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CORRIGENDUM TO “DIVERGENCE IN LATTICES

IN SEMISIMPLE LIE GROUPS AND GRAPHS OF GROUPS”

CORNELIA DRUŢU, SHAHAR MOZES, AND MARK SAPIR

Abstract. The authors correct an error in Proposition 3.24 of their work
Divergence in lattices in semisimple Lie groups and graphs of groups, Trans.
Amer. Math. Soc. 362 (2010), no. 5, 2451–2505.

The goal of this corrigendum is to correct [DMS, Proposition 3.24] and the proofs
of [DMS, Theorems 4.4 and 4.9], relying on that proposition. We thank the authors
of [ADT], who kindly pointed out the mistake in [DMS, Proposition 3.24] to us.

In what follows we assume that we work in a fixed metric space (X, dist).
We call a quasi-geodesic segment in X a quasi-isometric embedding q : [a, b] → X,

where a < b are two finite real numbers. We call a bi-infinite quasi-geodesic in X
(or simply a quasi-geodesic in X) a quasi-isometric embedding q : R → X. Given a
bi-infinite quasi-geodesic q, its restriction to an interval (finite or infinite) is called
a sub-quasi-geodesic of q.

A quasi-geodesic (segment) is Morse if for every L ≥ 1 and C ≥ 0, every (L,C)-
quasi-geodesic p with endpoints on the image of q is contained in the M -tubular
neighborhood of q , where M depends only on L,C.

The corrected version of [DMS, Proposition 3.24] is given below. The first four
equivalent conditions there are taken verbatim from [DMS]. In particular the con-
cepts of quasi-path and quasi-length are defined in [DMS] (we do not need these in
this corrigendum, so we skip the definitions).

Proposition 1. Let X be a metric space and for every pair of points a, b ∈ X let
L(a, b) be a fixed set of (λ, κ)-quasi-geodesics (for some constants λ ≥ 1 and κ ≥ 0)
with endpoints a and b. Let L =

⋃
a,b∈X L(a, b).

Let q be a bi-infinite quasi-geodesic in X, and for every two points x, y on q

denote by qxy the maximal sub-quasi-geodesic of q with endpoints x and y.
The following conditions are equivalent:

(1) In every asymptotic cone of X, the ultralimit of q is either empty or con-
tained in a transversal tree for some tree-graded structure.

(2) q is a Morse quasi-geodesic.
(3) For every C ≥ 1 there exists D ≥ 0 such that every path of length ≤ Cn

connecting two points a, b on q at distance ≥ n crosses the D-neighborhood
of the middle third of qab.
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(4) For every C ≥ 1 and natural k > 0 there exists D ≥ 0 such that every
k-piecewise L quasi-path p that:

– connects two points a, b ∈ q,
– has quasi-length ≤ Cdist(a, b),

crosses the D-neighborhood of the middle third of qab.
(5) For every C ≥ 1 and every ε > 0 there exists D ≥ 0 such that for every

a, b ∈ q with dist(a, b) ≥ D, and every path p connecting a, b of length
≤ Cdist(a, b), the sub-quasi-geodesic qab is contained in the (εdist(a, b))-
neighborhood of p.

Remarks 2.

(1) Properties (1)–(4) are as in [DMS, Proposition 3.24]; property (5) is modi-
fied. The initial version of (5) stated that, given an arbitrary C ≥ 1, for ev-
ery a, b ∈ q, and every path p with endpoints a, b and of length≤ Cdist(a, b),
the sub-quasi-geodesic qab would be contained in the D-neighborhood of p,
with D a constant depending only on C. This property is however strictly
stronger than the property of being a Morse quasi-geodesic. Indeed, an
example of a Morse geodesic that does not satisfy the property above, pro-
vided in [ADT], is an arbitrary bi-infinite geodesic q : R → H

2 in the
hyperbolic plane H

2: for an arbitrarily large integer n, the path pn joining
q(−n) to q(n) obtained as the concatenation of q restricted to the inter-
val [−n,− logn], with half of the hyperbolic circle centered in q(0) and of
radius log n, and with q restricted to the interval [logn, n], has length at
most Cn, for some fixed constant C independent of n, yet q(0) is between
the endpoints of pn on q, and at distance log n of pn.

The mistake is in the proof of the implication (1) → (5) (see [DMS,
Proposition 3.24]), where it is assumed that for a sequence of paths pn

connecting pairs of points an, bn on the bi-infinite quasi-geodesic q, the ω-
limit of pn in any asymptotic cone is a rectifiable path. This is not true in
general: in the example above, for observation points xn coinciding with
the midpoints of the half-circle, the ω-limit of pn in the asymptotic cone
Conω(H2, (xn), (logn)) is not rectifiable.

