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STRONGLY SELF-ABSORBING C∗-DYNAMICAL SYSTEMS

GÁBOR SZABÓ

Abstract. We introduce and study strongly self-absorbing actions of locally
compact groups on C∗-algebras. This is an equivariant generalization of a
strongly self-absorbing C∗-algebra to the setting of C∗-dynamical systems.
The main result is the following equivariant McDuff-type absorption theorem:
A cocycle action (α, u) : G � A on a separable C∗-algebra is cocycle conjugate
to its tensorial stabilization with a strongly self-absorbing action γ : G � D,
if and only if there exists an equivariant and unital ∗-homomorphism from
D into the central sequence algebra of A. We also discuss some non-trivial
examples of strongly self-absorbing actions.
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0. Introduction

Group actions on C∗-algebras and von Neumann algebras are one of the most
fundamental subjects in the theory of operator algebras. Because of this, the prob-
lem of classifying group actions has a long history within the theory of operator
algebras. A typical example is Connes’ classification of injective factors, which in-
volves the classification of cyclic group actions [4,5]. This has sparked a lot of work
towards classifying group actions on von Neumann algebras, of which the classifi-
cation of actions of countable, amenable groups on injective factors (done by many
hands) can be regarded as a highlight; see [4,5,21,22,24,44,48]. Although this has
historically been developed as a case-by-case study by the factor type, a unified
approach for McDuff factors has been found in [35] building on an intertwining
argument [8] of Evans-Kishimoto originally invented for the C∗-setting.

Classification of group actions on C∗-algebras is, however, still a far less devel-
oped subject. This is not least because of substantial K-theoretical difficulties,
which are already apparent in the seemingly harmless case of finite groups: these
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can act on a K-theoretically trivial algebra such as O2 and produce a variety of
possible K-groups in the crossed product; see [1,15,16]. However, despite such dif-
ficulties, there is more and more important work going on to make progress on the
C∗-algebraic side. Finite group actions with the Rokhlin property were successfully
classified by Izumi [15,16] on classifiable classes of C∗-algebras. Phillips is currently
developing a theory for the classification of pointwise outer, finite group actions on
Kirchberg algebras via equivariant KK-theory. In his pioneering work [28, 30–32],
Kishimoto has outlined a method to use the Rokhlin property in order to classify
single automorphisms (i.e., Z-actions) on certain inductive limit C∗-algebras such
as AT algebras. This has been developed further by work of Matui [37] for AH
algebras, Nakamura [43] for Kirchberg algebras, and more recently Lin [34] for TAI
algebras. These techniques and results are being pushed to Zd-actions and even be-
yond; see [18,19,23,36–38,42]. The reader is recommended to also consult Izumi’s
survey article [17] for an informative summary of these developments.

In the non-equivariant classification theory of C∗-algebras, also known as the
Elliott program, a certain class of C∗-algebras can be conceptually easier to handle
under the assumption that they absorb certain C∗-algebras tensorially. In the gen-
eral form of the Elliott program, this relates to Jiang-Su stability of C∗-algebras
and the Toms-Winter conjecture [7, 51, 54]. A famous result by Kirchberg-Phillips
[27] asserts that all Kirchberg algebras absorb the Cuntz algebra O∞ and are ab-
sorbed by the Cuntz algebra O2 tensorially, which Phillips’ approach [46] to the
classification of these algebras made use of. (See also [25] for Kirchberg’s more di-
rect approach to this classification.) In this way, one can regard the C∗-algebras O2

and O∞ as cornerstones of the classification of Kirchberg algebras. Even in order
to classify stably finite C∗-algebras, the method of localizing the classification at a
strongly self-absorbing C∗-algebra, as outlined by Winter in [53], has become the
state-of-the-art. Strongly self-absorbing C∗-algebras have historically been looked
at by example, but for the first time conceptually fleshed out by Toms-Winter in
[50]. A very useful tool from [50] in studying D-absorbing C∗-algebras for a strongly
self-absorbing C∗-algebra D is a McDuff-type result, a variant of which was also
proved by Kirchberg in [26]. We note that the K1-injectivity criterion in both [26]
and [50] has turned out to be redundant due to the main result of [52].

Theorem. Let D be a strongly self-absorbing C∗-algebra. A separable C∗-algebra
A is D-stable if and only if its (corrected) central sequence algebra

F∞(A) = (A∞ ∩ A′)/Ann(A,A∞)

contains a unital copy of D.

We note that although Toms-Winter’s criterion [50, 2.3] is not directly stated in
these terms, it is equivalent to the above criterion. It is also important to note that
a precurser to this result has been known before due to Rørdam [47, 7.2.2], and
his result recovers the above theorem in the unital case. Characterizing D-stability
in this manner has a number of interesting consequences, for instance permanence
properties for the class of D-stable C∗-algebras, which were studied both in [50]
and [26]. The reason for calling this a McDuff-type absorption result comes from
the following famous result of McDuff [41], which characterizes when a II1-factor
absorbs the hyperfinite II1-factor tensorially.
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Theorem. Let M be a II1-factor with separable predual. Let R be the hyperfinite
II1-factor. Let ω be a free ultrafilter on N. Then the following are equivalent:

(i) M ∼= M⊗̄R.
(ii) Mω ∩M ′ contains a unital copy of R.
(iii) Mω ∩M ′ contains a unital copy of Mk, for some k ∈ N.

In this paper, we introduce strongly self-absorbing actions of locally compact
groups on C∗-algebras, extending the notion of a strongly self-absorbing C∗-algebra
to the setting of C∗-dynamical systems. Our main result is the following equivariant
McDuff-type absorption result for strongly self-absorbing actions.

Theorem (cf. Theorem 3.7). Let A be a separable C∗-algebra, and let D be a
separable, unital C∗-algebra. Let α : G � A be an action and γ : G � D a strongly
self-absorbing action. Then (A,α) is cocycle conjugate to (A⊗D, α⊗γ) if and only
if there exists a unital, equivariant ∗-homomorphism from D to F∞(A). (Here,
F∞(A) is endowed with the G-action that is induced by componentwise application
of α to representing sequences.)

The main result, Theorem 3.7, is in fact more general than stated here, because
we also consider cocycle actions (α, u) : G � A for possibly non-trivial 2-cocycles
u. In this context, cocycle conjugacy turns out to be equivalent to strong cocycle
conjugacy.

One should note that special kinds of equivariant tensorial absorption theorems
have already existed in the theory of von Neumann algebras for a long time. For
instance, in Ocneanu’s classification paper [44], an important step consisted in
showing that any pointwise outer action of an amenable group on the hyperfinite
II1-factor R absorbs the trivial G-action on R tensorially.

Moreover, one should also note that the above equivariant McDuff-type absorp-
tion result in the C∗-setting is at least folklore for cocycle actions of discrete groups.
For finite group actions, Izumi has alluded to special cases of such an absorption
theorem in [15]. As an important tool, it has been used to prove equivariant ab-
sorption theorems by Izumi-Matui in [19], Goldstein-Izumi in [12], and Matui-Sato
in [39, 40].

Let us now summarize how this paper is organized. In section 1, we remind the
reader of some standard definitions from the literature, introduce terminology and
recall some sequence algebra techniques.

In section 2, we prove a preliminary version of the main result, which only treats
the unital case and is easier to prove. In order to do this, we start the section by
proving an equivariant version of a well-known one-sided intertwining argument,
which will also be crucial in the later sections. In the second section, we must
also deal with an important technical obstacle: If one wishes to apply a typical
sequence algebra argument (commonly refered to as the reindexation trick) in the
equivariant context, a non-discrete group may cause problems. This stems from
the fact that for a non-discrete group G and a continuous action α : G � A
on a C∗-algebra, the induced (algebraic) action α∞ : G � A on the sequence
algebra will typically fail to be point-norm continuous. Moreover, given an element
x ∈ A∞ satisfying some desirable dynamical property involving the action α∞, it
is at first unclear what kind of approximate version of this property holds along a
representing sequence (xn)n ∈ �∞(N, A) of x. After all, naively lifting relations to
the representing sequence will only allow keeping track of some property on finitely
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many group elements of G at a time, and this is not good enough. This may be even
more troublesome for a representing sequence of some element x ∈ F∞(A) in the
central sequence algebra of A. However, we solve this problem by borrowing an idea
of Guentner-Higson-Trout [13] to apply a Baire-category argument on representing
sequences, which (simply put) enables us to keep track of a property on compact
subsets of the group at a time, instead of only finite sets.

In section 3, we introduce and study strongly self-absorbing actions for a second-
countable, locally compact group. We first establish some equivariant generaliza-
tions of some partial results from [50], and then prove the main result (see above),
which is an equivariant McDuff-type absorption theorem for strongly self-absorbing
actions.

In section 4, we study a property for group actions, which is a slight weaken-
ing of being strongly self-absorbing; we will call such actions semi-strongly self-
absorbing. As it turns out, actions that are genuinely semi-strongly self-absorbing
can only exist in cases where the acting group is non-compact. However, there
are some advantages to consider this weaker notion: First, the property of being
semi-strongly self-absorbing is more common and easier to verify than the property
of being strongly self-absorbing. Second, we will see that the above equivariant
McDuff-type theorem can be extended to the case where γ is only assumed to
be semi-strongly self-absorbing. In particular, one may argue that the class of
semi-strongly self-absorbing actions deserves just as much attention as the class of
strongly self-absorbing actions, at least from the point of view of tensorial absorp-
tion.

In section 5, we will discuss non-trivial examples of (semi-)strongly self-absorbing
actions on C∗-algebras, and present some open problems regarding certain classes
of model actions.

We are confident that the main results and techniques of this paper will become
important tools in some kind of equivariant Elliott program for nice group actions
on classifiable C∗-algebras. Given the astounding importance that strongly self-
absorbing C∗-algebras have in the Elliott program, we expect the same to become
true for (semi-)strongly self-absorbing actions in the classification theory of group
actions.

1. Preliminaries

Notation 1.1. Unless specified otherwise, we will stick to the following notational
conventions in this paper:

• A and B denote C∗-algebras.
• M(A) denotes the multiplier algebra of A and Ã denotes the smallest uni-
talization of A.

• Let mλ ∈ M(A) be a net and m ∈ M(A) an element. If mλ converges to
m in the strict topology, i.e., mλ · a → m · a and a ·mλ → a ·m in norm for

every a ∈ A, then we write mλ
str−→ m.

• G denotes a second-countable, locally compact group.
• The symbol α is used either for a continuous action α : G � A or more
generally for a point-norm continuous map α : G → Aut(A), e.g., if α
belongs to a cocycle action, as defined below. By slight abuse of notation,
we will also write α : G → Aut(M(A)) for the unique strictly continuous
extension.



STRONGLY SELF-ABSORBING C∗-DYNAMICAL SYSTEMS 103

• If α : G � A is an action, then Aα denotes the fixed-point algebra of A.
• If (X, d) is some metric space with elements a, b ∈ X, then we write a =ε b
as a shortcut for d(a, b) ≤ ε.

• ω denotes some free filter on N. Given a bounded sequence of real numbers
an ∈ R, one defines lim supn→ω an = infJ∈ω supn∈J an. The lim inf is
defines analogously, and if it agrees with the lim sup, then the limit along
ω exists and is denoted limn→ω an.

Definition 1.2 (cf. [3, 2.1] or [45, 2.1]). A cocycle action (α, u) : G � A is a
point-norm continuous map α : G → Aut(A), g 	→ αg together with a strictly
continuous map u : G×G → U(M(A)) satisfying the properties

• α1 = idA,
• αr ◦ αs = Ad(u(r, s)) ◦ αrs,
• u(1, t) = u(t, 1) = 1,
• αr(u(s, t)) · u(r, st) = u(r, s) · u(rs, t)

for all r, s, t ∈ G.

Remark. If u = 1 is trivial, then this just recovers the definition of an ordinary
action α : G � A.

Definition 1.3 (cf. [45, 3.2] for (i)+(ii)). Let α : G � A be an action. Consider a
strictly continuous map w : G → U(M(A)).

(i) w is called an α-1-cocycle, if one has wgαg(wh) = wgh for all g, h ∈ G. In
this case, the map αw : G → Aut(A) given by αw

g = Ad(wg) ◦ αg is again
an action, and is called a cocycle perturbation of α. Two G-actions on A
are called exterior equivalent if one of them is a cocycle perturbation of the
other.

