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DENSITY OF ORBITS OF ENDOMORPHISMS

OF ABELIAN VARIETIES

DRAGOS GHIOCA AND THOMAS SCANLON

Abstract. Let A be an abelian variety defined over Q̄, and let ϕ be a dom-
inant endomorphism of A as an algebraic variety. We prove that either there
exists a non-constant rational fibration preserved by ϕ or there exists a point
x ∈ A(Q̄) whose ϕ-orbit is Zariski dense in A. This provides a positive answer
for abelian varieties of a question raised by Medvedev and the second author.
We also prove a stronger statement of this result in which ϕ is replaced by any
commutative finitely generated monoid of dominant endomorphisms of A.

1. Introduction

The following conjecture was raised in [MS14, Conjecture 7.14] (motivated by a
conjecture of Zhang [Zha10] for polarizable endomorphisms of projective varieties).

Conjecture 1.1. Let K0 be an algebraically closed field of characteristic 0, let X be
an irreducible algebraic variety defined over K0, and let ϕ : X −→ X be a dominant
rational self-map. We suppose there exist no positive dimensional algebraic variety
Y and dominant rational map f : X −→ Y such that f ◦ ϕ = f . Then there exists
x ∈ X(K0) whose forward ϕ-orbit is Zariski dense in X.

We denote by Oϕ(x) the forward ϕ-orbit, i.e. the set of all ϕn(x) for n ≥ 0, where
by ϕn we denote the n-th compositional power of ϕ. Conjecture 1.1 was proven in
[MS14, Theorem 7.16] in the special case X = Am, and ϕ := (f1, . . . , fm) is given by
the coordinatewise action of m one-variable polynomials fi. In this paper we prove
Conjecture 1.1 when X is an abelian variety. As a convention, for us, endomor-
phisms of an abelian variety A are self-morphisms of A in the category of algebraic
varieties, while the group endomorphisms of A are self-morphisms of A in the cat-
egory of abelian varieties. Our result is the fourth known case of Conjecture 1.1
(besides the case proven by Medvedev and the second author in [MS14], Amerik,
Bogomolov and Rovinsky [ABR11] exploited the local dynamical behaviour of the
map ϕ to prove a special case of Conjecture 1.1 assuming there is a good p-adic
analytic parametrization for the orbit Oϕ(x), and recently, the case when X is a
surface was proven in [BGT] also using p-adic methods).
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Theorem 1.2. Let K0 be an algebraically closed field of characteristic 0. Let A
be an abelian variety defined over K0, and let σ : A −→ A be a dominant map of
algebraic varieties. Then the following statements are equivalent:

(1) there exists x ∈ A(K0) such that Oσ(x) is Zariski dense in A;
(2) there exists no non-constant rational map f : A −→ P1 such that f ◦σ = f .

The motivation for Conjecture 1.1 comes from two different directions. First,
Zhang [Zha10, Conjecture 4.1.6] proposed a variant of Conjecture 1.1 for polariz-
able endomorphisms ϕ of projective varietieties X defined over Q̄ (we say that ϕ

is polarizable if there exists an ample line bundle L on X so that ϕ∗(L) ∼→ L⊗d

for some integer d > 1). The polarizability condition imposed by Zhang is stronger
than the hypothesis from Conjecture 1.1 that ϕ preserves no non-constant fibration
of X. The motivation for the stronger hypothesis appearing in [Zha10, Conjec-
ture 4.1.6] lies in the fact that in his seminal paper [Zha10], Zhang was interested
in the arithmetic properties exhibited by the dynamics of endomorphisms of projec-
tive varieties. In particular, Zhang was interested in formulating good dynamical
analogues of the classical Manin-Mumford and Bogomolov Conjectures, and thus
he wanted to use the canonical heights associated to polarizable endomorphisms
(previously introduced by Call and Silverman [CS93]). The second motivation for
Conjecture 1.1 comes from the fact that its conclusion is known assuming K0 is
an uncountable field of characteristic 0 (see [AC08]). More precisely, in [AC08],
Amerik and Campana proved that if ϕ preserves no non-constant rational fibra-
tion, then there exist countably many proper subvarieties Yi of X so that for each
x ∈ X(K0) \

⋃
i Yi(K0), the orbit Oϕ(x) is Zariski dense in X. However, if K0 is

countable, then the result of Amerik and Campana leaves open the possibility that
each K0-valued point of X is also a K0-valued point of some subvariety Yi for some
positive integer i. Hence, Conjecture 1.1 raises a deeper arithmetical question.

We are able to extend Theorem 1.2 to the action of any commutative finitely
generated monoid of dominant endomorphisms of an abelian variety. For a monoid
S of endomorphisms of an abelian variety A, and for any point x ∈ A, we let OS(x)
be the S-orbit of x, i.e. the set of all ψ(x), where ψ ∈ S.

Theorem 1.3. Let K0 be an algebraically closed field of characteristic 0, and let
S be a finitely generated, commutative monoid of dominant endomorphisms of an
abelian variety A defined over K0. Then either there exists x ∈ A(K0) such that
OS(x) is Zariski dense in A or there exists a non-constant rational map f : A −→ P1

such that f ◦ σ = f for each σ ∈ S.

It is reasonable to formulate an extension of Conjecture 1.1 to the setting of a
monoid action of rational self-maps on an algebraic variety X. However, there are
several additional complications arising from such a generalization even in the case
of the dynamics of endomorphisms of an abelian variety A, such as:

(i) Should we impose any restriction on the monoid S? Theorem 1.3 is valid
only for finitely generated, commutative monoids, and our method of proof
does not seem to extend beyond this case (at least not in the case of arbi-
trary endomorphisms of an abelian variety A; if S is an arbitrary commut-
ing monoid of dominant group endomorphisms of A, then the conclusion
of Theorem 1.3 holds easily). As an aside, note that there are many exam-
ples of infinitely generated commutative monoids of endomorphisms of A;
simply take infinitely many points of A (linearly independent over Z) and
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then consider the monoid spanned by translations of A by these points.
Once again, the difficulty in extending Theorem 1.3 lies not necessarily
with this last example, but with the mixed case, i.e., when the endomor-
phisms in the monoid are compositions of translations with algebraic group
endomorphisms of A.

(ii) Assuming there is no non-constant fibration preserved by the entire monoid
S, is it true that there exists some σ ∈ S and there exists x ∈ A(K0) such
that Oσ(x) is Zariski dense in A? We have examples of non-commuting
monoids S generated by two group homomorphisms of A such that there
is no non-constant fibration preserved by S, even though for each σ ∈ S
there exists a non-constant fibration preserved by σ. On the other hand,
if S is a commutative monoid of group homomorphisms of A, then it is
easy to see that the above question has a positive answer.

Finally, we note that Amerik and Campana’s result [AC08] was extended in [BGZ]
for arbitrary monoids S acting on an algebraic variety X through dominant rational
endomorphisms, i.e. if there is no non-constant rational fibration preserved by S,
then there exist countably many proper subvarieties Yi ⊂ X such that for each
x ∈ X(K0) \

⋃
i Yi(K0), the orbit OS(x) is Zariski dense in X. Again, similar to

[AC08], the result of [BGZ] leaves open the possiblity that if K0 is countable, then
X(K0) may be covered by

⋃
i Yi(K0).

