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FRACTIONAL DERIVATIVE OF ABEL TYPE

ON A HALF-LINE

ELENA I. KAIKINA

Abstract. We consider the initial-boundary value problem on a half-line for
an evolution equation

(∂t + |∂x|α)u(x, t) = f(x, t), t > 0, x > 0,

with a fractional derivative of Abel type

(0.1) |∂x|α u = R1−α+[α]∂
[α]+1
x u,

where [α] denotes the integer part of number α > 0, α is not equal to an
integer, and

Rαu =
1

2Γ(α) sin(π
2
α)

∫ +∞

0

sign(x− y)u(y)

|x− y|1−α
dy

is the modified Riesz potential. We study traditionally important problems of
a theory of partial differential equations, such as existence and uniqueness of
solution. We propose a new method of solution. Also we get a closed form of
the solution.

1. Introduction

In this paper we study the initial-boundary value problem on a half-line for an
evolution equation with a fractional derivative of Abel type,

(1.1)

⎧⎨⎩
(∂t + |∂x|α) u(x, t) = f(x, t), t > 0, x > 0,

u(x, 0) = u0(x), x > 0,
∂j
xu(0, t) = hj(t), t > 0, j = 0, ..., [α] + 1−

[
α+1
2

]
,

where α > 0 is not equal to an integer and the fractional derivative of Abel type
|∂x|α on a half-line is defined as

(1.2) |∂x|α u = R1−α+[α]∂[α]+1
x u,

where [α] denotes the integer part of number α > 0 and

Rαu =
1

2Γ(α) sin(π2α)

∫ +∞

0

sign(x− y)u(y)

|x− y|1−α dy

is the modified Riesz potential (see [14], p. 214). Note that the main basic prop-
erties of the modified Riesz potential, such as the mapping properties, inverse op-
erator, index rule, etc., were studied in [14]. Due to the intensive development of
the theory of fractional calculus itself as well as its applications ([7], [8], [14]), the
initial-boundary value problem (1.1) plays an important role in the modern science.
Apart from diverse areas of mathematics, evolution partial differential equations
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with a fractional derivative arise in modern mathematical physics and many other
branches of science, such as, for example, chemical physics and electrical networks
(for details, see, for example, [1], [2], [9], [10], [13], [15], [16]).

There are several definitions of a fractional derivative of order a > 0 (for de-
tails, see, for example, [7], [8], [14]). The two most commonly used definitions are
the Riemann-Liouville and Caputo ([14]). Each definition uses Riemann-Liouville
fractional integration and derivatives of an integer order. The Riemann-Liouville
fractional derivative of order α > 0 is defined as

Dαu =
1

Γ(1− α+ [α])
∂[α]+1
x

∫ x

0

u(y)

(x− y)α−[α]
dy, x > 0,

and the Caputo derivative of order a > 0 is defined as

Dα
∗ u =

1

Γ(1− α+ [α])

∫ x

0

∂
[α]+1
y u(y)

(x− y)α−[α]
dy, x > 0.

There is a close connection between the Riemann-Liouville fractional derivative and
Caputo derivative (see [14]). To reveal a relation between the fractional derivative of
Abel type and the Riemann-Liouville and Caputo fractional derivatives, we rewrite
all of them as pseudo-differential operators on a half-line (see [4]). For simplicity
we consider the case of α ∈ (0, 1). Then we have

Dαf(x) = L−1
(
pαf̂(p)

)
,

Dα
∗ f(x) = L−1

(
pα

(
f̂(p)− f(0)

p

))
and

|∂x|α u = θ(x)L−1

(
|p|α

(
f̂(p)− f(0)

p

))
,

where L−1 denotes the inverse Laplace transform and f̂(p) = Lf is the Laplace
transform of f. Here and below pα is the main branch of the complex analytic
function in the complex half-plane Re p ≥ 0, so that 1α = 1 (we make a cut
along the negative real axis (−∞, 0)), and the Heaviside step function θ(x) = 0
for x < 0 and θ(x) = 1 for x ≥ 0. As we see, the Riemann-Liouville and Caputo
fractional derivatives have a symbol pα which is analytic in the complex half-plane
Re p ≥ 0. On the contrary the fractional derivative of Abel type is represented as a
pseudo-differential operator with a nonanalytic symbol |p|α. Exactly this type of a
nonanalytic symbol has appeared recently in different physical models for a better
description of considered material properties. For example, the nonlocality of the
dynamics of the ion-acoustic waves in plasma with Landau damping was modeled by
the fractional derivative of Abel type. In papers [11], [12] the following equations
were derived for the case of the real line x ∈ R:

ut + uux + u+ αuxxx +

∫ +∞

−∞

sign(x− y)uy (y, t)√
|x− y|

dy = 0,

ut + uux + αuxxx −
∫ +∞

−∞

sign(x− y)uyy (y, t)√
|x− y|

dy = 0.

If we are interested in the case of a half-line x > 0 (i.e., the function u ≡ 0 for all
x < 0), then we can see that the nonlocal terms of these equations convert to the
fractional derivatives of Abel type of order α = 1

2 , α = 3
2 .
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Thus the same physical problems very often lead us naturally to an evolution
partial differential equation with the fractional derivative of Abel type. So it is
necessary to formulate correctly the initial-boundary value problem to such types of
equations. It should be noted that most papers and books on fractional calculus are
devoted to solvability of fractional ordinary differential equations (ODE). However,
as far as we know, only a few works have considered the initial-boundary value
problems for evolution partial differential equations with fractional derivatives not
only of the Abel type but also classical fractional derivatives.

For the general theory of nonlinear equations on a half-line, we refer to the book
[4]. This book is the first attempt to develop systematically a general theory of
the initial-boundary value problem for evolution equations with pseudo-differential
operators on a half-line, where pseudo-differential operator K on a half-line was
introduced by virtue of the inverse Laplace transformation of the product of the
symbol K(p) = O(pα) which is analytic in the right complex half-plane, and the

Laplace transform of the derivative ∂
[α]
x u. Thus, for example, in the case of K(p) =

pα, we get the following definition of the fractional derivative ∂α
x :

(1.3) ∂α
x = L−1

⎧⎨⎩pα

⎛⎝L −
[α]∑
j=1

limx→0+ ∂j−1
x

pj

⎞⎠⎫⎬⎭ .

Note that due to the analyticity of pα for all Re p > 0 the inverse Laplace transform
gives us the function which is equal to 0 for all x < 0. To obtain an explicit form
of the Green function, an approach was used based on the Laplace transformation
with respect to the spatial variable contrary to the standard application of the
Laplace transformation with respect to the time variable. It was proved that the
amount of boundary data which we need to put in the problem for its well posed-
ness is equal to the integer part of

[
α
2

]
, where α is the order of the operator K,

which is not equal to an odd integer (in the case of odd integer order of operator
K, the amount of the boundary data also depends on the sign of the highest deriv-
ative). Methods of this paper can be applied directly to study the initial-bound-
ary value problem for differential equations with Caputo fractional derivative

∂α
x =

1

Γ(1− α+ [α])

∫ x

0

∂
[α]+1
y

(x− y)α−[α]
dy.

