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LYAPUNOV REGULARITY VIA SINGULAR VALUES

LUIS BARREIRA AND CLAUDIA VALLS

Abstract. For a nonautonomous linear dynamics, we study the relation be-
tween Lyapunov regularity and the exponential growth rates of the singular
values. In particular, for a tempered dynamics, we obtain lower and upper
estimates for the Lyapunov exponents in terms of the growth rates. The proof
is based on the somewhat unexpected existence of a structure of Oseledets
type for any nonregular dynamics. Moreover, we show that any possible val-
ues of the Lyapunov exponent and of the growth rates are attained by some
bounded sequence of matrices. As an application of our results, we give a
simple proof of various characterizations of Lyapunov regularity as well as a
new characterization. We consider both discrete and continuous time.

1. Introduction

1.1. Lyapunov regularity and stability. Our main aim is to describe how Lya-
punov regularity relates to various other properties and quantities, such as the
exponential growth rates of the singular values. The notion of regularity was intro-
duced by Lyapunov and plays an important role in the Lyapunov stability theory.
In particular, it allows studying when the type of stability of a linear dynamics
persists under sufficiently small nonlinear perturbations. This is particularly effec-
tive in the context of ergodic theory—indeed, for a smooth dynamics preserving a
finite measure and satisfying a certain integrability assumption, the linearization
along almost all trajectories is Lyapunov regular, as a consequence of Oseledets’
multiplicative ergodic theorem.

In order to illustrate the relation of Lyapunov regularity to the stability theory,
consider a linear equation

(1) v′ = A(t)v

on R
q, where the q × q matrices A(t) vary continuously with t ∈ R. Its Lyapunov

exponent is the function λ : Rq → R ∪ {−∞} defined by

(2) λ(v0) = lim sup
t→∞

1

t
log‖v(t)‖,

where v(t) denotes the solution of (1) with v(0) = v0, with the convention that
log 0 = −∞ (notice that all solutions of equation (1) are global). The Lyapunov
coefficient of regularity of equation (1) is defined by

σ(A) = min

q∑
i=1

λ(vi)− lim inf
t→∞

1

t

∫ t

0

trA(τ ) dτ,
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where the minimum is taken over all bases v1, . . . , vq of Rq (see [9]). One can easily
verify that σ(A) ≥ 0. The equation is said to be Lyapunov regular or simply regular
if σ(A) = 0 or, equivalently, if

lim
t→∞

1

t

∫ t

0

trA(τ ) dτ =

q∑
i=1

λ(vi)

for some basis v1, . . . , vq of Rq. There are various other regularity coefficients that
can be used to define Lyapunov regularity, such as those introduced by Perron
(see [11, 13]) and Grobman (see [8]). We refer the reader to [3, 8] for detailed
accounts of the theory and to [6] for an infinite-dimensional version in Hilbert
spaces.

If all the values of the Lyapunov exponent λ in (2) are negative, that is, if
λ(v0) < 0 for every v0 ∈ R

q, then equation (1) is asymptotically stable. This
means that any solution v(t) of equation (1) tends to zero when t → +∞ (see for
example [7]). However, the equation need not be uniformly asymptotically stable
(on the initial time), which would mean, in addition to being asymptotically stable,
that for each ε > 0 there would exist δ = δ(ε) > 0 such that for all t0 > 0, any
solution v(t) of equation (1) with ‖v(t0)‖ < δ would satisfy

‖v(t)‖ < ε for all t > t0.

This means that the type of stability of the linear equation may change under
arbitrarily small nonlinear perturbations. For example, for

(3) A(t) =

(
−15− 14(sin log t+ cos log t) 0

0 −15 + 14(sin log t+ cos log t)

)

we have λ(v0) = −1 for all v0 and so equation (1) is asymptotically stable. However,
as shown by Perron [12], for the perturbed equation

u′ = A(t)u+ (0, u4
1),

where u = (u1, u2), there exists a solution u(t) with

lim sup
t→∞

1

t
log‖u(t)‖ > 0

(see [3]). We note that for A(t) as in (3) the linear equation is not regular. On
the other hand, Lyapunov [9] showed that for a regular equation the asymptotic
stability persists under sufficiently small nonlinear perturbations, such as for the
equation

u′ = A(t)u+ f(t, u),

with f : R× R
q → R

q continuous such that

‖f(t, u)− f(t, v)‖ ≤ K‖u− v‖(‖u‖q + ‖v‖q)
for all t ∈ R and u, v ∈ R

q, for some constants K, q > 0 (we refer the reader to [3]
for details and generalizations).

1.2. Singular values and Lyapunov exponents. Now we recall the exponential
growth rates of the singular values. Write the solutions of equation (1) in the form
v(t) = X(t)v0, say with X(0) = Id, and let

ρ1(t) ≤ · · · ≤ ρq(t)
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be the eigenvalues of the symmetric positive-definite matrix (X(t)∗X(t))1/2 (we
note that all of them are positive real numbers). These are the singular values of
the equation, and their exponential lower and upper growth rates are the numbers

ai = lim inf
t→∞

1

t
log ρi(t), bi = lim sup

t→∞

1

t
log ρi(t)

for i = 1, . . . , q. The upper growth rates and the values of the Lyapunov exponent
satisfy

(4) bi ≤ λ′
i for i < q and bq = λ′

q,

where

λ′
1 ≤ λ′

2 ≤ · · · ≤ λ′
q

are the values of the Lyapunov exponent λ counted with their multiplicities (see
section 3.1). To the best of our knowledge, there are at present no results in the
literature concerning upper bounds for the Lyapunov exponents in terms of the
exponential growth rates of the singular values.

One can consider corresponding notions and make similar observations for dis-
crete time (the same applies to the discussion in section 1.1). Namely, let (Am)m∈N

be a sequence of q × q matrices. The eigenvalues

ρ1(m) ≤ · · · ≤ ρq(m)

of the symmetric positive-semidefinite matrix (A∗
mAm)1/2, where

Am = Am−1Am−2 · · ·A1,

are the singular values of the sequence (we note that all of them are nonnegative
real numbers). Their exponential lower and upper growth rates are the numbers

ai = lim inf
m→∞

1

m
log ρi(m), bi = lim sup

m→∞

1

m
log ρi(m)

for i = 1, . . . , q. Again one can show that property (4) holds.

1.3. Main results and applications. In this work we describe various relations
between Lyapunov regularity, which are expressed in terms of the values of the
Lyapunov exponent, and the exponential growth rates of the singular values. In
particular, we obtain:

(1) sequences of matrices for which any given values of the Lyapunov exponent
and of the growth rates of the singular values are attained;

(2) upper bounds for the values of the Lyapunov exponent in terms of the
exponential growth rates of the singular values;

(3) a structure of Oseledets type for any nonregular tempered dynamics that
is analogous to that in the multiplicative ergodic theorem;

(4) a simple proof of various characterizations of Lyapunov regularity as well
as a new characterization.

We shall formulate briefly our main results in the case of discrete time, leaving
the technicalities to the main text. Full descriptions for discrete and continuous
time are given in the remaining sections.

Our first main result shows that there exists a bounded sequence of matrices for
each given value of the Lyapunov exponent and of the growth rates of the singular
values satisfying property (4).
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Theorem A. Consider real numbers

α1 ≤ α2 ≤ · · · ≤ αq and β1 ≤ β2 ≤ · · · ≤ βq

such that αi ≤ βi for i = 1, . . . , q − 1 and αq = βq. Then there exists a bounded
sequence (Am)m∈N of diagonal q × q matrices such that bi = αi and λ′

i = βi for
i = 1, . . . , q.

In other words, the relations in (4) are the best possible between the two families
of numbers and can even be attained taking only diagonal matrices. The construc-
tion is explicit and is partly inspired by work of Barabanov and Fominykh [2] for
the case of continuous time: consider the sets

Sn =
∞⋃
i=0

[
(n+ 2(q + 1)i)!, (n+ 1 + 2(q + 1)i)!

)
for n = 0, . . . , 2q + 1 and define Am = diag(eb1(m), . . . , ebq(m)), where

bj(m) =

⎧⎪⎨
⎪⎩
βj if m ∈ S2j−1,

αj if m ∈ S2q+1,

α1 otherwise.

In order to formulate our second main result, let Fi(m) be the eigenspace of the
matrix (A∗

mAm)1/2 associated to the eigenvalue ρi(m). Moreover, we recall that a
sequence of matrices (Am)m∈N is said to be tempered if

lim sup
m→∞

1

m
log ‖Am‖ ≤ 0.

