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BREUIL O-WINDOWS AND π-DIVISIBLE O-MODULES

CHUANGXUN CHENG

Abstract. Let p > 2 be a prime number. Let O be the ring of integers of
a finite extension of Qp and let π be a uniformizer of O. We prove that, for
any complete Noetherian regular local O-algebra R with perfect residue field
of characteristic p, the category of Breuil O-windows over R is equivalent to
the category of π-divisible O-modules over R. We also prove that the cate-
gory of Breuil O-modules over R is equivalent to the category of commutative
finite flat O-group schemes over R which are kernels of isogenies of π-divisible
O-modules. As an application of these equivalences, we then prove a bounded-
ness result on Barsotti-Tate groups and deduce some corollaries. The results
generalize some earlier results of Zink, Vasiu-Zink, and Lau.

1. Introduction

The theory of displays is a powerful tool to study p-divisible groups. The aim
of this paper is to generalize this theory and to study π-divisible O-modules. We
first review the main results from the theory of displays. Let p be a prime number
and let R be a commutative ring. Assume that p is nilpotent in R. Following the
notation in [23], we have a functor

BT : {nilpotent displays over R} → {p-divisible formal groups over R}.
Zink [24, Theorem 9] proved that this functor is an equivalence of categories if R
is an excellent local ring or a ring such that R/pR is an algebra of finite type over
a field k. Then Lau [14, Theorem 1.1] proved the equivalence for all R in which p
is nilpotent.

Let R be a complete Noetherian local ring with perfect residue field of charac-
teristic p. For p = 2, we assume that pR = 0. Zink [23] defined a category of
Dieudonné displays over R and extended the functor BT to an equivalence

BT : {Dieudonné displays over R} → {p-divisible groups over R}.
Moreover, Lau [13] showed that this equivalence is compatible with duality.

The above results have been generalized to π-divisible formal O-modules and the
π-divisible O-modules case. Let O be the ring of integers of a finite extension of
Qp with uniformizer π and residue field Fq. Let R be an O-algebra. A π-divisible
(formal) O-module over R is a p-divisible (formal) group G over R with an action
of O given by ι : O → End(G), such that the induced action of O on Lie(G) via ι
coincides with the action through O → R. Here we use Zink’s definition of formal
groups ([24, Definition 80] and [2, Section 1.2.3]).
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Assume that p > 2. In his thesis [1], Ahsendorf defined a category of O-displays
over R and by adapting the method of Drinfeld [7], proved that the category of
nilpotent O-displays over R is equivalent to the category of π-divisible formal O-
modules over R, if π is nilpotent in R. This result was then extended to an equiv-
alence between the category of Dieudonné O-displays over R and the category of
π-divisible O-modules over R, for R a complete Noetherian local ring with perfect
residue field of characteristic p. More concretely, we have an equivalence

BTO : {Dieudonné O-displays over R} → {π-divisible O-modules over R},

which is compatible with duality. See [2, Section 1] for more details of these results.
In [15,21], the authors introduced frames and windows, which are generalizations

of the notion of displays, to study p-divisible groups. In particular, an equivalence
between the category of Breuil windows over R and the category of p-divisible
groups over R is established for R, if R is a complete Noetherian regular local ring
with perfect residue field of characteristic p. As an application, Vasiu and Zink
[22] proved some boundedness results for commutative finite flat group schemes
over a discrete valuation ring of mixed characteristic (0, p). Similar results and
generalizations are also obtained in Breuil [5], Bondarko [4], Kisin [12], Savitt [19],
Liu [16,17], Cais-Liu [6], etc. See the paper [22, Section 1] for a detail introduction
on the history of earlier results. The main goal of this paper is to generalize the
results in [15, 21, 22]. We explain our main results more precisely in what follows.

In Section 2.1, we define O-frames and O-windows (Definitions 2.1 and 2.3). Let
R be a complete Noetherian regular local O-algebra with perfect residue field k of
characteristic p. On one hand, there is an O-frame attached to R given by

DR = (ŴO(R), ÎO(R), R, F , V −1

).

Here ŴO(R) is a subring of the ring of ramified Witt vectors WO(R), F and V

are the Frobenius and Verschibung morphisms, respectively, ÎO(R) = V ŴO(R).
See Section 3.1 for a detailed construction. For the definition of the functor WO
and its properties, we refer to [2, Section 1.2.1], [9, Section 1.2] and [11]. Note
that Hazewinkel [11] used a different set of notations. In particular, the functor
WO, the Frobenius map F , the Verschiebung map V , the Cartier map Δ, the n-th
Witt polynomial wn in [2] and this paper are denoted by WF

q,∞, f , V , E, wF
q,n,

respectively, in [11, Theorem 6.17]. On the other hand, we may choose a ring
epimorphism

S := WO(k)[[x1, . . . , xr]]
h−→ R

such that xi �→ ti for 1 ≤ i ≤ r, where (ti ∈ mR | 1 ≤ i ≤ r) is a regular
system of parameters of R. There exists f(x1, . . . , xr) ∈ (x1, . . . , xr)S, such that
E = π − f(x1, . . . , xr) ∈ Ker(h). Then there is another O-frame attached to R
given by

BR = (S, ES, R, σ, σ1).

Here σ : S → S is the morphism that extends the Frobenius on WO(k) and
σ(xi) = xq

i for 1 ≤ i ≤ r, where q is the cardinality of O/πO, σ1 : ES → S is
defined by σ1(Ef) = σ(f). See Section 3.3 for more details.

A Breuil O-window relative to S → R is a pair (Q,φ), where Q is a free S-
module of finite rank, φ : Q → Q(σ) := Q⊗S,σ S is an S-linear map with cokernel
annihilated by E. With the above notation, we have the following result.
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Theorem 1.1. Let O be the ring of integers of a finite extension of Qp and let π
be a uniformizer of O. Let R be a complete Noetherian regular local O-algebra with
perfect residue field of characteristic p. Then the following categories are equivalent:

(1) the category of π-divisible O-modules over R;
(2) the category of O-windows over the frame DR;
(3) the category of O-windows over the frame BR;
(4) the category of Breuil O-windows relative to S → R.

By a special O-group, we mean a finite flat group scheme which is the kernel
of an isogeny of π-divisible O-modules. To study these objects, we define Breuil
O-modules. A Breuil O-module relative to S → R is a pair (M,φ), where M is an
S-module of projective dimension at most one and annihilated by a power of π,
φ : M → M (σ) is an S-linear map whose cokernel is annihilated by E. Following
from Theorem 1.1, we prove the following result in Section 3.5.

Theorem 1.2. Let O and R be as in Theorem 1.1. Then the following two cate-
gories are equivalent:

(1) the category of special O-groups over R;
(2) the category of Breuil O-module relative to S → R.

As an application of Theorem 1.2, we generalize the boundedness result in [22]
and obtain the following result.

Theorem 1.3. Let O be the ring of integers of a finite extension of Qp with uni-
formizer π. Let R ∈ AlgO be a complete discrete valuation ring of mixed charac-
teristic (0, p) with fraction field K and residue field k. There exists a nonnegative
integer s that depends only on R and that has the following property. Let G and
H be two special O-groups over R. For each homomorphism f : G → H whose
generic fiber fK : GK → HK is an isomorphism, there exists a homomorphism
f ′ : H → G such that f ′ ◦ f = πs idG and f ◦ f ′ = πs idH . Therefore the special
fiber homomorphism fk : Gk → Hk has a kernel and a cokernel annihilated by πs.

This result has interesting consequences. In particular, we prove the following
results in Section 4.5.

Corollary 1.4. Let R and K be as in Theorem 1.3. The following two claims hold.

(1) Let G and H be special O-groups over R. Assume that the ramification
degree of R over O is less than or equal to (q − 2). If GK and HK are
isomorphic, then G and H are isomorphic.

(2) Let X and Y be π-divisible O-modules over R. Then the natural map

HomO(X,Y ) → HomO(XK , YK)

is a bijection.

The first claim generalizes a result of Raynaud [18] and the second claim gener-
alizes a result of Tate [20].

The content of the paper is as follows. In Section 2, we introduce O-frames
and O-windows (Definitions 2.1 and 2.3) and prove some basic properties of these
objects. In particular, in Theorems 2.12 and 2.15, we prove that a morphism of
frames α : F → F ′ is (nil)-crystalline under some conditions, i.e., it induces an
equivalence between the category of (nilpotent) F-windows and the category of
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(nilpotent) F ′-windows. This allows us to translate properties between different
bases.

In Section 3, we introduce various O-frames with special properties. The Dieu-
donné O-frame DR attached to R is defined in Section 3.1. The windows over
DR are the same as Dieduonné O-displays over R. Then by [2, Theorem 1.5], the
first category and the second category in Theorem 1.1 are equivalent. The Breuil
O-frame BR attached to R is then defined in Section 3.3. A key property of BR is
that it is a κ-O-frame (Definition 3.8). Thus there exists a morphism of O-frames
κ : BR → DR. It turns out that this morphism κ is crystalline (Theorem 3.13).
Then Theorem 1.1 follows by combining Theorem 3.13 and Proposition 3.18.

In Section 4, we prove Theorem 1.3. An explicit description of s is given at the
beginning of Section 4.4, following from the computations in Section 4.3. In Section
4.5, we deduce some corollaries from Theorem 1.3.

2. O-frames and O-windows

2.1. Definitions. In this section, we introduce O-frames and O-windows following
[15, Section 2], [1, Section 3.1], and [2, Section 3]. Most of the notions are general-
izations from the paper [15]. Let O be a commutative unitary ring, 0 �= π ∈ O not
a zero divisor, and q a power of p. We call the triple (O, π, q) a ramification ring
structure, for short RRS, if p ∈ πO and x ≡ xq (mod π) for all x ∈ O.

Definition 2.1. Let (O, π, q) be an RRS. An O-frame is a quintuple F = (S, I, R,
σ, σ1), where S is an O-algebra, I ⊂ S is an ideal, R = S/I, σ : S → S is an
O-algebra homomorphism, and σ1 : I → S is a σ-linear map of S-modules, such
that the following conditions hold:

(1) I + πS ⊂ Rad(S).
(2) σ(a) ≡ aq (mod πS) for all a ∈ S.
(3) σ1(I) generates S as an S-module.

Let F = (S, I, R, σ, σ1) and F ′ = (S′, I ′, R′, σ′, σ′
1) be two O-frames. A morphism

of O-frames α : F → F ′ is an O-algebra homomorphism α : S → S′, such that
α(I) ⊂ I ′, σ′α = ασ, σ′

1α = u ·ασ1 for a unit u ∈ S′. In order to specify u, we also
call α a u-homomorphism. If u = 1, then α is called strict.

Note that in the definition, R is determined by S and I. We take R as part
of the data because it serves as the base of the objects that we consider later and
it is convenient to include it in the quintuple. Let R be an O-algebra. A simple
example is the so-called Witt O-frame attached to R given by

WO,R := (WO(R), IO(R) := V WO(R), R = WO(R)/IO(R), F , V −1

).

Remark 2.2.

(1) If F = (S, I, R, σ, σ1) is an O-frame, then there exists a unique element
θ = θF ∈ S such that σ(a) = θσ1(a) for all a ∈ I ([15, Lemma 2.2]

and [1, Lemma 3.1.2]). Indeed, by definition, the map σ�
1 : I(σ) → S

is surjective. Here σ�
1 is the linearization of σ1. Choose b ∈ I(σ) such

that σ�
1(b) = 1 and define θ = σ�(b), then for all a ∈ I, we have σ(a) =

σ�
1(b)σ(a) = σ�

1(ba) = σ�(b)σ1(a) = θσ1(a).
(2) Let α : F → F ′ be a u-homomorphism of O-frames. Let F ′′ be the frame

obtained from F ′ by replacing σ′
1 by u−1σ′

1. Then α : S → S′ induces a
strict morphism of O-frames F → F ′′.
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Definition 2.3. Let F = (S, I, R, σ, σ1) be an O-frame. An O-window over F ,
or an F-window, is a quadruple P = (P,Q, F, F1), where P is a finitely generated
projective S-module, Q ⊂ P is a submodule, F : P → P and F1 : Q → P are
σ-linear maps of S-modules, such that the following conditions hold:

(1) There is a decomposition P = T⊕L withQ = IT⊕L. Such a decomposition
is called a normal decomposition of P.

