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RATIONAL QUINTICS IN THE REAL PLANE

ILIA ITENBERG, GRIGORY MIKHALKIN, AND JOHANNES RAU

Abstract. From a topological viewpoint, a rational curve in the real projec-
tive plane is generically a smoothly immersed circle and a finite collection of
isolated points. We give an isotopy classification of generic rational quintics
in RP

2 in the spirit of Hilbert’s 16th problem.

1. Introduction

1.1. Smooth real curves in the plane and Hilbert’s 16th problem. Topo-
logical classification of smooth real algebraic curves is one of the most classical
problems in real algebraic geometry. It was included by D. Hilbert [8] into his
famous list of problems made at the dawn of the twentieth century. Let us recall
this problem as well as the basic conventions related to it.

Problem 1.1 (Modern interpretation of Hilbert’s 16th problem, Part I; cf. [25]).
Given an integer number d > 0, describe possible topological types of the pair
(RP2,RC), where RC ⊂ RP

2 is the real point set of a smooth algebraic curve of
degree d in the real projective plane RP

2.

By a real algebraic curve C in RP
2 we mean a real homogeneous polynomial in 3

variables which is considered up to multiplication by a nonzero real constant. Such
a polynomial has a zero locus RC ⊂ RP

2 (called the real point set of C) and a zero
locus CC ⊂ CP

2 (called the complex point set of C, or complexification of RC).
By abuse of language, speaking about a real algebraic curve C in RP

2, we often
mention only the real point set RC.

The degree of a real algebraic curve C in RP
2 is the degree of a polynomial

defining C. A real algebraic curve in RP
2 is called nonsingular or smooth if a

polynomial defining this curve does not have critical points in C3 \ {0}. The real
point set RC ⊂ RP

2 of a nonsingular curve C is either empty or a smooth 1-
dimensional submanifold of RP2, that is, a disjoint union of l copies of the circle

S1. Furthermore, by Harnack’s inequality [7] we have l ≤ (d−1)(d−2)
2 + 1, where

d is the degree of C. Notice that (d−1)(d−2)
2 is the genus of the complexification

CC ⊂ CP
2.

If d is even, then every connected component Z ⊂ RC is homologically trivial in
RP

2. Such a component is called an oval. The complement RP2 \Z consists of two
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open domains: the one homeomorphic to a disk is called the interior of Z, the one
homeomorphic to a Möbius band is called the exterior of Z.

If d is odd, then all but one connected component of RC are ovals. The remaining
component Y ⊂ RC is isotopic to a line RP1 ⊂ RP

2 and is called a pseudoline. The
complement RP

2 \ Y is connected, so we cannot talk of interior or exterior of a
pseudoline. Thus, for even d the real point set RC of C consists of l ovals, while
for odd d we have one pseudoline and l − 1 ovals.

There is somewhat more than just the number of ovals in the topology of
(RP2,RC). Two ovals Z,Z ′ are called disjoint if their interiors are disjoint in
the set-theoretical sense. Otherwise, they are called nested. More generally, we say
that a collection of ovals is a nest if any pair of ovals in this collection is nested.
The depth of a nest is the total number of ovals in the collection. We say that an
oval Z ′ is inside an oval Z if Z ′ is contained in the interior of Z. The oval is called
empty if there are no ovals inside it.

The topology of (RP2,RC) is completely determined by the number of ovals
together with information on each pair of ovals whether they are disjoint or one
is inside the other. From a combinatorial viewpoint this information is encoded
with a rooted tree whose vertices are connected components of RP

2 \ RC and
whose edges are the ovals of RC. The root of this tree is placed at the only
nonorientable component of RP2 \RC if d is even and the only component adjacent
to the pseudoline if d is odd.

These rooted trees, and thus the topology of (RP2,RC), are traditionally encoded
with the following system of notation introduced in [22]. The symbol J stands for a
pseudoline. An oval is denoted with 1. Each rooted tree is bordered with brackets
<>. For example, the topological type of a line RP

1 ⊂ RP
2 is denoted by < J >,

and the topological type of an ellipse is denoted by < 1 >.
The notation is built inductively. Let Z1, . . . , Zm be the nonempty ovals adjacent

to the rooted component of the complement of RP2 \ RC. The intersection of RC
with the interior of Zk can itself be considered as an arrangement of ovals which is
already encoded by < xk > with some symbolic notation < xk > by induction.

The topological type of (RP2,RC) is denoted by

< J � a � 1 < x1 > � · · · � 1 < xm >>

or

< a � 1 < x1 > � · · · � 1 < xm >>,

depending whether RC contains a pseudoline or not (i.e., whether d is odd or even).
Here, a is the number of empty ovals adjacent to the rooted component of RP2\RC.
The symbol � is interpreted as a commutative operation; i.e., we do not distinguish
< x1 > � < x2 > from < x2 > � < x1 >. The empty curve is denoted by < 0 >.

The following two examples were the starting point for the classification quest
known already in the nineteenth century.

Example 1.2. There are 6 topological types of nonsingular curves of degree 4 in
RP

2. These are < α >, where 0 ≤ α ≤ 4, and < 1 < 1 >>.

Example 1.3. There are 8 topological types of nonsingular curves of degree 5 in
RP

2. These are < J � α >, where 0 ≤ α ≤ 6, and < J � 1 < 1 >>.
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Real algebraic curves of degree d in RP
2 with the maximal number of ovals

allowed by Harnack’s inequality, i.e., with (d−1)(d−2)
2 + 1 connected components

of the real point set, are called M -curves; cf. [14]. Note that in degrees 4 and 5
there are unique topological arrangements of M -curves: < 4 > and < J � 6 >,
respectively.

Definition 1.4 (F. Klein). A real algebraic curve C in RP
2 is said to be of type I

if RC is null-homologous in H1(CC;Z2).

Note that the involution conj : CC → CC of complex conjugation has RC as its
fixed point set. Therefore, a nonsingular real algebraic curve C in RP

2 is of type I
if and only if CC \ RC is disconnected.

It is easy to show that any M -curve must have type I. Furthermore, for each
degree d there is a curve of type I that has only [d2 ] (the integer part of d

2 ) ovals.

Definition 1.5. A real curve C of degree d in RP
2 is called hyperbolic if RC has a

nest of depth [d2 ].

The Bézout theorem implies that the topological arrangement of the hyperbolic
curve is unique: there are no other ovals except for those from the nest of depth [d2 ].
Indeed, if there is any other oval, then we may draw a straight line through that
oval and the innermost oval in the nest. Such a line would intersect all ovals from
the nest and the additional oval at least in two points each. This gives 2+2[d2 ] > d

points of intersection between a curve of degree d and a line. In particular, [d2 ] is

the maximal possible depth of a nest for a curve of degree d in RP
2.

It can be shown that all hyperbolic curves are of type I. The complex orienta-
tion formula [15] (which is reviewed in section 3.1) implies the following classical
statement, which was known already to Klein.

Theorem 1.6. There are two possible topological types of nonsingular curves of
degree 4 and type I in RP

2: < 4 > (the M -quartic) and < 1 < 1 >> (the hyperbolic
quartic).

There are three possible topological types of nonsingular curves of degree 5 and
type I in RP

2: < J � 6 > (the M-quintic), < J � 1 < 1 >> (the hyperbolic quintic),
and < J � 4 > (the four-oval quintic of type I ).

Currently the classification of topological arrangements of nonsingular curves of
degree d in RP

2 is known up to degree 7 (Viro [19]). As this classification is rather
large, below we list only the possible topological types of M -curves. Note that for
d ≥ 6 the topological type of an M -curve is no longer unique.

Theorem 1.7 (Gudkov). There are three possible topological types of nonsingular
M -curves of degree 6 in RP

2: < 9 � 1 < 1 >> (the so-called Harnack sextic),
< 1 � 1 < 9 >> (the so-called Hilbert sextic), and < 5 � 1 < 5 >> (the so-called
Gudkov sextic).

Theorem 1.8 (Viro). There are fourteen possible topological types of nonsingular
M -curves of degree 7 in RP

2: < J � 15 > and < J � α � 1 < 14 − α >>, where
1 ≤ α ≤ 13.
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1.2. Generic rational curves in the plane. This paper is mainly devoted to
rational curves in RP

2. The complex point set of such a real rational curve of
degree d can be described as the image of the map ϕ : CP1 → CP

2 defined by

(z0 : z1) �→ (P (z0, z1) : Q(z0, z1) : R(z0, z1)),

where P , Q, R are real homogeneous polynomials of degree d which do not have
common zeros in CP

1.
A generic rational curve in RP

2 is nodal, which means that the only possible
singular points of the curve are nondegenerate double points (also called nodes).

We may distinguish three types of nodes of a nodal curve C in RP
2: hyperbolic,

elliptic and imaginary nodes. Hyperbolic nodes are formed by intersections of pairs
of real branches of RC. These are points of RP2 such that C is given by x2−y2 = 0
in some local coordinates (x, y) near these points. Elliptic nodes are formed by
real intersections of pairs of complex conjugated branches of CC. These are points
of RP2 such that C is given by x2 + y2 = 0 in some local coordinates (x, y) near
these points. Finally, imaginary nodes are nodes of C in CP

2 \ RP2. Such points
come in pairs of complex conjugate points. We denote the number of hyperbolic
(respectively, elliptic, imaginary) nodes by h (respectively, e, c).

The following proposition is straightforward.

Proposition 1.9. The real point set of any nodal rational curve in RP
2 is the

disjoint union of a circle generically immersed in RP
2 and a finite set of elliptic

nodes.

Similarly to Hilbert’s 16th problem, one can ask for a topological classification
of pairs (RP2,RC), where C is a nodal rational curve of a given degree d in RP

2.
Since any self-homeomorphism of RP2 is isotopic to the identity, such a topological
classification of pairs (RP2,RC) provides an isotopy classification of the real point
sets RC of nodal rational curves of a given degree in RP

2. The isotopy classification
in question is known up to degree 4 (see [4] and section 2.5 for details concerning
the classification for degree 4). Among other results related to the isotopy classifi-
cation of real rational curves, one can mention, for example, the study of maximally
inflected real rational curves in the context of the Shapiro-Shapiro conjecture and
the real Schubert calculus; see [9]. In this paper we study nodal rational curves of
degree 5 in RP

2.

1.3. Classification of generic rational curves of degree 5. In this section we
state our main result, namely the isotopy classification of nodal rational curves
of degree 5 in RP

2. The classification is presented below in the form of the list
of smoothing diagrams (see section 2.2 for the precise definitions) of the curves
under consideration. Each smoothing diagram describes an isotopy type of a nodal
rational curve of degree 5 in RP

2. The isotopy type is obtained by contracting the
vanishing cycles (that is, edges) of a smoothing diagram creating a hyperbolic node
for each vanishing cycle.

Theorem 1.10. The isotopy types of nodal rational curves of degree 5 in RP
2 are

exactly those listed in Tables 1–6.
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Table 1. Smoothing diagrams of all isotopy types with c = 0, l = 3

(0, 0, 0, 0, 1) (0, 1, 0, 1, 1) (1, 1, 1, 1, 1)
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Table 2. Smoothing diagrams of all isotopy types with c = 0, l = 5

2x

3x 2x 4x

2x 3x

2x 2x

3x

2x
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Table 3. Smoothing diagrams of all isotopy types with c = 0, l = 7



138 ILIA ITENBERG, GRIGORY MIKHALKIN, AND JOHANNES RAU

Table 4. Smoothing diagrams of all isotopy types with c = 2, l = 3

2x

Table 5. Smoothing diagrams of all isotopy types with c = 2, l = 5

Table 6. Smoothing diagrams of all isotopy types with c = 4 (and
hence l = 3) and of the unique isotopy type with c = 6 (and hence
h = e = 0, l = 1)
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Remark 1.11. In Tables 2 and 4 we sometimes incorporated several smoothing
diagrams in the same picture. The merged smoothing diagrams only differ by
the attachment of a single oval by a single edge (drawn with dashed lines). The
factor next to these pictures (e.g., 2x) indicates how many smoothing diagrams are
merged.

There are exactly 121 isotopy types of nodal rational curves of degree 5 in RP
2.

With regard to l, h, e, c, we get the following numbers of isotopy types:

c = 0

l e 0 1 2 3 4 5 6

3 13 3
5 24 12 4 1
7 9 9 6 4 2 1 1∑

46 24 10 5 2 1 1

c = 2

l e 0 1 2 3 4

3 7 2
5 8 4 2 1 1∑

15 6 2 1 1

c = 4
l e 0 1 2

3 3 2 1

Additionally, we have exactly one isotopy type for c = 6 (a noncontractible loop
in RP

2).

The parameter l in the above list is the number of connected components of the
real part RC◦ of an appropriate small perturbation C◦ of a nodal rational curve
C of degree 5 in RP

2 (see section 5.1). The proof of Theorem 1.10 is presented in
section 5 (restrictions on the topology of nodal rational curves of degree 5 in RP

2)
and section 6 (constructions).

2. Generically immersed curves and their smoothings

2.1. Generically immersed curves instead of smoothly embedded curves.
In contrast with smooth curves in the plane, a connected component of an immersed
curve may be quite complicated topologically. In the space of all immersions of
a circle to the plane (i.e., differentiable maps from S1 to the plane such that the
differential never vanishes) we may distinguish generic immersions (see below) that
only have transverse double points as their self-intersections. This is the only type
of singularity of an immersed curve that survives under all small perturbations in
the class of smooth maps.

It was noted by V. Arnold [1] that generic immersions of a circle into a plane have
some common behavior with knots in a 3-space, particularly from the viewpoint
of finite-type invariants. In conventional knot theory a knot is an embedding of a
circle K ≈ S1 to the 3-space R3. Such a knot is commonly depicted with the help
of a linear projection π : R3 → R

2 (normally referred to as a vertical projection).
The image π(K) is immersed to R2, and all of its self-crossing points are nonde-
generate double points (often called crossings in this context) if the projection π
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is chosen generically. Once we specify at every crossing which of the two branches
is above and which is below we get a presentation of a knot by the so-called knot
diagram. Different knot diagrams may give the same knot if they are connected
with a sequence of the Reidemeister moves for knot diagrams.

Definition 2.1. Let X be a smooth surface. An immersion i : S1 → X is called
generic if all its self-crossing points are nondegenerate double points (called nodes
here). Here S1 is an oriented circle (e.g. the unit circle in C oriented counterclock-
wise).

A knot diagram, after forgetting which branch is above and which is below at
the nodes, is an example of a generic immersion of a circle in R2.

We consider two generic immersions to be equivalent if they are homotopic in
the class of generic immersions. Obviously, such equivalence classes are uniquely
determined by the isotopy type of i(S1) ⊂ X. By abuse of language, we often
identify a generic immersion i : S1 → X with its image K = i(S1).

Let T1(X) denote the unit tangent bundle of X. Using the standard orientation

of S1 we may lift the immersion K ⊂ X to K̃ ⊂ T1(X) by associating to each
point of the circle S1 parameterizing K the unit tangent vector to K according to
the orientation. Thus, K̃ is the image of the Gauss-type map ĩ : S1 → T1(X).

Definition 2.2. The homology class [K̃] ∈ H1(T1(X);Z) is called the rotation
number of K and is denoted by rot(K).

Example 2.3. Let us fix an orientation for R2 and let K be a positively oriented
embedded circle in R2. We have H1(T1(R

2);Z) ∼= Z, and we fix the isomorphism
by setting rot(K) = +1.

Example 2.4. We have H1(T1(RP
2);Z) ∼= Z4. We fix the isomorphism by setting

rot(RP1) = 1 ∈ Z4, where RP
1 ⊂ RP

2 is a line. Note that there is no need to
specify the orientation of this line as the two choices of orientation are isotopic.
Thus, if X = RP

2, then rot(K) ∈ Z4. Furthermore, it is easy to see that if [K] =
0 ∈ H1(RP

2;Z) = Z2, then rot(K) is even, while if [K] �= 0 ∈ H1(RP
2;Z) = Z2,

then rot(K) is odd.

The following statement is classical.

Theorem 2.5 (Whitney [24]). Two immersions are homotopic in the class of (not
necessarily generic) immersions if and only if their rotation numbers coincide.

It is easy to see that if two generic immersions are homotopic in the class of
(not necessarily generic) immersions, then they are obtained from each other by
a series of the following planar immersion counterparts of two of the knot theory
Reidemeister moves: namely, the second and the third Reidemeister moves.