Here is the strategy for our proof. By the classical theory of abelian varieties,
we know that each endomorphism ϕ of an abelian variety A is of the form Ty ◦ τ
(for a translation map Ty, with y ∈ A) and some (algebraic) group homomorphism
τ . Since the endomorphisms ϕ from the given monoid S commute with each other,
we obtain that also the corresponding group homomorphisms τ commute with each
other. This gives us a lot of control on the action of the corresponding group
homomorphisms τ ; in particular, if all endomorphisms from S would also be group
homomorphisms, then Theorem 1.3 would follow easily. Essentially, in that special
case, the problem would reduce to the following dichotomy: either there exists
a positive dimensional algebraic subgroup of A which is fixed by a finite index
submonoid of S, or there exists a single element σ of S, and there exists an algebraic
point x of A whose σ-orbit is Zariski dense in A (essentially, such a point x has
the property that the cyclic subgroup generated by x is Zariski dense in A). So,
if S consists only of group homomorphisms, the conclusion of Theorem 1.3 holds
even in a stronger form. However, if the endomorphisms from S are not all group
endomorphisms of A, then the proof is much more complicated. One can still find a
necessary and sufficient condition under which there exists a non-constant rational
fibration preserved by all elements in S, but that condition is very technical. Also,
it is quite difficult to obtain a quantative statement about the number of algebraic
points x ∈ A whose orbit under the semigroup S of endomorphisms of A is Zariski
dense. Essentially, our method yields that any point x ∈ A(K0) which is linearly
independent from the points of A defined over a certain subfield K1 of K0 have
a Zariski dense orbit under S (see Remark 7.2). The difficulty in obtaining a
quantative statement in terms of the heights of the points of A lies with the fact
that K1 is itself an infinitely generated field; however, we are able to show that
K0/K1 is also an infinite extension (see Claim 5.3) which guarantees the existence
of many points x with a Zariski dense S-orbit.
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We note that in our proof we use Faltings’ Theorem (originally known as the
Mordell-Lang Conjecture; see [Fal94]) as follows. For any point x ∈ A, the orbit of
x under S is contained in a finitely generated subgroup of A (see Fact 3.6). This
yields that the orbit of x under S is not Zariski dense in A if and only if there exist
finitely many translates of some proper algebraic subgroups of A which contain the
orbit of x. Finally, we note that the exact same proof works to prove a variant
of Theorem 1.3 with the abelian variety A replaced by a power of the torus. On
the other hand, our proof does not seem to generalize to the case of semiabelian
varieties due to the failure of the Poincaré Reducibility Theorem (see Fact 3.2) for
semiabelian varieties which are not isogenous to split semiabelian varieties.

The plan of the paper is as follows. In Section 2 we note several easy statements
regarding monoids. We continue by stating some basic facts about abelian vari-
eties in Section 3. Then, in Section 4 and Section 5 we prove various reductions
of Theorem 1.3, respectively some auxilliary results needed later. In Section 6 we
prove Theorem 1.2 as a way to introduce the reader to the more elaborate argument
needed for the proof of Theorem 1.3 (which is completed in Section 7). While The-
orem 1.2 is a special case of Theorem 1.3, we have chosen to prove them separately
because we believe it is easier for the reader to first read the argument done for a
cyclic monoid (Theorem 1.2), which avoids some of the technicalities appearing in
the proof of Theorem 1.3.

2. General results regarding monoids

We need some basic facts about finitely generated, commutative monoids. First
we need a definition.

Definition 2.1. Let S be any finitely generated, commutative monoid. For each
submonoid T ⊆ S, we denote by T̄ the set of all x ∈ S with the property that
xT ∩ T 	= ∅.

So, T̄ is the set of all x ∈ S such that there exist y, z ∈ T such that xy = z.
Because T is a submonoid of S, then also T̄ is a submonoid of S.

Definition 2.2. A monoid S is called left cancellative if whenever xy = xz for
x, y, z ∈ S, then y = z.

We note that a monoid of dominant endomorphisms of a given algebraic variety
is a left cancellative monoid. Since we will only be working with commutative
monoids, we will simply call them cancellative if they satisfy Definition 2.2.

Lemma 2.3. Let S be a cancellative, commutative monoid generated by the ele-
ments γ1, . . . , γs, and let T be a submonoid of S such that T̄ = S. Then there exists
a finitely generated submonoid T0 ⊂ T and there exists a positive integer n such
that γn

i ∈ T̄0 for each i = 1, . . . , s.

Proof. Let f : Ns −→ S be the homomorphism of monoids given by f(ei) = γi,
where ei ∈ Ns is the s-tuple consisting only of zeros with the exception of the i-th
entry which equals 1. Let U be the set of all a ∈ Ns such that f(a) ∈ T , and let
H be the subgroup of Zs generated by U . Since T̄ = S, then H = Zs. Therefore
there exist s linearly independent tuples in U ; call them u1, . . . , us. We claim that
the monoid T0 spanned by f(u1), . . . , f(us) satisfies the conclusion of our lemma.
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Indeed, we first show that T̄0 = f(H0 ∩ Ns), where H0 is the subgroup of Zs

generated by u1, . . . , us. To see this, on one hand, it is clear that T̄0 ⊆ f(H0 ∩Ns).

Now, to see the reverse inclusion, note that T̄0 satisfies
(
T̄0

)
= T̄0. Indeed, if

x1, x2 ∈ T̄0 and x ∈ S such that xx1 = x2, we show that x ∈ T̄0. We have
that there exist yi, zi ∈ T0 such that xiyi = zi for i = 1, 2. Then we claim that
x(y2z1) = y1z2, which would indeed show that x ∈ T̄0 because y2z1, y1z2 ∈ T0 (note
that T0 is a submonoid). To see the above equality in the cancellative monoid
S, it suffices to prove that x1xy2z1 = x1y1z2. Using that x1x = x2, x2y2 = z2
and x1y1 = z1, and that S is commutative, we obtain the desired equality; hence(
T̄0

)
= T̄0 and thus T̄0 = f(H0 ∩ Ns).

Now, since u1, . . . , us are linearly independent over Z (as elements of Zs), then
H0 has finite index in Zs. So, there exists a positive integer n such that nei ∈ H0

for each i = 1, . . . , s, and therefore f(nei) = γn
i ∈ T̄0. �

We also need some simple results from linear algebra. The first is a consequence
of the Lie-Kolchin triangularization theorem [Kol48].

Fact 2.4. Let S0 be a finitely generated, commuting monoid of matrices with entries
in Q̄. Then there exists an invertible matrix C (with entries in Q̄) such that for
each A ∈ S0, the matrix C−1AC is upper triangular.

Fact 2.4 will be used repeatedly throughout our proof. An important conse-
quence of it is that the eigenvalues of each matrix in a commuting monoid S0 are
simply the entries on the diagonal (after a suitable change of coordinates). In
particular, this has the following easy lemmas.

Lemma 2.5. Let S0 be a commuting monoid of matrices with entries in Q̄, gen-
erated by matrices A1, . . . , As. Then there exists a positive integer n such that for
each matrix A contained in the submonoid of S0 generated by An

1 , . . . , A
n
s , if λ is

an eigenvalue of A which is also a root of unity, then λ = 1.

Proof. The conclusion holds with n being the cardinality of the group of roots of
unity contained in the number field L which is generated by all the eigenvalues of
the matrices Ai. �
Lemma 2.6. Let S0 be a finitely generated, commuting monoid of matrices with
the property that for each matrix A in S0, if λ is an eigenvalue of A which is a root
of unity, then λ = 1. Let U0 be the set of matrices in S0 with the property that the
eigenspace corresponding to the eigenvalue 1 has the smallest dimension among all
the matrices in S0. Let U0 be the submonoid generated by U0. Then Ū0 = S0.