The result shows that there exists a structure of Oseledets type even for a nonreg-
ular tempered dynamics. In other words, and somewhat surprisingly, part of the
structure provided by the multiplicative ergodic theorem is in fact present for all
trajectories and not only for almost all trajectories.

Theorem B. Let (Am)m∈N be a tempered sequence of q×q matrices. If the intervals
[ai, bi] are pairwise disjoint, then for each i = 1, . . . , q the sequence

⊕
j≤i Fj(m)

converges to some subspace Hi when m → ∞. Moreover, for each i = 1, . . . , q and
v, w ∈ Hi with w /∈ Hi−1 (taking H0 = {0}), we have

(5) lim sup
m→∞

1

m
log‖Amv‖ ≤ ai +

q∑
j=1

(bj − aj)

and

lim inf
m→∞

1

m
log‖Amw‖ ≥ ai.

In view of (4), it is also known that

lim sup
m→∞

1

m
log‖Amw‖ ≥ bi,

with equality for i = q. To the best of our knowledge, the upper bounds for
the values of the Lyapunov exponent in (5) are the first in the literature that are
expressed in terms of the exponential growth rates of the singular values.

Theorem 5 considers the general case when some intervals [ai, bi] are not pairwise
disjoint. Again, there exists a structure of Oseledets type for an arbitrary tempered
dynamics. When the dynamics is regular one recovers the usual Oseledets’ filtration.
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In particular, for a regular dynamics the spaces Hi in Theorem B are exactly those
in the Oseledets’ filtration for a single trajectory, that is, Hi = Ei for i = 1, . . . , q,
where

Ei =
{
v ∈ R

q : λ(v) ≤ λ′
i

}
.

The proofs are partly inspired by arguments of Raghunathan in [14] in his proof of
Oseledets’ multiplicative ergodic theorem (see also [4]).

Finally, we give a new characterization of Lyapunov regularity, expressed in
terms of the eigenvectors of the matrix (A∗

mAm)1/2.

Theorem C. For a tempered sequence (Am)m∈N of q × q matrices, the sequence
(Am)m∈N is regular if and only if the limit

lim
m→∞

1

m
log‖Amvj(m)‖

exists for i = 1, . . . , q and for some orthonormal bases v1(m), . . . , vq(m) of eigen-

vectors of (A∗
mAm)1/2 for the eigenvalues ρ1(m), . . . , ρq(m).

2. Lyapunov regularity

In this section we recall the notion of Lyapunov regularity for a sequence of
matrices and its characterization in terms of the exponential growth rate of volumes.

2.1. Basic notions. Let (Am)m∈N be a sequence of q×q matrices with real entries.
For each m ∈ N, let

Am =

{
Am−1Am−2 · · ·A1, m > 1,

Id, m = 1.

The Lyapunov exponent λ : Rq → [−∞,+∞] associated to the sequence of matrices
(Am)m∈N is defined by

(6) λ(v) = lim sup
m→∞

1

m
log ‖Amv‖,

with the convention that log 0 = −∞. We note that the numbers λ(v) are indepen-
dent of the particular norm considered on R

q.
We always assume in the paper that λ does not take the value +∞. This stand-

ing hypothesis is standard (see [3]) and allows one to compute various sums that
otherwise would be undefined (it ensures that the term ∞ − ∞ does not occur).
For example, if supm∈N‖Am‖ < +∞, then λ does not take the value +∞.

By the abstract theory of Lyapunov exponents (see [3]), the function λ takes at
most a number r ≤ q of distinct values on R

q \ {0}, say

(7) −∞ ≤ λ1 < λ2 < · · · < λr

(and λr < +∞ since we are assuming that λ does not take the value +∞). More-
over, for each i = 1, . . . , r the set

(8) Ei =
{
v ∈ R

q : λ(v) ≤ λi

}
is a linear subspace of Rq and

{0} ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Er = R
q.
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We say that the sequence (Am)m∈N is (Lyapunov) regular if

(9) lim
m→∞

1

m
log|detAm| =

q∑
i=1

λ(vi)

for some basis v1, . . . , vq of Rq (this includes the requirement that the limit on the
left exists). Since λ does not take the value +∞, the sum on the right is well-defined.

Now let C be the q×q invertible matrix whose columns are the vectors v1, . . . , vq.
Then |det(AmC)| ≤

∏q
i=1‖Amvi‖ since the vectors Amvi are the columns of AmC.

Therefore,

lim sup
m→∞

1

m
log|detAm| = lim sup

m→∞

1

m
|log(AmC)| ≤

q∑
i=1

λ(vi),

and so

lim sup
m→∞

1

m
log|detAm| ≤ min

q∑
i=1

λ(vi),

with the minimum taken over all bases v1, . . . , vq of Rq. Hence condition (9) can
be replaced by the requirement that

lim inf
m→∞

1

m
log|detAm| ≥

q∑
i=1

λ(vi)

for some basis v1, . . . , vq of Rq or, equivalently, that

lim inf
m→∞

1

m
log|detAm| ≥ min

q∑
i=1

λ(vi) =
r∑

j=1

λj(dimEj − dimEj−1),

with the infimum taken over all bases v1, . . . , vq of Rq and where E0 = {0}.

2.2. Exterior powers and volumes. For each integer k ∈ [1, q], let (Rq)∧k be the
set of all alternating k-linear forms on R

q. We define an inner product on (Rq)∧k

by requiring that

(10) 〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉 = detJ,

where J is the k × k matrix with entries bij = 〈vi, wj〉 for each i and j. Given a
q × q matrix A, its k-fold exterior power A∧k is the unique linear transformation
A∧k of (Rq)∧k such that

A∧k(v1 ∧ · · · ∧ vk) = Av1 ∧ · · · ∧Avk

for all v1, . . . , vk ∈ R
q. We recall that the norm

‖A∧k‖ = sup
‖v‖=1

‖A∧kv‖

satisfies the identity

(11) ‖A∧k‖ =

k∏
j=1

ρq−j+1,

where ρ1 ≤ · · · ≤ ρq are the eigenvalues of the matrix
(
A∗A)1/2 and A∗ is the

transpose of A. Since A∗A is symmetric and positive-semidefinite, each eigenvalue
ρi is real and positive. In particular, equipping Rq with the 2-norm (that is obtained
from (10) with k = 1), we have ‖A‖ = ρq.
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Now we consider the relation between exterior powers and volumes. Given vec-
tors v1, . . . , vk ∈ R

q, the k-volume of the parallelepiped{
k∑

i=1

αivi : 0 ≤ αi ≤ 1 for i = 1, . . . , k

}

determined by them is defined by

vol(v1, . . . , vk) =
√
det(B∗B),

where B is the q × k matrix whose columns are the vectors v1, . . . , vk. Comparing
to (10) we obtain

(12) vol(v1, . . . , vk) = ‖v1 ∧ · · · ∧ vk‖.
The following result of Lyapunov [9] (see also [5, 8]) gives a characterization of
the notion of regularity in terms of the exponential growth rate of volumes. More
precisely, Lyapunov considered the case of continuous time, but it is simple to
obtain a corresponding version for discrete time.

Proposition 1. A tempered sequence (Am)m∈N is regular if and only if the limit

lim
m→∞

1

m
log vol(Amv1, . . . ,Amvk)

exists for any basis v1, . . . , vq of Rq and any integer k ∈ [1, q].

Moreover, by (12), we have

lim
m→∞

1

m
log vol(Amv1, . . . ,Amvk) = lim

m→∞

1

m
log‖(Am)∧k(v1 ∧ · · · ∧ vk)‖

whenever any of the limits exist.

3. Lyapunov exponents and singular values

In this section we describe some relations between the values of the Lyapunov
exponent of a sequence of matrices and the exponential growth rates of their singular
values. Moreover, we show that any possible values of the Lyapunov exponent and
of the growth rates are attained by some bounded sequence of matrices. In addition,
when the sequence is tempered, we obtain lower and upper estimates for the (lower
and upper) Lyapunov exponents in terms of the growth rates. To the best of our
knowledge, no upper estimates have been obtained before in the literature.

3.1. Growth rates of the singular values. Let (Am)m∈N be a sequence of q× q
matrices. We notice that the matrix

(13) Tm = (A∗
mAm)1/2

is symmetric and positive-semidefinite. Hence, its eigenvalues

ρ1(m) ≤ · · · ≤ ρq(m)

are real and nonnegative. These are the singular values of the matrix Am. For
i = 1, . . . , q we define

(14) ai = lim inf
m→∞

1

m
log ρi(m), bi = lim sup

m→∞

1

m
log ρi(m).