(2) F1(ax) = σ1(a)F (x) for all a ∈ I and x ∈ P .
(3) F1(Q) generates P as an S-module.

If P = (P,Q, F, F1) is an F-window, define a morphism of S-modules V � : P →
S ⊗S,σ P by V �(F1y) = 1⊗ y for all y ∈ Q and V �(Fx) = θ⊗ x for all x ∈ P . Here
θ = θF ∈ S is the element in Remark 2.2. Let (V N )� be the composition of the
following maps:

P
V �

−−→ S ⊗S,σ P
id⊗V �

−−−−→ S ⊗S,σ (S ⊗S,σ P ) → · · · → S ⊗S,σN P.

We say that P is nilpotent if (V N )� ≡ 0 (mod I + πS) for some N ∈ Z>0.
Denote by WinF (respectively NilpWinF ) the category of F-windows (respec-

tively the category of nilpotent F-windows).

Remark 2.4. The operator F is determined by F1. Indeed, assume that σ�
1(b) = 1

with b ∈ I(σ). Then F (x) = F �
1(bx) for all x ∈ P . In particular, F (x) = θF1(x) if

x ∈ Q.

2.2. Structure equation. Let P = (P,Q, F, F1) be a window over the O-frame
F = (S, I, R, σ, σ1). By definition, we may write P = T ⊕ L, Q = IT ⊕ L. Thus
P/Q = T/IT . Let F � : S ⊗S,σ T → T be the morphism defined by s⊗ t �→ s · F (t)

for all s ∈ S and t ∈ T . Let F �
1 be the linearization of F1. We obtain a morphism

F � ⊕ F �
1 : (S ⊗S,σ T )⊕ (S ⊗S,σ L) → P.

We may write F � ⊕ F �
1 = (A B

C D ), with A : S ⊗S,σ T → T , B : S ⊗S,σ L → T ,
C : S⊗S,σ T → L, D : S⊗S,σ L → L. In the case that T and L are free S-modules,
the morphisms A, B, C, D may be represented by matrices.

Define two morphisms σ : P → S ⊗S,σ P by t �→ 1 ⊗ t (for all t ∈ P ) and
σ1 : I ⊗S T → S ⊗S,σ T by a ⊗ t �→ σ1(a) ⊗ t (for all a ∈ I and t ∈ T ). Let
y ∈ I ⊗S T ⊂ Q = (I ⊗S T )⊕ L, l ∈ L, t ∈ T . The following is called the structure
equation of P:

(2.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F1

(
y

l

)
=

(
A B

C D

)(
σ1(y)

σ(l)

)
,

F

(
t

l

)
=

(
A θB

C θD

)(
σ(t)

σ(l)

)
.

Conversely, the equation (2.1) defines an F-window if and only if (A B
C D ) : S⊗S,σP →

P is an isomorphism. In other words, we have the following result (cf. [15, Lemma
2.6]).

Lemma 2.5. Let F be an O-frame. Let P = T⊕L be a finitely generated projective
S-module and Q = IT ⊕ L. Then the set of F-window structures (P,Q, F, F1) on
these modules is bijective to the set of σ-linear isomorphisms Ψ : T ⊕ L → P .
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2.3. Base changes.

Definition 2.6 (Cf. [15, Definition 2.9]). Let P (respectively P ′) be an F-window
(respectively F ′-window). Let α : F → F ′ be a u-homomorphism of O-frames. A
homomorphism of O-windows g : P → P ′ over α, also called an α-homomorphism,
is an S-linear map g : P → P ′ with g(Q) ⊂ Q′, such that F ′g = gF and F ′

1g =
u · gF1. A homomorphism of F-windows is an idF -homomorphism in the previous
sense.

Definition 2.7. Let α : F → F ′ be a u-homomorphism of O-frames. Let P =
(P,Q, F, F1) be a window over F with structure equation defined by Ψ (Lemma
2.5). The base change α∗P of P with respect to α is the F ′-window defined by
(α∗L, α∗T,Ψ

′), where α∗L = S′⊗SL, α∗T = S′⊗ST , and Ψ′(s′⊗l) = uσ′(s′)⊗Ψ(l),
Ψ′(s′ ⊗ t) = σ′(s′)⊗Ψ(t), for all s′ ∈ S′, t ∈ T , l ∈ L.

Similarly to [15, Lemma 2.10], we have the following result.

Lemma 2.8. Let α : F → F ′ be a morphism of O-frames. Let P be an F-window
and α∗P the base change of P with respect to α. Then the α-homomorphism of
O-windows P → α∗P induces a bijection HomF ′(α∗P,P ′) = Homα(P,P ′) for any
F ′-window P ′.

2.4. Limits. In the following, we define the limits ofO-frames, limits ofO-windows,
and dual O-windows. We follow the corresponding parts in [15, Section 2].

Assume that for each positive integer n we have an O-frame

Fn = (Sn, In, Rn, σn, σ1n)

and a strict morphism of O-frames πn : Fn+1 → Fn such that the maps Sn+1 →
Sn and In+1 → In are surjective and Ker(πn) ⊂ Rad(Sn+1). Define lim←−Fn =

(S, I, R, σ, σ1) by letting S = lim←−Sn, I = lim←−nIn, R = S/I, σ = lim←−σn, σ1 = lim←−σ1n.

It is easy to check that lim←−Fn is an O-frame. An F∗-window is a system P∗ of Fn-

windows Pn together with isomorphisms πn∗Pn+1
∼= Pn.

Lemma 2.9. The category of (lim←−Fn)-windows is equivalent to the category of

F∗-windows.

Proof. This is entirely similar to [15, Lemma 2.12]. In particular, from the proof
of [15, Lemma 2.12], for any F∗-window P∗, the corresponding (lim←−Fn)-window is

given by (lim←−Pn) = (P,Q, F, F1) with P = lim←−Pn, etc. �

2.5. Dual O-windows. Let P, P ′, P ′′ be windows over an O-frame F . A bilinear
form of F-windows β : P × P ′ → P ′′ is an S-bilinear map β : P × P ′ → P ′′ such
that β(Q×Q′) ⊂ Q′′ and

β(F1(x), F
′
1(x

′)) = F ′′
1 (β(x, x

′))

for all x ∈ Q and x′ ∈ Q′. Let F denote the F-window (S, I, σ, σ1) and let
Bil(P × P ′,F) be the set of all bilinear forms. For every F-window P, there
is a unique dual F-window Pt that represents the functor Bil(P × −,F), i.e.,
Bil(P × P ′,F) ∼= Hom(P ′,Pt) for any F-window P ′. Indeed, Pt can be described
as follows. Let P = (P,Q, F, F1), then

Pt = (P∨, Q̃, F t, F t
1),
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where Q̃ = {x ∈ P∨ | x(Q) ⊂ I} and M∨ = HomS(M,S) for any S-module M . If
P = T ⊕ L is a normal decomposition and Q = IT ⊕ L, then P∨ = L∨ ⊕ T∨ and
Q̃ = IL∨ ⊕ T∨. There is a natural isomorphism Ptt ∼= P. See [15, Section 2] and
the references there for more details. We have the following result.

Lemma 2.10. Let α : F → F ′ be a u-homomorphism of O-frames. Let c ∈ S′ be a
unit such that c−1σ′(c) = u. For any F-window P there is a natural isomorphism
(depending on c)

α∗(Pt) ∼= (α∗P)t.

Proof. This is entirely similar to [15, Lemma 2.14]. The given bilinear form P ×
Pt → F induces a bilinear form α∗P ×α∗(Pt) → F ′′, where F ′′ = (S′, I ′, uσ′, uσ′

1)
is considered as an F ′-window. Moreover, the multiplication by c induces an iso-
morphism of F ′-windows F ′′ ∼= F ′. The composition gives us a bilinear form
α∗P ×α∗(Pt) → F ′, which induces the isomorphism α∗(Pt) ∼= (α∗P)t. The lemma
follows. �

2.6. Crystalline homomorphisms.

Definition 2.11 (Cf. [15, Definition 3.1]). A morphism of O-frames α : F → F ′ is
called crystalline if the base change functor α∗ : WinF → WinF ′ is an equivalence
of categories. It is called nil-crystalline if the base change functor α∗ : NilpWinF →
NilpWinF ′ is an equivalence of categories.

Corresponding to [15, Theorems 3.2 and 10.3], we have the following results.
The proofs here are similar to the proofs in [15], which are variations of the proofs
of [24, Theorem 44] and [23, Theorem 3].

Theorem 2.12. Let F = (S, I, R, σ, σ1) and F ′ = (S′, I ′, R′, σ′, σ′
1) be two O-

frames. Let α : F → F ′ be a morphism of O-frames such that α : S → S′ is
surjective. Let C = Ker(S → S′). Assume that R = R′, σ1(C) ⊂ C, σ(C) = 0, and
σ1 is elementwise nilpotent on C. Assume further that finitely generated projective
S′-modules lift to projective S-modules. Then the morphism α is crystalline.

Note that C ⊂ I since R = R′. Thus σ1(C) makes sense.

Proof. The functor α∗ is essentially surjective since normal representations (T, L,Ψ)
can be lifted from F ′ to F . It suffices to show that α∗ is fully faithful. Since a
homomorphism g : P → P ′ can be encoded by the automorphism

(
1 0
g 1

)
on P ⊕P ′,

it suffices to show that α∗ is fully faithful on automorphisms. This follows from the
following lemma. �

Lemma 2.13. In the situation of the theorem with F = F ′, assume that P =
(P,Q, F, F1) and P ′ = (P,Q, F ′, F ′

1) are two F-windows such that F ≡ F ′ (mod C)
and F1 ≡ F ′

1 (mod C). Then there is a unique F-window isomorphism g : P → P ′

with g ≡ id (mod C).

Proof. By assumption, we may write F ′ = F+ε and F ′
1 = F1+η, where ε : P → CP

and η : Q → CP are σ-linear maps. Let g = 1+ω, where ω : P → CP is an arbitrary
S-linear map. By Remark 2.4, g induces an isomorphism of F-windows if and only
if gF1 = F ′

1g on Q, which is equivalent to

(2.2) η = ωF1 − F ′
1ω.
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Fix a normal decomposition P = L ⊕ T , Q = L ⊕ IT . Let l + at ∈ Q with l ∈ L,
t ∈ T , and a ∈ I. Then

η(l + at) = η(l) + σ1(a)ε(t),

ω(F1(l + at)) = ω(F1(l)) + σ1(a)ω(F (t)),

F ′
1(ω(l + at)) = F ′

1(ω(l)) + σ1(a)F
′(ω(t)).

(2.3)

If c ∈ C and x ∈ P , then F ′(cx) = σ(c)F ′(x) = 0 since σ(C) = 0. Therefore,
F ′ω = 0. The equation (2.2) is equivalent to

(2.4)

{
ε = ωF on T,

η = ωF1 − F ′
1ω on L.

By definition, Ψ := F1 + F : L ⊕ T → P is a σ-linear isomorphism. To give ω is
equivalent to giving a pair of σ-linear maps

ωL = ωF1 : L → CP, ωT = ωF : T → CP.

Let λ : L → L(σ) be the composition L ⊂ P
(Ψ�)−1

−−−−→ L(σ) ⊕T (σ) projection−−−−−−→ L(σ) and

τ : L → T (σ) be the composition L ⊂ P
(Ψ�)−1

−−−−→ L(σ) ⊕ T (σ) projection−−−−−−→ T (σ). Then

ω|L = ω�
Lλ+ ω�

T τ . Thus equation (2.4) is equivalent to

(2.5)

{
ωT = ε|T ,
ωL − F ′

1ω
�
Lλ = η|L + F ′

1ω
�
T τ.