Proof. Using Fact 2.4, we can choose a basis so that each matrix in S is represented
by an upper triangular matrix. Furthermore, we may assume each matrix in U has
the first r entries on the diagonal equal to 1, and none of the other entries on the
diagonal are equal to 1 (or to a root of unity). Indeed, we know each matrix in
U has r entries on the diagonal equal to 1; if these entries equal to 1 were not in
the same places of the diagonal for two distinct matrices A and B in U , then for
some positive integers m and n we would have that AmBn has fewer than r entries
equal to 1 on the diagonal. So, indeed the r entries equal to 1 appear in the same
position on the diagonal for each matrix in U ; so we may assume they are the first
r entries, while the remaining � − r entries on the diagonal of each matrix in U is
not a root of unity.
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Let A ∈ U . Now, for each matrix B ∈ S, even if there exist entries in the
positions i = r + 1, . . . , � on the diagonal which are equal to 1, there exists a
positive integer n such that the entries on the diagonal of AnB in the positions
i = r + 1, . . . , � are not equal to 1. This completes our proof. �

3. Abelian varieties

First we recall several results regarding abelian varieties (see [Mil] or [Mum70]
for more details). The setup will be as follows: A is an abelian variety defined
over a field K of characteristic 0; since one needs only finitely many parameters in
order to define A, then we may assume K is a finitely generated extension of Q.
We let K be a fixed algebraic closure of K. At the expense of replacing K by a
finite extension we may assume that all algebraic group endomorphisms of A are
defined over K; we denote by End(A) the ring of all these endomorphisms. Since
the torsion subgroup Ctor of any algebraic subgroup C ⊆ A is Zariski dense in C,
we conclude that any algebraic subgroup of A is defined over K(Ator). Frequently
we will use the following facts.

First, as a matter of notation, the connected component of an algebraic subgroup
B of A is always denoted by B0 (we recall that B0 is the connected algebraic
subgroup of B of maximal dimension).

Fact 3.1. Let B and C be algebraic subgroups of the abelian variety A. Then
(B + C)0 =

(
B0 + C0

)
.

Proof. The algebraic group B0 + C0 is the image of the connected group B0 × C0

under the sum map and is therefore connected. As B0 × C0 has finite index in
B ×C, its image under the sum map has finite index in B +C. Hence, B0 +C0 =
(B + C)0. �

The following result is proven in [Mil, Proposition 10.1].

Fact 3.2 (Poincaré’s Reducibility Theorem). If B ⊆ A is an abelian subvariety of
A, then there exists an abelian subvariety C ⊆ A such that A = B +C and B ∩C
is finite; in particular A/B and C are isogenous.

Poincaré’s Reducibility Theorem yields that any abelian variety is isogenous with
a direct product of finitely many simple abelian varieties, i.e. A

∼→ A0 :=
∏r

i=1 C
ki
i ,

where each Ci is simple. Then End(A)
∼→ End(A0) (see also [Mil, Section 1.10]),

and moreover End(A0)
∼→

∏r
i=1 Mki

(Ri), where Mki
(Ri) is the ring of all ki-by-ki

matrices with entries in the ring Ri := End(Ci). For any simple abelian variety
C, the ring R := End(C) is a finite integral extension of Z. Therefore we have the
following fact.

Fact 3.3. Let A be an abelian variety defined over a field of characteristic 0. For
each algebraic group endomorphism φ : A −→ A there exists a minimal monic
polynomial f ∈ Z[t] of degree at most 2 dim(A) such that f(φ) = 0.

The following result is proven in [Mil, Corollary 1.2].

Fact 3.4 (Rigidity Theorem). Each endomorphism ψ : A −→ A is of the form
Ty ◦ φ for some y ∈ A, where Ty : A → A is the translation map x �→ x + y and
φ ∈ End(A) is an algebraic group endomorphism. In particular, if ψ is dominant,
then φ : A −→ A is an isogeny. Furthermore, the pair (Ty, φ) is uniquely determined
by ψ.
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As a simple consequence of Fact 3.4, we obtain

Lemma 3.5. Let ψ1, ψ2 : A −→ A be endomorphisms of the form ψi := Tyi
◦ ϕi

(for i = 1, 2) where ϕi : A −→ A are group endomorphisms. If ψ1 ◦ ψ2 = ψ2 ◦ ψ1,
then ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1.

The following result is an immediate application of the structure theorem for the
ring of group endomorphisms of an abelian variety.

Fact 3.6. Let S be a finitely generated commutative monoid of endomorphisms of
an abelian variety A as an algebraic variety. Then for each point x ∈ A, there exists
a finitely generated subgroup Γ ⊂ A containing OS(x).

Proof. Let {γ1, . . . , γs} be a set of generators for S. For each i = 1, . . . , s, we let
γi := Tyi

◦ τi for some translations Tyi
(where yi ∈ A) and some group endomor-

phisms τi. Let d := dim(A). Then, by Fact 3.3, for each i = 1, . . . , s, there exist
integers ci,j such that

τ2di + ci,2d−1τ
2d−1
i + · · ·+ ci,1τi + ci,0 · id = 0,

where id always represents the identity map. Then OS(x) is contained in the
subgroup Γ ⊂ A generated by γ(x), γ(y1), . . . , γ(ys), where γ varies among the
finitely many elements of S of the form γ := γm1

1 ◦ · · · γms
s , with 0 ≤ mi < 2d, for

each i = 1, . . . , s. �
The next result is a relatively simple application of Fact 3.2.

Lemma 3.7. Let B ⊆ A be an algebraic subgroup of the abelian variety A. Then
B 	= A if and only there exists a non-zero algebraic group endomorphism ψ : A −→
A such that ψ(B) = {0}.
Proof. Clearly, if B = A, then there exists no non-zero endomorphism ψ of A
such that ψ(B) = {0}. Now, assume B 	= A. We note that it suffices to prove
the existence of ψ ∈ End(A) such that B0 ⊆ ker(ψ), where B0 is the connected
component of B containing 0, for if B0 ⊆ ker(ψ) and N := [B : B0] is the index
of B0 in B, then B ⊆ ker(φ) where φ = [N ] · ψ. So from now on assume B is an
abelian subvariety of A. We let π : A −→ A/B be the canonical quotient map. By
Fact 3.2, we obtain that there exists an abelian subvariety C ⊆ A and an isogeny
τ : A/B −→ C. So, letting ι : C −→ A be the canonical injection map, we get that
ψ := ι ◦ τ ◦ π : A −→ A is an endomorphism with the property that ψ(B) = {0}.
We claim that ψ 	= 0. Indeed, by construction, the image of ψ is C, which is a
positive dimensional variety (since B 	= A). �

The following result is the famous consequence of the Mordell-Lang Conjecture
proven by Faltings [Fal94].

Fact 3.8 (Faltings’ Theorem; Mordell-Lang Conjecture). Let V ⊂ A be an irre-
ducible subvariety with the property that there exists a finitely generated subgroup
Γ ⊆ A(K) such that V (K)∩Γ is Zariski dense in V . Then V is a coset of an abelian
subvariety of A.

We will also employ the following easy result.

Lemma 3.9. Let A be an abelian variety. If x ∈ A is a point generating a cyclic
group which is Zariski dense in A, then for each positive integer �, the cyclic group
generated by �x is Zariski dense in A.
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Proof. Let H be the Zariski closure of the cyclic group generated by �x; then H is
an algebraic subgroup of A. Furthermore, because the cyclic group generated by x
is Zariski dense in A, then

A =

�−1⋃
i=0

(ix+H) .

Since A is connected, we conclude that H = A, as desired. �

Finally, for any simple abelian variety A defined over a field K of characteristic
0, the action of Gal(K/K) on Ator yields the following result.

Fact 3.10. The group Gal(K(Ator)/K) embeds into GL2d(Ẑ), where d = dim(A)

and Ẑ is the ring of finite adéles.