We refer to these numbers, respectively, as the lower and upper exponential growth
rates of the singular values.
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Now consider the values

λ′
1 ≤ λ′

2 ≤ · · · ≤ λ′
q

of the Lyapunov exponent λ in (6) counted with their multiplicities, that is, λ′
i = λj

(see (7)) for i = dimEj−1 + 1, . . . , dimEj and j = 1, . . . , r, with the convention
that E0 = {0}. We have

(15) λ′
i = min

F∈Li

max
v∈F,‖v‖=1

lim sup
m→∞

1

m
log‖Amv‖

and

(16) bi = lim sup
m→∞

min
F∈Li

max
v∈F,‖v‖=1

1

m
log‖Amv‖,

where Li is the set of all i-dimensional subspaces of Rq (see for example [1]). Then

(17) bi ≤ λ′
i for i < q and bq = λ′

q.

Indeed, it follows readily from (15) and (16) that bi ≤ λ′
i for i = 1, . . . , q. Moreover,

bq = lim sup
m→∞

max
v∈Rq ,‖v‖=1

1

m
log‖Amv‖

= lim sup
m→∞

1

m
log‖Am‖ ≥ λ′

q

and so bq = λ′
q, that is,

lim sup
m→∞

1

m
log‖Am‖ = max

v 
=0
lim sup
m→∞

1

m
log‖Amv‖.

This establishes property (17).
Using arguments inspired by work of Barabanov and Fominykh [2] for the case

of continuous time, we show that all possible numbers

b1 ≤ b2 ≤ · · · ≤ bq and λ′
1 ≤ λ′

2 ≤ · · · ≤ λ′
q

satisfying (17) are attained by some sequence of matrices.

Theorem 2. Consider real numbers

α1 ≤ α2 ≤ · · · ≤ αq and β1 ≤ β2 ≤ · · · ≤ βq

such that αi ≤ βi for i = 1, . . . , q − 1 and αq = βq. Then there exists a bounded
sequence (Am)m∈N of q× q matrices such that bi = αi and λ′

i = βi for i = 1, . . . , q.

Proof. Consider an increasing sequence (sk)k≥0 ⊂ R
+
0 such that

(18) s0 = 0,
sk

sk+1
→ 0 when k → ∞.

We define sets

Sn =
∞⋃
i=0

(sn+pi, sn+1+pi] ∩ N

for n = 0, . . . , p− 1, where p = 2q + 2. Finally, for each m ∈ N let

(19) bj(m) =

⎧⎪⎨
⎪⎩
βj if m ∈ S2j−1,

αj if m ∈ Sp−1,

α1 if m ∈ N \ (S2j−1 ∪ Sp−1)
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and consider the matrix

(20) Am = diag(eb1(m), . . . , ebq(m)).

We first show that the values of the Lyapunov exponent associated to the se-
quence of matrices Am in (20) are β1, . . . , βq. Since the matrices are diagonal, the
canonical basis e1, . . . , eq is normal, and so the values of the Lyapunov exponent
are

λ(ej) = lim sup
m→∞

1

m
log

m∏
l=1

ebj(l) = lim sup
m→∞

1

m

m∑
l=1

bj(l)

for j = 1, . . . , q. Since α1 ≤ αj ≤ βj , it follows from (19) that bj(m) ≤ βj for
m ≥ 0, and thus λ(ej) ≤ βj . On the other hand, for each i ∈ N, we have

s2j+pi∑
l=1

bj(l) =

s2j−1+pi∑
l=1

bj(l) +

s2j+pi∑
l=s2j−1+pi+1

bj(l)

≥ α1s2j−1+pi + βj(s2j+pi − s2j−1+pi).

Therefore, by (18),

λ(ej) ≥ α1 lim
i→∞

s2j−1+pi

s2j+pi
+ βj lim

i→∞

(
1− s2j−1+pi

s2j+pi

)
= βj

for j = 1, . . . , q. Hence, the values of the Lyapunov exponent are β1, . . . , βq.
Now we show that the exponential growth rates of the singular values associated

to the sequence of matrices Am in (20) are α1, . . . , αq. For each j = 1, . . . , q, by
(19) we have bj(m) = α1 for m ∈

⋃q
l=0 S2l and bj(m) ≤ βj ≤ βq for m ≥ 0. Hence,

α1sn+pi ≤
sn+pi∑
l=1

bj(l) ≤ α1(sn+pi − sn−1+pi) + βqsn−1+pi

for n odd and j ∈ {1, . . . , q}. By (18), this implies that
sn+pi∑
l=1

bj(l) = α1sn+pi +Bi,

where Bi = Bi(n, j) satisfies

lim
i→∞

Bi

sn+(2q+2)i
= 0.

Therefore, for n odd distinct from p−1: if m ∈ (sn+pi, sn+1+pi]∩N for some i ∈ N,
then

(21)

m∑
l=1

bj(l) =

{
β(r+1)/2m+ (α1 − β(r+1)/2)sn+pi + Cm if j = (r + 1)/2,

α1m+Dm if j �= (r + 1)/2,

where Cm = Cm(j), Dm = Dm(j) and

lim
m→∞

Cm

m
= 0, lim

m→∞

Dm

m
= 0.

Now we observe that since the matrices Am are diagonal, the singular values
ρ1(m), . . . , ρq(m) of Tm are simply

ρj(m) = exp
m−1∑
l=1

bj(l) for j = 1, . . . , q.
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Moreover, we write

lim sup
m∈S

1

m
log ρi(m) = inf

m∈N

sup

{
1

l
log ρi(l) : l ∈ S ∩ [m,+∞)

}
.

By (21) and the fact that α1 ≤ βj for j = 1, . . . , q, for n odd distinct from p− 1 we
obtain

lim sup
m∈Sn

1

m
log ρ1(m) = lim sup

m∈Sn

1

m

m−1∑
l=1

b1(l) = β(r+1)/2,

lim sup
m∈Sn

1

m
log ρj(m) = α1, j ≥ 2.

(22)

Since bj(m) = α1 for m ∈
⋃q

l=0 S2l, it follows from (22) that

lim sup
m∈N\Sp−1

1

m
log ρ1(m) = βq,

lim sup
m∈N\Sp−1

1

m
log ρj(m) = α1, j ≥ 2.

(23)

It remains to consider the case when m ∈ Sp−1. By (19) and proceeding as before,
we find that if m ∈ (sp−1+pi, sp+pi] for some i ∈ N, then

m∑
l=1

bj(l) = αjm+ (α1 − αj)sp−1+pi + Em

for j = 1, . . . , q, where Em = Em(j) satisfies

lim
m→∞

Em

m
= 0.

Therefore,

(24) lim sup
m∈Sp−1

1

m
log ρj(m) = αj

for j = 1, . . . , q. The relations βq = αq and αj ≤ βj for j = 1, . . . , q − 1 together
with (23) and (24) readily imply that the exponential growth rates of the singular
values are equal to α1, . . . , αq. �

3.2. Bounds for tempered sequences. In this section, for the class of tempered
sequences of matrices, we describe general inequalities between the (lower and up-
per) Lyapunov exponents and the lower and upper exponential growth rates of the
singular values, provided that the intervals [ai, bi] (see (14)) are disjoint. In sec-
tion 4 we obtain a corresponding result in the general situation when the intervals
[ai, bi] may intersect each other.

A sequence of matrices (Am)m∈N is said to be tempered if

(25) lim sup
m→∞

1

m
log ‖Am‖ ≤ 0.

For example, if supm∈N
‖Am‖ < +∞, then the sequence is tempered. We continue

to assume that the Lyapunov exponent does not take the value +∞. We emphasize
that none of these properties (temperedness of a sequence of matrices and finiteness
of its Lyapunov exponent) imply the other.
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Example 1. Consider the sequence of real numbers Am = m. Clearly, it is tem-
pered. However,

1

m
log(Am−1Am−2 · · ·A1) =

1

m
log[(m− 1)!] → +∞

when m → ∞ and so λ(v) = +∞ for v �= 0.

Example 2. Consider the sequence of real numbers

Am =

{
e1−2m, m even,

e3+2m, m odd,

that is, Am = e2−(−1)m(2m+1). One can verify that Am = e(2+(−1)m)m−1. Then

lim sup
m→∞

1

m
logAm = 2,

and so the sequence is not tempered, but

lim sup
m→∞

1

m
logAm < +∞.