By assumption, σ1 is elementwise nilpotent on C. Thus the endomorphism F ′
1 on

CP is elementwise nilpotent since F ′
1(cx) = σ1(c)F

′(x) for all c ∈ C and x ∈ P .
Let H be the abelian group of σ-linear maps L → CP . Define U ∈ EndH by

U(ωL) = F ′
1ω

�
Lλ. Since L is finitely generated, U is also elementwise nilpotent,

which implies that (1 − U) is bijective. Therefore, equation (2.5) has a unique
solution in (ωL, ωT ). The lemma follows. �

Corollary 2.14. Let F = (S, I, R, σ, σ1) and F ′ = (S′, I ′, R′, σ′, σ′
1) be two O-

frames. Let α : F → F ′ be a morphism of O-frames such that α : S → S′ is
surjective and R = R′. Let C = Ker(S → S′). Assume that there is a finite filtra-
tion C = C0 ⊃ · · · ⊃ Cn = 0 with σ(Ci) ⊂ Ci+1 and σ1(Ci) ⊂ Ci such that σ1 is
elementwise nilpotent on Ci/Ci+1. Assume further that finitely generated projective
S′-modules lift to projective S-modules. Then the morphism α is crystalline.

Proof. The morphism α factors into F → F ′′ → F ′ where F ′′ is determined by
S′′ = S/C1. By induction, we may assume that σ(C) = 0. The corollary follows
immediately. �

Theorem 2.15. Let F = (S, I, R, σ, σ1) and F ′ = (S′, I ′, R′, σ′, σ′
1) be two O-

frames. Let α : F → F ′ be a morphism of O-frames such that α : S → S′ is
surjective. Let C = Ker(S → S′). Assume that R = R′, σ1(C) ⊂ C, and σ(C) = 0.
Assume further that finitely generated projective S′-modules lift to projective S-
modules. Let J = (I, π). If JnC = 0 for some large integer n, then the morphism
α is nil-crystalline.

Proof. The proof is the same as the proof of Theorem 2.12. In this case, P is
nilpotent. Thus in the last paragraph of the proof of Lemma 2.13, λ is nilpotent
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modulo Jm for any m ≥ 1. Since JnC = 0, the endomorphism U is nilpotent. The
theorem follows. �
Corollary 2.16. In Theorem 2.15, the condition σ(C) = 0 is not necessary.

Proof. Let C0 = C, C1 = Iq+πC, . . . , Cn = IqnC+πIq(n−1)C+· · ·+πn−1IC+πnC.
We claim that σ1(Cn) ⊂ Cn, σ(Cn) ⊂ Cn+1.

Indeed, since the image of σ1 : I → S generates S, we may write 1 =
∑

k skσ1(ak)
for some sk ∈ S and ak ∈ I. Then the number θ in Remark 2.2 is given by
θ =

∑
k skσ(ak). Since σ(ak) ≡ aqk (mod πS), θ is an element in Iq + πS. The

claims follow by induction.
Let N be large enough such that CN = 0. Consider the chain of morphisms

S = S/CN → S/CN−1 → · · · → S/C = S′.

Each map S/Ci → S/Ci−1 induces a morphism of O-frames which satisfies the
assumptions in Theorem 2.15. The corollary follows easily. �
2.7. Hodge filtration.

Definition 2.17. Let P = (P,Q, F, F1) be a window over F . The Hodge filtration
of P is the submodule

Q/IP ⊂ P/IP.

The following result is entirely similar to [15, Lemma 4.2].

Lemma 2.18. Let α : F → F ′ be a strict morphism of O-frames such that S = S′.
Hence R → R′ is surjective and I ⊂ I ′. Then the category WinF of windows over
F is equivalent to the category of pairs (P ′, V ), where P ′ is an F ′-window and
V ⊂ P ′/IP ′ is a direct summand and is a lift of the Hodge filtration of P ′.

Proof. The equivalence is given by the functor P = (P,Q, F, F1) �→ (α∗P, Q/IP ).
In our case, if P = (P,Q, F, F1), then α∗(P) = (P, I ′P +Q,F, F1), where F1(ax) =
σ1(a)F (x) for all a ∈ I ′ and x ∈ P . It is easy to see that this functor is fully faith-
ful. We show that it is also essentially surjective. Let (P ′ = (P ′, Q′, F ′, F ′

1), V ⊂
P ′/IP ′) be such a pair. Let P = P ′, Q ⊂ P the preimage of V of the map
P = P ′ → P ′/IP ′. Then IP = IP ′ ⊂ Q ⊂ Q′. Let F1 : Q → P be the restriction
of F ′

1 : Q′ → P ′. We check that P = (P,Q, F = F ′, F1) is an F-window. It suffices
to verify that F1 : Q → P is a σ-linear epimorphism. Let P ′ = L⊕ T be a normal
decomposition. Thus Q′ = L⊕ I ′T . By changing the decomposition by ( 1 0

c 1 ) with
a morphism c : L → I ′T , we may assume that V = L/IL. Therefore Q = L⊕ IT .
To check that F1 : Q → P is σ-linear epimorphic, it is equivalent to proving that

F ⊕ F1 : T ⊕ L → P

is a σ-linear isomorphism. This is true since (P,Q′, F, F1) is an F ′-window. The
lemma follows. �
Remark 2.19. Assume that α : F → F ′ is a strict morphism of O-frames such
that S → S′ is surjective and I ′ = IS′. If we may factor α into strict O-frame
morphisms

(S, I, R, σ, σ1)
α1−→ (S, I ′′, R′, σ, σ′′

1 )
α2−→ (S′, I ′, R′, σ′, σ′

1),

such that α2 is crystalline, then the category of F-windows is equivalent to the
category of F ′-windows equipped with a certain lift of Hodge filtration. We explain
this idea with an explicit example in Section 2.8.
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2.8. O-pd-thickenings. We recall the definition and basic properties of O-pd-
structures following [8, Section 7] and [10, Section B.5.1].

Definition 2.20. Let R be an O-algebra and a ⊂ R an ideal. An O-pd-structure
on a is a map γ : a → a, such that

(1) π · γ(x) = xq,
(2) γ(r · x) = rq · γ(x),
(3) γ(x+ y) = γ(x) + γ(y) +

∑
0<i<q

1
π ( qi ) · xi · yq−i

hold for all r ∈ R and x, y ∈ a. Let γn be the n-fold iteration of γ. We call γ
nilpotent if a[n] = 0 for all n � 0, where a[n] ⊂ a is generated by all products∏

γai(xi) with xi ∈ a and
∑

qai ≥ n.

For each n, define

αn = πqn−1+qn−2+···+q+1−n · γn : a → a

and

w′
n : WO(a) → a

(x0, x1, . . . , xn, . . .) �→ αn(x0) + αn−1(x1) + · · ·+ α1(xn−1) + xn.

We call w′
n the n-th divided Witt polynomial. The main application of this structure

is as follows (cf. [10, Lemma B.5.8]). Define on aN a WO(R)-module structure by
setting

ξ[a0, a1, . . .] = [w0(ξ)a0, w1(ξ)a1, . . .]

for all ξ ∈ WO(R) and [a0, a1, . . .] ∈ aN. Then we have an isomorphism of WO(R)-
modules

log : WO(a) → aN

a = (a0, a1, . . .) �→ [w′
0(a), w

′
1(a), . . .].

Moreover, if γ is nilpotent, the above isomorphism induces an isomorphism

log : ŴO(a) → a⊕N.

Here ŴO(a) is the object defined in Section 3.1. We may view a as an ideal of

WO(a) via the map a �→ ã = log−1([a, 0, . . . ]). Since F acts on the right-hand side
by

F [a0, a1, . . .] = [πa1, πa2, . . . , πai, . . .]

for all [a0, a1, . . .] ∈ aN, we obtain that, for the ideal a ⊂ WO(a),
F a = 0.

In this paper, as in [23], an O-pd-thickening is a triple (S,R, γ), where S and
R are O-algebras with a surjection S → R, γ is a nilpotent O-pd-structure on
Ker(S → R).

Let (S,R, γ) be an O-pd-thickening such that π is nilpotent in S and R. For R
and S, we have the Witt O-frames

WR = (WO(R), IO(R) = V WO(R), R, F , V −1

),

WS = (WO(S), IO(S) =
V WO(S), S,

F , V −1

),

where F and V are the corresponding Frobenius and Verschiebung, respectively.
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The natural map WO(S) → WO(R) gives us a strict morphism of O-frames WS →
WR. Let J = IO(S) + WO(a) ⊂ WO(S). Since WO(a) \ (IO(S) ∩ WO(a)) =

{[a, 0, . . . , 0, . . .] | a ∈ a} ∼= a, we may extend V −1

: IO(S) → WO(S) to σ1 : J →
WO(S) by setting

σ1(
V
η ) = η (for all η ∈ WO(S)) and σ1(ã) = 0 (for all a ∈ a).

Thus we obtain a third O-frame

WS/R = (WO(S), J, R, F , σ1).

The morphism WS → WR factors as WS → WS/R
α−→ WR in the obvious way.

Proposition 2.21. The morphism α is nil-crystalline, that is, the categories
NilpWinWS/R

and NilpWinWR
are equivalent.

Proof. It suffices to check that α : WS/R → WR factors through a finite chain of
morphisms ofO-frames such that each morphism satisfies the conditions in Theorem
2.15.

For t big enough, we have

S = S/πt
a → S/πt−1

a → · · · → S/a = R.

This induces a chain of morphisms of O-frames

WS/R = W(S/πta)/R → W(S/πt−1a)/R → · · · → W(S/a)/R = WR.

Note that Ker(WO(S/π
i+1a) → WO(S/π

ia)) = WO(π
ia/πi+1a). Using logarithmic

coordinates, since πia/πi+1a is π-torsion, it is easy to see that F (WO(π
ia/πi+1a)) =

0. The claim follows. �

Definition 2.22. Let P = (P,Q, F, F1) be a nilpotentWR-window. TheDieudonné
crystal DP is the functor that sends an O-pd-thickening S → R to the finitely gen-
erated S-module P̃ /IO(S)P̃ , where (P̃ , Q̃, F, F1) is the unique WS/R-window lifting
P.

Let NilpWinSWR
be the category of pairs (P, V ), where P is a WR-window and

V is a lift of the Hodge filtration in DP(S). By Lemma 2.18, we have the following
result.

Corollary 2.23. The two categories NilpWinWS
and NilpWinSWR

are equivalent.

3. Breuil O-frames

3.1. Dieudonné O-frames. Let R be a local O-algebra. Assume that R is an
Artinian local ring with perfect residue field k. Let m ⊂ R be the maximal ideal of
R. Then we have the following exact sequence

0 → WO(m) → WO(R)
τ−→ WO(k) → 0.

It admits a canonical section δ : WO(k)
Δ−→ WO(WO(k)) → WO(R), which is a

ring homomorphism commuting with F . Here Δ is the unique natural morphism
(Cartier morphism) of O-algebras

Δ : WO(−) −→ WO(WO(−))

such that W(Δ(x)) = [ F
n

x]n≥0, where W = (w0, w1, . . . ). The Cartier morphism
is the morphism E in [11, Theorem 6.17].
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Since m is nilpotent, we have a subalgebra of WO(m):

ŴO(m) = {(x0, x1, . . .) ∈ WO(m) | xi = 0 for all but finitely many i}.
Note that ŴO(m) is stable under F and V .

Definition 3.1. In the case R is Artinian, we define the subring ŴO(R) ⊂ WO(R)
by

ŴO(R) = {ξ ∈ WO(R) | ξ − δτ (ξ) ∈ ŴO(m)}.
Again we have an exact sequence

0 → ŴO(m) → ŴO(R)
τ−→ WO(k) → 0

with a canonical section δ of τ .
In the case R is Noetherian, we define ŴO(R) := lim←−ŴO(R/mn

R), where mR ⊂ R

is the maximal ideal.
We also define ÎO(R) = V (ŴO(R)).

