GLEASON PARTS AND COUNTABLY GENERATED CLOSED IDEALS IN H^{∞}

KEI JI IZUCHI AND YUKO IZUCHI

ABSTRACT. It is proved that a countably generated closed ideal in H^{∞} whose common zero set is contained in the union set of nontrivial Gleason parts of H^{∞} is generated by two Carleson-Newman Blaschke products as a closed ideal.

1. INTRODUCTION

Let H^{∞} be the Banach algebra of bounded analytic functions on the open unit disk \mathbb{D} with the supremum norm $\|\cdot\|_{\infty}$. We denote by $M(H^{\infty})$ the maximal ideal space of H^{∞} , that is, $M(H^{\infty})$ is the family of nonzero multiplicative linear functionals on H^{∞} with the weak*-topology. For a subset E of $M(H^{\infty})$, we denote by \overline{E} the closure of E in $M(H^{\infty})$. We identify a function f in H^{∞} with its Gelfand transform $\widehat{f}(m) = m(f), m \in M(H^{\infty})$, so we think of f as a continuous function on $M(H^{\infty})$. For a sequence $\{a_n\}_n$ in \mathbb{D} satisfying $\sum_{n=1}^{\infty} (1 - |a_n|) < \infty$, we have the Blaschke product

$$b(z) = \prod_{n=1}^{\infty} \frac{-\overline{a}_n}{|a_n|} \frac{z - a_n}{1 - \overline{a}_n z}, \quad z \in \mathbb{D},$$

where if $a_n = 0$, we consider that $-\overline{a}_n/|a_n| = 1$. We call $\{a_n\}_n$ and b(z) interpolating if for any bounded sequence of complex numbers $\{c_n\}_n$ there exists f in H^{∞} such that $f(a_n) = c_n$ for every $n \ge 1$. In [2], Carleson gave a characterization of interpolating sequences. A Blaschke product B is said to be Carleson-Newman if $B = \prod_{j=1}^m b_j$ for finitely many interpolating Blaschke products b_1, b_2, \dots, b_m . In this case, there are many ways to give such a factorization. If m is the minimal number of interpolating Blaschke products, B is said to be a Carleson-Newman Blaschke product of order m. In the study of the structure of H^{∞} , Carleson-Newman Blaschke products have played an important role (see [3, 5, 8, 11]). For Blaschke products b_1 and b_2 , we write $b_1 \prec b_2$ if b_1 is a subproduct of b_2 .

For $x, y \in M(H^{\infty})$, the pseudo-hyperbolic distance is defined by

$$\rho(x,y) = \sup \left\{ |f(x)| : f(y) = 0, f \in H^{\infty}, ||f||_{\infty} \le 1 \right\}.$$

A subset E of $M(H^{\infty})$ is said to be ρ -separated if there is $\varepsilon > 0$ such that $\rho(x, y) \ge \varepsilon$ for every $x, y \in E$ with $x \neq y$. The set

$$P(x) = \{y \in M(H^\infty) : \rho(y, x) < 1\}$$

©2013 American Mathematical Society

Reverts to public domain 28 years from publication

Received by the editors May 15, 2011 and, in revised form, August 5, 2011.

²⁰¹⁰ Mathematics Subject Classification. Primary 30H50, 30H05; Secondary 30J10.

Key words and phrases. Gleason part, countably generated closed ideal, Carleson-Newman Blaschke product, algebra of bounded analytic functions.

The first author was partially supported by Grant-in-Aid for Scientific Research (No.21540166), Japan Society for the Promotion of Science.

is called the Gleason part of H^{∞} containing $x \in M(H^{\infty})$. If $P(x) \neq \{x\}$, P(x) is said to be nontrivial. We denote by G the union set of all nontrivial Gleason parts in $M(H^{\infty})$. In [7] (see also [3]), Hoffman studied the structure of Gleason parts of H^{∞} extensively. For $x \in M(H^{\infty})$, he proved that $x \in G$ if and only if there is an interpolating Blaschke product b satisfying b(x) = 0. He also proved that for an interpolating Blaschke product b, there exists $\varepsilon > 0$ such that $\{|b| < \varepsilon\} \subset G$, where

$$\{|b| < \varepsilon\} = \{x \in M(H^{\infty}) : |b(x)| < \varepsilon\}.$$

This fact shows that G is an open subset of $M(H^{\infty})$, and for a Carleson-Newman Blaschke product B there is $\varepsilon > 0$ such that $\{|B| < \varepsilon\} \subset G$. Hoffman also showed that for a nontrivial Gleason part P(x) of H^{∞} , there is a one-to-one, onto and continuous map $L_x : \mathbb{D} \to P(x)$ such that $L_x(0) = x$ and $f \circ L_x \in H^{\infty}$ for every $f \in H^{\infty}$. For $f \in H^{\infty}$, we write

$$Z(f) = \{ x \in M(H^{\infty}) : f(x) = 0 \}.$$

It is known that if b is an interpolating Blaschke product with zeros $\{z_n\}_n$ in \mathbb{D} , then $Z(b) = \overline{\{z_n\}_n}$, Z(b) is ρ -separated and homeomorphic to the Stone-Čech compactification of the set of natural numbers, so Z(b) is a totally disconnected set (see [6, 7]). Hence if B is a Carleson-Newman Blaschke product, then Z(B) is also totally disconnected. Let $f \in H^\infty$. For $z \in \mathbb{D}$, we denote by ord(f, z) the order of zero of f at z. For $x \in G \setminus \mathbb{D}$, we define $ord(f, x) = ord(f \circ L_x, 0)$. For $x \in M(H^\infty) \setminus G$, we put as usual $ord(f, x) = \infty$ if f(x) = 0 and ord(f, x) = 0 if $f(x) \neq 0$. Clearly, if b is an interpolating Blaschke product, then $ord(b, x) \leq 1$. If b is a Carleson-Newman Blaschke product of order m, then $ord(b, x) \leq m$ for every x.

Let I be a closed ideal in H^{∞} . We write

$$Z(I) = \bigcap_{f \in I} Z(f)$$

and

$$ord(I, x) = \inf_{f \in I} ord(f, x), \quad x \in M(H^{\infty}).$$

For each $1 \leq j \leq \infty$ and $f \in H^{\infty}$, we put

$$Z_j(f) = \{x \in M(H^\infty) : ord(f, x) \ge j\}$$

and

$$Z_j(I) = \{x \in M(H^\infty) : ord(I, x) \ge j\}$$

It seems very difficult to study ideal theory in H^{∞} generally (see [1]). In [4], Gorkin, Mortini and the first author proved the following two theorems for a closed ideal I satisfying $Z(I) \subset G$. In this case, by Theorem 2.3 in [5], I contains a Carleson-Newman Blaschke product, so $\sup_{x \in Z(I)} ord(I, x) < \infty$ and Z(I) is totally disconnected (see also [14]).

