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REGULARITY THEORY FOR 2-DIMENSIONAL

ALMOST MINIMAL CURRENTS I:

LIPSCHITZ APPROXIMATION

CAMILLO DE LELLIS, EMANUELE SPADARO, AND LUCA SPOLAOR

Abstract. We construct LipschitzQ-valued functions which carefully approx-
imate integral currents when their cylindrical excess is small and they are
almost minimizing in a suitable sense. This result is used in two subsequent
works to prove the discreteness of the singular set for the following three classes
of 2-dimensional integral currents: area minimizing in Riemannian manifolds,
semicalibrated and spherical cross sections of 3-dimensional area minimizing
cones.

This paper is the second in a series of works aimed at establishing an optimal
regularity theory for 2-dimensional integral currents which are almost minimizing in
a suitable sense. Building upon the monumental work of Almgren [2], Chang in [5]
established that 2-dimensional area-minimizing currents in Riemannian manifolds
are classical minimal surfaces, namely they are regular (in the interior) except
for a discrete set of branching singularities. The argument of Chang is however
not entirely complete since a key starting point of his analysis, the existence of
the so-called “branched center manifold”, is only sketched in the appendix of [5]
and requires the understanding (and a suitable modification) of the most involved
portion of the monograph [2].

An alternative proof of Chang’s theorem was found by Rivière and Tian in [21]
for the special case of J-holomorphic curves. Later the approach of Rivière and
Tian was generalized by Bellettini and Rivière in [4] to handle a case which is not
covered by [5], namely that of special Legendrian cycles in S

5 (see also [3] for a
further generalization).

Meanwhile the first and second author revisited Almgren’s theory and gave a
much shorter version of his program for proving that area-minimizing currents are
regular up to a set of Hausdorff codimension 2; cf. [6–10]. In this note and its com-
panion papers [11, 12] we build upon the latter works in order to give a complete
regularity theory which includes both the theorems of Chang and Bellettini-Rivière
as special cases, in particular recovering the fine description of the structure of
singular points proven by Chang and extending this picture to the cases of semi-
calibrated currents and spherical cross-sections (we refer to [11,12] for more precise
statements).
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We start by introducing the following terminology (cf. [13, Definition 0.3]).

Definition 0.1. Let Σ ⊂ Rm+n be a C2 submanifold and U ⊂ R
m+n an open set.

(a) An m-dimensional integral current T with finite mass and spt(T ) ⊂ Σ∩U is
area-minimizing in Σ∩U if M(T+∂S) ≥ M(T ) for any (m+1)-dimensional
integral current S with spt(S) ⊂⊂ Σ ∩ U .

(b) A semicalibration (in Σ) is a C1 m-form ω on Σ such that ‖ωx‖c ≤ 1 at
every x ∈ Σ, where ‖ · ‖c denotes the comass norm on ΛmTxΣ. An m-
dimensional integral current T with spt(T ) ⊂ Σ is semicalibrated by ω if

ωx(�T ) = 1 for ‖T‖-a.e. x.
(c) An m-dimensional integral current T supported in ∂BR(p) ⊂ R

m+n is
a spherical cross-section of an area-minimizing cone if p××T is area-
minimizing.

Calibrated submanifolds, namely currents T as in (b) where the calibrated form
is closed, have been central objects of study in several areas of differential geom-
etry and mathematical physics since the seminal work of Harvey and Lawson; cf.
[17]. Two primary examples are holomorphic subvarieties and special Lagrangians
in Calabi-Yau manifolds, which play an important role in string theory (especially
regarding mirror symmetry; cf. [18,27]) but also emerge naturally in gauge theory
(see [28]). Semicalibrations are a natural generalization of calibrations: since the
condition dω = 0 on the calibrating form is rather rigid and in particular very un-
stable under deformations. In fact semicalibrations were considered already in [28]
(cf. Section 6 therein) and around the same time they became rather popular in
string theory, when several authors directed their attention to non-Calabi-Yau man-
ifolds (the subject is nowadays known as “flux compactification”; cf. [14]): in that
context the natural notion to consider is indeed a special class of semicalibrating
forms (see for instance the works [15,16], where these are called quasicalibrations).