On the other hand, there are plenty of unbounded tempered sequences for which
λ does not take the value +∞. This is illustrated by the next example.

Example 3. Consider the sequence of real numbers Am = eam+1−am for some
sequence am ↗ +∞ with lim supm→∞(am/m) = 0. Clearly, (Am)m∈N is tempered,
and since Am = eam−a1 , the Lyapunov exponent λ does not take the value +∞.

The following result relates the lower and upper Lyapunov exponents and the
numbers ai and bi in (14) when the intervals [ai, bi] are disjoint. Let Fi(m) be the
eigenspace of the matrix Tm in (13) associated to the eigenvalue ρi(m).

Theorem 3. Let (Am)m∈N be a tempered sequence of q × q matrices. If bi < ai+1

for i = 1, . . . , q − 1, then for each i = 1, . . . , q we have:

(1)
⊕

j≤i Fj(m) → Hi when m → ∞, for some subspace Hi;

(2) for each v, w ∈ Hi with w /∈ Hi−1, we have

(26) lim sup
m→∞

1

m
log‖Amv‖ ≤ ai +

q∑
j=1

(bj − aj)

and

(27) lim inf
m→∞

1

m
log‖Amw‖ ≥ ai.

Moreover, if
∑q

j=1(bj −aj) < ai+1−ai for i = 1, . . . , q−1, then r = q and Hi = Ei

for i = 1, . . . , q.

We omit the proof of Theorem 3 since the statement is a particular case of
Theorem 5 below that considers the general situation when the intervals [ai, bi]
may intersect each other. Under the assumptions of Theorem 3, we have

lim sup
m→∞

1

m
log‖Amv‖ − lim inf

m→∞

1

m
log‖Amv‖ ≤

q∑
j=1

(bj − aj)

for each v ∈ Hi \ {0}. When aj = bj for j = 1, . . . , q, that is, when the exponential
growth rates of the singular values are limits, this implies that each value of the
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Lyapunov exponent is a limit (in fact, the sequence of matrices is regular, as shown
in Theorem 6 below).

As an application of Theorem 3 we obtain a stronger version of property (17)
for tempered sequences when all the values of the Lyapunov exponent are distinct.

Theorem 4. Let (Am)m∈N be a tempered sequence of q×q matrices with bi < ai+1

for i = 1, . . . , q − 1. If ai = bi for i = 1, . . . , q, then bi = λ′
i for i = 1, . . . , q.

Proof. It follows from the last statement of Theorem 3 that

lim sup
m→∞

1

m
log‖Amv‖ = λ′

i

for v ∈ Hi \ Hi−1 and each i. The desired result follows now readily from (26)
and (27). �

4. Main result

In this section we consider the general case when not all intervals [ai, bi] (see (14))
are disjoint and we obtain corresponding lower and upper estimates for the Lya-
punov exponents in terms of the exponential growth rates of the singular values.

We first introduce some notation. Let i1 < i2 < · · · < iα−1 be the integers
i ∈ [1, q − 1] such that [ai, bi] ∩ [ai+1, bi+1] = ∅. For j = 1, . . . , α we define

Ij =

ij⋃
k=ij−1+1

[ak, bk],

with the convention that i0 = 0 and iα = q. Notice that each set Ij is a closed
interval since

[ak, bk] ∩ [ak+1, bk+1] �= ∅ for k = ij−1 + 1, . . . , ij − 1.

We write Ij = [cj , dj ] for j = 1, . . . , α (notice that by definition dj < cj+1 for
j = 1, . . . , α). Moreover, for j = 1, . . . , α, we define

Gj(m) =
⊕
i

Fi(m) and Hj(m) =
⊕
i≤j

Gi(m),

where the first direct sum is taken over all i’s such that

(28) cj ≤ lim inf
m→∞

1

m
log ρi(m) ≤ lim sup

m→∞

1

m
log ρi(m) ≤ dj .

Now we are ready to prove our main result.

Theorem 5. Let (Am)m∈N be a tempered sequence of q × q matrices. Then for
each j = 1, . . . , α we have:

(1) Hj(m) → Hj when m → ∞, for some subspace Hj;
(2) for each v, w ∈ Hj with w /∈ Hj−1, we have

(29) lim sup
m→∞

1

m
log‖Amv‖ ≤ cj +

α∑
k=1

(dk − ck) dimGk(m)

and

(30) lim inf
m→∞

1

m
log‖Amw‖ ≥ cj .

Proof. We divide the proof into steps.
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Step 1. Convergence of the sequences Hj(m). We observe that

‖Amv‖2 = v∗A∗
mAmv = v∗T 2

mv

= v∗T ∗
mTmv = ‖Tmv‖2

(31)

for any vector v. Moreover, by (25) and (28), given ε > 0, there exists an integer
m(ε) such that ‖Am‖ ≤ eεm and

(32) e(ck−ε)m ≤ ‖Tm|Gk(m)‖ ≤ e(dk+ε)m

for m ≥ m(ε) and k = 1, . . . , α, when d1 > −∞. The case when d1 = −∞
is analogous and requires only minor modifications. Namely, (32) must then be
replaced by the property that given ε > 0 and γ < 0, there exist integers m(ε) and
n(γ) such that

‖Tm|G1(m)‖ ≤ e−γm

for m ≥ n(γ) and

e(ck−ε)m ≤ ‖Tm|Gk(m)‖ ≤ e(dk+ε)m

for m ≥ m(ε) and k = 2, . . . , α. In the sequel we shall always assume that d1 > −∞
since the arguments when d1 = −∞ are quite similar.

Now take m ≥ m(ε) and vm ∈ Hj(m) with ‖vm‖ = 1. Then

‖Am+1vm‖ = ‖AmAmvm‖ ≤ eεm‖Amvm‖
= eεm‖Tmvm‖ ≤ e(dj+2ε)m.

(33)

We write the vector vm in the form

vm = am+1vm+1 + u,

where am+1 ≥ 0, vm+1 ∈ Hj(m+ 1) with ‖vm+1‖ = 1 and u ∈ Hj(m+ 1)⊥. Since
the eigenspaces Fj(m+1) are pairwise orthogonal for each m (recall that the matrix
Tm+1 is symmetric), the orthogonal complement Hj(m + 1)⊥ is also a direct sum
of eigenspaces. Namely,

Hj(m+ 1)⊥ =
⊕
i

Fi(m+ 1) =
⊕
k>j

Gk(m+ 1),

where the first direct sum is taken over all i’s such that

lim inf
m→∞

1

m
log ρi(m) ≥ cj+1.

Therefore, the vectors Am+1vm+1 and Am+1u are orthogonal, since

〈Am+1vm+1,Am+1u〉 = 〈A∗
m+1Am+1vm+1, u〉 = 〈T 2

m+1vm+1, u〉
= 〈Tm+1vm+1, Tm+1u〉 = 0.

This implies that

‖Am+1vm‖ = ‖am+1Am+1vm+1 +Am+1u‖
≥ ‖Am+1u‖ = ‖Tm+1u‖.

Writing u = uj+1 + · · ·+ uα, with uk ∈ Gk(m+ 1) for k = j + 1, . . . , α, we obtain

(34) ‖Am+1vm‖ ≥ ‖Tm+1uk‖ ≥ e(ck−ε)(m+1)‖uk‖.
By (33) and (34), we conclude that

(35) ‖uk‖ ≤ ηe(dj−ck+3ε)m



8422 LUIS BARREIRA AND CLAUDIA VALLS

for k = j + 1, . . . , α, where η = eε−c1 . Since am+1vm+1 = vm − u, we obtain

1− ‖u‖ ≤ am+1 ≤ 1 + ‖u‖.

It follows that |1− am+1| ≤ ‖u‖, and so

‖vm − vm+1‖ ≤ ‖vm − am+1vm+1‖+ ‖(1− am+1)vm+1‖
= ‖u‖+ |1− am+1|
≤ 2‖u‖ ≤ 2

√
αηe(dj−cj+1+3ε)m.