Despite the importance and actuality there are few results about the initial-bound-
ary value problem for pseudo-differential equations with nonanalytic symbols. For
example, in paper [5] we considered the case of rational symbol K(p) which have
some poles in the right complex half-plane. A new method was proposed for con-
structing the Green operator based on the introduction of some necessary condi-
tion at the singularity points of the symbol K(p). In the paper [6] we considered
the initial-boundary value problem for a pseudo-differential equation with symbol

K(p) = |p|
1
2 . As far as we know, the case of general nonanalytic symbols K(p)

was not studied previously. In the present paper we fill this gap, considering an
example of evolution equation with fractional derivative of Abel type (1.2) with
a symbol K(p) = |p|α. There are many natural open questions which should be
studied. First we need to consider the question, How many boundary data should
be posed in problem (1.1) for its correct solvability? Also we study traditionally
important problems of a theory of partial differential equations, such as existence
and uniqueness of solution. Also we get the closed form of solution.
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The main difficulty for equation (1.1) on a half-line is that the symbolK(p) = |p|α
is nonanalytic in the complex plane. Therefore we cannot apply the Laplace theory
directly. To construct a Green operator, we propose a new method based on the
integral representation for the sectionally analytic function and theory of singular
integro-differential equations with a Hilbert kernel and discontinuous coefficients.
We prove that the amount of the boundary data which we need to put in the problem
for its well posedness is equal to [α]+1−

[
α+1
2

]
, where α is the order of the operator

|∂x|α, which is not equal to an integer. As we see from (1.2), the boundary values
∂j−1
x u(0, t), j = 1, ..., [α] + 1 are involved in the definition of |∂x|α; hence, the

remainder
[
α+1
2

]
boundary values should be obtained as some necessary conditions

for existence of solutions of the corresponding Riemann-Hilbert boundary value
problem.

We believe that the results of this paper could be applicable in studying a wide
class of dissipative nonlinear nonlocal equations on the half-line by using techniques
of nonlinear analysis (estimations of Green function, fixed point theorems, etc., see
[3]).

To state precisely the results of the present paper we give some notation.
Let B be a Banach space; we then denote

Ck([0, T ] ,B)

=

{
f(t) ∈ B : lim

t1→t,t1∈[0,T ]

∥∥∂k
t f(t1)− ∂k

t f(t)
∥∥
B
= 0, ∀t ∈ [0, T ]

}
.

Now we define the well posedness of the problem (1.1).

Definition 1. Problem (1.1) is called well posed in a semiclassical sense if the
following two properties are fulfilled. First, there must exist a unique solution
u(x, t) belonging to a metric space

C0([0, T ] ,M1) ∩C1((0, T ] ,M2),

which satisfies equation ut + |∂x|α u = f in the generalized sense. Boundary and
initial conditions are fulfilled in the classical sense

lim
t→0

u(x, t) = u0 (x) in M1 and

lim
x→0

∂j−1
x u(x, t) = hj(t) in C0([0, T ]) for all j = 1, 2, ..., N.

Second, solution u(x, t) must be stable with respect to the initial data u0(x), bound-
ary data hj(t) and a source f(x, t). We call the function u(x, t) a semiclassical
solution. If T = +∞, the function u(x, t) is called a global semiclassical solution.

We denote 〈t〉 = 1 + t ,{t} = t
〈t〉 . The direct Laplace transformation Lx→ξ is

û (ξ) ≡ Lx→ξu =

∫ +∞

0

e−ξxu (x) dx,

and the inverse Laplace transformation L−1
ξ→x is defined by

u (x) ≡ L−1
ξ→xû = (2πi)−1

∫ i∞

−i∞
eξxu (ξ) dξ.
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The Lebesgue space is Lq (R+) = {ϕ ∈ S ′; ‖ϕ‖ Lq < ∞, } where

‖ϕ‖ Lq =

(∫ +∞

0

|ϕ (x)|q dx
) 1

q

for 1 ≤ q < ∞.

The Sobolev space is Hn
2 (R

+) = {ϕ ∈ L2;
n∑

j=0

∥∥∂j
xϕ
∥∥

L2 < ∞}.

We denote

(1.4) K(q) = |q|α , K1(q) = eiπ[
α+1
2 ]qα.

We define

G(t)φ =

∫ +∞

0

G(x, y, t)φ(y)dy,

where for x > 0, y > 0, t > 0 the function G(x, y, t) is given by formula

(1.5)

G(x, y, t) =
1

2πi

∫ i∞

−i∞
dpep(x−y) 1

K(p) + ξ

− 1

2πi

1

2πi

M∑
j=1

∫ i∞

−i∞
dξeξtξ

N+j
α −1θj(ξ, y)

∫ i∞

−i∞
dpepx

1

K(p) + ξ

K(p)

pN+j

+
1

2πi

1

2πi

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
dpepx

Y +

K(p) + ξ
I+(p, ξ, y),

where
(1.6)

I(z, ξ, y) =
1

2πi

∫ i∞

−i∞

1

q − z

1

Y +

K1(q)−K(q)

K1(q) + ξ

⎛⎝e−qy −
M∑
j=1

ξ
N+j
α

θj(ξ, y)

qN+j

⎞⎠ dq.

Here and below M =
[
α+1
2

]
, N = [α] + 1−

[
α+1
2

]
,

(1.7) Y ± = eΓ
±
w±,

Γ+(p, ξ) and Γ−(p, ξ) are left and right limiting values of the sectionally analytic
function Γ(z, ξ) given by the formula

(1.8) Γ(z, ξ) =
1

2πi

∫ i∞

−i∞

1

q − z
ln

⎛⎝ K(q) + ξ

K1(q) + ξ

M∏
j=1

(p− kj)

(p+ kj)

w−

w+

⎞⎠ dq,

and

w∓(z) = zμ
M∏
j=1

1

(z ± kj)μ
,

μ =
{ α

2M

}
=

α

2M
−
[ α

2M

]
,

θj(ξ, y) =

⎛⎝C−1

⎛⎝ e−k1(ξ)y

...
e−kM (ξ)y

⎞⎠⎞⎠
j

,(1.9)
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where a constant matrix

(1.10) C = ‖ckj‖MM

here ckj = (−eiπ[
α+1
2 ])

N+j
α exp

{
−i 2πα k(N + j)

}
and

kj(ξ) =
(
−ξe−iπ[α+1

2 ] exp (iπ(2j − 1))
) 1

α

, j = 1...,M.

All the integrals are understood in the sense of the principal values.
Now we state the main results.

Theorem 1. Let

u0 ∈ L1
(
R+

)
, f ∈ Lq

(
0, T ;L1

(
R+

))
, hj ∈ Lq

(
R+

)
∩C1

(
R+

)
, j = 1, ..., N,

with q > 2. Then the problem (1.1) is well posed in

C0([0, T ] ,HN
2 ∩CN ) ∩C0((0, T ] ,H

[α]
2 ∩C[α]).

Moreover the solution of the problem (1.1) has the following form:

u(x, t) =

∫ +∞

0

G(x, y, t)u0(y)dy +

∫ t

0

∫ +∞

0

G(x, y, t− τ )f(y, τ )dydτ

+

N∑
j=1

(−1)j−1

(j − 1)!

∫ t

0

hj(τ ) lim
p→0

∂j−1
p

̂|∂α
x |G(x, p, t− τ )dτ.(1.11)

2. Preliminaries

In subsequent consideration, we shall frequently have to use certain theorems of
the theory of functions of complex variable, the statements of which we now quote.
The proofs may be found in any textbook on the theory. Let L be smooth contour
and φ(q) a function of position on it.

Definition 2. The function φ(q) is said to satisfy on the curve L the Hölder
condition, if for two arbitrary points of this curve,

|φ(q1)− φ(q2)| ≤ C |q1 − q2|λ ,

where C and λ are positive numbers.

Theorem 2. Let φ(q) be a complex function, which obeys the Hölder condition for
all finite q and tends to a definite limit φ(∞) as q → ∞, such that for large q the
following inequality holds:

|φ(q)− φ(∞)| ≤ C |q|−μ
, μ > 0.

Then Cauchy type integral

F (z) =
1

2πi

∫ i∞

−i∞

φ(q)

q − z
dq

constitutes a function analytic in the left and right semiplanes. Here and below
these functions will be denoted F+(z) and F−(z), respectively. These functions
have the limiting values F+(p) and F−(p) at all points of imaginary axis Re p = 0,
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on approaching the contour from the left and from the right, respectively. These
limiting values are expressed by the Sokhotzki-Plemelj formula,

F+(p) = lim
z→p

Re z<0

1

2πi

∫ i∞

−i∞

φ(q)

q − z
(2.1)

=
1

2πi
−
∫ i∞

−i∞

φ(q)

q − p
dq +

1

2
φ(p),

F−(p) = lim
z→p

Re z>0

1

2πi

∫ i∞

−i∞

φ(q)

q − z

=
1

2πi
−
∫ i∞

−i∞

φ(q)

q − p
dq − 1

2
φ(p).