If, on the other hand, one considers sequences of paths pn of lengths
�n → ∞ and their ω-limits only in asymptotic cones with scaling sequence
λn = �n, then these ω-limits, when non-empty, are rectifiable paths.

(2) The first paper to provide a correct proof of the equivalence (2) ↔ (3) in
Proposition 1 is thus [ADT], since our initial proof of this implication relied
on the wrong version of (5).

Proposition 1 contains all known characterizations of Morse quasi-geodesics, with
one exception that we explain below, to complete the list. Moreover, this charac-
terization plays a central part in the proof of (2) ↔ (3) in [ADT]. We begin with
some terminology.

Definition 3. Let q be a quasi-geodesic in a metric space X, and let η > 0. The
η–nearest point projection of a point x ∈ X on q, denoted by projηq(x), is the set of
points x′ ∈ q such that dist(x, x′) ≤ dist(x, q) + η.

Definition 4 (Sub-linear contraction [ACGH]). We say that a quasi-geodesic q

in a geodesic metric space X is uniformly sub-linearly contracting if there exists
some constant η > 0 such that for every sub-quasi-geodesic q′ of q, the projection
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projη
q′ is uniformly sub-linearly contracting: for every ε > 0 there exists D = D(ε)

(independent of the specific sub-quasi-geodesic q′ of q) such that for every D′ ≥ D
and every x ∈ X with dist(x, q′) ≥ 2D′, the union of all nearest point projections
projη

q′(y) of points y in the ball B(x,D′) has diameter at most εD′.

In what follows, in all arguments using uniform sub-linearly contracting proper-
ties, we drop the parameter η from the notation.

Theorem 5 (Theorem 1.4, [ACGH]). Let X be a geodesic metric space, and let q
be a quasi-geodesic in it. The following are equivalent:

(1) q is Morse.
(2) q is uniformly sub-linearly contracting.

Remark 6. If X is δ-hyperbolic, then every bi-infinite geodesic g of X is uniformly
sub-linearly contracting, and an even stronger property holds: there exist constants
P = P (δ) and M = M(δ) such that for every g-geodesic (segment, infinite or bi-
infinite), every D > 0, and every x ∈ X with dist(x, g) > D + M , the union of
nearest point projections projg of points y of the ball B(x,D) to g has diameter at
most P ([Gro87], [CDP, Proposition 2.1 in Chapter 10]).

This clearly extends to (λ, κ)-quasi-geodesics, modulo increasing the constants
M and P with additive constants depending on (L,C).

Proof of Proposition 1. The equivalence of the five properties follows from the im-
plications (2) → (3) → (4) → (1) → (2) and the equivalence (1) ↔ (5).

For (2) → (3) we refer to [ADT].
(3) → (4) is obvious. The proof of (4) → (1) is correct.
(1) → (2). Suppose that there exist μ ≥ 1, ν ≥ 0 such that for every k > 1 there

exists a (μ, ν)-quasi-geodesic pk joining two points on q and there exists xk ∈ pk at
distance dk > k from q. We can assume that dk is the maximal distance from a point
of pk to q. For any ultrafilter ω, in the asymptotic cone Conω(X, (xk), (dk)), the
ω-limit qω of q is a transversal geodesic, by (1), and the ω-limit pω of the sequence
(pk) is either a μ-bi-Lipschitz path with endpoints on qω, or a μ-bi-Lipschitz ray
with origin on qω, or a μ-bi-Lipschitz bi-infinite path. In all three cases pω stays
1-close to qω, and has one point xω = (xk)

ω at distance 1 from qω. In the latter
two cases, we can obtain a simple path with endpoints on qω by choosing a point x
on the ray far enough from the origin (respectively two points x, y far enough from
each other), joining them by a geodesic [x, x′] (respectively by two geodesics [x, x′]
and [y, y′]) to nearest points on qω, and by replacing x (respectively x, y) with the
farthest from them intersection point between a geodesic and pω. We then get a
contradiction as in the end of the proof of (1) → (5) of Proposition 1.