(ii) Assume that w is an α-1-cocycle. It is called a coboundary, if there exists a
unitary v ∈ U(M(A)) with wg = vαg(v

∗) for all g ∈ G.
(iii) Assume that w is an α-1-cocycle. It is called an approximate coboundary, if

there exists a sequence of unitaries xn ∈ U(M(A)) such that xnαg(x
∗
n)

str−→ wg

for all g ∈ G and uniformly on compact sets. Two G-actions on A are called
strongly exterior equivalent, if one of them is a cocycle perturbation of the
other via an approximate coboundary.

Definition 1.4 (cf. [45, 3.1] for (i)). Let (α, u), (β,w) : G � A be two cocycle
actions.

(i) The pairs (α, u) and (β,w) are called exterior equivalent, if there is a strictly
continuous map v : G → U(M(A)) satisfying βg = Ad(vg) ◦αg and w(s, t) =
vsαs(vt)u(s, t)v

∗
st for all g, s, t ∈ G.

(ii) The pairs (α, u) and (β,w) are called strongly exterior equivalent, if there is
a map v : G → U(M(A)) as above such that there is a sequence of unitaries

xn ∈ U(M(A)) with xnαg(x
∗
n)

str−→ vg for all g ∈ G and uniformly on compact
sets.

Definition 1.5. Let (α, u) : G � A and (β,w) : G � B be two cocycle actions. A
non-degenerate ∗-homomorphism ϕ : A → B is called equivariant, and is written
ϕ : (A,α, u) → (B, β, w), if one has βg ◦ ϕ = ϕ ◦ αg and w(s, t) = ϕ(u(s, t)) for all
g, s, t ∈ G.

If u(·, ·) = w(·, ·) = 1, i.e., one has actions α : G � A and β : G � B, then we
omit the cocycles in the notation and write ϕ : (A,α) → (B, β).
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Let us now recall the notions of conjugacy, cocycle conjugacy and strong cocycle
conjugacy. The latter notion is somewhat less prominent in the literature, and
was first explicitly introduced by Izumi-Matui in [19, 2.1] as a relation between
discrete group actions. In [40, 2.1(3)], Matui-Sato extended this notion to be a
relation between cocycle actions of discrete groups. It is important to note that
implicitly, the notion of strong cocycle conjugacy has played a role in earlier work
of Kishimoto; see [8, 28, 30–32].

We are going to consider a suitable generalization of strong cocycle conjugacy
to cocycle actions of locally compact groups. We note, however, that the defi-
nition given below only extends the definition from [19, 40] in the case of unital
C∗-algebras, and is weaker in the non-unital case.

Definition 1.6. Two cocycle actions (α, u) : G � A and (β,w) : G � B are
called:

(i) conjugate, if there is an equivariant isomorphism ϕ : (A,α, u) → (B, β, w).
In this case, we write (A,α, u) ∼= (B, β, w).

(ii) cocycle conjugate, if there is an isomorphism ϕ : A → B such that (ϕ ◦ α ◦
ϕ−1, ϕ◦u) is exterior equivalent to (β,w). In this case, we write (A,α, u) �cc

(B, β, w).
(iii) strongly cocycle conjugate, if there is an isomorphism ϕ : A → B such that

(ϕ ◦ α ◦ ϕ−1, ϕ ◦ u) is strongly exterior equivalent to (β,w). In this case, we
write (A,α, u) �scc (B, β, w).

If α and β are genuine actions, we omit the cocycles from the notation and write
(A,α) ∼= (B, β), (A,α) �cc (B, β) or (A,α) �scc (B, β).

As we mentioned before, the above given definition of strong cocycle conjugacy
does not extend the definition from [19, 40] in the case of non-unital C∗-algebras.
Our definition is weaker, and the difference is that the approximate coboundary
condition is expressed in the strict topology rather than the norm topology.

As was outlined in the introduction, we aim to characterize equivariant absorp-
tion of certain actions via a property of the central sequence algebra. In particular,
we shall spend most of our effort on studying sequence algebras, (relative) cen-
tral sequence algebras and actions induced on them. Let us begin by recalling the
definition of a corrected relative central sequence algebra, i.e., a quotient of a rel-
ative central sequence algebra by an Annihilator ideal. This idea originates from
Kirchberg’s important work [26] on central sequences of C∗-algebras.

Definition 1.7 (cf. [26, 1.1]). Let A be a C∗-algebra and ω a free filter on N.
Consider the (ω-)sequence algebra of A as the quotient

Aω = �∞(N, A)/
{
(xn)n | lim

n→ω
‖xn‖ = 0

}
.

There is a standard embedding of A into Aω by sending an element to its constant
sequence. For some C∗-subalgebra B ⊂ Aω, the relative central sequence algebra
is defined as

Aω ∩B′ = {x ∈ Aω | xb = bx for all b ∈ B} .
Observe that the two-sided annihilator

Ann(B,Aω) = {x ∈ Aω | xb = bx = 0 for all b ∈ B}
is an ideal in Aω ∩B′, and one can thus define

F (B,Aω) = Aω ∩B′/Ann(B,Aω).
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Of particular importance is the central sequence algebra of A, i.e., Aω ∩ A′, or
Fω(A) = F (A,Aω), or the relative central sequence algebra M(A)ω ∩ A′.

Remark 1.8. If ϕ ∈ Aut(A) is an automorphism, then componentwise application
on representative sequences yields a well-defined automorphism ϕω ∈ Aut(Aω) or
ϕω ∈ Aut(M(A)ω). If B ⊂ Aω is ϕω-invariant, then ϕω restricts to a well-defined
automorphism on Aω∩B′ and Ann(B,Aω). This further induces an automorphism
ϕ̃ω on F (B,Aω).

In the special case that ϕ = Ad(u) is an inner automorphism for some u ∈ M(A)
and we have uB + Bu ⊂ B, the induced automorphism ϕ̃ω on F (B,Aω) is the
identity map.

Proof. We have u · b, b · u ∈ B for all b ∈ B by assumption. Given x ∈ Aω ∩B′ and
b ∈ B, we thus have

(uxu∗)b = ux(u∗b) = u(u∗b)x = bx = xb.

But this implies that x− uxu∗ ∈ Ann(B,Aω), which shows that Ad(u) indeed acts
trivially on F (B,Aω). �

Notation 1.9. Let (α, u) : G � A be a cocycle action and ω a free filter on N. Then
in view of Remark 1.8, we may consider the induced map αω : G → Aut(Aω), g 	→
αω,g := (αg)ω. In general, this map is not point-norm continuous. So let

Aω,α = {x ∈ Aω | [g 	→ αω,g] is continuous}
be the C∗-subalgebra of elements in Aω on which this map acts continuously.

Remark 1.10. LetG be a second-countable, locally compact group. Let (α, u) : G �

A be a cocycle action. Assume that B ⊂ Aω is a C∗-subalgebra that is invariant
under multiplication with {u(s, t)}s,t∈G and under applying {αω,s}s∈G. Then it

follows from Remark 1.8 that the induced family of automorphisms {α̃ω,g}g∈G

defines a genuine G-action on F (B,Aω). However, this action will in general fail
to be point-norm continuous. We can thus consider the continuous part

Fα(B,Aω) = {x ∈ F (B,Aω) | [G � g 	→ α̃ω,g(x)] is continuous} .
Now let B be another C∗-algebra and (β, v) : G � B another cocycle action.
Assume that (A,α, u) and (B, β, v) are cocycle conjugate via an isomorphism ψ :
A → B. Then for every g ∈ G, the automorphisms βg and ϕ◦αg◦ϕ−1 agree up to an
inner automorphism, so their induced maps on Fω(B) are the same. In particular,
componentwise application of ϕ on representing sequences yields an equivariant
isomorphism (

Fω(A), α̃ω

) ∼=
(
Fω(B), β̃ω

)
.

Remark 1.11. If B ⊂ Aω is a C∗-subalgebra, then obviously

Ann(B,Aω) = Ann(B,M(A)ω) ∩Aω and Aω ∩B′ = (M(A)ω ∩B′) ∩ Aω.

So we have a natural embedding F (B,Aω) → F (B,M(A)ω). If B is σ-unital, then
this embedding is an isomorphism.

The same is true if we replace M(A) by Ã.

Proof. Let x̃ = x + Ann(B,M(A)ω) ∈ F (B,M(A)ω) for some x ∈ M(A)ω ∩ B′

be represented by a bounded sequence xn ∈ M(A). Since B is σ-unital, let h ∈ B
be a strictly positive element. Let h be represented by a bounded sequence (hn)n
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in A. Using that A is strictly dense in M(A), we choose elements yn ∈ A with
‖yn‖ ≤ ‖xn‖ satisfying

xnhn =1/n ynhn and hnxn =1/n hnyn for all n ∈ N.

For the resulting bounded sequence and its induced element y = [(yn)] ∈ Aω, we
thus have yh = xh and hy = hx. But since h is strictly positive in B, this implies
yb = xb and by = bx for all b ∈ B. In particular,

y ∈ Aω ∩B′ and bx = by for all b ∈ B.

But this means that x̃ = y + Ann(B,M(A)ω) ∈ F (B,M(A)ω) is in the image of
F (B,Aω) under the natural embedding. This shows our claim. �

Remark 1.12 (cf. [26, 1.9(1)+(4)]). For a C∗-algebraA, we denoteDω,A=A ·Aω ·A,
the hereditary C∗-subalgebra of Aω generated by A. Let B ⊂ A be a non-
degenerate C∗-subalgebra. Then one checks easily that for any y ∈ Aω ∩ B′, we
have yDω,A +Dω,Ay ⊂ Dω,A. By the universal property of the multiplier algebra,
we have a natural ∗-homomorphism

π : Aω ∩B′ → M(Dω,A), y 	→ [x 	→ yx].

The kernel coincides with Ann(B,Aω) by definition, and thus we get a natural
embedding

F (B,Aω) = (Aω ∩B′)/Ann(B,Aω) → M(Dω,A).

In particular, we can view F (B,Aω) as a subset of M(Dω,A) in a natural way.
Given d ∈ Dω,A and x ∈ F (B,Aω), we can multiply d · x = d · y for some element
y with π(y) = x. Analogously, the product x · d is well-defined, and both give
well-defined values in Dω,A ⊂ Aω.

Last, let us observe that the technique of Elliott intertwining (see [47, Chapter 2,
Section 3]) can be extended to the setting of equivariant ∗-homomorphisms between
C∗-dynamical systems.

Definition 1.13 (cf. [47, 2.3.1]). Let An and Bn be sequences of separable C∗-
algebras. Let G be a second-countable, locally compact group and for each n ∈ N,
let two actions α(n) : G � An and β(n) : G � Bn be given. Consider two
equivariant, inductive systems

{
(An, α

(n)), ϕn

}
and

{
(Bn, β

(n)), ψn

}
. Consider also

two sequences of ∗-homomorphisms κn : Bn → An and θn : An → Bn+1 fitting into
the (not necessarily commutative) diagram:

(e1.1) . . . �� An

θn

���
��

��
��

�
ϕn �� An+1

��

���
��

��
��

��
�

. . .

. . . �� Bn

κn

���������� ψn �� Bn+1

κn+1

�����������
�� . . .

Let us call diagram (e1.1) an approximate G-equivariant intertwining, if the fol-
lowing holds: There exist finite sets FA

n ⊂⊂An, F
B
n ⊂⊂Bn, increasing compact sets

Kn ⊂ G and δn > 0 satisfying:

(i) ϕn(a) =δn κn+1 ◦ θn(a) for all a ∈ FA
n ;

(ii) ψn(b) =δn θn ◦ κn(b) for all b ∈ FB
n ;

(iii) κn ◦ β(n)
g (b) =δn α

(n)
g ◦ κn(b) for all b ∈ FB

n and g ∈ Kn;

(iv) θn ◦ α(n)
g (a) =δn β

(n+1)
g ◦ θn(a) for all a ∈ FA

n and g ∈ Kn;
(v)

⋃
n∈N

Kn = G;
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(vi) κn(F
B
n ) ⊂ FA

n , ψn(F
B
n ), θn(F

A
n ) ⊂ FB

n+1 and ϕn(F
A
n ) ⊂ FA

n+1;

(vii)
⋃

m≥n ϕ
−1
n,m(FA

m) ⊂ An and
⋃

m≥n ψ
−1
n,m(FB

m) ⊂ Bn are dense for all n;

(viii)
∑

n∈N
δn < ∞.