4. Reductions

Next we proceed with several preliminary results used later in the proof of The-
orem 1.2. The following result was proven in the case of a cyclic group S of au-
tomorphisms in [BRS10]; we thank Jason Bell for pointing out how to extend the
result from [BRS10] to our setting.

Lemma 4.1. It suffices to prove Theorem 1.3 for a submonoid of S spanned by
iterates of each of the generators of S.

Proof. We consider a finite generating set U := {γ1, . . . , γs} for the monoid S.
We assume S does not fix a non-constant fibration of A (otherwise Theorem 1.3
holds). We let S′ be the submonoid of S spanned by the endomorphisms in U ′ :=
{γm1

1 , . . . , γms
s } (for some positive integers mi). We assume Theorem 1.3 holds for

S′. If also S′ does not fix a non-constant fibration, then there exists x ∈ A(K0)
such that the S′-orbit of x is Zariski dense in A; hence also OS(x) is Zariski dense
in A. So, it remains to prove that S′ cannot fix a non-constant fibration if S does
not fix a non-constant fibration.

We assume f ◦ γmi
i = f for some non-constant map f : A −→ P1 (for each i).

Let Srep be a finite set of representatives for the cosets of S′ in S (note that S/S′

is a finite group since it is a finite monoid in which each element is invertible);
without loss of generality we assume the identity is part of Srep. Let m := |Srep|
and let Srep := {σ1, . . . , σm}. Let s1, . . . , sm be the elementary symmetric functions
si : (P

1)m → P1 and let gi := si(f ◦ σ1, . . . , f ◦ σm) (for i = 1, . . . ,m) Clearly, γi
preserves each fibration gj ; hence if one gj is non-constant, then we are done. If
each gj is a constant, then we obtain a contradiction because f = f ◦ id would be
a root of the polynomial (with constant coefficients)

Xm − g1X
m−1 + g2X

m−2 + · · ·+ (−1)mgm = 0.

This completes the proof of Lemma 4.1. �

Lemma 4.2. With the notation as in Theorem 1.3, let T be a submonoid of S such
that T̄ = S. If the conclusion of Theorem 1.3 holds for T , then it holds for S.

Proof. We assume that there exists no non-constant fibration preserved by all ele-
ments of S, and it suffices to prove that there is also no non-constant fibration pre-
served by the elements of T . Assume by contradiction that there exists f : A −→ P1
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such that f ◦ ψ = f for each ψ ∈ T . Now, let σ ∈ S; then there exist ψ1, ψ2 ∈ T
such that γψ1 = ψ2. So, also using that S is commutative, we get

f ◦ γ = f ◦ ψ1 ◦ γ = f ◦ ψ2 = f.

Hence f must be constant, as desired. �

Combining Lemmas 4.1 and 4.2 we obtain the following reduction of Theorem 1.3.

Lemma 4.3. With the notation from Theorem 1.3, assume the monoid S is gener-
ated by the maps γ1, . . . , γs. Then it suffices to prove the conclusion of Theorem 1.3
for a finitely generated submonoid T of S with the property that γn

i ∈ T̄ for each
i = 1, . . . , s, for some positive integer n.

5. Auxiliary results

In this section we present several technical results useful for our proof of Theo-
rems 1.2 and 1.3.

Lemma 5.1. Let K0 be an algebraically closed field of characteristic 0. Let ψ1, . . . ,
ψs : B −→ C be algebraic group morphisms of abelian varieties, and let y1, . . . , ys ∈
C(K0). Then there exists x ∈ B(K0) such that for each i = 1, . . . , s, the Zariski
closure of the subgroup generated by ψi(x) + yi is the algebraic group generated by
ψi(B) and yi.

Proof. Let K be a finitely generated subfield of K0 such that B, C, ψ1, . . . , ψs are
defined over K, and, moreover, each yi ∈ C(K). Without loss of generality, we
may assume K0 is a fixed algebraic closure K of K (a priori, K0 may be a proper
extension of K, and thus showing the conclusion with K in place of K0 suffices).

We let B = A1 + · · ·+Am be written as a sum of simple abelian varieties.
Let i = 1, . . . , s; then ψi(B) equals the sum ψi(A1) + · · · + ψi(Am) (with each

algebraic group being either simple or trivial). We find an algebraic point xi ∈
ψi(B) such that the Zariski closure of the cyclic group generated by xi + yi is the
algebraic group generated by ψi(B) and yi; moreover we ensure that

s⋂
i=1

ψ−1
i ({xi})

is non-empty (in B). We find xi as a sum xi,1+ · · ·+xi,m, where each xi,j ∈ ψi(Aj).
If for some j we have ψi(Aj) = {0}, we simply pick xi,j = 0. Then our goal is to
construct the sequence {xi,j} such that for each j = 1, . . . ,m, the set

(5.1.1)
s⋂

i=1

(ψi)|−1
Aj

({xi,j})

is non-empty (in Aj). Obviously when ψi(Aj) = {0}, we might as well disregard
the set

(ψi)|−1
Aj

({xi,j}) = (ψi)|−1
Aj

({0}) = Aj

from the above intersection. Now let j = 1, . . . ,m such that ψi(Aj) is non-trivial.
We will show that there exists xi,j ∈ ψi(Aj) such that for any positive integer n we
have

(5.1.2) nxi,j /∈ (ψi(Aj)) (K (Ctor, xi,1, . . . , xi,j−1)) .
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Claim 5.2. If the above condition (5.1.2) holds for each j = 1, . . . ,m such that
ψi(Aj) 	= {0}, then the Zariski closure of the cyclic group generated by xi + yi is
the algebraic subgroup Bi generated by ψi(B) and yi.

Proof of Claim 5.2. Indeed, assume there exists some algebraic subgroup D ⊆ C
(not necessarily connected) such that xi + yi ∈ D(K). Let j ≤ m be the largest
integer such that xi,j 	= 0; then we have

xi,j ∈ ((−yi − xi,1 − · · · − xi,j−1) +D) ∩ ψi(Aj).

Assume first that ψi(Aj)∩D is a proper algebraic subgroup of ψi(Aj). Since ψi(Aj)
is a simple abelian variety, then D ∩ ψi(Aj) is a 0-dimensional algebraic subgroup
of C; hence there exists a non-zero integer n such that n ·(D∩ψi(Aj)) = {0}. Then
nxi,j is the only (geometric) point of the subvariety

n · (((−yi − xi,1 − · · · − xi,j−1) +D) ∩ ψi(Aj))

which is thus rational over K(Ctor, xi,1, . . . , xi,j−1). But by our construction,

nxi,j /∈ ψi(Aj)(K(Ctor, xi,1, . . . , xi,j−1)),

which is a contradiction. Therefore ψi(Aj) ⊆ D if j is the largest index ≤ m such
that xi,j 	= 0 (or equivalently, such that ψi(Aj) 	= 0). So, xi + yi ∈ D now yields
x′
i + yi ∈ D, where x′

i := xi,1 + · · · + xi,j−1. Repeating the exact same argument
as above for the next positive integer j1 < j for which ψi(Aj1) 	= {0}, and then
arguing inductively, we obtain that each ψi(Aj) is contained in D, and therefore
ψi(B) ⊆ D. But then xi ∈ ψi(B) ⊆ D, and so yi ∈ D as well, which yields that
the Zariski closure of the group generated by xi + yi is the algebraic subgroup Bi

of C generated by ψi(B) and yi. �

We just have to show that we can choose xi,j both satisfying (5.1.2) and also
such that the above intersection (5.1.1) is non-empty. So, the problem reduces
to the following: L is a finitely generated field of characteristic 0, ϕ1, . . . , ϕ� are
algebraic group homomorphisms (of finite kernel) between a simple abelian variety
A and another abelian variety C all defined over L, and we want to find z ∈ A(K)
such that for each positive integer n, and for each i = 1, . . . , �, we have

(5.2.1) nϕi(z) /∈ ϕi(A) (L (Ctor)) .

