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A CLASSIFICATION OF FINITE ANTIFLAG-TRANSITIVE

GENERALIZED QUADRANGLES

JOHN BAMBERG, CAI HENG LI, AND ERIC SWARTZ

Abstract. A generalized quadrangle is a point-line incidence geometry Q
such that: (i) any two points lie on at most one line, and (ii) given a line
� and a point P not incident with �, there is a unique point of � collinear
with P . The finite Moufang generalized quadrangles were classified by Fong
and Seitz [Invent. Math. 21 (1973), 1–57; Invent. Math. 24 (1974), 191–239],
and we study a larger class of generalized quadrangles: the antiflag-transitive
quadrangles. An antiflag of a generalized quadrangle is a nonincident point-
line pair (P, �), and we say that the generalized quadrangle Q is antiflag-
transitive if the group of collineations is transitive on the set of all antiflags.

We prove that if a finite thick generalized quadrangle Q is antiflag-transitive,
then Q is either a classical generalized quadrangle or is the unique generalized
quadrangle of order (3, 5) or its dual. Our approach uses the theory of locally
s-arc-transitive graphs developed by Giudici, Li, and Praeger [Trans. Amer.
Math. Soc. 356 (2004), 291–317] to characterize antiflag-transitive generalized
quadrangles and then the work of Alavi and Burness [J. Algebra 421 (2015),
187–233] on “large” subgroups of simple groups of Lie type to fully classify
them.

1. Introduction

A generalized n-gon (polygon) is a geometry of points and lines whose incidence
graph has girth 2n and diameter n. Alternatively, a generalized n-gon is an ir-
reducible spherical building of rank 2. If we reverse the role of points and lines
of a generalized n-gon, then we obtain another generalized n-gon, its dual. We
say a generalized n-gon is thick if every vertex of the incidence graph has valency
at least 3. By a result of Feit and Higman [14], a thick generalized n-gon has
n ∈ {2, 3, 4, 6, 8}. For n = 2, the incidence graph is nothing more than a complete
bipartite graph, and a generalized 3-gon is precisely a projective plane. In this
paper, we will be primarily concerned with generalized 4-gons (quadrangles), and
we classify the finite generalized quadrangles having an automorphism group that
acts transitively on antiflags, that is, nonincident point-line pairs.

Theorem 1.1. Let Q be a finite thick generalized quadrangle and suppose G is a
subgroup of automorphisms of Q acting transitively on the antiflags of Q. Then
Q is isomorphic to a classical generalized quadrangle or to the unique generalized
quadrangle of order (3, 5) or its dual.
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This result relies on the Classification of Finite Simple Groups [20] and ex-
tends the well-known results both of Fong and Seitz [15] and of Buekenhout and
Van Maldeghem [7,8]. By the deep result of Fong and Seitz [15], the finite general-
ized polygons satisfying a symmetry property known as the Moufang condition are
precisely the known generalized polygons arising from simple groups of Lie type.
The Moufang condition has a group theoretic counterpart known as a split (B,N)-
pair : a (B,N)-pair of rank 2 such that there exists a normal nilpotent subgroup U
of B with B = U(B ∩N).

Ostrom and Wagner [30, 31] proved that if a group G of automorphisms of a
projective plane Π of order q acts transitively on the antiflags of Π, then Π is
Desarguesian and PSL3(q) � G. The incidence graph Γ of a generalized n-gon
has diameter n, and hence for n > 4, the automorphism group of Γ cannot act
antiflag-transitively since there are nonincident lines at distinct distances from a
given point. So Theorem 1.1 gives a complete classification of finite generalized
n-gons having a group of automorphisms G acting antiflag-transitively on their
incidence graphs, although we should note that a more natural generalization for
n > 4 would be transitivity on point-line pairs at maximal distance.

There are two notable generalizations of the result of Fong and Seitz [15] that
are due to Buekenhout and Van Maldeghem [7, 8]. They classified the generalized
polygons that are point-distance-transitive and those that are geodesic-transitive.
For generalized quadrangles, these results can be reinterpreted using the language
of local symmetry; their results imply the classification of the finite generalized
quadrangles whose incidence graphs are locally 4-arc-transitive. An s-arc of a
graph Γ is a sequence of vertices (α0, α1, . . . , αs) such that αi−1 is adjacent to αi

and αi−1 �= αi+1 for all 0 � i < s. The graph Γ is locally s-arc-transitive with
respect to G � Aut(Γ) if for each vertex v ∈ V Γ, the group Gv acts transitively
on the set of s-arcs originating at v. In this language, a generalized quadrangle is
Moufang if it satisfies:

For each 2-path (v0, v1, v2), the group G
[1]
v0 ∩G

[1]
v1 ∩G

[1]
v2 acts transi-

tively on Γ(v2) \ {v1}.
(If the reader is unfamiliar with the above notation, then we refer to section 3 for
the necessary background.) We will be considering a much weaker condition – lo-
cal 3-arc-transitivity – which is equivalent to transitivity on antiflags (Lemma 3.1)
for generalized quadrangles. It is not difficult to see that every Moufang general-
ized quadrangle is locally 3-arc-transitive; the converse does not hold, however. A
counter-example is the unique generalized quadrangle of order (3, 5) and its dual
which arise from the construction T ∗

2 (O) (see [32, §3.1.3]) where O is a regular
hyperoval of the projective plane PG(2, 4) of order 4. Its full automorphism group
is isomorphic to 26 : (3.A6.2) and it acts locally 3-arc-transitively.

By the definition of a generalized quadrangle, each antiflag determines a unique
flag, and hence antiflag-transitivity implies flag-transitivity. Kantor [23] conjec-
tured that the finite flag-transitive generalized quadrangles are known, and our
result gives some evidence for the validity of this conjecture. All of the classical
generalized quadrangles are flag-transitive, and there are only two other examples
known up to duality: the unique generalized quadrangle of order (3, 5) and a gen-
eralized quadrangle of order (15, 17), the Lunelli-Sce quadrangle, obtained by the
construction T ∗

2 (L) where L is the Lunelli-Sce hyperoval of the Desarguesian pro-
jective plane PG(2, 16) of order 16. The latter example is not antiflag-transitive,
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and hence Kantor’s Conjecture simplifies: a finite flag-transitive generalized quad-
rangle that is not antiflag-transitive is isomorphic to the Lunelli-Sce quadrangle or
its dual.

The strategy for proving the main result of our paper is summarized as follows.
Let Γ be the incidence graph of a finite thick generalized quadrangle Q, and let G
be a locally 3-arc-transitive group of automorphisms of Γ.

• We prove (Theorem 4.1) that G acts quasiprimitively on at least one of the
set of points or the set of lines of Q.

• It is shown (Theorem 4.3) that if G acts primitively on points but imprim-
itively on lines, then Q is isomorphic to the unique generalized quadrangle
of order (3, 5).

• We then establish that apart from the above case, we have G acting prim-
itively on both points and lines of almost simple type (Lemma 4.4 and
Theorem 4.5).

• The stabilizer of a point P is then shown to be a large subgroup of G
(Corollary 4.7), and we use the characterization of large subgroups of simple
groups of Lie type by Alavi and Burness [1] to determine possibilities for
G and GP .

2. Finite generalized quadrangles

In this section we give the necessary background on finite generalized quadran-
gles. For a far more thorough treatment of the combinatorics of finite generalized
quadrangles, see [32]. Throughout this paper, we will let Q = (P,L) denote a finite
generalized quadrangle with point set P and line set L.

2.1. Parameters of generalized quadrangles. A generalized quadrangle Q is
said to have order (s, t) if every line is incident with s+1 points and every point is
incident with t+ 1 lines. The following lemmas summarize some basic results con-
cerning the parameters s and t, where Q = (P,L) is a finite generalized quadrangle
of order (s, t) with s, t > 1.

Lemma 2.1 ([32, 1.2.1, 1.2.2, 1.2.3, 1.2.5]). The following hold:

(i) |P| = (s+ 1)(st+ 1) and |L| = (t+ 1)(st+ 1);
(ii) s+ t divides st(s+ 1)(t+ 1);
(iii) t � s2 and s � t2;
(iv) if s < t2, then s � t2 − t, and if t < s2, then t � s2 − s.

Lemma 2.2. Let G be a group that is transitive on both P and L. Then, for P ∈ P
and � ∈ L,

s+ 1

t+ 1
=

|G�|
|GP |

.

Proof. Using Lemma 2.1(i), we see that

s+ 1

t+ 1
=

(s+ 1)(st+ 1)

(t+ 1)(st+ 1)
=

|P|
|L| =

|G : GP |
|G : G�|

=
|G�|
|GP |

,

as desired. �
Lemma 2.3. Assuming s � t, the following inequalities hold:

(i) (t+ 1)2 < |P| < (t+ 1)3,
(ii) s2(t+ 1) < |P| < s(t+ 1)2.
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Proof. To show (i), we use Lemma 2.1(i) and (iii):

(t+ 1)2 < t2 + (t
3
2 + t

1
2 ) + 1 = (t

1
2 + 1)(t

3
2 + 1) � (s+ 1)(st+ 1)

= |P| � (t+ 1)(t2 + 1) < (t+ 1)3.

The proof of (ii) is similar:

s2(t+ 1) = s2t+ s2 < s2t+ st+ s+ 1 = |P| < st2 + st+ st+ s = s(t+ 1)2.

�

2.2. The known examples. Here we provide data on the known examples of
antiflag-transitive generalized quadrangles which enable us to quickly identify them.
During the course of this paper, we will be considering an almost simple group G
and a maximal subgroup H that will serve as a point stabilizer in a primitive
action. For most of the known examples, the action of G on the right cosets of H
has permutation rank 3 and the generalized quadrangle can be readily identified.
We will elaborate below.

For a group G and a subgroup H of G, the group G acts on {Hg | g ∈ G}
by right multiplication, and the kernel of the action is the core

⋂
g∈G Hg of H in

G. Let G be a group with A and B proper subgroups of G. The coset geometry
Cos(G;A,B) has point set {Ax | x ∈ G} and line set {By | y ∈ G} such that a
point P := Ax and a line � := By are incident if and only if Ax ∩ By �= ∅. In
particular, G is a flag-transitive group of automorphisms of this geometry and we
have the following converse:

Lemma 2.4 ([22, Lemma 1]). Let G be a geometry of points and lines, and let G �
Aut(G). Then G acts transitively on the flags of G if and only if G ∼= Cos(G;A,B)
where A is the stabilizer of a point P and B is the stabilizer of a line � incident
with P .

Hence, if G acts flag-transitively on a generalized quadrangle Q, then we can
recognize the isomorphism type of Q by knowing the triple (A,B,A ∩ B). In the
case that G is a primitive permutation group of rank 3 on the points of Q, we
only need to know the stabilizer of a point or line to establish the type of Q,
since the rank 3 primitive actions of the classical groups were classified by Kantor
and Liebler [24]. Moreover, the finite classical generalized quadrangles are precisely
those admitting a rank 3 primitive group on their points (see also [23, p. 252]). The
infinite families of finite generalized quadrangles associated with classical groups are
known as the classical generalized quadrangles. In each case, the full collineation
group – i.e., automorphisms sending points to points and lines to lines, preserving
incidence – is a classical group, and the point and line stabilizers are maximal
parabolic subgroups of the appropriate index (the point/line incidence structure
corresponds to the incidence of totally singular subspaces). The classical generalized
quadrangles are briefly summarized in Table 1. The notation soc(G) denotes the
socle of a group G, which is the product of the minimal normal subgroups of G.
We write Ea

q (and sometimes just qa) for the elementary abelian group of order qa

(where q is a prime power), and we write Ea+b
q (and sometimes just qa+b) for a

special group of order qa+b with center of order qa. If we do not need to specify
the structure of a subgroup, we will sometimes write [n] to denote an undetermined
subgroup of order n.
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Table 1. The classical generalized quadrangles given by certain
rank 3 classical groups.

Q Order soc(G) Point stabilizer in soc(G)

W(3, q), q odd (q, q) PSp4(q) E1+2
q : (GL1(q) ◦ Sp2(q))

W(3, q), q even (q, q) Sp4(q) E3
q : GL2(q)

Q(4, q), q odd (q, q) PΩ5(q) E3
q : (( (q−1)

2 × Ω3(q)).2)

Q−(5, q) (q, q2) PΩ−
6 (q) E4

q : ( q−1

|Z(Ω−
6 (q))| × Ω−

4 (q))

H(3, q2) (q2, q) PSU4(q) E1+4
q :

(
SU2(q) :

q2−1
gcd(q+1,4)

)
H(4, q2) (q2, q3) PSU5(q) E1+6

q :
(
SU3(q) :

q2−1
gcd(q+1,5)

)
H(4, q2)D (q3, q2) PSU5(q) E4+4

q : GL2(q
2)

The classical generalized quadrangles come in dual pairs: W(3, q) is isomorphic
to the dual of Q(4, q), Q−(5, q) is isomorphic to the dual of H(3, q2), and H(4, q2)D

denotes the dual of H(4, q2).
We will also make use of the following classification of small generalized quad-

rangles.

Lemma 2.5 ([32, §6]). Let Q be a finite generalized quadrangle of order (s, t).

(i) If (s, t) = (2, 2), then Q is isomorphic to W(3, 2).
(ii) If (s, t) = (2, 4), then Q is isomorphic to Q−(5, 2).
(iii) If (s, t) = (3, 3), then Q is isomorphic to W(3, 3) or Q(4, 3).
(iv) There is (up to isomorphism) a unique generalized quadrangle of order

(3, 5).

Apart from a single exception, the only known finite generalized quadrangles
that are antiflag-transitive are the classical generalized quadrangles. The lone ex-
ception (along with its dual) is the unique generalized quadrangle of order (3, 5) [11],
henceforth referred to as GQ(3, 5). In this case, the collineation group is isomorphic
to 26:(3.A6.2), the stabilizer of a point is isomorphic to 3.A6.2, and the stabilizer
of a line is isomorphic to (A5 × A4).2. It should be noted that GQ(3, 5) is point-
distance-transitive [8], but it is not line-distance-transitive. Indeed, GQ(3, 5) is the
only known example of a finite generalized quadrangle that is antiflag-transitive
but not Moufang.

3. Permutation group theory and graph symmetry

In this section we review the permutation group theory and graph symmetry
results necessary for this paper. For a more complete discussion of these notions,
the reader is referred to [17]. Let the group G act on the set Ω, and let ω ∈ Ω.
We denote the G-orbit of ω by ωG, and we refer to the stabilizer of ω in G by Gω.
Given a set Σ ⊆ Ω, the subgroup of G that fixes Σ setwise is denoted by GΣ and
the subgroup of G that fixes every element of Σ is denoted by G(Σ).

An automorphism of a graph Γ is a permutation of the vertices that preserves
adjacency and nonadjacency. The set of all automorphisms of a graph Γ forms a
group and is denoted by Aut(Γ). Let α be a vertex of a graph Γ, and letG � Aut(Γ).
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We denote the vertices adjacent to α in Γ by Γ(α), and the permutation group

induced by Gα on Γ(α) will be denoted by G
Γ(α)
α . For any two vertices α, β of Γ, we

define the distance function d(α, β) to be the length of the shortest path between
α and β in Γ. Given a natural number i, we define

G[i]
α := {g ∈ G | βg = β for all β satisfying d(α, β) � i}.

Note that G
[1]
α is a normal subgroup of Gα, and G

Γ(α)
α

∼= Gα/G
[1]
α .

An s-arc of a graph Γ is a sequence of vertices (α0, α1, . . . , αs) such that αi−1

is adjacent to αi and αi−1 �= αi+1 for all 0 � i < s. Note that vertices can be
repeated as long as αi−1 �= αi+1 for all 0 � i < s. Given a subgroup G � Aut(Γ), Γ
is (G, s)-arc-transitive if Γ contains an s-arc and any s-arc in Γ can be mapped to
any other s-arc in Γ via an element of G. The graph is locally (G, s)-arc-transitive
if Γ contains an s-arc and, for any vertex α of Γ, any s-arc starting at α can be
mapped to any other s-arc starting at α via an element of G. In the cases that such
a group G exists, the graph Γ is said to be s-arc-transitive or locally s-arc-transitive,
respectively. Note that it is possible for a graph to be locally (G, s)-arc-transitive
but for G to be intransitive on the set of vertices. (As an example, one could take
the complete bipartite graph K2,3 with G the full automorphism group.) On the
other hand, when Γ is locally (G, s)-arc-transitive and every vertex in Γ is adjacent
to at least two other vertices, G is transitive on the edges of Γ. By definition, a
locally (G, 3)-arc-transitive graph is locally (G, 2)-arc-transitive. It is easily seen

that a graph Γ is locally (G, 2)-arc-transitive if and only if G
Γ(α)
α is a 2-transitive

permutation group for all vertices α.
Let Γ be a graph with a group of automorphisms G. If G has a normal subgroup

N that acts intransitively on the vertices of Γ, define the (normal) quotient graph
ΓN to have vertex-set the N -orbits of vertices of Γ, and two N -orbits Σ1 and Σ2

are adjacent in ΓN if and only if there exist vertices α ∈ Σ1 and β ∈ Σ2 such that
α is adjacent to β in Γ. Giudici, Li, and Praeger [17] showed that if Γ is a locally
(G, s)-arc-transitive graph, then ΓN is a locally (G/N, s)-arc-transitive graph unless
ΓN is a star.

A transitive group G acting on a set Ω is called quasiprimitive if every non-
trivial normal subgroup N of G is transitive on Ω. Indeed, the nontrivial normal
subgroups of any primitive group are transitive, and hence primitive groups are
quasiprimitive. Locally s-arc-transitive graphs with a group of automorphisms act-
ing quasiprimitively on at least one orbit of vertices have been studied extensively;
see [12], [13], [17], [18], [19], [27], [35].

A generalized quadrangle Q = (P,L) is called locally (G, 2)-transitive if for each
P ∈ P and each � ∈ L, the stabilizer GP is 2-transitive on the lines which are
incident with P and G� is 2-transitive on the points which lie on �. A generalized
quadrangle being locally (G, 2)-transitive is equivalent to its incidence graph being
locally (G, 2)-arc-transitive by [17, Lemma 3.2]. Observe that for an antiflag (P, �)
in a generalized quadrangle, there is a unique 3-arc between P and �, since by the
definition of a generalized quadrangle there is a unique point on � collinear with P .
We thus have the following conclusion.

Lemma 3.1. Let Γ be the incidence graph of a generalized quadrangle G, and
G � Aut(G). Then G is G-antiflag-transitive if and only if Γ is locally (G, 3)-
arc-transitive. In particular, an antiflag-transitive generalized quadrangle is flag-
transitive and locally 2-transitive.
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Let Γ be a connected G-edge-transitive graph. For vertices α0, α1, . . . , αl, let

G[1]
α0α1...αl

= G[1]
α0

∩G[1]
α1

∩ · · · ∩G[1]
αl
.

The following simple lemma was first obtained in [34], showing that some infor-

mation of (Gα, Gβ, Gαβ) can be obtained from the permutation groups G
Γ(α)
α and

G
Γ(β)
β . For completeness, we give a proof here.

Lemma 3.2. Let Γ be a connected graph, and let G � Aut(Γ) be transitive on the
edge set. Let {α, β} be an edge of Γ. Then each composition factor of Gα is a

composition factor of G
Γ(α)
α , G

Γ(β)
αβ , or G

Γ(α)
αβ . Moreover, if |Γ(α)| � |Γ(β)|, then

|Γ(α)| is at least as large as the smallest permutation degree of any composition
factor of Gα.

Proof. Since G � Aut(Γ) and Γ is connected, there exists a path α0 = α, α1, . . . , αl

such that G
[1]
α0α1...αl = 1. Thus we have

1 = G[1]
α0α1...αl

�G[1]
α0α1...αl−1

� · · ·�G[1]
α0α1

�G[1]
α0

= G[1]
α �Gα.

Suppose that T is a composition factor of Gα. Then there exist subgroups M �

N ��Gα such that T ∼= N/M . If T is a composition factor of G
Γ(α)
α , then we are

done.
We thus assume next that T is not a composition factor of G

Γ(α)
α . Then T is a

composition factor of G
[1]
α since G

Γ(α)
α

∼= Gα/G
[1]
α . Let i be the largest integer such

that N � G
[1]
α0α1...αi . Then N ��G

[1]
α0α1...αi+1 , and

NG[1]
α0α1...αi+1

/G[1]
α0α1...αi+1

�G[1]
α0α1...αi

/G[1]
α0α1...αi+1

.

So T is a composition factor of G
[1]
α0α1...αi/G

[1]
α0α1...αi+1 . Since

G[1]
α0α1...αi

/G[1]
α0α1...αi+1

∼= (G[1]
α0α1...αi

)Γ(αi+1) �GΓ(αi+1)
αiαi+1

,

T is a composition factor of G
Γ(αi+1)
αiαi+1 . Further, as G is edge-transitive on Γ, we

have G
Γ(αi+1)
αiαi+1 is isomorphic to G

Γ(α)
αβ or G

Γ(β)
αβ .