The following result is proved in [2, Lemma 1.8].

Lemma 3.2. ŴO(R) is stable under F and V .

Definition 3.3. The Dieudonné O-frame attached to R is the frame

DR = (ŴO(R), ÎO(R), R, F , V −1

).

Remark 3.4.

(1) For the O-frame DR, θDR
= π.

(2) Windows over DR are Dieudonné O-displays over R in the sense of [2, Sec-

tion 5.1]. Note that ŴO(R) is a local ring, therefore the normal decompo-
sitions exist automatically.

(3) The inclusion ŴO(R) → WO(R) induces a strict O-frame morphism DR →
WR.

(4) Let S be another Noetherian local O-algebra. A local O-algebra homomor-
phism S → R induces a strict O-frame morphism DS → DR.

Let (S,R, γ) be an O-pd-thickening and a the kernel of S → R. The discussion
in Section 2.8 remains true if we replace the Witt O-frames WS and WR by the
Dieudonné O-frames DS and DR, respectively. More precisely, as WS/R, define

DS/R = (ŴO(S), Ĵ , R, F , σ1),

where Ĵ = ÎO(S) + ŴO(a). We have the following result.

Proposition 3.5. Let (S,R, γ) be an O-pd-thickening with π nilpotent in S and
R. The following claims hold.

(1) The two categories NilpWinDS/R
and NilpWinDR

are equivalent.

(2) The two categories WinDS/R
and WinDR

are equivalent.

Definition 3.6. Let P = (P,Q, F, F1) be a DR-window. The Dieudonné crystal
DP is the functor that sends an O-pd-thickening S → R to the finitely generated
S-module P̃ /IO(S)P̃ , where (P̃ , Q̃, F, F1) is the unique DS/R-window lifting P.

Let WinSDR
(resp. NilpWinSDR

) be the category of pairs (P, V ), where P is a
DR-window (resp. nilpotent DR-window) and V is a lift of the Hodge filtration in
DP(S). We have the following result.
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Proposition 3.7. Let (S,R, γ) be an O-pd-thickening with π nilpotent in S and
R. The following claims hold.

(1) The two categories NilpWinDS
and NilpWinSDR

are equivalent.

(2) The two categories WinDS
and WinSDR

are equivalent.

3.2. κ-O-frames.

Definition 3.8. A κ-O-frame is an O-frame F = (S, I, R, σ, σ1) such that S and
WO(R) have no π-torsion, and σ(θ)− θq ∈ πS×.

Lemma 3.9. Let R be an O-algebra with π ∈ Rad(R). Let u ∈ WO(R) and
r ∈ Z≥0. Assume that πru = (a0, a1, a2, . . .). Then the element u is a unit in
WO(R) if and only if ar is a unit in R.

Proof. Since π(b0, b1, . . .) = (0, bq0, b
q
1, . . .), by replacing R by R/πR, it suffices to

prove the claim for r = 0, i.e., u = (a0, a1, . . .) is a unit in WO(R) if and only if a0 is
a unit in R. Since WO(R) = lim←−WO,n(R) where WO,n(R) = WO(R)/( V

n

WO(R)),

it suffices to show that an element u ∈ WO,n+1(R) that maps to 1 in WO,n(R) is
a unit. Using the formula of multiplications of Witt vectors, this is the same as
saying that, for any x ∈ R, x + y + πnxy = 0 has a solution. This is true since
π ∈ Rad(R). The lemma follows. �

Proposition 3.10. Let F = (S, I, R, σ, σ1) be a κ-O-frame with π ∈ Rad(R). Then
there exists a u-homomorphism of O-frames κ : F → WR lying over idR for some
unit u ∈ R. The element u and the morphism κ are functorial with respect to strict
O-frame morphisms.

Proof. There exists a morphism δ : S → WO(S) such that wn(δ(s)) = σn(s), where
wn is the n-th Witt polynomial attached to WO. Let κ : S → WO(R) be the
composition

S
δ−→ WO(S) → WO(R).

We show that κ induces a morphism of O-frames. First, by the following commu-
tative diagram

(3.1)

S
δ−−−−→ WO(S) −−−−→ WO(R)

inclusion

�⏐⏐ w0

⏐⏐� ⏐⏐�w0

I
inclusion−−−−−→ S −−−−→ R

it is easy to see that κ(I) ⊂ IO(R). Note that wn(δ(σ(s))) = wn(
F (δ(s))) =

σn+1(s) for all s ∈ S, we see that δ ◦ σ = F ◦ δ, and thus κ ◦ σ = F ◦ σ. Next, we

check that there exists u ∈ WO(R)× such that V −1

κ = u · κσ1. For any a ∈ I,

κ(θ)κ(σ1(a)) = κ(θσ1(a)) = κ(σ(a))

= F (κ(a)) = π · V −1

(κ(a)).
(3.2)

It suffices to show that π−1κ(θ) is a unit in WO(R). Then we can take u = π−1κ(θ).
Let κ(θ) = (x0, x1, . . .) and δ(θ) = (x̃0, x̃1, . . .). By Lemma 3.9, it suffices to check
that x̃1 is a unit in S. Using the following two identities

(3.3)

{
σ(θ) = w1(δ(θ)) = x̃q

0 + πx̃1,

θ = w0(δ(θ)) = x̃0,
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we obtain πx̃1 = σ(θ)− θq. Note that σ(θ) ≡ θq (mod πS×), thus x̃1 ∈ S×. From
the construction, κ and u are functorial. �
Corollary 3.11. Let F=(S, I, R, σ, σ1) be a κ-O-frame with S=WO(k)[[x1, . . . , xr]]
for a perfect field k of characteristic p. Assume that σ extends the Frobenius auto-

morphism of WO(k) by σ(xi) = xq
i for 1 ≤ i ≤ r. Then u is a unit in ŴO(R), and

κ induces a u-homomorphism of O-frames κ : F → DR.

Proof. By the construction in the proof of the proposition, it suffices to show that

δ(S) ⊂ ŴO(S). Since wn(δ(xi)) = wn([xi]) = xqn

i for all n, for each monomial∏
i x

ei
i , δ(

∏
i x

ei
i ) = [

∏
i x

ei
i ] ∈ Ŵ (S). Let mS be the maximal ideal of S. Then

S has image in ŴO(S/m
n
S) under the composition S → WO(S) → WO(S/m

n
S).

Indeed, there are only finitely many terms of an element of S with degree less that

n. Therefore, δ(S) ∈ lim←−ŴO(S/m
n
S) = ŴO(S). The claim follows. �

3.3. Breuil O-frames. Let R be a complete regular local O-algebra with perfect
residue field k of characteristic p. We choose a ring homomorphism

S := WO(k)[[x1, . . . , xr]]
h−→ R

such that xi �→ ti, where (ti ∈ mR) is a regular system of parameters of R. In R,
π =

∑
aiti ∈ mR with ai ∈ R. There exists f(x1, . . . , xr) ∈ (x1, . . . , xr)S, such

that E = π− f(x1, . . . , xr) ∈ Ker(h). Note that E �∈ m2
S since π, x1, . . . , xr form a

basis of mS/m2
S. Also, S/(E) is a regular local ring. Thus S/(E) ∼= R.

Let σ : S → S be the morphism that extends the Frobenius on WO(k) and
σ(xi) = xq

i (1 ≤ i ≤ r). Define σ1 : ES → S by σ1(Ef) = σ(f) (for all f ∈ S).
Then we have the following result.

Lemma 3.12. The quintuple BR = (S, ES, R, σ, σ1) is a κ-O-frame. We call it
the Breuil O-frame over R.

Proof. It is easy to check that BR is an O-frame. Since σ(Ef) = σ(E)σ(f) =
σ(E)σ1(Ef) for all f ∈ S, we see that θ = θBR

= σ(E). By assumption, S and
WO(R) have no π-torsion. Moreover, σ(θ) − θq has constant term π − πq. So
(σ(θ)− θq) ∈ πS×. The lemma follows. �

An immediate consequence of the lemma is the existence of an O-frame u-
homomorphism

κ : BR → DR,

where u ∈ ŴO(R) is determined by the equation πu = κ(σ(E)). The following
result corresponds to [15, Theorem 7.2].

Theorem 3.13. Let R be a complete regular local O-algebra with perfect residue
field k of characteristic p. The O-frame morphism κ : BR → DR is crystalline. i.e.,
it induces an equivalence between the categories WinBR

and WinDR
.

To prove the theorem, we introduce more objects. Let J ⊂ S be the ideal
(x1, . . . , xr), mR the maximal ideal of R. For each positive integer a, let Sa =
S/JaS and Ra = R/ma

R. Then Ra = Sa/ESa. Note that E is not a zero divisor

of Sa, because the leading term of E is π ∈ GrJ0 (Sa) = WO(k) and is not a zero

divisor in GrJ Sa. Since σ(J) ⊂ J , σ : S → S induces a morphism σa : Sa → Sa.
Define σ1a : ESa → Sa by σ1a(Ey) = σa(y) for all y ∈ Sa. Then we have the
following result.
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Lemma 3.14. The quintuple BRa
= (Sa, ESa, Ra, σa, σ1a) is a κ-O-frame. The

projection S → Sa induces a strict O-frame morphism BR → BRa
.

Let u denote the image of u in WO(Ra). Then the u-homomorphism κ : BR →
DR induces a u-homomorphism

κa : BRa
→ DRa

.

Proof. The claims follow from the construction. �

Proposition 3.15. For each positive integer a, the morphism κa : BRa
→ DRa

is
crystalline.

Proof. Let B̃a+1 be the quintuple (Sa+1, Ĩa+1, Ra, σa+1, σ̃1(a+1)), where

• Ĩa+1 = ESa+1 + Ja/Ja+1;

• σ̃1(a+1) : Ĩa+1 → Sa+1 is the extension of σ1(a+1) : ESa+1 → Sa+1 by

sending Ja/Ja+1 to zero.

The map σ̃1(a+1) is well-defined. Indeed, ESa+1 ∩ Ja/Ja+1 = E(Ja/Ja+1). For

any x ∈ Ja/Ja+1, σ1(a+1)(Ex) = σa+1(x), which is zero in Ja/Ja+1.

It is easy to check that B̃a+1 is a κ-O-frame. The homomorphism κa+1 : Sa+1 →
ŴO(Ra+1) induces a morphism of O-frames κ̃a+1 : B̃a+1 → DRa+1/Ra

. We claim
that κ̃a+1 is a u-homomorphism. Indeed, it suffices to check that σ1κa+1 = u ·
κa+1σ̃1(a+1) on Ĩa+1. For this, it suffices to check that σ1κa+1 = 0 on Ja/Ja+1.
This follows from the identity σ1([x]) = 0, where x ∈ Ja is a monomial of degree a.

Summing up the above construction, we obtain the following commutative dia-
gram of O-frames:

(3.4)

BRa+1

ι−−−−→ B̃a+1
P−−−−→ BRa⏐⏐�κa+1

⏐⏐�κ̃a+1

⏐⏐�κa

DRa+1

ι′−−−−→ DRa+1/Ra

P
′

−−−−→ DRa

Here the lower line is obtained from the O-pd-thickening R/ma+1
R → R/ma

R with

trivial O-pd-structure on ma
R/m

a+1
R .