Theorem A. Let I be a closed ideal in H^{∞} satisfying $Z(I) \subset G$. Then I coincides with the set of all f in H^{∞} satisfying $ord(f, x) \geq ord(I, x)$ for every $x \in Z(I)$.

This shows that if I_1, I_2 are closed ideals in H^{∞} such that $Z(I_i) \subset G$ for $i = 1, 2, Z(I_1) = Z(I_2)$ and $ord(I_1, x) = ord(I_2, x)$ for every $x \in Z(I_1)$, then we have $I_1 = I_2$.

Theorem B. Let I be a closed ideal in H^{∞} satisfying $Z(I) \subset G$ and $m = \sup_{x \in Z(I)} \operatorname{ord}(I, x)$. For each $1 \leq j \leq m$, let U_j be an open subset of $M(H^{\infty})$ satisfying $Z_j(I) \subset U_j$. Then I is algebraically generated by Carleson-Newman Blaschke products B of order m in I such that $Z_j(B) \subset U_j$ for $1 \leq j \leq m$.

The above two theorems give us a great deal of information about closed ideals I satisfying $Z(I) \subset G$. In [12, 13], the authors studied closed ideals I satisfying $Z(I) \subset G$ extensively.

For a sequence $\{f_n\}_n$ in H^{∞} , we denote by $I[f_n : n \ge 1]$ the closed ideal in H^{∞} generated by functions $f_n, n = 1, 2, \cdots$; that is,

$$I[f_n:n\geq 1] = \bigcup_{n=1}^{\infty} \sum_{j=1}^n f_j H^{\infty},$$

where the bar indicates the closure in H^{∞} . The closed ideal $I[f_n : n \ge 1]$ is called a countably generated closed ideal in H^{∞} . In this paper, we study the structure of countably generated closed ideals I satisfying $Z(I) \subset G$. For a closed subset E of $M(H^{\infty})$, let $I(E) = \{f \in H^{\infty} : f(x) = 0, x \in E\}$. Then I(E) is a closed ideal in H^{∞} and $E \subset Z(I(E))$. For closed ideals I_1, I_2, \cdots, I_m in H^{∞} , let $\bigotimes_{i=1}^m I_i$ and $\overline{\bigotimes}_{i=1}^m I_i$ be the tensor product and the closed tensor product of I_1, I_2, \cdots, I_m , respectively. That is, $\bigotimes_{i=1}^m I_i$ is an ideal generated by functions $\prod_{i=1}^m f_i$, where $f_i \in I_i, 1 \le i \le m$, and $\overline{\bigotimes}_{i=1}^m I_i = \overline{\bigotimes}_{i=1}^m I_i$. In Section 2, we shall prove the following theorem.

Theorem 1.1. Let I be a closed ideal in H^{∞} satisfying $Z(I) \subset G$ and $m = \sup_{x \in Z(I)} \operatorname{ord}(I, x)$. Then the following conditions are equivalent.

(i) I is a countably generated closed ideal.

(ii) There are compact ρ -separated G_{δ} -subsets E_1, E_2, \cdots, E_m of G such that $I = \bigotimes_{j=1}^m I(E_j).$

(iii) There is a Carleson-Newman Blaschke product B of order m in I such that ord(B, x) = ord(I, x) for every $x \in Z(I)$, and Z(I) is a G_{δ} -set.

(iv) There are two Carleson-Newman Blaschke products B_1, B_2 in I such that $I = I[B_1, B_2]$.

For a compact ρ -separated G_{δ} -subset E of G, there is an interpolating Blaschke product b satisfying $E \subset Z(b)$, and I(E) is a countably generated closed ideal. We shall show in Example 2.14 that there exist compact ρ -separated G_{δ} -subsets E_1 and E_2 of G such that $I(E_1) \cap I(E_2)$ is not countably generated. If I is a countably generated closed ideal in H^{∞} , then by Theorem 1.1, $Z_j(I)$ is a G_{δ} -set for every $1 \leq j \leq \infty$. But if I is the closed ideal given in Example 2.14, then $Z_2(I)$ is not a G_{δ} -set.

2. Countably generated closed ideals

To prove Theorem 1.1, we need some lemmas. For a sequence $\{f_n\}_n$ in H^{∞} and $1 \leq j \leq \infty$, it is not difficult to show that

$$Z_j(I[f_n:n\geq 1]) = \bigcap_{n=1}^{\infty} Z_j(f_n)$$

and

$$ord(I[f_n : n \ge 1], x) = \inf_{n \ge 1} ord(f_n, x), \quad x \in Z(I[f_n : n \ge 1]).$$

Lemma 2.1. Let B be a Carleson-Newman Blaschke product. Then $Z_j(B)$ is a closed G_{δ} -set for every $1 \leq j < \infty$.

Proof. Let $B = \prod_{i=1}^{k} b_i$, where b_i is an interpolating Blaschke product for every $1 \leq i \leq k$. Since $ord(b_i, x) \leq 1$ for $x \in M(H^{\infty})$, we have that $Z_j(B) = \emptyset$ for j > k. Suppose that $1 \leq j \leq k$. Put $E_i = Z(b_i)$. Then E_i is a closed G_{δ} -set. We have

$$Z_j(B) = \bigcup \Big\{ \bigcap_{\ell=1}^j E_{i_\ell} : 1 \le i_1 < i_2 < \dots < i_j \le k \Big\}.$$

Therefore $Z_j(B)$ is a closed G_{δ} -set.

Lemma 2.2. If $f \in H^{\infty}$ and $f \neq 0$, then $Z_j(f)$ is a closed G_{δ} -set for every $1 \leq j \leq \infty$.

Proof. Let f = Bh, where B is a Blaschke product and $h \in H^{\infty}$ satisfying |h| > 0on \mathbb{D} . Then $Z_{\infty}(h) = Z(h)$ and $Z_{\infty}(h)$ is a closed G_{δ} -set. By Corollary 3.1 in [9], $Z_{\infty}(B)$ is a closed G_{δ} -set. Then $Z_{\infty}(f) = Z_{\infty}(B) \cup Z_{\infty}(h)$ is a closed G_{δ} -set. We have

$$Z(f) \setminus Z_{\infty}(f) = (Z(B) \cup Z(h)) \setminus Z_{\infty}(f)$$

= $(Z(B) \cup Z_{\infty}(h)) \setminus Z_{\infty}(f) = Z(B) \setminus Z_{\infty}(f).$

By Lemma 4.6 in [9], $Z(B) \setminus Z_{\infty}(f)$ is a totally disconnected set. Hence there is a sequence of open and closed subsets $\{E_n\}_n$ of Z(B) such that $Z(B) \setminus Z_{\infty}(f) = \bigcup_{n=1}^{\infty} E_n$ and $E_n \cap E_k = \emptyset$ for $n \neq k$. Let b_n be the subproduct of B with zeros $Z(B) \cap E_n \cap \mathbb{D}$ counting multiplicities. Since $Z(B) \cap \mathbb{D} \subset Z(B) \setminus Z_{\infty}(f)$, we have $B = \prod_{n=1}^{\infty} b_n$ and $Z(b_n) = E_n$ for every $n \geq 1$. We note that b_n is a Carleson-Newman Blaschke product. For each $1 \leq j < \infty$, we have

$$Z_j(f) = Z_{\infty}(f) \cup \bigcup_{n=1}^{\infty} Z_j(b_n).$$

By Lemma 2.1, $Z_j(b_n)$ is a closed G_{δ} -set; so is $Z_j(f)$.