Subtracting and adding the formula (2.1), we obtain the following two equivalent
formulas

F+(p)− F−(p) = φ(p),(2.2)

F+(p) + F−(p) =
1

πi
−
∫ i∞

−i∞

φ(q)

q − p
dq,

which will be employed frequently hereafter. All the integrals are understood in
the sense of principal values.

Lemma 1. An arbitrary function φ(p) given on the contour Re p = 0, satisfying
the Hölder condition can be uniquely represented in the form

φ(p) = U+(p)− U−(p),

where U±(p) are the boundary values of the analytic functions U±(z) and the con-
dition U±(∞) = 0 holds. These functions are determined by the formula,

U(z) =
1

2πi

∫ i∞

−i∞

1

q − z
φ(q)dq.

Lemma 2. An arbitrary function ϕ(p) given on the contour Re p = 0, satisfying
the Hölder condition and having zero index,

indϕ(t) :=
1

2πi

∫ i∞

−i∞
d lnϕ(p) = 0,

is uniquely representable as the ratio of the functions X+(p) and X−(p), constitut-
ing the boundary values of functions, X+(z) and X−(z), analytic in the left and
right complex semiplane and having no zero in these domains. These functions are
determined to within an arbitrary constant factor and given by the formula

X±(z) = eΓ
±(z), Γ(z) =

1

2πi

∫ i∞

−i∞

1

q − z
lnϕ(q)dq.

Lemma 3. If L is a smooth closed contour and φ(q) a function that satisfies the
Hölder condition on L, then the limiting values of the Cauchy type integral

Φ(z) =
1

2πi

∫
L

1

q − z
φ(q)dq

also satisfy this condition.
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3. Method of solution: Uniqueness theorem

In this section we get a closed form of the solution of the initial-boundary value
problem (1.1) and prove uniqueness of solution.

We denote by kj(ξ) = K−1
1 (−ξ) the inverse functions for K1(p) = eiπ[

α+1
2 ]qα.

There exist M =
[
α+1
2

]
“positive” inverse functions, such that

Re kj(ξ) > 0

for all Re ξ > 0. We will prove below the number of boundary data which we need
to put in the problem (1.1) N = [α] + 1−

[
α+1
2

]
.

Definition 3. We call the function J (p, t)

J (p, t) = û0(p) +

∫ t

0

eK1(p)τ

(
f̂(p, τ ) +K1(p)

N∑
l=1

hl (τ ) p
−l

)
dτ

the input function for problem (1.1).

We denote an M ×M matrix A (ξ) = (alj (ξ))1≤l,j≤M with elements

alj (ξ) = −ξk−N−j
l (ξ) .

We define the operator A as

(3.1) A
−→J =

1

2πi

∫ i∞

−i∞
eξtA−1−→J dξ,

where the input vector
−→J = −(J (k1,+∞),J (k2,+∞), ...,J (kM ,+∞))T .

We use a norm ∥∥∥A−→J ∥∥∥ =
m∑
j=1

∣∣∣∣(A−→J )
j

∣∣∣∣ .
Theorem 3. Let

u0 ∈ L1
(
R+

)
, f ∈ Lq

(
0, T ;L1

(
R+

))
, hj ∈ Lq

(
R+

)
∩C1

(
R+

)
, j = 1, ..., N,

with q > 2. Suppose that there exists the solution u(x, t) of the problem (1.1)

u(x, t) ∈ C0([0, T ] ,HN
2 ∩CN ) ∩C0((0, T ] ,H

[α]
2 ∩C[α]).

Then this solution is unique.

Proof. To derive an integral representation for the solutions of problem (1.1), we
suppose that there exists a solution u(x, t) of problem (1.1) which is continued by
zero outside of x > 0:

u(x, t) = 0 for all x < 0.

Let φ(p) be a function of the complex variable p, which obeys the Hölder condi-
tion for all finite p and tends to 0 as p → ±i∞. We define the operator

Pφ(z) = Pp→z {φ(p)} = − 1

2πi

∫ i∞

−i∞

1

p− z
φ(p)dp.

Since the operator P is defined by a Cauchy type integral, it is readily observed
that Pφ(z) constitutes a function analytic in the entire complex plane, except for
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points of the contour of integration Re z = 0. Also by the Sokhotzki-Plemelj
formula, we have for Re q = 0

P+
p→q {φ(p)} = − 1

2πi
−
∫ i∞

−i∞

1

p− q
φ(p)dp− 1

2
φ(q),(3.2)

P−
p→q {φ(p)} = − 1

2πi
−
∫ i∞

−i∞

1

p− q
φ(p)dp+

1

2
φ(q).

Here P+
p→q {φ(p)} and P−

p→q {φ(p)} are limits of Pp→z {φ(p)} as z tends to p from
the left and right semiplane, respectively.

For the Laplace transform we have

Lx→q {|∂x|α} = Pp→q

⎧⎨⎩|p|α
⎛⎝Lx→p {u} −

[α]+1∑
j=1

∂j−1
x u(0, t)

pj

⎞⎠⎫⎬⎭ .

Since Lx→q {u} is analytic for all Re q > 0, we have

(3.3) û(q, t) = Lx→q {u} = Pp→q {û(p, t)} .
Therefore applying the Laplace transform with respect to x to problem (1.1), we
obtain for t > 0

(3.4)

⎧⎪⎨⎪⎩ Pp→q

{
ût +K(p)û(p, t)−K(p)

[α]+1∑
j=1

∂j−1
x u(0,t)

pj − f̂(p, t)

}
= 0,

û(p, 0) = û0(p),

where
K(p) = |p|α .

We rewrite (3.4) in the form

(3.5)

⎧⎨⎩ ût +K(p)û(p, t)−K(p)
[α]+1∑
j=1

∂j−1
x u(0,t)

pj − f̂(p, t) = Φ(p, t),

û(p, 0) = û0(p),

with some function Φ(p, t) such that for all Re p > 0,

(3.6) Pp→q {Φ(p, t)} = 0,

and for |p| > 1,

|Φ(p, t)| ≤ C
1

|p|α−[α]
.

Applying the Laplace transformation with respect to time variable to problem (3.5),
we find for Re p > 0

(3.7)
̂̂u(p, ξ) = 1

K(p)+ξ

(
û0(p) +

̂̂
f(p, ξ) +K(p)

[α]+1∑
j=1

∂j−1
x û(0,ξ)

pj + Φ̂(p, ξ)

)
,

where ̂̂u(p, ξ) = Lt→ξ {û(p, t)}. Here the functions Φ̂(p, ξ), ∂j−1
x û(0, ξ), j = 1, . . . , [α]

+1 are the Laplace transforms for Φ(p, t), ∂j−1
x û(0, ξ) with respect to time, respec-

tively. We will find the function Φ̂(p, ξ) using the analytic properties of function ̂̂u
in the right-half complex planes Re p > 0 and Re ξ > 0. We have for Re p = 0

(3.8) ̂̂u(p, ξ) = − 1

πi
−
∫ i∞

−i∞

1

q − p
̂̂u(q, ξ)dq.
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In view of the Sokhotzki-Plemelj formula via (3.7), the condition (3.8) can be
written as

(3.9) Θ+(p, ξ) = −Λ+(p, ξ),

where the sectionally analytic functions Θ(z, ξ) and Λ(z, ξ) are given by Cauchy
type integrals

(3.10) Θ(z, ξ) =
1

2πi

∫ i∞

−i∞

1

q − z

1

K(q) + ξ
Φ̂(q, ξ)dq

and
(3.11)

Λ(z, ξ) =
1

2πi

∫ i∞

−i∞

1

q − z

1

K(q) + ξ

⎛⎝û0(q) +
̂̂
f(p, ξ) +K(q)

[α]+1∑
j=1

∂j−1
x û(0, ξ)

pj

⎞⎠ dq.