Proposition 1.14 (cf. [47, 2.3.2]). Let the diagram (e1.1) describe an approx-
imate G-equivariant intertwining. Consider the G-equivariant limits (A,α) =

lim
−→

{(An, α
(n)), ϕn} and (B, β) = lim

−→
{(Bn, β

(n)), ψn}. Then the formulas

θ(ϕn,∞(a)) = lim
k→∞

(ψk+1,∞ ◦ θk ◦ ϕn,k)(a), a ∈ An,

and

κ(ψn,∞(b)) = lim
k→∞

(ϕk,∞ ◦ κk ◦ ψn,k)(b), b ∈ Bn,

define mutually inverse, equivariant isomorphisms θ : (A,α) → (B, β) and κ :
(B, β) → (A,α).

Proof. The fact that these formulas define mutually inverse isomorphisms between
A and B is proved in [47, 2.3.2]. Omitting the details, it is straightforward to
check that conditions (iii) to (viii) above imply that the maps θ and κ are in fact
G-equivariant. �

Definition 1.15. Let α : G � A and β : G � B be two actions of a second-
countable, locally compact group on separable C∗-algebras. Let ϕ1, ϕ2 : (A,α) →
(B, β) be two equivariant ∗-homomorphisms. The maps ϕ1, ϕ2 are called ap-
proximately G-unitarily equivalent, if there is a sequence vn ∈ U(M(B)) with

ϕ2 = limn→∞ Ad(vn) ◦ ϕ1 and βg(vn)− vn
str−→ 0 uniformly on compact subsets of

G. We denote ϕ1 ≈u,G ϕ2.

With the tool Proposition 1.14 at hand, we can obtain a G-equivariant analogue
of [47, 2.3.3]. Since the proof is virtually identical to the original proof in [47], let
us just record the result:

Corollary 1.16 (cf. [47, 2.3.3]). Let An, Bn be sequences of separable C∗-algebras.
Let G a second-countable, locally compact group and for each n ∈ N, let two
actions α(n) : G � An and β(n) : G � Bn be given. Consider two equivari-
ant, inductive systems

{
(An, α

(n)), ϕn

}
and

{
(Bn, β

(n)), ψn

}
with limits (A,α)

and (B, β), respectively. Consider two sequences of equivariant ∗-homomorphisms
κn : (Bn, β

(n)) → (An, α
(n)) and θn : (An, α

(n)) → (Bn+1, β
(n+1)) fitting into the

(not necessarily commutative) diagram:

. . . �� (An, α
(n))

θn

����
���

���
��

ϕn �� (An+1, α
(n+1)) ��

���
��

��
��

��
��

. . .

. . . �� (Bn, β
(n))

κn

�����������
ψn �� (Bn+1, β

(n+1))

κn+1

		�����������
�� . . .

Assume that θn ◦κn ≈u,G ψn and κn+1◦θn ≈u,G ϕn for all n ∈ N. Then there exist
mutually inverse, equivariant isomorphisms θ : (A,α) → (B, β) and κ : (B, β) →
(A,α) satisfying

θ ◦ ϕn,∞ ≈u,G ψn+1,∞ ◦ θn and κ ◦ ψn,∞ ≈u,G ϕn,∞ ◦ κn

for all n ∈ N.
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2. A one-sided intertwining argument

In the last section, we treated equivariant analogues of two-sided approximate
intertwining between inductive limits. However, certain one-sided versions are more
useful for McDuff-type absorption results. The following is an equivariant analogue
of a well-known lemma in Rørdam’s book [47].

A variant of the next lemma was shown by Matui, and we are grateful to him
for kindly allowing its inclusion in this paper.

Lemma 2.1 (cf. [47, 2.3.5]). Let G be a second-countable, locally compact group.
Let (α, u) : G � A and (β,w) : G � B be two cocycle actions on separable
C∗-algebras. Let ϕ : (A,α, u) → (B, β, w) be an injective, non-degenerate and
equivariant ∗-homomorphism. Assume the following:

For every ε > 0, compact subset K ⊂ G and finite subsets FA⊂⊂A,FB⊂⊂B, there
exists a unitary z ∈ U(M(B)) satisfying:

(2.1a) ‖[z, ϕ(a)]‖ ≤ ε for every a ∈ FA.
(2.1b) dist(z∗bz, ϕ(A)) ≤ ε for every b ∈ FB.
(2.1c) bβg(z) =ε bz for every g ∈ K and b ∈ FB.

Then ϕ is approximately multiplier unitarily equivalent to an isomorphism ψ : A →
B inducing strong cocycle conjugacy between (A,α, u) and (B, β, w).

If moreover z may always be chosen to be a unitary in B̃, then ϕ is approximately
unitarily equivalent to an isomorphism inducing strong cocycle conjugacy between
(A,α, u) and (B, β, w).

Proof. Let {an}n∈N
⊂ A and {bn}n∈N

⊂ B be dense sequences. Since G is σ-
compact, write G =

⋃
n∈N

Kn for an increasing union of compact subsets 1G ∈ Kn.
We are going to add unitaries to ϕ step by step:

In the first step, choose some a1,1 ∈ A and z1 ∈ U(M(B)) such that

• z∗1b1z1 =1/2 ϕ(a1,1),
• ‖[z1, ϕ(a1)]‖ ≤ 1/2,
• b1βg(z1) =1/2 b1z1 for all g ∈ K1.

In the second step, choose a2,1, a2,2 ∈ A and z2 ∈ U(M(B)) such that

• z∗2(z
∗
1bjz1)z2 =1/4 ϕ(a2,j) for j = 1, 2,

• ‖[z2, ϕ(aj)]‖ ≤ 1/4 for j = 1, 2,
• ‖[z2, ϕ(a1,1)]‖ ≤ 1/4,
• (bjz1)βg(z2) =1/4 (bjz1)z2 for all g ∈ K2 and j = 1, 2.

Now assume that for some n ∈ N, we have found z1, . . . , zn ∈ U(M(B)) and
{am,j}m,j≤n ⊂ A satisfying

(c1) z∗n(z
∗
n−1 · · · z∗1bjz1 · · · zn−1)zn =2−n ϕ(an,j) for j ≤ n,

(c2) ‖[zn, ϕ(aj)]‖ ≤ 2−n for j ≤ n,
(c3) ‖[zn, ϕ(am,j)]‖ ≤ 2−n for m < n and j < m,
(c4) (bjz1 · · · zn−1)βg(zn) =2−n (bjz1 · · · zn−1)zn for all g ∈ Kn and j ≤ n.

Then we can again apply our assumptions to find zn+1 ∈ U(M(B)) and
{an+1,j}j≤n+1 with

• z∗n+1(z
∗
n · · · z∗1bjz1 · · · zn)zn+1 =2−(n+1) ϕ(an+1,j) for j ≤ n+ 1,

• ‖[zn+1, ϕ(aj)]‖ ≤ 2−(n+1) for j ≤ n+ 1,

• ‖[zn+1, ϕ(am,j)]‖ ≤ 2−(n+1) for m < n+ 1 and j < n+ 1,
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• (bjz1 · · · zn)βg(zn+1) =2−(n+1) (bjz1 · · · zn)zn+1 for all g ∈ Kn+1 and j ≤
n+ 1.

Carry on inductively. Then we define ψn : A → B by the formula ψn = Ad(z1 · · · zn)
◦ ϕ. Now let us observe a number of facts:

By condition (c2), the sequence (ψn(aj))n∈N is Cauchy for all j ∈ N. Since the aj
are dense, this implies that the ψn converge to some ∗-homomorphism ψ : A → B
in the point-norm topology. Then ψ is clearly approximately multplier unitarily
equivalent to ϕ.

By condition (c3), we have for every n ∈ N and j ≤ n the estimate

‖ψ(an,j)− ψn(an,j)‖ ≤
∞∑

k=n+1

2−k = 2−n.

Combined with condition (c1), we have for every n ∈ N and j ≤ n that

‖bj − ψ(an,j)‖ ≤ 2−n + ‖bj − ψn(an,j)‖ ≤ 2−n + 2−n = 21−n.

Since the {bj}j ⊂ B are dense, it follows that ψ(A) is dense, hence ψ is surjective.

Since it is also injective, it is an isomorphism.
By condition (c4), we have that the sequences bj ·z1 · · · znβg

(
z∗n · · · z∗1

)
are Cauchy

sequences for every j ∈ N and g ∈ G, with uniformity on compact sets. Since the
bj form a dense subset of B by choice, it follows that every sequence of functions of
the form [g 	→ b · z1 · · · znβg(z

∗
n · · · z∗1)] (for b ∈ B) converges uniformly on compact

sets. Since β is point-norm continuous, it follows that the functions

g 	→ βg

(
βg−1(b)∗ · z1 · · · znβg−1(z∗n · · · z∗1)

)∗
= z1 · · · znβg(z

∗
n · · · z∗1) · b

must also converge uniformly on compact sets of G, for every b ∈ B.
Denote xn = z1 · · · zn. It follows that the strict limit vg = limn→∞ xnβg(x

∗
n)

exists for every g ∈ G, and that this convergence is uniform on compact subsets of
G. In particular, the assignment g 	→ vg ∈ U(M(B)) is strictly continuous.

We calculate for each g ∈ G that

ψ ◦ αg = lim
n→∞

Ad(xn) ◦ ϕ ◦ αg

= lim
n→∞

Ad(xn) ◦ βg ◦ ϕ
= lim

n→∞
Ad(xn) ◦ βg ◦Ad(x∗

n) ◦Ad(xn) ◦ ϕ
= lim

n→∞
Ad(xnβg(x

∗
n)) ◦ βg ◦Ad(xn) ◦ ϕ

= Ad(vg) ◦ βg ◦ ψ.
Keeping in mind that ϕ, ψn : A → B are non-degenerate, we may consider the
unique, strictly continuous extentions ϕ, ψn : M(A) → M(B). Observe that we

have convergence ψn(m)
str−→ ψ(m) for every m ∈ M(A): Given some b ∈ B and

δ > 0, if we choose n large enough such that ψn(m · ψ−1(b)) =δ ψ(m · ψ−1(b)) =
ψ(m)b and b =δ ψn(ψ

−1(b)), then we get

ψn(m)b =δ ψn(m) · ψn(ψ
−1(b)) = ψn(m · ψ−1(b)) =δ ψ(m) · b.

In particular, we see that

xnw(s, t)x
∗
n = xnϕ(u(s, t))x

∗
n = ψn(u(s, t))

str−→ ψ(u(s, t))

for every s, t ∈ G.
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Using this, let us now observe for every s, t ∈ G that

vsβs(vt)w(s, t)v
∗
st = str−lim

n→∞
xnβs(x

∗
n)βs(xnβt(x

∗
n))w(s, t)(xnβst(x

∗
n))

∗

= str−lim
n→∞

xn(βs ◦ βt)(x
∗
n) w(s, t)βst(xn)︸ ︷︷ ︸

=(βs◦βt)(xn)w(s,t)

x∗
n

= str−lim
n→∞

xnw(s, t)x
∗
n = ψ(u(s, t)).

This finishes the proof of the first statement. However, reviewing the proof, it is
clear that if zn may always be chosen to be in B̃, then ϕ is approximately unitarily
equivalent to ψ. So the second statement follows as well. �

For the next few results, recall the conventions introduced in Remark 1.8:

Lemma 2.2. Let G be a second-countable, locally compact group. Let (α, u) : G �

A and (β,w) : G � B be two cocycle actions. Let ϕ : (A,α, u) → (B, β, w) be a
non-degenerate and equivariant ∗-homomorphism.

Let x ∈ M(B)∞ ∩ ϕ(A)′ with the property that the map [g 	→ ϕ(a) · β∞,g(x)]
is continuous for all a ∈ A. Let (xn)n ∈ �∞(N,M(B)) be a bounded sequence
representing x. Then for every g0 ∈ G, b ∈ B and δ > 0, there exists � ∈ N and an
open neighbourhood U of g0 such that

sup
k≥�

sup
g∈U

‖b(βg(xk)− βg0(xk))‖ ≤ δ.

Proof (see Note added in proof, p. 128). Since ϕ(A) ⊂ B is assumed to be a non-
degenerate subalgebra, it suffices to show the assertion for all b ∈ ϕ(A).

We are going to apply a Baire category argument in the spirit of [13, 1.8]. How-
ever, we first make a few basic observations concerning cocycle action formulas in
general. For g ∈ G, the cocycle identity of u implies

Ad(w(g−1, g)) = Ad(w(g−1, g)) ◦ β1 = βg−1 ◦ βg.

In particular, we have β−1
g = Ad(w(g−1, g)∗) ◦ βg−1 for every g ∈ G. If now g0 ∈ G

is a possibly different group element, then this implies

β−1
g ◦ βg0 = Ad(w(g−1, g)∗) ◦ βg−1 ◦ βg0 = Ad(w(g−1, g)∗w(g−1, g0)) ◦ βg−1g0 .