We now prove the proposition by induction on a. If a = 1, then κ1 is an
isomorphism. There is nothing to prove. Assume that κa is crystalline. Since the
filtration on Ja/Ja+1 is trivial and both P and P′ are crystalline, the morphism
κ̃a+1 is crystalline. Since to lift a Hodge filtration in the upper case and in the
lower case are the same, we conclude that κa+1 is crystalline. The proposition
follows. �

Proof of Theorem 3.13. Because BR-windows (respectivelyDR-windows) are equiv-
alent to compatible systems of BRa

-windows (respectively DRa
-windows), the the-

orem follows immediately from Proposition 3.15. �

3.4. Breuil O-windows and Breuil O-modules. Let (S, R,E) be as in Section
3.3.

Definition 3.16. A Breuil O-window relative to S → R is a pair (Q,φ), where Q
is a free S-module of finite rank, φ : Q → Q(σ) := Q ⊗S,σ S is an S-linear map
with cokernel annihilated by E.

We denote by BrWinS/R the category of Breuil O-windows relative to S → R.
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Lemma 3.17. Let (Q,φ) be a Breuil O-window relative to S → R. Then φ is
injective and Cokerφ is a free R-module.

Proof. The first claim follows from the surjectivity of the morphism φ⊗FracS. By
this claim, the cohomological dimension of Cokerφ is 1. Thus the height of Cokerφ
is r. Therefore, Cokerφ is a free R-module because R is regular of dimension r. �

Proposition 3.18. The categories BrWinS/R and WinBR
are equivalent.

Proof. Let P = (P,Q, F, F1) be an object in WinBR
. Let Q = (Q,φ), where

φ : Q → Q(σ) is the composition Q
inclusion−−−−−→ P

(F �
1 )

−1

−−−−→ Q(σ). Then Q is a Breuil
O-window relative to S → R. Conversely, for a Breuil O-window (Q,φ), define a
quadruple P = (P,Q, F, F1), where P = Q(σ), F1 : Q → Q(σ) is given by x �→ x⊗ 1
for all x ∈ Q, F : P → P is given by 1 ⊗ x �→ F1(Ex) for all x ∈ Q. Then P is an
O-window over BR. The two functors are inverse to each other. The proposition
follows. �

Definition 3.19. A Breuil O-module relative to S → R is a pair (M,φ), where M
is an S-module of projective dimension at most one and annihilated by a power of
π, φ : M → M (σ) is an S-linear map whose cokernel is annihilated by E.

Following the strategy in [21, Section 6], we prove some properties of Breuil
O-modules.

Lemma 3.20. Let (M,φ) be a Breuil O-module relative to S → R. Then φ is
injective.

Proof. Let x ∈ S such that x �∈ πS. We claim that x : M → M is injective.
Indeed, let

0 → P ′ α−→ P → M → 0

be a resolution of M , where P and P ′ are finitely generated free S-modules of
the same rank. In this case, det(α) = πn · unit for some integer n. There exists
β : P → P ′, such that α ◦ β = πn. Thus the induced morphism P ′/xP ′ → P/xP
is injective since π is not a zero divisor in S/xS. The claim follows by the Snake
lemma.

By the claim, the map M → M(π) from M to its localization at the prime
ideal (π) is injective. The localization M(π) is of finite length over the discrete
valuation ring S(π). Let σ : S(π) → S(π) be the extension of σ on S by setting

σ(π) = π. Then we see that M(π) and M
(σ)
(π) have the same length. Because

E �∈ (π), the induced morphism φ(π) : M(π) → M
(σ)
(π) is surjective. Therefore it is

an isomorphism. Thus φ is an injection. �

Corollary 3.21. Let (M,φ) be a Breuil O-module relative to S → R. There exists
a unique S-linear morphism ψ : M (σ) → M , such that φψ = ψφ = E.

Remark 3.22. Let P ′ and P be projective modules of the same rank over ring
S. Let α : P ′ → P be a homomorphism. Then there is a well-defined ideal
ϑ(α) := det(α)S, which generalizes the usual det(α) in the free modules case.

Lemma 3.23. Let F = (S, I, R, σ, σ1) be an O-frame. Let α : P → P ′ be a
morphism of F-windows. Assume that RankS P = RankS P ′, RankR(P/Q) =
RankR(P

′/Q′). Then σ(ϑ(α))S = ϑ(α).
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Proof. Since the question is local, we may assume that all modules are free. By
assumption, we may assume that P and P ′ have normal decompositions P = T⊕L,
P ′ = T ′ ⊕ L′, where T ∼= Sd ∼= T ′ and L ∼= Sc ∼= L′ for some integers c and d.
Let (A B

C D ) ∈ GLc+d(S) and
(
A′ B′

C′ D′

)
∈ GLc+d(S) be morphism matrices of F1 :

IT ⊕L → T ⊕L and F ′
1 : IT ′ ⊕L′ → T ′ ⊕L′, respectively. Let (X Y

U Z ) ∈ GLc+d(S)
be the matrix that defines α : T ⊕ L → T ′ ⊕ L′. Since α defines a morphism of
windows, Y has entries in I and(

X Y
U Z

)(
A B
C D

)
=

(
A′ B′

C ′ D′

)(
σ(X) σ1(Y )
θσ(U) σ(Z)

)
.

Let t = det (X Y
U Z ) and t′ = det

(
σ(X) σ1(Y )
θσ(U) σ(Z)

)
. Then ϑ(α) = tS = t′S. On the other

hand, det(σ(α)) = det
(

σ(X) σ1(Y )
θσ(U) σ(Z)

)
. The lemma follows. �

Lemma 3.24. In the same situation as in Lemma 3.23, assume that π is not a
zero divisor in S and

⋂
n≥1 π

nS = 0. Assume further that SpecS/πS is connected.

Then ϑ(α) = πhS or ϑ(α) = 0.

In the case that ϑ(α) = πhS, we call α an isogeny of O-height h.

Proof. Since the situation is locally principal, we may assume that ϑ(α) = ξS for
some ξ ∈ S. Assume that σ(ξ) = τξ for τ ∈ S×. Then τξ ≡ ξq (mod πS). Because
ξ and ξq−1 − τ are relatively prime, i.e., (ξ, ξq−1 − τ ) = S, we have

Spec(S/πS) = D(ξ) ∪D(ξq−1 − τ ).

By assumption, D(ξ) = Spec(S/πS) or D(ξ) = ∅. If ξ is a unit, we are done. If
ξ ∈ πS, assume that ξ = πξ′. Applying the above argument repeatedly, we either
obtain a unit ξ̃ with ξ = πhξ̃, or ξ ∈

⋂
n≥1 π

nS = 0. In either case, the lemma
holds. �

Lemma 3.25. Each Breuil O-module relative to S → R is the cokernel of an
isogeny of Breuil O-windows relative to S → R.

Proof. Let (M,φ) be a Breuil O-module. Let J and L be finitely generated free
S-modules and τ : J ⊕L → M (σ) be an S-linear epimorphism which maps EJ ⊕L
surjectively to φ(M). Then there exists a unique S-linear map τ1 : J ⊕ L → M
such that the following diagram is commutative:

(3.5)

J ⊕ L
τ1−−−−→ M⏐⏐�E·idJ + idL

⏐⏐�φ

EJ ⊕ L
τ−−−−→ Im(φ)

Furthermore, there exists an S-linear isomorphism γ : J ⊕ L → J (σ) ⊕ L(σ) which
makes the following diagram commutative:

(3.6) J ⊕ L
τ ��

γ

��

M (σ)

J (σ) ⊕ L(σ)
τ
(σ)
1

����������������
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Indeed, let N be a finitely generated module over a local ring A, and let F1 and
F2 be two finitely generated free A-modules of the same rank equipped with A-
linear epimorphisms τi : Fi → N (i = 1, 2). Then there exists an isomorphism
γ12 : F1 → F2 such that τ2 ◦ γ12 = τ1. Applying this general property to our case,
the existence of γ follows.

Let Q := J ⊕ L and φ := γ ◦ (E · idJ + idL) : J ⊕ L → J (σ) ⊕ L(σ). Then the
pair (Q,φ) is a Breuil O-window relative to S → R and we have a commutative
diagram:

(3.7)

Q
τ1−−−−→ M⏐⏐�φ

⏐⏐�φ

Q(σ) τ
(σ)
1−−−−→ M (σ)

Hence τ1 is a surjection from (Q,φ) to (M,φ). It is clear that the kernel (Q′, φ′) is
a Breuil O-window relative to S → R. The lemma follows. �
Corollary 3.26. If (M,φ) is a Breuil O-module relative to S → R, then the
quotient M (σ)/φ(M) is an R-module of projective dimension at most one.

Proof. From Lemma 3.25, (M,φ) is the cokernel of an isogeny of Breuil O-windows,
i.e., we have a short exact sequence

0 → (Q′, φ′) → (Q,φ) → (M,φ) → 0.

This induces an exact sequence

Coker(φ′
Q′) → Coker(φQ) → Coker(φM ) → 0.

The claim follows. �
Lemma 3.27. If (M,φ) → (M̃, φ̃) is a morphism of Breuil O-modules relative
to S → R, then it is the cokernel of a morphism of two exact complexes 0 →
(Q′, φ′) → (Q,φ) and 0 → (Q̃′, φ̃′) → (Q̃, φ̃) of Breuil O-windows.

Proof. From Lemma 3.25, there exists a Breuil O-window (Q̃, φ̃) relative to S → R

with a surjection (Q̃, φ̃) → (M̃, φ̃). Let Q = M ×M̃ Q̃ be the fiber product. The

functor L �→ L(σ) from S-modules to S-modules is exact and therefore respects
fibre products. We obtain the following commutative diagram:

(3.8)

(Q,φ) −−−−→ (M,φ)⏐⏐� ⏐⏐�
(Q̃, φ̃) −−−−→ (M̃, φ̃)

As in the proof of Lemma 3.25, the kernels of the horizontal arrows are Breuil
O-windows relative to S → R. The lemma follows. �
3.5. π-divisible O-modules and special O-group schemes. In the rest of this
paper, we assume that p > 2 and O is the ring of integers of a finite extension of
Qp with uniformizer π. First, we have the following result.

Theorem 3.28. Let O be the ring of integers of a finite extension of Qp with
uniformizer π. Let R be a local complete regular Noetherian O-algebra with perfect
residue field of characteristic p. The category of π-divisible O-modules over R is
equivalent to the category of Breuil O-windows relative to S → R.
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Proof. This is an immediate consequence of Theorem 3.13, Proposition 3.18 and
[2, Theorem 1.5]. �
Definition 3.29. A special O-group scheme over R is a finite flat commutative
group scheme which is the kernel of an isogeny of π-divisible O-modules over R.
Write sGrR for the category of special O-group schemes over R.

From the definition, a special O-group scheme is annihilated by a power of π
and is of q-power order.

Remark 3.30. By [3, Theorem 3.1.1], for a Noetherian local ring R with perfect
residue field of characteristic p, every finite flat commutative group scheme of p-
power order over R is the kernel of an isogeny of p-divisible groups over R. Hence,
in the case O = Zp, every finite flat commutative group scheme of p-power order
over R is special.

Theorem 3.31. With the same setting as in Theorem 3.28, the category of special
O-group schemes over R is equivalent to the category of Breuil O-modules relative
to S → R.

Proof. Let H be a special O-group scheme over R. By definition, H is the kernel
of an isogeny of π-divisible O-modules over R,

0 → H → G′ → G → 0.

Let (Q′, φ′) and (Q,φ) be the Breuil O-windows relative to S → R which corre-
sponds to G′ and G, respectively. Let (Q′, φ′) → (Q,φ) be the morphism corre-
sponding to the isogeny G′ → G. The cokernel of this map is annihilated by a
power of π. Therefore it is an isogeny and the cokernel MG′(H) = (M,φ) is a
Breuil O-module relative to S → R.

Assume that h : H → H1 is a homomorphism of special O-groups. Write H1 as
the kernel of an isogeny of π-divisible O-modules

0 → H1 → G′
1 → G1 → 0.