In what follows, given an integer rectifiable current T , we denote by Reg(T )
the subset of spt(T ) \ spt(∂T ) consisting of those points x for which there is a
neighborhood U such that T U is a (constant multiple of a) regular oriented
submanifold. Correspondingly, Sing(T ) is the set spt(T ) \ (spt(∂T ) ∪ Reg(T )).
Observe that Reg(T ) is relatively open in spt(T ) \ spt(∂T ) and thus Sing(T ) is
relatively closed. The main result of this and the works [11,12] is then the following.

Theorem 0.2. Let Σ and ω be as in Definition 0.1, let T be as in (a), (b), or (c),
and assume in addition that m = 2, that Σ is of class C3,α, and that ω is of class
C2,α for some positive α. Then Sing(T ) is discrete.

Clearly Chang’s result is covered by case (a). As already pointed out, the proof
of Theorem 0.2 gives in fact more information, namely an accurate description
of the behavior of T around any singular point. This is the exact analog of the
singularity description provided by Chang [5] for the area minimizing case, whose
validity is therefore extended to both cases (b) and (c) of Definition 0.1. The results
of Theorem 0.2 are optimal, because of the well-known examples of area-minimizing
currents induced by singular complex curves. Note, however, that there are many
singular semicalibrated currents which are not calibrated, and we give an example
in the appendix.
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The program of extending the Almgren-Chang regularity theory to general semi-
calibrated currents was started by Rivière and Tian in [22] and indeed their alter-
native proof of Chang’s theorem was meant as a first step towards case (b) of
Theorem 0.2 (cf. [22, p. 743]). The first notable contribution which goes beyond
the Almgren-Chang result is due to Pumberger and Rivière in [20], and important
groundbreaking results were then achieved by Bellettini and Rivière in [4] and by
Bellettini in [3]. In particular [4] proved the theorem above for Legendrian cycles
in S

5, which form a special subclass of both (b) and (c). The result and the meth-
ods were then extended in [3] to a class of 2-dimensional semicalibrated currents
in 5-dimensional manifolds which, roughly speaking, are based on Legendrian cy-
cles as local models. In this and the notes [11, 12] we give a complete answer in
the general 2-dimensional case. In higher dimensions Almgren’s famous bound on
the Hausdorff dimension of the singular set has been extended to semicalibrated
currents by the third author in [25].

Following the Almgren-Chang program, Theorem 0.2 will be established through
a suitable “blow-up argument” which requires four essential tools:

(i) The uniqueness of tangent cones for T . This result is a, by now classical,
theorem of White for area-minimizing 2-dimensional currents in the Eu-
clidean space; cf. [29]. Chang extended it to case (a) in the appendix of [5],
whereas Pumberger and Rivière covered case (b) in [20]. A general deriva-
tion of these results for a wide class of almost minimizers has been given in
[13]: the theorems there cover, in particular, all the cases of Definition 0.1.

(ii) The theory of multiple-valued functions, pioneered by Almgren in [2], for
which we will use the results and terminology of the papers [6, 8].

(iii) A suitable approximation procedure for integer rectifiable currents with
graphs of multiple-valued functions. The one needed in case (a) is already
contained in [7], but the latter reference does not cover cases (b) and (c):
the purpose of this note is to extend the theorems in [7] to these cases.

(iv) The so-called “center manifold”: this will be constructed in [11], whereas
the final argument for Theorem 0.2 will then be given in [12].

In fact this note does more than just providing (iii) for cases (b) and (c), because
we give an approximation theorem for almost minimal currents in any dimension
m; see Definition 1.1 for the precise condition. Indeed, relaxing the minimizing
condition in the regularity theory is a central theme in geometric measure the-
ory: on the one hand it could be the first step towards the analysis of different
elliptic functionals, and on the other hand it has many applications in a variety
of problems in which the minimizing condition must be weakened (the examples
are numerous; we just cite the fundamental work of Almgren on elliptic variational
problems with constraints [1] and the celebrated paper of Schoen and Simon on
stable hypersurfaces, [23]). However, there are very few results in this direction
in higher codimension; compared to the codimension one case the task is much
harder, since several delicate arguments of Almgren-Chang depend sensibly upon
the minimizing assumption. This note gives a first contribution by establishing a
strong approximation theorem under a very natural condition; see Definition 1.1
for the precise formulation.
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1. Notation and statement of the main theorem

We introduce the notion of almost minimizers that we are going to use in the
paper.