The second Reidemeister move corresponds to passing through a generic double
tangency point. Here we distinguish two cases: when the orientations of the two
tangent branches agree and when they disagree. The first case is called the direct
self-tangency perestroika (see Figure 1), while the second one is called the inverse
self-tangency perestroika (see Figure 2); cf. [1], [23].

The move from Figure 3 corresponds to passing through a triple point. Such a
move is called the triple point perestroika.

Arnold [1] has shown that in the case X = R
2 there are three degree 1 (in

Vassiliev’s sense) invariants corresponding to these moves. We do not specify the
orientations in Figure 3, as all such choices combine to a single degree 1 invariant.
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Figure 1. Direct self-tangency perestroika

Figure 2. Inverse self-tangency perestroika

Figure 3. Triple point perestroika

The invariant corresponding to the direct self-tangency perestroika is called J+.
It increases by 2 if such a move is performed in the direction when the number
of nodes is increased by 2 and remains invariant if we perform either an inverse
self-tangency or a triple point perestroika. (If we perform the direct self-tangency
move in the opposite direction, then J+ decreases by 2 accordingly.)

Similarly, J− is increased by 2 if an inverse self-tangency perestroika is performed
in the direction when the number of nodes is decreased by 2 and remains invariant
if we perform a direct self-tangency or a triple point perestroika.

Furthermore, there is a consistent choice of direction for performing the triple
point perestroika. This choice allows us to declare that the third invariant (called
the strangeness St) increases by 1 when the triple point perestroika is performed
in this direction and does not change when any of the self-tangency perestroikas is
performed. The rule for specifying this direction is indeed quite strange, although
it was clarified by Shumakovich in [16] with the help of an explicit formula.

It was shown in [1] that if we start from a generic immersion, perform a number
of the moves discussed above and return to the same generic immersion, then the
total increment for each of the numbers J+, J− and St is zero. Thus, to turn J+,
J− and St to conventional integer-valued invariants it is sufficient to choose their
normalization on one generic immersion for each possible rot(K). This was done
in [1] (in such a way that the resulting invariants are additive with respect to the
connected sum).
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From the definition, J+ − J− equals the number of nodes of the generic immer-
sion. It was noted by Viro [23] that J− can be easily computed from the complex
orientation formula. In the same paper, Viro gave a well-defined adaptation of J−
for immersed curves in RP

2, the situation we consider in this paper.

2.2. Back to smooth ovals: Smoothing of an immersion. LetK ⊂ RP
2 be an

immersion to RP
2 of a disjoint union of a collection of oriented circles. By Example

2.4 we have rot(K) ∈ Z4 (if K is multicomponent, then its rotation number is the
sum of the rotation numbers of the components of K), while the parity of rot(K)
is determined by the parity of the homological class [K] ∈ H1(RP

2;Z) = Z2, which
we call the degree d = d(K) of K.

Assume that the immersed curve K is generic (as before, this means that all
self-crossing points are nodes). Let n = n(K) be the number of nodes of K, and
let K◦ ⊂ RP

2 be the collection of smoothly embedded oriented circles (defined up
to isotopy) obtained from K by smoothing every node of K as shown on Figure 4.
Note that to each node p ∈ K we associate a closed embedded path Ip ⊂ RP

2 with
two endpoints on the corresponding two arcs of the smoothing and not intersecting
K◦ at inner points of the path.

I

Figure 4. Smoothing according to the orientation and appear-
ance of the vanishing cycle I

Definition 2.6. The oriented curve K◦ is called smoothing of K. The intervals Ip
are called vanishing cycles corresponding to nodes p. The diagram

(1) ΔK = (K◦;
⋃
p

Ip),

where p runs over all nodes of K, is called the smoothing diagram of K.

Note that all vanishing cycles Ip in the diagram ΔK are disjoint.

Definition 2.7. Let L ⊂ RP
2 be a collection of disjoint oriented embedded cir-

cles. An L-membrane Ip ⊂ RP
2 is a smoothly embedded interval such that Ip ∩ L

coincides with the two endpoints of Ip, and at these endpoints the interval Ip is
transverse to L.

We say that an L-membrane Ip is coherent (with respect to the orientation on
K◦) if there exists a deformation of Ip in the class of L-membranes disjoint from
Ip so that the endpoints move according to the orientations. In other words, Ip is
coherent if the orientations of L are as shown on Figure 4.

An (abstract) smoothing diagram Δ = (L; I) consists of a collection L ⊂ RP
2 of

disjoint oriented embedded circles and a collection I =
⋃

p Ip of disjoint embedded

closed intervals Ip ⊂ RP
2 so that the number of intervals Ip is finite and each

interval Ip is a coherent L-membrane. We consider such diagrams (L; I) and (L′; I ′)
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equivalent if they are isotopic (meaning the existence of an isotopy identifying L
and L′ as well as I and I ′).

Proposition 2.8. For every smoothing diagram Δ there exists a generic immersion
K of a disjoint union of oriented circles to RP

2 such that Δ = ΔK . Moreover, K
is unique up to isotopy.

The proof of this proposition is straightforward. We collapse every coherent
membrane by performing the move opposite to the smoothing depicted in Figure
4.

Let K ⊂ RP
2 be a generic immersion of a disjoint union of oriented circles. We

have a well-defined lift K̃◦ ∈ T1(RP
2) as well as its homology class rot(K◦) = [K̃◦] ∈

H1(T1(RP
2)). Denote with l(K) the number of connected components of K◦ and

with k the number of circles in the immersion K (i.e., the number of connected

components of K̃).

Lemma 2.9. We have

rot(K◦) = rot(K).

Furthermore,

l(K) ≤ n(K) + k,

l(K) = n(K) + k mod 2.

Proof. The homology class in H1(T1(RP
2) is preserved under each smoothing. Let

us consecutively smooth nodes as in Figure 4, one by one. At each step we increase
or decrease the number of components of K̃ by 1, depending on whether the two
branches of the node belong to the same or distinct components. �

The following statement can be viewed as the RP
2-version of the Whitney for-

mula [24]. It determines rot(K) once we know the degree of K and n(K).

Lemma 2.10. If the degree d(K) of K ⊂ RP
2 is even, then

rot(K) = 2n(K) + 2k ∈ Z4.

If d(K) is odd, then

rot(K) = 2n(K) + 2k − 1 ∈ Z4.

Proof. When smoothing, at each step we change the parity of the number of com-
ponents of K̃ by 1 but preserve its homology class [K̃] = rot(K). Once all nodes
are smoothed we have a even degree components and b odd degree components.
Each such even degree component is isotopic to a small circle and thus its rotation
number is 2. Each odd degree component is isotopic to a line and thus its rotation
number is 1.

We have a+ b = n(K) + k mod 2, b = d(K) mod 2, and b ≤ 1, while rot(K) =
2a+ b mod 4, which implies the statement of the lemma. �

Theorem 2.5 implies the following statement.

Corollary 2.11. Two generic immersions of a circle to RP
2 with the same parity

of the number n of nodes and the same degree d are homotopic in the class of
immersions.
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Let K ⊂ RP
2 be a generic immersion of a disjoint union of oriented circles,

and let p ∈ RP
2 \ K be a point. We choose an isomorphism between the group

H1(RP
2 \ {p};Z) and 1

2Z. The only ambiguity in the choice of this isomorphism
is the sign. The index ± indK(p) is the half-integer well-defined up to sign given
by [K] ∈ H1(RP

2 \ {p};Z). Using half-integers guarantees that the index jumps by
one each time we pass a branch of K. The absolute value | indK(p)| and the square
ind2K(p) are well-defined half-, resp. quarter-, integer numbers. Hence | indK | and
ind2K are locally constant functions on RP

2 \K.
Given a small neighborhood U of a node p of K, the set U \ K consists of

four connected components, called quadrants here. When smoothing K to K◦, the
two opposite quadrants which stay disconnected are called stable, the other two
quadrants which get connected are called unstable. A locally constant function
f : RP2 \ K → R which at each node p of K takes the same value on the two
unstable quadrants is called smoothable. The functions | indK | and ind2K are of this
form. Obviously, in this case f descends to a unique function f◦ : RP2 \K◦ → R

(see Figure 5).

stablestable

unstable

unstable

f

a

b

b

c

f◦

a
b

c

Figure 5. (Un-)stable quadrants and a smoothable function f

Let f : RP2 \K → R be a locally constant function. We extend f to the whole
plane RP

2 as follows. Suppose that p ∈ K. If p is not one of the nodes of K, we
define f(p) as the average of the values of f at the two regions of RP2 \K adjacent
to p. If p ∈ K is a node, we define f(p) to be the average of the values of f on the
two stable quadrants (see Figure 6). Note that when we apply this construction to
| indK | and ind2K , in general we get (| indK |(p))2 �= ind2K(p) for p ∈ K.

f

a

b

d

c

f

a

b

a+b
2 a+c

2p
p

Figure 6. Extension of a function f to RP
2

Following [21] we define the integral
∫

RP2

fdχ with respect to the Euler character-

istic for any function f : RP2 → R with the finite image f(RP2) ⊂ R and such that
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there exists a cellular decomposition of RP2, where the inverse image f−1(j) is a
finite union of open cells for any j ∈ R. Namely, if a set A ⊂ RP

2 is a finite union of
open cells, we set χ(A) ∈ Z to be the difference of the number of even-dimensional
cells in A with the number of odd-dimensional cells in A. This is nothing but the
Euler characteristic of A, but if we are to compute it homologically, we have to
take homology with closed support. For example, for a single n-dimensional cell
A ≈ Rn we have χ(A) = (−1)n.

Definition 2.12 (Viro, [21]). We define∫
RP2

fdχ =
∑

j∈f(RP2)

j · χ(f−1(j)) =
∑
σ cell

(−1)dim(σ)f(σ).

The latter sum is taken over the open cells σ such that f |σ is constant.

Proposition 2.13. For any smoothable locally constant function f : RP2 \K → R

we have ∫
RP2

fdχ =

∫
RP2

f◦dχ,

where the integrals are considered for the extensions of f and f◦ to RP
2.

Proof. We may choose the cellular decompositions of RP
2 for f and f◦ so that

one decomposition can be obtained from the other by replacing each node p of K
with the vanishing cycle Ip subdivided into three cells: the two endpoints and the
relative interior. The contribution of Ip to

∫
RP2

f◦dχ coincides with the contribution

of p to
∫

RP2

fdχ. �

The invariants J± and St from [1] also have counterparts for immersions to RP
2.

Definition 2.14 (Viro, [23]). Let K ⊂ RP
2 be a generic immersion of an oriented

circle. Put

J−(K) = 1−
∫

RP2

ind2K dχ.

Furthermore, in [23] it was shown that the number J−(K) defined in this way
does not change under the direct double tangency perestroika or under the triple
point perestroika. It decreases by 2 under the inverse self-tangency perestroika
when the number of nodes is increased.

As in the case of immersions in R
2 we can use the equality J+(K) − J−(K) =

n(K) as the definition of J+(K). In our context it is more convenient to use the
integral

∫
RP2

ind2K dχ itself as the invariant of an immersion instead of either J+(K)

or J−(K). We set up the following definition accordingly.

Definition 2.15. The complex orientation invariant of K is the number

Or(K) =

∫
RP2

ind2K dχ.

An example of this invariant is given in Figure 7. Note that this invariant
makes sense not only for generic immersions of a single circle, but also for generic
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immersions of disjoint collections of circles. In particular, it makes sense for K◦ (an
embedded collection of circles obtained from K).

Corollary 2.16. We have Or(K◦) = Or(K).

Proof. The corollary follows from Proposition 2.13 since ind2K◦ = (ind2K)◦. �

For the rest of this subsection we assume that K ⊂ RP
2 is an immersion of

a single circle. Following [23] we introduce the strangeness invariant for generic
immersions in RP

2 with the help of the Shumakovich formula [16]. Let us choose a
base point q ∈ K that is not a node of K. Each node p ∈ K now gets a canonical
local orientation since we have the order on the oriented branches of K as they can
be traced from q following the orientation of K. This local orientation can be used
to fix the sign of indK,q(p). Namely, we set +1 to represent the class of a small

oriented circle around p in H1(RP
2 \ {p};Z).

Definition 2.17 (Shumakovich-Viro, [16]). We set

St(K) = −
∑
p

indK,q(p) + ind2K(q)− 1

2
,

where the sum is taken over all nodes p ∈ K.

The number St(K) does not depend on the choice of the base point q ∈ K
and stays invariant under both direct and inverse self-tangency perestroikas. It
changes by ±1 under the triple point perestroika and thus provides the counterpart
of Arnold’s strangeness for generic immersions of a circle into the projective plane
(see Figure 7).

The relative interior of a K◦-membrane Ip is contained in a single component

of RP2 \K◦. Thus | indK◦(Ip)| is well-defined. Definition 2.17 may be rewritten as
follows in terms of the smoothing diagram ΔK :

(2) St(K) = St(ΔK) =
∑
p

σq(Ip)| indK◦(Ip)|+ ind2K(q)− 1

2
.

Here the base point q can be placed anywhere on K◦ outside the endpoints of the
vanishing cycles. To define the signs σq(Ip) = ±1 we trace the diagram ΔK starting
from q according to the orientation of K◦ and jump to the other branch of K0 at
every vanishing cycle Ip. Note that whenever | indK◦(Ip)| �= 0 there is a canonical
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Figure 8. The consistency of the two sign rules, namely sgn(i) = −σq(Ip)

orientation of Ip from the arc of K◦ with a smaller | indK◦ | to the arc with the
larger | indK◦ |. If the first jump at Ip is in the direction of this orientation, then
we set σq(Ip) = 1; otherwise σq(Ip) = −1. Figure 8 shows why this sign choice
agrees with the previous one. On the left-hand side, we depicted the local behavior
of indK,q around a node p. Here, the choice of first and second branch induces the
local orientation to be counterclockwise, and this implies that indK,q decreases by
1 when we cross a branch from left to right. On the right-hand side we depicted the
two jumps between the branches of the local smoothing, together with the values
of | indK◦ |. We want to compare the signs of i = indK,q(p) and σq(Ip). Assume
i > 0. Then |i + 1| > |i − 1|, and the first jump is from greater to lower value of
| indK◦ |; hence σq(Ip) = −1. It follows that sgn(i) = −σq(Ip), which shows that
Definition 2.17 and formula (2) are consistent.

2.3. The immersion graph Γ(K). To classify generic immersions of a disjoint
union of circles with a given number of nodes we can list their smoothing diagrams
(see Proposition 2.8). In turn, to exhaust such diagrams it is useful to extract a
certain graph from the smoothing diagram and study the properties of this graph.

Let K ⊂ RP
2 be a generic immersion of a disjoint union of k oriented circles. We

form a graph Γ(K) whose vertices are the connected components of K◦ and edges
are the vanishing cycles of ΔK .

Lemma 2.18. If l(K) = n(K) + k, then the graph Γ(K) is a disjoint union of
k trees. If k = 1, then Γ(K) is connected and b1(Γ(K)) = n(K) + 1 − l(K) = 0
mod 2.

As usual, we denote by b1(Γ) the first Betti number of a graph Γ, i.e., the number
of independent cycles of Γ.

Proof. If l(K) = n(K) + k, then each vanishing cycle decreases the number of
connected components of the smoothing diagram exactly by one. This implies the
first statement of the lemma. If K is connected, the graph Γ(K) is also connected.
The modulo 2 congruence is provided by Lemma 2.9. �

Definition 2.19. The immersion graph of a generic immersion K ⊂ RP
2 is the

graph Γ(K) enhanced with the following extra information (so that the smoothing
diagram ΔK can be uniquely recovered from the enhanced graph Γ(K)). The
enhancement of Γ(K) consists of

1. (Oriented edges) the orientation for some of the edges of Γ(K),
2. (Ribbon structure) the ribbon structure for Γ(K),
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3. (Two-coloring) a two-coloring of its vertices and
4. (Projective enhancement) a projective enhancement of Γ(K) described below

(the treatment is different depending on d(K)).

We describe these enhancements in detail one by one.

1. Oriented edges. Each edge E of Γ(K) connects two components of K◦. If these
components are ovals with disjoint interiors, then we do not orient E. Also we do
not orient E if it is a loop-edge, i.e., corresponds to a vanishing cycle connecting
an oval to itself.

If the two components are nested ovals, i.e., the interior of one oval contains the
other oval, then we orient the edge in the direction from the interior oval to the
exterior one.

