S(z) and S̃(ζ) are inverses of each other (see (1.2)), so S̃(S(z)) = z.
Differentiating the latter equation and taking into account that S(z) = ζ on ΓC, we

obtain S̃′(ζ) · S′(z) = 1. In R2, S̃′(ζ) = S′(z); therefore, |S′(z)| = |S̃′(ζ)| = 1 on Γ.

Thus, both functions S′(z) and S̃′(ζ) are non-zero throughout some neighborhood
of Γ as continuous functions.

Thus, functions β1
k and β2

k are uniquely determined near ΓC, specifically

(4.10)

β1
0 = exp

( ζ∫
ζ0

A(S̃(ζ), τ )dτ +

z∫
z0

B(t, ζ)dt +

S̃(ζ)∫
z0

[B(t, ζ0)−B(t, ζ)]dt
)
,

β2
0 = exp

( ζ∫
ζ0

A(z, τ )dτ +

S(z)∫
ζ0

[A(z0, τ )−A(z, τ )]dτ +

z∫
z0

B(t, S(z))dt
)
.

Hence, the formal expansions for the functions G̃1, G̃2 satisfying conditions (4.4)
are constructed.

Lemma 4.1. The series (4.6) and (4.7) converge near ΓC.

Proof of Lemma 4.1. Let us prove the convergence of the series (4.7) by considering
an auxiliary family of problems depending on the parameter ξ:

(4.11)

⎧⎪⎨⎪⎩
L∗
C
Vξ(z0, ζ0, z, ζ, ξ) = 0,

Vξ(z0, ζ0, z, S(z), ξ) = Φ(z0, ζ0, z, S(z), ξ),

Vξ(z0, ζ0, S̃(ζ0 − ξ), ζ, ξ) = 0.

Here Φ is a given analytic function that has Taylor expansion

Φ(z0, ζ0, z, S(z), ξ) =

∞∑
k=0

α2
k(z0, ζ0, z, S(z))

(S(z)− ζ0 + ξ)k+1

(k + 1)!
,

where the coefficients α2
k(z0, ζ0, z, ζ) are the same as in (2.18) [26].

The Taylor expansion of the solution to the problem (4.11) (if it exists) has the
form

(4.12) Vξ(z0, ζ0, z, ζ, ξ) =

∞∑
k=0

β2
k(z0, ζ0, z, ζ)

(S(z)− ζ0 + ξ)k+1

(k + 1)!
,

where the coefficients β2
k are the same as the coefficients in series (4.7). Convergence

of the latter, therefore, followed from convergence (4.12). To show existence and
uniqueness of the solution to the problem (4.11) in the class of analytic functions
we use the substitution

(4.13) Vξ(z0, ζ0, z, ζ, ξ) =

ζ∫
S(z)

dτ

z∫
S̃(ζ0−ξ)

μ(z0, ζ0, t, τ, ξ)dt+Φ(z0, ζ0, z, S(z), ξ)
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with unknown density μ, which reduces the problem (4.11) to the Volterra integral
equation

(4.14)

μ(z0, ζ0, z, ζ, ξ) +A(z, ζ)S′(z)

z∫
S̃(ζ0−ξ)

μ(z0, ζ0, t, S(z), ξ)dt

−A(z, ζ)

ζ∫
S(z)

μ(z0, ζ0, z, τ, ξ)dτ −B(z, ζ)

z∫
S̃(ζ0−ξ)

μ(z0, ζ0, t, ζ, ξ)dt

− F (z, ζ)

ζ∫
S(z)

dτ

z∫
S̃(ζ0−ξ)

μ(z0, ζ0, t, τ, ξ)dτ = Ψ(z0, ζ0, z, ζ, ξ),

where

F (z, ζ) =
∂

∂z
A(z, ζ) +

∂

∂ζ
B(z, ζ)− C(z, ζ),(4.15)

Ψ(z0, ζ0, z, ζ, ξ) = F (z, ζ)Φ(z0, ζ0, z, ξ) +A(z, ζ)
∂

∂z
Φ(z0, ζ0, z, ξ).(4.16)

The existence and uniqueness of the analytic solution of equation (4.14) can be
proven by the iteration technique described in [29], Chapter 1, p. 11. Thus, there
exists a unique solution of (4.11), which has a unique Taylor expansion with respect
to the variable ξ at the point ξ = −(S(z)− ζ0); this expansion coincides with the
expansion (4.12). Thus, series (4.12) converges in the neighborhood of Γ, and so
does (4.7).