Definition 1.1 (Ω-minimality). Let Ω be a positive constant. An integer recti-
fiable m-dimensional current with compact support in R

m+n is called Ω-minimal
if
(1.1)
M(T ) ≤ M(T + ∂S) +ΩM(S) ∀S ∈ Im+1(R

m+n) with compact support.

In order to state the main result, we need to introduce some notation. By Br(p)
and Br(x) we denote, respectively, the open ball with radius r and center p in R

m+n

and the open ball with radius r and center x in R
m. Cr(x) will always denote the

cylinder Br(x) × R
n and the point x will be omitted when it is the origin. In

fact, by a slight abuse of notation, we will often treat the center x as a point in
R

m+n, avoiding the correct, but more cumbersome, (x, 0). ei will denote the unit
vectors in the standard basis, π0 the (oriented) plane R

m × {0}, and �π0 the m-
vector e1∧· · ·∧em orienting it. We denote by p and p⊥ the orthogonal projections
onto, respectively, π0 and its orthogonal complement π⊥

0 . In some cases we need
orthogonal projections onto other planes π and their orthogonal complements π⊥,
for which we use the notation pπ and p⊥

π . For what concerns integral currents we
use the definitions and the notation of [24]. We isolate the main assumption of our
approximation theorem in the following.

Assumption 1.2. For some open cylinder C4r(x) (with r ≤ 1) and some positive
integer Q,

(1.2) p�T = Q �B4r(x)� and ∂T C4r(x) = 0 .

The following is the notion of excess, which represents the main regularity pa-
rameter for integral currents.

Definition 1.3 (Excess). For a current T as in Assumption 1.2 we define the
cylindrical excess E(T,Cr(x)), the excess measure eT , and its density dT :

E(T,Cr(x)) :=
‖T‖(Cr(x))

ωmrm
−Q,

eT (A) := ‖T‖(A× R
n)−Q |A| for every Borel A ⊂ Br(x),

dT (y) := lim sup
s→0

eT (Bs(y))

ωm sm
= lim sup

s→0
E(T,Cs(y)),

where ωm is the measure of the m-dimensional unit ball (the subscript T will be
omitted if clear from the context).

The main theorem of the paper is then the following approximation result (for
the notation concerning multiple-valued functions and their graphs we refer to
[6–8]).
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Theorem 1.4. There exist constants M,C21, β0, ε21 > 0 (depending on m,n,Q)
with the following property. Assume that T ∈ Im(Rm+n) is Ω-minimal, it satisfies
(1.2) in the cylinder C4r(x), and E = E(T,C4r(x)) < ε21. Then, there exist a map
f : Br(x) → AQ(R

n) and a closed set K ⊂ Br(x) such that

Lip(f) ≤ C21E
β0 ,(1.3)

Gf (K × R
n) = T (K × R

n) and |Br(x) \K| ≤ C21E
β0
(
E + r2Ω2

)
rm ,(1.4) ∣∣∣‖T‖ (Cr(x))−Qωmrm − 1

2

∫
Br(x)

|Df |2
∣∣∣ ≤ C21E

β0
(
E + r2Ω2

)
rm ,(1.5)

osc(f) ≤ C21h(T,C4r(x)).(1.6)

The proof of Theorem 1.4 will be achieved in the next three sections. The
first one contains the most significant new ideas compared to the approximation of
mass minimizing currents as done in [7]; here, indeed, we show how to improve upon
the almost minimal condition under the assumption that the cylindrical excess is
small, thus leading to a refined estimate. In the two subsequent sections we modify
accordingly the computations of [7] to prove Theorem 1.4. Finally, in the last section
we show how Theorem 1.4 applies to the currents considered in Definition 0.1 and
state for later reference the approximation result which will be used in [11, 12] to
prove Theorem 0.2. From now on constants which depend only upon m, n, and Q
will be called dimensional constants.