Let (Q′
1, φ

′
1) and (Q1, φ1) be the Breuil O-windows relative to S → R which cor-

respond to G′
1 and G1, respectively. Let (Q′

1, φ
′
1) → (Q1, φ1) be the morphism

corresponding to the isogeny G′
1 → G1. Embed H into G′

2 = G′ ⊕ G′
1 by (1, h)

and define G2 = G′
2/H. We obtain two morphisms G′ ← G′

2 → G′
1. They induce

morphisms of short exact sequences:

(3.9)

0 −−−−→ H −−−−→ G′ −−−−→ G −−−−→ 0�⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐
0 −−−−→ H −−−−→ G′

2 −−−−→ G2 −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ H1 −−−−→ G′

1 −−−−→ G1 −−−−→ 0

The upper half of the diagram is a quasi-isomorphism and induces an isomorphism
MG′(H) ∼= MG′

2
(H). This shows thatMG′(H) is independent of the isogeny, and we

denote it by M(H). Moreover, the diagram induces a morphism M(H) → M(H1).
It is easy to see that M is an additive functor.

Next, we construct an additive functor M �→ H(M) from Breuil O-modules
to special O-groups. Each M is the cokernel of an isogeny of Breuil O-windows
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Q′ → Q, and H(M) is defined to be the kernel of the associated isogeny of π-
divisible O-modules. By a similar argument as above, H is a well-defined additive
functor. Also, from the construction, it is easy to check that H and M are inverse
of each other. The theorem follows. �

3.6. Duality. Let (Q,φ) be a Breuil O-window relative to S → R. The dual of
(Q,φ) is the Breuil O-window (Q,φ)t = (Q∨, ψ∨), where Q∨ = HomS(Q,S) and
ψ : Q(σ) → Q is the unique S-linear map with ψφ = E. Here we identify (Q(σ))∨

and (Q∨)(σ).

Let G be the O-module attached to the O-display (WO(R), IO(R), F , V −1

). Let
G[πn] be the πn-torsion of G. For a π-divisible O-module G over R, the Serre O-
dual (or special O-dual) G∨ of G is defined in the same way as the Serre dual of G,
by using G and G[πn] instead of Gm and μpn = Gm[pn]. Similarly, for H in sGrR,
the Cartier O-dual H∨ of H is defined in the same way as the Cartier dual of H,
by using G[π] instead of μp. Let W(G) be the Breuil O-window attached to G via
the equivalence in Theorem 3.28.

Proposition 3.32. There is a functorial isomorphism λG : W(G∨) ∼= W(G)t.

Proof. By [2, Theorem 1.5], the equivalence between π-divisible O-modules over
R and Dieudonné O-displays over R is compatible with duality. The equivalence
in Proposition 3.18 preserves duality. It suffices to show that the functors κ∗ in
Theorem 3.13 preserves duality. By Lemma 2.10, it suffices to show that there exists

a unit c ∈ ŴO(R), such that c−1( F c) = u. Note that u = π−1κ(σE) (Proposition

3.10 and Lemma 3.12) lies in 1 + ŴO(mR), the element u( Fu)( F
2

u) · · · converges

in ŴO(R) = lim←−ŴO(R/mn
R). Let c

−1 = u( Fu)( F
2

u) · · · , the claim follows. �

Let (M,φ) be a Breuil O-module relative to S → R. The dual (M,φ)t of (M,φ)
is the Breuil O-module (M∗, φ∗), where M∗ = Ext1S(M,S), φ∗ is determined by
Corollary 3.21 (cf. [22, Section 2]). Then we have the following result.

Proposition 3.33. Let H be an object in sGrR. There is a functorial isomorphism
λH : M(H∨) ∼= M(H)t.

Proof. Let H be the kernel of the isogeny of π-divisible O-modules G′ → G. Then
M(H) is the cokernel of Q′ → Q, where Q′ and Q are Breuil O-windows corre-
sponding to G and G′, respectively. Thus M(H)t is the cokernel of Qt → (Q′)t.
On the other hand, H∨ is the kernel of G∨ → (G′)∨. By Proposition 3.32, we have
the isomorphism λH : M(H∨) ∼= M(H)t. This isomorphism is independent of the
choice of G′ and functorial in H. The proposition follows. �

For the application in the next section, it is convenient to use contravariant
Breuil O-windows and contravariant Breuil O-modules ([22, Section 2]).

Definition 3.34. A contravariant Breuil O-window relative to S → R is a pair
(Q,φ), where Q is a free S-module of finite rank and φ : Q(σ) → Q is an S-linear
map whose cokernel is annihilated by E.

A contravariant Breuil O-module relative to S → R is a pair (M,φ), where
M is a finitely generated S-module annihilated by a power of π and of projective
dimension at most one, and φ : M (σ) → M is an S-linear map whose cokernel is
annihilated by E.



BREUIL O-WINDOWS AND π-DIVISIBLE O-MODULES 715

The category of Breuil O-windows relative to S → R (respectively Breuil O-
modules relative to S → R) is equivalent to the category of contravariant Breuil
O-windows relative toS → R (respectively contravariant Breuil O-modules relative
to S → R) by taking dual objects.

4. An application

Using the theory of Breuil modules, Vasiu and Zink [22] proved some bound-
edness results for finite flat group schemes over discrete valuation rings of mixed
characteristic. With the results proved in Section 3, we now generalize the results
in [22] to the case of special O-group schemes.

4.1. Setup. Let p > 2 be a prime number. Let O be the ring of integers of a
finite extension of Qp with uniformizer π and residue field Fq. Let R be a complete
regular discrete valuation ring of mixed characteristic (0, p) with fraction field K
and residue field k. Assume that R is an O-algebra. We view canonically R
as a WO(k)-algebra, which as a WO(k)-module is free of rank e. Here e is the
ramification degree of R over O.

Let S = WO(k)[[u]] and Sn = S/πnS. Let

E := E(u) = ue + ae−1u
e−1 + · · ·+ a0 ∈ WO(k)[u]

be the Eisenstein polynomial associated with a uniformizer ρ of R. We have a
WO(k)-epimorphism S → R with kernel ES which maps u to the fixed uniformizer.

Let BrModS/R be the category of contravariant Breuil O-modules relative to

S → R. Let BrMod1S/R be the full subcategory of BrModS/R whose objects are

pairs (M,φ) with M annihilated by π. If (M,φ) is an object of BrMod1S/R, then
M is a free S1-module of finite rank. In the following, a Breuil O-module means a
contravariant Breuil O-module.

Let sGrR be the category of special O-groups over R. Let sGr1R be the full
subcategory of sGrR whose objects are annihilated by π. Applying the results in
Section 3, we have the following proposition.

Proposition 4.1. There exists a contravariant functor B : sGrR → BrModS/R

which is an anti-equivalence of categories. It is O-linear and takes short exact
sequences (in the category of abelian sheaves in the faithfully flat topology of SpecR)
to short exact sequences (in the category of S-modules with Frobenius maps).

The restriction of B induces an anti-equivalence B : sGr1R → BrMod1S/R.

Definition 4.2. For an object G of sGrR, let o(G) ∈ N be such that qo(G) is the
order of G.

For (M,φ) an object of BrMod1S/R, the rank of (M,φ) is the rank of M as a free
S1-module.

Remark 4.3. If G is an object of sGr1R, then by definition, the rank of B(G) is o(G).
Let H be an object of sGrR. Assume that πn annihilates H, then we have a

chain of natural epimorphisms

H → H/H[π] → H/H[π2] → · · · → H/H[πn] = {0}.
This induces a chain of Breuil O-modules

0 = (Mn, φn) ⊂ (Mn−1, φn−1) ⊂ · · · ⊂ (M0, φ0) = (M,φ),
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whose quotient factors are objects of BrMod1S/R. Then we can compute the order

qo(H) of H via the formula

o(H) = o(M,φ) :=
n∑

i=1

RankS1
(Mi−1/Mi) = LengthS(π)

(M(π)).

The following proposition corresponds to [22, Proposition 1]. The proof is similar.
We give details here for completeness.

Lemma 4.4. Let f : G → H be a morphism of special O-group schemes. Let
g := B(f) : B(H) = (M,φ) → B(G) = (N,ψ). Then the following claims hold.

(1) The morphism fK : GK → HK is a closed embedding if and only if the
cokernel of g : M → N is annihilated by some power of u.

(2) The morphism fK : GK → HK is an epimorphism if and only if the map
g : M → N is a monomorphism.

(3) The morphism fK : GK → HK is an isomorphism if and only if the map
g : M → N is injective and the cokernel of g is annihilated by some power
of u.

Proof. We prove the first statement. Let Ñ = Coker(g). Assume that fK is
not a closed embedding, then there exists a nontrivial flat closed subgroup G0 of
G, which is contained in the kernel of fK and which is annihilated by π. Let
B(G0) = (N0, ψ0). Then N0 is free over S1 with positive rank. On the other hand,
B takes short exact sequences to short exact sequences, we have an epimorphism
Ñ → N0 and Ñ is not annihilated by a power of u.

Assume that Ñ is not annihilated by a power of u, then N1 = Ñ/πÑ is not
annihilated by a power of u. As S1 = k[[u]] is a principal ideal domain, we have a
short exact sequence

0 → N2 → N1 → N0 → 0,

where N2 is the largest S1-submodule of N1 annihilated by a power of u and N0 is a
free S1-submodule of positive rank. The map ψ : N (σ) → N induces a σ-linear map

ψ0 : N
(σ)
0 → N0. It is easy to see that the pair (N0, ψ0) is an object of BrMod1S/R.

Then by Proposition 4.1, there exists a nontrivial flat closed subgroup G0 of G,
which is contained in the kernel of fK . Therefore, fK is not a closed embedding.

The second statement follows by a similar argument. Assume that fK is not an
epimorphism, then there exists a nontrivial flat closed subgroup H0 of H, which is
not contained in the image of fK and which is annihilated by π. The corresponding
Breuil O-module B(H0) produces nontrivial elements in Ker(g) and the map g :
M → N is not a monomorphism. On the other hand, assume that g : M → N
is not a monomorphism, then the kernel Ker(g) produces a nontrivial flat closed
subgroup H0 of H which is not contained in the image of fK . Thus fK is not an
epimorphism.

The third statement follows from the first and the second. �

4.2. Truncations. By a special truncated Barsotti-Tate O-group of level n over R,
we mean a Barsotti-Tate O-group of level n over R, which is the πn-torsion of a
π-divisible O-module. Let H be such a group. Let (M,φ) := B(H). Then M is a
free Sn-module of finite rank h.
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Lemma 4.5. There exist two bases (e1, . . . , eh) and (v1, . . . , vh) of M , such that

(4.1)

{
φ(1⊗ ei) = vi, i = d+ 1, d+ 2, . . . , h,

φ(1⊗ ej) ≡ Evj (mod vd+1, . . . , vh), i = 1, . . . , d,

for some integer d.

Proof. Since H is special, we may assume that H = H[πn] for some π-divisible
O-module H. The normal decomposition of the Breuil O-window associated with
H induces a direct sum decomposition M = T ⊕ L into free Sn-submodules, such
that T is free of rank d and Im(φ) = ET ⊕ L. Consider the composition

M
1⊗−−−−→ M (σ) φ−→ φ(M (σ))

projection−−−−−−→ M/T = L.

All the arrows are surjective after tensoring with the residue field k. By Nakayama’s
lemma, there exists a basis (e1, . . . , eh) of M , such that the images of φ(1 ⊗ ei)
(i = d+1, . . . , h) form a basis of M/T = L. Define vi = φ(1⊗ei) for i = d+1, . . . , h.
They form a basis of L. Note that (φ(1⊗ ei) : i = 1, . . . , h) form a basis of ET ⊕L,
there exists a basis (v1, . . . , vd) of T , which satisfies the required conditions. �

Lemma 4.6. Let t ∈ Z≥0. Let x ∈ 1
utM such that φ(1 ⊗ x) ∈ 1

utM . Using the

basis (e1, . . . , eh) in Lemma 4.5, write x =
∑h

i=1
αi

ut ei with αi ∈ Sn. Then for each

i = 1, . . . , h, Eσ(αi) ∈ ut(q−1)Sn, αi ∈ (πn−1, u)Sn, and παi(0) = 0 ∈ Sn.