So T is a composition factor of G
Γ(β)
αβ or G

Γ(α)
αβ . It follows that T has a faithful

permutation representation on a set of size |Γ(α)| or |Γ(β)|. Thus an orbit of T is
not bigger than |Γ(α)| or |Γ(β)|. �

For locally 2-arc-transitive graphs, the unsolvable composition factors of the
stabilizers are determined in the following lemma.

Lemma 3.3. Let Γ be locally (G, 2)-arc-transitive, and let {α, β} be an edge. Then
the following statements hold.

(i) Any composition factor of Gα that is not solvable is one of the following
groups: An, PSLn(q), PSU3(q), PSpn(q), PΩ

±
n (2), Sz(q), Ree(q), G2(q),

HS, Co3, McL, or Mk where k ∈ {11, 12, 22, 23, 24}.
(ii) If PΩ±

n (2) with n = 2m � 8 is a composition factor of Gαβ, then PSpn(2)
is a composition factor of Gα or Gβ.

(iii) For n � 3, PSUn(q) is not a composition factor of Gαβ unless (n, q) =
(3, 3).
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Proof. Let T be an unsolvable composition factor of the stabilizer Gα. By Lemma

3.2, T is a composition factor of G
Γ(α)
α , G

Γ(α)
αβ , or G

Γ(β)
αβ . Since Γ is locally (G, 2)-

arc-transitive, both G
Γ(α)
α and G

Γ(β)
β are 2-transitive. Inspecting the 2-transitive

permutation groups and their stabilizers [28, Table 2.1], we conclude that S lies in
the list in part (i).

Now suppose that S = PΩ±
n (2) is a composition factor of Gαβ. Then T appears

as a composition factor of the stabilizer of the 2-transitive group G
Γ(α)
α or G

Γ(β)
β

with socle PSpn(2). This proves part (ii).
The statement of part (iii) follows from an inspection of the Classification of

Finite 2-Transitive Groups [9, Tables 7.3 and 7.4]. �

4. A characterization of antiflag-transitive

generalized quadrangles

Throughout this section we will assume that Q = (P,L) is a thick finite gener-
alized quadrangle of order (s, t) with incidence graph Γ. Abusing notation slightly,
we will also refer to the biparts of the bipartite graph Γ as P and L. If S is a set of
points, then S⊥⊥ is the set of all points at distance 0 or 2 from every point of S (in
the collinearity graph). Recall from Lemma 3.1 that a generalized quadrangle Q
having a group of collineations G that acts transitively on antiflags is equivalent to
the incidence graph Γ being locally (G, 3)-arc-transitive. Hence we will use the con-
ditions of G-antiflag-transitivity and local (G, 3)-arc transitivity interchangeably in
this section.

Theorem 4.1. If Γ is locally (G, 3)-arc-transitive for some group of collineations
G, then G acts quasiprimitively on P or L.

Proof. Assume that G is a group of collineations of Q such that Γ is locally (G, 3)-
arc-transitive. We will show first that every normal subgroup of G is transitive on
either P or L. Suppose that G contains a normal subgroup N that is intransitive
on both P and L. By [17, Lemma 5.1], N acts semiregularly on both P and L.

Let �N1 ,. . . , �Nk be the orbits of N on L, where �1, . . . , �k ∈ L. Let P ∈ P.
Since Γ is locally (G, 3)-arc-transitive, GP is 2-transitive on Γ(P ), and so for each
i, P has at most one neighbor in the orbit �Ni . Without loss of generality, we may
assume that P is incident to � ∈ �N1 . Let 1 �= n ∈ N . Since P is incident with �,
we have that P is not incident with �n. Since Γ is of girth 8, there exists a unique
3-arc beginning at P and terminating at �n. On the other hand, since |�Nj | > 1

where 1 � j � k, for some m ∈ �Nj , there exists a unique 3-arc beginning at P and
terminating at m. Since Γ is locally (G, 3)-arc-transitive, there exists g ∈ GP such

that mg = �n. This implies that P is incident with the line mgn−1g−1 ∈ �Nj . Hence
P is incident with exactly one line in each orbit, which means that k = t + 1 and
|N | = st+ 1. In particular, for any P ∈ P, PN is an ovoid,1 and the point set P is
a union of ovoids.

Fix a flag {P, �} and let (P, �, P1, �1) and (P, �, P2, �2) be two 3-arcs beginning
with the arc (P, �). Neither �1 nor �2 can be incident with P since Γ has girth 8.
On the other hand, both �1 and �2 must be incident with a point in PN . They
cannot be incident with the same point since the girth of Γ is 8. Since there are

1An ovoid of a generalized quadrangle Q is a set S of points such that every line of Q is
incident with exactly one element of S.



ANTIFLAG-TRANSITIVE GENERALIZED QUADRANGLES 1559

exactly st 3-arcs beginning with the arc (P, �) and st points in PN\{P}, for any
n ∈ N , there exists a unique 4-arc beginning with the arc (P, �) and ending at
Pn. Note further that if (P, �, P0, �0) is the unique 3-arc such that Pn is incident

with �0, we have that (P, �, P0, �0, P
n, �n, . . . , �n

−1

0 ) is a cycle of length 4k, where
k is the order of the element n. (Since N acts semiregularly on both P and L,
Pni

= Pnj

, �n
i

= �n
j

, Pni

0 = Pnj

0 , and �n
i

0 = �n
j

0 all imply that ni = nj .) This
cycle is completely determined by the choice of 3-arc (P, �, P0, �0), and, since Γ is
locally (G, 3)-arc-transitive, every such cycle must have the same length. However,
this means that every nonidentity element of N has the same order. Hence |N | = pd

for some prime p and some integer d.
Now, fix a point P and another point Pn in the orbit PN . By the arguments

in the previous paragraph, for each line �i incident with P , there is a unique point
Pi and line �′i such that (P, �i, Pi, �

′
i, P

n) is a 4-arc, and, since the girth of Γ is 8,
the Pi are pairwise distinct. Hence the only points at distance 0 or 2 from both
P and Pn are {P1, P2, . . . , Pt+1} and hence (P, Pn) is a so-called regular pair (see
[32, §1]). By the dual argument, we also obtain a regular pair of nonconcurrent
lines. By [32, 1.3.6(i)], if Q has a regular pair of noncollinear points and s > 1,
then t � s. Hence s = t. By [32, 1.8.5], since the generalized quadrangle Q of order
s has a regular pair of noncollinear points and the point set P can be partitioned
into ovoids, s must be odd. Since st+1 = s2 +1 = |N | = pd and s is odd, we have
that p = 2 and s2 + 1 = 2d. On the other hand, if d � 2, then we have that s2 ≡ 3
(mod 4), a contradiction. Hence d = 1 and s = 1, a final contradiction. Therefore,
if Γ is locally (G, 3)-arc-transitive, then every normal subgroup N of G is transitive
either on P or on L.

Finally, [17, Lemma 5.4] gives us immediately that G acts quasiprimitively on
at least one of P or L. �
Remark 4.2. We remark that Theorem 4.1 does not depend on the Classification of
Finite Simple Groups [20], whereas the following result does depend on the CFSG.

Theorem 4.3. Let G be a group such that Γ is locally (G, 3)-arc-transitive. Assume
that G acts quasiprimitively on P but does not act primitively on L. Then Q is
isomorphic to GQ(3, 5).

Proof. Let B = {Σ1,Σ2, . . . ,Σm} be a nontrivial block system of G on L, and let
K = G(B) be the kernel of G acting on B. Let P ∈ P. Since GP is primitive on
Γ(P ), P has at most one neighbor in each Σi. Without loss of generality, we may
assume that |Γ(P ) ∩ Σ1| = 1, and, since B is a nontrivial block system, for each
i there exists �′i ∈ Σi such that (P, �′i) is an antiflag. Let � ∈ Γ(P ) ∩ Σ1. Since
Γ is locally (G, 3)-arc-transitive, there exists gi ∈ GP such that (P, �′1)

gi = (P, �′i).
This implies that �gi ∈ Σi is incident with P , and hence |Γ(P ) ∩ Σi| = 1 for
each i and |B| = t + 1. Moreover, GP is thus 2-transitive on B and GB is a 2-
transitive permutation group. We let Γ(P ) = {�1, . . . , �t+1}, where �i ∈ Σi. Each
Σi necessarily must have the same size, and so |Σi| = |L|/(t+1) = st+1. Since GP

is transitive on L\Γ(P ), (GP )Σi
is transitive on Σi\{�i}. Since Γ(P ) ∩ Σi = {�i},

it follows that (GP )Σi
= (GΣi

)P � (GΣi
)�i . Thus (GΣi

)�i is transitive on Σi\{�i}
and the block stabilizer GΣi

is 2-transitive on the block Σi. Hence we have shown
that the following hold:

(i) |B| = t+ 1, and GB is 2-transitive;

(ii) |Σi| = st+ 1, and GΣi

Σi
is 2-transitive for 1 � i � t+ 1;
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(iii) for P ∈ P, the intersection Γ(P ) ∩ Σi contains exactly one element for
1 � i � t+ 1.

We now show that GP is an affine group; i.e., G has a unique elementary abelian
minimal normal subgroup that acts regularly on the point set P. Suppose first that
K = 1. Since GB ∼= G/K, this implies that G is a 2-transitive permutation group.
If G is an affine 2-transitive group, then we are done. Otherwise, G is an almost
simple group with a faithful 2-transitive representation on t+ 1 elements, and the
stabilizer GΣ1

is 2-transitive on Σ1 with degree st+ 1. Looking at the possibilities
for G (see [9, Table 7.4]), the only possibility with s > 1 is soc(G) ∼= A8, GΣ

∼= A7,
and st+ 1 = 15. However, this implies that s2 = 4 < 7 = t, a contradiction.

We may thus assume thatK �= 1 and assume further thatGP is not affine. LetM
be a minimal normal subgroup of G contained in K. Then M is nonabelian. Since
MΣi is a (minimal) normal subgroup of the 2-transitive permutation group GΣi

Σi
,

we conclude that GΣi

Σi
is almost simple and that MΣi is a simple group. Suppose

that M(Σ1) �= 1. Then M(Σ1) has a nontrivial action on some Σi and MΣi

(Σ1)
is thus

a nontrivial normal subgroup of MΣi , which implies that M(Σ1) is transitive on Σi.
However, for a given � ∈ Σ1, there are exactly s+1 < st+1 lines in Σi that meet �
in a point, and M(Σ1) cannot be transitive on Σi, a contradiction. Thus M(Σ1) = 1,

and hence for all i, MΣi is a simple group. That is to say, the quasiprimitive
permutation group G = GP has a normal subgroup T = MP which is nonabelian
simple. Therefore, either

(a) CGP (T ) = 1, and GP is almost simple, or
(b) CGP (T ) ∼= T , and soc(G) = T × T .

Suppose that G is almost simple. Then G/M is a subgroup of Out(M) and has
a 2-transitive permutation representation representation of degree t+1, and GΣ1

is
2-transitive on Σ1 of degree st+ 1 � t3 + 1. By the Classification of Finite Simple
Groups, this is not possible.

The latter case thus occurs. Since GΣ1
� K � T and GΣ1

is a 2-transitive
permutation group of Σ1 of degree st + 1, and G/K is a 2-transitive permutation
group on B of degree t + 1, we have that GΣ1

and G/K have isomorphic socle
M . Inspecting the 2-transitive permutation groups with nonabelian socles (see
[9, Table 7.4]), this is not possible. Therefore, in any case, G is an affine group on
P, as desired.

Since G acts primitively of affine type on the points and acts transitively on the
lines of Q, we can immediately deduce from [3, Corollary 1.5] that Q is isomorphic
to one of GQ(3, 5) or the generalized quadrangle of order (15, 17) arising from the
Lunelli-Sce hyperoval. However, the latter is not antiflag-transitive, and therefore
Q is GQ(3, 5). �

Lemma 4.4. Assume that G is quasiprimitive on both P and L. Then G acts
primitively on both P and L.

Proof. Assume that G does not act primitively on L. By Theorem 4.3, G must
be an affine group on P. Since G acts quasiprimitively on both P and L and Γ
is locally (G, 3)-arc-transitive, by [17, Theorem 1.2], G is affine on L. However,
affine groups that act quasiprimitively on a set act primitively on that set [33, 2.I],
a contradiction. Therefore, G must act primitively on L, and, by duality, G must
therefore act primitively on both P and L. �
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Theorem 4.5. If G is a group of collineations that is transitive on antiflags of Q
and Q is not GQ(3, 5) or its dual, then G is an almost simple group of Lie type that
acts primitively on both points and lines.

Proof. Suppose that G is a group of collineations that is transitive on the antiflags
of Q. By Theorem 4.1, G must act quasiprimitively on P or L. Since Q is not
GQ(3, 5) or its dual, by Theorem 4.3, G must act quasiprimitively on both P and
L. By Lemma 4.4, G acts primitively on both P and L. By [2, Corollary 1.3], G is
an almost simple group of Lie type. �

The following results give us bounds on the size of a point stabilizer.

Proposition 4.6. Let G be a group that is transitive on the antiflags of a finite
thick generalized quadrangle Q, assume s � t, and let P ∈ P. If s < t, then
|G| < |GP |2. If s = t, then |G| < |GP |19/9.

Proof. Note first that since G is antiflag-transitive, this means that GP is transitive
on 3-arcs that begin at P in the incidence graph, i.e., |GP | � st(t+ 1). Assuming
that s < t, we have

|GP |2 � |GP |st(t+ 1) � |GP |s(s+ 1)(t+ 1) > |GP |(s+ 1)(st+ 1) = |G|.

On the other hand, if s = t, we note first that since s � 2, s1/3 > 1 + 1/s2. Hence
we have

|GP |19/9 � |GP |s2(s+ 1)
(
s2(s+ 1)

) 1
9 > |GP |s2(s+ 1)s

1
3

> |GP |s2(s+ 1)

(
1 +

1

s2

)
= |G|,

as desired. �

Corollary 4.7. Let G be an almost simple group of Lie type that acts transitively
on the antiflags of a finite generalized quadrangle Q with s � t, and let T = soc(G).
If P ∈ P, then |T | < |TP |3.

Proof. Let G = T.A, where A is the group of outer automorphisms of T . By
the Classification of Finite Simple Groups, we know that asymptotically |A| is
O(C log(|T |)) for some constant C, and in fact we have that |A| < 2 log2(|T |) [26].
Note first that when |T | � 1006796 that

|A| 154 < (2 log2(|T |))
15
4 < |T |,

which implies that

|A| 194 < |G| < |GP |
19
9

by Proposition 4.6, and hence |A| 94 < |GP | and |A| 54 < |TP |. Again using Proposi-
tion 4.6, we have

|T | < |TP |
19
9 |A| 109 < |TP |

19
9 |TP |

8
9 = |TP |3,

as desired.
This implies that ifG acts transitively on the antiflags of a generalized quadrangle

and |TP |3 � |T |, then |T | � 1006795. By Proposition 4.6, this means that

|TP |3 � |T | < |TP |2.5|A|1.5.
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Using GAP [16], we find the only possibility for (T, TP ) is (PSU3(4), C13:C3).
However, this choice of TP does not have a 2-transitive action, and therefore
|T | < |TP |3. �

Following Alavi and Burness [1], a proper subgroup H of a group G is said to be
large if the order of H satisfies the bound |H|3 < |G|. Corollary 4.7 shows that the
point stabilizer TP is a large subgroup of T , where T is the socle of an almost simple
group of Lie type acting transitively on the antiflags of a generalized quadrangle.
In the forthcoming sections, we will utilize the work of [1] that determined all the
large maximal subgroups of finite simple groups.

5. Geometric maximal subgroups of classical groups

In view of Theorem 4.5, in order to classify the finite thick antiflag-transitive
generalized quadrangles, we need to show that all antiflag-transitive generalized
quadrangles arising from almost simple groups of Lie type with large point stabilizer
are classical or dual classical. Corollary 4.7 gives an immediate restriction on the
possibilities for the point stabilizer, and throughout the following sections we will
assume the following:

Hypothesis 5.1. Let G be an almost simple group of Lie type with T := soc(G)
acting primitively on the points and primitively on the lines of a finite generalized
quadrangle Q of order (s, t), s � t, where, for any point P and line �, TP acts 2-
transitively on lines incident with P , T� acts 2-transitively on points incident with
�, and |T | < |TP |3.

The following lemma will be important when considering the indices of parabolic
subgroups of classical groups.

Lemma 5.2 ([6, Lemma 9.4.1]). Let k be a natural number, and let e be 1, 1, 0, 2,
3
2 ,

1
2 in the respective cases of Sp2d(q),Ω2d+1(q),Ω

+
2d(q),Ω

−
2d(q), U2d+1(q), and U2d(q)

acting on the natural vector space V equipped with the appropriate quadratic or bilin-

ear form. Then the number of totally singular k-spaces in V is
[
d
k

]∏k
i=1(r

d+e−i+1),

where in the first four cases r = q and in the last two cases r = q2 and
[
d
k

]
is the

q-ary Gaussian binomial coefficient.

In each case below, we will use the notation afforded by Aschbacher’s classifica-
tion of the subgroups of classical groups. That is, a maximal subgroup of a classical
group will fall into one of nine classes Ci (i = 1, . . . , 9) in the standard way (see
[5, 2.1.2, 2.1.3]). The first eight classes are the geometric subgroups, whereas C9
contains the ‘nearly simple subgroups’ that do not fall into the other classes.

5.1. Linear groups.

Proposition 5.3. Assume Hypothesis 5.1. If T is isomorphic to PSLn(q) for some
n, q � 2, then the point stabilizer TP cannot be a maximal geometric subgroup.

Proof. Recall that s � t by our assumption. By Corollary 4.7, the stabilizer of a
point TP satisfies |T | < |TP |3. The geometric subgroups satisfying this condition
are listed in [1, Proposition 4.7], and we proceed down the list.

Case 1. We first consider subgroups of type C1, and, in particular, we will start
with the parabolic subgroups Pi of T , where Pi is the stabilizer of an i-dimensional
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Table 2. Ruling out examples for Case 1 of the proof of Proposi-
tion 5.3.

(n, q) (n− i, q) t+ 1 P |P| < (t+ 1)3? Integral solution to
(s+ 1)(st+ 1) = |P|?

(4, 4) (2, 4) 6 357 false
(4, 5) (2, 5) 5 806 false
(4, 7) (2, 7) 7 2850 false
(4, 8) (2, 8) 28 4745 true false
(4, 9) (2, 9) 6 7462 false
(4, 11) (2, 11) 11 16226 false
(5, 2) (3, 2) 8 155 true false
(6, 2) (3, 2) 8 1395 false
(6, 2) (4, 2) 8 651 false
(7, 2) (4, 2) 8 11811 false
(8, 2) (4, 2) 8 200787 false

subspace. Without loss of generality, we may assume that i � n − i. Then the
stabilizer GP satisfies

TP = qi(n−i) :
1

gcd(n, q − 1)
(GLi(q) ◦GLn−i(q)),

and the order of the point set is

|P| =
[
n

i

]
=

(qn − 1) · · · (qn−i+1 − 1)

(qi − 1) · · · (q − 1)
.

Noting that G has rank 3 in its action on P and T is 2-transitive on 1-dimensional
subspaces, we have i � 2 and then, in particular, n � 4.

Since qi(n−i) is the unique minimal normal subgroup of GP and G
Γ(P )
P is 2-

transitive, it follows from the Classification of Finite (affine) 2-Transitive Groups

that G
Γ(P )
P is almost simple. By Lemma 3.3, we conclude that G

Γ(P )
P �PSLn−i(q).

Note that we may also conclude that t+1 = |Γ(P )| = (qn−i − 1)/(q− 1), since the
other possible values of t+ 1 are ruled out by Table 2. By Lemma 2.3,

qi(n−i−1) =
qn−1 · · · qn−i

qi · · · q1 <
(qn − 1) · · · (qn−i+1 − 1)

(qi − 1) · · · (q − 1)
= |P|

< (t+ 1)3 =
(qn−i − 1)3

(q − 1)3
< q3n−3i,

which implies that i(n − i − 1) < 3n − 3i. Since i � n − i, we have 2i � n <
i(i− 2)/(i− 3) if i > 3, which implies that i < 4, a contradiction. If i = 3, then we
have

(qn − 1)(qn−1 − 1)(qn−2 − 1)

(q3 − 1)(q2 − 1)(q − 1)
<

(qn−1 − 1)3

(q − 1)3
,

which implies that

q6 <
(qn − 1)(qn−1 − 1)(qn−2 − 1)

(qn−3 − 1)3
<

(q3 − 1)(q2 − 1)(q − 1)

(q − 1)3
= (q+1)(q2 + q+1),
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a contradiction for q � 2. This leads to i = 2; in particular, n � 2i = 4. Thus we

have TP
∼= P2 = q2(n−2) : 1

gcd(n,q−1) (GL2(q) ◦GLn−2(q)), T
Γ(P )
P = PGLn−2(q), and

|P| = (qn−1)(qn−1−1)
(q2−1)(q−1) .