2. Homotopy Lemma

Before proving the main Lipschitz approximation theorem we need a lemma
which carefully estimates the difference in mass between an Ω-almost minimizer
and a competitor in terms of a power of the excess and the constant Ω. The key idea
is to choose the surface S in (1.1) to be a (suitable perturbation of the) homotopy
between two accurately chosen preliminary Lipschitz approximations of T and R.
To this regard we introduce the notion of Eβ-approximation as in [7, Definition
5.1]. According to [7, Proposition 2.2 & Definition 5.1] we then have

Theorem 2.1. There exist dimensional constants ε0, C21 > 0 such that, if T is as
in Theorem 1.4 in a cylinder C4r(x), E := E(T,C4r(x)) < ε0, and 0 < β ≤ 1

2m ,
then the following holds. There is a function u ∈ Lip(B7r/2(x),AQ(R

n)), called

Eβ-approximation of T , such that

Lip(u) ≤ C21 E
β,

Gu (K × R
n) = T (K × R

n),

M
(
(T −Gu) (B7r/2(x) \K)

)
+ |B7r/2(x) \K| ≤ C21 r

m E1−2β.

By using the Eβ-approximations we get the following improvement of the Ω-
minimality in the case of small excesses.

Lemma 2.2 (Homotopy Lemma). Let T be an Ω-almost minimizer which satisfies
(1.2). There are positive dimensional constants ε22 and C25 such that, if E =
E(T,C4r(x)) ≤ ε22, then the following holds. For every R ∈ Im(C3r(x)) such that
∂R = ∂(T C3r(x)), we have

(2.1) ‖T‖(C3r(x)) ≤ M(R) + C25r
m+1ΩE

1/2 .
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Moreover, let β ≤ 1
2m , s ∈ ]r, 2r[, and R = Gg Cs(x) for some Lipschitz map

g : Bs → AQ(R
n) with Lip(g) ≤ 1, and let f be the Eβ-approximation of T in C3r.

If f = g on ∂Bs and P ∈ Im(Rm+n) is such that ∂P = ∂((T −Gf ) Cs), then
(2.2)

‖T‖(Cs(x)) ≤ M(Gg)+M(P )+C25Ω
(
E

3/4rm+1+(M(P ))
1+1/m

+

∫
Bs(x)

G(f, g)
)
.

Proof. We will first show (2.1); in fact (2.2) follows easily from a portion of the
same argument, as will be highlighted at the end.

Without loss of generality we assume x = 0. If ‖T‖(C3r) ≤ M(R), then there is
nothing to prove. Hence we can suppose

(2.3) M(R) ≤ ‖T‖(C3r).

Define the current R′ ∈ Im(C4r) by R′ := R + T (C4r \ C3r). Observe that
∂(T − R′) = 0. So ∂(p�(T − R′)) = 0. On the other hand p�(T − R′) = k �B4r�
for some constant k and thus we conclude p�(T − R′) = 0. Therefore R′ satisfies
(1.2). Moreover we notice that, thanks to (2.3), the cylindrical excess of R′ enjoys
the following bound:

E(R′, C4r) =
M(R′)

ωm(4r)m
−Q

(2.3)

≤ M(T )

ωm(4r)m
−Q = E(T,C4r) =: E.

Let f, h : B7r/2 → AQ(R
n) be the Eβ-Lipschitz approximations of T and R′, re-

spectively, in the cylinders C7r/2 for some β ∈ (0, 1/2m]. Then there exist sets
KT ,KR′ ⊂ B7r/2(x) such that T (KT×R

n) = Gf (KT×R
n) and R′ (KR′×R

n) =
Gh (KR′ × R

n), fulfilling the following estimates:

M((T −Gf ) C7r/2) ≤ C21r
mE1−2β and M((R′ −Gh) C7r/2) ≤ C21r

mE1−2β,
(2.4)

|B7r/2 \KT | ≤ C21r
mE1−2β and |B7r/2 \KR′ | ≤ C21r

mE1−2β,(2.5)

Lip(f) ≤ C21E
β and Lip(h) ≤ C21E

β.(2.6)

Next we set K := KT ∩KR′ and we notice that by (2.5)

(2.7) |B7r/2 \K| ≤ CrmE1−2β.

Let | · | be the function |(x, y)| := |x|2 for every (x, y) ∈ R
m ×R

n, where |x|2 is the
Euclidean norm of the vector x. By the slicing theory, (2.4), (2.7), and Fubini’s
Theorem there exists s ∈ (3r, 7/2r) such that

(2.8) M(〈T −Gf , | · |, s〉) +M(〈R′ −Gh, | · |, s〉) ≤ Crm−1E1−2β

and

(2.9) |∂Bs \K| ≤ Crm−1E1−2β .