Indeed, with the above notation, A := Aj , L is the extension of K generated by
xi,k (for i = 1, . . . , s and k = 1, . . . , j − 1), and the ϕi’s are the homomorphisms
ψi’s (restricted on A = Aj) for which ψi(Aj) is non-trivial.

Let d be the maximum of the degree of the isogenies ϕ′
i : A −→ ϕi(A) ⊂ C. In

particular, this means that for each w ∈ C(K), and for each z ∈ A(K) such that
φi(z) = w, we have

(5.2.2) [L(z) : L] ≤ d · [L(w) : L] .

For any subfield M ⊆ K, we let M (d) be the compositum of all extensions of M of
degree at most equal to d.

Claim 5.3. Let L be a finitely generated field of characteristic 0, let C be an abelian
variety defined over L, let Ltor := L(Ctor), and let d be a positive integer. Then

there exists a normal extension of L
(d)
tor whose Galois group is not abelian.
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Proof of Claim 5.3. As proven in [Tho13], the field Ltor is Hilbertian (note that
L itself is Hilbertian since it is a finitely generated field of characteristic 0). For
each positive integer n, according to [FJ08, Corollary 16.2.7 (a)], there exists a

Galois extension Ln of Ltor such that Gal(Ln/Ltor)
∼→ Sn (the symmetric group on

n letters). Assume there exists an abelian extension L0 of L
(d)
tor containing Ln. If

n > max{5, d!}, we will derive a contradiction from our assumption.

We let G1 := Gal
(
L0/L

(d)
tor

)
and G0 := Gal(L0/Ltor). Then there exists a

surjective group homomorphism f : G0 −→ Sn. Because G1 is a normal subgroup
of G0 (and f is a surjective group homomorphism), we get that f(G1) is a normal
subgroup of Sn, and moreover, it is abelian since G1 is abelian. Because n ≥ 5, the
only proper normal subgroup of Sn is An, which is not abelian. Hence, G1 ⊆ ker(f),
and therefore f induces a surjective group homomorphism (also denoted by f)
from G0/G1 to Sn; more precisely, we have a surjective group homomorphism

f : G(d) −→ Sn, where G(d) := Gal
(
L
(d)
tor/Ltor

)
. But G(d) is a group of exponent

d!, and so Sn = f(G(d)) is also a group of exponent d!, which is a contradiction
with the fact that n > d!. �

Claim 5.3 yields that there exists a point z ∈ A(K) which is not defined over an

abelian extension of L (Ctor)
(d)

; i.e., nz /∈ A
(
L (Ctor)

(d)
)
for all positive integers

n. Hence, nφi(z) /∈ φi(A) (L (Ctor)) (see (5.2.2)), which concludes the proof of
Lemma 5.1. �

The next result will be used (only) in the proof of Theorem 1.2.

Lemma 5.4. It suffices to prove Theorem 1.2 for a conjugate γ−1 ◦ σ ◦ γ of the
automorphism σ under some automorphism γ.

Proof. Since Oγ−1σγ(γ
−1(x)) = γ−1 (Oσ(x)), we obtain that there exists a Zariski

dense orbit of a point under the action of σ if and only if there exists a Zariski dense
orbit of a point under the action of γ−1 ◦ σ ◦ γ. Also, σ preserves a non-constant
fibration f : A −→ P1 if and only if γ−1σγ preserves the non-constant fibration
f ◦ γ. �

The conclusion of the next result shares the same philosophy as the conclusion
of Lemma 5.1: one can find an algebraic point in an abelian variety so that it is
sufficiently generic with respect to any given set of finitely many points.

Lemma 5.5. Let K0 be an algebraically closed field of characteristic 0, let Γ ⊆
A(K0) be a subgroup such that End(A)⊗Z Γ is a finitely generated End(A)-module,
and let B ⊆ A be a non-trivial abelian subvariety. Then there exists x ∈ B(K0)
such that for each ψ ∈ End(A) satisfying ψ(x) ∈ Γ, we must have that B ⊆ ker(ψ).

Proof. Each abelian variety is isogenous to a product of simple abelian varieties; so
let π : A −→ A0 :=

∏r
i=1 C

ki
i be such an isogeny, where each Ci is a simple abelian

variety defined over K0. Then it suffices to find an algebraic point y ∈ C := π(B)
such that for each φ ∈ End(A0), if φ(y) ∈ π(Γ), then C ⊆ ker(φ).

At the expense of replacing C with an isogenous abelian variety, we may assume
that C :=

∏r
i=1 C

mi
i with 0 ≤ mi ≤ ki. Each endomorphism φ ∈ End(A0) is of the

form (J1, . . . , Jr) where each Ji ∈ Mki
(Ri), where Mki

(Ri) is the ki-by-ki matrices
with entries in the ring Ri of endomorphisms of Ci (note that Ri is a finite integral
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extension of Z). We let Γi be the finitely generated Ri-module generated by the
projections of π(Γ) on each of the ki copies of Ci contained in the presentation

of A0 =
∏r

i=1 C
ki
i . We let yi,1, . . . , yi,�i be generators of the free part of Γi as an

Ri-module. Without loss of generality, we may assume the points yi,1, . . . , yi,�i are
linearly independent over Ri.

Then it suffices to pick x ∈ C of the form

(x1,1, . . . , x1,m1
, x2,1, . . . , x2,m2

, . . . , xr,1, . . . , xr,mr
),

where each xi,j ∈ Ci such that for each i, the points xi,1, . . . , xi,mi
, yi,1, . . . , yi,�i

are linearly independent over Ri. The existence of such points xi,j follows from the

fact that each Ci(K) ⊗Ri
Frac(Ri) has the structure of a Frac(Ri)-vector space of

infinite dimension. �

The next result is an application of Fact 3.8.

Lemma 5.6. Let K0 be an algebraically closed field of characteristic 0, let y1, . . . , yr
∈ A(K0), and let P1, · · · , Pr ∈ Q[z] such that Pi(n) ∈ Z for each n ≥ 1 and for
each i = 1, . . . , r, while deg(Pr) > · · · > deg(P1) > 0. For an infinite subset S ⊆ N,
let V := V (S;P1, . . . , Pr; y1, . . . , yr) be the Zariski closure of the set

{P1(n)y1 + · · ·+ Pr(n)yr : n ∈ S} .
Then there exist non-zero integers �1, . . . , �r such that V contains a coset of the
subgroup Γ generated by �1y1, · · · , �ryr.

Proof. Let Γ0 be the subgroup of A generated by y1, . . . , yr. Because V (K0)∩Γ0 is
Zariski dense in V , then by Fact 3.8 we obtain that V is a finite union of cosets of
algebraic subgroups of A. So, at the expense of replacing S by an infinite subset, we
may assume V = z+C, for some z ∈ A(K0) and some irreducible algebraic subgroup
C of A. This is equivalent to the existence of an endomorphism ψ : A −→ A such
that ker(ψ)0 = C (the construction of ψ is identical with the one given in the proof
of Lemma 3.7); hence ψ is constant on the set {P1(n)y1+· · ·+Pr(n)yr}n∈S . We will
show there exist non-zero integers �i such that �iyi ∈ ker(ψ) for each i = 1, . . . , r;
since ker(ψ)0 = C, then we obtain the desired conclusion.

We proceed by induction on r. The case r = 1 is obvious since then {P1(n)}n∈S

takes infinitely many distinct integer values (note that deg(P1) ≥ 1), and so, if
ψ is constant on the set {P1(n)y1}n∈S , then ψ(�y1) = 0 for some non-zero � :=
P1(n)−P1(n0) with distinct n0, n ∈ S. Next we assume the statement holds for all
r < s (where s ≥ 2), and we prove it for r = s.