Lemma 2.3. Let I be a closed ideal in H^{∞} satisfying $Z(I) \subset G$ and $m = \sup_{x \in Z(I)} \operatorname{ord}(I, x)$. Then I is a countably generated closed ideal if and only if $Z_j(I)$ is a closed G_{δ} -set for every $1 \leq j \leq m$. In this case, I is generated by countably many Carleson-Newman Blaschke products.

Proof. Suppose that $I = I[f_n : n \ge 1]$ for a sequence $\{f_n\}_n$ in H^{∞} . For each $1 \le j \le m$, we have $Z_j(I) = \bigcap_{n=1}^{\infty} Z_j(f_n)$. By Lemma 2.2, $Z_j(I)$ is a closed G_{δ} -set.

Suppose that $Z_j(I)$ is a closed G_{δ} -set for every $1 \leq j \leq m$. For each $1 \leq j \leq m$, let $\{U_{j,n}\}_n$ be a sequence of open subsets of G such that $Z_j(I) = \bigcap_{n=1}^{\infty} U_{j,n}$. By Theorem B, there is a sequence of Carleson-Newman Blaschke products $\{\varphi_n\}_n$ in I such that $Z_j(\varphi_n) \subset U_{j,n}$ for every $1 \leq j \leq m$ and $n \geq 1$. Let $J = I[\varphi_n : n \geq 1]$. Then $J \subset I$ and $Z(I) \subset Z(J)$. We have $Z(J) \subset Z(\varphi_n) \subset U_{1,n}$ for every $n \geq 1$. Then $Z(J) \subset \bigcap_{n=1}^{\infty} U_{1,n} = Z_1(I) = Z(I)$. Hence Z(J) = Z(I).

Let $x \in Z(I)$ and $\ell = ord(I, x)$. Since $\varphi_n \in I$, $\ell \leq ord(\varphi_n, x)$ for every $n \geq 1$. Since $x \notin Z_{\ell+1}(I)$, there is a positive integer k such that $x \notin U_{\ell+1,k}$. Hence

 $\ell \leq ord(\varphi_k, x) \leq \ell$. Therefore

 $\ell = ord(I, x) \leq ord(J, x) \leq ord(\varphi_k, x) = \ell.$

Thus we get ord(J, x) = ord(I, x) for every $x \in Z(I)$. By Theorem A, we have J = I.

The following lemma follows from Theorem 3.1 in [10].

Lemma 2.4. Let E be a compact ρ -separated subset of G and U be an open subset of $M(H^{\infty})$ satisfying $E \subset U$. Then there exists an interpolating Blaschke product b such that $E \subset Z(b) \subset U$.

Lemma 2.5. Let E be a compact ρ -separated G_{δ} -subset of G. Then I(E) is a countably generated closed ideal in H^{∞} , E is a totally disconnected set, Z(I(E)) = E and ord(I(E), x) = 1 for every $x \in E$.

Proof. By Lemma 2.4, there is an interpolating Blaschke product b such that $E \subset Z(b) \subset G$. Hence ord(I(E), x) = 1 for every $x \in E$. Since Z(b) is a totally disconnected set, so is E. Let $\{U_n\}_n$ be a sequence of open subsets of G satisfying $E = \bigcap_{n=1}^{\infty} U_n$ and $Z(b) \cap U_n$ be an open and closed subset of Z(b) for every $n \ge 1$. Let b_n be the subproduct of b with zeros $Z(b) \cap U_n \cap \mathbb{D}$. Then $E \subset Z(b_n) \subset U_n$. Let $J = I[b_n : n \ge 1]$. Then we have $J \subset I(E)$ and

$$E \subset Z(I(E)) \subset Z(J) \subset \bigcap_{n=1}^{\infty} U_n = E.$$

Hence Z(I(E)) = Z(J) = E. We have ord(J, x) = 1 for every $x \in E$. By Theorem A, we get J = I(E).

The following lemma follows from the definition of a closed tensor product.

Lemma 2.6. Let I_1, I_2, \dots, I_m be countably generated closed ideals in H^{∞} . Then $\overline{\bigotimes}_{j=1}^m I_j$ is a countably generated closed ideal, $Z(\overline{\bigotimes}_{j=1}^m I_j) = \bigcup_{j=1}^m Z(I_j)$ and $ord(\overline{\bigotimes}_{j=1}^m I_j, x) = \sum_{j=1}^m ord(I_j, x)$ for every $x \in Z(\overline{\bigotimes}_{j=1}^m I_j)$.

For closed ideals I_1, I_2, \cdots, I_m in H^{∞} satisfying $Z(I_j) \subset G$ for every $1 \leq j \leq m$, in [13, Corollary 9.15] the authors proved that $\overline{\bigotimes}_{j=1}^m I_j = \bigotimes_{j=1}^m I_j$.

Lemma 2.7. Let I be a closed ideal in H^{∞} satisfying $Z(I) \subset G$ and $x \in Z(I)$. Let B be a Carleson-Newman Blaschke product in I and W be an open subset of $M(H^{\infty})$ satisfying $x \in W$. Then there is an open subset U of $M(H^{\infty})$ satisfying that $x \in U \subset G \cap W$ and $Z(I) \cap U$ is an open and closed subset of Z(I), and there is a Carleson-Newman Blaschke product φ of order ord(I, x) such that $Z(\varphi) \subset U$, $\varphi \prec B$ and $ord(I, y) \leq ord(\varphi, y) \leq ord(I, x)$ for every $y \in Z(I) \cap U$.