By the isoperimetric inequality, there exist PT , PR ∈ Im(Rm+n) such that

∂PT = 〈T −Gf , | · |, s〉, ∂PR = 〈R′ −Gh, | · |, s〉
and

M(PT ) +M(PR) ≤ C
(
M(〈T −Gf , | · |, s〉)

)m/(m − 1)

+ C
(
M(〈R′ −Gh, | · |, s〉)

)m/(m − 1)

≤ CrmEm(1−2β)/(m−1).
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Therefore, we can conclude that

(2.10) ∂((T −Gf ) Cs) = ∂PT , ∂((R′ −Gh) Cs) = ∂PR

and, since β ≤ 1
2m , also

(2.11) M(PT ) +M(PR) ≤ CrmE .

Next consider the functions

f ′ := ξ ◦ f : B7r/2 → Q ⊂ R
N(Q,n) and h′ := ξ ◦ h : B7r/2 → Q ⊂ R

N(Q,n) ,

where ξ : AQ(R
n) → R

N(Q,n) is the bi-Lipschitz embedding in [6, Section 2.1], and
the homotopy between them, defined by

H̃ : [0, 1]×B7r/2 � (t, x) → (x, tf ′(x) + (1− t)h′(x)) ∈ R
m × R

N .

Consider the Lipschitz map

φ : Rm × R
N � (x, y) → (x, ξ−1(ρ(y))) ∈ R

m ×AQ(R
n) ,

where ρ : RN(Q,n) → Q := ξ(AQ(R
n)) is the Lipschitz retraction in [6, Section 2.1],

and defineH := φ◦H̃. H can be seen as aQ-valued mapH : [0, 1]×B7r/2→AQ(Rm+n).
Without changing notation for H we restrict it to [0, 1] × Bs, and following the
notation of [8, Definition 1.3] we define S := TH . If we set G := H|[0,1]×∂Bs

we
can use [8, Theorem 2.1] to conclude that

(2.12) ∂S = (Gf −Gh) Cs−TG = (Gf −Gh) Cs−P ,

where P := TG. We now want to estimate M(S) and M(P ) and we will do it using
the Q-valued area formula in [8, Lemma 1.9]. We start with M(S). We fix a point
of differentiability p where DH =

∑ �DHi�. On [0, 1]×Bs we use the coordinates
(t, x) and on the target space R

m+n the coordinates (x, y). Let p = (t0, x0). It is
then obvious that the matrix DHi can be decomposed as

DHi(p) =

(
0m×1 Im×m

vn×1 An×m

)
,

where the matrices A and v can be bound using the following observation. If we
consider the map t �→ Φ(t) := H(t, x0) and x �→ Λ(x) := t0f

′(x) + (1− t0)h
′(x), we

then have |v| ≤ CLip(Φ) and |A| ≤ CLip(Λ), where the constant C depends only
on n and Q. On the other hand, it is easy to see that Lip(Φ) ≤ CG(f(x0), h(x0))
and Lip(Λ) ≤ C(Lip(h) + Lip(f)) ≤ Eβ. Thus we can estimate

JHi(p) :=
√
det(DH∗

i (p) ·DHi(p)) ≤ CG(f(x0), h(x0)) .

Using [8, Lemma 1.9] we then conclude

M(S) ≤ C

∫
Bs

G(f, h)

and, arguing in a similar fashion,

M(P ) ≤ C

∫
∂Bs

G(f, h) .

Observe that f and h coincide, respectively, with the slices of the currents T and
R′ on any x0 ∈ K. On the other hand, s > 3r and T C4r \C3r = R′ C4r \C3r.
We thus conclude that h = f on K ∩ ∂Bs. Let x ∈ ∂Bs \K. By (2.9), there exists
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x0 ∈ K ∩ ∂Bs such that |x− x0| ≤ CrE(1−2β)/(m−1) = CrE2β (recall that β≤ 1
2m).

Thus

G(f(x), h(x)) ≤ (Lip(f) + Lip(h)) |x− x0| ≤ CrE3β ,

and so we conclude

(2.13) M(P ) ≤ C

∫
∂Bs

G(f, h) ≤ CrE3β|∂Bs \K| ≤ CrmE1+β ≤ CrmE .