To perform the condition (3.9) in the form of a nonhomogeneous Riemann prob-
lem, we introduce the sectionally analytic function

(3.12) Ω(z, ξ) =
1

2πi

∫ i∞

−i∞

1

q − z
Ψ(q, ξ)dq,

where

(3.13) Ψ(p, ξ) =
K(p)

K(p) + ξ
Φ̂(p, ξ).

Taking into account the assumed condition (3.6) and making use of Sokhotzki-
Plemelj formula (2.1), we get for limiting values of the functions Ω(z, ξ) and Θ(z, ξ)

(3.14) Ω−(p, ξ) = −ξΘ−(p, ξ).

Also observe that from (3.10) and (3.12) by formula (2.2),

K(p)
(
Θ+(p, ξ)−Θ−(p, ξ)

)
= Ψ(p, ξ) = Ω+(p, ξ)− Ω−(p, ξ).

Substituting (3.9) and (3.14) into this equation, we obtain the nonhomogeneous
Riemann problem

(3.15) Ω+(p, ξ) =
K(p) + ξ

ξ
Ω−(p, ξ)−K(p)Λ+(p, ξ).

It is required that we find two functions for some fixed point ξ, Re ξ > 0: Ω+(z, ξ)
analytic in Re z < 0 and Ω−(z, ξ) analytic in Re z > 0, which satisfy on the contour
Re p = 0 the relation (3.15).

Here, for some fixed point ξ, Re ξ > 0, the functions

W (p, ξ) =
K(p) + ξ

ξ
and g(p, ξ) = −K(p)Λ+(p, ξ)

are called the coefficient and the free term of the Riemann problem, respectively.
Bearing in mind formula (3.13), note that we can find an unknown function

Φ̂(p, ξ) which is involved in the formula (3.7) by the relation

(3.16) Φ̂(p, ξ) =
K(p) + ξ

K(p)

(
Ω+(p, ξ)− Ω−(p, ξ)

)
.

The method for solving the Riemann problem A+(p) = ϕ(p)A−(p) + φ(p) is based
on Lemmas 1 and 2.
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In the formulations of Lemmas 1 and 2, the coefficient ϕ(p) and the free term
φ(p) of the Riemann problem are required to satisfy the Hölder condition on the
contour Re p = 0. This restriction is essential. On the other hand, it is easy to
observe that both functions W (p, ξ) and g(p, ξ) do not have a limiting value as
p → ±i∞. So we cannot find the solution using lnW (p, ξ). The principal task
now is to get an expression equivalent to the boundary value problem (3.15), such
that the conditions of Lemmas 1 and 2 are satisfied. First, let us introduce some
notation and let us establish certain auxiliary relationships. Denote

K1(z) = Cαz
α, Cα = eiπ[

α+1
2 ].

We choose the constant eiπ[
α+1
2 ] such that ReK1(q) > 0 for Re q = 0. The equa-

tion K1(p) = −ξ has M =
[
α+1
2

]
roots k1(ξ), k2(ξ),..., kM (ξ), which are analytic

functions for Re ξ > 0 and

p = kj(ξ) =

(
ξ

Cα
exp (2iπj)

) 1
α

transforms the half-complex plane Re ξ > 0 to domains, where

Re kj(ξ) > 0, j = 1, 2, ...,M.

We introduce the function

W̃ (p, ξ) =

(
K(p) + ξ

K1(p) + ξ

)
w−

w+

M∏
j=1

(p− kj)

(p+ kj)
= 0,

where

w−(z) = zμ

⎛⎝ M∏
j=1

1

z + kj(ξ)

⎞⎠μ

, w+ = zμ

⎛⎝ M∏
j=1

1

z − kj(ξ)

⎞⎠μ

,

μ =
{ α

2M

}
.

Here w−(z) is analytic for Re z > 0 and w+(z) is analytic for Re z < 0.

We observe that the function W̃ (p, ξ), given on the contour Re p = 0, satisfies
the Hölder condition, and under the assumption Re K1(p) > 0 does not vanish for
any Re ξ > 0. Also we have

Ind.W̃ (p, ξ) =
1

2πi

∫ i∞

−i∞
d ln W̃ (p, ξ) = 0.

Therefore in accordance with Lemma 2 the function W̃ (p, ξ) can be represented in
the form of the ratio

(3.17) W̃ (p, ξ) =
X+(p, ξ)

X−(p, ξ)
,

where

X±(p, ξ) = eΓ
±(p,ξ), Γ(z, ξ) =

1

2πi

∫ i∞

−i∞

1

q − z
ln W̃ (q, ξ)dq.
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Now we return to the nonhomogeneous Riemann problem (3.15). Making use of
the formula (3.17), we get

(3.18)
K(p) + ξ

K1(p) + ξ
=

Y +(p, ξ)

Y −(p, ξ)

M∏
j=1

(p+ kj)

(p− kj)
,

where
Y ±(p, ξ) = X±(p, ξ)w±(p).

By (3.18) we reduce the nonhomogeneous Riemann problem (3.15) to the form
(3.19)

1

Y +
Ω+(p, ξ) =

(
K1(p) + ξ

ξ

) M∏
j=1

(p+ kj)

(p− kj)

Ω−(p, ξ)

Y −(p, ξ)
− 1

Y +(p, ξ)
K(p)Λ+(p, ξ).

Now we perform the function Λ(z, ξ) given by formula (3.11) as

(3.20) Λ(z, ξ) = Λ1(z, ξ) + Λ2(z, ξ),

where

Λ1(z, ξ) =
1

2πi

∫ i∞

−i∞

1

q − z

1

K1(q) + ξ
(3.21)

×

⎛⎝û0(q) +
̂̂
f(q, ξ) +K1(q)

[α]+1∑
j=1

∂j−1
x û(0, ξ)

pj

⎞⎠ dq,

Λ2(z, ξ) =
1

2πi

∫ i∞

−i∞

1

q − z

K1(q)−K(q)

(K(q) + ξ)(K1(q) + ξ)
(3.22)

×

⎛⎝û0(q) +
̂̂
f(q, ξ)− ξ

[α]+1∑
j=1

∂j−1
x û(0, ξ)

pj

⎞⎠ dq.

First we calculate the left limiting value Λ+
1 (p, ξ). There exist M roots kj(ξ) of

equation K1(z) = −ξ such that Re kj(ξ) > 0 for all Re ξ > 0. Therefore, taking the
limit z → p from the left-hand side of the complex plane, by the Cauchy theorem
we get

Λ+
1 (p, ξ) =

M∑
j=1

−
k′j(ξ)

p− kj(ξ)

⎛⎝û0(kj) +
̂̂
f(kj , ξ)− ξ

[α]+1∑
l=1

∂l−1
x û(0, ξ)

klj

⎞⎠ .

The last relation implies that (K1(p)+ ξ)Λ+
1 (p, ξ) can be expressed by the function

Λ3(z, ξ) which is analytic in Re z > 0,

(3.23) (K1(p) + ξ)Λ+
1 (p, ξ) = Λ−

3 (p, ξ),

where
(3.24)

Λ3(z, ξ) = (K1(p) + ξ)

M∑
j=1

−
k′j(ξ)

p− kj(ξ)

⎛⎝û0(kj) +
̂̂
f(kj , ξ)− ξ

[α]+1∑
l=1

∂l−1
x û(0, ξ)

klj

⎞⎠ .

By the Sokhotzki-Plemelj formula (2.2) we express the left limiting value Λ+
2 (p, ξ)

in the term of the right limiting value Λ−
2 (p, ξ) as

Λ+
2 (p, ξ) = Λ−

2 (p, ξ) + g̃1(p, ξ),
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where

(3.25) g̃1(p, ξ) =
K1(p)−K(p)

(K(p) + ξ)(K1(p) + ξ)

⎛⎝û0(q) +
̂̂
f(q, ξ)− ξ

[α]+1∑
j=1

∂j−1
x û(0, ξ)

pj

⎞⎠ .