Proof. Since Z(I) is a totally disconnected set (see [4, Theorem 2.2]), we may take a sufficiently small open subset U of $M(H^{\infty})$ such that $x \in U \subset G \cap W$ and $Z(I) \cap U$ is an open and closed subset of Z(I). Since ord(I, y) is upper semicontinuous in $y \in Z(I)$ (see [4, Lemma 1.2]), we may assume that $ord(I, y) \leq ord(I, x)$ for every $y \in Z(I) \cap U$. Let

$$I_U = \left\{ f \in H^\infty : ord(f, y) \ge ord(I, y), y \in Z(I) \cap U \right\}.$$

Then by Theorem A, I_U is a closed ideal in H^{∞} , $I \subset I_U$, $Z(I_U) = Z(I) \cap U$ and $ord(I_U, y) = ord(I, y)$ for every $y \in Z(I) \cap U$. By [13, Proposition 8.9], there is a

Carleson-Newman Blaschke product φ of order ord(I, x) in I_U such that $Z(\varphi) \subset U$, $\varphi \prec B$ and $ord(\varphi, x) = ord(I_U, x)$. For each $y \in Z(I) \cap U$, we have

$$ord(I, y) = ord(I_U, y) \le ord(\varphi, y) \le ord(I, x).$$

Lemma 2.8. Let I be a closed ideal in H^{∞} satisfying $Z(I) \subset G$ and $m = \sup_{x \in Z(I)} \operatorname{ord}(I, x)$. Let W_1, W_2, \dots, W_m be open subsets of $M(H^{\infty})$ such that $Z_j(I) \subset W_j$ for every $1 \leq j \leq m$ and $W_m \subset W_{m-1} \subset \dots \subset W_1$. Let B be a Carleson-Newman Blaschke product in I. Then there is a Carleson-Newman Blaschke product b such that $b \in I$, $b \prec B$ and $\operatorname{ord}(b, y) \leq j$ for every $y \in Z(I) \cap (W_j \setminus W_{j+1})$ and $1 \leq j \leq m$, where $W_{m+1} = \emptyset$.

Proof. For each $x \in Z(I)$, since $Z(I) \subset \bigcup_{j=1}^{m} (W_j \setminus W_{j+1})$ there exists $1 \leq j \leq m$ such that $x \in W_j \setminus W_{j+1}$. Then $ord(I, x) \leq j$. By Lemma 2.7, there is an open subset U_x of $M(H^{\infty})$ satisfying that $x \in U_x \subset G \cap W_j$ and $Z(I) \cap U_x$ is an open and closed subset of Z(I), and there is a Carleson-Newman Blaschke product φ_x of order ord(I, x) such that $Z(\varphi_x) \subset U_x$, $\varphi_x \prec B$ and $ord(I, y) \leq ord(\varphi_x, y) \leq ord(I, x)$ for every $y \in Z(I) \cap U_x$.

Since Z(I) is a compact set, there is a finite set $\{x_1, x_2, \cdots, x_s\}$ in Z(I) such that $Z(I) \subset \bigcup_{i=1}^s U_{x_i}$. Let

$$E_1 = Z(I) \cap U_{x_1}, \quad E_2 = (Z(I) \cap U_{x_2}) \setminus (Z(I) \cap U_{x_1})$$
$$\cdots, \quad E_s = (Z(I) \cap U_{x_s}) \setminus \bigcup_{i=1}^{s-1} (Z(I) \cap U_{x_i}).$$

Then E_i is an open and closed subset of Z(I), $E_i \cap E_j = \emptyset$ for $i \neq j$ and $\bigcup_{i=1}^s E_i = Z(I)$. It may be that $x_i \notin E_i$ for some $1 \leq i \leq s$. We may take open subsets V_1, V_2, \cdots, V_s of $M(H^{\infty})$ satisfying that $E_i \subset V_i \subset U_{x_i}$ and $\overline{V}_i \cap \overline{V}_j = \emptyset$ for $i \neq j$. Let ψ_i be the Blaschke subproduct of φ_{x_i} with zeros $Z(\varphi_{x_i}) \cap V_i \cap \mathbb{D}$ counting multiplicities. Then $Z(\psi_i) \cap Z(\psi_j) = \emptyset$ for $i \neq j$ and $ord(\psi_i, y) = ord(\varphi_{x_i}, y)$ for every $y \in E_i$ and $1 \leq i \leq s$. Let $b = \prod_{i=1}^s \psi_i$. Then $b \prec B$.

Let $y \in Z(I)$. Then there is the unique $1 \leq j \leq m$ such that $y \in W_j \setminus W_{j+1}$. Also there is the unique $1 \leq i \leq s$ such that $y \in E_i$. So we have

$$ord(b, y) = ord(\psi_i, y) = ord(\varphi_{x_i}, y) \le ord(I, x_i).$$

Here we have two cases.

Case 1. Suppose that $x_i \in W_i \setminus W_{i+1}$. Then we have

$$ord(I, y) \leq ord(\varphi_{x_i}, y) \leq ord(I, x_i) \leq j.$$

Hence $ord(I, y) \leq ord(b, y) \leq j$.

Case 2. Suppose that $x_i \in W_k \setminus W_{k+1}$ for some $k \neq j$. If k < j, then $ord(I, x_i) \le k < j$. Hence

$$ord(I, y) \le ord(\varphi_{x_i}, y) = ord(b, y) < j.$$

If k > j, then $y \in U_{x_i} \subset W_k$. Since $y \notin W_{j+1}$ and $W_k \subset W_{j+1}$, we have $y \notin W_k$. This is a contradiction.

By the above two cases, we have $ord(I, y) \leq ord(b, y) \leq j$ for every $y \in Z(I) \cap (W_i \setminus W_{i+1})$. By Theorem A, we have $b \in I$. Thus we get the assertion. \Box

Lemma 2.9. Let I be a countably generated closed ideal in H^{∞} satisfying $Z(I) \subset G$ and $m = \sup_{x \in Z(I)} \operatorname{ord}(I, x)$. Let B be a Carleson-Newman Blaschke product in I. Then there is a sequence of Carleson-Newman Blaschke products $\{b_n\}_n$ such that $b_1 \prec B, b_{n+1} \prec b_n, b_n \in I$ for every $n \ge 1$ and for each $x \in Z(I)$ there is a positive integer n satisfying $\operatorname{ord}(I, x) = \operatorname{ord}(b_n, x)$.