Now let us prove the assertion. Let g0 ∈ G, a ∈ A and δ > 0 be given. Without
loss of generality, assume that all of x, the elements xk and a are contractions.
Recall that β : G → Aut(B) is point-norm continuous. Hence let us find a compact
neighbourhood V1 = V −1

1 � 1G of the unit such that

(e2.1) βg(ϕ(α
−1
g0 (a))) =δ ϕ(α−1

g0 (a))

for all g ∈ V1.
Recall that u : G×G → M(A) is strictly continuous. So as V1 is compact, the

set

KA =
{
(αg0 ◦ αg1 ◦ αg2)

−1
(
a · u(g0, g1g2)∗αg0

(
u(g1, g2)

∗)) | g1, g2 ∈ V1

}

is compact in A. By equivariance of ϕ, this means that the set

KB =
{
(βg0 ◦ βg1 ◦ βg2)

−1
(
ϕ(a) · w(g0, g1g2)∗βg0

(
w(g1, g2)

∗)) | g1, g2 ∈ V1

}
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is equal to ϕ(KA) and thus compact in ϕ(A). Since x ∈ M(B)∞ ∩ ϕ(A)′, we can
find some �0 ∈ N such that

‖[xk, d]‖ ≤ δ for all k ≥ �0 and d ∈ KB .

So if d ∈ KB is an element of the above form, one may apply (βg0 ◦ βg1 ◦ βg2) to
this commutator and obtain that

(e2.2)
∥∥∥
[
ϕ(a) · w(g0, g1g2)∗βg0

(
w(g1, g2)

∗), (βg0 ◦ βg1 ◦ βg2)(xk)
]∥∥∥ ≤ δ

for all g1, g2 ∈ V1 and k ≥ �0.
By the continuity assumption on x, we can find a neighbourhood V = V −1 of

1G ∈ G such that

(e2.3) ‖ϕ(α−1
g0 (a))(βω,g(x)− x)‖ = lim sup

n→∞
‖ϕ(α−1

g0 (a))(βg(xn)− xn)‖ ≤ δ

for all g ∈ V . In other words, we have

inf
�∈N

sup
n≥�

‖ϕ(α−1
g0 (a))(βg(xn)− xn)‖ ≤ δ

for all g ∈ V . For every � ∈ N, we define

(e2.4) W� =
{
g ∈ G

∣∣ ‖ϕ(α−1
g0 (a))(βg(xk)− xk)‖ ≤ 2δ for all k ≥ �

}
.

As the extension of β to a map from G to Aut(M(B)) is strictly continuous, these
sets are closed subsets ofG. By (e2.3), it follows that the countable union

⋃
�∈N

W�∩
W−1

� contains the neighbourhood V ∩V1 of the unit. By local compactness of G, it

follows from the Baire category theorem that there exists � ≥ �0 such thatW�∩W−1
�

contains an open subset of V1. Then U0 = (V1 ∩W� ∩W−1
� )−1 · (V1 ∩W� ∩W−1

� ) is

a neighbourhood of the unit. We then have for every g1, g2 ∈ V1 ∩W� ∩W−1
� and

all k ≥ �

ϕ(a) · βg0g
−1
1 g2

(xk)

= ϕ(a)
(
Ad(w(g0, g

−1
1 g2)

∗) ◦ βg0 ◦ βg−1
1 g2

(xk)
)

= ϕ(a)
(
Ad

(
w(g0, g

−1
1 g2)

∗ · βg0(w(g
−1
1 , g2)

∗)
)
◦ βg0 ◦ βg−1

1
◦ βg2(xk)

)
(e2.2)
=δ (βg0 ◦ βg−1

1
◦ βg2)(xk) · ϕ(a)

(e2.2)
=δ ϕ(a) · (βg0 ◦ βg−1

1
◦ βg2)(xk)

= βg0

(
ϕ(α−1

g0 (a)) · (βg−1
1

◦ βg2)(xk)
)

(e2.1)
=δ (βg0 ◦ βg−1

1
)
(
ϕ(α−1

g0 (a)) · βg2(xk)
)

(e2.4)
=2δ (βg0 ◦ βg−1

1
)
(
ϕ(α−1

g0 (a)) · xk

)
(e2.1)
=δ βg0

(
ϕ(α−1

g0
(a)) · βg−1

1
(xk)

)
(e2.4)
=2δ βg0

(
ϕ(α−1

g0 (a)) · xk

)
= ϕ(a) · βg0(xk).

In particular, if we set U = g0 · U0, then this shows

sup
k≥�

sup
g∈U

‖ϕ(a) ·
(
βg0(xk)− βg(xk)

)
‖ ≤ 8δ.

As g0 ∈ G and δ > 0 are arbitrary, this finishes the proof. �



112 GÁBOR SZABÓ

Lemma 2.3. Let G be a second-countable, locally compact group. Let (α, u) : G �

A and (β,w) : G � B be two cocycle actions. Let ϕ : (A,α, u) → (B, β, w) be a
non-degenerate and equivariant ∗-homomorphism. Let z ∈ M(B)∞ ∩ ϕ(A)′ be an
element such that [g 	→ ϕ(a)β∞,g(z)] is continuous for every a ∈ A. Let ε > 0,
K ⊂ G a compact set and assume that ‖ϕ(a)(z − β∞,g(z))‖ ≤ ε for all g ∈ K and
a ∈ A with ‖a‖ ≤ 1. If (zn)n is a bounded sequence representing z, then

lim sup
n→∞

max
g∈K

‖b(zn − βg(zn))‖ ≤ ε

for all b ∈ B with ‖b‖ ≤ 1.

Proof. Given any b ∈ B, ‖b‖ ≤ 1, δ > 0 and g0 ∈ K, we can apply Lemma 2.2 and
find �0 ∈ N and a neighbourhood U � g0 such that

sup
k≥�0

sup
g∈U

‖b(βg0(zk)− βg(zk)‖ ≤ δ.

By compactness of K, we can find N ∈ N, elements {gj}Nj=1 ⊂ K and a covering

K ⊂
⋃N

j=1 Uj with gj ∈ Uj and some � ∈ N such that

sup
k≥�

sup
g∈Uj

‖b(βgj (zk)− βg(zk)‖ ≤ δ

for all j = 1, . . . , N . Since ϕ(A) is non-degenerate in B, it follows from our as-
sumptions on z that ‖b(β∞,gj (z) − z)‖ ≤ ε for all j = 1, . . . , N . By enlarging �, if
necessary, we can thus assume that

sup
k≥�

‖b(zk − βgj (zk))‖ ≤ ε

for all j = 1, . . . , N . So if g ∈ K is arbitrary, then there is some j with g ∈ Uj , and
so

‖b(βg(zk)− zk)‖ ≤ ‖b(βgj (zk)− βg(zk)‖+ ‖b(zk − βgj (zk))‖ ≤ δ + ε

for all k ≥ �. Since δ and b were chosen arbitrary, this finishes the proof. �

Remark 2.4. By inserting b = 1B in Lemma 2.3, we obtain the following unital
variant:

Let B be unital and let z ∈ B∞ ∩ A′ be an element such that [g 	→ β∞,g(z)] is
continuous. Let ε > 0, K ⊂ G a compact set and assume that ‖z − β∞,g(z)‖ ≤ ε
for all g ∈ K. If (zn)n is a bounded sequence representing z, then

lim sup
n→∞

max
g∈K

‖zn − βg(zn)‖ ≤ ε.

Definition 2.5 (cf. [19, Section 6] and [12, 2.3]). Let γ : G � D be an action of
a second-countable, locally compact group on a separable, unital C∗-algebra. We
say that the action γ (or the system (D, γ)) has approximately G-inner half-flip, if
the two equivariant ∗-homomorphisms idD ⊗1,1 ⊗ idD : (D, γ) → (D ⊗D, γ ⊗ γ)
are approximately G-unitarily equivalent.

We are now going to prove an equivariant McDuff-type absorption result in the
unital case, modelling the well-known McDuff-type results [47, 7.2.2], [50, 2.3] or
[26, 4.11] from the non-equivariant setting. We note that the result given below is
folklore for discrete acting groups, and was already used by Izumi-Matui in [19, 6.3],
Goldstein-Izumi in [12, 2.3] and Matui-Sato in [39, 4.8] and [40, proof of 4.9].
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Theorem 2.6. Let A and D be separable, unital C∗-algebras and G a second-
countable, locally compact group. Assume that (α, u) : G � A is a cocycle action.
Let γ : G � D be an action with approximately G-inner half-flip. If there exists an
equivariant and unital ∗-homomorphism

(D, γ) → (A∞,α ∩A′, α∞),

then (A,α, u) is strongly cocycle conjugate to (D ⊗A, γ ⊗ α,1D ⊗ u).

Proof. Consider the canonical unital ∗-homomorphisms

(A∞ ∩A′)⊗max A → A∞, x⊗ a 	→ x · a.
Note that this is (α∞ ⊗ α)-to-α∞ equivariant. This induces another unital and
equivariant ∗-homomorphism (disregarding the cocycles for now)(

D ⊗ (A∞,α ∩ A′)⊗max A, γ ⊗ α∞ ⊗ α
)
→

(
(D ⊗A)∞,γ⊗α, (γ ⊗ α)∞

)
via d⊗ x⊗ a 	→ d⊗ (x · a) ∈ D ⊗ (A∞,α) ⊂ (D ⊗ A)∞,γ⊗α. By our assumption, it
follows that there is a unital and equivariant ∗-homomorphism

Φ :
(
D ⊗D ⊗A, γ ⊗ γ ⊗ α) →

(
(D ⊗A)∞,γ⊗α, (γ ⊗ α)∞

)
with Φ(d⊗ 1D ⊗ a) = d ⊗ a for all a ∈ A and d ∈ D, and with Φ(1D ⊗D ⊗ A) ⊂
1D ⊗ A∞. Since (D, γ) has approximately G-inner half-flip, choose a sequence
vn ∈ D ⊗D with maxg∈K ‖vn − (γ ⊗ γ)g(vn)‖ → 0 for every compact K ⊂ G, and
v∗n(d⊗1D)vn → 1D⊗d for all d ∈ D. The sequence of unitaries un = Φ(vn⊗1A) ∈
(D ⊗A)∞,γ⊗α then satisfies:

• [un,1D ⊗ a] = Φ([vn ⊗ 1A,1D⊗D ⊗ a]) = 0 for all a ∈ A;
• u∗

n(d⊗a)un = Φ
(
(vn⊗1A)(d⊗1D⊗a)(v∗n⊗1A)

)
→ Φ(1⊗d⊗a) ∈ 1D⊗A∞

for all a ∈ A and d ∈ D;
• ‖un − (γ ⊗α)∞,g(un)‖ = ‖Φ

(
(vn − (γ ⊗ γ)g(vn))⊗ 1A

)
‖ → 0 for all g ∈ G,

and uniformly on compact sets.

Lifting each un to a sequence of unitaries (u
(n)
k )k ∈ �∞(N, D ⊗ A) and applying a

diagonal sequence argument using Remark 2.4, we can find a sequence of unitaries

zn = u
(n)
kn

∈ D ⊗A satisfying:

• [zn,1D ⊗ a] → 0 for all a ∈ A;
• dist(z∗n(d⊗ a)zn,1⊗A) → 0 for all a ∈ A and d ∈ D;
• maxg∈K ‖zn − (γ ⊗ α)g(zn)‖ → 0 for all compact K ⊂ G.

In particular, we have met the conditions of (2.1a), (2.1b) and (2.1c) for the equi-
variant embedding 1D ⊗ idA : (A,α, u) → (D⊗A, γ⊗α,1D ⊗ u). This finishes the
proof. �

Remark. In the non-equivariant situation, a suitable replacement for A∞ ∩ A′ in
Theorem 2.6 can be M(A)∞ ∩ A′ to cover the non-unital case; see [47, 7.2.2]. In
the equivariant case, the above result, Theorem 2.6, can be shown to generalize
with using this C∗-algebra, but only if α is assumed to be a genuine action. If
(α, u) : G � A is a cocycle action with non-trivial cocycles, then M(A)∞ ∩ A′

might not be the right object to consider, since α does not necessarily induce a
genuine action on this C∗-algebra. The more current (non-equivariant) McDuff
type theorems for strongly self-absorbing C∗-algebras [50, 2.3] and [26, 4.1] shift
away from considering M(A)∞ ∩ A′ in the non-unital case, in order to instead
consider (either implicitly or explicitly) its quotient C∗-algebra F∞(A). As seen in
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Remark 1.8, a cocycle action on A gives rise to a genuine action on F∞(A) in a
natural way, thus indicating that F∞(A) is the more natural object to look at.