Analogously, considering the following auxiliary problem depending on the pa-
rameter η:

(4.17)

⎧⎪⎪⎨⎪⎪⎩
L∗
C
Vη(z0, ζ0, z, ζ, η) = 0,

Vη(z0, ζ0, S̃(ζ), ζ, η) =
∞∑
k=0

α1
k(z0, ζ0, S̃(ζ), ζ)

(S̃(ζ)−z0+η)k+1

(k+1)! ,

Vη(z0, ζ0, z, S(z0 − η)), η) = 0,

whose solution has the Taylor expansion Vη =
∑∞

k=0 β
1
k
(S̃(ζ)−z0+η)k+1

(k+1)! , one can show

convergence of (4.6). That finishes the proof. �

4.3. The reflected fundamental solution as a multiple-valued function.
As was conjectured in [4]: “Perhaps looking-glass milk isn’t good to drink”. In
this section we show that the reflected fundamental solution (the looking-glass
fundamental solution), except for some special cases, does not inherit all of the
properties of a “true” fundamental solution; in particular, the representation (2.10)
with the Riemann function as a factor of the logarithm does not hold. Moreover,

as we are about to show, the factors of the logarithms in G̃1 and G̃2 (see (4.6) and
(4.7)) are not the same, which makes the reflected fundamental solution a multiple-
valued function even in R2. The latter explains (see Section 4.4) why point-to-point
reflection almost always fails.

Indeed, consider a point moving along a continuous curve γ surrounding either
the branch line z = z0 of G1 or the branch line ζ = ζ0 of G2 (2.11). As the point
makes a complete cycle around the line, it passes to the next sheet of the Riemann
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surface; while going around the cyclic path surrounding both characteristics at once,
it remains on the same sheet of the Riemann surface. For the reflected fundamental
solution G̃, the point passes to the next sheet even if the curve γ lays in R2 and

surrounds both intersecting branch lines, S̃(ζ) = z0 and S(z) = ζ0.

To show this, let us compute the increment of the function G̃ when a curve

γ ⊂ R2 is a circle of a small radius ρ centered at the point Q
(
S̃(z̄0), S(z0)

)
:

(4.18) 2πi(− 1

4π
)

∞∑
j=0

(
β1
j

(S̃(ζ)− z0)
j

j!
− β2

j

(S(z)− ζ0)
j

j!

)
.

Taking into account that ζ = z̄ in R2, let us set z = S̃(z̄0) + ρeiφ and ζ = S(z0) +
ρe−iφ, and expand the Schwarz function and its inverse into Taylor series at the

point Q: S(z) = z̄0 + C1ρe
iφ + o(ρ), S̃(z̄) = z0 + C̄1ρe

−iφ + o(ρ).
Without loss of generality assume that the coefficients A, B and C in (2.6) are

constants (otherwise we should use their Taylor expansions in this analysis); then
β1
0 = β2

0 (see (4.10)), and

β1
1 = (AB − C)e(A(ζ−ζ0)+B(z−z0))

(
(z − S̃(ζ))/S̃′(ζ) + ζ − ζ0

)
,(4.19)

β1
2 = (AB − C)e(A(ζ−ζ0)+B(z−z0))

(
(ζ − S̃(z))/S′(z) + z − z0

)
.(4.20)

Thus, the increment (4.18) becomes

(4.21)

ρ

2i
(AB − C)

(
[C1S̃(z̄0)− C1z0 + S(z0)− z̄0]C̄1e

−iφ

−[C̄1S(z0)− C̄1z̄0 + S̃(z̄0)− z0]C1e
iφ
)
+ o(ρ).

Formula (4.21) shows that the increment can be equal to zero only in two cases:
either when (i) AB − C = 0 or (ii) expressions in the brackets equal to zero. The
latter happens if boundary Γ is a segment of a straight line, while (i), for example,
holds if operator L is the Laplacian.

Having the detailed description of the reflected fundamental solution we are
ready to derive the reflection formula by explaining how the contour γ in (4.1) can
be deformed from one side of the reflecting surface ΓC to the other.