Recall that all connected components of K◦, except possibly for a single one
(which appears if d(K) �= 0), are ovals. If an edge E ⊂ Γ(K) connects an oval to
the pseudoline, then we orient E in the direction from the oval to the pseudoline.
Note that no vanishing cycle may connect a pseudoline in RP

2 to itself by the
orientation reasoning.

2. Ribbon structure. As there is some ambiguity in what people call ribbon graphs
we start by quoting one of the most commonly accepted definitions of a ribbon
graph. It is a finite graph Γ with a choice of cyclic order of adjacent half-edges for
every vertex v ∈ Γ.

Recall that given such a structure on Γ we may canonically reconstruct the
oriented surface SΓ containing the graph Γ as its deformational retract as follows.
We take a copy of the closed oriented disk Dv for each vertex v ∈ Γ of valence
val(v). Then we mark val(v) points at the boundary ∂Dv so that the boundary
orientation agrees with the cyclic order from the ribbon structure. Finally, we
attach an orientation-preserving ribbon RE connecting the disks Dv and Dv′ at the
corresponding marked points for each edge E connecting v and v′.

Recall that our immersion K is oriented and so are all components of K◦. Be-
cause of this, the graph Γ(K) admits a canonical ribbon structure coming from
the cyclic order of vanishing cycles adjacent to a connected component Cv ⊂ K◦
associated to a vertex v ∈ Γ(K).

Nevertheless, the surface SΓ (that is conventionally associated to a ribbon graph
as we reviewed above) does not have a direct relation to the topology of K◦ ⊂ RP

2.
Instead, our goal is to use an additional structure that we define on Γ(K) so that
we may recover the pair (RP2; Δ(K)). We describe this procedure in the next
subsection, once we define the remaining part of the enhancement for Γ(K).

3. Two-coloring. The vertices of Γ are colored by two colors in the following way.
An oriented pseudoline J ⊂ RP

2 defines the orientation of RP2 \ J . An oriented
oval disjoint from J is positive (respectively, negative) if it defines in its interior the
orientation opposite to (respectively, the orientation coinciding with) the one given
by the orientation of RP2 \ J . If d(K) is odd we choose J = Cu, the pseudoline
component of K◦. If d(K) is even, we fix some pseudoline J ⊆ RP

2 \ K◦. We
then set the vertices corresponding to all positive ovals to be white vertices; all
other vertices (corresponding to negative ovals or the pseudoline) are blue vertices.
If d(K) is even, due to the choice of J the colors are only well-defined up the
following flip. We say a vertex v dominates a vertex v′ if they can be connected
via an oriented edge leading to v. Let v be maximal with respect to this partial
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order (i.e., v corresponds to an exterior oval). Then the colors are well-defined up
to flipping the colors of v and all the vertices dominated by v simultaneously. The
colors are a convenient way to describe the following property of Γ(K). For every
cycle in Γ(K), the number of nonoriented edges not contained in the root cluster
is even.

Before we describe the projective enhancement, let us collect some properties of
the first three enhancements satisfied by immersion graphs Γ = Γ(K).

Definition 2.20. A cluster of vertices is a maximal connected subgraph Γ′ ⊂ Γ
such that all its edges are unoriented (i.e., any other connected subgraph without
oriented edges is either contained in Γ′ or disjoint from it).

Proposition 2.21 (Oriented edges). If Γ = Γ(K) is the immersion graph of a
generic immersion K ⊂ RP

2, then all oriented outgoing edges from a cluster of
vertices A ⊂ Γ(K) lead to the same vertex v ∈ Γ(K).

There is a unique cluster U of vertices of Γ(K) such that there are no outgoing
edges from U . In the case d(K) �= 0 this cluster consists of the vertex associated to
the pseudoline component of K◦.

Proof. An oval Cv ⊂ K◦ might be contained inside several other ovals of Kv, but
all of them are nested. A vanishing cycle may connect Cv only with the innermost
oval from this collection. The second statement follows from the fact that K and
therefore Γ are connected. �

If all outgoing edges from a cluster of vertices A ⊂ Γ(K) lead to a vertex v ∈
Γ(K), we say that the cluster A is dominated by v. The unique cluster U of Γ(K)
such that there are no outgoing edges from U is called the root cluster of Γ(K).

Proposition 2.22. Let E be an edge connecting vertices v, v′ ∈ Γ. If E is oriented,
then v and v′ are the same color. If E is nonoriented and not contained in the root
cluster, then v and v′ are a different color.

Proof. Let J denote the pseudoline used to define the colors. In both cases of the
statement, we may assume that the vanishing cycle I corresponding to E does not
intersect J . The statement than follows from the coherence of I (see Definition
2.7). �

For a vertex v, we denote by Ad(v) the set of all edges adjacent to v. The sets
Ad+(v) and Ad−(v) are the subsets of Ad(v) formed by the edges oriented away
from v and towards v, respectively.

Let A be a cluster of vertices. Build a surface ΣA as follows. Take a disjoint
union Δ of oriented discs Dv over all v ∈ A. For each vertex v ∈ A, mark points,
indexed by Ad(v) \ Ad−(v), on ∂Dv in the cyclic order provided by the ribbon
structure of A. For each edge connecting v, v′ ∈ A we add a ribbon to Δ connecting
small neighborhoods of the corresponding marked points at ∂Δ so that the ribbon
disrespects the orientations of Dv and Dv′ . Denote the resulting surface with ΣA.

Proposition 2.23. Suppose that Γ = Γ(K) is an immersion graph. Let A be
a cluster which is not the root cluster. Then the surface ΣA is homeomorphic
to a sphere with holes. Moreover, all the remaining marked points (indexed by⋃

v Ad+(v)) lie on the same boundary component of ΣA.

The latter component is called the exterior boundary component.
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Proof. The surface ΣA is homeomorphic to a regular neighborhood N of the part
of the smoothing diagram formed by the ovals and vanishing cycles from A. All
remaining marks sit on the exterior boundary component of N (the boundary of
the nonoriented component in RP

2 \N). �

Remark 2.24. The previous proposition can also be expressed more combinatorially.
Let A be a cluster of Γ which is not the root cluster. A ribbon cycle in A is
an oriented closed path p in A such that at each white (resp. blue) vertex v the
outgoing edge is the successor (resp. predecessor) of the incoming edge (according
to the cyclic order given by the ribbon structure). The oriented edges e ∈ Ad+(v)
lying between the incoming and outgoing edges are said to lie on p. Let V,E,B be
the number of vertices of A, edges of A, ribbon cycles of A, respectively. Then the
proposition can be reformulated as

V − E +B = 2

and the condition that all edges in
⋃

v∈A Ad+(v) lie on the same ribbon cycle.

Let us finally discuss the fourth enhancement.

4. Projective enhancement. If d(K) = 0, consider the surface ΣA, where A is the
root cluster. If ΣA is oriented, the projective enhancement is a choice of boundary
component of ΣA, namely the exterior one (see the proof of Proposition 2.23). If
ΣA is nonoriented, no extra information is needed.

If d(K) = 1, i.e., [K] �= 0 ∈ H1(RP
2), there is a pseudoline component of K◦.

We treat the corresponding vertex u ∈ Γ(K) as the root vertex. In figures, we draw
the root vertex in a special way, as a horizontal line.

As any other vertex of Γ(K) the vertex u comes with a natural cyclic order on
the adjacent edges. This order is the cyclic order in which the vanishing cycles
appear when we travel along the pseudoline Cu ⊂ K◦.

There is however extra data we can extract from the way the vanishing cycles
are attached to Cu. Even though the component Cu ⊂ RP

2 is one-sided, locally it
has two sides, and we can check whether the two consecutive vanishing cycles come
to Cu from the same side or from opposite sides. In the latter case we place a cross
on the corresponding arc of the circle corresponding to the vertex u ∈ Γ(K). Since
Cu is one-sided, the total number of crosses on the circle corresponding to u must
be odd. This information is the projective enhancement in the case d(K) = 1.

If v �= u is not a root vertex, we define the cyclic order on Ad−(v) induced by the
cyclic order on Ad(v). For the root vertex u we define the cyclic order on Ad−(u)
by requiring that the edge following E ∈ Ad−(u) is the first edge after E (in the
order defined by the orientation of the pseudoline Cu) that is separated from E by
an even number of crosses.

Let A be a cluster, and let Ad+(A) =
⋃

v Ad+(v) denote the edges adjacent to

a cluster A and oriented in the direction outgoing from A. (Note that Ad+(U) = ∅
for the root cluster U .) Due to Proposition 2.23, the orientation on the exterior
boundary component of ΣA induces a cyclic order on Ad+(A).

Proposition 2.25. Let Γ = Γ(K) be an immersion graph. For any cluster A ⊂ Γ
dominated by a vertex w the cyclic order on Ad+(A) ⊂ Ad−(w) agrees with that on
Ad−(w). Furthermore, the sets Ad+(A) for different clusters dominated by w are
unlinked; i.e., if A and B are two clusters dominated by w, there is a segment in



RATIONAL QUINTICS IN THE REAL PLANE 151

Ad−(w) (according to the cyclic order) that contains Ad+(A) and is disjoint from
Ad+(B).

Proof. The proposition follows since every component of RP2 \ K◦ adjacent to w
and A is homeomorphic to an open disk with punctures. �
Definition 2.26. A graph Γ enhanced with a partial orientation of its edges, a
ribbon structure, a two-coloring and a projective enhancement as defined in para-
graphs 1–4 above and satisfying the properties of Propositions 2.21, 2.22, 2.23 and
2.25 is called an enhanced graph.

We conclude these considerations with the following elementary statement.

Proposition 2.27. Let Γ be an enhanced graph for odd d. Then there exists a
generic immersion K ⊂ RP

2 of a collection of disjoint oriented circles with Γ =
Γ(K). The isotopy type of K is determined by Γ.

Proof. We construct the smoothing diagram in RP
2 by representing the root vertex

u with a pseudoline and the other vertices with ovals. Propositions 2.21, 2.25 and
2.23 ensure existence of such a diagram, while Proposition 2.22 ensures that the
orientations are compatible. Then we “unsmooth” K◦, i.e., replace each vanishing
cycle with a node as in Figure 4. Topological uniqueness is inductive. �
Remark 2.28. In the case d = 0, only a few changes are necessary. Proposition
2.27 still holds if we add the requirement that the surface ΣA for the root cluster
A is homeomorphic to either a sphere with holes or RP

2 with holes. (In terms of
Remark 2.24, we want V −E+B = 1 or 2.) Then this surface can be embedded in
RP

2 by gluing discs to all boundary components, except possibly to the boundary
component specified by the projective enhancement, to which we glue a Möbius
strip instead. The construction then continues as in the odd case.
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Remark 2.29. Figures 9, 10, 11, 12 show the Reidemeister moves in terms of the
graph Γ(K). Here and in the following, the edges in the root cluster connecting
vertices of the same color are marked with the symbol ∞ (which expresses that the
corresponding vanishing cycles intersect the pseudoline J “at infinity”, which we
chose in order to define the colors).

The following conventions are adopted. Each letter a, b, c stands for a sequence
of edges (one after another in the cyclic order of the ribbon graph) adjacent to a
vertex of Γ(K). These edges may be oriented or unoriented. The symbol “in(a)”
stands for the inversion of the sequence a, i.e., inserting it in the reverse order.
Such an inversion happens every time the sequence gets attached to a vertex of
different color after the move.
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Also, some moves in Figure 12 change a sequence (a or b) from being adjacent to
a nonroot vertex (depicted by a blue or white disk) to the root vertex (depicted by
the line). Recall that all edges adjacent to the root vertex are oriented towards it.
If an edge in a sequence a (or b) adjacent to a nonroot vertex is unoriented, then
it becomes oriented after such a move. If it was already oriented, then it remains
oriented, but we add two crosses, one on each side of its adjacency to the line.
Recall that this means that the corresponding vanishing cycle is attached from the
other (local) side of the noncontractible component of the smoothing diagram.

The third and the fifth moves in Figure 9, as well as the fifth move in Figure 11,
involve ovals of the same color connected with nonoriented edges. These moves are
only applicable to the even d case, as the relative interior of the corresponding van-
ishing cycles must intersect the auxiliary pseudoline J ⊂ RP

2 while being disjoint
from K◦.

2.4. Classification of generic immersions of a circle with small n. If n(K) =
0, then our immersion is an embedding. If d(K) = 1 mod 2, then the embedding is
isotopic to the standard embedding RP

1 ⊂ RP
2. If d(K) = 0 mod 2, then K must

be the standard embedding of a circle into RP
2 as an oval (the one that bounds an

embedded disk).
Immersion graphs provide an exhausting way to classify all immersions of a circle

with a given number n of nodes. To do that we may list all connected graphs which
have n edges and m vertices with m = n+1 mod 2 enhanced as in Definition 2.19
and extract those that correspond to immersions of a circle.

If n = 1, then the graph Γ(K) must have two vertices (as the number of vertices
is not greater than two and has the same parity). For d = 1 mod 2 there is a unique
graph Γ(K); see Figure 13. For d = 0 mod 2 there are two cases; see Figure 14 for
the graphs and corresponding immersions.

In the case n = 2, d = 1 the graph Γ(K) must have three vertices (as the root
vertex cannot be adjacent to itself if Γ comes from an immersion to RP

2). There
are three possibilities depicted (along with the corresponding immersions) in Figure
15.

Figure 13. The
graph and the corre-
sponding immersion
for n = 1, d = 1

Figure 14. Graphs
and correspond-
ing immersions for
n = 1, d = 0

Figure 15. Graphs
and correspond-
ing immersions for
n = 2, d = 1
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As the final example of complete classifications of all generic immersions based
on graphs Γ(K) we consider the case n = 2, d = 0. In this case Γ(K) may have
three vertices or a single vertex. The classification is depicted in Figure 16 together
with the smoothing diagrams themselves. Note that in the case of a single vertex,
there are a priori two choices for the cyclic order at this vertex, but only the one
shown in Figure 16 satisfies Remark 2.28. For the second choice, ΣA is a Klein
bottle with holes (V − E +B = 1− 2 + 1 = 0; cf. Remark 2.24).

∞ ∞

Figure 16. Graphs, diagrams and corresponding immersions for
n = 2, d = 0

For higher n the classification of generic immersions gets rather complicated fast
(cf. [1]). However, there is a class of relatively simple immersions for arbitrary n
which we would like to distinguish.

Definition 2.30. A generic immersion K ⊂ RP
2 of a circle is called arboreal if the

corresponding graph Γ(K) is a tree.

Proposition 2.31. If the degree d is odd, then the arboreal immersions are in 1-1
correspondence with the ribbon rooted trees T enhanced with the orientation of some
of its edges towards the root as well as the data encoding the side change (denoted
by crosses on the horizontal line in our pictures) for the edges adjacent to the root
vertex of T . We require all edges adjacent to the root to be oriented.

If d is even, then the arboreal immersions are in 1-1 correspondence with the
ribbon (unrooted) trees T enhanced with orientations of some of its edges in such a
way that there exists at least one vertex to which all the orientations point.

Proof. If d is odd, we start by the pseudoline representing the root and add the
vanishing cycles adjacent to it according to the side data. To these cycles we
attach the (even degree) immersions corresponding to the connected components
of T minus the union of its root and the open edges adjacent to the root.

If d is even, the immersion K may be deformed to R2 as Γ(K) has no cycles.
Take the subtree T ′ ⊂ T formed by the vertices on the headside of all oriented
edges. The subtree T ′ also contains all edges between such vertices (which must
be nonoriented). The subtree T ′ is represented by a collection of nonnested ovals
in R2 and vanishing cycles between them. For each oriented edge adjacent to T ′
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we take a vanishing cycle adjacent to the corresponding oval from its interior and
proceed inductively. �

2.5. Classification of generic real rational curves of degree 4. Here we il-
lustrate how enhanced graphs and related smoothing diagrams can be used for
classification of real nodal rational quartic curves in RP

2. In this degree the clas-
sification is already known (see e.g. [4] for its recently found description in terms
of chord diagrams). Let us consider several ways in which this classification can be
formulated.

Recall that for a nodal rational curve in RP
2, we denote by h, e, and c the

numbers of hyperbolic, elliptic, and imaginary nodes of the curve (see Section 1.2).

Theorem 2.32 (see [4]). There are 13 isotopy types of nodal rational curves of
degree 4 in RP

2. These isotopy types are listed in Table 7. (The table contains each
isotopy type on the right together with its “chord diagram”, explained in Proposition
2.33 and Remark 2.34, on the left.)