On the other hand, we recall that, by a standard variant of the Poincaré inequality
(cf., for example, [30, 4.4.7]),∫

Bs

G(f, h) ≤ Cr‖G(f, h)‖L1(∂Bs) + Cr‖D(G(f, h))‖L1(Bs)

(2.13)

≤ Crm+1E + Cr1+
m/2

(∫
(|Df |2 + |Dh|2)

)1/2

≤ Crm+1E
1/2 .(2.14)

Thus,

(2.15) (Gf −Gh) Cs = ∂S + P

with

(2.16) M(P ) ≤ CrmE and M(S) ≤ Crm+1E
1/2.

Now observe that

0 = ∂(T −R′) = ∂((Gf −Gh) Cs) + ∂(PT − PR) = ∂∂S + ∂P + ∂(PT − PR) .

Hence, ∂(P + PT − PR) = 0 and, by the isoperimetric inequality, there is an S′

with M(S′) ≤ Crm+1E1+1/m and ∂S′ = P + PT − PR. Additionally, again using
the isoperimetric inequality, there are currents ST and SR such that

∂ST = (T −Gf ) Cs − PT ,

∂SR = (R′ −Gh) Cs − PR

and

M(ST ) ≤ C (‖T −Gf‖(Cs) +M(PT ))
(m + 1)/m ≤ CE

3/4rm+1 ,

M(SR) ≤ C (‖R′ −Gh‖(Cs) +M(PR))
(m + 1)/m ≤ CE

3/4rm+1 .

In the latter inequalities we have used ‖R′−Gh‖(Cs)+‖T−Gf‖(Cs) ≤ CE1−2βrm;
in particular (1 − 2β)(m + 1)/m ≥ 1 − 1/m2 ≥ 3/4; observe that this estimate
explains the exponent of E in the third summand of the right-hand side of (2.2).

Thus, setting S′′ = S+ST −SR+S′ we finally achieve (T −R′) Cs = ∂S′′ and
M(S′′) ≤ Crm+1E

1/2. Recalling that s > 3r and that R′ = R+ T (C4r \C3r) we
conclude ∂S′′ = (T −R) C3r. Applying now the Ω-minimality of T we conclude

‖T‖(C3r) ≤ M(R) + C25r
m+1ΩE

1/2 .

For the proof of (2.2) we conclude with the same computations, except that this time
f = g on ∂Bs and the current R is already given by Gg C. The modifications to
the argument are then straightforward, given the remark of the previous paragraph.

�
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3. Harmonic approximation and gradient Lp
estimates

In this and in the next section we largely follow [7] with minor modifications;
on the one hand we have the additional Ω-error terms, but on the other hand the
ambient Riemannian manifold is the Euclidean space. Thus the arguments are
somewhat less technical.

3.1. Harmonic approximation. In this subsection we prove that if T is an al-
most minimizer, then its Eβ-Lipschitz approximation is close to a Dir-minimizing
function w with estimates which are infinitesimal in the excess.

Theorem 3.1 (First harmonic approximation). For every η1, δ > 0 and every
β ∈ (0, 1

2m ), there exists a constant ε23 > 0 with the following property. Let T
be an Ω-almost minimizer which satisfies Assumption 1.2 in C4r0(x). If E =
E(T,C4r0(x)) ≤ ε23 and r0 Ω ≤ ε23E

1/2, then the Eβ-Lipschitz approximation f in
C3r0(x) satisfies

(3.1)

∫
B2r0

(x)\K
|Df |2 ≤ η1E ωm (4 r0)

m = η1 eT (B4r0(x)).

Moreover, there exists a Dir-minimizing function w such that

r0
−2

∫
B2r0

(x)

G(f, w)2 +
∫
B2r0

(x)

(
|Df | − |Dw|

)2
≤ η1E ωm (4 r0)

m = η1 eT (B4r0(x)) ,

(3.2)

∫
B2r0

(x)

|D(η ◦ f)−D(η ◦ w)|2 ≤ η1E ωm (4 r0)
m = η1 eT (B4r0(x)) .(3.3)

Proof. The proof of the theorem is analogous to the one given in [7, Theorem 3.2];
for this reason, we provide here only the principal parts, leaving the details to the
reader. By rescaling and translating, it is not restrictive to assume that x = 0 and
r0 = 1. The proof is by contradiction: assume there exist a constant c1 > 0, a
sequence of positive real numbers (εl)l, a sequence of Ωl-minimal currents (Tl)l∈N,

and corresponding Eβ
l -Lipschitz approximations (fl)l∈N such that

(3.4) El := E(Tl,C4) ≤ εl → 0, Ωl ≤ εlE
1/2
l , and

∫
B2\Kl

|Dfl|2 ≥ c1 El,

where Kl := {x ∈ B3 : meTl
(x) < E2β

l } with meTl
denoting the “noncentered”

maximal function of eTl
:

meTl
(y) := sup

y∈Bs(w)⊂B4(x)

eTl
(Bs(w))

ωm sm
= sup

y∈Bs(w)⊂B4(x)

E(Tl,Cs(w)).