Both in [50] and [26], the cost of working with F∞(A) in the non-unital case is
that one has to use a strengthened version of an approximate inner half-flip, which
essentially gives rise to all the K1-injectivity assumptions in both sources (however,
we note that K1-injectivity later turned out to be redundant by virtue of [52]).
In the next section, we are going to generalize this approach to the equivariant
situation, and prove an optimal McDuff-type theorem by considering equivariant
embeddings into F∞(A).

3. Strongly self-absorbing C∗
-dynamical systems

In this section, we will introduce strongly self-absorbing actions and generalize
some partial results from the seminal work of Toms and Winter [50] on strongly
self-absorbing C∗-algebras.

Definition 3.1. Let D be a separable, unital C∗-algebra and G a second-countable,
locally compact group. Let γ : G � D be a point-norm continuous action. We say
that (D, γ) is a strongly self-absorbing C∗-dynamical system, or that γ is a strongly
self-absorbing action, if the equivariant first-factor embedding

idD ⊗1D : (D, γ) → (D ⊗D, γ ⊗ γ)

is approximately G-unitarily equivalent to an isomorphism.

Example 3.2. Let G be a second-countable, locally compact group and D a
strongly self-absorbing C∗-algebra. Then the trivial G-action on D is a strongly
self-absorbing action.

Remark. Trivially, any two equivariant ∗-homomorphisms, which are approximately
G-unitarily equivalent, are also approximately unitarily equivalent as ordinary ∗-
homomorphisms. So if (D, γ) is a strongly self-absorbing C∗-dynamical system,
then D must be a strongly self-absorbing C∗-algebra; see [50].

We now make some important observations concerning strongly self-absorbing
actions on the one hand, and actions with approximately G-inner half-flip on the
other hand. This mimics the situation in the non-equivariant case [50]:

Proposition 3.3 (cf. [50, 1.9(ii)]). Let D be a separable, unital C∗-algebra. Let
γ : G � D be an action with approximately G-inner half-flip. Then the infinite
tensor power (

⊗
N
D,

⊗
N
γ) is strongly self-absorbing.

Proof. For each k ∈ N, let

ιk = idD⊗2k ⊗1⊗2k

D : D⊗2k → D⊗2k ⊗D⊗2k = D⊗2k+1

be the first-factor embedding. Consider the following equivariant inductive sys-

tem: {(D⊗2k , γ⊗2k), ιk}. The limit of this system is, by definition, the system

(
⊗

N
D,

⊗
N
γ). Denote by ιk,∞ : (D⊗2k , γ⊗2k) → (

⊗
N
D,

⊗
N
γ) the embedding

into the limit for every k ∈ N. The tensor product of this system with itself is then
given by the limit

lim
−→

{
(D⊗2k ⊗D⊗2k , γ⊗2k ⊗ γ⊗2k), ιk ⊗ ιk

}
.
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Consider the two equivariant ∗-homomorphisms

ιk ⊗ ιk, ιk+1 :
(
(D⊗2k)⊗2, (γ⊗2k)⊗2

)
→

(
(D⊗2k)⊗4, (γ⊗2k)⊗4

)
.

Then we see ιk+1 = σ2,3 ◦ (ιk ⊗ ιk), where σ2,3 is the automorphism on (D⊗2k)⊗4

that flips the second and the third tensor factors. Since (D, γ) has approximately

G-inner half-flip, so has (D, γ)⊗2k . It follows that

ιk+1 = id⊗ id⊗1⊗ 1 ≈u,G id⊗1⊗ id⊗1 = ιk ⊗ ιk.

From Corollary 1.16, we can thus deduce that there exists an isomorphism

ϕ : (
⊗
N

D,
⊗
N

γ) → (
⊗
N

D,
⊗
N

γ)⊗2,

with ϕ ◦ ιk+1,∞ ≈u,G ιk,∞⊗ ιk,∞ for all k ∈ N. By repeating the same argument as
before, we see that ιk,∞ ⊗ ιk,∞ ≈u,G ιk+1,∞ ⊗ 1⊗∞

D for all k ∈ N. But this implies
that ϕ is approximately G-unitarily equivalent to the first-factor embedding, which
verifies that the system (

⊗
N
D,

⊗
N
γ) is strongly self-absorbing. �

Proposition 3.4 (cf. [50, 1.10(iv), 1.5, 1.12]). Let (D, γ) be a strongly self-absorbing
C∗-dynamical system. Then:

(i) (D, γ) is conjugate to its infinite tensor power (
⊗

N
D,

⊗
N
γ).

(ii) (D, γ) has approximately G-inner half-flip.
(iii) Let (A,α) be a C∗-dynamical system on a unital C∗-algebra such that (A,α)

is cocycle conjugate to (A ⊗ D, α ⊗ γ). Then any two equivariant, unital
∗-homomorphisms from (D, γ) to (A,α) are approximately G-unitarily equiv-
alent.

Proof. Let us show (i). For each k ∈ N, let ιk = idD⊗k ⊗1D : D⊗k → D⊗k+1 be
the first-factor embedding. Let ϕ : (D, γ) → (D ⊗ D, γ ⊗ γ) be an isomorphism
with ϕ ≈u,G ι1. Consider the two (equivariant) inductive systems

{
(D⊗k, γ⊗k), ιk

}
and

{
(D⊗k, γ⊗k), idD⊗k−1 ⊗ϕ

}
. The limit of the first inductive system is precisely

(
⊗

N
D,

⊗
N
γ). The limit of the second inductive system is conjugate to its first

building block (D, γ) because each connecting map is an isomorphism. Now because
of

ιk = idD⊗k−1 ⊗ι1 ≈u,G idD⊗k−1 ⊗ϕ

for each k, it follows from Corollary 1.16 that (D, γ) and (
⊗

N
D,

⊗
N
γ) are conju-

gate.
In order to show (ii), one carries out Toms and Winter’s original proof from

the non-equivariant case [50, 1.5] verbatim, only replacing approximate unitary
equivalence by approximate G-unitary equivalence.

Let us show (iii). Let ϕ1, ϕ2 : (D, γ) → (A,α) be two equivariant, unital ∗-
homomorphisms. Since (A,α) is cocycle conjugate to (A ⊗ D, α ⊗ γ), it follows
from (i) that we can find a unital ∗-homomorphism ψ : (D, γ) → (A∞,α ∩ A′, α∞).
This induces two equivariant ∗-homomorphisms

κ1, κ2 : (D ⊗D, γ ⊗ γ) → (A∞,α, α∞) via κj(a⊗ b) = ϕj(a) · ψ(b), j = 1, 2.

By (ii), we know that (D, γ) has approximately G-inner half-flip. Let K ⊂ G be
compact, F⊂⊂D and ε > 0. There exists a unitary v ∈ U(D ⊗D) with

v(a⊗ 1)v∗ =ε 1⊗ a and v =ε (γ ⊗ γ)g(v)
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for all a ∈ F and g ∈ K. The unitary w = κ2(v
∗) · κ1(v) ∈ U(A∞,α) is then a

continuous element under α∞, and satisfies

α∞,g(w) =2ε w

and
wϕ1(a)w

∗ = κ2(v
∗)κ1(v)κ1(a⊗ 1)κ1(v

∗)κ2(v)
= κ2(v

∗)κ1

(
v(a⊗ 1)v∗

)
κ2(v)

=ε κ2(v
∗)κ1(1⊗ a)κ2(v)

= κ2(v
∗)κ2(1⊗ a)κ2(v)

= κ2

(
v∗(1⊗ a)v

)
=ε κ2(a⊗ 1) = ϕ2(a)

for all g ∈ K and a ∈ F . Representing w by a sequence of unitaries in A, we can
apply Remark 2.4 (with A in place of B and C in place of A) and find a unitary
z ∈ U(A) satisfying

αg(z) =3ε z and zϕ1(a)z
∗ =3ε ϕ2(a)

for all g ∈ K and a ∈ F . As K,F, ε are arbitrary, we have ϕ1 ≈u,G ϕ2. �

Proposition 3.5 (cf. [50, 1.13]). Let (D, γ) be a strongly self-absorbing C∗-
dynamical system. Then there exist sequences of unitaries un, vn ∈ U(D ⊗ D)
satisfying

max
g∈K

(
‖un − (γ ⊗ γ)g(un)‖+ ‖vn − (γ ⊗ γ)g(vn)‖

)
n→∞−→ 0

for every compact set K ⊂ G and

Ad(unvnu
∗
nv

∗
n)(d⊗ 1D)

n→∞−→ 1D ⊗ d

for all d ∈ D.

Proof. Let K ⊂ G be a compact subset and ε > 0. Applying Proposition 3.4(i),
we may replace (D, γ) by its infinite tensor power. So let k ∈ N be a number and
F⊂⊂D⊗k a finite set consisting of contractions. By Proposition 3.4(ii), we know that
(D, γ), and hence all of its tensorial powers, have approximately G-inner half-flip.
So choose a unitary ũ ∈ U(D⊗k ⊗D⊗k) with

max
g∈K

‖ũ− (γ⊗k ⊗ γ⊗k)g(ũ)‖ ≤ ε and ũ(a⊗ 1⊗k
D )ũ∗ =ε 1

⊗k
D ⊗ a

for all a ∈ F . Applying approximately G-inner half-flip again, find a unitary
ṽ ∈ U(D⊗2k ⊗D⊗2k) with

max
g∈K

‖ṽ − (γ⊗2k ⊗ γ⊗2k)g(ṽ)‖ ≤ ε and ṽ(ũ∗ ⊗ 1⊗2k
D )ṽ∗ =ε 1

⊗2k
D ⊗ ũ∗.

This yields

(ũ⊗ 1⊗2k
D )ṽ(ũ⊗ 1⊗2k

D )∗ṽ∗(a⊗ 1⊗3k
D )

[
(ũ⊗ 1⊗2k

D )ṽ(ũ⊗ 1⊗2k
D )∗ṽ∗

]∗
=2ε (ũ⊗ ũ∗)(a⊗ 1⊗3k

D )(ũ⊗ ũ∗)

=
(
ũ(a⊗ 1⊗k

D )ũ
)
⊗ 1⊗2k

D
=ε (1⊗k

D ⊗ a)⊗ 1⊗2k
D

for all a ∈ F . If now σ2,3 ∈ Aut((D⊗k)⊗4) is the (equivariant) automorphism that

flips the second a third tensorial factor, then the unitaries u = σ2,3(ũ⊗ 1⊗2k
D ) and



STRONGLY SELF-ABSORBING C∗-DYNAMICAL SYSTEMS 117

v = σ2,3(ṽ) satisfy

Ad(uvu∗v∗)
(
(a⊗ 1⊗k

D )⊗ 1⊗2k
D

)

= σ2,3

(
(ũ⊗ 1⊗2k

D )ṽ(ũ⊗ 1⊗2k
D )∗ṽ∗(a⊗ 1⊗3k

D )
[
(ũ⊗ 1⊗2k

D )ṽ(ũ⊗ 1⊗2k
D )∗ṽ∗

]∗)

=3ε σ2,3

(
(1⊗k

D ⊗ a)⊗ 1⊗2k
D

)
= 1⊗2k

D ⊗ (a⊗ 1⊗k
D )

for all a ∈ F . Since k, F,K, ε are arbitrary, this shows our claim. �

In particular, this means that in strongly self-absorbing C∗-dynamical systems,
the approximate G-inner half-flip may be chosen to be implemented by unitaries
representing the zero-class in K1, similarly as in [50]. By K1-injectivity of strongly
self-absorbing C∗-algebras, which follows from [20, 52], we get the following conse-
quence.

Corollary 3.6 (cf. [20] and [52, 3.1, 3.3]). Let (D, γ) be a strongly self-absorbing
C∗-dynamical system. Then there exists a sequence of unitaries vn ∈ U0(D ⊗ D)
satisfying

max
g∈K

‖vn − (γ ⊗ γ)g(vn)‖
n→∞−→ 0

for every compact set K ⊂ G and

vn(d⊗ 1D)v
∗
n

n→∞−→ 1D ⊗ d

for all d ∈ D.

The following constitutes the main result of this paper.