Note that in this case we have t + 1 = (qn−2 − 1)/(q − 1) since exceptions are
ruled out by Table 2. Furthermore, the flag stabilizer is

GP,� = [q2(n−2)+(n−3)] :

(
1

(n, q − 1)
(GL2(q) ◦ (GL1(q)×GLn−3(q)))

)
.

The line stabilizer G� is a maximal subgroup of G which contains GP,�. It follows
that G� is a parabolic subgroup of type P2 or P3.

If G� is parabolic of type P3, then we have

|L| =
[
n

3

]
=

(qn − 1)(qn−1 − 1)(qn−2 − 1)

(q3 − 1)(q2 − 1)(q − 1)
.

Noting that |L| = (t+ 1)(st+ 1) and t+ 1 = (qn−2 − 1)/(q − 1), this implies that

st+ 1 =
(qn − 1)(qn−1 − 1)

(q3 − 1)(q2 − 1)
,

and since |P| = (s+1)(st+1), we have s+1 = q2 + q+1. On the other hand, this
means that

(qn − 1)(qn−1 − 1)

(q3 − 1)(q2 − 1)
= st+ 1 = (q2 + q)

(
qn−2 − q

q − 1

)
+ 1,

which in turn implies that

(q2 + q)(q3 − 1)(q + 1)(qn−2 − q) + (q3 − 1)(q2 − 1) = (qn − 1)(qn−1 − 1).

From here, we see that

(q2 + q)(q3 − 1)(q + 1)(−q) + (q3 − 1)(q2 − 1) ≡ 1 (mod qn−2).

Simpliflying, we see that q3(1 + q − 2q3 − q4) ≡ 0 (mod qn−2). Since G� has type
P3, n � 6; however, this means that q4 divides q3(1 + q − 2q3 − q4) and q divides
1 + q − 2q3 − q4, a contradiction. Hence G� must be of type P2.

If G� is parabolic of type P2, then we have |L| = |P|, and so s + 1 = t + 1 =
(qn−2− 1)/(q− 1). Note first that since there are P2 subgroups, n � 4. By Lemma
2.3(ii), s2(t+ 1) < |P|, which here means that(

qn−2 − q

q − 1

)2
qn−2 − 1

q − 1
<

(qn − 1)(qn−1 − 1)

(q2 − 1)(q − 1)
.

Simplifying, this means that

q2(qn−3 − 1)2 < (qn − 1)
qn−1 − 1

qn−2 − 1
< (qn − 1)(q + 1),

which in turn implies that

qn−5 − 1 < qn−5 − 1

q2
<

1

q4

(
qn − 1

qn−3 − 1

)
(q + 1) <

1

q4
(q3 + 1)(q + 1)

= (1 +
1

q3
)(1 +

1

q
) < 2.
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If n > 5, this last equation only holds if n = 6 and q = 2; however, going back to
our original inequality of s2(t+ 1) < |P|, this implies that

2940 =

(
24 − 2

2− 1

)2
24 − 1

2− 1
<

(26 − 1)(25 − 1)

(22 − 1)(2− 1)
= 651,

a contradiction. We may now examine the cases of n = 4 and n = 5 individually
by examining the exact value of |P|. On the one hand, if n = 5, we know that

|P| = (q5−1)(q4−1)
(q2−1)(q−1) ; on the other hand, |P| = (s+ 1)(st+ 1), and so

(q5 − 1)(q4 − 1)

(q2 − 1)(q − 1)
=

(
q3 − 1

q − 1

)((
q3 − q

q − 1

)2

+ 1

)
,

a contradiction since a primitive prime divisor of q3 − 1 does not divide the left
hand side, and so n �= 5. Finally, if n = 4, s+ 1 = t+ 1 = q + 1, and proceeding as
in the n = 5 case we find that

(q2 + 1)(q2 + q + 1) =
(q4 − 1)(q3 − 1)

(q2 − 1)(q − 1)
= |P| = (q + 1)(q2 + 1),

which implies that q = 0, a contradiction. Therefore, TP cannot be a parabolic
subgroup.

Case 2. Suppose TP is a C2-subgroup of type GLn/t(q) wrSt. We will first rule out
t = 3. By [1, Proposition 4.7], we have that either q ∈ {5, 8, 9} and gcd(n, q−1) = 1
or (n, q) = (3, 11). Note when q = 9 we have Out(T ) ∼= C2 × C2, and otherwise
Out(T ) ∼= C2. If (n, q) = (3, 11), then TP

∼= C2
10:S3 and GP = C2

10:S3.2. This
implies that t+1 � 3, but then (t+1)3 < |T :TP |, a contradiction to Lemma 2.3(i).
Otherwise, by [25, Proposition 4.2.9],

TP = [(q − 1)2].PSLn/3(q)
3.S3.

If n � 6, then GP is not solvable, and so PSLn/3(q)
3 is in the kernel of the action of

TP on Γ(P ). However, this means that t+1 � (q−1)2 and thus, using [1, Corollary
4.3],

(t+ 1)M3 < (q − 1)6 <
1

6
q

2n2

3 −1 < |T :TP | = |P|,
a contradiction to Lemma 2.3(i). Hence we may assume that n = 3, in which case
TP

∼= (q−1)2:S3. This implies that t+1 � q−1, but then (t+1)3 < q3 < |T :TP | =
|P|, a contradiction to Lemma 2.3(i), and hence t �= 3.

Hence we have that TP is of type GLn/2(q) wrS2. Suppose that GP is not solv-
able. Then SLn/2(q) ◦ SLn/2(q) must be in the kernel of the action of TP on Γ(P ),

and G
Γ(P )
P is a factor group of (Cq−1 × Cq−1).[2f ], where q = pf for some prime

p and integer f . Since G
Γ(P )
P is 2-transitive, it implies that G

Γ(P )
P

∼= Ct+1 : Ct

where t + 1 divides q − 1 and t divides 2f . Thus the valency |Γ(P )| = t + 1 <
min{q − 1, 2f + 1}, which is smaller than the smallest permutation degree for
PSLn/2(q) (namely (qn/2 − 1)/(q − 1)), a contradiction. Thus GP is solvable, and
either n = 2 or n = 4 and q = 2 or 3.

We first examine the case n = 2. In this case, TP
∼= Dq−1 if q is odd and

TP
∼= D2(q−1) if q is even. This implies (in either case) that |P| = q(q + 1)/2.

Furthermore, if q = pf , then GP is a subgroup of D2(q−1).Cf , and GP contains all
of TP and the full group of outer automorphisms in G. On the other hand, since GP

acts 2-transitively on Γ(P ), by the Classification of the Finite (affine) 2-Transitive
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Groups, we have G
Γ(P )
P

∼= Ct+1 : Ct, which implies that t � 2f (and t+ 1 � q − 1).
Hence by Lemma 2.3(i), we have

pf (pf + 1)

2
= |P| < (2f + 1)3.

This implies that the only possible values of p and f are: p = 2 and f � 6; p = 3
and f � 2; p = 5 and f = 1. If f = 1, then t + 1 � 3, which implies that Q is
the unique generalized quadrangle of order (2, 2) (see Lemma 2.5). However, GP is
a subgroup of D2(q−1).Cf , and the generalized quadrangle of order (2, 2) has point
stabilizer isomorphic to C2 × S4, ruling this case out. If f = 2, then p = 2 implies
that t+ 1 � q − 1 � 3, a contradiction as in the case f = 1, and p = 3 implies that
GP is isomorphic to D16.2, which has no 2-transitive representations on more than
2 elements, a contradiction. Hence p = 2 and 3 � f � 6. If f = 3, then GP is a

subgroup of D14.C3 containing D14. The only possibility here is G
Γ(P )
P

∼= C7 : C6,
which implies that t+ 1 = 7. However, this means that

(t+ 1)2 = 49 > 36 = |P|,

a contradiction to Lemma 2.3(i). If f = 4, then GP is a subgroup of D30.C4. The

only possibilities here are: G
Γ(P )
P

∼= C3 : C2, which is a contradiction as in the f = 1

case, or G
Γ(P )
P

∼= C5 : C4, which implies that t+ 1 = 5 and

(t+ 1)3 = 125 < 136 = |P|,

a contradiction to Lemma 2.3(i). If f = 5, then GP is a subgroup of D62.C5,
which has no subgroups with 2-transitive representations on more than 2 elements,
a contradiction. Finally, if f = 6, then GP is a subgroup of D126.C6. The only

possibilities here are G
Γ(P )
P

∼= C3 : C2, which is ruled out as in the f = 1 case

above, or G
Γ(P )
P

∼= C7 : C6, which implies that t+1 = 7, a contradiction since then
(t+ 1)3 < |P| as in the f = 4 case. Therefore, n �= 2.

Finally, we examine the cases of n = 4 and q = 2 or q = 3. If q = 2, then by
[25, Table 3.5.H], we have that a C2-subgroup of type GL2(2) wrS2 is contained
in the C8-subgroup Sp4(2), a contradiction to maximality. If q = 3, then TP

∼=
(SL(2, 3) ◦ SL(2, 3)).22, which implies that |P| = |T : TP | = 10530. However, GP is
then a subgroup of (SL(2, 3) ◦ SL(2, 3)).22, which implies that t+ 1 � 4 and

(t+ 1)3 � 64 < 10530 = |P|,

a contradiction. Therefore, TP cannot be a maximal subgroup of type C2.

Case 3. Assume that TP is a C3-subgroup of type GLn/k(q
k), where k > 1. Suppose

first that k < n. Then (by the Classification of Finite 2-Transitive Groups [9, Tables
7.3 and 7.4]) either

(a) the valency t+ 1 = |Γ(P )| = qn−1
qk−1

, or

(b) (n/k, qk, t+1) = (2, 4, 6), (2, 9, 6), or (2, 8, 28), so that (n, q) = (4, 2), (4, 3),
or (6, 2).

In the first case, t = qn−1
qk−1

− 1 = qk qn−k−1
qk−1

, which implies that st+ 1 is coprime

to q. Therefore, s+ 1 is divisible by the q-part of (s+ 1)(st+ 1) = |P| = |T : TP |,
which is equal to qn(n−1)/2/(qk)

n
k (n

k −1)/2 = q
(k−1)n2

2k . This implies that s > t, which
is not possible.
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In the exceptional case, (n, q) is equal to (4, 2), (4, 3), or (6, 2). If (n, q) = (4, 3)
and t+ 1 �= (qn − 1)/(q2 − 1), then t+ 1 = 6 and

|P| = |T : TP | = 8424 > 216 = (t+ 1)3,

a contradiction to Lemma 2.3(i). If (n, q) = (4, 2) and t + 1 �= (qn − 1)/(q2 − 1),
then t+ 1 = 6 and

|P| = |T : TP | = 56,

which implies that

(s+ 1)(5s+ 1) = 56.

This equation has no integral solution for s, a contradiction. Likewise, if (n, q) =
(6, 2), then |TP | = 10584, |T | = 20158709760, and t+ 1 = 28, which implies that

(s+ 1)(27s+ 1) = |P| = |T :TP | = 1904640.

This equation has no integral solution for s, a contradiction.
We thus have k = n. Note that by [1, Proposition 4.7], either n = k = 2 or

n = k = 3. Suppose that n = k = 3. By Proposition 4.6, we have q = 5, 8, 9,
or 11. However, in each of the cases q = 5, 8, 9, 11, by [5, Table 8.3] we have that
TP = (q2 + q + 1) : 3, which implies that t+ 1 � q2 + q + 1. This means that

(t+ 1)3 � (q2 + q + 1)3 < q7 < |PSL3(q)|
by [1, Corollary 4.3], a contradiction to Lemma 2.3(i).

We therefore have n = 2. Then TP is isomorphic to Dq+1 if q is odd and is
isomorphic to D2(q+1) if q is even. So GP is a subgroup of D2(q+1).Cf , where

q = pf , and we proceed as in the C2 case above. Immediately, this implies that

G
Γ(P )
P

∼= Ct+1 : Ct, and so t � 2f and t + 1 � 2f + 1. Moreover, |P| = |T : TP | =
pf (pf − 1)/2, and so by Lemma 2.3(i) we have that

pf (pf − 1)

2
= |P| < (2f + 1)3.

This implies that the only possible values of p and f are: p = 2 and f � 6; p = 3 and
f � 2; p = 5 and f = 1; p = 7 and f = 1. If f = 1, then t+1 � 3, which implies that
Q is the unique generalized quadrangle of order (2, 2) (see Lemma 2.5). However,
GP is a subgroup of D2(q+1).Cf , and the generalized quadrangle of order (2, 2) has
point stabilizer isomorphic to C2 × S4, ruling this case out. If f = 2, then p = 2

implies that GP is a subgroup of D10.2, which would imply that G
Γ(P )
P

∼= C5 : C4

and t = 4. However, this means that (s + 1)(4s + 1) = |P| = 22(22 − 1)/2 = 6,
a contradiction to s being an integer. If f = 2, then p = 3 implies that GP is

a subgroup of D20.2, and so this again implies that G
Γ(P )
P

∼= C5 : C4 and t = 4.
However, this means that (s+1)(4s+1) = |P| = 36, which has no integral solutions
for s, a contradiction. Hence p = 2 and 2 � f � 6. If f = 3 or f = 4, then
GP is a subgroup of one of D18.C3 or D34.C4. The only possibility here is that

G
Γ(P )
P

∼= C3 : C2, but then t + 1 = 3, which is a contradiction as above. If f = 5,

then GP is isomorphic to a subgroup of D66.C5, which means that G
Γ(P )
P

∼= C3 : C2

(ruled out as above) or G
Γ(P )
P

∼= C11 : C10. This means that t = 10 and that
(s+1)(10s+1) = |P| = 496, which has no integral solutions for s, a contradiction.
Finally, if f = 6 and p = 2, we have that GP is a subgroup of D130.C6. Here,

|P| = 2016. The possibilities for G
Γ(P )
P are C5 : C4, which is impossible since then

(t+1)3 = 125 < 2016 = |P|, a contradiction to Lemma 2.3(i), or C13 : C12. However,
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Table 3. Ruling out examples for Case 4 of the proof of Proposi-
tion 5.3.

(n, q) (n, q
1
2 ) t+ 1 P (t+ 1)2 < |P|

< (t+ 1)3?
Positive integral solution
to (s+1)(st+1) = |P|?

(2, 16) (2, 4) 6 68 true false
(2, 25) (2, 5) 5 65 true false
(2, 49) (2, 7) 7 175 true false
(2, 64) (2, 8) 28 520 false
(2, 81) (2, 9) 6 369 false
(2, 121) (2, 11) 11 671 true false
(3, 4) (3, 2) 8 120 true false
(4, 4) (4, 2) 8 48960 false

this means that t = 12, and so (s+1)(12s+1) = |P| = 2016, which has no integral
solutions for s, a contradiction. Therefore, GP cannot be a C3-subgroup.

Case 4. Suppose now that TP is a C5 subgroup of type GLn(q
1
k ), where k > 1, and

suppose first that TP is not solvable. Then either the valency t+1 = q
n
k −1

q
1
k −1

, or one

of the exceptional cases in Table 3 occurs. For the former, t = q
1
k
q

(n−1)
k −1

q
1
k −1

. Thus

st + 1 is coprime to q. The number of points (s + 1)(st + 1) = |P| = |T : TP | is
divisible by

qn(n−1)/2

(q1/k)n(n−1)/2
= (q1−

1
k )n(n−1)/2,

and so is s+1. Since s � t, we conclude that k = n = 2, and t = q
1
2 and s = q

1
2 −1.

In this case, T = PSL2(q) and TP = PSL2(q
1
2 ). Therefore, q

1
2 (q − q

1
2 + 1) =

(s+ 1)(st+ 1) = |P| = |T : TP | = q
1
2 (q + 1), a contradiction.

The exceptional cases are ruled out as shown in Table 3.
Hence TP must be solvable. So we must have n = 2 and q = 4, 9. If q = 4, then

GP � S4. We rule out t + 1 � 3 as above and conclude that t + 1 = 4. However,
in this case

(s+ 1)(3s+ 1) = |P| = 5,

a contradiction to s being an integer. Finally, if q = 9, then GP � (C2
3 : C8) : C2 and

|P| = 10. Again, (s+ 1)(st+ 1) = 10 forces s+ 1 � 2, a contradiction. Therefore,
TP cannot be a C5 subgroup.

Case 5. Suppose that TP is a C6-subgroup. The possibilities for (T, TP ) are
(PSL4(5), 2

4.A6), (PSL3(4), 3
2.Q8), (PSL2(23), S4), (PSL2(17), S4), (PSL2(13), A4),

(PSL2(11), A4), (PSL2(7), S4), and (PSL2(5), A4). If T ∼= PSL4(5), then |P| =
1259375 and t + 1 � 6, a contradiction to Lemma 2.3(i). If T ∼= PSL3(4), then
|P| = 280 and t+ 1 = 9 (since there is a contradiction as above if t+ 1 � 3). How-
ever, (s+1)(8s+1) = 280 has no integral solutions, a contradiction. If T ∼= PSL2(q)
for q = 13, 17, 23, then t+1 � 4 and (t+1)3 = 64 < |P|, a contradiction to Lemma
2.3(i). If T ∼= PSL2(11), then t+1 = 4 and |P| = 55. However, (s+1)(3s+1) = 55
has no integral solutions, a contradiction. Finally, if T ∼= PSL2(q) for q = 5, 7, then
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|P| = 5, 7, respectively, a contradiction to (s+ 1)(st+ 1) = |P|. Hence TP cannot
be a C6-subgroup.

Case 6. Suppose that TP is a C8-subgroup. Assume first that TP is not solvable.
By Lemma 3.3(i), we have that TP

∼= PSU3(q
1/2) or TP

∼= Spn(2). Suppose first
that TP

∼= PSU3(q
1/2). We note that TP

∼= PSU3(q
1/2) cannot be in the kernel of

the action of GP on Γ(P ), since this would then imply that

(t+ 1) � q − 1 < q
3
2 + 1,

a contradiction to Lemma 3.3(iv). Hence we have that t+ 1 = q3/2 + 1. However,
this implies that

(s+ 1)(sq
3
2 + 1) = |P| = |T |

|TP |
=

|PSL3(q)|
|PSU3(q1/2)|

= q
3
2 (q + 1)(q

3
2 − 1).

This implies that q
3
2 divides s + 1, and, since s + 1 � t + 1, this means that

s+1 = q
3
2 . Plugging in this value of s, we find that there are no integral solutions,

a contradiction.

Now suppose that TP
∼= Spn(2). First, if n = 4, then TP

∼= S6, GP � S6 × C2,
and

(s+ 1)(st+ 1) = |P| = |T : TP | = 28.

Since s+1 > 2, we must have that s+1 = 4 and st+1 = 7. Thus s = 3, 3t+1 = 7,
and t = 2, a contradiction to s � t (and to the fact that there is no generalized
quadrangle of order (2, 3) or (3, 2) [32, §1.2.2,§1.2.3]). Suppose that n � 6. We
note that TP

∼= Spn(2) cannot be in the kernel of the action of GP on Γ(P ), since
this would then imply that t+ 1 = 1, a contradiction to Lemma 3.3(iv). Hence we
have that t + 1 = 2n−1 ± 2n/2−1. By [1, Lemma 4.2, Corollary 4.3], we must have
that

2n
2−2(

45
64 · 2n(n+1)

2

) < |T : TP | = |P| < (t+ 1)3 � (2n−1 + 2
n
2 −1)3,

which implies that n = 6. When n = 6, we have that |P| = 13888 and t+1 is either
28 or 36. This means that either (s+1)(27s+1) = 13888 or (s+1)(35+1) = 13888,
which is a contradiction since neither of these equations has an integral root. Hence
TP must be solvable.

If TP is solvable, then either n = 2 and TP is of type O±
2 (q)

∼= D2(q∓1) or n = 3,
q = 2, and TP

∼= S4. However, TP cannot be a dihedral maximal subgroup of
T = PSL2(q) by the arguments used above in the C2 and C3 cases. If TP

∼= S4, then
(s+ 1)(st+ 1) = |P| = 7, which has no solutions with s, t positive integers. Hence
TP cannot be a C8-subgroup.

This exhausts all possibilities for TP , and therefore TP cannot be a maximal
geometric subgroup of T = PSLn(q), as desired. �

5.2. Unitary groups. For unitary groups, the following proposition shows that Q
is a classical generalized quadrangle H(4, q2) or Q−(5, q).