Proceeding inductively we obtain a sequence of vectors vm+k ∈ Hj(m + k) with
‖vm+k‖ = 1 such that vm+k−1 − am+kvm+k ∈ Hj(m+ k)⊥ for some am+k ≥ 0 and

‖vm+k − vm+k+1‖ ≤ 2
√
αηe(dj−cj+1+3ε)(m+k)

for all k ≥ 0. For � > k ≥ 0, provided that ε is sufficiently small, we obtain

‖vm+k − vm+�‖ ≤
�−1∑
i=k

‖vm+i − vm+i+1‖

≤ 2
√
αη

∞∑
i=m+k

e(dj−cj+1+3ε)i

= Ce(dj−cj+1+3ε)(m+k),

where C = 2
√
αη/(1 − edj−cj+1+3ε). In particular, (vp)p≥m is a Cauchy sequence,

say with limit v, and

‖vp − v‖ ≤ Ce(dj−cj+1+3ε)p for p ≥ m.

Now let v1m, . . . , vqm be an orthonormal basis of Rq such that v1m, . . . , v
nj
m , where

nj = dimHj(m), is a basis of Hj(m) for j = 1, . . . , α. Proceeding as before, for
each i = 1, . . . , q we obtain a Cauchy sequence (vip)p≥m such that

‖vip − vip′‖ ≤ Ce(dj−cj+1+3ε)p

for p′ ≥ p ≥ m whenever i ≤ nj . Therefore, if vi ∈ R
q is the limit of the sequence

(vip)p≥m, then

(36) ‖vip − vi‖ ≤ Ce(dj−cj+1+3ε)p

for p ≥ m whenever i ≤ nj . Increasing m if necessary, it follows readily from (36)
that v1p, . . . , v

q
p, for each p ≥ m, and v1, . . . , vq are bases of Rq. This implies that the

sequence of spaces (Hj(m))m∈N converges to the space Hj spanned by the vectors
v1, . . . , vnj , for j = 1, . . . , α.

Step 2. Estimates along subspaces. In order to obtain an upper bound for the
Lyapunov exponents, we start by studying the behavior under certain projections.
Let

(37) Pj,m = PHj(m)⊥ and Qj,m = Id− Pj,m = PHj(m)

be the orthogonal projections associated to the splitting

R
q = Hj(m)⊥ ⊕Hj(m).
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Note that

Pj,m+k = Pj,m+kPj,m+k−1 · · ·Pj,m+1

+
k∑

l=2

Pj,m+kPj,m+k−1 · · ·Pj,m+lQj,m+l−1.
(38)

For v ∈ Hj(m) we obtain

‖Pj,m+kv‖ ≤ ‖Pj,m+1v‖+
k∑

l=2

‖Pj,m+lQj,m+l−1v‖,

since ‖Pj,mw‖ ≤ ‖w‖ for all m ∈ N and w ∈ R
q, in view of (37). Hence, by (35),

‖Pj,m+kv‖ ≤ η
√
α

k−1∑
l=0

e(dj−cj+1+3ε)(m+l)‖v‖

≤ Ke(dj−cj+1+3ε)m‖v‖

for some constant K > 0 independent of j, m and k (notice that in view of (37) we
have ‖Qj,m+l−1v‖ ≤ ‖v‖). Therefore,

‖Pj,m+k|Hj(m)‖ ≤ Ke(dj−cj+1+3ε)m.

Similarly, one can use (35) and identity (38) with j replaced by l ≥ j to conclude
that for v ∈ Hj(m),

‖Pl,m+kv‖ ≤ ‖Pl,m+1v‖+
k∑

l=2

‖Pl,m+lQj,m+l−1v‖

≤ η
√
α

k−1∑
l=0

e(dj−cl+1+3ε)(m+l)‖v‖

≤ Ke(dj−cl+1+3ε)m‖v‖,
taking, without loss of generality, the same constant K. Hence,

(39) ‖Pl,m+k|Hj(m)‖ ≤ Ke(dj−cl+1+3ε)m.

Now let um1, . . . , umq be an orthonormal basis of Rq such that the first nj elements
form a basis of Hj(m), for j = 1, . . . , α. We write

umi =

q∑
l=1

cilum+k,l

(the constants cil depend on m and k, but for simplicity of the notation we shall
not make this dependence explicit). Moreover, let

c′1 ≤ c′2 ≤ · · · ≤ c′q and d′1 ≤ d′2 ≤ · · · ≤ d′q

be the numbers ci and di counted with multiplicities nj − nj−1; that is, we take
c′i = cj and d′i = dj whenever nj−1 ≤ i ≤ nj , with the convention that n0 = 0. It
follows readily from (39) that

(40) |cil| ≤ e(d
′
i−c′l+3ε)m

whenever nj−1 < i ≤ nj and nt < l ≤ nt+1 for some t ≥ j, that is, whenever i ≤ l.
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In fact, inequality (40) holds for any i and l. First observe that since um1, . . . , umq

is an orthonormal basis, the matrix Xm having these vectors as columns is orthog-
onal. Moreover, since Xm = CXm+k, the matrix C is also orthogonal and so
all its entries have absolute value at most 1. On the other hand, if i > l, then
d′i − c′l ≥ d′i − c′i ≥ 0. Hence,

|cil| ≤ 1 ≤ e(d
′
i−c′l+3ε)m for i > l.

Step 3. Upper bound for the Lyapunov exponents. Write

(41) um+k,l =

q∑
t=1

dltumt

for some numbers dlt. Notice that the matrix D = (dlt)l,t is the inverse of the
matrix C = (cil)i,l. We shall estimate the entries of D using the identity

D =
1

detC
C ′,

where C ′ is the cofactor matrix of C.
Let S be the set of all permutations σ of {1, . . . , q} with σ(l) = i. Each σ ∈ S

induces a permutation σ′ of the set {1, . . . , q} \ {l}, and we have

(42) dil =
1

detC

∑
σ∈S

sgn(σ′)
∏
r 
=l

crσ(r).

Note that for each σ ∈ S there exists p = pσ ∈ N such that σp(i) = l. Since all
entries of C satisfy |cil| ≤ 1, we obtain∣∣∣∣∣

∏
r 
=l

crσ(r)

∣∣∣∣∣ ≤
p−1∏
r=0

|cσr(i)σr+1(i)|

≤
p−1∏
r=0

e
(d′

σr(i)−c′
σr+1(i)

+3ε)m

≤ e(d
′
i+

∑
j /∈{i,l}(d

′
j−c′j)−c′l+3qε)m

= e(c
′
i+

∑
j �=l(d

′
j−c′j)−c′l+3qε)m,

and it follows from (42) that

(43) |dil| ≤ (q − 1)!e(c
′
i+

∑
j �=l(d

′
j−c′j)−c′l+3qε)m.

Now take v ∈ Hj(m+ k) with ‖v‖ = 1. We write it in the form v = um +wm with
um ∈ Hj(m) and wm ∈ Hj(m)⊥. It follows from (41) and (43) that

wm =

q∑
t=nj+1

βt,m,kumt

with

|βt,m,k| ≤ (q − 1)!e(cj+
∑

l �=t(d
′
l−c′l)−c′t+3qεm).

Since the last upper bound is independent of k, replacing v by vim+k (see (36)) and

letting k → ∞, we find that vi (which is the limit of vim+k when k → ∞) can be
written in the form

vi = ui
m + wi

m with ui
m ∈ Hj(m), wi

m ∈ Hj(m)⊥.
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Notice that ‖ui
m‖ ≤ 1 and

wi
m =

q∑
t=nj+1

βt,m,iumt

with

|βt,m,i| ≤ (q − 1)!e(cj+
∑

l �=t(d
′
l−c′l)−c′t+3qεm).

Therefore,

‖Amvi‖ ≤ ‖Amui
m‖+ ‖Amwi

m‖

≤ e(dj+ε)m‖ui
m‖+

q∑
t=nj+1

|βt,m,i| · ‖Amumt‖

≤ e(dj+ε)m +

q∑
t=nj+1

(q − 1)!e(cj+
∑

l �=t(d
′
l−c′l)−c′t+3qεm)e(d

′
t+ε)m

= e(dj+ε)m +

q∑
t=nj+1

(q − 1)!e(cj+
∑q

l=1(d
′
l−c′l)+3qεm).

This implies that

lim sup
m→∞

1

m
log‖Amvi‖ ≤ cj +

q∑
l=1

(d′l − c′l) + 3qε,

and so

(44) lim sup
m→∞

1

m
log‖Amvi‖ ≤ cj +

q∑
l=1

(d′l − c′l)

whenever i ≤ nj , due to the arbitrariness of ε.