4.4. Deformation of the contour. Formula (4.1) involves integration over a con-
tour γ ⊂ U1 surrounding both characteristics on which the functions G1 and G2

have singularities (lines l1 and l2 in Figure 1). To express the value u(P ) in terms of
the values of u(x, y) in U2, that is, to construct a reflection formula, it is sufficient
to deform the contour γ from the domain U1 to the domain U2. Note that since
the integrand in (4.1) is a closed form, dω = 0, the value of the integral will not
change while we are deforming the contour γ homotopically.

First, the contour is deformed to the complexified curve ΓC. Taking into ac-
count that the characteristics of G passing through the point P intersect ΓC at two
different points in C2, assume that the point P lies so close to the curve Γ that
there exists a connected domain Ω ⊂ ΓC, univalently projected onto a plane, that
contains both points of intersections [23].

We start the deformation with stretching the contour γ (see (4.1)) in the real
plane until its small arc reaches the curve Γ (it becomes a mirror image of γ̃ in
Figure 1). Then we substitute a sum of G1 and G2 for G in (4.1) and split the
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ΓC

γ γ

R2

U2
l2

l1

l2U1
˜

˜

l1
˜

Figure 1. Contour deformation

integral:

(4.22) u(P ) =

∫
γ

ω[u,G1] +

∫
γ

ω[u,G2].

Note that contour γ is not closed on the Riemann surfaces of each G1 and G2 (see
Section 4.3). As a point of disconnection (one of two endpoints) let us choose a
point K ∈ γ ∩ Γ. Then in the first integral in (4.22) we “lift” the contour γ to γ′

(solid line above the plane in Figure 1) such that we do not move some points of
γ∩Γ in the neighborhood of the point K. Then we do the symmetric (with respect
to plane R2) deformation in the second integral in (4.22).

Taking into account that u|ΓC

= 0, the differential form ω (4.2) on ΓC becomes

(4.23) ω′[u,Gj ] = Gj
∂u

∂y
dx−Gj

∂u

∂x
dy, j = 1, 2.

Now we can replace Gj with G̃j (see formula (4.3)). Indeed, according to (4.4),

(4.24)

∫
γ′

ω′[u,G1] =

∫
γ′

ω′[u, G̃j ].

In order to deform contour γ′ from ΓC to the domain U2, it is necessary to apply
the “mirror” deformation procedure. Note that during this deformation the point

K is fixed and the contour surrounds one of the “reflected” characteristic lines l̃1
or l̃2 (see Figure 1) intersecting the real space at the reflected point Q = R(P ) in
the domain U2 and intersecting ΓC at KP ∩ ΓC.

Finally, we have

(4.25) u(P ) =

∫
γ̃

ω[u, G̃1] +

∫
γ̃

ω[u, G̃2].
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Γ

γ
D

M

Q

N

E

K

˜

Figure 2. Contour transformation

This formula can be rewritten as a single integral

(4.26) u(P ) =

∫
γ̃

ω[u, G̃],

but as was discussed in Section 4.3 the contour γ̃, generally, is not closed on the

Riemann surface of G̃, so in most of the cases we do not expect to be able to move
the point K (see Figure 2) from the curve Γ. Formula (4.26) is a version of a desired
reflection formula. In the next section we simplify it and show that it holds in the
large.

4.5. The reflection formula in the large. Formula (4.26) in (z, ζ) variables has
the form

(4.27) u(P ) =

∫
γ̃

ω̃[u, G̃],

where

(4.28) ω̃[u, G̃] = i
({

u
∂G̃

∂ζ
− G̃

∂u

∂ζ
− 2AuG̃

}
dζ −

{
u
∂G̃

∂z
− G̃

∂u

∂z
− 2BuG̃

}
dz

)
.

Here G̃ is the reflected fundamental solution and the contour γ̃ ⊂ U2 surrounds the

point Q (see Figure 2). Recall that G̃ is a sum of two series (with certain radii of
convergence). Now we are going to show that the formula holds in the large.