Bearing in mind the representation (3.20) and making use of (3.23), (3.25) and
(3.18), after simple transformations we get

(3.26) K(p)Λ+ = (K(p) + ξ)

[
Λ−
3

K1(p) + ξ
+ Λ−

2

]
− ξΛ+ + g1(p, ξ),

where
g1(p, ξ) = (K(p) + ξ)g̃1(p, ξ).

Replacing in equation (3.19) K(p)Λ+(p, ξ) by (3.26), we reduce the nonhomoge-
neous Riemann problem (3.19) in the form

(3.27)
Ω+(p, ξ)− ξΛ+(p, ξ)

Y +(p, ξ)
=

(
K1(p) + ξ

ξ

)
P+(p, ξ)

P−(p, ξ)

Ω−
1 (p, ξ)

Y −(p, ξ)
− 1

Y +(p, ξ)
g1(p, ξ),

where

(3.28) Ω−
1 (p, ξ) = Ω−(p, ξ)− ξΛ−

2 (p, ξ)−
ξΛ−

3

K1(p) + ξ
.

Since g1(p, ξ) satisfies on Re p = 0 the Hölder condition, on the basis of Lemma
3 the function 1

Y +(p,ξ)g1(p, ξ) also satisfies this condition. Therefore in accordance

with Lemma 1 it can be uniquely represented in the form of the difference of the
functions U+(p, ξ) and U−(p, ξ), constituting the boundary values of the analytic
function U(z, ξ), given by formula

U(z, ξ) =
1

2πi

∫ i∞

−i∞

1

q − z

1

Y +(q, ξ)

K1(p)−K(p)

K1(p) + ξ

×

⎛⎝û0(q) +
̂̂
f(q, ξ)− ξ

[α]+1∑
j=1

∂j−1
x û(0, ξ)

pj

⎞⎠ dq.

(3.29)

Therefore the problem (3.19) takes the form

Ω+(p, ξ)− ξΛ+(p, ξ)

Y +(p, ξ)
+ U+(p, ξ) =

Ω−
1 (p, ξ)

Y −(p, ξ)
+ U−(p, ξ).

The last relation indicates that the function Ω+(p,ξ)−ξΛ+(p,ξ)
Y + + U+, analytic in

Re z < 0, and the function
Ω−

1

Y − + U−, analytic in Re z > 0, constitute the analytic
continuation of each other through the contour Re z = 0. Consequently, they
are branches of a unique analytic function in the entire plane. According to the
Liouville theorem, this function is zero. Thus, bearing in mind the representations
(3.28), we get

Ω+(p, ξ) = − Y +U+ + ξΛ+,(3.30)

Ω−(p, ξ) = − ξ

K1(p) + ξ
Y −

M∏
j=1

(p− kj)

(p+ kj)
U− + ξ

(
Λ+
1 + Λ−

2

)
.

There exist M roots kj(ξ) of equation K1(z) = −ξ such that Re kj(ξ) > 0 for all
Re ξ > 0. Therefore, in the expression for the function Ω−(z, ξ), the function ξΛ+

1
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has M poles in the points z = kj(ξ),j = 1, ...,M. Thus in the general case the
problem (3.15) is unsolvable. For solubility of the nonhomogeneous problem (3.15),
it is necessary and sufficient that the following conditions are satisfied:

û0(kl) +
̂̂
f(kl, ξ)− ξ

[α]+1∑
j=1

φ−j
l

∫ +∞

0

e−ξτu(j−1)
x (0, τ )dτ = 0,

for l = 1, 2, ...,M, where

û0(kl) =

∫ +∞

0

e−φlyu0(y)dy,

̂̂
f(kl, ξ) =

∫ +∞

0

∫ +∞

0

e−(φly+ξt)f(y, t)dydt.

We have M equations with [α] + 1 unknowns u
(j−1)
x (0, t), so we must include

N = [α]+1−M boundary data into the problem. For example, if we use Dirichlet

type boundary data u
(j−1)
x (0, t) = hj(t), j = 1, 2, ..., N, then we can find the rest of

the Laplace transforms of the boundary values

v̂j(ξ) ≡
∫ +∞

0

e−ξt∂(j+N−1)
x u(0, t)dt, j = 1, ...,M,

from the system of M equations

(3.31) A
−→̂
V =

−→J ,

where A is M ×M matrix A = ‖aij‖MM with elements

aij = −ξk−N−j
i ,

the vector
−→̂
V = (v̂1(ξ), ..., v̂M (ξ))

T
and

−→J is the input characteristic vector for
problem (1.1) with components

J (kl,+∞) = −(û0(kl) +
̂̂
f(kl, ξ)) + ξ

N∑
j=1

ĥj(ξ)k
−j
l .

Here

(3.32) ĥj(ξ) =

∫ +∞

0

e−ξthj(t)dt.

The determinant of system (3.31) is not equal to zero since all functions kl, l =
1, ...,M are different for Re ξ > 0. Solving (3.31) and taking the inverse Laplace
inverse transformation with respect to time, we obtain

−→
V (t) =

⎛⎝ v1(t)
...

vM (t)

⎞⎠ =

⎛⎜⎝ ∂
(N)
x u(0, t)

...

∂
([α])
x u(0, t)

⎞⎟⎠ =
1

2πi

∫ i∞

−i∞
eξtA−1−→J dξ.(3.33)
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Now we return to problem (3.15). Under condition (3.31), Λ+
1 = 0 . Therefore

from (3.30) the limiting values of solution of (3.15) are given by formula

Ω+(p, ξ) = − Y +U+ + ξΛ+
2(3.34)

Ω−(p, ξ) = − ξ

K1(p) + ξ

M∏
j=1

(p− kj)

(p+ kj)
Y −U− + ξΛ−

2 .

From (3.34), with the help of the integral representations (3.29) and (3.22), for
sectionally analytic functions U(z, ξ) and Λ2(z, ξ), making use of the Sokhotzki-
Plemelj formula (2.1) and relation (3.18), we can express the difference limiting
values of the function Ω(z, ξ) in the form

Ω+(p, ξ)− Ω−(p, ξ) = −Y +

(
U+ − ξ

K(p) + ξ
U−

)
+ ξ(Λ+

2 − Λ−
2 )(3.35)

= −Y + K(p)

K(p) + ξ
U− −K(p)

1

K(p) + ξ
g1.

We now proceed to find the unknown function Φ̂(p, ξ) involved in formula (3.7)

for the solution ̂̂u(p, ξ) of problem (1.1). Replacing the difference Ω+(p, ξ)−Ω−(p, ξ)
in the relation (3.16) by formula (3.35) we get

Φ̂(p, ξ) =
K(p) + ξ

K(p)

(
Ω+(p, ξ)− Ω−(p, ξ)

)
= − Y +(p, ξ)U+.

It is easy to observe that Φ̂(p, ξ) is the boundary value of the function analytic
in the left complex semiplane and therefore satisfies our basic assumption for all
Re z > 0

P {Φ} = 0.

Having determined the function Φ̂(p, ξ), and bearing in mind formula (3.7) and

conditions ∂j−1
x u(0, t) = 0 , j = 1, 2, ..., N , we determine required function ̂̂u,

(3.36)

̂̂u(p, ξ) = 1

K(p) + ξ

⎛⎝û0(p) +
̂̂
f(p, ξ) +K(p)

M∑
j=1

∂N+j−1
x û(0, ξ)

pN+j
− Y +(p, ξ)U+

⎞⎠ ,

where ∂N+j−1
x û(0, ξ), j = 1, ...,M was defined by formula (3.33). Now we prove

that, in accordance with the last relation, the function ̂̂u(p, ξ) constitutes the lim-
iting value of an analytic function in Re z > 0.

With the help of the integral representations (3.29) for the sectionally analytic
function U(z, ξ) making use of the Sokhotzki-Plemelj formula (2.1), we arrive at



5164 E. KAIKINA

the relation ̂̂u =
1

K1(p) + ξ

(
û0(p) +

̂̂
f(p, ξ)

)
(3.37)

+
K1(p)

K1(p) + ξ

⎛⎝ N∑
j=1

ĥj(ξ)

pN+j
+

M∑
j=1

∂N+j−1
x û(0, ξ)

pN+j

⎞⎠
− 1

K1(p) + ξ

M∏
j=1

(p− kj)

(p+ kj)
Y −U−,

where ∂N+j−1
x û(0, ξ), j = 1, ...,M was defined by formula (3.33).