Proof. By Lemma 2.3, $Z_j(I)$ is a closed G_δ -set for every $1 \le j \le m$. For each $1 \le j \le m$, take a sequence of open subsets $\{W_{j,n}\}_n$ of $M(H^\infty)$ such that $\bigcap_{n=1}^\infty W_{j,n} = Z_j(I)$ and $W_{j,n+1} \subset W_{j,n}$ for every $n \ge 1$. Further we may assume that $W_{j+1,n} \subset W_{j,n}$ for every $1 \le j \le m$ and $n \ge 1$, where $W_{m+1,n} = \emptyset$ for every $n \ge 1$. By Lemma 2.8, there is a Carleson-Newman Blaschke product b_1 such that $b_1 \in I$, $b_1 \prec B$ and $ord(b_1, y) \le j$ for every $y \in Z(I) \cap (W_{j,1} \setminus W_{j+1,1})$ and $1 \le j \le m$. By Lemma 2.8 again, there is a Carleson-Newman Blaschke product b_2 such that $b_2 \in I$, $b_2 \prec b_1$ and $ord(b_2, y) \le j$ for every $y \in Z(I) \cap (W_{j,2} \setminus W_{j+1,2})$ and $1 \le j \le m$. Inductively we may get a sequence of Carleson-Newman Blaschke products $\{b_n\}_n$ such that $b_n \in I$, $b_{n+1} \prec b_n$ and $ord(b_n, y) \le j$ for every $y \in Z(I) \cap (W_{j,2} \setminus W_{j+1,2})$ and $1 \le j \le m$.

Let $x \in Z(I)$ and t = ord(I, x). We consider two cases separately.

Case 1. Suppose that t < m. Then $x \notin Z_{t+1}(I)$ and there is a positive integer k such that $x \in Z(I) \cap (W_{t,k} \setminus W_{t+1,k})$. Hence $ord(b_k, x) \leq t$. Since $b_k \in I$, we have $t = ord(I, x) \leq ord(b_k, x) \leq t$. Thus we get $ord(I, x) = ord(b_k, x)$.

Case 2. Suppose that t = m, that is, ord(I, x) = m. Then $x \in Z(I) \cap (W_{m,n} \setminus W_{m+1,n})$ for every $n \ge 1$. Hence $ord(b_n, x) \le m$. Since $b_n \in I$, we have $m \le ord(b_n, x)$. Thus we get $ord(I, x) = ord(b_n, x)$ for every $n \ge 1$. \Box

The following is due to Hoffman [7].

Lemma 2.10. For any interpolating Blaschke product b with zeros $\{z_n\}_n$ in \mathbb{D} , there exists a positive number $\lambda(b)$ such that a sequence $\{w_n\}_n$ in \mathbb{D} satisfying $\rho(w_n, z_n) < \lambda(b)$ is an interpolating sequence.

Lemma 2.11. Let I be a closed ideal in H^{∞} and $Z(I) \subset G$. Let B be a Carleson-Newman Blaschke product in I. Then there is a Carleson-Newman Blaschke product b in I satisfying the following conditions.

- (i) ord(b, x) = ord(B, x) for every $x \in Z(I) \setminus \mathbb{D}$.
- (ii) ord(b, z) = ord(I, z) for every $z \in Z(I) \cap \mathbb{D}$.
- (iii) ord(b, z) = 1 for every $z \in (Z(b) \setminus Z(I)) \cap \mathbb{D}$.

Proof. Let $\varphi_1, \varphi_2, \dots, \varphi_m$ be interpolating Blaschke products satisfying $B = \prod_{j=1}^m \varphi_j$. Let $\lambda = \min_{1 \le j \le m} \lambda(\varphi_j)$. Then $\lambda > 0$. Let $\{z_n\}_n = Z(B) \cap \mathbb{D}$ and $k_n = ord(B, z_n)$. Then $\sup_{n \ge 1} k_n < \infty$. Let $\{\varepsilon_n\}_n$ be a sequence of numbers with $0 < \varepsilon_n < \lambda$ such that $\varepsilon_n \to 0$ as $n \to \infty$. We shall move the zeros of B a little. Let n be a positive integer. If $z_n \notin Z(I)$, then take $\{w_{n,1}, w_{n,2}, \dots, w_{n,k_n}\}$ in \mathbb{D} such that $\rho(w_{n,i}, z_n) < \varepsilon_n, w_{n,i} \neq w_{n,j}$ for $i \neq j$ and

$$\{w_{n,1}, w_{n,2}, \cdots, w_{n,k_n}\} \cap \{z_n\}_n = \emptyset.$$

If $z_n \in Z(I)$, put $\ell_n = ord(I, z_n)$. Then take $\{w_{n,1}, w_{n,2}, \cdots, w_{n,k_n}\}$ in \mathbb{D} as the following: $\rho(w_{n,i}, z_n) < \varepsilon_n$ for every $1 \le i \le \ell_n$, $w_{n,1} = w_{n,2} = \cdots = w_{n,\ell_n} = z_n$, $w_{n,i} \ne w_{n,j}$ for every $\ell_n \le i < j \le k_n$ and

$$\{w_{n,i}: \ell_n + 1 \le i \le k_n\} \cap \{z_n\}_n = \emptyset$$

Further, we may assume that

$$\{w_{n,1}, w_{n,2}, \cdots, w_{n,k_n}\} \cap \{w_{j,1}, w_{j,2}, \cdots, w_{j,k_j}\} = \emptyset$$

for every $n \neq j$ and

$$\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} (1 - |w_{n,i}|) < \infty.$$

Let b be the Blaschke product with zeros $\{w_{n,i}\}_{n,i}$ counting multiplicities. By Lemma 2.10, b is a Carleson-Newman Blaschke product. We have ord(b, x) = ord(B, x) for every $x \in Z(I) \setminus \mathbb{D}$. It is easy to see that b satisfies (ii) and (iii). Since $ord(I, x) \leq ord(b, x)$ for every $x \in Z(I)$, by Theorem A we have $b \in I$. \Box

Lemma 2.12. Let B be a Carleson-Newman Blaschke product and $\{z_n\}_n$ be an interpolating sequence in \mathbb{D} . If $0 < \varepsilon < 1$, then

$$\inf_{n} \sup \left\{ |B(z)| : z \in \mathbb{D}, \rho(z, z_n) < \varepsilon \right\} > 0.$$

Proof. To prove the assertion, suppose not. Then there exists a subsequence $\{n_j\}_j$ such that

$$\lim_{j \to \infty} \sup \left\{ |B(z)| : z \in \mathbb{D}, \rho(z, z_{n_j}) < \varepsilon \right\} = 0$$

Let x be a cluster point of $\{z_{n_j}\}_j$ in $M(H^{\infty})$. By Hoffman's work [7], it is easy to see that $B \equiv 0$ on P(x), the Gleason part of x. By our assumption, $B \not\equiv 0$ on P(x), and this is a contradiction.

Lemma 2.13. Let B be a Carleson-Newman Blaschke product and b be an interpolating Blaschke product. Let E be a closed G_{δ} -subset of Z(b). Then there is an interpolating Blaschke product φ such that $E \subset Z(\varphi)$ and $Z(B) \cap E = Z(B) \cap Z(\varphi)$.