Let n0 ∈ S. At the expense of replacing each Pi(n) by Pi(n)− Pi(n0), we may
assume from now on that the set {P1(n)y1+· · ·+Ps(n)ys}n∈S lies in the kernel of ψ.
Let n1 ∈ S such that P1(n1) 	= 0 (note that deg(P1) ≥ 1), and for each i = 2, . . . , s
we let Qi(n) := P1(n1) · Pi(n) − P1(n) · Pi(n1). Then the set {

∑s
i=2 Qi(n)yi}n∈S

is in the kernel of ψ. Because deg(Qi) = deg(Pi) for each i = 2, . . . , s, we can use
the induction hypothesis and conclude that there exist non-zero integers �2, . . . , �s
such that �iyi ∈ ker(ψ) for each i. Since ψ(P1(n1)y1 + · · · + Ps(n1)ys) = 0 and
P1(n1) 	= 0, then also (P1(n1) ·

∏s
i=2 �i) y1 ∈ ker(ψ). This concludes our proof. �

Lemma 5.6 has the following important consequence for us.

Lemma 5.7. Let K0 be an algebraically closed field of characteristic 0, let A be an
abelian variety defined over K0, let τ ∈ End(A) with the property that there exists
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a positive integer r such that (τ − id)r = 0, let y ∈ A(K0), let σ : A −→ A be an
endomorphism as algebraic varieties such that σ = Ty ◦ τ , and let x ∈ A(K0). Let
γ ∈ End(A) with the property that there exists an infinite set S of positive integers
such that γ is constant on the set {σn(x) : n ∈ S}. Then there exists a positive
integer � such that � · (β(x) + y) ∈ ker(γ), where β := τ − id.

Proof. We compute σn(x) for any n ∈ N; first of all, we have

(5.7.1) σn(x) = τn(x) +

n−1∑
i=0

τ i(y).

Then (since β = τ − id and also) noting that βr = 0 we have

σn(x)(5.7.2)

=
n∑

i=0

(
n

i

)
βi(x) +

n−1∑
i=0

τ i(y)(5.7.3)

=
r−1∑
i=0

(
n

i

)
βi(x) +

n−1∑
i=0

i∑
j=0

(
i

j

)
βj(y)(5.7.4)

=

r−1∑
j=0

(
n

j

)
βj(x) +

r−1∑
j=0

⎛
⎝n−1∑

i=j

(
i

j

)⎞⎠βj(y)(5.7.5)

=

r−1∑
j=0

(
n

j

)
βj(x) +

r−1∑
j=0

(
n

j + 1

)
βj(y)(5.7.6)

= x+

r∑
j=1

(
n

j

)
βj(x) +

r∑
j=1

(
n

j

)
βj−1(y)(5.7.7)

= x+
r∑

j=1

(
n

j

)
βj−1 (β(x) + y) .(5.7.8)

Since γ is constant on the set {σn(x) : n ∈ S}, then letting n1 ∈ S we have that for
each n ∈ S,

(5.7.9)

r∑
j=1

((
n

j

)
−
(
n1

j

))
βj−1 (β(x) + y) ∈ ker(γ).

Using Lemma 5.6 and (5.7.9), we obtain the desired conclusion. �

Then the following result is an immediate consequence of Lemma 5.7 and of
Lemma 3.9.

Corollary 5.8. With the notation as in Lemma 5.7, if the cyclic group generated
by β(x)+ y is Zariski dense in A, then γ = 0. Moreover, the set {σn(x) : n ∈ S} is
Zariski dense in A.

Proof. Indeed, Lemmas 3.9 and 5.7 yield that any group homomorphism γ which
is constant on the set U := {σn(x) : n ∈ S} must be trivial.

Now, for the ‘moreover’ part of Corollary 5.8, Fact 3.6 yields that U (along with
Oσ(x)) is contained in a finitely generated subgroup of A, and so Fact 3.8 yields
that the Zariski closure of U is a finite union of cosets of algebraic subgroups of
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A. Pick such a coset w +H which contains infinitely many σn(x). Then another
application of Lemma 5.7 (coupled with Lemmas 3.7 and 3.9) yields that H = A,
thus completing our proof that U is Zariski dense in A. �

6. The cyclic case

Now we are ready to prove Theorem 1.3 for cyclic monoids.

Proof of Theorem 1.2. Let K be a finitely generated subfield of K0 such that both
A and σ are defined over K. Let K be the algebraic closure of K inside K0; clearly,
it suffices to prove Theorem 1.2 with K0 replaced by K.

By Fact 3.4, there exists an isogeny τ : A −→ A, and there exists y ∈ A(K),
such that σ(x) = τ (x) + y for all x ∈ A. At the expense of replacing σ by an
iterate σn (and in particular, replacing τ by τn; see also (5.7.1)), we may assume
dimker(τm− id) = dim(ker(τ− id)) for all m ∈ N (see Lemma 4.1 which shows that
it is sufficient to prove Theorem 1.2 for an iterate of σ). In other words, we may
assume that the only root of unity, if any, which is a root of the minimal polynomial
f (with coefficients in Z) of τ ∈ End(A) is equal to 1.

Let r be the order of vanishing at 1 of f , and let f1 ∈ Z[t] such that f(t) =
f1(t) · (t− 1)r. Then f1 is also a monic polynomial, and if r = 0, then f1 = f . Let
A1 := (τ − id)r(A) and let A2 := f1(τ )(A), where f1(τ ) ∈ End(A) and id is the
identity map on A. If r = 0, then A2 = 0 and therefore A1 = A. By definition, both
A1 and A2 are connected algebraic subgroups of A, hence they are both abelian
subvarieties of A. Furthermore, by definition, the restriction of τ |A1

∈ End(A1) has
minimal polynomial equal to f1 whose roots are not roots of unity. On the other
hand, (τ − id)r|A2

= 0.

Lemma 6.1. With the above notation, A = A1 +A2 and A1 ∩ A2 is finite.

Proof of Lemma 6.1. By the definition of r and of f1, we know that the polynomials
f1(t) and (t − 1)r are coprime; so there exist polynomials g1, g2 ∈ Z[t] and there
exists a non-zero integer k (the resultant of f1(t) and of (t− 1)r) such that

f1(t) · g1(t) + (t− 1)r · g2(t) = k.

Let x ∈ A(K) and let x0 ∈ A(K) such that kx0 = x. Then clearly

x1 := (τ − id)r (g2(τ )x0) ∈ A1 and x2 := f1(τ ) (g1(τ )x0) ∈ A2,

and moreover, x1 + x2 = kx0 = x, as desired.
Arguing similarly, one can show that A1 ∩ A2 ⊆ A[k] since if x ∈ A1 ∩ A2, then

f1(τ )x = 0 = (τ − id)rx, and thus

kx = (g1(τ )f1(τ ) + g2(τ )(τ − id)r) x = 0,

as desired. �

Let y1 ∈ A1 and y2 ∈ A2 such that y = y1 + y2; furthermore, we may assume
that if y1 ∈ A2, then y1 = 0. We note that τ restricts to an endomorphism to each
A1 and A2; we denote by τi the action of τ on each Ai. Let y0 ∈ A1(K) such that
(id−τ1)(y0) = y1 (note that (id−τ1) : A1 −→ A1 is an isogeny because the minimal
polynomial f1 of τ1 ∈ End(A1) does not have the root 1). Using Lemma 5.4, it
suffices to prove Theorem 1.2 for T−y0

◦ σ ◦ Ty0
; so, we may and do assume that

y1 = 0.
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Let σi : Ai −→ Ai be given by σ1(x) = τ1(x) and σ2(x) = τ2(x) + y2. Then for
each x ∈ A, we let x1 ∈ A1 and x2 ∈ A2 such that x = x1 + x2; we have

σ(x) = σ(x1 + x2) = τ (x1 + x2) + y2 = τ (x1) + τ (x2) + y2 = σ1(x1) + σ2(x2).