Set Γl := {x ∈ B4 : meTl
(x) ≤ 2−mE2β

l } and observe that Γl ∩B3 ⊂ Kl. From the
Lipschitz approximation in [7, Proposition 3.2], it follows that

Lip(fl) ≤ C22E
β
l ,(3.5)

|Br \Kl| ≤ C22E
−2β
l eT

(
Br+r0(l) \ Γl

)
for every r ≤ 3 ,(3.6)

where r0(l) = 16E
(1−2β)/m
l < 1

2 . Then, (3.4), (3.5), and (3.6) give

c1 El ≤
∫
B2\Kl

|Dfl|2 ≤ C22 eTl
(Bs \ Γl) ∀ s ∈

[
5
2 , 3

]
.
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Setting c2 := c1/(2C22), we have 2c2El ≤ eTl
(Bs \ Γl) = eTl

(Bs) − eTl
(Bs ∩ Γl),

thus leading to

(3.7) eTl
(Γl ∩Bs) ≤ eTl

(Bs)− 2 c2El ,

for l large enough. Next observe that ωm4mEl = eTl
(B4) ≥ eTl

(Bs), because eTl

is a positive measure under Assumption 1.2. Therefore, by the Taylor expansion in
[8, Corollary 3.3], (3.7), and El ↓ 0, it follows that, for every s ∈ [5/2, 3],∫

Γl∩Bs

|Dfl|2
2

≤ (1 + C E2β
l ) eTl

(Γl ∩Bs)

≤ (1 + C E2β
l )

(
eTl

(Bs)− 2 c2 El

)
≤ eTl

(Bs)− c2 El.(3.8)

Our aim is to show that (3.8) contradicts the Ωl-almost minimizing property (1.1)
of Tl. This is shown by constructing a suitable competitor Sl for Tl, via a careful

modification of the Eβ
l -approximations fl. The construction of the competitor Sl

is identical to the one done in [7, pp. 1854–1857], actually simplified by the fact
that our currents Tl are supported in R

m+n and not in a Riemannian manifold.
Therefore, we omit here the details of the computations (which can be found in full
detail in the PhD thesis of the third author, [26]) and recall only the conclusion:
there exist integer rectifiable currents Sl such that ∂Sl = ∂(Tl C4) and

M(Sl)−M(Tl) ≤ − c2 El

4
+ C E1+γ

l .(3.9)

Now using (2.1) of the Homotopy Lemma 2.2 we have the upper bound

M(Sl)−M(Tl) ≥ −C25ΩlE
1/2
l ≥ −C25εlEl.

Combining this inequality with (3.9) we obtain

c2El

4
≤ CE1+γ

l + CεlEl ,

which for El, εl sufficiently small (and hence for l large enough) provides the desired
contradiction.

For what concerns (3.2), we argue similarly. Let (Tl)l be a sequence with vanish-
ing El := E(Tl,C4), contradicting the second part of the statement, and perform
the same analysis as before. Up to subsequences, one of the following statements
must be false:

(i) liml

∫
B2

|Dgl|2 =
∫
B2

|Dhl0 |2, for any l0 (recall that
∫
B2

|Dhl|2 is constant);

(ii) hl is Dir-minimizing in B2.