Proposition 5.4. Assume Hypothesis 5.1. Assume that T = soc(G) = PSUn(q)
for any n � 3, q � 2, and the point stabilizer TP is a maximal geometric subgroup.
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Then either

(i) n = 4, TP = P1 = q1+4 : 1
gcd(4,q+1) (GL1(q

2) ◦ GU2(q)), T� = P2 =

q4 : 1
gcd(4,q+1)GL2(q

2), (s, t) = (q, q2), and Q = Q−(5, q), or

(ii) n = 5, TP = P1 = q1+6 : 1
gcd(5,q+1) (GL1(q

2) ◦ GU3(q)), T� = P2 =

q4+4 : 1
gcd(5,q+1) (GL2(q

2) ◦GU1(q)), (s, t) = (q2, q3), and Q = H(4, q2).

Proof. By Corollary 4.7, the stabilizer of a point TP satisfies |T | < |TP |3. The
geometric subgroups satisfying this condition are listed in [1, Proposition 4.17],
and we proceed down the list.

Case 1. We suppose first that TP is a maximal parabolic subgroup Pk, namely,

TP = Pk = qk
2

.q2k(n−2k) :
1

gcd(n, q + 1)
(GLk(q

2) ◦GUn−2k(q)),

where 2 � 2k � n. By Lemma 3.3, n− 2k � 3.

Subcase 1.1. Assume first that n− 2k = 3. Suppose that T
Γ(P )
P � PSU3(q). Then

|Γ(P )| = q3 + 1. Suppose further that k � 2. Then PSLk(q
2) is a composition

factor of G
Γ(�)
P,� , and by Lemma 3.3, one of the following occurs:

(a) T
Γ(�)
� � pm : SLk(q

2) with pm = q2k, or T
Γ(�)
� � PSLk+1(q

2), or

(b) (k, q2) = (2, 4), and T
Γ(�)
�

∼= A6, with s+ 1 = 6, or

(c) (k, q2) = (2, 9), and T
Γ(�)
�

∼= A6 or 2
4 : A6, with s+1 = 6 or 16, respectively.

For case (a), the valency s + 1 = |Γ(�)| equals q2k or (q2)k+1−1
q2−1 , which is bigger

than q3 = t + 1, a contradiction. For case (b), n = 2k + 3 = 7, and q = 2. Thus
t = 23 = 8, and s = 5. Therefore, 6 · 41 = (s + 1)(st+ 1) = |T : TP |, which is not
possible. For the third case, n = 7 and q = 3. Hence t = 33 = 27, and s = 5 or 15,
which do not satisfy the equality (s+ 1)(st+ 1) = |T : TP |.

We therefore have k = 1 and n = 2k+ 3 = 5. In this case, the point stabilizer is

TP = q.q6 :
1

gcd(5, q + 1)
(GL1(q

2) ◦GU3(q)),

and thus |P| = (q2+1)(q5+1). Since t = q3 and |P| = (s+1)(st+1), we conclude
that s+ 1 = q2 + 1, s = q2, and |L| = (t+ 1)(st+ 1) = (q3 + 1)(q5 + 1). It implies
that the line stabilizer is

T� = P2 = q4.q4.
1

gcd(5, q + 1)
(GL2(q

2) ◦GU1(q)).

This gives rise to the only possibility that Q is the classical generalized quadrangle
H(4, q2) of order (q2, q3).

Now assume that soc(G
Γ(P )
P ) �= PSU3(q). Then PSU3(q) is a composition factor

of G
Γ(�)
P,� . By Lemma 3.3, we have q = 3 and G

Γ(�)
� = 26 : PSU3(3). Then either

(i) k = 1, G
Γ(P )
P is solvable, T = PSU5(3), and TP = 3.36 : (GL1(3

2)◦GU3(3)),
or

(ii) k � 2, and G
Γ(P )
P �PSLk(3

2). Then t+1 = |Γ(P )| = 9k−1
9−1 , and s+1 = 26.
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Table 4. Ruling out examples for Subcase 1.2 of the proof of
Proposition 5.4.

q |P| s+ 1 Positive integral solution to
(s+ 1)(st+ 1) = |P|?

t � s2 ?

4 1105 11 false
5 3276 11 false
7 17200 15 false
1 162504 12 true false

To rule out case (i), we note that by [5, Tables 8.20, 8.21], there is no such

subgroup G�. To rule out case (ii), since t � s2, we have 9k−9
9−1 � 632, which

implies that k � 4. This means that n = 7, 9, 11, and by [5, Tables 8.37, 8.38, 8.56,
8.57, 8.72, 8.73], no such subgroup G� exists in any of these cases either. Hence, if
n− 2k = 3, then Q is classical.

Subcase 1.2. Assume now that n− 2k = 2. By assumption,

TP = qk
2

.q4k :
1

gcd(n, q + 1)
(GLk(q

2) ◦GL2(q)).

Suppose that G
Γ(P )
P is solvable. If k � 2, then both PSL2(q) and PSLk(q

2) are

composition factors of G
Γ(�)
P,� , which is impossible by the Classification of Finite

2-Transitive Groups [9, Tables 7.3, 7.4]. Hence k = 1, which implies that n = 4,
TP = q.q4 : 1

gcd(4,q+1) (GL1(q
2) ◦ GL2(q)), and |P| = (q2 + 1)(q3 + 1). Let q = pf ,

where p is a prime and f is a positive integer. Note further that apart from the

exceptional cases when q = 4, 5, 7, 11, since PSL2(q) � G
Γ(�)
P,� , t + 1 � s + 1 � q2.

However, this implies that

(q2 + 1)(q3 + 1) = |P| = (s+ 1)(st+ 1) � q2((q2 − 1)2 + 1),

which is false for q > 2. When q = 2, we have |P| = 45 = (s + 1)(st + 1), and we
know that s, t � 22 − 1 = 3. However, this implies that st + 1 � 10 is a divisor
of 45, i.e., st + 1 � 15 and s + 1 � 3 � s, a contradiction. Hence we need only
examine the cases q = 4, 5, 7, 11, which is done in Table 4.

Next we assume that G
Γ(P )
P is not solvable. Then either G

Γ(P )
P � PSU2(q) ∼=

PSL2(q), or G
Γ(P )
P � PSLk(q

2).

For the former, if k � 2, then PSLk(q
2) is a composition factor of G

Γ(�)
P,� ; it follows

that s > t, a contradiction. Thus k = 1, and n = 2k + 2 = 4. In this case,

TP = q.q4 :
1

gcd(4, q + 1)
(GL1(q

2) ◦GU2(q)),

and hence (s + 1)(st + 1) = |P| = (q2 + 1)(q3 + 1). If t + 1 = |Γ(P )| � q + 1,
it implies that s > t, which is a contradiction. Thus one of the exceptional cases
occurs: q = 4 or q = 8. If q = 4, then (s + 1)(5s+ 1) = |P| = 1105, which has no
integral solutions for s, and if q = 8, then (s+ 1)(27s+ 1) = 33345, which also has
no integral solutions for s; both are contradictions.
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Assume now that G
Γ(P )
P �PSLk(q

2), PSLk(q
2) not solvable. Then t+1 � q2k−1

q2−1 �
q2k−1, and, using Lemmas 2.3(i) and 5.2, we have

q6k−3 � (t+ 1)3 � |P| = q2(k+1) − 1

q2 − 1

k∏
j=1

(q2j+1 + 1) � q2k · q(k+1)2−1 = qk
2+4k.

Hence 6k − 3 � k2 + 4k, which implies that −2 � (k − 1)2, a contradiction.
Therefore n− 2k �= 2.

Subcase 1.3. Next, suppose that n− 2k = 1. Then

TP = qk
2

.q2k :
1

gcd(2k + 1, q + 1)
(GLk(q

2) ◦GU1(q)).

Note also that |P| =
∏k

j=1(q
2j+1 + 1) by Lemma 5.2. Suppose first that G

Γ(P )
P

is solvable. Let q = pf , and assume k � 2. We know by Lemma 2.3(i) that

(t+ 1)3 � |P| > q(k+1)2−1, and hence

t+ 1 > q
k(k+2)

3 = p
k(k+2)f

3 .

On the other hand, since G
Γ(P )
P is solvable, G

Γ(P )
P

∼= Et+1 : Ct, where Et+1 is an
elementary abelian group of order t + 1. By the structure of TP (and hence GP ),
we know that t � 1

gcd(2k+1,q+1) (q
2 − 1) · 2 gcd(2k+ 1, q + 1)f = 2f(p2f − 1). Hence

2fp2f > 2f(p2f − 1) + 1 � t+ 1 > p
k(k+2)f

3 ,

and p
(k(k+2)−6)f

3 < 2f. If k � 3, this means that 23f � p
(k(k+2)−6)f

3 < 2f , which no

real value of f satisfies, a contradiction. Hence k = 2, which means that p
2f
3 <

2f . The only possible solutions are p = 2 and f < 5. This means that |P| =
(23f +1)(25f +1) and GP = 24f .24f : GL2(2

2f ).f , which means that t � f(22f − 1)

and t+1 � f ·22f . Since t+1 > 2
8f
3 as above, we have 2

8f
3 < f ·22f , which implies

that 2
2f
3 < f , an equation that has no real solutions. Hence k = 1. However, this

means that n = 3 and G would be 2-transitive on P, a contradiction. Thus G
Γ(P )
P

cannot be solvable and k � 2.

Since k � 2 and G
Γ(P )
P is not solvable, we have that PSLk(q

2) is a composition

factor of G
Γ(P )
P or G

Γ(�)
P,� . Noting that TP = qk

2

.q2k : 1
gcd(2k+1,q+1)GLk(q

2), by the

Classification of Finite 2-Transitive Groups the most that t+ 1 can be in this case
is q2k, and by Lemmas 2.3(i) and 5.2, we have

q6k � (t+ 1)3 > |P| =
k∏

j=1

(q2j+1 + 1) > q(k+1)2−1.

This means that 6k > k2 + 2k, and so k = 2, 3.
Assume first that k = 2. In this case, |P| = (q5 + 1)(q3 + 1). By the structure

of TP and the Classification of Finite 2-Transitive Groups, there are exactly three
possibilities: t+ 1 = q4, t+ 1 = q2 + 1, or t+ 1 = 6 and q = 3. If t+ 1 = q4, then

(q5 + 1)(q3 + 1) = |P| = (s+ 1)(s(q4 − 1) + 1) = s2(q4 − 1) + sq4 + 1.

Since s2 � t, s2 � q4 − 1; in fact, s2 � q4 since s is a positive integer. Thus

q8 + q5 + q3 = |P| − 1 � q4(q4 − 1) + q6 + 1,
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which implies that q2 + 1 � q3 − q, which is false for q � 2, a contradiction. If
t+ 1 = q2 + 1, then

(q3 + 1)(q5 + 1) = |P| = (s+ 1)(sq2 + 1),

which implies that s = q3 > t, a contradiction. Finally, if t + 1 = 6 and q = 3, we
have

(33 + 1)(35 + 1) = |P| = (s+ 1)(5s+ 1),

which has no integral roots, a contradiction.
Assume now that k = 3. This means that TP = q9.q6 : 1

gcd(7,q+1)GL3(q
2). Note

that t+1 = q6 or t+1 = q4+ q2+1, since TP is 2-transitive on Γ(P ). If t+1 = q6,
then by Lemma 2.2, s + 1 = q6|T�|/|TP |. Since s + 1 is a positive integer, this
implies that q15 divides |T�|. Looking at the possibilities for T� [5, Tables 8.37, 8.38]
and noting that |T�| � |TP | since

|T : TP | = |P| = (s+ 1)(st+ 1) � (t+ 1)(st+ 1) = |L| = |T : T�|,
we see that T�

∼= TP or T�
∼= 1

gcd(q+1,7)GU6(q). Since PSU6(q) cannot be the

composition factor of a 2-transitive group, we get that TP
∼= T�, which implies that

s = t = q6 − 1 by Lemma 2.2. However, this implies that

(q7 + 1)(q5 + 1)(q3 + 1) = |P| = q6((q6 − 1)2 + 1),

a contradiction since the left hand side is coprime to q. Hence t+ 1 = q4 + q2 + 1.
We apply Lemma 2.2 as above to conclude that q21 divides T�. Looking at the
possibilities for T� with |T�| � |TP | [5, Tables 8.37, 8.38], we see that T�

∼= TP ,
which implies that s+ 1 = t+ 1 = q4 + q2 + 1, and so

(q7 + 1)(q5 + 1)(q3 + 1) = |P| = (q4 + q2 + 1)((q4 + q2)2 + 1),

which has no real roots for q � 2, a contradiction. Hence n− 2k �= 1.

Subcase 1.4. Finally, assume that n − 2k = 0, namely, n = 2k. Then k � 2,

TP = qk
2

: 1
gcd(2k,q+1)GLk(q

2), and the number of points

|P| = (q2k−1 + 1)(q2k−3 + 1) · · · (q + 1) > q(2k−1)+(2k−3)+···+1 = qk
2

.

Suppose that k � 3. Since G
Γ(P )
P is 2-transitive, either G

Γ(P )
P is affine of degree

t + 1 = q2k or almost simple with socle PSLk(q
2) and degree t + 1 = q2k−1

q2−1 . By

Lemma 2.3(i), qk
2

< |P| < (t + 1)3 � (q2k)3, and so k = 3, 4 or 5. Moreover, by

Lemma 2.2, we have that qk
2+k(k−1)/2 divides (t+1)|T�|. If t+1 = (q2k−1)/(q2−1),

then qk
2+k(k−1)/2 divides |T�|, and since |T�| � |TP | and G

Γ(�)
� is a 2-transitive group

(i.e., it has no projective special unitary group of degree 4 or more as a composition
factor), by [5, Tables 8.26, 8.27, 8.46, 8.47, 8.62, 8.63], we must have T�

∼= TP , which
by Lemma 2.2 implies that s = t = (q2k − q2)/(q2 − 1). This means that

q2k − 1

q2 − 1

((
q2k − q2

q2 − 1

)2

+ 1

)
= |P| = (q2k−1 + 1)(q2k−3 + 1) · · · (q + 1).

This equation has no real roots for k = 3, 4, 5, so we must have t+ 1 = q2k. When
k = 3, we have

(q5 + 1)(q3 + 1)(q + 1) = |P| = (s+ 1)(s(q6 − 1) + 1) � (q3 + 1)(q9 − q3 + 1),

since s2 � t and s2 is a positive integer. However, this is false for q � 2, a
contradiction.
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Now assume that k = 4, which means that n = 8. By Lemma 2.2, we have that
q22 divides (t+ 1)|T�| = q8 · |T�|, and so q14 divides |T�|. By [5, Tables 8.46, 8.47],
noting that |T�| � |TP |, and by Lemma 3.3(i) that PSUn(q) is not a composition
factor of either GP or G� for n � 4, we are left with only two possibilities: T�

∼= TP ,
or T�

∼= 1
gcd(q+1,8)Sp8(q).[gcd(q + 1, 4)] and q = 2 (hence T�

∼= Sp8(2)). If T�
∼= TP ,

then s = t, and so s + 1 = q8 divides |P|, a contradiction since |P| is coprime to
q. If T�

∼= Sp8(2), then s + 1 = 27 + 23 = 136 or s + 1 = 27 − 23 = 120 by the
Classification of Finite 2-Transitive Groups. In particular, s+ 1 is even, while |P|
is odd, a contradiction.

Assume next that k = 5, which means that n = 10. We proceed as in the k = 4
case. By Lemma 2.2, we have that q35 divides (t + 1)|T�| = q10 · |T�|, and so q25

divides |T�|. By [5, Tables 8.62, 8.63] and noting that |T�| � |TP | and by Lemma
3.3(i) that PSUn(q) is not a composition factor of either GP or G� for n � 4, we are
left with only two possibilities: T�

∼= TP , or T�
∼= 1

gcd(q+1,10) (gcd(q+1, 5)×Sp10(q))

and q = 2 (hence T�
∼= Sp10(2)). If T�

∼= TP , then s = t, and so s+ 1 = q10 divides
|P|, a contradiction since |P| is coprime to q. If T�

∼= Sp10(2), then s+1 = 29+24 =
528 or s+1 = 29− 24 = 496 by the Classification of Finite 2-Transitive Groups. In
particular, s+ 1 is even, while |P| is odd, a contradiction.

We therefore conclude that k=2 and n=2k=4. Hence TP =q4. 1
gcd(4,q+1)GL2(q

2)

and (s+1)(st+1) = |T : TP | = (q+1)(q3 +1). Suppose that t+1 �= q2 +1. Then
either t + 1 = 6 and q = 2 or q = 3, or t + 1 = q4. Assume first that t + 1 = q4.
Then by Lemma 2.3(ii)

q4 + q3 + q + 1 = (q + 1)(q3 + 1) = |P| > s2 · q4,

which implies that s2 < 1 + 1/q + 1/q3 + 1/q4 < 2, a contradiction. If t + 1 = 6
and q = 2 or q = 3, then

(s+ 1)(5s+ 1) = |P| = (q + 1)(q3 + 1),

which has no positive integral solutions in either case. Thus t + 1 = q2 + 1. The
equation

(s+ 1)(sq2 + 1) = |P| = (q + 1)(q3 + 1)

implies that s = q and T� = P1 = q.q4 : 1
gcd(4,q+1) (GL1(q

2) ◦ GU2(q)) by Lemma

2.2 and [5, Tables 8.10, 8.11]. Since TP
∼= P2 and T�

∼= P1, we may identify the
points and lines with totally singular subspaces, and the values of s and t imply
that Q = Q−(5, q).

Case 2. Suppose now that TP is a C1-subgroup of type GUm(q)×GUn−m(q), the
stabilizer of a nonsingular m-space, where m < n/2. By Lemma 3.3, we have
m,n−m � 3, and it implies that m = 1 or 2. Thus n � 5, and n = 3, 4 or 5.

Suppose that n = 3. Then T = PSU3(q), and TP = 1
gcd(3,q+1)GU2(q). Hence

t+1 = |Γ(P )| = q+1 unless q = 4, 5, 7, 8, 9. If t+1 � q+1, then (s+1)(st+1) =
|P| = |T : TP | = q2(q3 − 1), which implies that s > t, a contradiction. This leaves
only the cases q = 4 and t + 1 = 6 or q = 8 and t + 1 = 28. In each case, we see
that (s+ 1)(st+ 1) = q2(q3 − 1) has no integral solutions for s, a contradiction.

For the case where n = 4, the stabilizer TP = 1
gcd(4,q+1)GU3(q). Thus t + 1 =

|Γ(P )| = q3 +1, and (s+1)(st+1) = |P| = |T : TP | = q3(q2 +1)(q− 1). It implies
that q3 divides s+ 1 and st+ 1 divides (q2 + 1)(q − 1), which is not possible.
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We therefore have n = 5, and TP = 1
gcd(5,q+1) (SU3(q) × SU2(q)) : (q + 1) (note

that TP �= 1
gcd(5,q+1)GU4(q) by Lemma 3.3(i)). Then T

Γ(P )
P = PSU3(q), and t+1 =

|Γ(P )| = q3 + 1, and (s+ 1)(st+ 1) = |P| = |T : TP | = q6(q5 + 1)(q2 + 1)/(q + 1).
It follows that q6 divides s+ 1, which is a contradiction since s � t = q3.

Case 3. Let TP be a C2-subgroup.
Suppose first that TP is a C2-subgroup of type GUn/k(q) wrSk. By Lemma

3.3(i), n/k � 3. By [1, Proposition 4.17], if k � 4, then 4 � n = k � 11 and
either q = 2 or (n, q) ∈ {(6, 3), (5, 3), (4, 3), (4, 4), (4, 5)}. First assume that q = 2.
By [25, Proposition 4.2.9], TP

∼= 1
(3,n)3

n−1 : Sn, and in these respective cases we

have |P| = |T : TP | = 40, 1408, 157868, 61997056, 84315996160, 410113005322240,
7160244982522052608, and 455256187165096674328576. However, in each case, by
the Classification of Finite 2-Transitive Groups, we know that the normal subgroup

1
gcd(3,n)3

n−1 is in the kernel of the action, which implies that T
Γ(P )
P is a section of

Sn. This implies that the value of t + 1 is 4 when n = 4, which is ruled out since
Q is not the unique generalized quadrangle of order (3, 3) (see Lemma 2.5), and
too small in all other cases, since (t + 1)3 < |P| for all possible values of n, a
contradiction to Lemma 2.3(i).

Next, assume that k = 3. By [1, Proposition 4.17], we have q = 2, 3, 4, 5, 7, 9, 13
or 16. Since n/3 � 3, n = 3, 6, or 9. By [25, Proposition 4.2.9],

TP
∼=

[
(q + 1)2 gcd(q + 1, n/3)

gcd(q + 1, n)

]
.PSUn/3(q)

3.[gcd(q + 1, n/3)2].S3,

which means that

GP
∼=

[
(q + 1)2 gcd(q + 1, n/3)

gcd(q + 1, n)

]
.PSUn/3(q)

3.[gcd(q+1, n/3)2].S3.[2 gcd(q+1, n)f ],

where f = 1 unless q = 9 or q = 16, in which case f = 2 and f = 4, respectively.
These cases are ruled out by calculation in each case by examining the possible
values of t+ 1 and noting that (s+ 1)(st+ 1) = |P| = |T : TP |.