Moreover, σn(x1 + x2) = σn
1 (x1) + σn

2 (x2) for all n ∈ N.
We let β := (τ2− id)|A2

∈ End(A2); then βr = 0. Let B be the Zariski closure of
the subgroup of A2 generated by β(A2) and y2. Then B is an algebraic subgroup
of A2.

Lemma 6.2. If B 	= A2, then σ preserves a non-constant fibration.

Proof of Lemma 6.2. If B 	= A2, then dim(B) < dim(A2) (note that A2 is con-
nected), and since A2 ∩ A1 is finite, we conclude that the algebraic subgroup
C := A1 + B is a proper abelian subvariety of A. We let f : A −→ A/C be
the quotient map; we claim that f ◦ σ = f . Indeed, for each x ∈ A, we let x1 ∈ A1

and x2 ∈ A2 such that x = x1 + x2, and then

f(σ(x)) = f(σ(x1 + x2)) = f(σ1(x1) + σ2(x2)) = f(σ2(x2)) = f(x2) = f(x).

Since A/C is a positive dimensional algebraic group and f : A −→ A/C is the
quotient map, then we conclude that σ preserves a non-constant fibration. �

From now on, assume B = A2. We will prove that there exists x ∈ A(K) such
that Oσ(x) is Zariski dense in A. First we prove there exists x2 ∈ A2(K) such that
Oσ2

(x2) is Zariski dense in A2.
Because we assumed that the group generated by β(A2) and y2 is Zariski dense

in A, then Lemma 5.1 yields the existence of x2 ∈ A2(K) such that the group
generated by β(x2) + y2 is Zariski dense in A2. Then Corollary 5.8 yields that any
infinite subset of Oσ2

(x2) is Zariski dense in A2. If A1 is trivial, then A2 = A and
σ2 = σ and Theorem 1.2 is proven. So, from now on, assume that A1 is positive
dimensional.

Let Γ be the subgroup of A(K) generated by all φ(x2) and φ(y2) as we vary
φ ∈ End(A). Then Γ is a finitely generated End(A)-module. Using Lemma 5.5, we
may find x1 ∈ A1(K) with the property that if ψ ∈ End(A) has the property that
ψ(x1) ∈ Γ, then A1 ⊆ ker(ψ). Let x := x1 + x2; we will prove that Oσ(x) is Zariski
dense in A.

Let V be the Zariski closure of Oσ(x). The orbit Oσ(x) is contained in a finitely
generated group (see Fact 3.6). Then Fact 3.8 yields that V is a finite union of
cosets of algebraic subgroups of A. So, if V 	= A, then there exists a coset c + C
of a proper algebraic subgroup C ⊂ A which contains {σn(x)}n∈S for some infinite
subset S ⊆ N. By Lemma 3.7, there exists a non-zero ψ ∈ End(A) such that
ψ(σn(x)) = ψ(c) for each n ∈ S, i.e. ψ is constant on the set {σn(x) : n ∈ S}.

Let n > m be two elements of S. Then ψ(σn(x)− σm(x)) = 0, and so,

ψ(τn1 − τm1 )(x1) = ψ(σm
2 − σn

2 )(x2) ∈ Γ.

Using the fact that x1 ∈ A1 was chosen to satisfy the conclusion of Lemma 5.5 with
respect to Γ and the fact that τn1 − τm1 = τm1 (τn−m

1 − id) is an isogeny on A1, we
obtain that ψ(A1) = 0. Thus ψ is constant on {σn

2 (x2)}n∈S . Then Corollary 5.8
yields that A2 ⊆ ker(ψ). Hence A1 + A2 = A ⊆ ker(ψ), which contradicts the fact
that ψ 	= 0. This concludes our proof. �
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7. The general case

The proof of Theorem 1.3 follows the same strategy as the proof of Theorem 1.2.

Proof of Theorem 1.3. We let γ1, . . . , γs be a set of generators for S. As before, we
let K be a finitely generated subfield of K0 such that A and each γi are defined
over K. Also, we may (and do) assume that K0 is a given algebraic closure K of
K.

We let S0 be the monoid of group endomorphisms of A consisting of all τ : A −→
A such that there exists some y ∈ A such that Ty ◦ τ ∈ S. We let U := {γ1, . . . , γs}
and also let U0 be a finite set of generators for S0 corresponding to the elements in
U (i.e., for each ϕ ∈ U0, there exists y ∈ A such that Ty ◦ ϕ ∈ U).

By Fact 3.2, A is isogenuous with a product of simple abelian varieties
∏

i A
ri
i ,

and so End(A) (the ring of group endomorphisms of A) is isomorphic to∏
i Mri(End(Ai)). We let Ri := End(Ai) and Fi := Frac(Ri). Then each ele-

ment in S0 is represented by a tuple of matrices in
∏

i Mri(Ri); from now on, we
freely use this identification of the group endomorphisms from S0 with tuples of
matrices in

∏
i Mri(Ri). Using Lemma 2.5 and also Lemma 4.1, it suffices to assume

that for each τ ∈ S0, and for each positive integer n, we have

(7.0.1) dim ker(τ − id) = dimker(τn − id).

Let U0 be the submonoid of S0 generated by all τ ∈ S0 such that

(7.0.2) max
n≥1

dim ker(τ − id)n

is minimal as we vary τ in S0. Then, by Lemma 2.6, Ū0 = S0. Let U be the
submonoid of S corresponding to U0, i.e. the set of all σ ∈ S such that there exists
some τ ∈ U0 and there exists a translation Ty on A for which σ = Ty ◦ τ . Because
Ū0 = S0, then also Ū = S. Using Lemma 2.3, there exists a finitely generated
submonoid U ′ of U (and therefore of S) and there exists a positive integer n such
that for each i = 1, . . . , s, we have γn

i ∈ Ū ′. By Lemma 4.3, it suffices to prove
Theorem 1.3 for U ′. So, from now on, we assume U ′ = S. In particular, this means
that S0 is generated (as a monoid) by finitely many endomorphisms τ satisfying
(7.0.2); we denote this set by U0 (as before). Finally, we recall our notation that
U = {γ1, . . . , γs} is a finite set of generators of S, and that for each generator τ ∈ U0

of S0 there exists some translation Ty and some i = 1, . . . , s such that Ty ◦ τ = γi.
Let τ1, τ2 in U0. Assume r1 is the order of the root 1 of the minimal polynomial

for τ1, and let B2 := ker(τ1 − id)r1 . Since τ2 commutes with τ1, we obtain that
τ2 acts on B2. Furthermore, because both τ1 and τ2 are in U0, it must be that
the restriction of the action of τ2 on B2 is also unipotent (see also the proof of
Lemma 2.6); otherwise for some positive integer m, the element τ := τm2 τ1 ∈ S0

would have the property that

max
n≥1

dim ker(τ − id)n

is smaller than dimB2 (which is minimal among all elements of S0).
We let B1 be a complementary connected algebraic subgroup of A such that

A = B1 + B2 and, moreover, each element of S induces an endomorphism of B1.
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So, we are reduced to the case that each element of S is of the form Ty ◦ τ , where
τ acts on A = B1 +B2 as follows:

(i) τ restricted to B2 acts unipotently, i.e. there exists some positive integer
rτ such that (τ − id)rτ |B2

= 0;
(ii) for each τ ∈ U0, the action of τ on B1 (which by abuse of notation, we also

denote by τ ) has the property that τn − id is a dominant map for each
positive integer n (see (7.0.1)).