Proof. By definition,

φ(1⊗ x) =

d∑
i=1

σ(αi)

utq
φ(1⊗ ei) +

h∑
i=d+1

σ(αi)

utq
φ(1⊗ ei)

=
d∑

i=1

σ(αi)

utq
Evi +

h∑
i=d+1

(
σ(αi)

utq
+

d∑
j=1

λij
σ(αj)

utq
)vi ∈

1

ut
M,

(4.2)

for some λij ∈ Sn. Thus for i ∈ {1, . . . , d}, Eσ(αi) ∈ ut(q−1)Sn. Moreover, for
i > d,

E
σ(αi)

utq
= E(

σ(αi)

utq
+

d∑
j=1

λij
σ(αj)

utq
)−

d∑
j=1

λijE
σ(αj)

utq
.

Therefore, Eσ(αi) ∈ ut(q−1)Sn for all i = 1, . . . , h. The other two claims follow
easily. �

Lemma 4.7. Let t ∈ Z≥0. Let N be an Sn-submodule of 1
utM which contains M .

Assume that φ induces an S-linear map N (σ) → N . Then πtN ⊂ M .

Proof. We prove this by induction on t. If t = 0, the claim is trivial. Assume
that the lemma is true for t − 1. Let x ∈ N . Then by Lemma 4.6, πx ∈ 1

ut−1M .

Thus πN ⊂ 1
ut−1M . Applying induction to N ′ := πN + M ⊂ 1

ut−1M , we get

πt−1N ′ ⊂ M . Therefore, πtN ⊂ M . The lemma follows. �
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4.3. Some formulas. In this section, we prove the results corresponding to those
in [22, Section 3]. The motivations for these results are explained in [22]. Our
arguments here are entirely similar to those in [22]. In many cases, to give the
proofs, we may just replace the number p ∈ Z in [22] with the number q ∈ Z and
the uniformizer p ∈ Zp with the uniformizer π ∈ O. For completeness, we give
details in the following.

Assume that O is of degree rf over Zp, where r is the ramification degree and
f is the residue degree. Then q = pf and ordπ(p) = r. For x ∈ R, [x] denotes the
maximal integer with the property [x] ≤ x.

Define m := ordq(e) = [
ordp(e)

f ]. Let ae = 1. Recall that E =
∑e

i=0 aiu
i is the

Eisenstein polynomial of a uniformizer ρ of R. Define

E0 :=
∑
q|i

aiu
i ∈ WO(k)[u

q],

and E1 = E − E0 ∈ WO(k)[u].
If m = 0, define τ (ρ) = 1 and ι(ρ) = 0.
If m ≥ 1, define τ (ρ) ∈ Z≥0 ∪ {∞} by

τ (ρ) := ordπ(E1) = min{ordπ(ai) | i ∈ {1, . . . , e− 1}\qZ}.

If m ≥ 1 and τ (ρ) < ∞, let ι(ρ) ∈ {1, . . . , e−1}\qZ be the smallest number such
that τ (ρ) = ordπ(aι(ρ)).

For all m ≥ 0, define

τ = τR := min{τ (ρ) | ρ is a uniformizer of R}.

If τ < ∞, which is always true as we show in next lemma, define

ι = ιR := min{ι(ρ) | ρ is a uniformizer of R with τ (ρ) = τ}.

Lemma 4.8. With the notation as above, τ < ∞.

Proof. If m = 0, then τ = 1 by definition and the claim follows. Assume that
m ≥ 1. Note that ρ is a uniformizer with Eisenstein polynomial E(u). Then
another uniformizer ρ′ = ρ+π of R is the root of the Eisenstein polynomial E′(u) =
E(u− π) =

∑e
i=0 a

′
iu

i. Thus a′e−1 = −πe+ ae−1. At least one of ae−1 and a′e−1 is

not divisible by π2+ordπ(e). The lemma follows. �

Lemma 4.9. Let n, t ∈ Z>0. Assume that q | e. Let

C = C(u) = ud + cd−1u
d−1 + · · ·+ c1u+ c0 ∈ WO(k)[u]

be a Weierstrass polynomial (i.e., C − ud ≡ 0 (mod π)), such that qd < t and
c0 �∈ πnWO(k). Assume that E0σ(C) ∈ (ut, πn)S. Then d = (n − 1)e/q and for
each i ∈ {0, 1, . . . , n− 1}, we have

(4.3) ordπ(ci e
q
) = n− i− 1 and ordπ(cj) ≥ n− i, for 0 ≤ j < i

e

q
.

Moreover, t ≤ ne.

Proof. Let cd = 1. Let γi = σ(ci) ∈ WO(k) for 0 ≤ i ≤ d. Then

σ(C) = γdu
qd + γd−1u

q(d−1) + · · ·+ γ1u
q + γ0 ∈ WO(k)[u].
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For i �∈ {0, . . . , d}, define ci = γi = 0. Note that ordπ(ci) = ordπ(γi). To prove
equation (4.3), it suffices to prove it for γi. Moreover,

E0σ(C) =

d+ e
q∑

j=0

βjqu
jq,

where

(4.4) βjq = a0γj + aqγj−1 + · · ·+ aeγj− e
q
.

By assumption, ordπ(βjq) ≥ n for jq < t. In particular, ordπ(βjq) ≥ n for j ≤ d.
We prove that

(4.5) ordπ(γi e
q
) = n− i− 1 and ordπ(γj) ≥ n− i, for 0 ≤ j < i

e

q
,

by induction on j. The case j = 0 is easy. The passage from j − 1 to j goes as
follows. Assume first (i − 1) eq < j < i eq for some integer i. By equation (4.4),

a0γj = βjq− (aqγj−1+ · · ·+aeγj− e
q
). Each term on the right-hand side has π-order

strictly bigger than n− i. Thus, ordπ(γi) ≥ n− i+ 1− ordπ(a0) = n− i.
In the case j = i eq , a0γi e

q
+ aeγ(i−1) e

q
= βie − (aqγi e

q−1 + · · · + αe−qγ1+(i−1) e
q
).

Each term on the right-hand side has π-order ≥ n− i+1. Since ordπ(aeγ(i−1) e
q
) =

n− i < n− i+ 1, we must have ordπ(a0γi e
q
) = n− i. This ends the induction.

If d is of the form i eq , then 0 = ordπ(cd) = n−i−1 and d = (n−1) eq . Suppose that

d is not of the form i eq . Assume that (i− 1) eq < d < i eq , then 0 = ordπ(cd) ≥ n− i

and i ≥ n. This implies ordπ(γ(i−1) e
q
) = n−i ≤ 0, which contradicts the assumption

that C is a Weierstrass polynomial.
Finally, as q | e and d = (n− 1) eq , E0σ(C) ∈ (ut, πn)S is a monic polynomial of

degree e+ qd = ne. Thus we must have t ≤ ne. The lemma follows. �
Corollary 4.10. With the same notation as in Lemma 4.9, let l ∈ {0, 1, . . . , e−1}.
Let E2 = E2(u) = ul + bl−1u

l−1 + · · · + b1u + b0 ∈ WO(k)[u] be a Weierstrass
polynomial of degree l. If we have E2σ(C) ∈ (ut, πn)S, then l ≥ t.

Proof. If n = 1, then d = 0 and C = c0 is a unit. The corollary follows. Assume
that n ≥ 2. Write

E2σ(C) =

l+qd∑
i=0

δiu
i,

where
δl = γ0 + bl−qγ1 + · · ·+ bl−q[ lq ]

γ[ lq ]
.

For i ∈ {1, . . . , [ lq ]}, we have ordπ(γi) ≥ n−1 by equation (4.5). Thus ordπ(bl−iqγi)

≥ n. On the other hand, ordπ(γ0) = n− 1. Thus ordπ(δl) = n− 1 and l ≥ t. �
The following proposition corresponds to [22, Proposition 2], which is the key to

the computation.

Proposition 4.11. Let n and t be positive integers. Let C = C(u) ∈ S be a power
series whose constant term is not divisible by πn. Assume that

Eσ(C) ∈ (ut, πn)S.

If τ (ρ) = ∞, then t ≤ ne. If τ (ρ) < ∞, then

t ≤ min{τ (ρ)e+ ι(ρ), ne}.
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Moreover, if m = 0, then we have πσ(C) ∈ (ut, πn)S; if m ≥ 1, then we have
πτ(ρ)+1σ(C) ∈ (ut, πn)S.

In particular, if m ≥ 1 and the content of C is 1, then τ (ρ) + 1 ≥ n.

Proof. Since σ(u) = uq, without loss of generality, we may assume that C is a
polynomial of degree d with dq < t. Each term of σ(C) has degree divisible by
q, E0σ(C) and E1σ(C) do not contain monomials of the same degree. Therefore,
Eσ(C) ∈ (ut, πn)S implies E0σ(C) ∈ (ut, πn)S and E1σ(C) ∈ (ut, πn)S.

Consider the case m = 0, i.e., q � e. In this case, π−1E0 is a unit in the ring S.
Therefore, πσ(C) ∈ (ut, πn)S. By our assumption on the degree of C, πσ(C) ≡ 0
(mod πn). Moreover, E1 − ue ≡ 0 (mod π), ueσ(C) ∈ (ut, πn)S. As the constant
term of C is not divisible by πn, we must have t ≤ e = min{τ (ρ)e+ ι(ρ), ne}.

Assume now that q | e. By Weierstrass preparation theorem, we may assume
that C is a monic polynomial of degree d such that C−ud ≡ 0 (mod π). Indeed, if
c, the content of C, is greater than 0, then we may just replace the pair (C, n) by
the pair (C ′, n − c), where C ′ = π−cC, and prove the proposition for (C ′, n − c).
It suffices to show that τ (ρ) + 1 ≥ n. As in [22], assume that τ (ρ) + 1 ≤ n and it
suffices to show that τ (ρ) + 1 = n.

As τ (ρ) = ordπ(E1), by Weierstrass preparation theorem, we may write

E1 = πτ(ρ)E2θ,

where θ ∈ S is a unit and E2(u) ∈ WO(k)[u] is a Weierstrass polynomial of degree
ι(ρ) < e. The property E1σ(C) ∈ (ut, πn)S implies that

E2σ(C) ∈ (ut, πn−τ(ρ))S.

Note that τ (ρ) eq ≤ (n− 1) eq = d and cd = 1, we consider the monic polynomial

C1 = C1(u) = ud + cd−1u
d−1 + · · ·+ cτ(ρ) e

q
uτ(ρ) e

q ∈ WO(k)[u].

By Lemma 4.9, ordπ(cj) ≥ n − τ (ρ) for j < τ (ρ) eq . Thus C − C1 ∈ πn−τ(ρ)S.

Therefore,

E2σ(C1) ∈ (ut, πn−τ(ρ))S.

Write C1 = uτ(ρ) e
q C2. Then the constant term of C2 is cτ(ρ) e

q
, which is not divisible

by πn−τ(ρ). Therefore, as t > qd = (n− 1)e ≥ τ (ρ)e,

E2σ(C2) ∈ (ut−τ(ρ)e, πn−τ(ρ))S.

Similarly, since E0σ(C2) = E0u
−τ(ρ)eσ(C)− E0u

−τ(ρ)eσ(C − C1),

E0σ(C2) ∈ (ut−τ(ρ)e, πn−τ(ρ))S.

Applying Corollary 4.10 to the quintuple (t − τ (ρ)e, C2, E0, E2, n − τ (ρ)) in-
stead of the quintuple (t, C,E0, E2, n), we obtain that ι(ρ) = deg(E2) ≥ t− τ (ρ)e.
Since ι(ρ) ≤ e − 1 and n ≥ τ (ρ) + 1, it is easy to see that t ≤ τ (ρ)e + ι(ρ) =
min{τ (ρ)e+ ι(ρ), ne}. The property (n− 1)e = qd < t implies n ≤ τ (ρ) + 1. Thus
n = τ (ρ) + 1 and the proposition follows. �
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4.4. The number s. For a uniformizer ρ of R, define

t(ρ) := [
τ (ρ)e+ ι(ρ)

q − 1
] ∈ Z≥0 ∪ {∞}.