If k = 2, then we first note that n = k = 2 has already been ruled out in
the proof of Proposition 5.3. Since n/k � 3, we have that n = 4 or n = 6,

and TP
∼=

[
(q+1) gcd(q+1,n/2)

gcd(q+1,n)

]
.PSUn/2(q)

2.[gcd(q + 1, n/2)].S2. Suppose first that

n = 6. Then, unless q = 2, GP is not solvable. However, PSU3(q)
2 must be in

the kernel of the action by the Classification of Finite 2-Transitive Groups, and

since TP is transitive on Γ(P ), t+ 1 � (q+1) gcd(q+1,3)
gcd(q+1,6) · gcd(q + 1, 3) · 2 � 6(q + 1).

However, by Lemma 3.3(iv), t + 1 � q3 + 1, a contradiction. If q = 2, then
TP

∼= 31+4 : (Q8 ×Q8) : S3, GP � 31+4 : (Q8 ×Q8) : S3.S3 and |P| = 98560. Since
(t+ 1)3 > |P| by Lemma 2.3(i), t+ 1 � 47; however, GP has no 2-transitive action
on 47 or more elements, a contradiction. Thus n = 4, and unless q = 2 or q = 3,
GP is not solvable. This means that PSL2(q)

2 must be in the kernel of the action.
Since TP is transitive on Γ(P ), this means that t+ 1 � 4(q + 1). Hence

q4(q2 − q + 1)(q2 + 1)

2
= |T : TP | = |P| = (s+ 1)(st+ 1) � (4q + 4)((4q + 3)2 + 1),

which implies that q = 2, 3. These final cases are ruled out by calculation by
examining the possible values of t+ 1 and noting that |P| = (s+ 1)(st+ 1).
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Assume now that TP is a C2-subgroup of type GLn/2(q
2).2. Suppose that t +

1 �= qn−1
q2−1 . Then by the Classification of Finite 2-Transitive Groups, (n, q) =

(4, 2) or (4, 3) and t + 1 = 6. However, these cases are ruled out by examining

(s + 1)(5s + 1) = |P| = |T : TP |. Thus t + 1 = qn−1
q2−1 , and so t = q2 qn−2−1

q2−1 . Then

(s+1)(st+1) = |P| = |T : TP | is divisible by qn
2/4. It implies that s+1 is divisible

by qn
2/4 since gcd(st+ 1, q) = 1. Thus s > t, a contradiction.

Case 4. Assume that TP is a C3-subgroup, an extension field subgroup. By [1,
Proposition 4.17] and Lemma 3.3, we have TP = 1

gcd(n,q+1)GUn/3(q).3 with n/3 = 3

and q = 27. Thus t + 1 = |Γ(P )| = 273 + 1, and (s + 1)(st + 1) = |P| = |T |/|TP |
forces s > t, which is a contradiction.

Case 5. Suppose that TP is a C5-subgroup. There are several candidates to be
considered. If TP is a C5 subgroup of type GUn(q0), where q = q30 , then n = 3 and
t = q30 = q. Now (s + 1)(st + 1) = |P| = |T : TP | is divisible by q3/q30 = q2. It
follows that s+ 1 is divisible by q2, which contradicts s � t.

For other candidates, TP is a symplectic group or an orthogonal group of dimen-
sion n. By Lemma 3.3, noticing that PΩ3(q) ∼= PSL2(q), PΩ

−
4 (q)

∼= PSL2(q
2), and

PΩ+
6 (q)

∼= PSL4(q), we conclude that

Tp = PSpn(2), PΩ3(q), PΩ
−
4 (q).[d] with q odd, or PΩ+

6 (q),

where d = 2 or 4.
For the first case where TP = PSpn(2), we have t+1 = |Γ(P )| = 22m−1 ± 2m−1,

where 2m = n. The number of points has the form

(s+ 1)(st+ 1) = |P| = |T : TP | = 2m(m−1)(22m−1 + 1)(22m−3 + 1) · · · (2 + 1)

> 2m(m−1)+m2

= 22m
2−m.

Since |P| < (t+1)3, it implies that m � 3. If m = 3, then a more precise calculation
shows that |P| > (t+1)3, which is not possible. For m = 2, we have T = PSU4(2),
and TP = PSp4(2)

∼= S6. This implies that |P| = |T : TP | = 36 and t + 1 = 6 or
t + 1 = 10. Neither (s + 1)(5s + 1) = 36 nor (s + 1)(9s + 1) = 36 have integer
solutions for s, a contradiction.

For the second case where T = PSU3(q) and TP = PΩ3(q) ∼= PSL2(q) (q � 7
odd), we have t+ 1 = q + 1 unless q = 7, 9, 11, and (s+ 1)(st+ 1) = |P| = |T : TP |
is divisible by q2. Then t = q, and it implies that s+ 1 is divisible by q2, which is
not possible. The sporadic cases are ruled out by inspection.

Suppose that T = PSU4(q) and TP = PΩ−
4 (q).[d]

∼= PSL2(q
2).[d], where q is

odd and d divides gcd(4, q + 1). Then t + 1 = |Γ(P )| = q2 + 1 unless q = 3, and
(s+1)(st+1) = |P| is divisible by q4. It implies that s+1 is divisible by q4, which
is not possible. The sporadic case is ruled out by inspection.

Assume that T = PSU6(q) and TP = PΩ+
6 (q).2

∼= PSL4(q).2. Then t + 1 =
|Γ(P )| = (q2+1)(q+1), and (s+1)(st+1) = |P| = 1

2q
9(q5+1)(q3+1)2 > (t+1)3,

a contradiction.

Case 6. Finally, suppose that TP is a C6-subgroup. Then
(T, TP ) = (PSU4(7), 2

4.Sp4(2)), (PSU4(3), 2
4.A6), or (PSU3(5), 3

2 : Q8),

by [1, Proposition 4.17(vii)]. A simple calculation shows that there is no proper
integral solution to (s+ 1)(st+ 1) = |T |/|TP |, which is a contradiction.
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Therefore, the result holds for TP any maximal geometric subgroup, as desired.
�

5.3. Symplectic groups. Symplectic groups give rise to two families of general-
ized quadrangles and a sporadic example.

Proposition 5.5. Assume Hypothesis 5.1. Assume that T = soc(G) = PSp2n(q)
for any n � 2, q � 2 and the point stabilizer TP is a maximal geometric subgroup.
Then one of the following holds:

(i) n = 4, q even, TP = P1 = q3 : GL2(q), T� = P2 = q3 : GL2(q), (s, t) =
(q, q), and Q = W(3, q), or

(ii) n = 4, q odd, TP = P1 = q1+2 : (GL1(q) ◦ Sp2(q)), T� = P2 = q3 :

(( q−1
2 × Ω3(q)).2), (s, t) = (q, q), and Q = W(3, q), or

(iii) n = 4, q odd, TP = q3 : (( q−1
2 × Ω3(q)).2), T� = P1 = q1+2 : (GL1(q) ◦

Sp2(q)), (s, t) = (q, q), and Q = Q(4, q), or
(iv) T = PSp4(3)

∼= PSU4(2), TP = 24.A5, T� = 2.(A4 × A4).2, (s, t) = (2, 4),
and Q = Q−(5, 2).

Proof. By Corollary 4.7, the stabilizer of a point TP satisfies |T | < |TP |3. The
geometric subgroups satisfying this condition are listed in [1, Proposition 4.22],
and we proceed down the list.

Case 1. We first consider the case when TP is a parabolic subgroup of type Pk,
where 0 < k � k +m = n. Then

TP = Pk = [q2nk−
3k2−k

2 ] : (GLk(q) ◦ Sp2n−2k(q)),

and by Lemma 5.2,

|P| =
[
n

k

]
q

k∏
i=1

(qn+1−i + 1).

In particular, (s+ 1)(st+ 1) = |P| = |T : TP | is coprime to q. Note that

|P| =
[
n

k

]
q

k∏
i=1

(qn+1−i + 1)

>
qn−1 · qn−2 · · · · · qn−k

qk · qk−1 · · · · · q1 · qn · · · · · qn−(k−1)

= qkn−k(k+1)/2−k(k+1)/2+kn−k(k−1)/2

= q2nk−k(3k+1)/2.

Moreover, using the Classification of Finite 2-Transitive Groups, we see that one of
the following must hold:

(a) T
Γ(P )
P is solvable;

(b) T
Γ(P )
P � q2m : Sp2m(q), and t+ 1 = q2m;

(c) T
Γ(P )
P � qk : GLk(q), and t+ 1 = qk;

(d) soc(T
Γ(P )
P ) ∼= PSLk(q), and t+ 1 = (qk − 1)/(q − 1);

(e) soc(T
Γ(P )
P ) ∼= Sp2m(2), and t+ 1 = 22m−1 ± 2m−1.

We first examine case (a) and assume that T
Γ(P )
P is solvable. Suppose further that

k, 2n−2k � 2. By Lemma 3.2, both PSL2(q) and PSp2n−2k(q) are composition fac-

tors of G
Γ(�)
P,� , which is impossible by the Classification of Finite 2-Transitive Groups.
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Thus we have either that k = 1 or n = k. If n = k, then TP = qn(n+1)/2 : GLn(q),
and by Lemma 2.3(ii) we have

(t+ 1)3 > |P| =
n∏

i=1

(qi + 1) > qn(n+1)/2,

and so t+1 > qn(n+1)/6. On the other hand, since n � 2, PSLn(q) lies in T
[1]
P , and

looking at the structure of TP (and hence GP ), we see that t <
df(pf − 1) gcd(pf − 1, n), where q = pf and d = 2 unless q is even and n � 3.
Thus pfn(n+1)/6 < 2nf(pf − 1) < 2nfpf . If n > 2, then we must be in one of the
following cases, which are each ruled out via inspection: n = 4, p = 2, f = 1; n = 3
and either p = 2 and f � 4, p = 3 and f � 2, or p = 5 and f = 1. Hence n = 2,
|P| = (q + 1)(q2 + 1), and TP = q3 : 1

gcd(2,q−1)GL2(q). However, this still means

that s � q + 1 since PSL2(q) is a section of G
Γ(�)
P,� (unless q = 5, q = 7, or q = 9,

which are ruled out by inspection), which means by Lemma 2.3(ii) that

(q + 1)(q2 + 1) = |P| > (q + 2)3,

a contradiction.
Hence we have k = 1 and |P| = (q2n − 1)/(q − 1). Assume first that q >

2. If n − 1 � 2, then PSp2n−2(q) is a composition factor of G
Γ(�)
P,� and s �

(q2n−2 − 1)/(q − 1). However, by Lemma 2.3(ii),

q2n − 1

q − 1
= |P| > s2(t+ 1) >

(
q2n−2 − 1

q − 1

)3

,

which implies that

q2n+2 > (q − 1)2(q2n − 1) > (q2n−2 − 1)3 > q3(2n−3),

which only holds when n � 2. If n = 2, then |P| = (q4 − 1)/(q − 1) and PSL2(q)

is a composition factor of G
Γ(�)
P,� , which implies that s � q + 1 (unless q = 5, 7, 9,

which are ruled out by inspection). However, this means that

q3 + q2 + q + 1 = |P| = (s+ 1)(st+ 1) � (q + 2)((q + 1)2 + 1),

a contradiction. Finally, we assume that q = 2. If n − 1 � 3, then proceeding as
above we have

22n > 22n − 1 = |P| > s2(t+ 1) > 23n−6(2n−1 − 1)3 � 26n−12,

and so n < 3, a contradiction. If n = 3, then (s+1)(st+1) = |P| = 63, which has no
solutions in integers satisfying s � t � s2. Finally, if n = 2, then T = Sp4(2)

∼= S6,
and |P| = 15, which implies that s = t = 2, andQ = W(3, 2), the unique generalized
quadrangle of order (2, 2) (see Lemma 2.5).

For case (b), t+1 = q2m, and (t+1)3 = q6(n−k). Since |P| < (t+1)3 by Lemma
2.3(i), this implies that 2nk − k(3k + 1)/2 < 6(n− k). If k − 2 > 0, then

n <
3k2 − 11k

6(k − 2)
<

3k2 − 11k + 10

6(k − 2)
=

3k − 5

6
< k,

a contradiction. Hence k � 2. However, if k � 2, then s2(t+1) < |P| forces s2 < t,
a contradiction.
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Assume that case (c) occurs. Then t + 1 = qk, and (t + 1)3 = q3k, and so
2nk − k(3k + 1)/2 < 3k, which implies that

k � n <
3k + 7

4
,

which holds only if k � n < 7. However, as above, in this case we have
(q − 1).(PGL5(q) × PSp2n−10(q)) � TP,�, where here � is a line incident with P .
Unless k = 2 and q = 3 and T�

∼= 2.(PSp2(3) × PSp2n−2(3)), we have that T� is
a subgroup of a group isomorphic to TP and q divides s+ 1, a contradiction since
|P| = (s + 1)(st + 1) is coprime to q. If k = 2 and q = 3, then the full subgroup

[32n−5] � T
Γ(P )
P , which has socle isomorphic to 34. This means that n � 4, and the

remaining options are ruled out via inspection of the specific groups.
In case (d), t+1 = (qk−1)/(q−1) < qk, and we know immediately as in the cases

above that k � n < 7. In fact, using the slightly better bound of (t+1)3 < q3k−1, we
obtain that n < (3k2+7k−2)/(4k), which implies that 2 � k = n � 6. If k = n � 5,
then s(t+1)2 > |P|, a contradiction to Lemma 2.3(ii). If n = k = 2, then t+1 = q+1
and |P| = (q + 1)(q2 + 1), which forces s = q. Examining the possible maximal
subgroups of PSp4(q) [5], we see that the only possibility is the classical generalized
quadrangle W(3, q) or its dual, the classical generalized quadrangle Q(4, q). If
k = n = 3, then t+1 = q2+q+1 and |P| = (q+1)(q2+1)(q3+1). By Lemma 2.3(ii),
s(t+1)2 > |P|, which implies that s > q2−q. Moreover, (s+1)(st+1) = |P| implies
that q divides s. Since s � t = q2+q, this implies that either s = q2 or s = t = q2+q.
If s = q2, then (q2+1)(q4+q3+1) = (s+1)(st+1) = |P| = (q2+1)(q4+q3+q+1),
a contradiction. If s = t, then (q + 1)(q2 + 1)(q3 + 1) = |P| = (t + 1)(t2 + 1) ≡ 1
(mod q + 1), a contradiction. Finally, if k = n = 4, then t + 1 = (q4 − 1)/(q − 1)
and |P| = (q+1)(q2 +1)(q3 +1)(q4 +1). By Lemma 2.3(ii), s(t+1)2 > |P|, which
implies that t � s > q4 − q3 + q − 1. This holds only when q = 2, and examination
of the specific group Sp8(2) rules it out.

Finally, for case (e), q = 2 and t+1 = 22(n−k)−1±2n−k−1; then (t+1)3 < 26(n−k),
and 2nk− k− k(k− 1)− k(k+1)/2 < 6(n− k) implies that k = 1, 2. If k = 1, then
22n > 22n − 1 = |P| > (t+ 1)2 > 24n−7, which implies that n < 3.5. However, this
implies that m = n− 1 = 2, and we must have m � 3 for this 2-transitive action, a
contradiction. Thus k = 2, t+ 1 = 22n−5 ± 2n−3, and |P| = 1

3 (2
2n − 1)(22n−2 − 1).

We know that ts2+(t+1)s+1 = |P| and that s is an integer; hence the discriminant
(t+1)2−4t(1−|P|) must be a perfect square. When n � 5, the discriminant divided
by 213 is 1± 2n−3 + 307 · 22n−9 ± 77 · 23n−10 − 1181 · 24n−13 ± 25n−6 + 43n−4, so it
is not a square for n � 5. For n = 2, 3, 4, none of the values of the discriminant are
perfect squares, a contradiction. Hence TP is a maximal parabolic subgroup only
when Q is classical.

Case 2. Next, we have that TP is a C1-subgroup isomorphic to

gcd(2, q − 1).(PSpk(q)× PSp2n−k(q)),

where k is even. Since TP has a 2-transitive action, this implies that either q = 2,
k = 2, or 2n − k = 2. Note that k � n and 2n − k = 2 imply that k = 2, so
whenever q �= 2 we may assume that k = 2. Except for the specific exception n = 2
and q = 3, by Lemma 3.3(iv) we have that t + 1 � (q2n−2 − 1)/(q − 1). On the
other hand, except for the specific exceptions when q = 4, 5, 8, 9, 11, we also have
t + 1 = q + 1, which implies that 2n − 2 � 2, i.e., n = k = 2. If n = k = 2 and
t = q, then |T | = |TP |(s+ 1)(st+ 1) implies that q2 divides s + 1, a contradiction
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to s � t, and the exceptions above are ruled out by inspection. If q = 2, then
TP

∼= Spk(2)×Sp2n−k(2), leaving the following possibilities for t+1: 2k−1±2k/2−1

and 22n−k−1 ± 2n−k/2−1. In any case, t + 1 < 22n−k, and, by [1, Corollary 4.3],

|P| = |T : TP | > 22nk−k2−1. Thus Lemma 2.3(ii) implies that 2nk−k2−1 < 6n−3k.
If k > 3, then this implies that

k � n <
k2 − 3k + 1

2k − 6
=

k

2
+

1

2k − 6
<

k

2
+ 1,

a contradiction. Since k � 3 is even, we have k = 2. We note, however, in this
situation that T� > TP,� � Sp2(2) × PΩε

2n−2(2). This implies that T�
∼= TP and

s = t; however, then s2(t+ 1) > |P|, a contradiction to Lemma 2.1.

Case 3. Suppose that TP is a C2-subgroup of type Sp2n/k(q) wrSk, where 2n/k is

even and k � 2. In particular, this means that Sp2n/k(q) is not solvable. Note

that TP has k composition factors isomorphic to PSp2n/k(q), and, since Sp2n/k(q)
k

is a normal subgroup of TP , either all are composition factors of G
Γ(P )
P or all are

composition factors of G
Γ(�)
P,� . In either case, there is no such 2-transitive group, a

contradiction.
We next assume that TP is a C2-subgroup isomorphic to (q − 1)/2.PGLn(q).2,

where q is odd. In this case, after ruling out the few sporadic possibilities for (n, q)
via inspection, we have that t + 1 = (qn − 1)/(q − 1) < qn. By [1, Lemma 4.2,

Corollary 4.3], we have that |P| > qn
2+n−3. This implies that n2 + n − 3 < 3n, a

contradiction for n � 3. If n = 2, then t+1 = q+1; however, this is a contradiction
to (t+ 1)3 > |P| = |T : TP |.

Case 4. Suppose that TP is a C3-subgroup. By [1, Proposition 4.22] and Lemma 3.3,
we have

(T, TP ) = (PSp4(q),PSp2(q
2)), (PSp6(q),PSp2(q

3)), or (PSU6(q),PSU3(q)).

In the case where TP =PSp2(q
2)∼=PSL2(q

2), the number of points (s+1)(st+1)
= |P| = |T : TP | = q2(q2 − 1), and either the valency t + 1 = |Γ(P )| = q2 + 1 or
q = 2 or 3, and t + 1 = 6. For the former, st + 1 = sq2 + 1 is coprime to q, and
hence s + 1 is divisible by q2. Since s � t, we have s = q2 − 1. However, this is a
contradiction to (s + 1)(st + 1) < q2(q2 − 1) = |P|. Therefore, q = 2 or 3, t = 5,
and T = PSp4(2) or PSp4(3). If q = 2, then

|P| = |T : TP | = 12 < 25 = (t+ 1)2,

a contradiction to Lemma 2.3(ii). If q = 3, then

(s+ 1)(5s+ 1) = |P| = 72,

which has no integral solutions.
For the second case, (s + 1)(st + 1) = |T : TP | is divisible by q9−3 = q6, and

either t+ 1 = q3 + 1, or q = 2, and t + 1 = 28. For the former, gcd(st+ 1, q) = 1,
and so s+1 is divisible by q6, which contradicts the assumption s � t. Thus q = 2,
and T = PSp6(2). This means that

(s+ 1)(27s+ 1) = |P| = 2880,

which has no integral solutions.
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In the third case where TP = PSU3(q), we have t+ 1 = q3 + 1, and t = q3. Now
(s+1)(st+1) = |T : TP | is divisible by q15−3 = q12. It implies that s+1 is divisible
by q12, which is a contradiction since s � t.