Proof. If $Z(B) \cap E = Z(B) \cap Z(b)$, then put $\varphi = b$. Then we get the assertion. So we assume that $Z(B) \cap E \subsetneq Z(B) \cap Z(b)$. By the assumptions, there is a sequence of closed subsets $\{K_n\}_n$ of Z(b) such that

$$(Z(B) \cap Z(b)) \setminus E = \bigcup_{n=1}^{\infty} K_n$$

and $K_n \cap K_k = \emptyset$ for $n \neq k$. We note that

$$\overline{\bigcup_{n=1}^{\infty} K_n} \setminus \bigcup_{n=1}^{\infty} K_n \subset E.$$

Take a sequence of open subsets $\{U_n\}_n$ of $M(H^\infty)$ such that $K_n \subset U_n$, $\overline{U_n} \cap \overline{U_k} = \emptyset$ for $n \neq k$, $E \cap \overline{U_n} = \emptyset$ and $Z(b) \cap U_n$ is an open and closed subset of Z(b) for every $n \geq 1$. Let b_n be the subproduct of b with zeros $\{z_{n,\ell}\}_{\ell} := Z(b) \cap U_n \cap \mathbb{D}$. Then $K_n \subset Z(b_n), E \cap Z(b_n) = \emptyset$ for every $n \geq 1$ and $b = \prod_{n=0}^{\infty} b_n$ for some interpolating Blaschke product b_0 . We note that

$$(Z(B) \cap Z(b)) \setminus \bigcup_{n=1}^{\infty} Z(b_n) \subset E.$$

Let $\{\varepsilon_n\}_n$ be a sequence of numbers such that $0 < \varepsilon_n < \lambda(b)$ and $\varepsilon_n \to 0$ as $n \to \infty$. By Lemma 2.12, there is a sequence of positive numbers $\{\delta_n\}_n$ such that

$$\sup\left\{|B(z)|: z \in \mathbb{D}, \rho(z, z_{n,\ell}) < \varepsilon_n\right\} > \delta_n$$

for every $\ell \geq 1$. For each $\ell \geq 1$, take $w_{n,\ell} \in \mathbb{D}$ satisfying $\rho(w_{n,\ell}, z_{n,\ell}) < \varepsilon_n$ and $|B(w_{n,\ell})| > \delta_n$. By Lemma 2.10, $\{w_{n,\ell}\}_{\ell}$ is an interpolating sequence for every $n \geq 1$. For each $n \geq 1$, let φ_n be the interpolating Blaschke product with zeros $\{w_{n,\ell}\}_{\ell}$. Then $Z(B) \cap Z(\varphi_n) = \emptyset$ and $E \cap Z(\varphi_n) = \emptyset$ for every $n \geq 1$. Since

$$\sup_{\ell \ge 1} \rho(w_{n,\ell}, z_{n,\ell}) \le \varepsilon_n \to 0 \quad (n \to \infty),$$

we have

$$Z\Big(\prod_{n=1}^{\infty} b_n\Big) \setminus \bigcup_{n=1}^{\infty} Z(b_n) = Z\Big(\prod_{n=1}^{\infty} \varphi_n\Big) \setminus \bigcup_{n=1}^{\infty} Z(\varphi_n).$$

Put $\varphi = b_0 \prod_{n=1}^{\infty} \varphi_n$. Since

$$\sup_{n,\ell\geq 1}\rho(w_{n,\ell}, z_{n,\ell}) < \lambda(b),$$

by Lemma 2.10 φ is an interpolating Blaschke product. Since $E \subset Z(b)$ and $E \cap Z(b_n) = \emptyset$ for every $n \ge 1$, we have

$$E \subset Z(b) \setminus \bigcup_{n=1}^{\infty} Z(b_n)$$

$$= \left(Z(b_0) \cup Z\left(\prod_{n=1}^{\infty} b_n\right) \right) \setminus \bigcup_{n=1}^{\infty} Z(b_n)$$

$$= \left(Z(b_0) \setminus \bigcup_{n=1}^{\infty} Z(b_n) \right) \cup \left(Z\left(\prod_{n=1}^{\infty} \varphi_n\right) \setminus \bigcup_{n=1}^{\infty} Z(\varphi_n) \right)$$

$$= Z(\varphi) \setminus \bigcup_{n=1}^{\infty} Z(\varphi_n).$$

Hence $E \subset Z(\varphi)$. Since $Z(B) \cap Z(\varphi_n) = \emptyset$ for every $n \ge 1$, we have

$$Z(B) \cap E \subset Z(B) \cap Z(\varphi) \subset Z(B) \cap \left(Z(\varphi) \setminus \bigcup_{n=1}^{\infty} Z(\varphi_n)\right)$$
$$= (Z(B) \cap Z(b)) \setminus \bigcup_{n=1}^{\infty} Z(b_n) \subset Z(B) \cap E.$$

Hence we get $Z(B) \cap E = Z(B) \cap Z(\varphi)$.

Proof of Theorem 1.1. (i) \Rightarrow (ii) By Theorem B, there is a Carleson-Newman Blaschke product b_1 of order m in I. By Lemma 2.11, we may assume that $ord(b_1, z) = ord(I, z)$ for every $z \in Z(I) \cap \mathbb{D}$ and $ord(b_1, z) = 1$ for every $z \in (Z(b_1) \setminus Z(I)) \cap \mathbb{D}$. By Lemma 2.9, there is a sequence of Carleson-Newman Blaschke products $\{b_n\}_n$ such that $b_n \in I$, $b_{n+1} \prec b_n$ for every $n \ge 1$, and for each $x \in Z(I)$ there is a positive integer n satisfying $ord(b_n, x) = ord(I, x)$.

Since the order of b_1 is equal to m, there are interpolating Blaschke products $\varphi_{1,1}, \varphi_{2,1}, \cdots, \varphi_{m,1}$ such that $b_1 = \prod_{j=1}^m \varphi_{j,1}$. Since $b_n \in I$ and $b_{n+1} \prec b_n$ for every $n \geq 1$, we have $ord(b_n, z) = ord(I, z)$ for $z \in Z(I) \cap \mathbb{D}$ and $ord(b_n, z) = 1$ for $z \in (Z(b_n) \setminus Z(I)) \cap \mathbb{D}$. Then there are the unique interpolating Blaschke products $\varphi_{1,n}, \varphi_{2,n}, \cdots, \varphi_{m,n}$ such that $b_n = \prod_{j=1}^m \varphi_{j,n}$ and $\varphi_{j,n+1} \prec \varphi_{j,n}$ for every $1 \leq j \leq m$. We note that if $z \in Z(I) \cap \mathbb{D}$ and $\varphi_{j,1}(z) = 0$, then $\varphi_{j,n}(z) = 0$ for every $n \geq 1$.