Proof. Assume first that C does not have imaginary nodes and that K = RC \ E
(where E is the set of elliptic nodes of C) is not an arboreal immersion. Then, we
have n = 3− e and l = n− 1 = 2− e, so e = 0, 1 (as usual, n is the number of edges
of Γ(K), while l is the number of its vertices; these two numbers have opposite
parity for an immersion of a circle).

If e = 1, then the smoothing diagram ΔK consists of a single oval with two
vanishing cycles. The corresponding immersion is unique by our n = 2 classification.
If the elliptic node sits outside the oval of ΔK we get a contradiction to the Bézout
theorem by tracing a line through an elliptic and one of the two hyperbolic nodes
of C.

If e = 0, then the graph Γ(K) (which we assumed to be nonarboreal) has two
vertices and three edges. Suppose that there is no vanishing cycle intersecting
the auxiliary pseudoline J . Then, the corresponding two ovals of ΔK must be
nested. Otherwise, the line L connecting any two of the three hyperbolic nodes must
intersect RC also somewhere else by topological reasons. We get a contradiction
with the Bézout theorem, as each node already contributes two to the intersection
number of L and C.

If there is a vanishing cycle intersecting J , then each such vanishing cycle must
correspond to a loop of Γ(K). Indeed, if the two ovals of ΔK are nested, then
only the exterior oval may be adjacent to a vanishing cycle intersecting J . The
unnested components correspond to vertices of different color, so a vanishing cycle
intersecting J cannot connect them in a way coherent with the orientation.

If we have a single loop at a vertex v ∈ Γ(K), then there are two edges e1, e2
connecting v to a vertex v′. These are the only edges adjacent to v′. Therefore, e1
and e2 must be separated from each other by the two endpoints of the loop edge, as
otherwise K would have several components after normalization. Once again this
excludes the possibility that the two ovals of ΔK are unnested. The unique nested
configuration is listed in Table 7.

If there are two loops at a vertex v ∈ Γ(K), then we have a single edge connecting
v to v′. As in the e = 1 case, the cyclic ordering of the loop edges at v is unique by
the n = 2 classification. When inserting the edge connecting v to v′, there is again
only one choice due to symmetries.
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Table 7. Nodal rational quartics

h = 3

e > 0, c = 0

c = 2, h = 1

c = 2, e = 1

We are left to consider the case when C has a pair of imaginary nodes. There is
exactly one remaining node. If it is hyperbolic, then the corresponding vanishing
cycle connects two ovals that can be either nested or unnested. If the real node is
elliptic, then RC \ E is an oval. The elliptic node can be either inside or outside
this oval. �

All thirteen topological types of (RP2,RC) described above can be easily real-
ized by quadratic (Cremona) transformations of conics as specified in the following
statement.



RATIONAL QUINTICS IN THE REAL PLANE 157

Proposition 2.33. The 13 types of Theorem 2.32 can be obtained from conics by
the quadratic transformation

(3) [x0 : x1 : x2] �→ [x1x2 : x0x2 : x0x1].

For each type, we show a suitable arrangement of a conic and the coordinate axes
next to the curve in Table 7.

The proof of this proposition is straightforward.

Remark 2.34 (D’Mello, Viro; see [4]). Nodal rational quartics in RP
2 correspond

to topological chord diagrams, that is, topological types of embeddings of a disjoint
union of zero-dimensional spheres into the circle S1 (in the figures, each zero-
dimensional sphere is represented by the chord joining the images of the two points
of the sphere). The number of chords of a diagram is the number of hyperbolic
nodes of the curve.

• The nine classes of nodal rational quartic curves without imaginary nodes
(cf. Table 7) correspond to nine possible chord diagrams with no more than
three chords.

• The four classes of nodal rational quartic curves with a pair of imaginary
nodes (cf. Table 7) correspond to four possible chord diagrams with no more
than one chord enhanced with a single imaginary chord data. The latter
data says whether the imaginary node corresponds to the intersection of
the same or different halves of CC̃ \ RC̃, where C̃ is the normalization of
C (corresponding to the values σ(C) = 0 and σ(C) = 2 in Theorem 3.3
below).

As was noticed by Viro, the correspondence with the chord diagrams is provided
by the real point set of the conic Q obtained from C by the quadratic transforma-
tion centered in the nodes of C (the quadratic transformation of Proposition 2.33)
together with the parts of the real axes of RP2 in the interior of the ellipse RQ.

The 13 types of Theorem 2.32 can be decomposed into groups according to the
topological type of the smoothing RC◦ (see Definition 2.6 for RC, plus perturbing
each elliptic node into an oval; cf. Proposition 3.6 below).

Lemma 2.35. The smoothing RC◦ ⊂ RP
2 of the real point set of a nodal rational

quartic C in RP
2 is isotopic to the real point set of a smooth quartic of type < 4 >,

< 1 < 1 >> or < 2 >. If c = 0, only the first two cases appear.

Proof. A nodal rational quartic is of type I in the sense of Definition 3.2. By
Proposition 3.6, the “oriented” small perturbation C◦ is also of type I. In degree 4,
the genus g(C◦) of C◦ is equal to 3, and hence the number of connected components
of RC◦ is l = 2, 4. Thus, the first statement follows from the classification of smooth
quartics in Example 1.2. Note that by the complex orientation formula Theorem
3.3 for nodal curves, we have σ(C) = 0 for < 4 >,< 1 < 1 >> and σ(C) = 2 for
< 2 >. �

The following statement can be checked case by case from Table 7.

Proposition 2.36. Let C be a nodal rational quartic in RP
2, and let RC◦ be the

smoothing of the real point set of C. Furthermore, let Q,L1, L2, L3 be the arrange-
ment of conic and three lines obtained by the quadratic transformation centered
in the nodes of C (cf. Remark 2.34 and Proposition 2.33). Then RC◦ is of type
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< 1 < 1 >> if and only if the interior Int(RQ) of the oval RQ contains at least
one of the intersection points of the three lines.

We conclude this section with yet another reformulation (with the help of the
J−-invariant) of the classification of Theorem 2.32 in the case of three hyperbolic
nodes.

Theorem 2.37. A generic immersion K of a circle S1 → RP
2 with n(K) = 3 is

realizable by a real nodal rational curve of degree 4 if and only if J−(K) = −3 and
the isotopy type of K is different from the one depicted below:

Proof. By Definitions 2.14 and 2.15, J−(K) = −3 is equivalent to Or(K) = 4. If K
is realizable by a real nodal rational curve of degree 4, then by complex orientation
formula Theorem 3.1 we have Or(K) = 4. (Also we can verify this directly from
the classification of Theorem 2.32.) Conversely, let K be a generic immersion with
three nodes and such that Or(K) = 4. The number of connected components of
the smoothing K◦ is l(K) = 4 or l(K) = 2. It easy to check that in order to have
Or(K) = 4, the smoothing K◦ must be of type < 4 >, < 1 < 1 >> (a negative
injective pair) or < 1 � 1 < 2 >> (with opposite orientations on the two interior
ovals). For < 4 > there are two possible smoothing diagrams, for < 1 < 1 >> there
are three, and all of them appear in Table 7. For < 1 � 1 < 2 >>, the orientations
only allow for a single smoothing diagram. The corresponding immersed circle is
depicted above. �

3. Several restrictions on the topology of real algebraic curves

3.1. Complex orientations. Recall that a real curve is a pair (Σ, ϕ), where Σ is
a Riemann surface and ϕ : Σ → Σ is an antiholomorphic involution. The curve is
irreducible if Σ is connected. The fixed point set of ϕ is called the real part of Σ and
is denoted by RΣ. An example of real curves is provided by nonsingular algebraic
curves RC ⊂ RP

2: the restriction of the involution of complex conjugation conj :
CP

2 → CP
2 to the complex point set CC of such a curve C is an antiholomorphic

involution on the Riemann surface CC.
If (Σ, ϕ) is an irreducible real curve, then either Σ\RΣ consists of two connected

components exchanged by ϕ or Σ \ RΣ is connected. In the first case, Σ is said to
be of type I (or separating); in the latter case, Σ is said to be of type II. If Σ is
of type I, the two halves of Σ \ RΣ induce two opposite orientations of RΣ. These
orientations are called complex orientations.

The complex scheme of a nonsingular algebraic curve C in RP
2 is the topological

type of the pair (RP2,RC) enhanced with the information of the type (I or II) of
the curve and, in the case of type I, with one of two complex orientations of RC.
Namely, we say that two nonsingular algebraic curves C and C ′ in RP

2 have the
same complex scheme if they have the same type and there exists a homeomorphism
of pairs (RP2,RC) and (RP2,RC ′) that is consistent with complex orientations in
the case of type I.
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A powerful restriction on complex orientations of a nonsingular curve of type I
in RP

2 is provided by Rokhlin’s complex orientation formula. We present here this
formula in the form proposed by O. Viro. Choose a complex orientation of RC.
Then the invariant Or(RC) =

∫
RP2

ind2
RC dχ from Definition 2.15 is well-defined.

Note that if we choose the opposite complex orientation of RC, then Or(RC) stays
the same. Thus, Or(RC) is an invariant of the complex scheme of RC.

Theorem 3.1 (Rokhlin’s complex orientation formula; cf. [21]). Let C be a non-
singular curve of degree d and type I in RP

2. Then,

Or(RC) =
d2

4
.

For curves of odd degree, the statement of Theorem 3.1 can be reformulated in
the following way. Let C be a nonsingular curve of odd degree and type I in RP

2.
Denote by J the pseudoline of RC, and equip J with an orientation. This determines
one of the two complex orientations of RC. Let O be an oval of RC. Denote by
[O] and [J ] the classes in H1(RP

2 \ Int(O);Z) (where Int(O) is the interior of O)
which are realized by O and J , respectively. One has 2[J ] = ±[O]. Recall that the
oval O is positive (respectively, negative) if 2[J ] = −[O] (respectively, 2[J ] = [O]).
Notice that positivity or negativity of an oval does not depend on the choice of
a complex orientation of RC. A pair of ovals of RC is called injective if one of
these ovals is contained in the interior of the other one. An injective pair of ovals
is called positive if some orientation of the annulus bounded by these ovals induces
a complex orientation of the ovals; otherwise, the injective pair is called negative.
For a nonsingular curve C of degree 2k + 1 and type I in RP

2, Rokhlin’s complex
orientation formula is equivalent to the equality

2(Π+ −Π−) + Λ+ − Λ− = l − 1− k(k + 1),

where Π+ (respectively, Π−) is the number of positive (respectively, negative) injec-
tive pairs, Λ+ (respectively, Λ−) is the number of positive (respectively, negative)
ovals, and l is the total number of connected components of RC.

Definition 3.2. An irreducible nodal algebraic curve in RP
2 is said to be of type

I if its normalization is of type I.

Theorem 3.1 can be generalized to the case of nodal real curves, including those
with imaginary nodes. Consider a nodal curve C in RP

2 such that all the nodes

of C are imaginary and C is of type I. Denote by Ĉ the normalization of C, and

denote by Ĉ± the two connected components of CĈ \ RĈ. Denote by

(4) σ(C) = #(C− ∩ C+)

the number of nodes of C resulting as the intersection of the images C± ⊂ CC of

Ĉ± under the restriction Ĉ± → CC of the normalization map CĈ → CC.
The following statement is a slight generalization of Rokhlin’s complex orienta-

tion formula; cf. [15, 20, 21, 23]. The proof literally coincides with Rokhlin’s proof
of the complex orientation formula (see [15]).

Theorem 3.3 (Rokhlin’s complex orientation formula for nodal curves). Let C be
a nodal curve in RP

2 such that all the nodes of C are imaginary and C is of type
I. Then,

Or(RC) =
d2

4
− σ(C).
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Consider the pencil of real lines passing through the intersection point of two
distinct real lines L0 and L1 in RP

2. This pencil is divided by L0 and L1 into two
segments of the form {Lt}, t ∈ [0, 1], where Lt is defined by the linear form

(1− t)�0 + t�1 = 0

under a certain choice of linear forms �0 and �1 defining L0 and L1, respectively.
A point of tangency of two oriented curves is said to be positive if the orientations
of the curves define the same orientation of the common tangent line at the point,
and negative otherwise.

Theorem 3.4 (Fiedler’s alternation of orientations; cf. [5]). Let C be a nonsingular
curve of type I in RP

2. Let L0 and L1 be real lines tangent to RC at points p0 and
p1, respectively, which are not points of inflection of C. Let {Lt}, t ∈ [0, 1], be a
segment of the line pencil, connecting L0 with L1. Orient the lines RL0 and RL1

coherently in {Lt}. If there exists a path f : [0, 1] → CC connecting the points
p0 and p1 such that for any t ∈ (0, 1), the point f(t) belongs to CC \ RC and is
a point of transversal intersection of CLt with CC, then the points p0 and p1 are
either both positive or both negative points of tangency of RC with RL0 and RL1,
respectively.

3.2. Small perturbations. Let p be a real node of a nodal algebraic curve C in
RP

2. For a small disk D(p) centered at p, the intersection RC∩D(p) consists either
of two intersecting arcs (in the case of hyperbolic node) or of the point p (in the case
of an elliptic node). A topological type of smoothing of p is given by a topological
type of a pair (D(p), S) for an appropriate subset S ⊂ D(p). If p is hyperbolic, the
subset S is formed by two nonintersecting arcs whose extremal points coincide with
the four points of RC on the boundary of D(p); there are two such topological types
of smoothing of p. If p is elliptic, there are also two topological types of smoothing
of p: for one of them, S is empty, for the other one, S is an oval entirely contained
in D(p).

The following statement is known in topology of real algebraic curves under the
name of classical small perturbation.

Theorem 3.5 (Brusotti theorem; cf. [3]). Let C be a nodal curve (not necessarily
irreducible) of degree d in RP

2. Let U be a regular neighborhood of CC in CP
2,

represented as the union of a neighborhood U0 of the set of singular points of C and
a tubular neighborhood U1 of the submanifold CC \ U0 in CP

2 \ U0. Assume that
U0 ∩ RP

2 =
⋃

p D(p), where the union is taken over all real nodes of C and D(p)
is a small disk centered at p. For each real node p of C, choose either to keep p
or to smooth it; in the second case, choose one of the two possible topological types
of smoothing of p in D(p). For each pair of imaginary conjugate points C, choose
either to keep them or to smooth both of them. Then, for any neighborhood UC of C

in the space RCd of all curves of degree d in RP
2, there exists a nodal curve C̃ ∈ UC

of degree d in RP
2 such that

(a) CC̃ ⊂ U ;

(b) for each connected component u of U0, the intersection CC̃ ∩ u is embedded
in u according to the choice made for the corresponding nodal point of C;

(c) CC̃ \ U0 is a section of the tubular fibration U1 → (CC \ U0).

A curve C̃ as in Theorem 3.5 is called a small perturbation of C.
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The following two statements concern the relation between the type (I or II) of
a nodal curve in RP

2 and the type of small perturbations of this curve. They are
proved by local considerations at neighborhoods of the nodes.

Proposition 3.6 (cf. [11,15]). Let C be an irreducible nodal curve of type I in RP
2.

Let C̃ be a curve obtained by a small perturbation of C such that each imaginary

node of C is kept, each elliptic node of C is turned into an oval of C̃, and each
hyperbolic node of C is perturbed according to the complex orientations (see Figure

17). Then, C̃ is of type I.

I

Figure 17. Smoothing according to a complex orientation

Proposition 3.7 (cf. [11, 15]). Let C1, . . ., Cn be nonsingular curves of degrees
d1, . . ., dn in RP

2 such that no three of them pass through the same point, and Ci

intersects transversally Cj in didj points for any 1 ≤ i < j ≤ n. Let C̃ be a curve
obtained by a small perturbation of the union C1 ∪ . . . ∪ Cn in such a way that all
the imaginary intersection points of the curves C1, . . ., Cn are kept, and all the

real intersection points of these curves are smoothed. Assume that C̃ is irreducible.

Then, C̃ is of type I if and only if all the curves C1, . . ., Cn are of type I and there

exists an orientation of RC̃ which agrees with some complex orientations of RC1,

. . ., RCn (it means that the deformation turning C1 ∪ . . . ∪ Cn into C̃ brings the
chosen complex orientations of Ci to the orientations of the corresponding pieces of

RC̃ induced by a single orientation of the whole RC̃). In such case this orientation

of RC̃ is one of the complex orientations of C̃.