Case 5. Let TP be a C5-subgroup. By Lemma 3.3, the only possibility is TP =
Sp2m(2), with q = 2f . The valency is t + 1 = |Γ(P )| = 22m−1 ± 2m−1, and the

number of points (s+1)(st+1) = |P| = |T : TP | is divisible by qm
2

/2m
2

= (2f−1)m
2

.
Since |P| < (t+ 1)3, we conclude that f = 2 and m = 2, namely, T = PSp4(4) and
Tp = PSp4(2). In this case, t + 1 = 6 or 10, and |P| = |T : TP | = 1360 > 103 by
the Atlas [10], which is a contradiction.

Case 6. Let TP be a C6-subgroup. By [1, Proposition 4.22] and noticing that
Ω−

4 (2)
∼= SL2(4) ∼= A5, since TP has a 2-transitive permutation representation,

(T, TP ) = (PSp4(7), 2
4.S5), (PSp4(5), 2

4.A5), or (PSp4(3), 2
4.A5).

In each of these three cases, the valency t+ 1 = |Γ(α)| equals 5, 6 or 16.
Suppose that T = PSp4(7). Then (s+ 1)(st+ 1) = |P| = |T : TP | is larger than

163, and so |P| > (t+ 1)3, which is a contradiction to Lemma 2.3.
In the case where T = PSp4(5), we have (s+1)(st+1) = |P| = |T : TP | = 3·53·13.

Since |P| < (t+ 1)3, it implies that t+ 1 = 16 and t = 15. Thus st+ 1 is coprime
to 15, and so s+ 1 is divisible by 3.53, which contradicts the assumption s � t.

We therefore have T = PSp4(3)
∼= PSU4(2). Furthermore, (s + 1)(st + 1) =

|P| = |T : TP | = 27, which implies that s + 1 = 3 and st + 1 = 9, so s = 2
and t = 4. By Proposition 5.4, we conclude that Q is Q−(5, 2), TP = 24.A5, and
T� = 2.(A4 ×A4).2.

Case 7. Let TP be a C8-subgroup. Hence q is even, and, since G
Γ(P )
P is 2-transitive,

n = 2 and either TP = Ω+
4 (q)

∼= SL2(q) ◦ SL2(q) or TP = Ω−
4 (q)

∼= PSL2(q
2) or

n = 3 and TP = PΩ+
6 (q)

∼= PSL4(q). If TP = Ω+
4 (q), then unless q = 4, 8, we have

t + 1 = q + 1. On the other hand, SL2(q) must be a composition factor of G
Γ(�)
P,� ,

which implies that s + 1 � q2 > t + 1, a contradiction. The cases q = 4, 8 are
ruled out by inspection. If TP = Ω−

4 (q), then unless q = 2 (which is ruled out by
inspection), t + 1 = q2 + 1. On the other hand, |T | = |TP |(s + 1)(st + 1) implies
that q2 divides s + 1 � t + 1 = q2 + 1, which implies that s + 1 = q2. However,
|Sp4(q)| �= q4(q4 − 1)(q4 − q2 + 1), a contradiction. Finally, if TP = PΩ+

6 (q), then
t+1 = (q4−1)/(q−1) unless q = 2 (which is ruled out by inspection). On the other
hand, |T | = |TP |(s+1)(st+1) implies that q3 divides s+1 � t+1 = q3+q2+q+1,
which implies that s+1 = q3, which is a contradiction to |Sp6(q)| = |TP |(s+1)(st+1)
as above.

Therefore, if TP is a maximal geometric subgroup, then Q must be classical, as
desired. �

5.4. Orthogonal groups. We first recall some isomorphism relations between
some small dimensional groups (see [25, Proposition 2.9.1]:

For q odd, Ω3(q) ∼= PSL2(q),
O±

2 (q)
∼= D2(q∓1),

Ω+
4 (q)

∼= SL2(q) ◦ SL2(q),
Ω−

4 (q)
∼= PSL2(q

2),
PΩ+

6 (q)
∼= PSL4(q).
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Table 5. Ruling out examples for Case 1 of Proposition 5.6.

n TP t+ 1 |T |q |TP |q (s+ 1)q

7 O−
4 (q)×O3(q) q2 + 1 q9 q3 q6

7 O+
4 (q)×O3(q) q + 1 q9 q3 q6

7 O+
6 (q) q3 + q2 + q + 1 q9 q6 q3

8 O−
4 (q)×O+

4 (q) q2 + 1 q12 q4 q8

8 O+
6 (q)×O−

2 (q) q3 + q2 + q + 1 q12 q6 q6

8 O−
4 (q)×O−

4 (q) q2 + 1 q12 q4 q8

9 O+
6 (q)×O3(q) q3 + q2 + q + 1 q16 q7 q9

10 O+
6 (q)×O−

4 (q) q3 + q2 + q + 1 q20 q8 q12

12 O+
6 (q)×O+

6 (q) q3 + q2 + q + 1 q30 q12 q18

Proposition 5.6. Assume Hypothesis 5.1. Assume that T = soc(G) is a simple
orthogonal group of dimension at least 7. Then the point stabilizer TP cannot be a
maximal geometric subgroup.

Proof. Let Q be of order (s, t). Without loss of generality, assume that s � t.
Let T = PΩε

n(q), where n � 7. By Corollary 4.7, the stabilizer of a point TP

satisfies |T | < |TP |3. The geometric subgroups satisfying this condition are listed
in [1, Proposition 4.23], and we proceed down the list.

Case 1. Assume first that TP is a stabilizer of a nonsingular subspace of dimension
2k, where k � n/2. Since GP has a 2-transitive representation, we have

(a) if n = 2m+ 1, then either
n = 7, and TP = O−

4 (q)×O3(q), or O
+
4 (q)×O3(q), or O

+
6 (q), or

n = 9, and TP = O+
6 (q)×O3(q);

(b) if n = 2m and T = PΩ−
2m(q), then either

n = 8, and TP = O+
4 (q)×O−

4 (q), or O
+
6 (q)×O−

2 (q), or
n = 10, and TP = O+

6 (q)×O−
4 (q);

(c) if n = 2m and T = PΩ+
2m(q), then either

n = 8, and TP = O−
4 (q)×O−

4 (q), or
n = 12, and TP = O+

6 (q)×O+
6 (q).

We proceed uniformly in each case. Except for the finite number of cases when

the action of T
Γ(P )
P is not the natural action of PSLn(q) on 1-dimensional projective

subspaces (each of which is ruled out by inspection), we have t + 1 as in Table 5.
However, this means that q divides t, and since |T | = |TP |(s+ 1)(st+ 1), we have
(s + 1)q = |T |q/|TP |q as in Table 5. In each case except n = 7 and TP = O+

6 (q),

this implies that s > t, a contradiction. When n = 7 and TP = O+
6 (q), since s � t,

we have s+ 1 = q3. However, this implies that

|PΩ7(q)| = |Ω6(q)| · q3((q3 − 1)(q3 + q2 + q) + 1),

a contradiction.
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Case 2. Let TP be the stabilizer Pk of a totally singular k-space. Consider first
the case n = 2d + 1. Noticing the isomorphisms listed at the beginning of this
subsection, the possible candidates are as follows:

k = d and TP = qd(d−1)/2.qd.GLd(q), or
k = d− 1 and TP = q(d−1)(d−2)/2.q3(d−1).(GLd−1(q)×O3(q)).

By Lemma 5.2, we have

|P| =
[
d

k

]
q

k∏
i=1

(qd+1−i + 1) =
(q2d − 1) · · · (q2(d−k+1) − 1)

(qk − 1) · · · (q − 1)

>
q2d−1 · · · q2d−2k+1

qk · · · q = q2dk−
k(3k−1)

2 .

On the other hand, examining the structure of TP we note that t+ 1 � qk. Hence
by Lemma 2.3(ii) we have

2dk − k(3k − 1)

2
< 3k,

which implies that

4d < 3k + 5.

Since k � d, this implies that d < 5 and hence d = 3, 4. Substituting these values
back into 4d < 3k + 5 also yields k = d, and hence TP = qd(d−1)/2.qd.GLd(q) for
3 � k = d � 4.

Suppose first that k = d = 3. Note that t+ 1 = q3 or q2 + q + 1 and

(s+ 1)(st+ 1) = |P| = (q3 + 1)(q2 + 1)(q + 1).

By Lemma 2.2, since s + 1 is coprime to q, it follows that q6 must divide |T�|,
which implies that T� is a C1-subgroup. Note that T� �= Ω±

6 (q) since we have a
contradiction to Lemma 3.3 in the “−” case and s > t in the “+” case. This
implies that T� is also a parabolic subgroup. Since s � t, |TP | � |T�|, and so
T� = P2 or P3. If T�

∼= TP , then Lemma 2.2 implies that s+1 = t+1 = q2 + q+1,
since s+ 1 is coprime to q. On the other hand, this implies that

(q3 + 1)(q2 + 1)(q + 1) = |P| = (q2 + q + 1)((q2 + q)2 + 1),

which has no real roots for q � 3. Hence T� = P2. This implies that |L| =
(q6 − 1)(q2 + 1)/(q − 1) is coprime to q by Lemma 5.2, and so t + 1 = q2 + q + 1.
Hence

(q2 + q + 1)(s(q2 + q) + 1) = |L| = (q6 − 1)(q2 + 1)/(q − 1),

which implies that s = (q4 + q2 + q)/(q + 1) > q2 + q = t, a final contradiction.
Suppose now that k = d = 4. Thus t+ 1 = q4 or (q4 − 1)/(q − 1) and

|P| = (q4 + 1)(q3 + 1)(q2 + 1)(q + 1)

by Lemma 5.2. If t + 1 = (q4 − 1)/(q − 1), then (t+ 1)3 < |P|, a contradiction to
Lemma 2.3(ii). Hence t+1 = q4. In this case, Lemma 2.1(ii) implies that (s+q4−1)
divides s(q4 − 1)q4(s+ 1). Now,

s(q4 − 1)q4(s+ 1)− (s+ q4 − 1)(sq4(q4 − 1) + q4(q4 − 1)) = −2q4(q4 − 1),

so s+q4−1 must divide 2q4(q4−1). Examining (s+1)(st+1) = |P|, we see that q
divides s2, and so q is coprime to s+q4−1, and s+q4−1 must divide 2(q4−1). Thus
for some positive integer m, m(s+ q4 − 1) = 2(q4 − 1) and ms = (2−m)(q4 − 1).
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This implies that m = 1 and s = t, but then s2(t + 1) > |P|, a contradiction to
Lemma 2.3(ii).

Next we consider the case n = 2d and T = PΩ−
2d(q). Upon consideration of the

isomorphisms listed at the beginning of this subsection, the possible candidates are
as follows:

k = d− 1 and TP = q(d−1)(d−2)/2.q2(d−1).(GLd−1(q)×O−
2 (q)), or

k = d− 2 and TP = q(d−2)(d−3)/2.q4(d−2).(GLd−2(q)×O−
4 (q)).

We start as in the n = 2d+ 1 case and find by Lemma 5.2 that

|P| > q2dk−
(3k−2)(k+1)

2 .

Noting again that t+1 � qk, by Lemma 2.3(ii) we have 4d < 3k+7. Since k � d−1,
this means that 4d < 3(d− 1) + 7 and d � 3, a contradiction to n � 7.

Finally, we consider the case n = 2d and T = PΩ+
2d(q). Noticing the isomor-

phisms listed at the beginning of this subsection, the possible candidates are as
follows:

k = d and TP = qd(d−1)/2. 1
q−1GLd(q), or

k = d− 2 and TP = q(d−2)(d−3)/2.q4(d−2).(GLd−2(q)×O+
4 (q)), or

k = d− 3 and TP = q(d−3)(d−4)/2.q6(d−3).(GLd−3(q)×O+
6 (q)).

We start again as in the n = 2d+ 1 case and find by Lemma 5.2 that

|P| > q2dk−
3k(k+1)

2 .

Noting again that t+ 1 � qk, by Lemma 2.3(ii) we have 4d < 3k + 9. If k � d− 2,
then 4d < 3d+3, a contradiction to d � 4. Hence we have k = d and 4 � k = d � 8.
In each case, t+ 1 = qd or t+ 1 = (qd − 1)/(q − 1) and

|P| = 2(qd + 1)(qd−1 + 1) · · · (q + 1).

We rule out k = d = 7 and k = d = 8 by noting that

(t+ 1)3 � q3d < |P|,

a contradiction to Lemma 2.3(ii).
Suppose that k = d = 4. If t + 1 = q4, then (t + 1)2 > |P|, a contradiction to

Lemma 2.3(ii). Hence t+ 1 = q3 + q2 + q + 1, and by Lemma 2.2, |T�|q = q12 and
T� is a parabolic subgroup. Since s � t, |TP | � |T�|, and k �= 3, we have TP

∼= T� or
T� = P2. If T� = P2, since s2 � t, we see that s+ 1 = q2, which is a contradiction
since |P| = (s + 1)(st + 1) is coprime to q. If TP

∼= T�, we see that s + 1 = t + 1
by Lemma 2.2, a contradiction to |P| = (s+ 1)(st+ 1) since |P| ≡ 2 (mod q) but
(s+ 1)(st+ 1) ≡ 1 (mod q).

Suppose that k = d = 5. If t+ 1 = q5, then since |P| is coprime to q by Lemma
2.2, we see that |T�|q = q15. However, this and Lemma 3.3 rule out all possible
maximal subgroups (see [5, Tables 8.66, 8.67]). Hence t+ 1 = (q5 − 1)/(q− 1). We
reach a contradiction by precisely the same reasons as the case k = d = 4.

Finally, suppose that k = d = 6. First, if t + 1 = (q6 − 1)/(q − 1), then
(t+ 1)3 < |P|, a contradiction to Lemma 2.3(ii). Second, if t + 1 = q6, then since
|P| is coprime to q by Lemma 2.2, |T�|q = q24. However, this and Lemma 3.3 rule
out all possible maximal subgroups (see [5, Tables 8.82, 8.83]).
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Table 6. Ruling out examples for Case 4 of Proposition 5.6.

n TP t+ 1 |T |q |TP |q (s+ 1)q

8 O+
4 (q

2) q2 + 1 q12 q4 q8

8 O−
4 (q

2) q4 + 1 q12 q4 q8

12 O+
6 (q

2) (q8 − 1)/(q2 − 1) q30 q12 q18

Case 3. Suppose that TP is a C2-subgroup. Then:
(a) T = PΩ7(q), and TP = O3(q) wrS2;

(b) T = PΩ9(q), and TP = O±
4 (q) wrS2;

(c) T = PΩ13(q), and TP = O+
6 (q) wrS2;

(d) T = PΩ−
8 (q), and TP = O±

4 (q) wrS2;

(e) T = PΩ+
8 (q), and TP = O±

4 (q) wrS2;

(f) T = PΩ±
12(q), and TP = O+

6 (q) wrS2.

In particular, in each case Oε
k(q) is not solvable. Note that TP has two composi-

tion factors isomorphic to PΩε
k(q), and, since Oε

k(q)×Oε
k(q) is a normal subgroup

of TP , either all are composition factors of G
Γ(P )
P or all are composition factors of

G
Γ(�)
P,� . In either case, there is no such 2-transitive group, a contradiction.

Case 4. Let TP be a C3-subgroup. By [1, Proposition 4.23], we have the candidates

(a) T = PΩ+
8 (q), and TP = O+

4 (q
2);

(b) T = PΩ−
8 (q), and TP = O−

4 (q
2);

(c) T = PΩ+
12(q), and TP = O+

6 (q
2).

We proceed uniformly in each case. We have t+ 1 as in Table 6 except possibly
for the cases q = 2, 3 when n = 8 and TP = O+

4 (q
2), and these are ruled out by

inspection. However, this means that q divides t, and since |T | = |TP |(s+1)(st+1),
we have (s + 1)q = |T |q/|TP |q as in Table 6. In each case, this implies that s > t,
a contradiction.

Case 5. If TP is a C4-subgroup, then n = 8 and TP = Sp4(2)×Sp2(2) or n = 12 and
Sp6(2)×Sp2(2). In each case, we have t+1 = 2n/2−1±2n/4−1 and (s+1)(st+1) =
|P| = |Spn(2) : Spn/2 × Sp2(2)| implies s > t, a contradiction.

Case 6. The subgroup TP is not a C5-subgroup since GP has a 2-transitive permu-
tation representation.

Case 7. For the case that we have a C6-subgroup, we have T = PΩ+
8 (3), and

TP = 26.Ω+
6 (2). However, (t + 1)3 � 218 < |T : TP | = |P|, a contradiction to

Lemma 2.3(ii).

Case 8. Finally, for C7-subgroups, we have T = PΩ+
8 (q), and TP = Sp2(q) wrS3

with q � 27 even. However, this implies that either G
Γ(P )
P or G

Γ(�)
P,� has three

composition factors isomorphic to PSp2(q), a contradiction. �
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6. C9-subgroups of classical groups

Proposition 6.1. Assume Hypothesis 5.1. Then the point stabilizer TP cannot be
a C9-subgroup.

Proof. From [1, Proposition 4.28], we list the possibilities in Table 7 and apply the
simple inequality from Lemma 2.3(i). We then look at the leftover cases in Table
8, and we can solve for s, since |T : TP | = (s + 1)(st + 1). In most cases, the
discriminant Δ := (t + 1)2 − 4t(1 − |T : TP |) is not a square, and the remaining
case, (T, t + 1) = (PSL2(19), 6), yields no solution for s. Therefore, there are no
examples in this case. �

Table 7. Possibilities for (T, TP ) arising from [1, Proposition 4.28]
in the proof of Proposition 6.1.

T TP t+ 1 (t+ 1)2 < |T : TP | < (t+ 1)3?

PΩ+
14(2) A16 16 false

PSp12(2) S14 14 false
PΩ−

11(2) A13 13 false
PΩ−

10(2) A12 12 false
PSp8(2) S10 10 false
PΩ+

8 (2) A9 9 false
PΩ7(3) Sp6(2) 28, 36 true
PΩ7(3) S9 9 false
PSU6(2) M22 22 false
PSp6(2) PSU3(3).2 28 false
PSL4(2) A7 7 false
PSU4(3) A7 7 false
PSU4(3) PSL3(4) 21 false
PSp4(2)

′ A5 5, 6 false
PSL3(4) A6 6 true
PSL3(4) A6 10 false
PSU3(5) A7 7 true
PSU3(5) M10 10 true
PSU3(3) PSL2(7) 7, 8 false
PSL2(9) A5 5, 6 false
PSL2(11) A5 5, 6 false
PSL2(19) A5 5, 6 true
PSp4(q)

′ 2B2(q), q = 2f , f odd q2 + 1 true

7. Novelty maximal subgroups of classical groups

Let S be a finite nonabelian simple group and let A be an almost simple group
with socle S. If M is a maximal subgroup of A, then M ∩ S is not necessarily a
maximal subgroup of S. In the case that M ∩ S is not maximal in S, we say that
M is a novelty. This section deals with the case that GP is a novelty subgroup
of G.
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Table 8. The remaining possibilities for (T, TP ) in the proof of
Proposition 6.1 from Table 7, after consideration of the discrimi-
nant.

T TP t+ 1 Δ

PΩ7(3) Sp6(2) 28, 36 341848
PSL3(4) A6 6 443416
PSU3(5) A7 7 1136
PSU3(5) M10 10 6364
PSL2(19) A5 5 921
PSL2(19) A5 6 1156
PSp4(q)

′ 2B2(q), q = 2f , f odd q2 + 1 (q − 1)(q + 1)2(4q4 + q − 1)

First we look at the case that GP is a C1-subgroup. Let n be the dimension of
the natural module for G.

Proposition 7.1. Suppose T ∼= PSLn(q). Then GP cannot be a novelty C1-
subgroup of G.

Proof. Suppose that T ∼= PSLn(q), where n � 3. We have three cases:

(i) TP is a Pk type subgroup. We may assume without loss of generality that
k � n/2 (since we can apply the standard duality/graph automorphism to
the case k > n/2). We know that t+1 � (qk−1)/(q−1). By Lemma 2.3(i)
we must have

(qn/2 − 1)3

(q − 1)3
� (qk − 1)3

(q − 1)3
� (t+ 1)3 > |P| �

[
n

k

]
q

,

and this immediately leads to a contradiction.
(ii) TP is a GLm(q)⊕GLn−m(q) type subgroup. Here m < n/2. We know that

n−m > m, so t+1 � (qn−m − 1)/(q− 1). By Lemma 2.3(i) we must have

(qn−m − 1)3/(q − 1)3 � (t+ 1)3 > |P| >
[
n

m

]
q

,

and this immediately implies that m = 1, 2. Suppose that m = 1. Then
we can be sure about the value of t + 1; it is (qn−1 − 1)/(q − 1). Now
|P| = qn−1(qn − 1)/(q − 1), and by Lemma 2.3(ii), s2(t+ 1) < |P| implies
that

s2 < qn−1 qn − 1

qn−1 − 1

and hence s � qn/2+1. On the other hand, (s+1)(st+1) = |P|, and st+1
is coprime to q, which implies that qn−1 divides s+1, a contradiction. Now
suppose m = 2. Necessarily n � 5 and t+ 1 = (qn−2 − 1)/(q − 1). Then

|P| = q2(n−2) (q
n − 1)(qn−1 − 1)

(q − 1)(q2 − 1)
� q2(n−2) · (qn−2)2,

and by Lemma 2.3(ii), s2(t+ 1) < |P| implies that

s2 � q2(n−2) (q
n − 1)(qn−1 − 1)

(q2 − 1)(qn−2 − 1)
� q3n−4.
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On the other hand, (s+ 1)(st+ 1) = |P|, and st+ 1 is coprime to q, which
implies that q2(n−2) divides s + 1. Note that s �= 2, since otherwise we
would have q2(n−2) = 3. For s � 3, we have (s+ 1)2 � 2s2 and hence

q4(n−2) � (s+ 1)2 � 2s2 � 2q3n−4.