Theorem 3.7. Let G be a second-countable, locally compact group. Let A be a
separable C∗-algebra and (α, u) : G � A a cocycle action. Let D be a separable,
unital C∗-algebra and let γ : G � D be an action such that (D, γ) is strongly
self-absorbing. The following are equivalent:

(i) (A,α, u) is strongly cocycle conjugate to (A⊗D, α⊗ γ, u⊗ 1D).
(ii) (A,α, u) is cocycle conjugate to (A⊗D, α⊗ γ, u⊗ 1D).
(iii) There exists a unital, equivariant ∗-homomorphism from (D, γ) to(

F∞,α(A), α̃∞
)
.

(iv) The first-factor embedding idA ⊗1D : (A,α, u) → (A ⊗ D, α ⊗ γ, u ⊗ 1D) is
approximately unitarily equivalent to an isomorphism inducing strong cocycle
conjugacy.

Proof. The implications from (iv) to (i) and from (i) to (ii) are trivial. The impli-
cation from (ii) to (iii) follows from Proposition 3.4(i) with Remark 1.10. So we
need to verify the implication from (iii) to (iv).

Keeping in mind Remark 1.11, we have a natural isomorphism

F (1D ⊗A, (D ⊗A)∞) ∼= F (1D ⊗A,
(
(D ⊗A)∼

)
∞).

Denote by π :
(
(D⊗A)∼

)
∞∩ (1D ⊗A)′ → F (1D ⊗A, (D⊗A)∞) the canonical sur-

jection. Note that by assumption, we have an equivariant, unital ∗-homomorphism
from (D, γ) to F∞,α(A). Consider the canonical inclusions

F∞(A), D ⊂ F (1D ⊗A, (D ⊗A)∞),
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which define commuting C∗-subalgebras. Since these inclusions are natural, they
are equivariant with respect to the induced actions of α, γ and γ⊗α. By assumption,
it follows that we have a unital and equivariant ∗-homomorphism

ϕ : (D ⊗D, γ ⊗ γ) →
(
Fγ⊗α(1D ⊗A, (D ⊗A)∞), (γ ⊗ α)∼∞

)
satisfying ϕ(d ⊗ 1D) · (1D ⊗ a) = d ⊗ a and ϕ(1D ⊗ d) · (1D ⊗ a) ∈ 1D ⊗ A∞ for
all a ∈ A and d ∈ D. (Note that forming these products makes sense because of
Remark 1.12.)

Now let ε > 0, F1⊂⊂D, F2⊂⊂A and K ⊂ G compact. Without loss of generality,
assume that F1 and F2 consist of contractions. Since (D, γ) has approximately
G-inner half-flip, choose a unitary v ∈ D ⊗D with

max
g∈K

‖v − (γ ⊗ γ)g(v)‖ ≤ ε and v∗(d⊗ 1D)v =ε 1D ⊗ d

for all d ∈ F1. Moreover, because of Corollary 3.6, we may assume that v is
homotopic to 1D⊗D in U(D ⊗D).

The unitary u = ϕ(v) ∈ Fγ⊗α(1D ⊗A, (D ⊗A)∞) then satisfies

u∗(d⊗ a)u = ϕ(v(d⊗ 1D)v
∗) · (1D ⊗ a) =ε ϕ(1D ⊗ d) · (1D ⊗ a) ∈ 1D ⊗A∞

for all a ∈ A with ‖a‖ ≤ 1 and d ∈ F1, and moreover

‖u− (γ ⊗ α)∼∞,g(u)‖ ≤ ‖v − (γ ⊗ γ)g(v)‖ ≤ ε

for all g ∈ K.
Let z ∈

(
(D ⊗ A)∼

)
∞ ∩ (1D ⊗ A)′ be an element with u = π(z). Since we have

chosen v to be homotopic to 1D⊗D, u is also homotopic to 1 in F
(
1D⊗A, (D⊗A)∞

)
,

and therefore we can choose the lift z = [(zn)n] to be represented by a sequence
of unitaries. Note that u is a continuous element with respect to (γ ⊗ α)∼∞, so it
follows that [g 	→ (1D⊗a) ·(γ⊗α)∞,g(z)] is a continuous map on G for every a ∈ A.
Moreover, because of the properties of u, we have

dist(z∗(d⊗ a)z,1D ⊗A∞) ≤ ε

for all a ∈ A with ‖a‖ ≤ 1 and d ∈ F1, and moreover

‖(1D ⊗ a)
(
z − (γ ⊗ α)∞,g(z)

)
‖ ≤ ε

for all g ∈ K and a ∈ A with ‖a‖ ≤ 1.
Let zn ∈ (D ⊗ A)∼ be a bounded sequence representing z. Using Lemma 2.3,

there is some n with

• ‖[zn,1D ⊗ a]‖ ≤ ε for all a ∈ F2;
• dist(z∗n(d⊗ a)zn,1D ⊗A) ≤ 2ε for all d ∈ F1 and a ∈ F2;
• maxg∈K ‖zn − (γ ⊗ α)g(zn)‖ ≤ 2ε.

So we have met the conditions of (2.1a), (2.1b) and (2.1c) for the equivariant
embedding 1D⊗idA : (A,α, u) → (D⊗A, γ⊗α,1D⊗u). This finishes the proof. �

Corollary 3.8. Let G be a second-countable, locally compact group. Let A be a
separable C∗-algebra and (α, u) : G � A a cocycle action. Let D be a strongly
self-absorbing C∗-algebra. The following are equivalent:

(i) (A,α, u) is strongly cocycle conjugate to (A⊗D, α⊗ idD, u⊗ 1D).
(ii) (A,α, u) is cocycle conjugate to (A⊗D, α⊗ idD, u⊗ 1D).
(iii) There exists a unital, equivariant ∗-homomorphism from D to the fixed point

algebra F∞,α(A)α̃∞ .
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(iv) The first-factor embedding idA ⊗1D : (A,α, u) → (A⊗D, α⊗ idD, u⊗ 1D) is
approximately unitarily equivalent to an isomorphism inducing strong cocycle
conjugacy.

We finish this section with an example that illustrates how for non-compact
acting groups, our main result, Theorem 3.7, cannot be strengthened to characterize
tensorial absorption with respect to conjugacy:

Example 3.9. Let θ ∈ (0, 1) be an irrational number. Consider the Cuntz algebra
O2 (see [6]) with the two canonical generators s1, s2 ∈ O2. Let the automorphism
α ∈ Aut(O2) be given by α(sj) = e2πiθsj for j = 1, 2. Then the associated Z-
action α : Z � O2 arises as the composition of the irrational rotation embedding
Z → T as a dense subgroup, with the natural gauge action of T on O2 given by
z.sj = z · sj for j = 1, 2. So we have Oα

2
∼= M2∞ because the fixed-point algebra

of the gauge action is well-known to be the CAR algebra. On the other hand, α
is quasi-free and faithful, so in particular pointwise outer; see [9, Section 2]. Since
any endomorphism on O2 is asymptotically inner and O2

∼= O2 ⊗ O2, it follows
from Nakamura’s uniqueness result [43, Theorem 9] that α is cocycle conjugate to
α⊗ idO2

. Since the fixed-point algebra of α is stably finite, these two actions clearly
cannot be conjugate.

4. Semi-strongly self-absorbing actions

As we have seen in the previous section, strong cocycle conjugacy is in general
a strictly weaker relation than conjugacy. In the non-equivariant context, this
distinction naturally plays no role. So we see that this aspect adds some complexity
to the equivariant situation. For instance, it follows from several results from the
literature (see section 5 for details) that many actions on a strongly self-absorbing
C∗-algebra can be strongly cocycle conjugate (but not conjugate) to a strongly self-
absorbing action. This prompts the question whether one can expand the tensorial
absorption theorem from the previous section to a larger class of actions. In this
section, we will therefore study C∗-dynamical systems that are, in a sense, almost
strongly self-absorbing:

Definition 4.1. Let G be a second-countable, locally compact group and D a
separable, unital C∗-algebra. We call an action γ : G � D semi-strongly self-
absorbing, if it is strongly cocycle conjugate to a strongly self-absorbing action.

We will study some properties that semi-strongly self-absorbing actions inherit
from strongly self-absorbing actions. However, we first have to make a few general
observations.

Lemma 4.2. Let G be a second-countable, locally compact group and A and B two
separable, unital C∗-algebras. Suppose that α : G � A and β : G � B are two
actions that are strongly cocycle conjugate. Then for every ε > 0 and compact set
K ⊂ G, there exists an isomorphism ϕ : A → B with maxg∈K ‖βg ◦ϕ−ϕ◦αg‖ ≤ ε.

Proof. Using that α and β are strongly cocycle conjugate, we find an isomorphism
ψ : A → B and a sequence of unitaries xn ∈ U(B) such that the functions [g 	→
xnβg(x

∗
n)] on G converge uniformly on compact sets as n tends to infinity, such

that with wg = limn→∞ xnβg(x
∗
n), we have

Ad(wg) ◦ βg ◦ ψ = ψ ◦ αg for all g ∈ G.
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Applying Ad(x∗
n) to both sides of this equation, we obtain

Ad(x∗
n) ◦ ψ ◦ αg = Ad(x∗

nwg) ◦ βg ◦ ψ = Ad(x∗
nwgβg(xn)) ◦ βg ◦Ad(x∗

n) ◦ ψ.
Let ε > 0 and K ⊂ G be given. By the definition of the cocycle wg, there is some
n such that maxg∈K ‖x∗

nwgβg(xn)−1B‖ ≤ ε/2. Then the map ϕ = Ad(x∗
n) ◦ψ has

the properties that we are looking for. �

Lemma 4.3. Let G be a second-countable, locally compact group and A and B
two separable, unital C∗-algebras. Suppose that α : G � A and β : G � B are
two actions that are strongly cocycle conjugate. If β has approximately G-inner
half-flip, then so does α.

Proof. Let ε > 0, F⊂⊂A and a compact set K ⊂ G be given. Applying Lemma 4.2,
we find a sequence of isomorphisms ϕn : A → B with

max
g∈K

‖βg ◦ ϕn − ϕn ◦ αg‖ n→∞−→ 0.

It follows that

max
g∈K

‖(β ⊗ β)g ◦ (ϕn ⊗ ϕn)− (ϕn ⊗ ϕn) ◦ (α⊗ α)g‖ ≤ ε

for some large enough n. Choose a unitary v ∈ B ⊗B with

max
g∈K

‖v − (β ⊗ β)g(v)‖ ≤ ε

and
v(ϕn(a)⊗ 1B)v

∗ =ε 1B ⊗ ϕn(a) for all a ∈ F.

For the unitary u = (ϕn ⊗ ϕn)
−1(v), it follows that

max
g∈K

‖u− (α⊗ α)g(u)‖
= max

g∈K
‖v − (ϕn ⊗ ϕn) ◦ (α⊗ α)g ◦ (ϕn ⊗ ϕn)

−1(v)‖
≤ ε+max

g∈K
‖v − (β ⊗ β)g(v)‖ ≤ 2ε.

Moreover, we have

u(a⊗ 1A)u
∗ =ε 1A ⊗ a for all a ∈ F

by choice of v. This finishes the proof. �

The following can be seen as a stronger variant of Lemma 2.3.

Lemma 4.4. Let G be a second-countable, locally compact group and A a separable
C∗-algebra. Suppose that (α, u) : G � A is a cocycle action. Let x ∈ F∞,α(A) be
a continuous element with respect to α. Let (xn)n ∈ �∞(N, A) be a representing
sequence of x. Then for every ε > 0, a ∈ A1,+ and compact set K ⊂ G, there is
� ∈ N such that

sup
n≥�

‖
(
αg(xn)− xn

)
a‖ ≤ ‖α̃∞,g(x)− x‖+ ε

for all g ∈ K.

Proof. By definition, we have

(e4.1) ‖α̃∞,g(x)− x‖ = sup
a∈A1,+

lim sup
n→∞

‖
(
αg(xn)− xn

)
a‖

for all g ∈ G.
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Let x̃ ∈ A∞ ∩ A′ be an element with x = x̃ + Ann(A,Aω). Then since x is
α̃∞-continuous, it follows that the assignment g 	→ α∞,g(x̃) · a is continuous on G.

Let ε > 0, let K ⊂ G be a compact set, and let a ∈ A1,+ be fixed. Let g0 ∈ K.
Applying Lemma 2.2, choose an open neighbourhood U � g0 and � ∈ N with

(e4.2) sup
n≥�

sup
g∈U

‖
(
αg(xn)− αg0(xn)

)
a‖ ≤ ε

and

(e4.3) sup
g∈U

‖α̃∞,g(x)− α̃∞,g0(x)‖ ≤ ε.