3.3. Rigid isotopies of nonsingular curves of degree 5. Any curve of degree
5 in RP

2 is defined by a homogeneous real polynomial in three variables of degree
5. The multiplication of this polynomial by a nonzero real constant gives rise
to a polynomial defining the same curve. Thus, the space RC5 of all curves of
degree 5 in RP

2 can be identified with the real projective space of dimension 20.
The discriminant Δ ⊂ RC5 is formed by the points of RC5 which correspond to
singular curves. Two nonsingular curves of degree 5 in RP

2 are rigidly isotopic if
the corresponding points belong to the same connected component of RC5 \Δ. It
turns out that the rigid isotopy type of a nonsingular curve C of degree 5 in RP

2 is
determined by the topological arrangement of components of RC and the type (I
or II) of C.

Theorem 3.8 (Kharlamov; see [10]). There are nine rigid isotopy types of nonsin-
gular curves of degree 5 in RP

2: < J � 6 >I , < J � 5 >II , < J � 4 >I , < J � 4 >II ,
< J � 3 >II , < J � 2 >II , < J � 1 >II , < J >II , and < J � 1 < 1 >>I , where the
subscript I or II indicates the type of curves.
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We will need more detailed information concerning the position of ovals of non-
singular curves of degree 5 and type I. Let C be a nonsingular curve of degree 5 in
RP

2. Let x1 and x2 be two distinct points in RP
2 \ J , where J is the pseudoline of

RC. The line passing through x1 and x2 intersects J in an odd number of points
(if the line is not transversal to J , we count intersection points with multiplicities).
Thus, exactly one of the two segments with endpoints x1 and x2 intersects J in an
even number of points; we denote this segment by [x1, x2]C . A subset S ⊂ (RP2\J)
is convex with respect to C (or just convex if C is understood) if for any two distinct
points x1 and x2 belonging to S the segment [x1, x2]C is contained in S. If a subset
S′ ⊂ (RP2 \J) is contained in a convex subset of RP2 \J , then we can consider the
convex hull of S′, that is, the smallest convex set containing S′.

Proposition 3.9. Let C be a nonsingular curve of degree 5 in RP
2 such that RC

has at least three ovals. Let x1, x2, and x3 be points in the interiors of three
distinct ovals of RC. Then, the union of the segments [x1, x2]C , [x1, x3]C , and
[x2, x3]C bounds a disc in RP

2 \ J . This disc is the convex hull of x1, x2, and x3.

Proof. The line passing through xi and xj (where 1 ≤ i < j ≤ 3) intersects RC
transversally in 5 points: two points of the oval whose interior contains xi, two
points of the oval whose interior contains xj , and one point of J . Thus, the segment
[xi, xj ]C does not intersect J . Since the union of our three segments does not

intersect J , this union bounds a disc in RP
2 \ J . This disc coincides with one of

the four triangles defined by the straight lines passing through x1 and x2, x1 and
x3, x2 and x3. Clearly, it is convex and is contained in any convex set containing
x1, x2, and x3. �

The disc of Proposition 3.9 is called the triangle with vertices x1, x2, and x3.
Let O1, . . ., On, n ≥ 3, be a collection of ovals of a nonsingular curve C of degree
5 in RP

2, and let x1, . . ., xn be points in the interior of O1, . . ., On, respectively.
We say that the ovals O1, . . ., On are in convex position if for any choice of indices
1 ≤ i < j < k ≤ n, the triangle with vertices xi, xj , and xk does not contain in its
interior any point x1, . . ., xn. (Bézout’s theorem implies that the notion of convex
position depends only on ovals O1, . . ., On and not on the choice of points x1, . . .,
xn inside these ovals.)

Proposition 3.10. Let C be a nonsingular curve of degree 5 in RP
2 such that RC

has exactly four ovals. Then, these ovals are in convex position if and only if C is
of type II.

Proof. The convexity of the position of four ovals of C is invariant under rigid iso-
topies by Bézout’s theorem. Thus, Theorem 3.8 implies that, to prove the statement
of the proposition, it is enough to construct

• a nonsingular curve C1 of degree 5 and type I in RP
2 such that RC1 has

exactly four ovals and these ovals are not in convex position, and
• a nonsingular curve C2 of degree 5 and type II in RP

2 such that RC2 has
exactly four ovals and these ovals are in convex position.

A construction of such curves is presented in Figure 18. The fact that the first curve
is of type I and the second curve is of type II follows from Proposition 3.7. �

Proposition 3.11. Let C be a nonsingular curve of degree 5 in RP
2 such that RC

has at least five ovals. Then, the ovals of C are in convex position.
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type I type II

Figure 18. The construction of types I and II curves with 4 ovals
from two ellipses and a line

Proof. Let x1, . . ., x5 be points in the interiors of five distinct ovals of RC. There
exists a unique conic A which passes through the five points x1, . . ., x5. Bézout’s
theorem implies that this conic does not intersect J . The real part of A is an oval,
and the disc bounded by it is convex with respect to C. Thus, this disc contains
the triangle with vertices xi, xj , and xk for any 1 ≤ i < j < k ≤ 5. In particular,
the conic A does not have points inside the triangle. �

Let C be a nonsingular M -curve of degree 5 in RP
2, and let O1, . . ., O6 be the

ovals of RC. Pick a point xi inside each oval Oi, i = 1, . . ., 6. Points xi and xj are
neighbors viewed from xk (where Oi and Oj are two distinct ovals of RC, and Ok

is another oval of RC) if

• one of the segments of the line pencil Lk
i,j connecting the lines xkxi and

xkxj does not contain any line which intersects an oval different from Oi,
Oj , Ok; denote this segment by Sk

i,j ;

• there is a path σk
i,j ⊂ RP

2 connecting xi and xj such that any point of

intersection of σk
i,j with RC belongs either to Oi or to Oj , each line of Sk

i,j

intersects σk
i,j in one point, and each line of Lk

i,j \ Sk
i,j does not intersect

σk
i,j .

Bézout’s theorem implies that if xi and xj are neighbors viewed from xk, then for
any choice of points x′

i, x
′
j , and x′

k inside the ovals Oi, Oj , and Ok, respectively,

the points x′
i and x′

j are neighbors viewed from x′
k. In this case, we say that the

ovals Oi and Oj are neighbors viewed from Ok.

Lemma 3.12. Let C be a nonsingular M -curve of degree 5 in RP
2, and let O1, . . .,

O6 be the six ovals of RC. Assume that Oi and Oj are neighbors viewed from Ok.
Let On and Om be two ovals different from Oi, Oj, and Ok. Then, the real part
RA of the conic A which passes through the points xi, xj, xk, xm, and xn contains
an arc which has endpoints xi, xj and does not contain any of the points xk, xm,
xn.

Proof. The conic A does not intersect J , and the points of RA are in a natural
bijection with the lines of the pencil Lk centered at xk. Thus, RA contains an arc
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a with endpoints xi, xj and such that a does not contain any of the points xm,
xn. Assume that a contains the point xk, and denote by ci,j the chord connecting

xi and xj in the interior of RA. There exists a path σk
i,j ⊂ RP

2 connecting xi

and xj and certifying that Oi and Oj are neighbors viewed from Ok. The union
of σ and ci,j is a cycle that intersects once each line of Lk. Thus, this cycle is not

homologous to 0 ∈ H1(RP
2;Z). Hence, the cycle constructed intersects J , which

gives a contradiction. �

A reversible linear order (respectively, reversible cyclic order) on some collection
of ovals is a pair of opposite linear (respectively, cyclic) orders on this collection.

Proposition 3.13. Let C be a nonsingular M -curve of degree 5 in RP
2, and let

O1, . . ., O6 be the six ovals of RC.

(a) For any oval Ok of RC, there exists a reversible linear order on the other five
ovals of RC such that two ovals neighboring with respect to this reversible
linear order are necessarily neighbors viewed from Ok.

(b) If Oi and Oj are neighbors viewed from Ok, then Oi and Oj are neighbors
viewed from any oval Om such that m is different from i and j.

(c) If Oi and Oj are neighbors viewed from Ok, then one of the ovals Oi and
Oj is positive, and the other one is negative.

Proof. Pick a point xi inside each oval Oi, i = 1, . . ., 6. The pseudoline J of
RC intersects each of the lines xkxi, i = 1, . . ., 6, i �= k, at exactly one point;
denote this point by yki . To prove the statement (a), notice that the line pencil
Lk centered at xk provides a reversible cyclic order on the five ovals different from
Ok. This pencil is formed by 5 segments (with pairwise nonintersecting interiors),
indexed by pairs of ovals (Oi, Oj) which are neighbors with respect to this order;
the segment Sk

i,j indexed by (Oi, Oj) connects the lines xkxi and xkxi. For such a

segment Sk
i,j , the ovals Oi and Oj are neighbors viewed from Ok if and only if the

orientations of the lines xkxi and xkxj provided by the triples of points (xk, xi, y
k
i )

and (xk, xj , y
k
j ), respectively, turn one into the other through the segment Sk

i,j .

Our purpose is to prove that, among the five segments Sk
i,j , there exists exactly

one segment such that the corresponding ovals are not neighbors viewed from Ok.
First, assume that there are two such segments Sk

i,j and Sk
i′,j′ . Denote by A the

conic which passes through xk, xi, xj , xi′ , xj′ (in the case where the indices i, j, i′,
j′ are not pairwise distinct, we choose an oval Om different from Oi, Oj , Oi′ , Oj′ ,
and suppose that A passes through xm). The five marked points divide the real
part RA of A into five arcs. Either xi, xj or xi′ , xj′ are endpoints of such an arc,
which contradicts the fact that Oi and Oj , as well as Oi′ and Oj′ , are not neighbors
viewed from Ok. Furthermore, if any pair of ovals which are neighbors with respect
to the reversible cyclic order provided by Lk are neighbors viewed from Ok, then
we get five paths whose union is a cycle c intersecting once each line of Lk; the
cycle c is not homologous to 0 ∈ H1(RP

2;Z); thus c intersects J .
To prove the statement (b), consider the segment S of the line pencil connecting

the lines xmxi and xmxj such that no line of S intersects Ok, and assume that some
line of S intersects an oval On, where n is different from i, j, k, and m. Trace a
conic B through the points xi, xj , xk, xm, and xn. Since Oi and Oj are neighbors
viewed from Ok, the real part RB of B contains an arc a such that its endpoints
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are xi, xj , and the interior of a does not contain any of the points xm, xn, xk (see
Lemma 3.12), which gives a contradiction.

To prove the statement (c), consider the segment Sk
i,j of the line pencil Lk

i,j

connecting the lines xkxi and xkxj such that any line of Sk
i,j does not intersect

any oval different from Oi, Oj , Ok. Orient all the real parts of the lines of the
segment in such a way that the orientations turn to one another under the isotopy

given by these real parts, and choose a complex orientation of RC. Let S̃k
i,j be

a subsegment of Sk
i,j such that the endpoints of S̃k

i,j correspond to lines tangent,

respectively, to Oi and Oj , and the interior points of S̃k
i,j correspond to lines which

do not intersect any oval except Ok. The points S̃k
i,j which correspond to lines

tangent to RC divide S̃k
i,j into segments S1, . . ., Sr (each of these lines is tangent

to RC at exactly one point). The endpoints of each of the segments S1, . . ., Sr

correspond to two tangency points p, q of RC with lines of S̃k
i,j ; these two points are

either both positive or both negative. Indeed, if the interior points of a segment St

under consideration correspond to lines intersecting RC at three points, then the
statement follows from Theorem 3.4. Assume that the interior points of a segment
St under consideration correspond to lines intersecting RC at five points. Then, for
each line corresponding to an interior point of St, either three intersection points
with RC belong to J and the other two intersection points belong to Ok or one
intersection point belongs to J and the other four intersection points belong to Ok.
In the first case, Bézout’s theorem implies that p and q are connected by an arc α

of J such that α has exactly one common point with any line of S̃k
i,j ; furthermore,

p and q are either both positive or both negative. In the second case, since xk is
inside Ok, the points p and q are connected by an arc β of Ok such that β has

exactly one common point with any line of S̃k
i,j ; furthermore, p and q are either

both positive or both negative. �

Corollary 3.14. Let C be a nonsingular M -curve of degree 5 in RP
2. Then, there

exists a reversible cyclic order of the six ovals of RC such that any two ovals which
are neighbors with respect to this order are neighbors viewed from any other oval
of RC. This reversible cyclic order is invariant up to rigid isotopy of the curve;
positive and negative ovals alternate with respect to this order. �
Remark 3.15. Corollary 3.14 can as well be deduced from the rigid isotopy clas-
sification of nonsingular curves of degree 5 in RP

2 (Theorem 3.8), the fact that
the existence of a reversible cyclic order required in the corollary is invariant under
rigid isotopies, and a particular construction of a maximal curve of degree 5 in RP

2,
for example, a small perturbation of three lines and an ellipse shown in Figure 19.

4. Tropical constructions

This section is devoted to combinatorial patchworking and its tropical interpre-
tation. The patchworking technique was invented by O. Viro at the end of the
1970’s. This technique provides a powerful tool to construct real plane algebraic
curves (and, more generally, real algebraic hypersurfaces in toric varieties). We
discuss here only certain particular cases of the general patchworking theorem.

4.1. Nodal tropical curves. We give here the definitions required for the com-
binatorial patchworking construction presented below. An introduction to tropical



166 ILIA ITENBERG, GRIGORY MIKHALKIN, AND JOHANNES RAU

Figure 19. The construction of an M -curve from three lines and
an ellipse

geometry and detailed information on tropical curves can be found, for example,
in [2]. A tropical curve in R

2 is a finite weighted rectilinear graph Γ in R
2 (some of

the edges of Γ are not bounded) such that

• each edge e of Γ has a rational slope and is prescribed a positive integer
weight w(e),

• at each vertex v of Γ the following balancing condition is satisfied:

(5)
∑
e⊃v

w(e)uv(e) = 0,

where the sum is taken over all edges e adjacent to v, the vector uv(e)
is the primitive integer vector (i.e., vector with integer relatively prime
coordinates) in the direction of e and pointing outward of v.

Consider the collection C of integer vectors w(e)uv(e) where e runs over all
nonbounded edges of Γ and v is the vertex adjacent to e. By (5) the sum of all
vectors in the collection is zero. Thus, there exists a convex polygon Δ with integer
vertices in R2 dual to this collection. This means that each vector w(e)uv(e) ∈ C
is outward normal to a side E ⊂ Δ and

#(E ∩ Z
2)− 1 =

∑
w(e),

where the sum is taken over all w(e)uv(e) ∈ C that are outward normal vectors to
E. The polygon Δ is called a Newton polygon of Γ. It is defined up to translation.
The quantity #(E∩Z2)−1 is called the integer length of the interval E (recall that
the endpoints of E are from Z2).

If Δ can be chosen to coincide with the triangle with vertices (0, 0), (d, 0), (0, d)
for some positive integer d, then we say that Γ is projective of degree d. The latter
means that each vector uv(e), where e is a nonbounded edge of Γ, is either (−1, 0)
or (0,−1) or (1, 1), and the number of such vectors (counted with weights w(e)) in
each direction is equal to d.

A tropical curve Γ in R2 is said to be irreducible if it cannot be presented as a
union of two tropical curves different from Γ.
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The space T (Δ) of tropical curves with a given Newton polygon Δ ⊂ R2 is
equipped with a natural topology induced by the Hausdorff distance

d(Γ1,Γ2) = max{ sup
p∈Γ1

inf
q∈Γ2

dist(p, q), sup
q∈Γ2

inf
p∈Γ1

dist(p, q)},

where dist(p, q) is the Euclidean distance between points p and q. The condition
that Γ1 and Γ2 have the same Newton polygon ensures finiteness of this distance.

A tropical curve Γ in R2 is said to be nonsingular if

• each edge of Γ is of weight 1,
• each vertex v of Γ is 3-valent and the primitive integer vectors in the direc-
tions of three edges adjacent to v generate (over Z) the lattice Z2 ⊂ R2 of
vectors with integer coordinates.

A tropical curve Γ in R2 is said to be nodal (or simple; cf. [13]) if

• each vertex of Γ is either 3-valent or 4-valent,
• for each 4-valent vertex of Γ, the union of four edges adjacent to this vertex
is contained in a union of two straight lines.