The only solution is q = 2 and n = 5. Then |P| = 9920, but there do not
exist s and t with

√
s � t � s2 such that (s+1)(st+1) = 9920. Therefore,

TP cannot be a GLm(q)⊕GLn−m(q) type subgroup.
(iii) TP is a Pm,n−m type subgroup. We now assume that TP is a Pm,n−m type

subgroup in PSLn(q). Since TP must have a 2-transitive action on t + 1
points, it follows that t+1 is either (qm−1)/(q−1) or (qn−2m−1)/(q−1).
If t + 1 = (qm − 1)/(q − 1), then again using Lemma 2.3(i), we see that[
n
m

]
q
< |P| < (qm − 1)3/(q − 1)3 < q3n/2. This implies that m = 1,

a contradiction to t � 2. If t + 1 = (qn−2m − 1)/(q − 1), then a simi-
lar argument immediately implies that m = 1, 2. When m = 2, |P| =
(qn − 1)(qn−1 − 1)(qn−2 − 1)(qn−3 − 1)/((q2 − 1)(q2 − 1)(q − 1)(q − 1))
and t + 1 = (qn−4 − 1)/(q − 1). However, (t + 1)3 < |P| in this case, a
contradiction. Hence we assume that m = 1 and t+1 = (qn−2−1)/(q−1).
We note that |P| = (qn − 1)(qn−1 − 1)/(q − 1)2, and by Lemma 2.3(ii) we

find that s <
√
2qn/2. We also note that

TP
∼= [q2n−3] : [a+1,1,n−1/ gcd(q − 1, n)].(PSL1(q)

2 × PSLn−2(q)).[b
+
1,1,n−2]

(see [25, Proposition 4.1.22] for details). Note that t+1=(qn−2− 1)/(q− 1)
implies that the kernel of the action of TP on its neighbors contains the
full subgroup [q2n−3] : PSLn−3(q), which is a subgroup of T�. Note that
this implies that T� > [q2n−3] : PSLn−3(q), and we deduce that T� is a
C1-subgroup of T with m � 3. However, in all cases this forces s+ 1 to be
larger than

√
2qn/2, a contradiction. Thus TP cannot be a Pm,n−m type

subgroup in PSLn(q). �

Proposition 7.2. Suppose T ∼= PΩ+
n (q). Then TP cannot be a novelty C1-subgroup

of T , unless TP is a Pn/2 type subgroup and n � 12.

Proof. We have the following cases:

(i) TP is a Pk type subgroup, k � n/2. Since TP must have a 2-transitive
action on t+1 points, it follows that t+1 is (qk−1)/(q−1). We also know
from Lemma 5.2 that |P| is[

n/2

k

]
q

k∏
i=1

(qn/2−i + 1).

Using Lemma 2.3(i), we see that[
n/2

k

]
q

k∏
i=1

(qn/2−i + 1) < (qk − 1)3/(q − 1)3,

which implies2 that k = n/2 and n � 12.

2|P| �
[n/2
n/2

]∏n/2
i=1(q

n/2−i + 1) > q3n/2 � (t+ 1)3 when n � 13.
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(ii) TP is a GOε′

k (q) ⊥ GOε′

n−k(q) type subgroup, k � n/2. In order for TP

to have a 2-transitive action, we must have ε′ = − and either k = 4 or
n− k = 4. Hence t+ 1 = q2 + 1. Now |TP | is at least

|Ω−
4 (q)|2 = gcd(2, q − 1)2q4(q4 − 1)2

and |TP | < (t+ 1)3 (by Lemma 2.3(i)). However, q4(q4 − 1)2 � (q2 + 1)3 if
and only if q2 � 1, a contradiction. Therefore, this case does not arise.

(iii) q is even and TP is a Spn−2(q) type subgroup. In order for TP to have a

2-transitive action, we must have q = 2, n−2 � 6 and t+1 = 2n−3±2n/2−3.
Now |TP | is

|Spn−2(2)| = 2(n−2)2/4

(n−2)/2∏
i=1

(22i − 1),

which in turn is at least 29(22 − 1)(24 − 1)(26 − 1) = 1451520 (by taking
n− 2 = 6). The bound |TP | � (t+1)3 (Lemma 2.3(i)) immediately implies
that n � 10. The bound (t+1)2 � |TP | (Lemma 2.3(i)) implies that n � 10,
and hence n = 10. Therefore, |T : TP | = |PΩ+

10(2) : Sp8(2)| = 496 and so
we have

(s+ 1)(st+ 1) = 496

where t = 124 or t = 132. We have two quadratic equations in s, both of
which have no integer solutions. So this case does not arise. �

Proposition 7.3. For n � 12, GP cannot be a novelty C1-subgroup of G.

Proof. For a classical simple group T , we will write T̄ for its preimage in the
associated matrix group. Likewise, for a subgroup H of T , the notation H̄ will
denote the preimage of H in T̄ . By looking through the tables in Bray, Holt,
Roney-Dougal [5], and excluding the examples that do not satisfy the conclusions
of Propositions 7.1 and 7.2, we see that (T̄ , T̄P ) can only be the following: (i)
(Ω+

8 (q),
1

gcd(q−1,2) ×G2(q)) or (ii) (Ω3(9), D10).

For the case (T̄ , T̄P , t+1) = (Ω3(9), D10, 5), we have (s+1)(4s+1) = 36, which
has no integer solutions for s. In the case that T̄P = 1

gcd(q−1,2) × G2(q), since

TP must have a 2-transitive action, we must have q = 2. Then t + 1 = 28 and
|T : TP | = 14400. So 14400 = (s + 1)(27s + 1), which has no integer solutions in
s. �

Lemma 7.4. Let Ḡ be a nearly simple subgroup of GLn(q), and let G be the image
of Ḡ upon factoring out by the scalars Z of GLn(q). Let T be the socle of G,
let U be a subgroup of T , and let T̄ and Ū be the full preimages of T and U . If
|T | < |U |2 · |Out(T )|, then

|T̄ | < |Ū |2 · |Out(T )| · (q − 1).

Proof. Suppose |T | < |U |2 · |Out(T )|. Then
|T̄ | = |T ||T̄ ∩ Z| < |U |2 · |Out(T )||T̄ ∩ Z|

= |Ū : Ū ∩ Z|2 · |Out(T )||T̄ ∩ Z| � |Ū |2 · |Out(T )| · (q − 1).

�

Proposition 7.5. For n � 12, GP cannot be a novelty subgroup of G.
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Proof. By Proposition 7.3, GP is not a C1-subgroup. In Table 9, we summarize
the novelties outlined in the tables in Bray, Holt, Roney-Dougal [5], apart from
C1-subgroups. Let δ = |T̄ ∩ Z(GLn(q))|. We first apply the restriction that |T̄ | <
|T̄P |2|Out(T )|(q − 1).

Table 9. Possibilities for (T̄ , T̄P ) upon consideration of the bound
|T̄ | < |T̄P |2|Out(T )|(q − 1) in the proof of Proposition 7.5.

T̄ T̄P Conditions Bound?

Ω−
12(q) PSL3(3) q = p ≡ ±2,±5,±6 (mod 13),

p ≡ ±5 (mod 13)
false

Ω+
12(q) 2× PSL3(3) q = p ≡ ±1,±3,±4 (mod 13),

q �= 3
false

2.M12 q = p ≡ ±5,±7,±11 (mod 24) false
Ω+

2 (5)
6.210.S6 q = 5 false

Ω−
2 (3)

6.210.S6 q = 3 false
Ω+

4 (q)× SO3(q) q � 5, q odd false
SU12(q) δ ◦ 6.A6 q = p ≡ 11, 14 (mod 15) false
SL12(q) δ ◦ 6.A6 q = p ≡ 1, 4 (mod 15) false

12 ◦ 6.A6 q = p2, p ≡ 2, 3 (mod 5),
p �= 2, 3

false

SL11(2) PSL2(23) – false
Ω−

10(q) 2×A6 q = p ≡ 7 (mod 11) false
2×A6.21 q = p ≡ 7 (mod 11), q �= 7 false
δ × PSL2(11) q = p ≡ 2, 6, 7, 8, 10 (mod 11),

q �= 2, 7, d = 1, 2
false

2.PSL3(4) q = 7 false
M12 q = 2 false
Ω−

2 (3)
5.28.S5 q = 3 false

Ω+
10(q) 2×A6 q = p ≡ 5 (mod 12) false

2×A6.21 q = p ≡ 1 (mod 12) false
d× PSL2(11) q = p ≡ 1, 3, 4, 5, 9 (mod 11),

q �= 3, d = 1, 2
false

Ω+
2 (5)

5.28.S5 q = 5 false

SL5(q).
q−1
δ – true

SU10(q) δ ◦ 2.PSL3(4) q = p ≡ 5, 13, 17 (mod 28) false
δ ◦ 2.PSL3(4).22 q = p ≡ 3, 19, 27 (mod 28),

q �= 3
false

SL10(q) δ ◦ 2.PSL3(4) q = p ≡ 11, 15, 23 (mod 28) false
δ ◦ 2.PSL3(4).22 q = p ≡ 1, 9, 25 (mod 28) false

SU9(2) 3× PSL2(19) – false
Ω+

8 (q) 27 : A8 q = p ≡ ±3 (mod 8) true:
q = 3

24.26.PSL3(2) q = p odd false
Ω+

2 (5)
4.43.S4 q = 5 false

Ω−
2 (3)

4.43.S4 q = 3 false
(D2(q2+1)

δ

)2.δ.S2 – false
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Ω−
6 (q)

gcd(q+1,4)
2 ×PSL2(7) q = p ≡ 3, 5, 6 (mod 7), q �= 3 false

1
4GO−

2 (3)
3.S3 q = 3 true

Ω+
6 (q)

gcd(q−1,4)
2 ×PSL2(7) q = p ≡ 1, 2, 4 (mod 7), q �= 2 false

1
4GO+

2 (5)
3.S3 q = 5 false

1
δGL3(q) – true

Sp6(q) 2.A5 q = p ≡ ±11,±19 (mod 40) false
2.A7 q = 9 false
2× U3(3) q = p ≡ ±19,±29 (mod 40) false

SU6(q) 2× 3.A6 q = p ≡ 11, 17 (mod 24) false
2× 3.A6.23 q = p ≡ 5, 23 (mod 24) false
6.A6 q = p ≡ 17, 23, 41, 47 (mod 48) false
6.PSL3(4) q = p ≡ 11, 17 (mod 24) false
35.S6 q = 2 true
SU2(2

3).3.2 q = 2 false
SL6(q) 2× 3.A6 q = p ≡ 7, 13 (mod 24) false

2× 3.A6.23 q = p ≡ 1, 19 (mod 24) false
6.A6 q = p ≡ 1, 7, 25, 31 (mod 48) false
6.A6 q = p2 ≡ 5, 11, 13, 19 (mod 24) false
6.PSL3(4) q = p ≡ 7, 13 (mod 24) false

Ω5(7) PSL2(7) – false
SL5(3) PSL2(11) – false
Ω−

4 (3) D10 – true
Sp4(2) 5 : 4 – true

D8 × 2 – false
Sp4(q),
q > 2
even

[q4] : C2
q−1 – true

C2
q−1 : D8 q �= 4 false

C2
q+1 : D8 – false

Cq2+1 : 4 – false
Sp4(7) SL2(7) – false
SU4(q) gcd(q + 1, 4)◦

2.PSL2(7)
q = p ≡ 3, 5, 6 (mod 7), q �= 3 false

43.S4 q = 3 true
SL2(9).2 q = 3 true

SL4(q) gcd(q − 1, 4)◦
2.PSL2(7)

q = p ≡ 1, 2, 4 (mod 7), q �= 2 false

43.S4 q = 5 false
SL2(3)

2 : 2.2 q=3 true
Ω3(q) A4 q = p ≡ ±11,±19 (mod 40) true:

q=11, 19
SU3(5) 3× PSL2(7) – true

62 : S3 – true
21 : 3 – false
31+2
+ : Q8.3 – true

SL3(4) 21 : 3 – true
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Table 10. Leftover cases in the proof of Proposition 7.5.

T̄ T̄P T̄ T̄P

Ω+
10(q) SL5(q).

q−1
gcd(q−1,2) SU4(3) 43.S4

Ω+
6 (q)

1
gcd(q−1,2)GL3(q) SL2(9).2

Ω+
8 (3) 27 : A8 SL4(3) SL2(3)

2 : 2.2
Ω−

6 (3)
1
4GO−

2 (3)
3.S3 Ω3(11) A4

SU6(2) 35.S6 Ω3(19) A4

Ω−
4 (3) D10 SU3(5) 3× PSL2(7)

Sp4(q) [q4] : C2
q−1, q > 2 even 62 : S3

Sp4(2) 5 : 4 31+2
+ : Q8.3

SL3(4) 21 : 3

Hence the cases leftover are those given by Table 10. We now apply the restriction
(t+1)2 < |T : TP | < (t+1)3, together with the fact that GP induces a 2-transitive
subgroup of degree t+1. Note that t+1 > 2, so the group of order 2 is ruled out as
a possible 2-transitive permutation group. The cases Ω−

4 (3) and SL3(4) are ruled
out as the groups D10 and 21 : 3 do not act 2-transitively on a set of size greater
than 2.

So the only cases (from Table 11) we are left with are (T, TP ) = (Ω3(11), A4)
where the degree is 55 and t+1 = 4, and (T, TP ) = (Sp4(2), 5 : 4) where the degree
is 36 and t+ 1 = 5. For both of these cases, we solve for s, since (s+ 1)(st+ 1) is
equal to the degree d. The discriminant of this quadratic in s is

Δt,d := (t− 1)2 + 4dt.

• (T, TP ) = (Ω3(11), A4) where d = 55 and t = 3. Here, Δt,d = 664, which is
not a square. So this case does not arise.

• (T, TP ) = (Sp4(2), 5 : 4) where d = 36 and t = 4. Here, Δt,d = 585, which
is not a square. So this case does not arise either. �

Proposition 7.6. For n � 13, GP cannot be a novelty subgroup of G.

Proof. We consider first the subgroups listed in [25, Table 3.5.I]. In the first two
cases, we have Sp2(q) wrSr < PΩ+

2r(q), where q � 4 and even. Assuming that
q = 2k and using [1, Lemma 4.3] and Corollary 4.7, we see that

2k2
r−1(2r−1)−3 < |PΩ2r(2

k)| < |Sp2(q) wrSr|3 < 2r
2+3kr,

which implies that k < 3(r2 + 1)/(2r−1(2r − 1) − 9r) � 17/28, a contradiction to
4 � q = 2k. The final case in [25, Table 3.5.I], where Sp4(q) wrSr < PΩ+

4r(q), is
ruled out in precisely the same manner.

We now consider the subgroups listed in [25, Table 3.5.H]. We rule out nearly all
cases in a similar manner: we bound t+1 from above by examining the possible 2-
transitive actions of our putative TP and show that in fact (t+1)3 � |T : TP | = |P|,
a contradiction to Lemma 2.3. For instance, we consider the case when TP is a
subgroup of type GL1(2) wrSn. This means that t+ 1 � n, and so by Lemma 2.3
and [1, Lemma 4.3] we have

n3 � (t+ 1)3 > |P| = |T : TP | >
2n

2−2

n!
.
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Table 11. Leftover cases in the proof of Proposition 7.5 after
consideration of the bound (t+ 1)2 < |T : TP | < (t+ 1)3.

T̄ T̄P t+ 1 |T̄ : T̄P | Bound?

Ω+
10(q) SL5(q).

q−1
gcd(q−1,2)

(q5 − 1)/(q − 1) q10(q + 1)(q2 + 1)(q3 + 1)(q4 + 1) false

Ω+
6 (q)

1
gcd(q−1,2)

GL3(q) (q3 − 1)/(q − 1) q3(q + 1)(q2 + 1) false

Ω+
8 (3) 27 : A8 8 3838185 false

Ω−
6 (3)

1
4
GO−

2 (3)
3.S3 3, 4 8505 false

SU6(2) 35.S6 6 157696 false
Sp4(2) 5 : 4 5 36 true

Sp4(2
f ) [24f ] : C2

2f−1 � 24f (2f + 1)2(22f + 1) false

SU4(3) 43.S4 3, 4 8505 false
SL2(9).2 10 36288 false

SL4(3) SL2(3)
2 : 2.2 3 5265 false

Ω3(11) A4 4 55 true
Ω3(19) A4 4 285 false
SU3(5) 3× PSL2(7) 7, 8 750 false

31+2
+ : Q8.3 9 1750 false

62 : S3 3, 4 1750 false

This implies that 2n
2−2 < nn+3, which does not hold for n � 13.

We will now consider the possible TP listed in [25, Table 3.5.H] such that the
group has a 2-transitive action on more than n points. First, we suppose that
T ∼= PSLn(q) and TP is a GLm(q) ⊕ GLn−m(q) type subgroup. We know that
n − m � m, so t + 1 � (qn−m − 1)/(q − 1). By Lemma 2.3(i) we must have
(qn−m − 1)3/(q − 1)3 � (t + 1)3 > |P| >

[
n
m

]
q
, and this immediately implies

that m = 1, 2. Suppose that m = 1. Then |P| = qn−1(qn − 1)/(q − 1), and by
Lemma 2.3(ii), s2(t + 1) < |P| implies that s � qn/2 + 1. On the other hand,
(s + 1)(st + 1) = |P|, and st + 1 is coprime to q, which implies that qn−1 divides
s+ 1, a contradiction. A similar argument also rules out m = 2, and so TP cannot
be a GLm(q)⊕GLn−m(q) type subgroup.

We now assume that TP is a Pm,n−m type subgroup in PSLn(q). Since TP

must have a 2-transitive action on t + 1 points, it follows that t + 1 is either
(qm − 1)/(q − 1) or (qn−2m − 1)/(q − 1). If t + 1 = (qm − 1)/(q − 1), then again
using Lemma 2.3(i), we see that

[
n
m

]
q
< |P| < (qm − 1)3/(q − 1)3 < q3n/2. This

implies that m = 1, a contradiction to t � 2. If t + 1 = (qn−2m − 1)/(q − 1),
then a similar argument immediately implies that m = 1, 2. When m = 2, |P| =
(qn − 1)(qn−1 − 1)(qn−2 − 1)(qn−3 − 1)/((q2 − 1)(q2 − 1)(q− 1)(q− 1)) and t+1 =
(qn−4 − 1)/(q − 1). However, (t + 1)3 < |P| in this case, a contradiction. Hence
we assume that m = 1 and t + 1 = (qn−2 − 1)/(q − 1). We note that |P| =

(qn−1)(qn−1−1)/(q−1)2, and by Lemma 2.3(ii) we find that s <
√
2qn/2. We also

note that TP
∼= [q2n−3] : [a+1,1,n−1/ gcd(q − 1, n)].(PSL1(q)

2 × PSLn−2(q)).[b
+
1,1,n−2]

(see [25, Proposition 4.1.22] for details). Note that t+1 = (qn−2−1)/(q−1) implies
that the kernel of the action of TP on its neighbors contains the full subgroup
[q2n−3] : PSLn−3(q), which is a subgroup of T�. Note that this implies that T� >
[q2n−3] : PSLn−3(q), and we deduce that T� is a C1-subgroup of T with m � 3.

However, in all cases this forces s + 1 to be larger than
√
2qn/2, a contradiction.

Thus TP cannot be a Pm,n−m type subgroup in PSLn(q).



1594 JOHN BAMBERG, CAI HENG LI, AND ERIC SWARTZ

We now assume that TP is a Pn/2−1 subgroup in PΩ+
n (q). This forces t + 1 to

be (qn/2−1 − 1)/(q − 1) or qn/2−1. However, by Lemma 5.2, we see that |P| =[ n/2
n/2−1

]
q

∏n/2−1
i=1 (qn/2−i + 1) > q3n/2−3 � (t+ 1)3, a contradiction.