By Lemma 4.8, there exists ρ, such that t(ρ) is finite.
Let ε = 0 (respectively ε = 1) if m = 0 (respectively m ≥ 1). For all nonnegative

integers i, define

si := i(τ + ε) and ti := [
τe+ ι

(q − 1)qi
].

Thus ti+1 = [ tiq ] (an easy computation) and

t0 = min{t(ρ) | ρ is a uniformizer of R}.
Define the number s ∈ Z≥0 which only depends on R by

s = sR := min{si + ti | i ∈ Z≥0}.
Let z ∈ Z≥0 be the smallest number with the property sz + tz = s.

With the above definition, we have

0 = s0 < s1 < · · · < sz and t0 > t1 > · · · > tz ≥ 0.

Theorem 4.12. With the notation as above, let G and H be two special O-groups
over R. For each homomorphism f : G → H whose generic fiber fK : GK → HK is
an isomorphism, there exists a homomorphism f ′ : H → G such that f ′◦f = πs idG
and f ◦ f ′ = πs idH . Therefore the special fiber homomorphism fk : Gk → Hk has
a kernel and a cokernel annihilated by πs.

Proof. If there exists f ′ : H → G such that f ◦ f ′ = πs idH , then f ′ ◦ f = πs idG
as this is true on the generic fiber. The claim on the special fiber homomorphism
follows easily.

Choose an epimorphism ξH : H̃ → H from a special truncated Barsotti-Tate
O-group H̃. Let G̃ = G ×H H̃ be the fiber product in the category sGrR. Let
f̃ : G̃ → H̃ be the corresponding morphism. Then f̃K is an isomorphism. Assume
that there exists a homomorphism f̃ ′ : H̃ → G̃ such that f̃ ◦ f̃ ′ = πs idH̃ . Then

ξG ◦ f̃ ′ is zero on Ker(ξH) because this is true for the generic fibers. Thus there

exists f ′ : H → G such that f ′ ◦ ξH = ξG ◦ f̃ ′. Therefore f ◦ f ′ ◦ ξH = f ◦ ξG ◦ f̃ ′ =
ξH ◦ f̃ ◦ f̃ ′ = πsξH and f ◦ f ′ = πs idH .

By the above discussion, to prove the existence of f ′, we may assume that f = f̃
and H = H̃ is a special truncated Barsotti-Tate O-group of level n > s. We
translate the problem in terms of Breuil O-modules. Let B(H) = (M,φ) and
B(G) = (N,ψ). By Proposition 4.4, f induces an S-linear monomorphism M ↪→ N
whose cokernel is annihilated by some power ut. Assume that t is the smallest
natural number with this property. If t = 0, then f is an isomorphism. Thus we
assume that t > 0. The existence of f ′ : H → G is equivalent to the inclusion

πsN ⊂ M.

Now we prove by induction that, for j ∈ {0, . . . , z}, πsjN ⊂ 1
utj

M . For the base

case j = 0, it suffices to show that t ≤ t0. Choose x ∈ N such that ut−1x �∈ M .
Write

x =

h∑
i=1

αi

ut
ei,
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where (e1, . . . , eh) is an Sn-basis of M as in Lemma 4.5. Then by Lemma 4.6,
Eσ(αi) ∈ ut(q−1)Sn for 1 ≤ i ≤ h. By the minimality of t, there exists 1 ≤ i0 ≤ h,
such that αi0 is not divisible by u. Let C = C(u) ∈ S be such that its reduction
modulo πn is αi0 . The constant term of C is not divisible by πn and Eσ(C) ∈
(ut(q−1), πn)S. Applying Proposition 4.11, we see that t(q − 1) ≤ min{τe+ ι, ne}.
Thus t ≤ t0 by definition of t0.

If 0 ≤ j ≤ z, the passage from j − 1 to j goes as follows. The induction
hypothesis says that πsj−1N ⊂ 1

utj−1
M . Let lj−1 ∈ {0, . . . , tj−1} be the smallest

number such that πsj−1N ⊂ 1

ulj−1
M . If lj−1 = 0, then πsj−1N ⊂ M . Thus

πsjN ⊂ πsj−1N ⊂ M ⊂ 1
utj

M . Assume now that lj−1 ≥ 1. Choose y ∈ πsj−1N .
Write

y =

h∑
i=1

ηi
uni

ei,

where ηi ∈ Sn\uSn and ni ∈ {0, . . . , lj−1}. We want to show that πτ+εy ∈ 1
utj

M .

For this, it suffices to show that πτ+ε ηi

uni
∈ 1

utj
Sn for all i. If ni ≤ tj , this is

obvious. Assume that ni ≥ tj + 1. The inequality

ni ≥ tj + 1 = [
tj−1

q
] + 1 ≥ tj−1 + 1

q
≥ lj−1 + 1

q

implies that qni − lj−1 ≥ 1. Let Ci = Ci(u) ∈ S be such that its reduction modulo

πn is ηi. Applying Lemma 4.6, we have Eσ(Ciu
lj−1−ni) ∈ (u(q−1)lj−1 , πn)S. This

implies that

Eσ(Ci) ∈ (uqni−lj−1 , πn)S ⊂ (u, πn)S.

The constant term of Ci is not divisible by πn. Applying Proposition 4.11 to the pair
(Ci, qni− lj−1) instead of (C, t), we get σ(πτ+εCi) = πτ+εσ(Ci) ∈ (uqni−lj−1 , πn)S.

So we may write πτ+εCi = Ai +Bi, where Ai ∈ πnS and Bi ∈ uni−[
lj−1

q ]
S. Thus

πτ+ε ηi
uni

∈ 1

u[
lj−1

q ]
Sn ⊂ 1

u[
tj−1

q ]
Sn =

1

utj
Sn.

This shows that πsjN ⊂ 1
utj

M and ends the induction.

Finally, applying Lemma 4.6, the inclusion πsjN ⊂ 1
utj

S implies πsj+tjN ⊂ M .
In particular, we may take j = z and obtain the inclusion πsN ⊂ M . This finishes
the proof of the theorem. �

4.5. Some corollaries. In this section, we deduce several consequences of Theo-
rem 4.12. The corresponding results for p-divisible groups appear in [22, Section
1]. We refer to that paper for more details on the history of these results. The idea
of the proofs are the same as in [22, Section 5].

If G is a π-divisible O-module over R, we denote by G�πn� the schematic closure
of GK�πn� in G.

Corollary 4.13. With the same notation as in Theorem 4.12, if H is a special
truncated Barsotti-Tate O-group of level n > s, then the natural homomorphism
f�πn−s� : G�πn−s� → H[πn−s] is an isomorphism.
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Proof. Let f ′ : H → G be such that f ◦ f ′ = πs idH . Then we have the following
commutative diagram:

H
f ′

��

πs

����
���

���
���

���
G

f

��

H

On generic fibers we have HK [πs] ⊂ Ker(f ′
K), thus H[πs] ⊂ Ker(f ′). We obtain a

second commutative diagram:

H/(H[πs])
f ′′

��

πs

����
���

���
���

���
�

G

f

��

H

In the diagram, f ′′ is a closed immersion because πs is a closed immersion. Applying
the functor �πn−s�, we obtain a third commutative diagram:

H/(H[πs])
f ′′	πn−s


��

πs

�����
����

����
����

G�πn−s�

f	πn−s

��

H[πn−s]

In this diagram, f ′′�πn−s� is a closed immersion. It is then an isomorphism because
the domain and the range are finite flat group schemes of the same order. The
diagonal map is an isomorphism by the assumption on H. Therefore, the map
f�πn−s� is an isomorphism. The corollary follows. �

Corollary 4.14 (Raynaud). Let G and H be special O-groups over R. Assume
that e ≤ q − 2. If GK and HK are isomorphic, then G and H are isomorphic.

Proof. Since e ≤ q − 2, we have m = ι = 0, τ = 1. In this case

s ≤ [
τe+ ι

q − 1
] = 0.

Thus s = 0. The corollary follows. �

Remark 4.15. In the case O = Zp, this is a classical result of Raynaud [18, Theorem
3.3.3]. It is proved by others with different methods. See [22, Section 1] for a detail
list. The condition e ≤ p− 2 is necessary, as we may see from the fact that μp and
Z/pZ have the same generic fiber over Zp[ζp], where ζp is a p-th root of unity.

On the other hand, in the case of higher ramification, (i.e., eR ≥ p − 1), if the
group GK is endowed with a strict O-action and O is large, then there is still at
most one way to extend GK to an integral model which also extends the O-action.

Corollary 4.16. Let h : GK → HK be a homomorphism over K. Then πsh
extends to a homomorphism G → H over R. Moreover, the kernel of the natural
homomorphism Ext1(H,G) → Ext1(HK , GK) is annihilated by πs.

Proof. Let G̃ be the schematic closure in G ×R H of the graph of the morphism
h. Let i : G̃ → G ×R H be the corresponding closed embedding. We have a



724 CHUANGXUN CHENG

commutative diagram:

(4.6) G̃
i ��

α

����
���

���
���

���
��� G×R H

p1

��

p2 �� H

G

Let α′ : G → G̃ be such that α′◦α = πs idG̃. Then the morphism p2◦i◦α′ : G → H
is an extension of πsh.

Let ν ∈ Ker(Ext1(H,G) → Ext1(HK , GK)). Assume that it is represented by a
short exact sequence

(4.7) 0 → G → J → H → 0,

whose generic fiber splits. Let h : HK → JK be a homomorphism that is a splitting
of

0 → GK → JK → HK → 0.

Let g : H → J be an extension of πsh. Let

0 → G → Js → H → 0

be the pullback of (4.7) via πs idH . Then by the universal property of pullback,

(4.8) H

g

��

gs

		
��

��
��

�� idH





Js

��

�� H

πs idH

��

J �� H

there exists a unique gs : H → Js, such that its composite with Js → J is g. Thus
πsν = 0. The corollary follows. �
Corollary 4.17. Assume that G and H are special truncated Barsotti-Tate O-
groups of level n > s. Let h : GK → HK be a homomorphism. Then the restric-
tion homomorphism h[πn−s] : GK [πn−s] → HK [πn−s] extends to a homomorphism
G[πn−s] → H[πn−s].

Proof. Let h′ : G → H be an extension of πsh : GK → HK as in Corollary 4.16.
It induces a homomorphism G[πn−s] = G/G[πs] → H[πn−s] whose generic fiber is
h[πn−s]. �
Corollary 4.18. Assume that n > 2s. Let H be a special truncated Barsotti-
Tate O-group of level n over R. Let G be a special O-group such that we have an
isomorphism h : GK → HK . Then the quotient group scheme G�πn−s�/G�πs� is
isomorphic to H[πn−2s] and thus it is a truncated Barsotti-Tate O-group of level
n− 2s.

Proof. The proof is exactly the same as the proof of [22, Corollary 4]. �
Corollary 4.19 (Tate). Let X and Y be π-divisible O-modules over R. Then the
natural map

HomO(X,Y ) → HomO(XK , YK)

is a bijection.
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Proof. Let f ∈ Hom(XK , YK). For any integer n > 0, it induces a morphism
f [πn] : XK [πn] → YK [πn]. If n > s, the morphism f [πn−s] : XK [πn−s] → YK [πn−s]
extends to a morphism gn−s : X[πn−s] → Y [πn−s] by Corollary 4.17. Taking
limit for n > s, we obtain a morphism g : X → Y , which lifts the morphism
f : XK → YK . The corollary follows. �
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[13] Eike Lau, A duality theorem for Dieudonné displays (English, with English and French sum-
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