Let us rewrite the functions G̃l in the form:

(4.29) G̃l = Vl ln ψ̃l + Ṽl, l = 1, 2,

where

(4.30) Vl =
∞∑
j=0

βl
j

(ψ̃l)
j

j!
, Ṽl =

∞∑
j=0

βl
j

(ψ̃l)
j

j!
Cj ,

and

(4.31) ψ̃1 = S̃(ζ)− z0, ψ̃2 = S(z)− ζ0.
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Substituting (4.29) and (4.30) into (4.27) and letting the radius of the arc NM go
to zero (see Figure 2) results in vanishing integrals of the terms involving products

of the function Ṽl and derivatives of the function u as integrals of holomorphic
functions over a closed contour. Combining terms in (4.27) involving derivatives
of logarithms and separating them from the terms involving logarithmic functions
yields

(4.32) u(P ) = Q+ I,

where Q and I in the characteristic variables have the form

Q = − i

4π

∑
l

∫
γ̃

(
uVl

∂

∂ζ

(
ln ψ̃l

)
dζ − uVl

∂

∂z

(
ln ψ̃l

)
dz

)
,(4.33)

I = − 1

4π

∫
γ̃

ω̃[u, G̃1] ln ψ̃1 − 1

4π

∫
γ̃

ω̃[u, G̃2] ln ψ̃2 .(4.34)

Substituting series (4.30) for Vl into (4.33) and computing the residues at the point
Q where the integrand has a simple pole, we have

(4.35)

Q = −1

2
u(Q)

(
exp

( S̃(ζ0)∫
z0

B(t, S(z0))dt+

S(z0)∫
ζ0

A(z0, τ )dτ
)

+ exp
( S(z0)∫

ζ0

A(S̃(ζ0), τ )dτ +

S̃(ζ0)∫
z0

B(t, ζ0)dt
))

,

which holds in the large.
Using properties of the logarithmic function and replacing the contour γ̃ with a

segment EQ, the second integral can be rewritten as

(4.36) I = 2πi(− 1

4π
)
( Q∫
E

ω̃[u, V1]−
Q∫

E

ω̃[u, V2]
)
=

1

2i

Q∫
E

ω̃[u, V ],

where V = V1 − V2. Note that the logarithms in (4.34) have complex conjugated
arguments (4.31) in R2; however, they cancel each other only if the factors V1 and
V2 are equal, which generally is not the case.

Even though the latter formula involves the series V1 and V2, it also holds in
the large, since these expansions can be interpreted as solutions of the following
Cauchy problems:
(4.37)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L∗
C
Vj = 0, j = 1, 2,

Vj|ΓC

= R|ΓC

,

Vj = exp
{ ζ∫
ζ0

A(θj , τ )dτ+
z∫

z0

B(t, ηj)dt
}
on the characteristic l̃j =: {ψ̃j(z, ζ)=0},
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where θ1 = S̃(ζ), θ2 = z, η1 = ζ and η2 = S(z). Problem (4.37) by a substitution
with unknown density μ, for example, for j = 2,

(4.38)

V2(z0, ζ0, z, ζ) =

ζ∫
S(z)

dτ

z∫
S̃(ζ0)

μ(z0, ζ0, t, τ )dt

+R(z0, ζ0, z, S(z)) e

ζ∫
ζ0

A(z,τ) dτ −
S(z)∫
ζ0

A(z,τ) dτ

,

can be reduced to the Volterra integral equation, whose solution as a function of
four complex variables exists and is unique in some cylindrical domain near Γ (see
[29], Chapter 1, p. 11). Thus, the solutions of (4.37) exist in C4 as multiple-valued

analytic functions, whose singularities coincide with those of S(z) and S̃(ζ).
Combining (4.32), (4.35) and (4.36) we arrive at the formula (3.2), which proves

the theorem.

5. Conclusions and remarks

5.1. Equations with constant coefficients. We have obtained a reflection for-
mula for elliptic equations with analytic coefficients subject to homogeneous Dirich-
let conditions on a real-analytic curve. This is a point to compact set reflection,
which in some cases can be essentially simplified.

Consider the case when the coefficients a, b and c in equation (1.4) are constants,

(5.1) Δx,yu+ a
∂u

∂x
+ b

∂u

∂y
+ cu = 0,

and, therefore, A, B and C are constants as well. In this case solutions αj
k to

problems (2.15)–(2.16) can be written explicitly, and the Riemann function (2.18)
has the form
(5.2)

R(z0, ζ0, z, ζ) =

∞∑
k=0

(
(z − z0)(ζ − ζ0)(AB − C)

)k
(k!)2

exp (A(ζ − ζ0) +B(z − z0)).

Our main conclusion confirms the fact that the point-to-point reflection is quite
rare.

Theorem 5.1. For non-trivial solutions of elliptic equation (5.1) with constant
coefficients vanishing on a real-analytic curve Γ, there is no point-to-point reflection
unless one of the following conditions holds:

(i) Γ is a line,
(ii) a2 + b2 − 4c = 0.