Step 4. Lower bound for the Lyapunov exponents. Now take w ∈ Hj \ Hj−1 and
write w = wm + um with wm ∈ Hj−1(m)⊥ and um ∈ Hj−1(m). Since Hj−1(m) →
Hj−1 when m → ∞, the vector wm converges to the component w⊥ ∈ H⊥

j−1 that
is nonzero since w �∈ Hj−1. In particular, there exists a constant c > 0 such that
‖wm‖ ≥ c for all sufficiently large m. Therefore,

‖Amw‖ ≥ ‖Amwm‖ − ‖Amum‖
≥ e(cj−ε)m‖wm‖ − e(dj−1+ε)m‖um‖
≥ ce(cj−ε)m − e(dj−1+ε)m‖v‖

for any sufficiently large m. Taking ε sufficiently small such that cj − ε > dj−1 + ε,
we obtain

lim inf
m→∞

1

m
log‖Amw‖ ≥ cj − ε.

Finally, since ε is arbitrary, we conclude that

(45) lim inf
m→∞

1

m
log‖Amw‖ ≥ cj .

This completes the proof of the theorem. �
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5. Characterizations of regularity

In this section we use Theorem 5 to recover some characterizations of regularity,
in particular in terms of the exponential growth rates of the singular values and in
terms of the matrices (A∗

mAm)1/(2m).

Theorem 6. Let (Am)m∈N be a tempered sequence of q×q matrices. Then (Am)m∈N

is regular if and only if the limits

(46) lim
m→∞

1

m
log ρi(m), i = 1, . . . , q,

exist.

Proof. We first assume that the limits in (46) exist. Let ρ′1 ≤ · · · ≤ ρ′α be their
distinct values and let Fi(m) be the eigenspace of the matrix Tm in (13) associated
to the eigenvalue ρi(m). We note that ρ′i = ci = di, using the notation introduced
right before Theorem 5. For j = 1, . . . , α, we have

Hj(m) =
⊕
i

Fi(m),

where the sum is taken over all i’s such that

lim
m→∞

1

m
log ρi(m) ≤ ρ′j .

It follows from (44) and (45) that

lim
m→∞

1

m
log‖Amv‖ = ρ′j

for v ∈ Hj \ Hj−1. In particular, α = r, Hj = Ej and ρ′j = λj for j = 1, . . . , r
(see (8) for the definition of Ej). Now let Sm be the matrix whose columns are the
vectors v1m, . . . , vqm constructed in the proof of Theorem 5 (it is invertible because
the vectors form a basis). Then S−1

m TmSm is the diagonal matrix with entries
ρ1(m) ≤ · · · ≤ ρq(m) on the diagonal. Since vim → vi when m → ∞, for each i, we
obtain

lim
m→∞

T 1/m
m = lim

m→∞

⎡
⎢⎣Sm

⎛
⎜⎝
ρ1(m) 0

. . .

0 ρq(m)

⎞
⎟⎠S−1

m

⎤
⎥⎦
1/m

= lim
m→∞

Sm

⎛
⎜⎝
ρ1(m)1/m 0

. . .

0 ρq(m)1/m

⎞
⎟⎠S−1

m

= S

⎛
⎜⎝
eρ1 0

. . .

0 eρq

⎞
⎟⎠S−1,

(47)

where S is the matrix whose columns are the vectors v1, . . . , vq and

ρi = lim
m→∞

1

m
log ρi(m), i = 1, . . . , q.
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In particular, since det(T
1/m
m ) = (detTm)1/m, it follows from (47) that

lim
m→∞

1

m
log|detAm| =

q∑
i=1

ρi =

r∑
j=1

λj(dimEj − dimEj−1),

and so the sequence (Am)m∈N is regular.
Now we assume that the sequence (Am)m∈N is regular. We first show that for

k = 1, . . . , q the limit

(48) lim
m→∞

1

m
log‖A∧k

m ‖

exists. In view of (11) we have

ρq(m) = ‖A∧1
m ‖ and ρi(m) = ‖A∧(q−i+1)

m ‖/‖A∧(q−i)
m ‖

for i = 1, . . . , q − 1. Thus, it follows from (48) that the limit

lim
m→∞

1

m
log ρi(m)

exists for i = 1, . . . , q. Hence, in order to prove the theorem, it remains to show
that the limit in (48) exists for k = 1, . . . , q.

Consider a vector v ∈ (Rq)∧k with ‖v‖ = 1 and write it in the form

v =
∑

i1<···<ik

ci1···ikvi1···ik

for some orthonormal basis vi1···ik of (Rq)∧k. Then∑
i1<···<ik

c2i1···ik = 1

and thus |ci1···ik | ≤ 1 for all coefficients. Then

‖A∧k
m v‖ ≤

∑
i1<···<ik

|ci1···ik | · ‖A∧k
m vi1···ik‖ ≤

∑
i1<···<ik

‖A∧k
m vi1···ik‖

and hence, by Proposition 1,

(49) lim sup
m→∞

1

m
log‖A∧k

m ‖ ≤ max
i1<···<ik

lim
m→∞

1

m
log‖A∧k

m vi1···ik‖.

Now we consider a vector vj1···jk for which

lim
m→∞

1

m
log‖A∧k

m vj1···jk‖

attains the maximum in (49). For each v ∈ (Rq)∧k with ‖v‖ = 1 we have ‖A∧k
m ‖ ≥

‖A∧k
m v‖, and so

lim inf
m→∞

1

m
log‖A∧k

m ‖ ≥ lim inf
m→∞

1

m
log‖A∧k

m vj1···jk‖

= max
i1<···<ik

lim
m→∞

1

m
log‖A∧k

m vi1···ik‖.
(50)

Finally, it follows from (49) and (50) that

lim
m→∞

1

m
log‖A∧k

m ‖

exists. This concludes the proof of the theorem. �
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As an application of Theorem 6 (and of the arguments in its proof), we provide
two additional characterizations of the notion of regularity. We start by considering
the sequence of matrices (A∗

mAm)1/(2m) and its limiting behavior.

Theorem 7. Let (Am)m∈N be a tempered sequence of q×q matrices. Then (Am)m∈N

is regular if and only if the sequence of matrices (A∗
mAm)1/(2m) converges when

m → ∞.

Proof. Assume that the sequence (Am)m∈N is regular. By Theorem 6, the limits
in (46) exist, and so it follows from the first part of the proof of that theorem

that (47) holds. In particular, the sequence T
1/m
m converges when m → ∞, where

Tm = (A∗
mAm)1/2.

Now we assume that the sequence T
1/m
m converges when m → ∞. The eigenval-

ues of T
1/m
m are the nonnegative real numbers νi(m) = ρi(m)1/m, for i = 1, . . . , q,

where ρi(m) are the eigenvalues of Tm. Since the eigenvalues of a matrix vary con-
tinuously with its entries, it follows readily from the convergence of the sequence

T
1/m
m that the limit

lim
m→∞

νi(m) = lim
m→∞

ρi(m)1/m

exists for i = 1, . . . , q. This implies that the limit in (46) exists for i = 1, . . . , q.
Hence, it follows from Theorem 6 that the sequence (Am)m∈N is regular. �

The second characterization of regularity is expressed in terms of the eigenvectors
of the matrices Tm = (A∗

mAm)1/2.

Theorem 8. Let (Am)m∈N be a tempered sequence of q×q matrices. Then (Am)m∈N

is regular if and only if the limit

(51) lim
m→∞

1

m
log‖Amvj(m)‖

exists for i = 1, . . . , q and for some orthonormal bases v1(m), . . . , vq(m) of eigen-

vectors of (A∗
mAm)1/2 for the eigenvalues ρ1(m), . . . , ρq(m).

Proof. By (31), we have

‖Amvj(m)‖ = ‖Tmvj(m)‖ = ‖ρj(m)vj(m)‖ = ρj(m).

Therefore, the limit in (51) exists for i = 1, . . . , q and some sequence of bases as in
the theorem if and only if the limits in (46) exist. The desired result follows now
readily from Theorem 6. �

We note that in Theorem 8 condition (51) can be replaced by the requirement
that the limits

lim
m→∞

1

m
log min

v∈Fi(m)\{0}
‖Amv‖ = lim

m→∞

1

m
log max

v∈Fi(m)\{0}
‖Amv‖

exist for i = 1, . . . , t (and are equal).
The following result combines Proposition 1 with Theorems 6, 7 and 8.