For our constructions, we use some particular degenerations of nonsingular trop-
ical curves to nodal ones. These degenerations contract certain edges of nonsingular
tropical curves in R2, as well as some “triangles”. A triangle in a nonsingular trop-
ical curve Γ in R2 is a collection of three edges of Γ which form a cycle such that
no vertex of Γ is inside this cycle.

Let Δ ⊂ R
2 be a convex polygon with integer vertices, and let γ :→ T (Δ) be a

path such that

• γ(t) is a nonsingular tropical curve for any t ∈ (0, 1];
• γ(0) is a nodal tropical curve;
• the underlying graph of the tropical curve γ(0) can be obtained from the
underlying graph of γ(t) for any t ∈ (0, 1] by contraction of a collection
Cedges of pairwise disjoint edges (i.e., no two edges of Cedges have a com-
mon endpoint) and a collection Ctriangles of pairwise disjoint triangles (i.e.,
no two edges of different contracted triangles have a common endpoint);
furthermore, no edge of Cedges has common endpoint with any edge of the
contracted triangles.

In this case, we say that the nodal tropical curve γ(0) is an immediate degeneration
of γ(1) (and γ(1) is an immediate perturbation of γ(0)).

4.2. Combinatorial patchworking of real nodal curves. Let Γ be a nonsingu-
lar tropical curve in R

2. A real structure on Γ is given by a collection T of bounded
edges of Γ which satisfy the following condition:

• for any cycle of Γ, denote by e1, . . ., e� the edges of the cycle that belong
to T ; then, one has

(6)
�∑

i=1

ui = 0 mod 2,

where u1, . . . , u� are primitive integer vectors in the directions of e1, . . ., e�,
respectively.

Such a collection T is called twist-admissible, and the edges of T are called twisted.
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To each nonsingular tropical curve Γ in R2 and each twist-admissible collection
T of edges of Γ we associate a smooth curve C(Γ, T ) ⊂ (R×)2 using the following
procedure.

• At each vertex of Γ, we draw three arcs as depicted in Figure 20.

Figure 20. Three arcs at a vertex

• For each bounded edge e of Γ we join the two corresponding arcs of one
endpoint of e to the two corresponding arcs of the other endpoint of e in
the following way: if e /∈ T , then join these arcs as depicted in Figure 21;

if e ∈ T , then join these arcs as depicted in Figure 22. Denote by C̃(Γ, T )
the curve obtained.

Figure 21. Arcs for an edge which does not belong to T

Figure 22. Arcs for an edge which belongs to T
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• Choose arbitrarily a branch of C̃(Γ, T ) and a pair of signs (each sign being
+ or −) for this branch.

• Associate pairs of signs to all branches of C̃(Γ, T ): for each edge e with
primitive integer direction (u1, u2), the pairs of signs of the two branches

of C̃(Γ, T ) corresponding to e differ by the factor ((−1)u1 , (−1)u2). The
compatibility condition (6) ensures that the rule is consistent.

• Map each branch of C̃(Γ, T ) to (R×)2 by (x, y) �→ (ε1e
x, ε2e

y), where (ε1, ε2)
is the pair of signs associated to the branch. Denote by C(Γ, T ) the union

of the images of all branches of C̃(Γ, T ).

The isotopy type of the curve C(Γ, T ) ⊂ (R×)2 is determined by Γ and T up to
axial symmetries.

If Γ has Δ as Newton polygon, denote by C(Γ, T ) the closure of C(Γ, T ) ⊂
(R×)2 ⊂ RTor(Δ) in the real part RTor(Δ) of the toric surface Tor(Δ) associated
with Δ. In particular, if Γ is of projective degree d, then C(Γ, T ) ⊂ RP

2.
An algebraic curve A in (R×)2 is a real Laurent polynomial in two variables

well-defined up to multiplication by a monomial. Such a polynomial has a zero
locus in RA ⊂ (R×)2. The Newton polygon Δ of the polynomial is also called the
Newton polygon of A. Denote by RĀ the closure of RA in Tor(Δ).

The combinatorial patchworking (a particular case of the Viro patchworking
theorem [22]) can be reformulated in terms of twist-admissible collections as follows.

Theorem 4.1 (cf. [22]). Let Γ be a nonsingular tropical curve in R2, and let Δ
be a Newton polygon of Γ. Then, for any twist-admissible collection T of Γ, there
exists a nonsingular real algebraic curve A in (R×)2 of Newton polygon Δ such that
the pairs ((R×)2,RA) and ((R×)2, C(Γ, T )) are homeomorphic. Furthermore, the
pairs (RTor(Δ),RĀ) and (RTor(Δ), C(Γ, T )) are also homeomorphic.

For example, if Γ is projective degree d, then there exists a nonsingular curve RA
of degree d in RP

2 such that the topological pairs (RP2,RA) and (RP2, C(Γ, T ))
are homeomorphic. A reformulation similar to Theorem 4.1 was used by B. Haas
in [6] for characterization of M-curves obtained by combinatorial patchworking.

Notice that the empty collection of edges is always twist-admissible. The result-
ing nonsingular real algebraic curves are called simple Harnack curves. They were
introduced in [12].

Let Γ be a nonsingular tropical curve in R
2, and let Γ′ be an immediate de-

generation of Γ which is a nodal tropical curve. Then, the underlying graph of
Γ′ is obtained from the underlying graph of Γ by contracting a collection Cedges =
{e1, . . . , er} of pairwise-disjoint edges as well as a collection Ctriangles = {tr1, . . . , trs}
of triangles. Suppose that Γ is enhanced with such a real structure that all ej ,
j = 1, . . . , r, are twisted while all the triangles trj , j = 1, . . . , s, are composed of
nontwisted edges. For each i = 1, . . ., r, the curve C(Γ, T ) contains two arcs ai and
bi which are associated with two endpoints of ei but correspond to edges different
from ei (in Figure 22 such arcs are shown in red). The condition (6) implies that
these two arcs are contained in the same quadrant of (R×)2. Furthermore, for each
j = 1, . . ., s, the curve C(Γ, T ) contains an oval oj corresponding to the trian-
gle trj . Denote by C ′(Γ, T, Cedges, Ctriangles) ⊂ (R×)2 the subset obtained from the
curve C(Γ, T ) by replacing each pair of arcs ai, bi with a “cross” as in Figure 23 and
contracting each oval oj (where j = 1, . . ., s) to a point as in Figure 24. The isotopy
type of C ′(Γ, T, Cedges, Ctriangles) ⊂ (R×)2 is determined up to axial symmetries by
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Figure 23. Replacing two arcs by a “cross”

Figure 24. Contracting an oval

the tropical curve Γ, the real structure T , and the collections Cedges and Ctriangles.
Once again, if Γ has Δ as Newton polygon, denote by C

′
(Γ, T, Cedges, Ctriangles) the

closure of C ′(Γ, T, Cedges, Ctriangles) in RTor(Δ).
The following theorem is a corollary of the Viro patchworking theorem [22] for

an appropriate (r + s)-dimensional family of curves. It also can be viewed as a
special case of [17].

Theorem 4.2 (cf. [22]). Let Γ be a nonsingular tropical curve of Newton polygon
Δ in R

2, and let Γ′ be a nodal tropical curve obtained as an immediate degeneration
of Γ. Denote by Cedges (respectively, Ctriangles) the collection of edges (respectively,
of triangles) of Γ that are contracted in the degeneration of Γ to Γ′.

Then, for any twist-admissible collection T of Γ such that Cedges ⊂ T and
no edge of the triangles in Ctriangles is in T , there exists a nodal real algebraic
curve RA ⊂ (R×)2 with Newton polygon Δ and r + s nodes such that the pairs
((R×)2, C ′(Γ, T, Cedges, Ctriangles)) and ((R×)2,RA) are homeomorphic. Further-

more, the pairs (RTor(Δ), C
′
(Γ, T, Cedges, Ctriangles)) and (RTor(Δ),RĀ) are also

homeomorphic. If in addition Γ is irreducible, then A can be chosen irreducible.

5. Restrictions

In this section, we start the proof of Theorem 1.10. In fact, we obtain a more
detailed classification of nodal rational curves of degree 5 in RP

2: we describe all
possible complex schemes of these curves. The complex scheme of a nodal rational
curve C in RP

2 is the topological type of the pair (RP2,RC) equipped with one
of two complex orientations of RC. Recall that given a half of the normalization

ψ : Ĉ → C, we get a complex orientation for each elliptic node p ∈ RC that is the
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local orientation of RP2 at p such that the intersection at p of RP2 and the image
under ψ of the chosen half is positive.

5.1. Possible complex schemes of small perturbations. Let C be a nodal
rational curve of degree 5 in RP

2, and let C◦ be a small perturbation of C (see
Brusotti’s Theorem 3.5), such that all hyperbolic nodes are smoothed according
to the complex orientations, each elliptic node is smoothed into an oval, and all
complex conjugated nodes are kept. Since C is of type I, the perturbation C◦
is also of type I (see Proposition 3.6). Furthermore, the complex orientations of
RC◦ are induced by the complex orientations of RC. Denote by l the number of
connected components of RC◦. Recall that σ stands for the number of imaginary

nodes of C resulting from the intersection of the images of Ĉ+ and Ĉ− under the

normalization map ψ : Ĉ → C, where Ĉ± are the two connected components of

CĈ \ RĈ.

Proposition 5.1. The complex scheme of C◦ is one of the seven schemes listed in
Table 8. Moreover,

• if l = 7, then C◦ is a nonsingular M -curve, and hence satisfies the convexity
properties Proposition 3.11, Lemma 3.12, Proposition 3.13, Corollary 3.14;

• if l = 5, σ = 0, the single positive oval of RC◦ is contained in the trian-
gle formed by the three negative ovals (in particular, the four ovals are in
nonconvex position);

• if l = 5, σ = 2, then the four ovals of RC◦ are in convex position.

Table 8. Seven possible complex schemes of RC◦

σ l 7 5 3 1

0

2

4

6
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Proof. The numbers l, h, e, c, σ satisfy some straightforward relations. First, we
have h + e + c = 6, the total number of nodes of C. Second, from Lemma 2.9
and the fact that each elliptic node gives rise to an oval of RC◦ we can deduce
that l is odd and 1 + e ≤ l ≤ 7 − c (as 6 − c is the number of real nodes of C).
Moreover, we obviously have 0 ≤ σ ≤ c. These inequalities explain the upper-
triangular shape of the table. Let us now smooth the complex conjugated nodes of
C◦ in order to obtain a nonsingular curve C ′. Note that C ′ is of type I if and only
if σ = 0. Therefore, according to the rigid isotopy classification Theorem 3.8, the
complex scheme of RC ′, and hence also the complex scheme of RC◦, is completely
determined by l and σ, namely < J � 6 >I , < J � 4 >I or < J � 1 < 1 >>I for
σ = 0 and < J � 4 >II , < J � 2 >II or < J >II for σ �= 0. As explained before,
C◦ is of type I by Proposition 3.6 and therefore satisfies the complex orientation
formula Theorem 3.3. Applied to our case, when l and σ are fixed, this formula
in fact uniquely determines the complex orientations, as depicted in Table 8. In
particular, if l = 1 the formula implies σ = 6. Finally, the convexity statements
follow from the corresponding statements for C ′ (using Proposition 3.10). In the
nonconvex case, we also use Fiedler’s alternation rule Theorem 3.4. Consider a
triangle spanned by three ovals and containing the fourth one. Applying Theorem
3.4 to a pencil of lines with base point in the fourth oval, for example, we see that
the three outer ovals must have the same orientation. This finishes the proof. �

In what follows, we go through these seven cases and study which smoothing
diagrams we can get for each complex scheme.

5.2. General restrictions on smoothing diagrams. Let ΔC = (C◦;
⋃

p Ip) be

a smoothing diagram of real nodal rational curve C of degree 5 in RP
2. As above,

C◦ is a type I small perturbation of C and
⋃

p Ip is a union of h vanishing cycles.
The following pieces of terminology will be useful.

Definition 5.2. Let Δ = (L; I) be a smoothing diagram (cf. Definition 2.7). A
connected component of L which does not intersect any of the vanishing cycles in I
is called an isolated oval. Let Δ∗ be the smoothing diagram obtained from Δ after
removing all isolated ovals. We call Δ irreducible if Δ∗ is the smoothing diagram
of a single immersed circle (cf. Proposition 2.8).

The following proposition recollects straightforward properties of smoothing di-
agrams of real rational curves (cf. discussions in subsections 2.2 and 2.3).

Proposition 5.3. The smoothing diagram ΔC satisfies the following properties.

(a) The underlying graph Γ(Δc) has e isolated vertices and one further con-
nected component with h+ e+ 1− l = 7− c− l cycles.

(b) All vanishing cycles of ΔC are coherent (cf. Definition 2.7). This means
that a vanishing cycle Ip connects either

• the pseudoline and a negative oval,
• or a positive and a negative oval, if they are unnested,
• or a negative injective pair of ovals.

(c) The smoothing diagram ΔC is irreducible (cf. Definition 5.2).
(d) The interior of any isolated oval is empty.
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In addition to these purely topological properties, further general restrictions in
the case of algebraic curves are provided, by the Bézout theorem. To formulate
these restrictions, we introduce the concept of a quasiline. Let Δ = (C◦;

⋃
p Ip) be

a smoothing diagram, and let L be a noncontractible smoothly embedded closed 1-
submanifold of RP2. We say that L is a quasiline with respect to Δ if the following
conditions hold:

• The intersection of L and C◦ is transverse.
• For each (closed) interval Ip, we have either |L ∩ Ip| ≤ 1 or L ∩ Ip = Ip; in
the former case L and Ip intersect transversally, and L is disjoint from the
endpoints of Ip.

• Let r be the number of intervals Ip with L ∩ Ip �= ∅, and let s be the
cardinality of the intersection L ∩ (C◦ \

⋃
p Ip); then

(7) L.Δ := 2r + s ≤ 5.

Lemma 5.4. Let ΔC = (C◦;
⋃

p Ip) be a smoothing diagram of real nodal rational

curve C of degree 5 in RP
2. Then, for any two points p1, p2 ∈ RP2, there exists a

quasiline with respect to ΔC passing through the points. If several pairs of points
are given, all these quasilines can be chosen in such a way that any two of them
intersect either in a single point transversally or along a single interval Ip.

Proof. Let Ct, t ∈ [0, 1], be a family of curves such that C0 = C, C1 = C◦, and
such that for t > 0 this family forms a rigid isotopy. Let us fix small discs D around
the hyperbolic nodes of C. Then there exists s ∈ (0, 1] such that the intersection
of any of the discs D with RCt for t ∈ (0, s] consists of two embedded intervals.
Let Itp be a corresponding family of vanishing cycles connecting these intervals such

that I0p = {p} is a node of C. Then, for each t ∈ (0, s], the tuple (RCt;
⋃

p I
t
p) is

equivalent to ΔC up to isotopy. For each point pi appearing in the statement, we
choose a path pti such RCt ∪

⋃
p Ip ∪ pti is isotopic to ΔC ∪ pi for all t ∈ (0, s]. In

particular, if pi ∈ Ip, then p0i coincides with the corresponding node p of C. Let us
now prove the existence of quasilines through p1, p2. Start with the (honest) lines

Lt := pt1p
t
2. By Bézout’s theorem, we have |RL0 ∩RC| ≤ 5. We would like to show

that Lt.(RCt;
⋃

p Ip) ≤ |RL0 ∩ RC|. As we consider small perturbations of C and

L0, the statement is clear if L0 does not contain any hyperbolic node of C. Hence,
assume that p ∈ L0 is a hyperbolic node of C, and let D be the disc around p.
Suppose first that L0 intersects both branches of C at p transversally (so that the
local intersection multiplicity is mp = 2). Depending on whether the two points
which form the intersection of Lt with the boundary ∂D of D are connected in
D\Ct or not, we may replace the segment Lt∩D by a path which intersects Ip in a
single point or a path which contains Ip. In both cases, the local contribution to (7)
is 2, so we constructed a quasiline with the required properties. For mp > 2, note
that any two points in ∂D \ Ct can be joined via a path traversing or containing
Ip with local contribution to (7) less than 3. Finally, the statement about several
lines obviously follows from the fact that two (honest) lines intersect in a single
point. Indeed, even if this intersection point is a node of C, the above procedure
can be performed such that the two paths intersect either in a single point or in
the interval Ip. �
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Remark 5.5. Similarly, we can show the following statement: Given an interval Ip,
there exists

• a quasiline intersecting the interval Ip transversally in a single interior point,
• a quasiline containing the interval.