(1) → (5). Suppose there exist constants C > 1 and c > 0, and a sequence of
paths pk connecting pairs of points ak, bk on q with dk = dist(ak, bk) → ∞ such
that the length of each pk is at most Cdist(ak, bk) and qakbk is not in the cdk-
neighborhood of pk. Let xk be a point on qakbk such that dist(xk, pk) is within
distance 1 of the maximal possible value, and consider the asymptotic cone C =
Conω(X, (xk), (dk)). Then the point (xk) in C is at distance ≥ c from the ω-limit pω
of the sequence (pn). The ω-limit pω is a path of length at most C, in particular,
it is rectifiable (see the end of Remark 2(1)). Therefore the end of the proof of
(1) → (5) of Proposition 1 works and we get a contradiction.
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(5) → (1). Suppose that (5) is true, but that the ω-limit qω of q in some
asymptotic cone

C = Conω(X, (xk), (dk))

is not a transverse geodesic. Hence there exists a path pω connecting two distinct
points aω = (ak), bω = (bk) on qω and having no other common points with qω. By
approximating pω well enough with piecewise geodesics (where the geodesic pieces
are ultralimits of geodesics), and by eventually replacing aω and bω with two points
that are nearer to each other, we can assume that pω is itself an ω-limit of a sequence
(pk) of piecewise geodesics, with a uniformly bounded number of geodesic pieces,
pk with endpoints ak and bk on q. Moreover, the hypothesis that pω intersects qω
only in its distinct endpoints implies that there exists a point xω = (xk)

ω on qω

situated between aω and bω, and with c = dist(xω, pω) > 0. We have that the
lengths of the paths pk are at most Cdist(ak, bk) ω-almost surely, for some C > 1,
and that dist(xk, pk) ≥ c

2dk ω-almost surely. This contradicts property (5). �

As mentioned before, property (5) from [DMS, Proposition 3.24] is used in the
proofs of [DMS, Theorems 4.4 and 4.9]. In the proof of [DMS, Theorem 4.9],
property (5) is used only in the following paragraph:

Since q is a k-piecewise hierarchy path, by property (T2) it is shad-
owed by a k-piecewise tight geodesic proj(q) in G of length ≤ K1n
(for some constant K1) connecting g−3n · o and g3n · o. The fact
that geodesics in a hyperbolic graph are Morse and part (5) of
[DMS, Proposition 3.24] imply that the sub-arc [g−3n · o, g3n · o] in
g is contained in the D-tubular neighborhood of proj(q) for some
constant D. In particular [g−n · o, gn · o] has a sub-arc g′ of length
≥ K2n (for some constant K2) contained in the D-tubular neigh-
borhood of one of the tight geodesic sub-paths t of proj(q). Notice
that the length |t| is ≥ K2n − 2D ≥ K3n for some constant K3

(since n � 1).

It is easy to see that “D-neighborhood” can be replaced by “o(n)-neighborhood”.
Thus the new property (5) suffices to prove [DMS, Theorem 4.9].

The proof of [DMS, Theorem 4.4] requires more modifications. Here is its for-
mulation.

Theorem 7 (See Theorem 4.4 in [DMS]). Let G be an infinite finitely generated
group acting on an infinite hyperbolic uniformly locally finite connected graph X.
Suppose that for some � > 0 the stabilizer of any pair of points x, y ∈ X with
dist(x, y) ≥ � is finite of uniformly bounded size. Let g be a loxodromic element of
G. Then the sequence (gn)n∈Z is a Morse quasi-geodesic in G. In particular, every
asymptotic cone of G has cut-points.

Proof. In what follows n is a large enough natural number.
As in the proof of [DMS, Theorem 4.4], we can assume that g stabilizes a geodesic

p in X and acts on p with translation length τ > 0. Rescaling the metric in X if
necessary, we can assume that τ = 1.

Let us fix a point o in p. Let λ be the maximal distance between o and a · o,
where a is any of the generators in a finite generating set of G. Consider the map
π from G to X defined by π(h) = h · o.
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Take a path g from g−3n to g3n in the Cayley graph of G such that the length of
g is at most Cn for some C ≥ 1. We need to show (by property (3) of Proposition 1)
that g passes boundedly close to one of gi where −n ≤ i ≤ n.

Consider the image π(g) of g in X. By connecting consecutive points on π(g)
with geodesics we turn it into a path in X which we shall denote by g′. This path
connects two points on p, an = π(g−3n) and bn = π(g3n). The length of g′ is at
most Cnλ.

By Remark 6, there exist constants c,D0 such that for all D > D0 if a path h in
X connecting x and x′ is of length ≤ D

2 and the distance dist(x, p) is greater than
D, then the diameter of projp(h) is at most c. Let k be any integer greater than

200. We can also assume that c
D0

< 1
kCλ and D0 > 2l, D0 > 2λ.