Theorem 9. For a tempered sequence (Am)m∈N of q × q matrices, the following
properties are equivalent:

(1) the sequence (Am)m∈N is regular;
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(2) the limit

lim
m→∞

1

m
log vol(Amv1, . . . ,Amvk)

exists for any basis v1, . . . , vq of Rq and any integer k ∈ [1, q];
(3) the limits

lim
m→∞

1

m
log ρi(m), i = 1, . . . , q,

exist;
(4) the limits

lim
m→∞

1

m
log‖A∧i

m ‖, i = 1, . . . , q,

exist;
(5) the sequence of matrices (A∗

mAm)1/(2m) converges when m → +∞;
(6) the limit

lim
m→∞

1

m
log‖Amvj(m)‖

exists for i = 1, . . . , q and some orthonormal bases v1(m), . . . , vq(m) of

eigenvectors of (A∗
mAm)1/2 for the eigenvalues ρ1(m), . . . , ρq(m).

The equivalence between properties (1) and (2) is due to Lyapunov [9] (see
also [8]). Following arguments of Raghunathan [14], Ruelle showed in [15] that
property (3) implies properties (1) and (5) (his formulation is slightly different, but
this follows readily from what he proves). More recently, Barabanov [1] proved that
property (1) implies property (3) (although he considers only the case of continuous
time, it is simple to obtain a corresponding argument for discrete time). We note
also that property (3) is a simple consequence of property (5) and that properties (3)
and (4) are equivalent, in view of identity (11).

It was proved earlier by Oseledets in [10] that properties (1) and (3) hold for al-
most all trajectories of a cocycle over a measure-preserving transformation (whose
generator satisfies a certain natural integrability assumption). Moreover, Raghu-
nathan [14] proved earlier that property (5) holds under the same assumption.

6. The case of continuous time

In this section we obtain versions of the results in the former sections for evolution
families, obtained for example from nonautonomous linear differential equations.
The arguments are analogous to those for discrete time and so we partially omit
them.

6.1. Preliminaries. Let T (t, s), for t ≥ s ≥ 0, be an evolution family on the
space R

q, that is, a collection of q × q matrices T (t, s), for t ≥ s ≥ 0, satisfying

T (t, t) = Id and T (t, r)T (r, s) = T (t, s)

for t, r, s ≥ 0 with t ≥ r ≥ s. The Lyapunov exponent λ : Rq → [−∞,+∞]
associated to the evolution family T (t, s) is defined by

(52) λ(v) = lim sup
t→∞

1

t
log‖T (t, 0)v‖,

again with the convention that log 0 = −∞. We shall always assume that λ does
not take the value +∞.
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As in section 2.1, by the abstract theory of Lyapunov exponents (see [3]), the
function λ takes at most a number r ≤ q of distinct values on R

q \ {0}, say
−∞ ≤ λ1 < λ2 < · · · < λr < +∞.

Moreover, for each i = 1, . . . , r the set

Ei =
{
v ∈ R

q : λ(v) ≤ λi

}
is a linear subspace of Rq and

{0} ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Er = R
q.

We say that the evolution family T (t, s) is (Lyapunov) regular if

(53) lim
t→∞

1

t
log|detT (t, 0)| =

q∑
i=1

λ(vi)

for some basis v1, . . . , vq of Rq. In a manner similar to that in section 2.1, condi-
tion (53) can be replaced by the requirement that

lim inf
t→∞

1

t
log|detT (t, 0)| ≥

q∑
i=1

λ(vi)

for some basis v1, . . . , vq of Rq.
We say that an evolution family T (t, s) is tempered if

lim
t→∞

1

t
log sup

s∈[0,1]

‖T (t+ s, t)‖ ≤ 0.

Before proceeding, we illustrate how temperedness can be achieved for an evolution
family defined by a nonautonomous linear differential equation. Let Mq be the set
of all q × q matrices. Given a piecewise-continuous function A : R+

0 → Mq with
left-hand and right-hand limits at all points, consider the linear equation

(54) v′ = A(t)v.

The evolution family associated to equation (54) is the collection of q × q matrices
T (t, s) such that v(t) = T (t, s)v(s) for any solution v of (54) and any t ≥ s ≥ 0.

Proposition 10. If

(55) lim
t→∞

1

t

∫ t+1

t

‖A(s)‖ ds = 0,

then the evolution family T (t, s) associated to equation (54) is tempered.

Proof. It follows readily from the identity

v(t) = v(s) +

∫ t

s

A(τ )v(τ ) dτ

and Gronwall’s lemma that

‖v(t)‖ ≤ ‖v(s)‖ exp
(∫ t

s

‖A(τ )‖ dτ
)

for t ≥ s. Therefore,

‖T (t, s)‖ ≤ exp

(∫ t

s

‖A(τ )‖ dτ
)
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for t ≥ s, and so

log sup
s∈[0,1]

‖T (t+ s, t)‖ ≤ sup
s∈[0,1]

∫ t+s

t

‖A(τ )‖ dτ ≤
∫ t+1

t

‖A(τ )‖ dτ.

This yields the desired result. �

Notice that condition (55) holds when supt≥0‖A(t)‖ < +∞.

6.2. Bounds for the Lyapunov exponents. In this section we obtain versions
of the results in section 3.2 for an evolution family. We first notice that the matrix

(56) R(t) = (T (t, 0)∗T (t, 0))1/2

is symmetric and positive-definite. We denote its (real and positive) eigenvalues by

ρ1(t) ≤ · · · ≤ ρq(t).

These are the singular values of the evolution family. Moreover, let

(57) ai = lim inf
t→∞

1

t
log ρi(t), bi = lim sup

t→∞

1

t
log ρi(t)

for i = 1, . . . , q and let Fi(t) be the eigenspace of the matrix R(t) associated to the
eigenvalue ρi(t).

Theorem 11. Let T (t, s) be a tempered evolution family on R
q. If bi < ai+1 for

i = 1, . . . , q − 1, then for each i = 1, . . . , q we have:

(1)
⊕

j≤i Fj(t) → Hi when t → ∞, for some subspace Hi;

(2) for each v, w ∈ Hi with w /∈ Hi−1, we have

lim sup
t→∞

1

t
log‖T (t, 0)v‖ ≤ ai +

q∑
j=1

(bj − aj)

and

lim inf
t→∞

1

t
log‖T (t, 0)w‖ ≥ ai.

Moreover, if
∑q

j=1(bj −aj) < ai+1−ai for i = 1, . . . , q−1, then r = q and Hi = Ei

for i = 1, . . . , q.

Moreover, in a manner similar to that in section 3.2, we can establish a more
precise relation between the values of the Lyapunov exponent and the numbers bi
in (57). Namely, let

λ′
1 ≤ λ′

2 ≤ · · · ≤ λ′
q and b1 ≤ b2 ≤ · · · ≤ bq

be, respectively, the values of the Lyapunov exponent λ in (52), counted with their
multiplicities, and the numbers bi. Then

λ′
i = min

F∈Li

max
v∈F,‖v‖=1

lim sup
t→∞

1

t
log‖T (t, 0)v‖

and

bi = lim sup
t→∞

min
F∈Li

max
v∈F,‖v‖=1

1

t
log‖T (t, 0)v‖,

where Li is the set of all i-dimensional subspaces of Rq. This implies that prop-
erty (17) holds. It was shown by Barabanov and Fominykh [2] that for any real
numbers αi and βi as in Theorem 2 there exists a piecewise-constant bounded
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function t �→ A(t) such that the evolution family associated to equation (54) satis-
fies (17).

The following result is a version of Theorem 4 for evolution families.

Theorem 12. Let T (t, s) be a tempered evolution family with bi < ai+1 for i =
1, . . . , q − 1. If ai = bi for i = 1, . . . , q, then bi = λ′

i for i = 1, . . . , q.

6.3. Main result for evolution families. Theorem 11 is a particular case of a
more general result that considers the general situation when the intervals [ai, bi]
may intersect. Let i1 < i2 < · · · < iα−1 be the integers i ∈ [1, q − 1] such that
[ai, bi] ∩ [ai+1, bi+1] = ∅. For j = 1, . . . , α we define

(58) [cj , dj ] =

ij⋃
k=ij−1+1

[ak, bk],

with the convention that i0 = 0 and iα = q. Moreover, for j = 1, . . . , α, we define

Gj(t) =
⊕
i

Fi(t) and Hj(t) =
⊕
i≤j

Gi(t),

where the first direct sum is taken over all i’s such that

cj ≤ lim inf
t→∞

1

t
log ρi(t) ≤ lim sup

t→∞

1

t
log ρi(t) ≤ dj .