For each $1 \leq j \leq m$, let

$$E_j = Z(I) \cap \bigcap_{n=1}^{\infty} Z(\varphi_{j,n}).$$

By Lemma 2.3, E_j is a compact G_{δ} -set. Since $\varphi_{j,n}$ is an interpolating Blaschke product, E_j is a ρ -separated set. Since $b_n \in I$,

$$Z(I) \subset Z(b_n) = \bigcup_{j=1}^m Z(\varphi_{j,n}),$$

 \mathbf{SO}

$$Z(I) = \bigcup_{j=1}^{m} (Z(I) \cap Z(\varphi_{j,n})).$$

We have

$$\bigcup_{j=1}^{m} E_j \subset \bigcup_{j=1}^{m} (Z(I) \cap Z(\varphi_{j,n})) = Z(I).$$

Suppose that $\bigcup_{j=1}^{m} E_j \subsetneq Z(I)$ and $y \in Z(I) \setminus \bigcup_{j=1}^{m} E_j$. For each $1 \leq j \leq m$, since $y \notin E_j$ there is a positive integer n_j such that $y \notin Z(I) \cap Z(\varphi_{j,n_j})$. Let $n = \min_{1 \leq j \leq m} n_j$. Then

$$Z(I) \cap Z(\varphi_{j,n}) \subset Z(I) \cap Z(\varphi_{j,n_j}).$$

Hence

$$y \notin \bigcup_{j=1}^{m} (Z(I) \cap Z(\varphi_{j,n})) = Z(I).$$

But this is a contradiction. Thus we get

$$Z(I) = \bigcup_{j=1}^{m} E_j.$$

Let $x \in Z(I)$. Then there is a positive integer n_1 such that $ord(b_{n_1}, x) = ord(I, x)$. We write $\ell = ord(I, x)$. Then there are positive integers j_1, j_2, \dots, j_ℓ such that

$$ord\left(\prod_{i=1}^{\ell}\varphi_{j_i,n_1},x\right) = \ell$$
 and $ord\left(b_{n_1}/\prod_{i=1}^{\ell}\varphi_{j_i,n_1},x\right) = 0.$

Since $b_n \in I$ and $b_n \prec b_{n_1}$ for every $n \ge n_1$, $ord(b_n, x) = \ell$ and $\varphi_{j_i,n}(x) = 0$ for every $1 \le i \le \ell$ and $n \ge n_1$. Thus for any $n \ge n_1$ we have

$$ord(I,x) = ord(b_n,x) = ord\left(\prod_{j=1}^m \varphi_{j,n},x\right)$$
$$= \sum_{i=1}^\ell ord(\varphi_{j_i,n},x) = \#\{j: x \in E_j, 1 \le j \le m\}$$

where #A denotes the number of elements in a set A. Let

$$J = \overline{\bigotimes}_{j=1}^m I(E_j).$$

By Lemma 2.5, we have $ord(I(E_j), x) = 1$ for every $x \in E_j$ and $Z(I(E_j)) = E_j$ for every $1 \le j \le m$. Hence by Lemma 2.6, $Z(J) = \bigcup_{j=1}^m E_j = Z(I)$ and

$$ord(J, x) = \sum_{j=1}^{m} ord(I(E_j), x) = \#\{j : x \in E_j, 1 \le j \le m\}$$

for every $x \in Z(I)$. By Theorem A, we have $I = J = \overline{\bigotimes}_{j=1}^{m} I(E_j)$. (ii) \Rightarrow (iii) Suppose that condition (ii) holds. By Lemma 2.6,

$$Z(I) = \bigcup_{j=1}^{m} Z(I(E_j)) = \bigcup_{j=1}^{m} E_j,$$

so Z(I) is a G_{δ} -set. By Lemma 2.4, for each $1 \leq j \leq m$ there is an interpolating Blaschke product φ_j such that $E_j \subset Z(\varphi_j)$. Let $\Phi = \prod_{j=1}^m \varphi_j$. By Lemma 2.13, for each $1 \leq j \leq m$ there exists an interpolating Blaschke product b_j such that $E_j \subset Z(b_j)$ and $Z(\Phi) \cap Z(b_j) = Z(\Phi) \cap E_j = E_j$. We note that $Z(I) \subset Z(\Phi)$. Let $B = \prod_{j=1}^m b_j$. Then for any $x \in Z(I)$, we have

$$ord(B, x) = ord\left(\prod_{j=1}^{m} b_j, x\right) = \sum_{j=1}^{m} ord(b_j, x)$$

= $\#\{j : x \in E_j, 1 \le j \le m\}.$

By Lemmas 2.5 and 2.6, we have

$$ord(I,x) = ord\left(\overline{\bigotimes}_{j=1}^{m} I(E_j), x\right) = \sum_{j=1}^{m} ord(I(E_j), x)$$
$$= \#\{j : x \in E_j, 1 \le j \le m\}.$$

Thus we get ord(B, x) = ord(I, x) for every $x \in Z(I)$. By Theorem A, we have $B \in I$.

(iii) \Rightarrow (iv) Suppose that condition (iii) holds. Let B_1 be a Carleson-Newman Blaschke product of order m in I satisfying $ord(B_1, x) = ord(I, x)$ for every $x \in Z(I)$. Let $\varphi_1, \varphi_2, \dots, \varphi_m$ be interpolating Blaschke products satisfying $B_1 = \prod_{j=1}^{m} \varphi_j$. For each $1 \leq j \leq m$, let $E_j = Z(I) \cap Z(\varphi_j)$. Since Z(I) is a G_{δ} -set, E_j is a closed G_{δ} -set. By Lemma 2.13, there is an interpolating Blaschke product b_j such that $Z(B_1) \cap Z(b_j) = E_j$. Let $B_2 = \prod_{j=1}^{m} b_j$. For any $x \in Z(I)$, we have

$$ord(B_2, x) = \sum_{j=1}^m ord(b_j, x) = \#\{j : x \in E_j, 1 \le j \le m\}$$

= $ord(B_1, x) \ge ord(I, x).$

By Theorem A, we have $B_2 \in I$. We also have

$$Z(B_1) \cap Z(B_2) = Z(B_1) \cap \bigcup_{j=1}^m Z(b_j) = \bigcup_{j=1}^m E_j$$

= $Z(I) \cap Z(B_1) = Z(I).$

Let $J = I[B_1, B_2]$. Then Z(J) = Z(I) and ord(J, x) = ord(I, x) for every $x \in Z(I)$. By Theorem A again, we have J = I.

 $(iv) \Rightarrow (i)$ is trivial.

In the following example, we shall show that there exist compact ρ -separated G_{δ} -subsets E_1 and E_2 of G such that the ideal $I(E_1) \cap I(E_2)$ is not countably generated.