This corresponds to choosing L0 to be a line intersecting the corresponding node
transversally and lying in the corresponding “quadrants of the node”. Clearly, we
may assume that the pairwise intersections of such quasilines are also either single
points or the interval Ip itself.

5.3. M-curve case (l = 7). In the M-curve case l = 7, we have σ = c = 0, and all
necessary further restrictions can be summarized in Proposition 5.6 below. Let Δ
be the following diagram (in the sense of Definition 2.7):

A subdiagram of Δ is a diagram obtained from Δ by removing some of the
(dashed) intervals. A diagram Δ′ is called a tree (or arboreal; cf. Definition 2.30) if
the underlying graph Γ(Δ) is a (connected) tree plus possibly some isolated points.

Proposition 5.6. If l = 7 (i.e. if C◦ is an M-curve), then the smoothing diagram
ΔC is (up to isotopy) a subtree of Δ. Moreover, Table 3 lists all 32 possible choices
of such subtrees.

Proof. We will prove the following properties of ΔC , which, together with Corollary
3.14, imply the statement.

(a) ΔC is a tree (in particular, it does not have double edges or loops).
(b) Two ovals connected by a vanishing cycle must be neighbors in the sense of

subsection 3.3.
(c) An oval connected to the pseudoline of C◦ by a vanishing cycle must be

negative.
(d) Assume that there are three vanishing cycles attached to the pseudoline

of C◦. Then when moving along J , the vanishing cycles lie on alternating
sides.

Part (a) follows from Proposition 5.3(a).
For (b), let us consider two ovals O1 and O2 connected by a vanishing cycle. Let

O3 be an arbitrary third oval of C◦, and let x1, x2, x3 be points in their respective
interiors. We want to show that x1 and x2 are neighbors viewed from x3 according
to the definition on page 163. To do so, we define the path σ3

1,2 to be the line

segment [x1, x2]C◦ and we define Sk
i,j to be the segment of the pencil of lines through

x3 which intersect [x1, x2]C◦ . With these choices, the second condition for being
neighbors is obviously satisfied, and it remains to show that the lines in Sk

i,j do not
intersect any oval other than O1, O2, O3. For this we might have to replace C◦ by
a deformation which is sufficiently close to C. More precisely, let Ct, t ∈ [0, 1], be
a family of curves such that C0 = C, C1 = C◦, and such that for t > 0 this family
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forms a rigid isotopy. We can proceed as above for each t, with the additional
assumption that the chosen points xt

1, x
t
2 converge to the node p when t goes to 0.

We now want to show that the lines in the segment Sk,t
i,j do not intersect any other

oval of Ct for sufficiently small t. If this were not true, when t goes to 0 this would
imply the existence of a line passing through p and at least two other ovals/nodes
of C, which contradicts the Bézout theorem.

Part (c) immediately follows from Proposition 5.3(b).
For (d), let us choose a point in the interior of each positive oval of C◦ and con-

sider the three straight lines each passing through two of the chosen points. These
three lines divide RP

2 in four regions. One of these regions is the convex triangle
with vertices at the chosen points. Propositions 3.11 and 3.13 imply that each of the
three other regions contains a negative oval of C◦. Furthermore, each of these three
regions is cut by the pseudoline of C◦ into two subregions. We call such a subregion
triangular (respectively, quadrangular) if it is adjacent to two (respectively, three)
straight lines passing through the chosen points. Proposition 3.13 implies that each
negative oval of C◦ is contained in a quadrangular subregion. As in the proof of
part (b) the vanishing cycles must be disjoint from our three straight lines. Thus
the three quadrangular subregions are adjacent to the pseudoline from alternating
sides, which finishes the proof.

�

5.4. The hyperbolic curve (l = 3, σ = 0). Let us now consider smoothing dia-
grams which are based on a hyperbolic curve (i.e., l = 3, σ = 0). By Proposition
5.3(b), such a smoothing diagram has vanishing cycles of two types connecting the
pseudoline and the outer oval or connecting the nested ovals. For now, let us remove
the latter ones and classify the remaining diagrams up to isotopy. For this it is use-
ful to use the language of immersion graphs from Definition 2.19 (even though for
visual convenience we stick to more intuitive smoothing diagrams in the pictures).
In our situation (after removing the inner oval and adjacent vanishing cycles), we
are left with immersion graphs Γ on two vertices: the root vertex w and a second
vertex v. All edges are directed from v to w. The number of edges is 1 ≤ t ≤ 5.
The ribbon structure of Γ gives us two cyclic orderings of the edges. Finally, the
projective enhancement of Γ (the crosses on the segments of w) can be encoded in
a vector T ∈ Zt

2, which contains an entry 1 for each crossed segment. This vector
T is well-defined up to cyclic reordering, and if |T | denotes the sum of the entries
of T , we have

(8) |T | ≡ 1 mod 2.

From the compatibility property of the two cyclic orderings in Proposition 2.25 it
follows that Γ is in fact completely determined by T . Moreover, by Proposition
2.27 the isotopy type of the reduced smoothing diagram is determined by Γ. Hence
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the list of possible reduced smoothing diagrams corresponds to the list of possible
vectors T and looks as follows:

T = (1) T = (0, 1) T = (0, 0, 1) T = (1, 1, 1)

T = (0, 0, 0, 1) T = (0, 1, 1, 1) (0, 0, 0, 0, 1) (0, 0, 1, 1, 1)

(0, 1, 0, 1, 1) (1, 1, 1, 1, 1)

Given such a reduced diagram, the outer oval is subdivided into t segments.
Again by Proposition 2.25, the isotopy type of the full diagram is determined by
the data to which segments the h− t “inner” vanishing cycles are attached.

Many of the choices for attaching the vanishing cycles are prohibited by the
irreducibility condition of Proposition 5.3(c). The typical situation is depicted in
the following picture:

. . .

K

p1 pn

It shows a component K together with a sequence p0, p1, . . . , pn = p0 of pairs of
vanishing cycles pi = {Ii, I ′i} attached to it. Each pair pi connects K to the same
component Ki. Moreover, the vanishing cycles following I ′i with respect to the
cyclic ordering onK is Ii+1, and the vanishing cycles following Ii with respect to the
cyclic ordering on Ki is I

′
i (as indicated by the bold segments here). Such a diagram

violates Proposition 5.3(c), as the bold segments together with the vanishing cycles
form an embedded circle which does not cover the whole curve. We refer to this
situation by (Red). Note that K can be any component of C◦, even though we
depicted it as an oval in the picture.

We now list all diagrams which satisfy the properties listed in Proposition 5.3 (in
particular, to the (Red)-rule). As explained above, given a reduced diagram from
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the above list, we need to specify to which segments the “inner” vanishing cycles
are attached. Of course, it suffices to consider these choices up to symmetries of
the reduced diagram. For example, for T = (0, 0, 1), the two “lower” segments of
the outer oval are symmetric. Note that by Proposition 5.3(d) we have e = 0, 1
(only the inner oval can correspond to an elliptic node). Let us start with e = 0.

We start with the case e = 0 and go through all possible choices for T . For
T = (1), there is only one segment to choose, so we get the following three types:

c = 0 c = 2 c = 4

For T = (0, 1), there are two segments to choose from. Note that assigning an
even number of vanishing cycles to each of the segments is forbidden (Red). All
other options are depicted below.

c = 0 c = 2

For T = (0, 0, 1), we get three segments, two of which are symmetric. All choices
satisfy Proposition 5.3, except for attaching one vanishing cycle to each segment
(such a smoothing diagram violates the irreducibility condition (c)).
c = 0

c = 2

For T = (1, 1, 1), all three segments are symmetric. Note also that in this case,
the reduced diagram itself is not irreducible in the sense of Proposition 5.3(c), but
consists of three components containing one of the segments each. In particular, the
completed diagram can satisfy condition (c) only if the additional vanishing cycles
are attached to all three segments. Hence, the only possible type is as follows:



178 ILIA ITENBERG, GRIGORY MIKHALKIN, AND JOHANNES RAU

From now on we assume that t ≥ 4 (hence c = 0). For T = (0, 0, 0, 1), we get a
(Red)-situation whenever we attach the two inner vanishing cycles to the same or
opposite segments. Two possibilities (up to symmetries) remain:

For T = (0, 1, 1, 1), we have to attach exactly one vanishing cycle to the “lower”
segment of the outer oval. In any other case, we get a (Red)-situation (if we attach
no vanishing cycle to the lower segment, K in (Red) can be chosen to be the
pseudoline). Again, only two possibilities remain:

For t = 5, the inner oval is attached to the reduced diagram via a single vanishing
cycle. Hence a diagram is not irreducible if and only if the reduced diagram is. The
choice T = (0, 0, 1, 1, 1) violates the property and therefore can be ignored. For all
other choices of T , we get the following list of possibilities (up to symmetries).

So far, we have only applied the restrictions given by Proposition 5.3. However,
by applying Bézout’s theorem we can prohibit some more diagrams in this list.
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The following three subdiagrams cannot be contained in the smoothing diagram of
a real rational quintic curve by Lemma 5.4. The diagram also specifies the points
that should be connected by quasilines:

In the first two cases it is impossible to draw a quasiline through the specified
pair of points. In the third case, individual quasilines can be drawn, but they violate
the second part of Lemma 5.4. Hence, any diagram which is an extension of the
three diagrams above is prohibited. This kills the second diagram for T = (0, 1),
diagrams 3, 4, 5 for (0, 0, 1), the second diagram for T = (0, 0, 0, 0, 1), and finally
diagrams 3 and 6 for t = 5. The remaining diagrams are contained in Tables 1, 4
and 6.

Let us now turn to e = 1. In this case, there are no inner vanishing cycles (i.e.,
t = h) and the diagram’s irreducibility depends only on the choice of T . Moreover,
t = h must be odd; thus we can ignore t = 2, 4. According to our previous con-
siderations, we are left with T = (0, 0, 0, 0, 1), T = (0, 1, 0, 1, 1), T = (1, 1, 1, 1, 1),
T = (0, 0, 1) and T = (1). The five corresponding diagrams are contained in Tables
1, 4 and 6.

5.5. The nonconvex 4-oval curve (l = 5, σ = 0). Let us, first, collect some
restrictions for this case in the following proposition.

Proposition 5.7. Let ΔC be a smoothing diagram of C with l = 5, σ = 0. Then,

(a) the positive oval can be connected to each negative oval by at most one
vanishing cycle,

(b) if two vanishing cycles connect the same (negative) oval to the pseudoline,
then the disc they bound does not contain other ovals.

Proof. Both statements follow from Lemma 5.4. Indeed, the pairs of points in
the following pictures cannot be connected by a quasiline. Here, the blue oval on
the right in the second picture is an arbitrarily chosen third oval (which might be
contained in the disc as well).

(a) (b)

�

Consider the graph Γ′ obtained from Γ(ΔC) by subsequently removing all zero-
and one-valent vertices until each vertex has valence at least 2.

Proposition 5.8. The graph Γ′ is either empty (when c = 2) or has genus 2 (when
c = 0). In the latter case, there are five possible graphs which can occur as Γ′.
Moreover, for each Γ′ its immersion to RP

2 is topologically unique. The list of
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corresponding smoothing diagrams is as follows:

A B C D E

Proof. The first statement follows from Proposition 5.3(a). The second statement
follows from Propositions 5.3(b) and 5.7(a). For the third statement, let us fix one of
the five graphs for Γ′ and study the possible enhancements. First, the orientations
are fixed: all edges adjacent to the root vertex are oriented towards it. All other
edges are not oriented. As before, let us describe the projective enhancement of
Γ by a vector T ∈ Zn

2 . In each case, we have two choices, namely T = (0, 0, 1)
or T = (1, 1, 1) for A, B, E and T = (0, 0, 0, 1) or T = (0, 1, 1, 1) for C and D.
Note that removing zero- or one-valent vertices does not affect the irreducibility
property 5.3(c) of the corresponding graph/diagram; hence the enhancement of Γ′

is required to be irreducible. This excludes the possibilities T = (1, 1, 1) for A, B,
T = (0, 0, 0, 1) for C, D, and T = (0, 0, 1) for E. For the opposite choices of T , we
claim that T determines the enhancement of Γ completely. In A, B and E, there
is only a single cluster except for the root vertex, and hence the ribbon structure
is determined by Proposition 2.25. In the cases C and D, Proposition 2.25 shows
that the two clusters are unlinked with respect to the “two-sided” cyclic order on
the pseudoline. In each case, there are two possibilities, one of which is reducible
by (Red). By Proposition 2.27, the immersion graph determines the (reduced)
smoothing diagram completely. �

Let us now go through the six cases (A, B, C, D, E and c = 2) one by one.

Diagram A. Let Δ′ be the diagram obtained from ΔC by removing all ovals (re-
spectively, vanishing cycles) which are not connected (respectively, not attached)
to the pseudoline. The following list shows all such diagrams (up to isotopy):

Four of these diagrams can be prohibited. Three isotopy types of diagrams can
be excluded by the following convexity argument (denoted by (Conv)). Choose a
point in the interior of the positive oval and a point in the relative interior of the
“middle” vanishing cycle (i.e., the one separating the two zeroes in T = (0, 0, 1)).
By Lemma 5.4 there exists a quasiline through this pair of points which (up to
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isotopy) looks as the vertical line in the following picture:

The quasiline and the pseudoline split RP2 into two regions, and it follows from
the nonconvexity property (see Proposition 3.10) that the quasiline can be chosen
such that the remaining two negative ovals do not lie in the same region. This
restriction excludes the diagrams 5, 7, and 10.

We show now that diagram 4 can also be prohibited. To do so, choose a point p
on the “middle” vanishing cycle I as before, and choose points q1, q2 in the interior
of each “small” oval. Then, we get a contradiction with existence of three quasilines:
pq1, pq1 and a quasiline intersecting I in a single point. The situation is illustrated
in the following picture (where the quasilines pq1 and pq1 are drawn as dashed blue
lines).

We end up with a list of 6 (incomplete) diagrams. It remains to count the number
of ways in which these diagrams can be completed to full diagrams. Whenever there
is an ambiguity in completion, we draw the various possibilities in the same diagram
by dashed lines and write the corresponding “multiplicity” next to it.

2x

3x 2x

2x 2x
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2x

All these diagrams are contained in Table 2.

Diagram B. For diagram B, it remains to add one negative oval to the pictures.
A priori, it might be isolated (3 connected components of the complement give rise
to 3 choices), connected to the positive oval (2 segments of the positive oval give
rise to 2 choices) or connected to a segment of the pseudoline (3 segments × 2 sides
= 6 choices). Here are the forbidden choices:

The first picture is forbidden by Proposition 5.7(b), in the second case no quasi-
line can be drawn through the indicated pair of points, and the third case is pro-
hibited by the convexity argument (Conv) with respect to quasilines through the
indicated pair of points. What remains are the following 5 cases, which are con-
tained in Table 2:

4x

Diagram C and E. Both diagrams are in fact complete, so they correspond to
exactly two smoothing diagrams which are contained in Table 2.

Diagram D. Proposition 5.7(b) provides a restriction on the position of the re-
maining ovals. Furthermore, the following way of attaching the third negative oval
to the pseudoline is forbidden by the convexity rule (Conv):
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The following list shows all other possibilities to complete diagram D (note that
the two ovals in diagram D are symmetric). All these diagrams are contained in
Table 2.

2x 3x 3x

Case c = 2. In this case, recall that by Proposition 5.8 (or Proposition 5.3(a)) the
smoothing diagram ΔC is a tree. The possibilities for such trees can be easily listed.

All these diagrams except for diagrams 3 and 5 are contained in Table 5. In order
to prohibit diagrams 3 and 5, we need a Bézout-type argument similar to Lemma
5.4, but involving a conic. Namely, let H be the conic passing through five nodes of
C, the two complex conjugated nodes and the three hyperbolic nodes corresponding
to the vanishing cycles attached to the pseudoline. By Bézout’s theorem, C and
H do not have further intersection points and the intersection multiplicity at each
node is exactly 2. Thus, there exists a quasiconic (an embedded contractible loop in
RP

2 intersecting ΔC only in the three vanishing cycles attached to the pseudoline).
The following picture shows such a quasiconic (unique up to isotopy) for diagrams
3 and 5:

In addition, let us now consider the real line L which passes through the two
complex conjugated nodes. It intersects H in the two nodes and hence nowhere else.
Moreover, L must intersect RC in exactly one point with intersection multiplicity 1.
Now again, after small perturbations, L gives rise to a quasiline in RP

2 which does
not intersect the quasiconic and intersects ΔC only in one point on the pseudoline.
This is clearly impossible, so diagrams 3 and 5 are forbidden.
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5.6. The convex 4-oval curve (l = 5, σ = 2). Let us collect all necessary restric-
tions in the following statement.