Since g0 ∈ K is arbitrary, we thus get an open cover. By compactness of K, we

find g1, . . . , gN ∈ K and an open covering K ⊂
⋃N

i=1 Ui and �1, . . . , �N ∈ N, such
that for every i, we have gi ∈ Ui and Ui satisifes (e4.2) with �i and (e4.3). Using
(e4.1), we find �0 ≥ max(�1, . . . , �N ) such that

(e4.4) sup
n≥�0

‖
(
αgi(xn)− xn

)
a‖ ≤ ‖α̃∞,gi(x)− x‖+ ε

for all i = 1, . . . , N . It follows for all g ∈ K that

sup
n≥�0

‖
(
αg(xn)− xn

)
a‖

≤ min
1≤i≤N

sup
n≥�0

‖
(
αg(xn)− αgi(xn)

)
a‖+ ‖

(
αgi(xn)− xn

)
a‖

(e4.4)

≤ ε+ min
1≤i≤N

sup
n≥�0

‖
(
αg(xn)− αgi(xn)

)
a‖+ ‖α̃∞,gi(x)− x‖

≤ ε+ min
1≤i≤N

sup
n≥�0

‖
(
αg(xn)− αgi(xn)

)
a‖+ ‖α̃∞,gi(x)− α̃∞,g(x)‖

+‖α̃∞,g(x)− x‖
(e4.2),(e4.3)

≤ 3ε+ ‖α̃∞,g(x)− x‖.
This finishes the proof. �

Lemma 4.5. Let G be a second-countable, locally compact group. Let A be a
separable C∗-algebra and B a separable, unital C∗-algebra. Suppose that (α, u) :
G � A is a cocycle action, and that β, γ : G � B are two actions that are
strongly cocycle conjugate. Suppose that there exists a unital and equivariant ∗-
homomorphism from (B, β) to (F∞,α(A), α̃∞). Then there exists a unital and equi-
variant ∗-homomorphism from (B, γ) to (F∞,α(A), α̃∞).

Proof. Let κ : (B, β) → (F∞,α(A), α̃∞) be a unital and equivariant ∗-homomor-
phism. Consider a lift (κn)n : B → �∞(N, A), where each κn is a ∗-linear map.
Then this sequence satisfies:

• lim supn→∞ ‖κn(b)a‖ ≤ ‖b‖,
• lim supn→∞ ‖

(
κn(b1)κn(b2)− κn(b1b2)

)
a‖ = 0,

• lim supn→∞ ‖κn(1B)a− a‖ = 0,
• lim supn→∞ ‖[κn(b), a]‖ = 0,
• lim supn→∞ ‖

(
(αg ◦ κn)(b)− (κn ◦ βg)(b)

)
a‖ = 0,

• lim supn→∞ maxh∈K

(
‖βh(b)− b‖ − ‖

(
(αh ◦ κn)(b)− (κn)(b)

)
a‖

)
≥ 0

for all b, b1, b2 ∈ B, 0 ≤ a ≤ 1 in A, g ∈ G and all compact sets K ⊂ G. Note that
the last condition follows from Lemma 4.4.
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Apply Lemma 4.2 and find a sequence of automorphisms ϕn : B → B with

max
g∈K

‖βg ◦ ϕn − ϕn ◦ γg‖ → 0

for all compact K ⊂ G. Let 1G ∈ Mn⊂⊂G be an increasing sequence of finite
sets whose union Gd is a countable, dense subgroup of G. Let 0 ∈ Fn⊂⊂B be a
sequence of finite subsets whose union is a countable, dense Q[i]-∗-subalgebra B′

of B, which is invariant under γg for every g ∈ Gd. Moreover, let En⊂⊂A1,+ be an
increasing sequence of finite sets whose union is dense. Let K0 ⊂ G be a compact
neighbourhood of 1G.

For every n ∈ N, we find a number kn ∈ N satisfying:

• ‖κkn
(b)a‖ ≤ ‖b‖+ 1/n,

• ‖
(
κkn

(b1)κkn
(b2)− κkn

(b1b2)
)
a‖ ≤ 1/n,

• ‖κkn
(1B)a− a‖ ≤ 1/n,

• ‖[κkn
(b), a]‖ ≤ 1/n,

• ‖
(
(αg ◦ κkn

)(b)− (κkn
◦ βg)(b)

)
a‖ ≤ 1/n,

• ‖
(
(αh ◦ κn)(b)− κn(b)

)
a‖ ≤ ‖βh(b)− b‖+ 1/n

for all b1, b2 ∈ ϕn(Fn), a ∈ En, h ∈ K0, g ∈ Mn and

b ∈ {βg(ϕn(x))− ϕn(γg(y)) | x, y ∈ Fn and g ∈ Mn} .
Now the last condition, together with the choice of ϕn, implies that for sufficiently
large n, we have

‖
(
(αh ◦ κkn

◦ ϕn)(b)− (κkn
◦ ϕn)(b)

)
a‖

≤ 1/n+ ‖(βh ◦ ϕn)(b)− (ϕn)(b)‖
≤ 2/n+ ‖γh(b)− b‖

for all b ∈ Fn, a ∈ En and h ∈ K0. Moreover, the first and fifth condition combined
with the choice of the ϕn also implies

lim sup
n→∞

‖
(
(αg ◦ κkn

◦ ϕn)(b)− (κkn
◦ ϕn ◦ γg)(b)

)
a‖

≤ lim sup
n→∞

(
‖
(
(αg ◦ κkn

◦ ϕn)(b)− (κkn
◦ βg ◦ ϕn)(b)

)
a‖

+‖
(
(κkn

◦ βg ◦ ϕn)(b)− (κkn
◦ ϕn ◦ γg)(b)

)
a‖

)
≤ 0 + lim sup

n→∞
‖κkn

(
(βg ◦ ϕn)(b)− (ϕn ◦ γg)(b)

)
a‖ = 0

for every g ∈ Mn and b ∈ Fn.
Combining all these observations, we see that the chosen sequence kn ∈ N satis-

fies:

• lim supn→∞ ‖(κkn
◦ ϕn)(b)a‖ ≤ ‖b‖,

• ‖
(
(κkn

◦ ϕn)(b1)(κkn
◦ ϕn)(b2)− (κkn

◦ ϕn)(b1b2)
)
a‖ → 0,

• ‖(κkn
◦ ϕn)(1B)a− a‖ → 0,

• ‖[(κkn
◦ ϕn)(b), a]‖ → 0,

• ‖
(
(αg ◦ κkn

◦ ϕn)(b)− (κkn
◦ ϕn ◦ γg)(b)

)
a‖ → 0,

• lim supn→∞maxh∈K0
(‖γh(b)−b‖−‖

(
(αh◦κkn

◦ϕn)(b)−(κkn
◦ϕn)(b)

)
a‖) ≥ 0

for all b, b1, b2 ∈ B′, a ∈
⋃

n En and g ∈ Gd.
Thus we get a well-defined, unital and continuous ∗-homomorphism

ψ : B′ → F∞(A) via ψ(b) = [
(
(κkn

◦ ϕn)(b)
)
n
].

The last condition above implies that

‖α̃∞,h(ψ(b))− ψ(b)‖ ≤ ‖γh(b)− b‖
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for all b ∈ B′ and h ∈ K0. As K0 is a neighbourhood of 1G, it follows that the
image of ψ is contained in the continuous part F∞,α(A).

Moreover, the fifth condition implies that we have α∞,g◦ψ = ψ◦γg for all g ∈ Gd.
By continuity, ψ uniquely extends to a unital ∗-homomorphism ψ : B → F∞,α(A),
and the equation α∞,g ◦ ψ = ψ ◦ γg must now hold for every g ∈ G because of
continuity and the fact that Gd ⊂ G is dense. This finishes the proof. �

With these intermediate technical results, we can now get a more intrinsic char-
acterization of semi-strongly self-absorbing C∗-dynamical systems:

Theorem 4.6. Let G be a second-countable, locally compact group and D a sepa-
rable, unital C∗-algebra. For an action β : G � D, the following are equivalent:

(i) β is semi-strongly self-absorbing.
(ii) β has approximately G-inner half-flip and there exists a unital, equivariant

∗-homomorphism from (D, β) to
(
D∞,β ∩ D′, β∞

)
.

(iii) β has approximately G-inner half-flip and is strongly cocycle conjugate to
(
⊗

N
D,

⊗
N
β).

(i) =⇒ (ii). Let γ : G � D be a strongly self-absorbing action that is strongly
cocycle conjugate to β. By Proposition 3.4(ii) and Lemma 4.3, it follows that β
has approximately G-inner half-flip. By Proposition 3.4(i) and Theorem 3.7, there
exists a unital and equivariant ∗-homomorphism from (D, γ) to

(
D∞,β ∩ D′, β∞

)
.

By Lemma 4.5, there also exists a unital and equivariant ∗-homomorphism from
(D, β) to

(
D∞,β ∩ D′, β∞

)
.

(ii) =⇒ (iii): Applying Proposition 3.3, we see that the infinite tensor power
(
⊗

N
D,

⊗
N
β) is strongly self-absorbing. Since there exists a unital and equivariant

∗-homomorphism from (D, β) to
(
D∞,β ∩ D′, β∞

)
, one can construct a unital and

equivariant ∗-homomorphism (
⊗

N
D,

⊗
N
β) to

(
D∞,β ∩ D′, β∞

)
, by applying a

standard reindexation argument (see also [26, 1.13]) and using Lemma 4.4 in the
process. By Theorem 3.7, it follows that

(D, β) �scc

(
D ⊗

⊗
N

D, β ⊗
⊗
N

β
)
= (

⊗
N

D,
⊗
N

β).

(iii) =⇒ (i): This follows directly from Proposition 3.3. �

We may in fact extend our equivariant McDuff-type main result Theorem 3.7 to
cover semi-strongly self-absorbing actions:

Theorem 4.7. Let G be a second-countable, locally compact group. Let A be a
separable C∗-algebra and (α, u) : G � A a cocycle action. Let D be a separable,
unital C∗-algebra and β : G � D an action such that (D, β) is semi-strongly self-
absorbing. The following are equivalent:

(i) (A,α, u) is strongly cocycle conjugate to (A⊗D, α⊗ β, u⊗ 1D).
(ii) (A,α, u) is cocycle conjugate to (A⊗D, α⊗ β, u⊗ 1D).
(iii) There exists a unital, equivariant ∗-homomorphism from (D, β) to(

F∞,α(A), α̃∞
)
.

Proof. This follows directly from Theorem 3.7 and Lemma 4.5. �

We conclude this section by considering the special case where the acting group
is compact.
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Proposition 4.8. Let G be a second-countable, compact group. Let A be a sepa-
rable, unital C∗-algebra and α, β : G � A two actions. Then α and β are strongly
cocycle conjugate if and only if they are conjugate.

Proof. Let ϕ : A → B be an isomorphism and xn ∈ U(A) a sequence of unitaries
such that wg = limn→∞ xnβg(x

∗
n) converges uniformly and Ad(wg)◦βg ◦ϕ = ϕ◦αg

for all g ∈ G. For some large n, we may replace ϕ by Ad(x∗
n) ◦ ϕ and wg by

x∗
nwgβg(xn) (see the proof of Lemma 4.2), and assume

Ad(wg) ◦ βg ◦ ϕ = ϕ ◦ αg for all g ∈ G

and maxg∈G ‖1 − wg‖ < 1. Applying [15, 2.4], we deduce that [g 	→ wg] is a
coboundary, i.e., there exists v ∈ U(A) with wg = vβg(v

∗) for all g ∈ G. This
implies

βg ◦Ad(v∗) ◦ ϕ = Ad(v∗) ◦ ϕ ◦ αg for all g ∈ G.

So Ad(v∗) ◦ ϕ : (A,α) → (A, β) is an equivariant isomorphism. �

Corollary 4.9. Let G be a second-countable, compact group. Let D be a separable,
unital C∗-algebra and γ : G � D an action. Then γ is strongly self-absorbing if
and only if γ is semi-strongly self-absorbing.

Corollary 4.10. If one restricts to compact G and genuine actions, then all in-
stances of “strongly cocycle conjugate” in Theorem 2.6 can be replaced by “conju-
gate”.

Question 4.11. Does Proposition 4.8 hold also in the case that A is non-unital?
Does Proposition 4.8 hold, if (α, u), (β,w) : G � A are cocycle actions with non-
trivial cocycles?

5. Examples

So far, we have only discussed a very straightforward class of examples of strongly
self-absorbing actions, namely the trivial actions on strongly self-absorbing C∗-
algebras. In this section, we shall discuss other examples of (semi-)strongly self-
absorbing actions. Let us start by considering compact group actions on strongly
self-absorbing C∗-algebras that have the Rokhlin property; see [14, 3.2] for the
definition on unital C∗-algebras.