Take the 4D0-neighborhood N1 of the axis p. If g′ ⊂ N1, then we are done. So
suppose that g′\N1 is not empty. Then g′\N1 is a union of sub-paths hi connecting
points ti, t

′
i of g

′ such that dist(ti, p) = 4D0 = dist(t′i, p). Dividing each hi into sub-
paths of lengths between D0 and 2D0, we conclude that the diameter of projp(hi) is
at most c

D0
|hi| provided |hi| ≥ 2D0. Let H be the set of those sub-paths hi whose

lengths are at least 2D0. Then the projection of the union of the paths h ∈ H is
covered by a union Z of intervals of total length at most

(1)
c

D0

∑

h∈H

|h| ≤ c

D0
|g′| ≤ 1

kλC
Cnλ =

n

kτ
.

Now let N2 be the 5D0-neighborhood of p and consider the set of maximal sub-
paths h′i of g

′ \N2. Note that each h′i is inside some hj ; moreover this hj must have
length at least 2D0, so it belongs to H. Therefore the set projp(

⋃
h′i) is covered by

Z.
Note that the length of the piece p′ of the axis p between an = π(g−3n) and

bn = π(g3n) is 6n+ 1.
Let m = 
20D0� + 1. Consider the arithmetic progression P = −n,−n + m,

−n+2m, . . . of numbers between −n and n. The distance between any two points
π(gj), π(gk), k �= j ∈ P , is m|k − j| ≥ m. The size of the set P is > n

m .

For every i ∈ P such that π(gi) ∈ Z let zi be the maximal sub-geodesic of p
containing π(gi), not containing any other π(gj), j ∈ P , and contained in Z. Note
that paths zi may overlap. So the sum of lengths of all zi is at most twice the
measure of Z. If i ∈ P is such that π(gi) �∈ Z, then let zi be just the point π(gi).
Let ui be the length of zi. Then by (1)

(2)
∑

ui ≤
2n

k
.

Take any positive α < 1 − 100
k (note that 1 − 100

k > 0 since k > 200). If
there are fewer than α|P | consecutive pairs i, i +m ∈ P such that ui, ui+m ≤ D0,
then there are at least 1

2 |P |(1 − α) numbers ui which are bigger than D0, hence∑
i∈P ui >

n
2m (1 − α)D0 > n

2�20D0�
100
k D0 > 2n

k , a contradiction with (2). Hence

there are at least α n
m pairs of consecutive numbers i, j = i + m ∈ P such that

ui, uj ≤ D0. Let M be the set of these pairs of numbers and (i, i +m) ∈ M . For
s = i, i +m let Bs = B(π(gs), 6D0) be the ball in X of radius 6D0 around π(gs).
Let Ui, Ui+m be π-preimages of Bi, Bi+m, respectively. The path g′ must visit each
of the balls Bi, Bi+m. Hence the path g must intersect both sets Ui, Ui+m at points
wi, wi+m, respectively.
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Note that the distance between any point from Bi to any point in Bi+m is greater
than l since D0 > 2l.

Since the sum of distances
∑

(i,j)∈M dist(wi, wj) does not exceed Cn we have

that at least one of the distances dist(wi, wj), (i, j) ∈ M , must be smaller than

R = Cn
α n

m
= Cm

α which does not depend on n. Note that R is not smaller than m,

the distance between gi · o and gi+m · o, because α ≤ 1 and C ≥ 1.
We need to show that dist(wi, g

i) = |g−iwi| is bounded by a constant not de-
pending on n. We have that g−iwi · o ∈ B = B(o, 6D0) and there exists v ∈ G of
length at most R such that g−iwiv · o ∈ B′ = B(gm · o, 6D0).

Let V be the set of all h ∈ G such that h · o ∈ B and for some v, |v| ≤ R,
hv · o ∈ B′. Note that V does not depend on n, so it is enough to show that V is a
finite set.

Recall that in [DMS, Lemma 4.2] we defined the sets Va,b, a, b ∈ G · o, as
Va,b = {h ∈ G | h · o = a, ∃v ∈ G, |v| ≤ R, hv · o = b}.

The proof of [DMS, Lemma 4.2] applies for every metric space X (not only a tree)
with l-acylindrical action of a group G. It shows that if dist(a, b) > l, then Va,b has
uniformly bounded diameter (depending only on R).

If we denote ah = h · o and bh = hv · o, then h ∈ Vah,bh . Since ah ∈ B, bh ∈ B′,
dist(ah, bh) > l. Hence Vah,bh is a finite set. The number of possible such pairs
(ah, bh) does not exceed the size of the direct product B × B′ which is a finite set
because X is a locally finite graph. Hence V is finite as required. �
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