Example 2.14. Let $\{\theta_k\}_k$ be a sequence of numbers such that $0 < \theta_{k+1} < \theta_k < 1$ and $\theta_k \to 0$ as $k \to \infty$. It is known that there is an interpolating Blaschke product B_1 with zeros $\{z_n\}_n$ in \mathbb{D} such that

$$\overline{\{z_n\}}_n^{\mathbb{C}} \setminus \{z_n\}_n = \{e^{i\theta_k} : k \ge 1\} \cup \{1\},\$$

where $\overline{\{z_n\}}_n^{\mathbb{C}}$ is the closure of $\{z_n\}_n$ in \mathbb{C} . Let \mathbb{N} be the set of positive integers. We may divide \mathbb{N} as $\mathbb{N} = \bigcup_{k=1}^{\infty} N_k$ such that $N_k \cap N_j = \emptyset$ for $k \neq j$ and

$$\overline{\{z_n:n\in N_k\}}^{\mathbb{C}}\setminus\{z_n:n\in N_k\}=\{e^{i\theta_k}\},\quad k\in\mathbb{N}.$$

Let b_k be the subproduct of B_1 with zeros $\{z_n : n \in N_k\}$. Then $B_1 = \prod_{k=1}^{\infty} b_k$. Let $\{\varepsilon_k\}_k$ be a sequence of numbers such that $0 < \varepsilon_k < 1$ and $\varepsilon_k \to 0$ as $k \to \infty$. Let $q_k(z) = (b_k(z) - \varepsilon_k)/(1 - \varepsilon_k b_k(z))$. Taking smaller ε_k , we may assume that $B_2 := \prod_{k=1}^{\infty} q_k$ is an interpolating Blaschke product and

$$\left(\bigcup_{k=1}^{\infty} Z(b_k)\right) \cap \left(\bigcup_{k=1}^{\infty} Z(q_k)\right) = \emptyset.$$

Let

$$E_1 = Z(B_1) \setminus \mathbb{D}$$
 and $E_2 = Z(B_2) \setminus \mathbb{D}$.

Then E_1, E_2 are compact ρ -separated G_{δ} -subsets of G,

$$E_1 = \left(\bigcup_{k=1}^{\infty} (Z(b_k) \setminus \mathbb{D})\right) \cup \left(E_1 \setminus \bigcup_{k=1}^{\infty} Z(b_k)\right)$$

and

$$E_2 = \Big(\bigcup_{k=1}^{\infty} (Z(q_k) \setminus \mathbb{D})\Big) \cup \Big(E_2 \setminus \bigcup_{k=1}^{\infty} Z(q_k)\Big).$$

By Lemma 2.5, $I(E_1)$ and $I(E_2)$ are countably generated closed ideals in H^{∞} . Let $I = I(E_1) \cap I(E_2)$. Then $I = I(E_1 \cup E_2)$. By the construction, we may check that

$$E_1 \setminus \bigcup_{k=1}^{\infty} Z(b_k) = E_2 \setminus \bigcup_{k=1}^{\infty} Z(q_k)$$

and

$$\overline{\bigcup_{k=1}^{\infty} (Z(b_k) \setminus \mathbb{D})} \setminus \bigcup_{k=1}^{\infty} Z(b_k) = \overline{\bigcup_{k=1}^{\infty} (Z(q_k) \setminus \mathbb{D})} \setminus \bigcup_{k=1}^{\infty} Z(q_k)$$
$$\subseteq E_1 \setminus \bigcup_{k=1}^{\infty} Z(b_k).$$

Let Ω be the set of all subproducts q of B_2 satisfying

$$\bigcup_{k=1}^{\infty} (Z(q_k) \setminus \mathbb{D}) \subset Z(q)$$

Then we have $B_1q \in I$ for every $q \in \Omega$ and

$$\bigcap_{q \in \Omega} Z(q) = \overline{\bigcup_{k=1}^{\infty} (Z(q_k) \setminus \mathbb{D})}.$$

By this fact, we have

$$Z_2(I) = \overline{\bigcup_{k=1}^{\infty} (Z(b_k) \setminus \mathbb{D})} \setminus \bigcup_{k=1}^{\infty} Z(b_k) = \overline{\bigcup_{k=1}^{\infty} Z(b_k)} \setminus \bigcup_{k=1}^{\infty} Z(b_k),$$

and $Z_2(I)$ is not a G_{δ} -set (see Example 2.9 in [12]). By Lemma 2.3, I is not countably generated. We note that $I = I(E_1) \overline{\otimes} I(\overline{E_2 \setminus E_1})$.

References

- J. Bourgain, On finitely generated closed ideals in H[∞](D), Ann. Inst. Fourier (Grenoble) 35(1985), 163–174. MR812323 (87j:46101)
- [2] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80(1958), 921–930. MR0117349 (22:8129)
- [3] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. MR628971 (83g:30037)
- [4] P. Gorkin, K. Izuchi, and R. Mortini, Higher order hulls in H^{∞} II, J. Funct. Anal. **177**(2000), 107–129. MR1789945 (2002e:46060)
- [5] P. Gorkin and R. Mortini, Interpolating Blaschke products and factorization in Douglas algebras, Michigan Math. J. 38(1991), 147–160. MR1091518 (92b:46083)
- [6] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, New Jersey, 1962. MR0133008 (24:A2844)
- [7] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86(1967), 74–111. MR0215102 (35:5945)
- [8] K. J. Izuchi, Countably generated Douglas algebras, Trans. Amer. Math. Soc. 299(1987), 171–192. MR869406 (88b:46077)
- [9] K. J. Izuchi, Factorization of Blaschke products, Michigan Math. J. 40(1993), 53–75. MR1214055 (94d:30062)
- [10] K. J. Izuchi, Interpolating Blaschke products and factorization theorems, J. London Math. Soc. (2) 50(1994), 547–567. MR1299457 (95k:46086)
- [11] K. J. Izuchi, The structure of the maximal ideal space of H^{∞} , Sugaku Expositions 17(2004), 171–184. MR2095766
- [12] K. J. Izuchi and Y. Izuchi, Factorization of Blaschke products and primary ideals in H^{∞} , J. Funct. Anal. **259**(2010), 975–1013. MR2652179 (2011h:46070)
- [13] K. J. Izuchi and Y. Izuchi, Factorization of Blaschke products and ideal theory in H^{∞} , J. Funct. Anal. **260**(2011), 2086–2147. MR2756151
- [14] V. Tolokonnikov, Blaschke products with the Carleson-Newman condition, and ideals of the algebra H[∞], J. Soviet Math. 42(1988), 1603–1610. MR849297 (88c:30041)

DEPARTMENT OF MATHEMATICS, NIIGATA UNIVERSITY, NIIGATA 950-2181, JAPAN *E-mail address*: izuchi@m.sc.niigata-u.ac.jp

AOYAMA-SHINMACHI 18-6-301, NISHI-KU, NIIGATA 950-2006, JAPAN *E-mail address:* yfd10198@nifty.com