We proceed similarly to the case where S is cyclic. Then for each σi ∈ U (for
i = 1, . . . , s), we let τi ∈ U0, zi ∈ B1 and yi ∈ B2 such that σi = Tyi+zi ◦ τi. Note
that it may be that τi = τj for some i 	= j, but this is not relevant for the proof.
We let Ci be the algebraic subgroup of B2 spanned by yi and (τi− id)(B2) (for each
i = 1, . . . , s). We recall that βi := (τi − id)|B2

is a nilpotent endomorphism of B2;
we let U1 be the finite set of all βi. Finally, we let CS be the algebraic subgroup of
B2 generated by all Ci.

If the algebraic subgroup CS+B1 does not equalA, then the exact same argument
as in Lemma 6.2 yields the existence of a non-constant rational map fixed by each
σ ∈ S. Essentially, the projection map π : A −→ A/(B1 + CS) is a non-constant
morphism with the property that π ◦ σ = π for each σ ∈ S.

Next assume CS+B1 = A; we will show there exists x ∈ A(K) whose orbit under
S is Zariski dense. The strategy is the same as in the case where S is cyclic. We
can find algebraic points x1 ∈ B1 and x2 ∈ B2 such that the S-orbit of x = x1 +x2

is Zariski dense in A. First we choose x2 ∈ B2(K) as in Lemma 5.1 with respect
to the algebraic group endomorphisms βi and the points yi, for i = 1, . . . , s; hence
the Zariski closure of the group generated by βi(x2) + yi is Ci for each i.

Let Γ be the End(A)-module spanned by x2, y1, . . . , ys, z1, . . . , zs, which is a
finitely generated subgroup of A(K). Then (using Lemma 5.5) we choose x1 ∈
B1(K) such that if ψ ∈ End(A) has the property that ψ(x1) ∈ Γ, then B1 ⊆ ker(ψ).
Let x := x1 + x2; we will prove that OS(x) is Zariski dense in A.

Using Facts 3.6 and 3.8, the Zariski closure of OS(x) is a union of finitely many
cosets wj +Hj of algebraic subgroups of A.

Lemma 7.1. There exists a coset w +H of an algebraic subgroup appearing as a
component of the Zariski closure of OS(x), and there exists a positive integer N
such that w +H is invariant under γN

i for each i = 1, . . . , s.

Proof. So, we know that the Zariski closure of OS(x) is the union of cosets of

(irreducible) algebraic subgroups
⋃�

i=1(wi +Hi). Let γ ∈ S. Then, using the fact
that γ (OS(x)) ⊆ OS(x), we obtain

�⋃
i=1

(γ(wi) + γ(Hi)) ⊆
�⋃

i=1

(wi +Hi).

On the other hand, each γ ∈ S is a dominant endomorphism of A, and, therefore,
for each i = 1, . . . , �, we have dim(γ(Hi)) = dim(Hi). So that means γ permutes the
subgroups Hi of maximal dimension appearing above. In particular, there exists
a positive integer N0 such that for each i = 1, . . . , s, the endomorphism γN0

i fixes
each algebraic group Hi of maximal dimension.

Let S(N0) be the submonoid of S consisting of all γN0 for γ ∈ S. Now, let H
be one such algebraic group of maximal dimension among the algebraic groups Hi

(for i = 1, . . . , �). Let wi + H with i = 1, . . . , k be all the cosets of H appearing
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as irreducible components of the Zariski closure of OS(x). Then each element γ ∈
S(N0) induces a map fγ : {1, . . . , k} −→ {1, . . . , k} given by fγ(wi+H) = wfγ(i)+H;
the map is not necessarily bijective. Moreover, we get a homomorphism of monoids
f : S(N0) −→ Fk given by f(γ) := fγ , where Fk is the monoid of all functions from
the set {1, . . . , k} into itself. Clearly, there exists j ∈ {1, . . . , k}, and there exists a

positive integer N1 such that fγN1 (j) = j for each generator γ ∈ {γN0
1 , . . . , γN0

s } of

S(N0). Then Lemma 7.1 holds with N := N0 ·N1. �

Let w + H be one coset as in the conclusion of Lemma 7.1, and let N be the
positive integer from the conclusion of Lemma 7.1 with respect to the coset w+H.
We let S′ be the submonoid of S generated by γN

i for i = 1, . . . , s. Then w + H
contains a set of the form OS′(x′), for some x′ ∈ OS(x); in other words, w + H
contains a set of the form

{γm1+Nn1
1 · · · γms+Nns

s (x) : n1, . . . , ns ≥ 0},

for some positive integers m1, . . . ,ms.
Let then π : A −→ A/H be the canonical projection. Then

π
(
γm1+Nn1
1 · · · γms+Nns

s (x)
)
= w

for all n1, . . . , ns ≥ 0. Restricted on B1, for each group endomorphism τi (for
i = 1, . . . , s), the action on the tangent space of B1 has no eigenvalue which is a
root of unity (see (ii) above); hence

ψ1 :=
(
τm1+N
1 τm2

2 · · · τms
s − τm1

1 τm2
2 · · · τms

s

)
|B1

is an isogeny.

So we get that (π ◦ ψ1)(x1) ∈ Γ. Because of our choice for x1 and the fact that ψ1

is an isogeny on B1, we conclude that B1 ⊆ ker(π) (note also that B1 is connected
by our assumption). Thus B1 ⊆ H. So we can view π as a group homomorphism
π : B2 −→ A/H with the property that for each n1, . . . , ns ≥ 0 we have

π
(
γm1+n1N
1 · · · γms+nsN

s − γm1
1 · · · γms

s

)
(x2) = 0.

Letting γ′ := γm1
1 · · · γms

s |B2
, we have that π ◦ γ′ is constant (equal to w) on each

orbit OγN
i
(x2). Then Corollary 5.8 yields that the connected component of the

Zariski closure Ci of the cyclic group generated by (τi− id)(x2)+ yi is contained in
the kernel of π ◦ γ′. Since the Ci’s generate the algebraic group CS (and therefore
the connected components of the Ci’s generate the connected component of CS ;
see also Fact 3.1), and furthermore, the connected component of CS contains the
connected component of B2, we conclude that π ◦γ′ is identically 0 on B2. Because
γ′ is an isogeny, we conclude that B2 ⊆ ker(π), and therefore H = A since H
contains both B1 and B2. This concludes our proof. �

Remark 7.2. Our proof of Theorem 1.3 yields that any point x ∈ A(K0) which
satisfies the following two properties has a Zariski dense S-orbit:

(a) the cyclic group generated by x is Zariski dense in A; and
(b) x is linearly independent (over End(A)) from the points of A defined over

K1 := L(Ator)
(d), where L is a finitely generated subfield of K0 (depending

only on the endomorphisms generating S) and d is a positive integer (also
depending only on S).
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Condition (a) is employed in Lemma 5.5, and it is satisfied by most points x ∈
A(K0) (this statement can be made precise either by saying that x is not contained
in any proper algebraic subgroup of A, or even by giving an asymptotic count on
the number of points x ∈ A defined over any finitely generated subfield of K0).
However, it is condition (b) that is much more difficult to deal with in order to
obtain a quantative statement about the number of points x ∈ A with a Zariski
dense S-orbit. Our proof of Claim 5.3 yields that [K0 : K1] = ∞ and, moreover,
one can find many points x ∈ A satisfying condition (b). But a priori (at least
based on our proof) there could be infinitely many finitely generated subfields L1

of K0 such that no point x ∈ A(L1) has a Zariski dense S-orbit.
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