Thus by virtue of (3.31) the function ̂̂u is the limiting value of an analytic function
in Re z > 0. Note the fundamental importance of the proven fact—that the solution̂̂u constitutes an analytic function in Re z > 0 and, as a consequence, its inverse
Laplace transform vanishes for all x < 0.

Taking the inverse Laplace transform of (3.37) with respect to ξ and p variables,
we get the closed form for solution u(x, t)

(3.38)

u(x, t) =
1

2πi

∫ i∞

−i∞
epxe−K(p)tJ (p, t)dp

+
1

2πi

∫ i∞

−i∞
dpepxK1(p)

M∑
j=1

p−N−j

∫ t

0

e−K(p)(t−τ)vj(τ )dτ

− 1

2πi

∫ i∞

−i∞
epxû1(p, t),

where

vj(t) = ∂N+j−1
x û(0, ξ) =

1

2πi

∫ i∞+b

−i∞+b

eξt
(
A−1−→J

)
j
(ξ)dξ =

(
A
−→J
)
j
,

û1(p, t) = − 1

2πi

∫ i∞

−i∞
eξt

1

K1(p) + ξ

M∏
j=1

(p− kj)

(p+ kj)
Y −(p, ξ)U−(p, ξ)dξ.

We now prove the uniqueness of the solution. On the contrary, we consider two
different solutions u1 and u2. The difference u1−u2 then satisfies the linear problem
(1.1) with homogeneous data f = 0, u0 = 0, and hj = 0. Then by (3.38) we get
u1 − u2 = 0; hence u1 = u2. The theorem is proved. �

4. Green operator

We introduce the operator G

G (t)φ(x) =

∫ +∞

0

φ(y)G(x, y, t)dy

and the operator H (t)

H (t)
−→
h =

N∑
j=1

(−1)j−1

(j − 1)!

∫ t

0

hj(τ ) lim
p→0

∂j−1
p |∂α

x | ̂G(x, p, t− τ )dτ,
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where the function G(x, y, t) is defined by (1.5). Now we collect some preliminary

estimates of the operators G (t)φ(x) and H (t)
−→
h .

Lemma 4. The estimates are true, provided that the right-hand sides are finite

‖∂n
xG (t)φ‖Ls ≤ Ct−

1
α ( 1

r−
1
s+n) ‖φ(·)‖Lr ,(4.1) ∥∥∥∂n

xH (t)
−→
h
∥∥∥
Ls

≤ C
(∥∥∥−→h ′(·)

∥∥∥
L∞

+
∥∥∥−→h (·)

∥∥∥
L∞

)
t−

N−n
α ,

where small μ > 0, 1 ≤ r ≤ s ≤ ∞, n = 0, 1,...,[α].

Proof. From definition (1.5) we have

(4.2) G(x, y, t) =

4∑
j=1

Jj(x, y, t),

where

J1(x, y, t) =
1

2πi

∫ i∞

−i∞
epx−K(p)te−pydp,

J2(x, y, t) = − 1

2πi

1

2πi

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx

K(p)

ξ(K(p) + ξ)

M∑
j=1

θj(ξ, y)ξ
N+j
α

pN+j
dp,

J3(x, y, t) = − 1

2πi

1

2πi

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx

Y +(p, ξ)

K(p) + ξ
I+1 (p, ξ, y)dp,(4.3)

I1(z, ξ, y) =
1

2πi

∫ i∞

−i∞

e−qy

q − z

1

Y +

K1(q)−K(q)

K1(q) + ξ
dq,(4.4)

and

J4(x, y, t) = − 1

2πi

1

2πi

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx

Y +(p, ξ)

K(p) + ξ
I+2 (p, ξ, y)dp,

I2(z, ξ, y) =
1

2πi

∫ i∞

−i∞

1

q − z

1

Y +

K1(q)−K(q)

K1(q) + ξ

M∑
j=1

ξ
N+j
α

θj(ξ, y)

qN+j
dq.

Denote by

Jj (t)φ = θ(x)

∫ +∞

0

Jj(x, y, t)φ(y)dy,

a similar consideration to that in the book [3], which proves that for n = 0, 1,...,[α],

(4.5) ‖∂n
xJ1 (t)φ‖Ls ≤ Ct−

1
α ( 1

r−
1
s )−

n
α ‖φ(·)‖Lr .

Also in the book [4] it was proved that

(4.6) ‖∂n
xJ2 (t)φ‖Ls,μ ≤ Ct−

1
α ( 1

r−
1
s )−

n
α ‖φ(·)‖Lr .

Now we estimate J2 (t)φ. Let the contours Ci be defined as

C1 =
{
p ∈

(
∞e−i(π

2 +ε1), 0
)⋃(

0,∞ei(
π
2 +ε1)

)}
,(4.7)

C2 =
{
q ∈

(
∞e−i(π

2 −ε2), 0
)⋃(

0,∞ei(
π
2 −ε2)

)}
,(4.8)

C3 =
{
ξ ∈

(
∞e−i(π

2 +ε3), 0
)⋃(

0,∞ei(
π
2 +ε3)

)}
,(4.9)
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where εj > 0 small enough can be chosen such that all functions under integration
are analytic and Re kj(ξ) > 0 for ξ ∈ C3. In particular, for example, K1(p) + ξ = 0
outside the origin for all p ∈ C1 and ξ ∈ C3.

From the integral representation (4.4) we have for y > 0, ξ ∈ C3, and p ∈ C1,

I+1 (z, ξ, y) =
1

2πi

∫ i∞

−i∞

e−qy

q − z

1

Y +

K1(q)−K(q)

K1(q) + ξ
dq(4.10)

=
1

2πi

∫
C2

e−qy

q − p

(
1

Y −(q, ξ)

P+(q, ξ)

P−(q, ξ)

K1(q)−K(q)

K(q) + ξ
− 1

)
dq.

Here

K(p) =

{
(−ip)α , Im p > 0,
(ip)α , Im p < 0.

Since Γ(z, ξ) = O
(

ξ
〈z〉

)
, we have

1

Y −(q, ξ)

P+(q, ξ)

P−(q, ξ)

K1(q)−K(q)

K(q) + ξ
− 1 = O

(
ξ 〈q〉−1

)
.

Substituting the obtained relation into (4.10), we get

∣∣I+1 (z, ξ, y)
∣∣ ≤ C |ξ|

∫
C2

e−C|q|y

|q − p| {q}
−μ+α 〈q〉−1 dq.

After this observation in accordance with the integral representation (4.3) by the
Holder inequality we have arrived at the following estimate for r > 1, s > 1, l−1 =
1− r−1, small μ ≥ 0, n = 0, 1, ..., [α]:

(4.11)∥∥∥∥∂n
x

∫ +∞

0

J3(·, y, t)φ(y)dy
∥∥∥∥
Ls

≤ C

∫
C3

dξe−C|ξ|t
∫
C1

dp
|p|n−

1
s

|K(p) + ξ|

×
∫
C2

1

|q − p|dq
〈
|ξ|−

1
α q

〉−1 ∥∥∥e−C|q|·
∥∥∥
Ll

‖φ‖Lr

≤ C ‖φ‖Lr

∫
C3

dξe−C|ξ|t
∫
C1

dp
|p|n−

1
s

|K(p) + ξ|

∫
C2

dq |q|
1
r−1

〈
|ξ|−

1
α q

〉−1 1

|q − p|
≤ C ‖φ‖Lr t

− 1
α ( 1

r−
1
s+n).