Proof. The proof immediately follows from the fact that the integral term I �= 0 in
(4.36). Indeed, formula (4.21) implies that V �= 0. Thus, for I to be zero, function u
and its first derivative must vanish on a path joining the curve Γ with the reflected
point, which contradicts the assumption that u is not equal to zero identically. �

Theorem 5.2. Let Γ := {αx + βy + δ = 0} be a line. Then for any solution of
the equation Δu+ aux + buy + cu = 0 with constant coefficients vanishing on Γ the
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following point-to-point reflection formula holds in R2:

(5.3) u(P ) = − exp
(
− (αx0 + βy0 + δ)(aα+ bβ)

α2 + β2

)
u(Q).

Proof. Under the assumptions of the theorem, the Schwarz function is S(z) =
mz + q, where

m =
β2 − α2 + i 2αβ

α2 + β2
, q =

−2αδ + i 2βδ

α2 + β2
.

Functions V1 and V2 are equal (see (4.37)),

V1 = V2 =

∞∑
k=0

(
(mz + q − ζ0)(m̄ζ + q̄ − z0)(AB − C)

)k
(k!)2

e(A(ζ−ζ0)+B(z−z0)),

and therefore, V = V1 − V2 = 0, and the integral I = 0 (see (4.36)). Formula
(4.35) can be simplified, and Q = −u(Q) eA(mz0+q−ζ0)+B(m̄ζ+q̄−z0). The latter in
variables (x, y) gives (5.3). �

Corollary 5.3. Let Γ be a line with equation y = 0. Then for any solution of (5.1)
vanishing on Γ the following reflection formula holds:

(5.4) u(x0, y0) = −e−by0u(x0,−y0).

Corollary 5.4. Let Γ be a line with equation x = 0. Then for any solution of (5.1)
vanishing on Γ the reflection formula has the form

(5.5) u(x0, y0) = −e−ax0u(−x0, y0).

Corollary 5.5. If a = b = 0 formula (5.3) recovers known point-to-point reflection
for solutions of the Helmholtz equation vanishing on a line

u(P ) = −u(Q).

Remark 5.6. Note that in the case of the Helmholtz equation, a = b = 0 and c = λ2,
when Γ is a real-analytic curve, formula (4.35) can be simplified, and Q = −u(Q),
but I �= 0 in (4.36) unless Γ is a line ([17], Chapter 9, p. 59; [18]; [23]).

Theorem 5.7. Let Γ be a real-analytic curve. Then for any solution of the equation
Δu + aux + buy + (a2 + b2)/4u = 0 vanishing on Γ the following point-to-point
reflection formula holds in R2:

(5.6) u(P ) = −eA(S(z0)−ζ0)+B(S̃(ζ0)−z0)u(Q).

Proof. In characteristic variables, condition c = (a2 + b2)/4 is equivalent to AB −
C = 0. Then the Riemann function (5.2) has the simplest form

(5.7) R(z0, ζ0, z, ζ) = eA(ζ−ζ0)+B(z−z0),

and V1 = V2 = R for any analytic curve Γ. Thus, the reflection formula has the
point to point form (5.6). �

Remark 5.8. Equation Δu+aux+ buy +(a2 + b2)/4u = 0 can be transformed into

the Laplace equation using the substitution u(x, y) = v(x, y)e−(ax+by)/2, where v
is a harmonic function, and, therefore, v enjoys the celebrated Schwarz symmetry
principle (1.1).
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Example 5.9. Formula (5.6) for the unit circle centered at the origin can be
rewritten in (x, y) variables as follows:

(5.8) u(x0, y0) = − exp
(2(ax0 + by0)(1− x2

0 − y20)

x2
0 + y20

)
u(

x0

x2
0 + y20

,
y0

x2
0 + y20

).

5.2. A final remark. Thus, for elliptic equations of the second order with real-
analytic coefficients in R2, there is no point-to-point reflection with respect to a
real-analytic curve Γ unless Γ is a line or the following constraint a2 + b2 − 4c = 0
for the coefficients of the equation holds.

As follows from [20] for elliptic equations in R2, there is no point to finite set
reflection as well.

Point to compact set reflection is always possible. This set is a curve having one
of its endpoints on a reflecting curve. The other endpoint is located at the reflected
point itself.
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