Example 5.1. Let G be a second-countable, compact group and D a strongly
self-absorbing C∗-algebra. Let γ : G � D be an action with the Rokhlin property.
Then (D, γ) is strongly self-absorbing.

Proof. Note that all unital ∗-homomorphism of the form D → D⊗A are mutually
approximately unitarily equivalent by [50, 1.12]. In particular, this is the case for
A = C(G). By [2] (see [15, 3.5] for the finite group case), the systems (D, γ) and
(D ⊗ D, γ ⊗ γ) are conjugate. Let ϕ : (D, γ) → (D ⊗ D, γ ⊗ γ) be an equivariant
isomorphism. Then ϕ is approximately unitarily equivalent to idD ⊗1D as an or-
dinary ∗-homomorphism. Once again because of the Rokhlin property and [2] (see
[11, Proposition 3.1] for the finite group case), it follows that these two equivariant
∗-homomorphisms are indeed approximately G-unitarily equivalent. �

For the next example, recall Kishimoto’s notion of the Rokhlin property for flows
[29].
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Example 5.2 (cf. [33]). A quasi-free Rokhlin flow on O2 is semi-strongly self-
absorbing. In particular, if s1, s2 ∈ O2 are the canonical generators and λ > 0 is
an irrational number, then the flow given by γt(s1) = eits1 and γt(s2) = e−iλts2 is
semi-strongly self-absorbing.

Proof. Let γ : R � O2 be a quasi-free flow with the Rokhlin property. By [33, 3.5],
γ has approximately G-inner flip. By [33, 3.6], there exists a unital and equivariant
∗-homomorphism from (O2, γ) to

(
(O2)∞ ∩ O′

2, γ∞
)
. By 4.6, it follows that γ is

semi-strongly self-absorbing. �

Let us now consider examples of discrete group actions that come from non-
commutative Bernoulli shifts.

Example 5.3. Let G be a finite group. Let n ∈ N be a number and σ : G �

{1, . . . , n} an action. Let p be a supernatural number of infinite type. Then the
induced tensorial shift action βσ : G � M⊗n

p given by

βσ
g (a1 ⊗ · · · ⊗ an) = aσg(1) ⊗ · · · ⊗ aσg(n)

is strongly self-absorbing.

Proof. We first note that since p is of infinite type, the UHF algebra Mp is strongly
self-absorbing. So choosing an isomorphism Mp

∼= M⊗∞
p , a straightforward re-

arrangement of the tensorial factors yields that (M⊗n
p , βσ) ∼=

⊗
N
(M⊗n

p , βσ). By
Proposition 3.3, it suffices to show that βσ has approximately G-inner flip. Now by
definition, (M⊗n

p , βσ) is an equivariant inductive limit of C∗-dynamical systems of
the form (M⊗n

p , βσ) for some natural numbers p ∈ N. So without loss of generality,

it suffices to show that the tensorial shift action induced by σ on M⊗n
p has G-inner

flip.
If {ei,j}1≤i,j≤p ⊂ Mp are the standard matrix units, then

{ei,j = ei1,j1 ⊗ · · · ⊗ ein,jn | i = (i1, . . . , in), j = (j1, . . . , jn) ∈ {1, . . . , p}n}

defines another set of matrix units for M⊗n
p . Consider the unitary in M⊗n

p ⊗M⊗n
p

given by

v =
∑

i,j∈{1,...,p}n

ei,j ⊗ ej,i.

Then v implements the flip automorphism. It is clear that βσ restricts to a G-action
on the matrix units ei,j, just by acting on the index set. In particular, we see that
v is fixed by the diagonal action βσ ⊗ βσ on M⊗n

p ⊗M⊗n
p . So indeed, (M⊗n

p , βσ)
has G-inner flip. This finishes the proof. �

Question 5.4. Is the action from the above example still strongly self-absorbing, if
one replaces Mp by some other strongly self-absorbing C∗-algebra D? In particular,
what about D = Z or D = O∞?

The case D = O2 indeed has an affirmative answer because a faithful, tensorial
shift action of a finite group on O2 has the Rokhlin property by [15, 5.4], thus
falling within the scope of Example 5.1.
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More generally, let us ask:

Question 5.5. Let G be a countable, discrete group and σ : G � N an action.
Let D be a strongly self-absorbing C∗-algebra. Consider the induced tensorial shift
action βσ : G �

⊗
N
D ∼= D given by

βσ
g (a1 ⊗ a2 ⊗ a3 ⊗ . . . ) = aσg(1) ⊗ aσg(2) ⊗ aσg(3) ⊗ . . . ,

where all but finitely many of the an ∈ D are equal to 1. When is (D, βσ) strongly
self-absorbing?

At least a straightforward rearrangement of the tensorial factors can be done
again in this case to deduce that one always has (

⊗
N
D, βσ) =

⊗
N
(
⊗

N
D, βσ).

So in view of Proposition 3.3, the question is in which cases βσ has approximately
G-inner half-flip.

The following trivial argument allows one to construct strongly self-absorbing
actions of residually compact groups, with the help of examples of compact group
actions.

Proposition 5.6. Let G be a second-countable, locally compact group. Let H ⊂ G
be a closed, normal, cocompact subgroup. Let π : G → G/H be the quotient map.
Let D be a separable, unital C∗-algebra and γ : G/H � D a strongly self-absorbing
G/H-action. Then γ ◦ π : G � D is strongly self-absorbing.

Remark 5.7. In particular, let Hn ⊂ G be a sequence of closed, normal, cocompact
subgroups with

⋂
n∈N

Hn = {1G}. Let πn : G → G/Hn be the quotient maps, and

let γ(n) : G/Hn � Dn be a sequence of strongly self-absorbing actions on some
separable, unital C∗-algebras. Then

γ =
⊗
n∈N

(γ(n) ◦ πn) : G �
⊗
n∈N

Dn

is a strongly self-absorbing action. If each γ(n) was faithful, then γ is faithful.

Corollary 5.8. Let p be a supernatural number of infinite type. Then any count-
able, discrete, residually finite group admits a faithful, strongly self-absorbing action
on Mp.

Proof. Let G be a countable, discrete, residually finite group. Let Hn ⊂ G be a
sequence of normal subgroups with finite index and

⋂
n∈N

Hn = {1G}. By Ex-
ample 5.3, the tensorial flip action of G/Hn on Mp, which is induced by the left
translation action G/Hn � G/Hn, is faithful and strongly self-absorbing. By Re-
mark 5.7, it follows that the infinite tensor product of the induced G-actions is a
faithful, strongly self-absorbing action on Mp. �

Theorem 5.9. Let p be a supernatural number of infinite type. Every pointwise
strongly outer action of Zd on Mp is semi-strongly self-absorbing.

Proof. By Corollary 5.8, there exists a faithful, strongly self-absorbing Zd-action
γ on Mp. Because of 3.4(i), it is clearly pointwise strongly outer. By Matui’s
uniqueness result [38, 5.4], every other pointwise strongly outer action of Zd on Mp

is strongly cocycle conjugate to γ, so the claim follows. �

Example 5.10. Let G be a finite group. Then any quasi-free action of G on O∞
is strongly self-absorbing.
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Proof. Let α : G � O∞ be a quasi-free action. By [9, Section 2], every automor-
phism αg is either trivial or outer. So by dividing out the kernel of α, if necessary,
we may assume that α is pointwise outer. Now it follows from Goldstein-Izumi’s
absorption theorem [12, 5.1] that (O∞, α) ∼=

⊗
N
(O∞, α). On the other hand,

[12, 4.1] implies that α has approximately G-inner half-flip. With Proposition 3.3,
it follows that α is a strongly self-absorbing action. �

With the argument from Remark 5.7, we again get more examples of strongly
self-absorbing actions on O∞:

Corollary 5.11. Any countable, discrete, residually finite group admits a faithful,
strongly self-absorbing action on O∞.

Theorem 5.12. Let D be a strongly self-absorbing Kirchberg algebra satisfying the
UCT. (That is, let either D ∼= O∞, D ∼= O2 or D ∼= O∞ ⊗Mp for a supernatural
number p of infinite type.) Then every pointwise outer Zd-action on D is semi-
strongly self-absorbing.

Proof. By Corollary 5.11, there exists a faithful, strongly self-absorbing action γ :
Zd � D. This action must then be pointwise outer because of Proposition 3.4(i).
By invoking either [36, 5.2] (for the case D ∼= O2) or [19, 6.18, 6.20] (for the other
cases), we can deduce that every pointwise outer Zd-action on D is strongly cocycle
conjugate to γ. This finishes the proof. �
Question 5.13. When is a quasi-free action of a countable, discrete group on O∞
semi-strongly self-absorbing?

Remark 5.14 (cf. [12, Section 6]). Let G be a countable, exact and discrete group.
By Kirchberg and Phillips’ O2-embedding result, we can embed C∗

r (G) into O2

unitally. In particular, there exists a faithful unitary representation v : G → U(O2).
Consider the induced infinite tensor product action δ : G �

⊗
N
O2 given by

δg =
⊗

N
Ad(v(g)) for all g ∈ G.

Choosing some non-zero (and necessarily non-unital) ∗-homomorphism ι : O2 →
O∞, we also obtain a faithful unitary representation u : G → U(O∞) via u(g) =
ι(v(g)) + 1 − ι(1) for all g ∈ G. We can then also consider the induced infinite
tensor product action γ : G �

⊗
N
O∞ given by γg =

⊗
N
Ad(u(g)) for all g ∈ G.

Now assume that G is finite. In this case, it was shown by Goldstein and Izumi
in the proof of [12, 6.2] that the action γ is conjugate to any faithful, quasi-free
G-action on O∞. In particular, it follows that γ is strongly self-absorbing. On
the other hand, it is not hard to construct a unital ∗-homomorphism from O2

into the fixed point algebra
(
(O2)∞ ∩ O′

2

)δ∞ , so it follows from Theorem 2.6 and
Proposition 4.8 that (O2, δ) ∼= (O2 ⊗ O2, δ ⊗ idO2

). Since δ is pointwise outer, it
follows from [15, 4.2] that δ has the Rokhlin property. (We note that this can also be
seen more directly by using a unital and equivariant inclusion (C(G), G-shift) ↪−→
(O2,Ad(v)).) By Example 5.1, it follows that δ is strongly self-absorbing. Moreover,
the actions γ and δ turn out to fit into an equivariant Kirchberg-Phillips absorption
result:

Theorem 5.15 (cf. [15, 4.3] and [12, 5.1]). Let G be a finite group and A a sepa-
rable, unital, nuclear, simple C∗-algebra. Let α : G � A be an action. Then

(1) (O2 ⊗A, δ ⊗ α) ∼= (O2, δ).
(2) (A,α) ∼= (A⊗O∞, α⊗ γ), if A is purely infinite and α is pointwise outer.
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The following lists the main results of forthcoming work, which relies on the
results and techniques of this paper. It is generalization of the above theorem to
the case of countable, amenable groups.

Theorem 5.16 (see [49]). Let G be countable, discrete, amenable group.

(1) If A is a Kirchberg algebra and (α, u) : G � A is any cocycle action, then
(A,α, u) �scc (A⊗O∞, α⊗ idO∞ , u⊗ 1O∞).

(2) The actions γ : G � O∞ and δ : G � O2 from Remark 5.14 are strongly
self-absorbing.

(3) If A is a Kirchberg algebra and (α, u) : G � A is a cocycle action such that
α is pointwise outer, then (A,α, u) �scc (A⊗O∞, α⊗ γ, u⊗ 1O∞).

(4) If A is a separable, unital, nuclear, simple C∗-algebra and α : G � A is an
action, then (O2, δ) �scc (A⊗O2, α⊗δ). Moreover, if α is pointwise outer,
then (A⊗O2, α⊗ idO2

) �scc (O2, δ).
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Note added in proof

Previous preprint versions of this article contained a more general statement in
Lemma 2.2 involving sequence algebras along arbitrary free filters ω on N. However,
the approach used in the proof has a gap for uncountably generated filters, so in
particular for free ultrafilters, as was kindly pointed out by Martino Lupini to the
author. For this reason, we have restricted our attention to ordinary sequence
algebras and the Fréchét filter in this context.

There certainly exists a variant of our main results expressed in terms of ultra-
powers, but with a stronger definition of the continuous (central) sequence algebras
Aω,α and Fω,α(A) that we shall not pursue here; see [10].
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