Since |θj(ξ, y)| ≤ Ce−C|ξ|
1
α y, we have

I+2 (z, ξ, y) ≤ C |ξ| e−C|ξ|
1
α y

∫
C2

1

|q − p| {q}
−μ+{α} 〈q〉−N−1

dq).
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Therefore

(4.12) ∥∥∥∥∂n
x

∫ +∞

0

J4(·, y, t)φ(y)dy
∥∥∥∥
Ls

≤ C

∫
C3

dξe−C|ξ|t |ξ|
∫
C1

dp
|p|n−

1
s

|K(p) + ξ|

×
∫
C2

1

|q − p|dq {q}
−μ+{α} 〈q〉−N−1

∥∥∥∥e−C|ξ|
1
α

∥∥∥∥
Ll

‖φ‖Lr

≤ C ‖φ‖Lr

∫
C3

dξe−C|ξ|t |ξ|
1
α (

1
r−1)

×
∫
C1

dp
|p|n−

1
s

|K(p) + ξ|

∫
C2

dq {q}−μ+{α} 〈q〉−N−1 1

|q − p|
≤ C ‖φ‖Lr t

− 1
α ( 1

r−
1
s+n).

Therefore according to (4.5)-(4.12) we obtain the first part of the estimate (4.1) of
Lemma 4.

Now we prove the second part of the estimate (4.1) of Lemma 4. Denote

θ̃j(ξ, y) =

⎛⎝C−1

⎛⎝ k−j
1 (ξ)
...

k−j
M (ξ)

⎞⎠⎞⎠
j

,

where a constant matrix C was defined by (1.10). We write H (t)φ in the form

(4.13) H (t)φ =
4∑
1

Hl (t)φ,

where

Hl (t)
−→
φ =

M∑
j=1

∫ t

0

Ψl(x, t− τ )φj(τ )dτ,

Ψ1(x, t) =
1

2πi

1

2πi

∫
dξeξt

∫
dpepx

K(p)

K(p) + ξ

⎛⎝ 1

pj
−

M∑
j=1

ξ−1+N+j
α

θ̃j(ξ, y)

pN+j

⎞⎠ ,

Ψ2(x, t) = − 1

2πi

1

2πi
t−1− 1

α (1−j)

∫
dξeξ

∫
dpepxt

− 1
α Y +K(p)

K(p) + ξ
Ĩ+1 (p, ξ)

(4.14)

=
1

2πi

1

2πi
t−1− 1

α (1−j)

∫
dξeξ

∫
dpepxt

− 1
α Y +ξ

K(p) + ξ
Ĩ+1 (p, ξ),

where

Ĩ1(z, ξ, y) =
1

2πi

∫ i∞

−i∞

dq

q − z

1

Y +

K1(q)−K(q)

K1(q) + ξ

1

qj
,(4.15)

Ψ3(x, t) =
1

2πi

1

2πi

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
dpepx

Y +ξ

K(p) + ξ
Ĩ+2 (p, ξ, y),(4.16)
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where

(4.17) Ĩ2(z, ξ, y) = − 1

2πi

∫ i∞

−i∞

dq

q − z

1

Y +

K1(q)−K(q)

K1(q) + ξ

M∑
j=1

ξ
N+j
α

θ̃j(ξ)

qN+j
dq.

A similar consideration to that in the book [4] proves that for n = 0, 1,...,[α],

(4.18)
∥∥∥∂n

xHl (t)
−→
h
∥∥∥
Ls

≤ Ct−
1
α ( 1

r−
1
s )−

n
α

∥∥∥−→h (·)
∥∥∥
Lr

.

Now we get an estimate for H2 (t)
−→
h . Using the estimate

(4.19)
∣∣∣Ĩ+1 (p, ξ, y)

∣∣∣ ≤ C

∫
C2

dq

|q − p|
|q|α−μ−j

|K1(q) + ξ|

from the first representation of (4.14), we get for n < δ < α+ n and x > 1

∣∣∣∂n
xH2 (t)

−→
h
∣∣∣ ≤ C

1

〈x〉δ
N∑
j=1

∫ t

0

|hj(τ )| (t− τ )−1− 1
α (1−j+n−δ)dτ

×
∫
C3

e−C|ξ| |ξ| dξ
∫
C1

dp
|p|α+n−δ

|K(p) + ξ|

∫
C2

dq

|q − p|
|q|α−μ−j

|K1(q) + ξ|

≤ C
1

〈x〉δ
N∑
j=1

∫ t

0

|hj(τ )| (t− τ )−1+γdτ

≤ C
1

〈x〉δ
∥∥∥−→h (·)

∥∥∥
L∞

.

In the case x < 1, we use the second relation of (4.14). After integrating by parts
we get

H2 (t)
−→
h =

N∑
j=1

∫ t

0

dτh′
j(τ )(t− τ )−

1
α (1−j)

×
∫
C3

dξeξ
∫
C1

dpepx(t−τ)−
1
α Y +

K(p) + ξ
Ĩ+1 (p, ξ)

+
N∑
j=1

hj(t)

∫
C3

dξeξ
∫
C1

dp
Y +

K(p) + ξ
Ĩ+1 (p, ξ)

+
N∑
j=1

hj(0)

∫
C3

dξeξ
∫
C1

dpepxt
− 1

α Y +

K(p) + ξ
Ĩ+1 (p, ξ)

≤ C
(∥∥h′

j(τ )
∥∥
L∞ +

∥∥∥−→h (·)
∥∥∥
L∞

)
t−

N−n
α .
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Therefore,∥∥∥∂n
xH2 (t)

−→
h
∥∥∥
Ls

≤
M∑

j=n+1

∫ t

0

dτ |hj(τ )| (t− τ )−1− 1
α (1−j+n− 1

s )

×
∫
C3

e−C|ξ|dξ

∫
C1

dp
|p|n−

1
s

|K(p) + ξ|

∫
C2

dq

|q − p|
|q|α−μ−j

|K1(q) + ξ|

≤ t−
N−n

α

M∑
j=1

‖hj(·)‖L∞

×
∫
C3

dξ

∫
C1

dp
|p|n−

1
s

|K(p) + ξ|

∫
C2

dq

|q − p|
{q}−μ |q|α−j

|K1(q) + ξ|

≤ C
(∥∥h′

j(τ )
∥∥
L∞ +

∥∥∥−→h (·)
∥∥∥
L∞

)
t−

N−n
α .

Since

(4.20)
∣∣∣Ĩ+2 (p, ξ, y)

∣∣∣ ≤ C

∫
C2

dq

|q − p|
|q|α−μ

|K1(q) + ξ|

M∑
j=1

∣∣∣∣ξq
∣∣∣∣
N+j
α ∣∣∣θ̃j(ξ, y)∣∣∣

and
∣∣∣θ̃j(ξ, y)∣∣∣ ≤ C |ξ|−

j
α , in the same way we can obtain∥∥∥∂n

xH3 (t)
−→
h
∥∥∥
Ls

≤ C
(∥∥∥−→h ′

j(·)
∥∥∥
L∞

+
∥∥∥−→h (·)

∥∥∥
L∞

)
t−

N−n
α .

Thus, the second part of estimate (4.1) of Lemma 4 is proved. �

Lemma 5. The function G(x, y, t) defined by formula (1.5) is the Green function
of problem (1.1), i.e., for all y > 0,⎧⎨⎩

(∂t + |∂x|α)G(x, y, t) = 0,
G(x, y, 0) = δ(x− y),

∂j−1
x G(x, y, t) = 0, j = 1, 2, ..., [α]−

[
α+1
2

]
+ 1.

Proof. Taking the Laplace transforms with respect to x and t of G(x, y, t), we get
(4.21)

̂̂
G(p, y, ξ) =

1

K(p) + ξ

⎛⎝e−py +K(p)
M∑
j=1

ξ−1+N+j
α

θj(ξ, y)

pN+j
− Y +I+(p, ξ, y)

⎞⎠ .

With the help of the integral representations (1.7) and (1.6), for sectionally analytic
functions Y (z, ξ) and I(z, ξ), making use of the Sokhotzki-Plemelj formula (2.1) and
relation (3.18), we can express

̂̂
G(p, y, ξ) =

1

K1(p) + ξ⎛⎝e−py +K1(p)

M∑
j=1

ξ−1+N+j
α

θj(ξ, y)

pN+j
− Y −

M∏
j=1

(p− kj)

(p+ kj)
I−(p, ξ, y)

⎞⎠ .