Proposition 5.9. If l = 5, σ = 2 (i.e., if C◦ is the curve with four ovals in
convex position), then the smoothing diagram ΔC is (up to isotopy) a subtree of the
following diagram:

Moreover, all 11 such subtrees are contained in Table 5 (as diagrams 5–11 and
13–16).

Proof. It follows from Proposition 5.3(a) that ΔC is a tree. Proposition 5.3(b)
implies that Γ(ΔC) is a subgraph of the graph underlying the depicted diagram.
Since ΔC is a tree with at most two vanishing cycles attached to the pseudoline,
the diagram is completely determined by the underlying graph. �

5.7. The remaining cases. In the case l = 3, σ = 2, c = 2, the two ovals are
both negative and therefore cannot be connected by a vanishing cycle. If one oval
is connected to the pseudoline by three vanishing cycles, the T = (1, 1, 1) pattern
is prohibited by the irreducibility. The same holds true for the T = (0, 0, 0, 1)
pattern when both ovals are connected to the pseudoline by two vanishing cycles
each. Hence T = (0, 0, 1) or T = (0, 1, 1, 1), and by Propositions 2.25 and 2.27
this determines the (reduced) smoothing diagram completely (as in the proof of
Proposition 5.8). We get the following cases, contained in Table 4:

2x

In all other cases, we have c ≥ 4 and the combinatorics become very easy. We
get the following 5 cases contained in Table 6:

6. Constructions

In this section, we show that every smoothing diagram shown in the tables on
pages 135 – 138 is the smoothing diagram of some real nodal rational curve of
degree 5 in RP

2. This is the final “construction” part of the proof of Theorem
1.10. We start with the construction of curves with only hyperbolic nodes and add
elliptic (respectively, complex conjugated) nodes later.

6.1. M-curve (l = 7, h = 6). In the M -curve case, constructions are straight-
forward. We consider the following arrangement of a conic and 3 lines (with the
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indicated choice of a complex orientation):

Let us smooth all 9 nodes according to these orientations. The resulting smooth-
ing diagram is indicated on the right-hand side of the figure. Note that this pattern
coincides with the “universal” smoothing diagram from Proposition 5.6. Moreover,
note that by Theorem 3.5 instead of smoothing all 9 nodes we may keep some of
them, which leads to curves whose smoothing diagram is any subdiagram of the
universal one. The irreducibility of these curves is equivalent to the irreducibility
of the corresponding smoothing diagram in the sense of Proposition 5.3(c). Hence
we can construct the 9 isotopy types with l = 7, h = 6 in Table 3.

6.2. Nonconvex 4-oval curve (l = 5, h = 6). In this case we can use the small
deformations of five lines. The pictures are equally easily drawn in the classical
and tropical world, and so we will give both descriptions. Let us start with tropical
pictures and consider the smooth tropical quintic B ⊆ TP2 on the left of the
following picture:

We equip B with a real structure by twisting all bounded diagonal edges, i.e.,
T = {diagonal edges}. Note that T is twist-admissible (see condition 6). In the
picture, the twists are indicated by small crosses. Note that all twisted edges are
pairwise disjoint (i.e., no two of them have endpoints in common). Hence we may
degenerate B to a tropical nodal curve by shrinking any collection of pairwise
disjoint twisted edges. In particular, if we shrink all twisted edges, we obtain a
collection of five tropical lines intersecting transversally, as depicted on the right-
hand side of the above picture.

The next pictures depict the “real versions” constructed in section 4.2. On the

left-hand side, we see C̃(B, T ) ⊂ R2; on the right-hand side we find C(B, T ) ⊂
RP

2. Additionally, for each twisted edge we draw the vanishing cycle we obtain
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by shrinking this edge and creating a hyperbolic node. Note that the smoothing
diagram on the right is more or less directly visible from the tropical curve above.

Using an isotopy we may redraw the picture on the right as follows:

Hence, Theorem 4.2 ensures that any irreducible subdiagram of the smoothing
diagram above occurs as the smoothing diagram of an irreducible rational nodal
curve A. So it only remains to check that all isotopy types with l = 5, h = 6 in
Table 2 are indeed subdiagrams of the one above.

Let us also briefly mention the classical construction. Consider five real lines in
the real projective plane such that no three among them intersect. The topological
type of such a real line arrangement is unique and looks as follows:

There are four possibilities to orient the lines (up to permutation of the lines).
Indeed, moving along the sides of the pentagon, at each vertex we can choose
to keep or to switch orientation and the total number of switches must be even.
This can be described by the four cyclic vectors T of length 5 which appeared in
subsection 5.4 (but with an even number of nonzero coordinates). For three of the
choices, the type I small perturbation gives the hyperbolic curve. Only the choice
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of orientations displayed above leads to the 4-oval curve. Moreover, the smoothing
diagram associated to this choice is exactly the “universal” one displayed above.

6.3. Hyperbolic curve. In the case of the hyperbolic curve, we could start from
the line arrangement as above and use the three other possible orientations to obtain
all the possible topological types. Instead of this, we use the tropical approach,
which gives a more elegant and unified construction method in this case. In fact, as
for the 4-oval curve, a single smooth tropical curve will suffice to construct all the
possible topological types. The curve is a honeycomb curve H of degree 5 with all
bounded edges being twisted, i.e., with the set T given by the set of all bounded
edges; cf. [18].

The following picture shows C̃(H,T ) ⊂ R2 on the left-hand side and C(H,T ) ⊂
RP

2 on the right-hand side. Note that among the 5 “strings” appearing on the right-
hand side, the outer two are glued to form the inner oval, the second and fourth
are glued to form the outer oval, and the middle string represents the pseudoline.

As before, on the right-hand side we also draw all the vanishing cycles corre-
sponding to shrinking a twisted edge of H (the directions of the vanishing cycles
are identical to those of the corresponding edges). However, in contrast to the 4-
oval curve, some pairs of twisted edges share an endpoint. Hence we cannot realize
any subdiagram of the smoothing diagram above automatically. Nevertheless, we
may still shrink any collection of pairwise disjoint twisted edges, and Theorem 4.2
ensures that the corresponding subdiagram is the smoothing diagram of a real nodal
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curve. This is in fact enough to construct any smoothing diagram with l = 3, h = 6
in Table 1. Following the ordering of that table, we present corresponding collec-
tions of 6 pairwise disjoint edges in H (note that the choice of collections is, of
course, not unique):

6.4. Elliptic nodes. Let us now include elliptic nodes (still assuming that c = 0).

6.4.1. M -curve. For e = 1, we can for example use the following constructions. To
shrink a positive oval, we start with the union of a rational cubic with elliptic node
and two lines as depicted below. Note that this arrangement can be obtained by
perturbing the tangent lines of two inflection points of the cubic. When choosing the
“upward” orientations for the lines and the “downward” orientation for the cubic,
after smoothing according to the orientations we obtain the smoothing diagram on
the right-hand side.
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In order to shrink a negative oval, we use the following union of a rational quartic
and a line as depicted below. This arrangement can be obtained by perturbing a
line passing through the two hyperbolic nodes of the quartic. When smoothing this
reducible curve according to the displayed orientations we obtain the smoothing
diagram on the right-hand side.

Using these two constructions we get all smoothing diagrams from Table 3 with
l = 7, e = 1.

For e = 2, we again use patchworking in the form of Theorem 4.2. In the
following picture, the left-hand side depicts a tropical quarticQ with a single twisted
edge. We choose Cedges to be the single twisted edge and Ctriangles to consist of
the two triangles disjoint from the twisted edge. The right-hand side shows the
smoothing diagram of C ′(Q, T, Cedges, Ctriangles). Theorem 4.2 guarantees that it is

the smoothing diagram of a rational nodal quartic A in RP
2.

We take the union of this quartic with one of the coordinate lines and smooth
the hyperbolic nodes. We get the following two pictures of a smooth curve with
vanishing cycles. Choosing the axis x = 0 or y = 0 leads to the left-hand side
picture, the line at infinity gives rise to the right-hand side picture.

Using these two curves, we can realize all cases in Table 3 with l = 7, e = 2.
Finally, let us consider the case e ≥ 3. We start with a rational quartic and

then perform a quadratic (Cremona’s) transformation. If the three base points of
the quadratic transformation are smooth points on the quartic, we obtain a curve
of degree 2 · 4 − 3 = 5, that is, a rational quintic. Moreover, if a line through two
of the base points has no other real intersection with the quartic, the two com-
plex conjugated intersection points are mapped to an elliptic node in the quadratic
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a) b) c)

Figure 25. Chord diagram arrangements for cases A, D and F

transform. Applying this strategy we can construct all the curves under considera-
tion as images of the following quartics under the a quadratic transformation which
contracts the depicted lines:

A B C D

E F G H

It remains to explain why such arrangements of a quartic and three lines exist.
This can be easily verified case by case. For the construction of the quartics, we refer
to subsection 2.5. The arrangements B and C can be explicitly constructed starting
from two ellipses and three lines intersecting correspondingly. The arrangements E,
G, and H can be constructed by perturbing lines passing through an elliptic node
and the corresponding segment of the curve. Finally, for arrangements A, D and F,
it is helpful to recall from subsection 2.5 that the quartic curves can be constructed
as quadratic transforms of the corresponding chord diagrams (see Table 7). Via
this quadratic transformation, lines not passing through the nodes of the quartic
correspond to irreducible conics passing through the three points of indeterminacy
of the quadratic transformation. Hence the existence of the arrangements can be
translated to the existence of a corresponding arrangement of conics, which can be
proven explicitly. (We refer to such arrangements as chord diagram arrangements
in the following.) For example, for arrangement A it suffices to construct a line
whose only intersection with the quartic is a point of tangency at a loop. The
corresponding chord diagram arrangement can be constructed explicitly by start-
ing from two tangent ellipses as depicted in Figure 25a). Arrangement D can be
obtained from the chord diagram arrangement in Figure 25b), symmetrized with
respect to rotation around the chord diagram circle by 120◦. Finally, for arrange-
ment F it is enough to construct a line whose only intersection with the quartic
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is a point of tangency at the middle oval. The two “horizontal” lines can then be
obtained by perturbing lines passing through this point of tangency and the elliptic
node. The tangent line can be constructed via the chord diagram arrangement in
Figure 25c).

6.4.2. Hyperbolic curve and nonconvex 4-oval curve. Consider the union of a sin-
gular cubic with an elliptic node with two lines, each intersecting the cubic in three
points as is shown in the figure below:

There are three possibilities (up to symmetries) to orient the components of this
reducible quintic, and we get the smoothing diagrams on the right-hand side. Using
the first diagram we can realize all smoothing diagrams with l = 3, h = 5, e = 1 (cf.
Table 1). The remaining two diagrams give rise to all types with with l = 5, h =
5, e = 1 (cf. Table 2).

Let us consider the remaining 4-oval curve cases. For e = 2, start with the union
of a quartic with 2 elliptic nodes and a line. For e = 3, we take a quartic with three
elliptic nodes instead. The intersection patterns we need look as follows:

Deforming these curves, we can realize all the remaining cases of 4-oval curves
with e = 2 and e = 3. The reducible curves can be constructed as follows. For the
construction of the quartics, we again refer to subsection 2.5. The first reducible
curve was already constructed by tropical methods on page 189. The second one is
straightforward. The third one is given by slightly modifying the previous tropical
construction by dropping the twisted edge and including the third triangle instead
as depicted below:

The constructed quartic has three elliptic nodes, and its union with any of the
coordinate lines gives the third reducible curve from above.
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6.5. Complex-conjugated nodes. Finally, let us consider the case c > 0. For
c = 2, all isotopy types in Tables 4 and 5 except for the last one (h = 0, e = 4)
can be obtained from the union of a rational quartic and a line intersecting in
only two real points. For such a reducible curve, we have two possibilities to pick
orientations, corresponding to σ = 0 or σ = 2. Furthermore, we can choose which of
the two real intersection points we perturb (while keeping the other one) in order to
obtain an irreducible rational quintic. The following lists show the reducible curves
and the isotopy types realized. We start with the case e = 0.

σ = 0 σ = 2

A

B

C

D

E

F

G

2x
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Figure 26. Chord diagram arrangements for cases E, F and G

The reducible curves on the left-hand side can be constructed as follows. Again,
the construction of the quartics can be found in subsection 2.5. The reducible
curves in lines A, B, C and D were constructed before at the end of subsection 6.4.1
(on page 190). Moreover, the same methods apply to the reducible curves E, F and
G. They can be obtained explicitly via quadratic transformation from the chord
diagram arrangements depicted in Figure 26.

The following list deals with the cases e = 1, 2, 3.

A

B

C

D
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E

Again, we should explain the constructions of the reducible curves. The reducible
curves A, B, D and E were constructed before at the end of subsection 6.4.1 (on
page 190). The curve C can be obtained by perturbing a line passing through the
elliptic and a hyperbolic node of the quartic.

The missing case c = 2, e = 4 can be realized via quadratic transformation from
a quartic with one elliptic and a pair of complex conjugated nodes.

Finally, for c > 2, all isotopy types from Table 6 can be easily realized using
conics and lines (including complex conjugated pairs of those). The empty set in
the last picture stands for a pair of complex conjugated conics without real points.

∅

Remark 6.1. As mentioned at the beginning of section 5, we actually prove a slightly
stronger result than an isotopy classification. We classify complex schemes of nodal
rational curves. As explained in section 5, after choosing one of the two possible
orientations for the immersed circle, the additional information consists of a local
orientation of RP2 at each elliptic node. After smoothing, the induced complex
orientation of C◦ is such that each oval obtained from an elliptic node is oriented
positively with respect to the local orientation. Recalling the list of possible complex
schemes for C◦ from Proposition 5.1, we see that there are two pairs of isotopic
arrangements which can be equipped with complex orientations in two ways. They
can be distinguished by their values of σ; namely, we have the 4-oval curve with σ =
0 or 2 and the (unnested) 2-oval curve with σ = 2 or 4. Our claim (which implies
the classification of complex schemes of nodal rational curves) is that whenever an
isotopy type can be equipped with two different complex orientations, then both
complex schemes are realizable by nodal rational curves. This concerns the isotopy
types 9, 11, and 13 – 16 in Table 5 as well as types 4 and 6 in Table 6. Let us
explain how to prove this claim. In the table on page 193, the claim concerns
constructions A, D, and E. In cases A and D, the line in the reducible curve can
be obtained from perturbing a line which passes through an elliptic node of the
quartic. Depending on which perturbation we choose, the elliptic node corresponds
to a positive or negative oval in C◦. Both perturbations give the same isotopy type
(as long as we do not change the orientation of the line) and hence realize both
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possible complex schemes in each case. In case E, flipping the orientation of the
line obviously switches σ = 0 and σ = 2. In the case c = 2, e = 4, the quadratic
transformation of the depicted quartic gives rise to σ = 2, whereas using the quartic
with elliptic node inside the oval we get σ = 0. This follows from the fact that the
quadratic transformation does not change the value of σ (it can also be checked by
hand that in the first case the elliptic nodes end up in a convex position, while in
the second case they are in a nonconvex position). For type 4 in Table 6, we used
the union of a real line, a real conic and two complex conjugated lines (see second
curve in the last picture above). Let us first perturb the real line and the real conic
to a nodal cubic such that the elliptic node lies outside its oval. Then, each of
the complex conjugated lines intersects one half of the cubic in two points and the
other half in one point (otherwise, smoothing a pair of these nodes would give a
curve with σ = 0, which is impossible for this isotopy type). Hence, depending on
which pair of complex conjugated nodes we smooth, we obtain a curve with σ = 2
or σ = 4. Finally, we realize type 6 in Table 6 from the union a real line and two
pairs of complex conjugated lines. An even simpler argument than before shows
that depending on which two pairs of complex conjugated nodes we smooth, we
obtain σ = 2 or σ = 4.
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Université Pierre et Marie Curie, Institut de Mathématiques de Jussieu - Paris
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