Theorem 13. Let T (t, s) be a tempered evolution family on R
q. Then for each

j = 1, . . . , α we have:

(1) Hj(t) → Hj when t → ∞, for some subspace Hj;
(2) for each v, w ∈ Hj with w /∈ Hj−1, we have

(59) lim sup
t→∞

1

t
log‖T (t, 0)v‖ ≤ cj +

α∑
k=1

(dk − ck) dimGk(t)

and

(60) lim inf
t→∞

1

t
log‖T (t, 0)w‖ ≥ cj .

Proof. For each m ∈ N, take a number sm ∈ [0, 1) and write pm = m + sm. Since
the evolution family T (t, s) is tempered, given ε > 0, we have

‖T (pm,m)‖ ≤ eεm

for any sufficiently large m, and hence

‖T (pm, 0)v‖ ≤ ‖T (pm,m)‖ · ‖T (m, 0)v‖ ≤ eεm‖T (m, 0)v‖.
Similarly,

‖T (m+ 1, 0)v‖ ≤ ‖T (m+ 1, pm)‖ · ‖T (pm, 0)v‖
≤ eεpm‖T (pm, 0)v‖ ≤ eε(m+1)‖T (pm, 0)v‖,

and so

e−ε(m+1)‖T (m+ 1, 0)v‖ ≤ ‖T (pm, 0)v‖ ≤ eεm‖T (m, 0)v‖.
Since pm/m → 1 when m → ∞ and ε is arbitrary, this implies that

(61) lim inf
m→∞

1

pm
log‖T (pm, 0)v‖ = lim inf

m→∞

1

m
log‖T (m, 0)v‖
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and

(62) lim sup
m→∞

1

pm
log‖T (pm, 0)v‖ = lim sup

m→∞

1

m
log‖T (m, 0)v‖.

Moreover, since the right-hand sides of (61) and (62) are independent of the se-
quence sm and since any number t > 0 can be written in the form t = m+sm = pm,
we obtain

(63) lim inf
t→∞

1

t
log‖T (t, 0)v‖ = lim inf

m→∞

1

pm
log‖T (pm, 0)v‖

and

(64) lim sup
t→∞

1

t
log‖T (t, 0)v‖ = lim sup

m→∞

1

pm
log‖T (pm, 0)v‖.

Now we consider the sequence of matrices

(65) Am = T (pm, pm−1) for m ∈ N,

with the convention that p0 = 0. Then

(66) Am+1 = AmAm−1 · · ·A1 = T (pm, 0).

Moreover,

‖Am‖ = ‖T (pm, pm−1)‖
≤ ‖T (pm,m)‖ · ‖T (m, pm−1)‖
≤ eεmeεpm−1 < e2εm

for any sufficiently large m. Thus,

lim sup
m→∞

1

m
log‖Am‖ ≤ ε,

and it follows from the arbitrariness of ε that the sequence (Am)m∈N is tempered.
Hence, one can apply Theorem 5 to deduce that for each j = 1, . . . , α we have:

(1) Hj(pm) → Fj when m → ∞, for some subspace Hj ;
(2) properties (29) and (30) hold for each v, w ∈ Hj with w /∈ Hj−1.

In view of (63), (64) and (66), conditions (29) and (30) are equivalent to (59)
and (60). Hence, in order to establish the theorem it remains to prove that the
space Hj in property (1) does not depend on the sequence (sm)m∈N, since then
Hj(t) → Hj when t → ∞. For that we consider another sequence s′m ∈ [0, 1) and
the matrices

A′
m = T (p′m, p′m−1) for m ∈ N,

where p′m = m+ s′m, with the convention that p′0 = 0. Applying Theorem 5 to this
sequence we find that Hj(p

′
m) → H ′

j when m → ∞, for some spaces H ′
j . Now we

consider the “mixed” sequence

s′′m =

{
sm, m odd,

s′m, m even.

We apply Theorem 5 once more, now to the sequence of matrices

A′′
m = T (p′′m, p′′m−1) for m ∈ N,

where p′′m = m + s′′m, with the convention that p′′0 = 0. In particular, this tells us
that the sequence Hj(p

′′
m) converges when m → ∞. But since

Hj(p
′′
2m+1) = Hj(p2m+1) → Hj when m → ∞
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and

Hj(p
′′
2m) = Hj(p

′
2m) → H ′

j when m → ∞,

we obtain Hj = H ′
j . In other words, the space Hj does not depend on the sequence

(sm)m∈N. This completes the proof of the theorem. �

6.4. Characterizations of Lyapunov regularity. Theorem 13 leads to various
characterizations of the notion of regularity. We start with a characterization in
terms of the exponential growth rates of the singular values.

Theorem 14. Let T (t, s) be a tempered evolution family on R
q. Then T (t, s) is

regular if and only if the limits

(67) lim
t→∞

1

t
log ρi(t), i = 1, . . . , q,

exist.

Proof. The proof is analogous to that of Theorem 6. We first assume that the
limits in (67) exist. Let ρ′1 ≤ · · · ≤ ρ′α be their distinct values and let Fi(t) be the
eigenspace of the matrix R(t) (see (56)) associated to the eigenvalue ρi(t). Then
ρ′i = ci = di, using the notation in (58). For j = 1, . . . , α, we have

Hj(t) =
⊕
i

Fi(t),

where the sum is taken over all i’s such that

lim
t→∞

1

t
log ρi(t) ≤ ρ′j .

It follows from (59) and (60) that

lim
t→∞

1

t
log‖T (t, 0)v‖ = ρ′j for v ∈ Hj \Hj−1.

Therefore, α = r, Hj = Ej and ρ′j = λj for j = 1, . . . , r. On the other hand, by
Theorem 13, we have Hj(t) → Hj when t → ∞. Hence, there exist orthonormal
bases v1(t), . . . , v

q(t) of Rq for t ∈ R such that:

(1) v1(t), . . . , vnj (t), where nj = dimHj(t), is a basis of Hj(t) for each j;
(2) vi(t) → vi when t → ∞, for i = 1, . . . , q, for some vector vi.

Then v1, . . . , vnj is a basis of Hj for each j. Moreover, if S(t) is the matrix whose
columns are the vectors v1(t), . . . , v

q(t), then S(t)−1R(t)S(t) is the diagonal matrix
with entries ρ1(t) ≤ · · · ≤ ρq(t) on the diagonal. Hence,

lim
t→∞

R(t)1/t = lim
t→∞

⎡
⎢⎣S(t)

⎛
⎜⎝
ρ1(t) 0

. . .

0 ρq(t)

⎞
⎟⎠S(t)−1

⎤
⎥⎦
1/t

= lim
t→∞

S(t)

⎛
⎜⎝
ρ1(t)

1/t 0
. . .

0 ρq(t)
1/t

⎞
⎟⎠S(t)−1

= S

⎛
⎜⎝
eρ1 0

. . .

0 eρq

⎞
⎟⎠S−1,

(68)
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where S is the limit of S(t) when t → ∞ and

ρi = lim
t→∞

1

t
log ρi(t), i = 1, . . . , q.

Therefore,

lim
t→∞

1

t
log|detT (t, 0)| =

q∑
i=1

ρi =

r∑
j=1

λj(dimEj − dimEj−1),

and the evolution family T (t, s) is regular.
Now we assume that the evolution family T (t, s) is regular. Proceeding as in the

proof of Theorem 6 one can show that the limit

lim
m→∞

1

m
log‖A∧k

m ‖

exists for k = 1, . . . , q, again for the sequence of matrices Am in (65). Also as in
the proof of Theorem 6, this implies that the limits in (67) exist. �

The following result provides another characterization of regularity.

Theorem 15. Let T (t, s) be a tempered evolution family on R
q. Then T (t, s) is

regular if and only if R(t)1/t converges when t → ∞.

Proof. Assume that the evolution family T (t, s) is regular. By Theorem 14, the
limits in (67) exist, and so it follows from the first part of the proof of that theorem
that (68) holds. In particular, R(t)1/t converges when t → ∞.

Now we assume that R(t)1/t converges when t → ∞. The eigenvalues of R(t)1/t

are the positive real numbers νi(t) = ρi(t)
1/t, for i = 1, . . . , q. Since the eigenvalues

of a matrix vary continuously with its entries, it follows readily from the convergence
of R(t)1/t that the limit

lim
t→∞

νi(t) = lim
t→∞

ρi(t)
1/t

exists for i = 1, . . . , q. Hence, the limit in (67) exists for i = 1, . . . , q, and it follows
from Theorem 14 that the evolution family T (t, s) is regular. �
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