Now assume that TP is a GLn/2(q).2 type subgroup of PΩ+
n (q), where n/2 is odd.

However, this implies that t+1=(qn/2−1)/(q−1) and |P|�
[n/2
n/2

]
q

∏n/2
i=1(q

n/2−i+1)

> q3n/2 � (t+ 1)3 when n � 13, a contradiction to Lemma 2.3(i).
Next, we assume that TP is a subgroup of type Sp2(2) × Spn/2(2) in PΩ+

n (2).

This implies that t + 1 � 2n/4−1(2n/4 + 1) < 2n/2. Again, we use [1, Lemma 4.3]
to see that

|P| = |T : TP | > 2
3n2

4 − 3n
2 −6.

By Lemma 2.3, this means that

2
3n2

4 − 3n
2 −6 < |P| < (t+ 1)3 < 2

3n
2 ,

which does not hold for n � 13.
We now consider the case that TP is a subgroup of type O+

4 (q)⊗Oε
n/4(q), where

q is odd. By Lemma 3.3, since n � 13, n/4 must be 4 or 5. However, if n = 20, then
PSp4(q) with q odd is a composition factor, which does not happen in a 2-transitive
action that is not affine. Thus n = 16 and TP is of type O+

4 (q) ⊗ O−
n/4(q). Thus

t + 1 � q2 + 1, but by [1, Lemma 4.3] |P| � (q120/4)/((q4)2 · q8) > (t + 1)3, a
contradiction to Lemma 2.3.

Finally, for all other novelty subgroups listed in [25, Table 3.5.H] with a 2-
transitive action and no composition factor that is not allowed by Lemma 3.3, we
find that t + 1 � n when the degree of T is at least n. These groups are all ruled
out in similar fashion to those considered above, and we conclude that GP cannot
be a novelty subgroup of G when n � 13. �

8. Exceptional groups of Lie type

The purpose of this section is to rule out exceptional groups from acting primi-
tively on both the points and lines of a finite antiflag-transitive generalized quad-
rangle. As for the classical groups, we will assume Hypothesis 5.1.

Proposition 8.1. Assume Hypothesis 5.1. Then T cannot be an exceptional group
of Lie type.

Proof. LetG be an almost simple exceptional group of Lie type, and let T = soc(G).
Let P be a point of Q. By [1, Theorem 7], one of the following holds:

(A) the pair (T, TP ) lies in [1, Table 3],
(B) GP is a novelty maximal subgroup of G, where TP is a nonmaximal para-

bolic subgroup of T ,
(C) the pair (T, TP ) lies in [1, Table 2], or
(D) GP is a maximal parabolic subgroup of G.

Case (A). We consider first the possibility that the pair (T, TP ) lies in [1, Table 3].
By Lemma 3.3 (and noting that the local action is not affine), the only possibility
is T = F4(2) and TP = S6 wrS2. However, this implies that t + 1 � 10, and by
Lemma 2.3(i) that |T : TP | < 1000, a contradiction.
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Case (B). Next, we consider the possibility that TP is a nonmaximal parabolic
subgroup of T . Any such subgroup TP arises from a graph automorphism, and the
only possibilities are:

(i) T = E6(q) and TP = [q24]. 1d (O
+
8 (q).Cq−1), where d = gcd(3, q − 1);

(ii) T = E6(q) and TP = [q31]. 1d ((SL3(q) × SL2(q) × SL2(q)).C
2
q−1), where

d = gcd(3, q − 1);
(iii) T = F4(q) and TP = [q20].Sp4(q).C

2
q−1, where q = 2n;

(iv) T = F4(q) and TP = [q22].(SL2(q)× SL2(q)).C
2
q−1, where q = 2n;

(v) T = G2(q) and TP = [q6] : C2
q−1, where q = 3n.

The first case (i) is ruled out by Lemma 3.3. In the second case (ii), by the
Classification of Finite 2-Transitive Groups we have that t + 1 � q3. However,
|T : TP | > q9, a contradiction to Lemma 2.3(i). In the third and fourth cases where
T = F4(q) and TP = [q20].Sp4(q).C

2
q−1 or [q22].(SL2(q) × SL2(q)).C

2
q−1, by the

Classification of Finite 2-Transitive Groups we have that t + 1 � q4. However,
|T : TP | > q12, a contradiction to Lemma 2.3(i). Finally, if T = G2(q) and
TP = [q6] : C2

q−1, then by the Classification of Finite 2-Transitive Groups, we

have that t+ 1 � q and |T : TP | > q3, a contradiction to Lemma 2.3(i). Therefore,
TP is a maximal subgroup of T .

Case (C). We now look at the candidates from Table 2 of [1].

(C1): T = soc(G) = E8(q), E7(q), E6(q), or 2E6(q): By Lemmas 3.2 and 3.3,
these candidates are excluded except for T = E7(q) and TP � PSL8(q). In this

case, t+ 1 = |Γ(P )| = q8−1
q−1 , and

|P| = |T : TP | =
q63(q18 − 1)(q14 − 1)(q12 − 1)(q10 − 1)(q8 − 1)(q6 − 1)(q2 − 1)

q28(q8 − 1)(q7 − 1)(q6 − 1)(q5 − 1)(q4 − 1)(q3 − 1)(q2 − 1)

>

(
q8 − 1

q − 1

)3

= (t+ 1)3,

a contradiction to Lemma 2.3.

(C2): T = F4(q): The only possibilities are when q = 2 and TP = Sp8(2) or
PSL4(3). For the former, t+ 1 = |Γ(P )| = 27 ± 23, and

|P| = |T : TP | =
224(212 − 1)(28 − 1)(26 − 1)(22 − 1)

216(28 − 1)(26 − 1)(24 − 1)(22 − 1)
> (27 ± 23)3,

which is not possible. Similarly, the latter candidate is not possible.

(C3): T = 2F4(q): Then either TP = Sz(q) × Sz(q), or q = 2 and TP = Sp4(2).
For the former, t+ 1 = |Γ(P )| = q2 + 1, and

|P| = |T : TP | =
q12(q6 + 1)(q6 − 1)(q3 + 1)(q − 1)

q4(q2 + 1)2(q − 1)2
> (q2 + 1)3,

which is not possible. For the latter, TP = Sp4(2)
∼= S6, and t + 1 = |Γ(P )| =

6 or 10. A simple calculation shows that |P| = |T : TP | > 103, which is a
contradiction.

(C4): T = 3D4(q): In this case, by Lemma 3.3 we need only consider the cases
when TP is one of 2.(PSL2(q

3)×PSL2(q)).2, SL3(q).Cq2+q+1.2, SU3(q).Cq2−q+1.2,
or 72 : SL2(3) when q = 2. If TP = 2.(PSL2(q

3)×PSL2(q)).2, then t+1 = q3+1
by Lemma 3.2. If TP = SL3(q).Cq2+q+1.2, then t+ 1 � q2 + q + 1 (unless q = 2,
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in which case t + 1 � 8). If TP = SU3(q).Cq2−q+1.2, then t + 1 � q3 + 1. If
TP = 72 : SL2(3), then t+ 1 � 49. In any case, we have that

|P| = |T : TP | > (t+ 1)3,

a contradiction to Lemma 2.3(i).

(C5): T = G2(q), q > 2: Again using Lemma 3.3 to narrow down the possibilities

and noting that T
Γ(P )
P is not affine, we have that TP = SL3(q) : 2, SU3(q) : 2,

PSL2(q) × PSL2(q) if q = 2n, 2.(PSL2(q) × PSL2(q)) : 2 if q is odd, Ree(q) if
q = 32n+1, PSU3(3) : 2 if q = 5, 7, PSL2(13) if q = 3, 4, or 23 : SL3(2) if q = 3.

If TP = SL3(q) : 2, then t+ 1 = q2 + q + 1 and

|P| = q3(q3 + 1)

2
= (s+ 1)(s(q2 + q) + 1).

This implies that q3 (or q3/2 if q is even) divides s + 1, a contradiction since
s � t. If TP = SU3(q) : 2, then t+ 1 = q3 + 1 and

|P| = q3(q3 − 1)

2
= (s+ 1)(sq3 + 1).

This implies that q3 (or q3/2 if q is even) divides s + 1, a contradiction since
s2(t + 1) < |P| by Lemma 2.3(ii). If TP = PSL2(q) × PSL2(q) or 2.(PSL2(q) ×
PSL2(q)) : 2, then |P| = q4(q4 + q2 + 1) > (t+ 1)3 (we have t+ 1 � q + 1 unless
(q, t+1) = (4, 6), (8, 28)), a contradiction to Lemma 2.3(i). If TP = Ree(q), then
t+ 1 = q3 + 1 and

|P| = q3(q3 − 1)(q + 1) = (s+ 1)(sq3 + 1).

However, this implies that q3 divides s+1, which in turn implies that s+1 = q3

since s � t. Substituting this value of s back in yields q3(q3 − 1)(q + 1) =
q3(q3(q3 − 1) + 1), which has no positive integral solutions. Finally, in the
remaining cases, we have: t + 1 = 28 if TP = PSU3(3) : 2, t + 1 = 14 if
TP = PSL2(13), and t + 1 = 8 if TP = 23 : SL3(2). In each of these cases,
|T : TP | > (t+ 1)3, a contradiction to Lemma 2.3(i).

(C6): T = Sz(q): In this case, we get q = 8 and TP = C13 : C4. However, this
means that t + 1 = 13, and (s + 1)(12s + 1) = |T : TP | = 560 has no integral
roots, a contradiction.

(C7): T = Ree(q): In this case, we have TP = C2 × PSL2(q), where q = 32n+1.
This implies that t + 1 = q + 1, and so |T : TP | = q2(q2 − q + 1). Thus
(s+ 1)sq + (s+ 1) = (s+ 1)(st+ 1) = |P| = q2(q2 − q + 1). This implies that q
divides s+ 1 and then q2 divides s+ 1, which is not possible since s � t = q.

Therefore, we have ruled out the candidates from Table 2 of [1].

Case (D). Now suppose that GP is a maximal parabolic subgroup of G. Then
GP is an extension of a p-group by the Chevalley group determined by a maximal
subdiagram of the Dynkin diagram of G.

(D1): T = E8(q): Since a composition factor of GP is not E7(q), E6(q), PΩ
+
10(q), or

PΩ+
14(q) by Lemma 3.2, we conclude that GP = R.K.O, where R is the solvable

radical of GP , O � Out(K), and K is one of the following groups:

PSL4(q)× PSL5(q), PSL2(q)× PSL3(q)× PSL5(q), PSL8(q), PSL2(q)× PSL7(q).
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By Lemma 3.2, the corresponding value of t+ 1 is equal to

q6,
q5 − 1

q − 1
, q5,

q5 − 1

q − 1
, q8,

q8 − 1

q − 1
, q7,

q7 − 1

q − 1
.

Calculation shows that index |T : TP | is larger than q30−1, which is not possible
since |T : TP | should be less than (t+ 1)3.

(D2): T = E7(q): By Lemma 3.2, a composition factor of GP is not E6(q),
PΩ+(10, q), or PΩ+(12, q), so we conclude that GP = R.K.O, where R is the
solvable radical of GP , O � Out(K), and K is one of the following groups:

PSL3(q)× PSL5(q), PSL2(q)× PSL3(q)× PSL4(q), PSL7(q), PSL2(q)× PSL6(q).

By Lemma 3.2, the corresponding value of t+ 1 is equal to

q5,
q5 − 1

q − 1
, q4,

q4 − 1

q − 1
, 8 (with q = 2), q7,

q7 − 1

q − 1
, q6,

q6 − 1

q − 1
.

Calculation shows that index |T : TP | is larger than (q18 − 1)(q14 − 1), which is
not possible since |T : TP | should be less than (t+ 1)3.

(D3): T = E6(q): A parabolic subgroup GP = R.K.O, where R is the solvable
radical of GP , O � Out(K), and K is isomorphic to one of the following groups:

PΩ+
10(q), PSL2(q)× PSL5(q), PSL2(q)× PSL3(q)× PSL3(q), PSL6(q).

By Lemma 3.2, the first candidate is not possible, and the other three have values
of t+ 1 as below:

q5,
q5 − 1

q − 1
, q3,

q3 − 1

q − 1
, 8 (with q = 2), q6,

q6 − 1

q − 1
.

Calculation shows that index |T : TP | is larger than (q12−1)(q6+q3+1)(q4+1),
which is larger than (t+ 1)3, which is not possible.

(D4): T = F4(q): By Lemma 3.2, the candidates for TP are R.Sp6(q) with q even,
R.Sp6(2) with q = 2, and R.(PSL2(q) × PSL3(q)).O, where R is the solvable
radical of TP and O � Out(PSL2(q)× PSL3(q)).

If the third case occurs, then q = 2 and t + 1 = q3, q2 + q + 1, or 8, and
|T : TP | > (q12 − 1)(q8 − 1), which is greater than (t + 1)3, not possible. If we
are in the second case, then the valency t + 1 = 26, 25 − 22 or 25 + 22, and the
index

(s+ 1)(st+ 1) = |T : TP | = (212 − 1)(24 + 1).

Suppose that t+1 = 26. Then s2t+st+s+1 = 216+212−24−1. It implies that 26

divides 24+2+s. Since s � t = 26−1, we conclude that 26 = 24+2+s, namely,
s = 26 − 24 − 2. Inserting this value of s into (s+ 1)(st+ 1) = (212 − 1)(24 − 1)
leads to a contradiction. If t+1 = 25−22 or 25+22, then |P| = (212−1)(24+1) >
(25 + 22)3 � (t+ 1)3, which is a contradiction.

Finally, if we are in the first case, then t + 1 = q6 and by [36] we have
TP = (q6 × q1+8) : Sp6(q).(q − 1). This means that

|P| = |T : TP | =
(q12 − 1)(q8 − 1)

(q4 − 1)(q − 1)
= (s+ 1)(s(q6 − 1) + 1).
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Furthermore, from the structure of TP and T
Γ(P )
P , we know that q9 divides |T�|,

since the q1+8 must be in the kernel of the local action. Moreover,

|L| = q6((q6 − 1)s+ 1)

is coprime to (q6−1), and since |L| = |T : T�|, we have also that (q2−1)2(q6−1)2

divides |T�|. This implies that |T | < |T�|3, and so T� is a large maximal subgroup
of T . Reasoning as above for the nonparabolic maximal subgroups of F4(q), we
conclude that q = 2, which was ruled out above. This leaves only parabolic

subgroups. Since s �
√
q6 − 1 by Lemma 2.1(iii), examining the possibilities for

T� we see that this implies that s + 1 = q3, q4, or q6. However, none of these
values of s gives a real solution to (s+1)((q6−1)s+1) = (q12−1)(q4+1)/(q−1),
a final contradiction.

(D5): T = 2E6(q): By Lemma 3.2, the candidate for TP is R.(SL3(q
2) × SL2(q))

or R.(SL2(q
2) × SL3(q)); refer to [21, p. 101]. Then t + 1 � q6, and |P| =

|T : TP | � (q9 + 1)(q5 + 1)(q4 + 1), which is not possible by Lemma 2.3.

(D6): T = 2F4(q), where q = 22n+1: By [29], a maximal parabolic subgroup of T
is isomorphic to either [q11] : (PSL2(q)×Cq−1) or [q

10] : (Sz(q)×Cq−1). For the
former case, the valency t+1 = |Γ(P )| equals q2, or q+1, or q with q = 5, 7 or 11,
or 6 with q = 9, and the number of points |T : TP | = (q6+1)(q4−1)(q3+1)/(q−1).
For the second case, t+ 1 = |P| = q2 + 1 and

|T : TP | = (q6 + 1)(q2 − 1)(q3 + 1)(q + 1).

In each case, we have |P| = |T : TP | > (t+ 1)3, which is a contradiction.

(D7): T= 3D4(q): In this case, TP = q1+8 : SL2(q
3).Cq−1 or q

2+3+6 : SL2(q).Cq3−1.
If we have TP = q2+3+6 : SL2(q).Cq3−1, then by the Classification of Finite 2-
Transitive Groups, we have that t + 1 � q3. However, in this case |T : TP | =
(q8+ q4 +1)(q3+1) > (t+1)3, a contradiction to Lemma 2.3(i). Hence we have
TP = q1+8 : SL2(q

3).Cq−1. In this case, t+ 1 = q6 or q3 + 1 (note that t+ 1 �= q
by Lemma 3.2), and so t = q6 − 1 or q3. The cardinality |P| = (s+ 1)(st+ 1) =
q8 + q4 + 1. If t = q6 − 1, then s � q3, and thus

q8 + q4 + 1 = (s+ 1)(st+ 1) > q3(q3(q6 − 1) + 1),

which is not possible. For t = q3, we have

q8 + q4 + 1 = |P| = (s+ 1)(sq3 + 1) = s2q3 + sq3 + s+ 1,

so q8+q4 = s2q3+sq3+s. It implies that s is divisible by q3, and hence s = q3 = t.
Therefore, q8 + q4 + 1 = |P| = (q3 + 1)(q6 + 1), which is a contradiction.

(D8): T =G2(q): In this case, TP =[q5] : GL2(q). This implies that |P|= |T : TP |
= (q6 − 1)/(q − 1). By the Classification of Finite 2-Transitive Groups, we have
that t+1 = q2 or t+1 � q+1. If t+1 � q+1, then (t+1)3 < |P|, a contradiction

to Lemma 2.3(i). Hence t + 1 = q2. Now, since T
Γ(P )
P is affine, we know that

T
[1]
P � T� contains a group of order q3. Moreover, since

|T : T�| = |L| = q2((q2 − 1)s+ 1)

is coprime to q2 − 1, we have also that (q2 − 1)2 divides |T�|. Hence q3(q2 − 1)2

divides |T�|. However, examining the list of subgroups of T (see, for instance,
[36, Table 4.1]), none satisfies this property, a contradiction.
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(D9): T = Sz(q): In this case, TP = q1+1.Cq−1, t+1= q, and the index |T : TP |
= q2 + 1. Then

q2 + 1 = |T : TP | = |P| = (s+ 1)(st+ 1) = (s+ 1)(s(q − 1) + 1).

It implies that sq(s+ 1)− s2 = q2. Thus s divides q2 = 22n, so s = 2m for some
m � 2n. Hence 2m+n(2m + 1) = sq(s+ 1) = s2 + q2 = 22m + 22n, which is not
possible.

(D10): T = Ree(q): In this case, TP = q1+1+1 : Cq−1. By the Classification of
Finite 2-Transitive Groups, we have that t+ 1 � q. This implies that

|P| = |T : TP | = q3 + 1 > (t+ 1)3,

a contradiction to Lemma 2.3(i).

Therefore, T cannot be an exceptional group of Lie type. �

Proof of Theorem 1.1. Suppose that G acts transitively on the antiflags of a finite
thick generalized quadrangle Q. By Theorem 4.5, if Q is not the unique generalized
quadrangle of order (3, 5) or its dual, then G is an almost simple group of Lie type
acting primitively on both the points and lines of Q. By Propositions 5.3, 5.4, 5.5,
5.6, 6.1, 7.5, 7.6, and 8.1, we have that any finite thick generalized quadrangle with
a collineation group that is an almost simple group of Lie type acting primitively
on points, primitively on lines, and transitively on antiflags is a classical generalized
quadrangle, as desired. �

9. Concluding remarks

In this paper, our classification was made possible due mostly to Theorems 4.1
and 4.3, which reduce the problem to the case that G acts primitively on both
points and lines of almost simple type. From there, we showed that the point
stabilizer is large and used the work of Alavi and Burness [1] to determine the
possibilities for the almost simple group and its point stabilizer. For the much
weaker hypothesis of local 2-arc-transitivity, we can still give strong structural
information. In a forthcoming paper [4], we show that if G acts locally-2-arc-
transitively on the incidence graph Γ of a generalized quadrangle Q, and if G acts
quasiprimitively on both points and lines of Q, then G is almost simple.
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[28] Cai Heng Li, Ákos Seress, and Shu Jiao Song, s-arc-transitive graphs and normal subgroups,
J. Algebra 421 (2015), 331–348, DOI 10.1016/j.jalgebra.2014.08.032. MR3272385

[29] Gunter Malle, The maximal subgroups of 2F4(q2), J. Algebra 139 (1991), no. 1, 52–69, DOI
10.1016/0021-8693(91)90283-E. MR1106340

[30] T. G. Ostrom, Dual transitivity in finite projective planes, Proc. Amer. Math. Soc. 9 (1958),
55–56, DOI 10.2307/2033398. MR0093733

[31] T. G. Ostrom and A. Wagner, On projective and affine planes with transitive collineation
groups, Math. Z. 71 (1959), 186–199, DOI 10.1007/BF01181398. MR0110975

[32] Stanley E. Payne and Joseph A. Thas, Finite generalized quadrangles, 2nd ed., EMS Series of
Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2009. MR2508121
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