By definition (1.9)

e−kl(ξ)y −
M∑
j=1

ξ
N+j
α

θj(ξ, y)

kN+j
l

= 0, l = 1, ...,M,
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where K1(kl) = −ξ, Re kl(ξ) > 0 for Re ξ > 0. Therefore
̂̂
G(p, y, ξ) is an analytic

function for Re p > 0 and, as a consequence,̂̂
G(p, y, ξ) = P− ̂̂G(p, y, ξ)(4.22)

= − 1

2πi
lim

z→p,Rez>0

∫ i∞

−i∞

1

p− z
̂̂
G(p, y, ξ)dp.

We can rewrite relation (4.21) in the form

ξ
̂̂
G(p, y, ξ)− e−py +K(p)

⎛⎝̂̂
G(p, y, ξ)− ξ−1+N+j

α

M∑
j=1

θj(ξ, y)

pN+j

⎞⎠
= −Y +(p, ξ)I+(p, ξ, y).

Taking operator P− to the last relation and using (4.22) we obtain,

ξ
̂̂
G(p, y, ξ)− e−py + P−

⎧⎨⎩K(p)

⎛⎝̂̂
G(p, y, ξ)− ξ−1+N+j

α

M∑
j=1

θj(ξ, y)

pN+j

⎞⎠⎫⎬⎭
= −P− {

Y +(p, ξ)I+(p, ξ, y)
}
.

Since Y +(p, ξ)I+(p, ξ, y) is a left limiting value on an analytic function in Re p < 0,
it is easy to see that

P− {
Y +(p, ξ)I+(p, ξ, y)

}
= 0.

Thus we finally get

(4.23) ξ
̂̂
G(p, y, ξ)− e−py + P−

⎧⎨⎩K(p)

⎛⎝̂̂
G(p, y, ξ)− ξ−1+N+j

α

M∑
j=1

θj(ξ, y)

pN+j

⎞⎠⎫⎬⎭ = 0.

Since all integrals of formula (1.5) converge absolutely by the Fubini theorem and
the Cauchy theorem, we have

(4.24) Ĝ(p, y, t) |t=0 = e−py.

Also from (4.21) we have

̂̂
G(p, y, ξ) = ξ−1+N+j

α

M∑
j=1

θj(ξ, y)

pN+j
+O(p−α−1),

and therefore
(4.25)

∂j−1
x Ĝ(x, y, ξ) |x=0 =

{
0, j = 0, ..., N,

ξ−1+N+j
α θj(ξ, y), j = N + 1, ..., N +M = [α] + 1.

By the definition of operator |∂x|α, applying inverse Laplace transform to relation
(4.23), and using (4.24) and (4.25), we get⎧⎨⎩

(∂t + |∂x|α)G(x, y, t) = 0,
G(x, y, 0) = δ(x− y),

∂j−1
x G(x, y, t) = 0, j = 1, 2, ..., [α]−

[
α+1
2

]
+ 1.

The lemma is proved. �
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5. Proof of Theorem 1

From Lemma 5 by the Duhamel theorem, we get that the solution of the problem
(1.1) with hj(t) = 0, j = 1, ..., N takes the form

u(x, t) = Gu0 +

∫ t

0

G(t− t)f(τ )dτ.

Therefore taking in the problem (1.1) new function

v(x, t) = u(x, t)−
N∑
j=1

xj−1hj(t)

(j − 1)!
,

we get for the solution u(x, t) of problem (1.1)

u(x, t) = G

⎛⎝u0 −
N∑
j=1

xj−1hj(0)

(j − 1)!

⎞⎠+
N∑
j=1

xj−1hj(t)

(j − 1)!

+

∫ t

0

G(t− t)

⎛⎝f(τ )− (∂τ + |∂x|α)
N∑
j=1

xj−1hj(τ )

(j − 1)!

⎞⎠ dτ.

Integrating by parts the last relation and using |∂x|α
N∑
j=1

xj−1hj(t)
(j−1)! = 0, we find

u(x, t) = Gu0 +

∫ t

0

G(t− t)f(τ )dτ −
∫ t

0

Gt(t− t)
N∑
j=1

xj−1hj(τ )

(j − 1)!
dτ.

Since (∂t + |∂x|α)G = 0, we get∫ t

0

Gt(t− t)
N∑
j=1

xj−1hj(t)

(j − 1)!
dτ

= −
N∑
j=1

1

(j − 1)!

∫ t

0

dτhj(τ )

∫ +∞

0

|∂x|α G(x, y, t− τ )yj−1dτ

= −
N∑
j=1

(−1)j−1

(j − 1)!

∫ t

0

dτhj(τ ) lim
p→0

∂j−1
p

∫ +∞

0

e−py |∂x|α G(x, y, t− τ )dτ

= −
N∑
j=1

(−1)j−1

(j − 1)!

∫ t

0

dτhj(τ ) lim
p→0

∂j−1
p

̂|∂x|α G(x, p, t− τ ).

Therefore solution u(x, t) of problem (1.1) has the form

u(x, t) =

∫ +∞

0

G(x, y, t)u0(y)dy +

∫ t

0

∫ +∞

0

G(x, y, t− τ )f(y, τ )dydτ

+

N∑
j=1

(−1)j−1

(j − 1)!

∫ t

0

hj(τ ) lim
p→0

∂j−1
p

̂|∂α
x |G(x, p, t− τ )dτ.

From Lemma 4 we get u(x, t) ∈ C0([0, T ] ,HN
2 ∩ CN ) ∩ C0((0, T ] ,H

[α]
2 ∩ C[α]).

From Theorem 3 this solution is unique. Theorem 1 is proved.
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Instituto de Matemáticas, UNAM Campus Morelia, AP 61-3 (Xangari), Morelia CP

58089, Michoacán, Mexico

E-mail address: ekaikina@matmor.unam.mx

http://www.ams.org/mathscinet-getitem?mr=2421898
http://www.ams.org/mathscinet-getitem?mr=2421898
http://www.ams.org/mathscinet-getitem?mr=2462967
http://www.ams.org/mathscinet-getitem?mr=2462967
http://www.ams.org/mathscinet-getitem?mr=2230524
http://www.ams.org/mathscinet-getitem?mr=2230524
http://www.ams.org/mathscinet-getitem?mr=2031425
http://www.ams.org/mathscinet-getitem?mr=2031425
http://www.ams.org/mathscinet-getitem?mr=2174976
http://www.ams.org/mathscinet-getitem?mr=2174976
http://www.ams.org/mathscinet-getitem?mr=2370252
http://www.ams.org/mathscinet-getitem?mr=2370252
http://www.ams.org/mathscinet-getitem?mr=2218073
http://www.ams.org/mathscinet-getitem?mr=2218073
http://www.ams.org/mathscinet-getitem?mr=1261868
http://www.ams.org/mathscinet-getitem?mr=1261868
http://www.ams.org/mathscinet-getitem?mr=2393587
http://www.ams.org/mathscinet-getitem?mr=2393587
http://www.ams.org/mathscinet-getitem?mr=0443516
http://www.ams.org/mathscinet-getitem?mr=0443516
http://www.ams.org/mathscinet-getitem?mr=0258349
http://www.ams.org/mathscinet-getitem?mr=0258349
http://www.ams.org/mathscinet-getitem?mr=2374232
http://www.ams.org/mathscinet-getitem?mr=2374232
http://www.ams.org/mathscinet-getitem?mr=1347689
http://www.ams.org/mathscinet-getitem?mr=1347689
http://www.ams.org/mathscinet-getitem?mr=2463073
http://www.ams.org/mathscinet-getitem?mr=2552008

	1. Introduction
	2. Preliminaries
	3. Method of solution: Uniqueness theorem
	4. Green operator
	5. Proof of Theorem 1
	References