If (i) is false, then there is a positive constant c2 such that, for every r ∈ [5/2, 3],∫
Br

|Dhl|2
2

≤
∫
Br

|Dgl|2
2

− c2 ≤ eTl
(Br)

El
− c2

2
,

for l large enough. Therefore we can argue exactly as in the proof of (3.1) (using
hl instead of Hl to construct the competitors) and reach a contradiction. If (ii) is
false, then hl is not Dir-minimizing in B5/2. This implies (cf. [7, pp. 1857–1859])
that we can find a competitor Fl satisfying, for any r ∈ [5/2, 3],∫

Br

|DFl|2
2

≤
∫
Br

|Dhl|2
2

− c2 ≤ lim
l

∫
Br

|Dgl|2
2

− 2 c2 ≤ eT (Br)

El
− c2

2
,
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provided l is large enough (where c2 > 0 is a constant independent of r and l). On
the other hand, since Fl = hl on B3 \B5/2, ‖G(Fl, gl)‖L2(B3\B5/2) → 0 and we argue

as above with Fl in place of Hl and reach a contradiction in this case as well. (The
details of this argument are also reported in the PhD thesis of the third author
[26].) �

3.2. Improved excess estimate. The higher integrability of the Dir-minimizing
functions (cf. [7, Theorem 6.1]) and the harmonic approximation in Theorem 3.1
lead to the following estimate, which we call “weak” since we will improve it in the
next section with Theorem 4.1.

Proposition 3.2 (Weak excess estimate). For every η2 > 0, there exist ε24, C26 > 0
with the following property. Let T be an Ω-almost minimizer and assume it satisfies
(1.2) in C4s(x). If E = E(T,C4s(x)) ≤ ε24, then

eT (A) ≤ η2 eT (B4s(x)) + C26 Ω
2 sm+2,(3.10)

for every A ⊂ Bs(x) Borel with |A| ≤ ε24|Bs(x)| (C26 depends only on η2,m, n and
Q).

Proof. The proof is a minor modification of [7, Proposition 6.4]; nevertheless, being
very short, we provide here a brief account of all the arguments.

Without loss of generality, we can assume s = 1 and x = 0. We distinguish the
two regimes: ε̂2E ≤ Ω2 and Ω2 ≤ ε̂2E, where ε̂ ≤ ε24 is a parameter whose choice
will be specified later. In the former, clearly eT (A) ≤ C E ≤ CΩ2. In the latter, we
let f be the E

1/4m-Lipschitz approximation of T in C3. By a Fubini-type argument
as the ones already used in the previous sections, we find a radius r ∈ (1, 2) and a
current P with M(P ) ≤ CE1+γ and ∂((T −Gf ) Cr) = ∂P for some γ(m) > 0.
We can thus apply the Homotopy Lemma 2.2 to R = Gf Cr +P + T (C3 \Cr):

‖T‖(Cr) ≤ M(R Cr) + CΩE
1/2 ≤ ‖Gf‖(Cr) + Cε̂E + CE1+γ

≤ Q |Br|+
∫
Br

|Df |2
2

+ Cε̂E + C E1+γ ,(3.11)

for some positive γ (possibly smaller than the previous one), where we used the
Taylor expansion in [8, Corollary 3.3].

On the other hand, using the Taylor expansion for the part of the current which
coincides with the graph of f , we deduce as well that

‖T‖(Cr) = ‖T‖((Br \K)× R
n) + ‖T‖((Br ∩K)× R

n)

≥ ‖T‖((Br \K)× R
n) +Q |Br ∩K|+

∫
Br∩K

|Df |2
2

− C E1+γ .(3.12)

Subtracting (3.12) from (3.11), we then have

(3.13) eT (Br \K) ≤
∫
Br\K

|Df |2
2

+ Cε̂E + CE1+γ ,

and we recall that the constant C is independent of ε̂. Therefore, taking into
account (3.1) of Theorem 3.1, we conclude that the excess on the exceptional set
Br \K is infinitesimal with respect to E if ε24 is chosen small enough, namely

(3.14) eT (Br \K) ≤ η E,
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for a suitable η > 0. Now let A ⊂ B1 be such that |A| ≤ ε24 ωm. Combining (3.14)
with the Taylor expansion and with (3.2) of Theorem 3.1, we have

(3.15) eT (A) ≤ eT (A \K) +

∫
A

|Df |2
2

+ C E1+γ ≤
∫
A

|Dw|2
2

+ 2 η eT (B4),

where w is Dir-minimizing and ε24 is assumed small enough. Hence, we infer the
conclusion (3.10) from the higher integrability of the gradient of Dir-minimizing
functions given in [7, Theorem 6.1] (see [7, p. 1861] for the simple argument). �

3.3. Gradient Lp estimate. One of the key points of the proof of Theorem 1.4 is
to show an Lp estimate, for some p > 1, for the density d of the excess measure of
an Ω-almost minimizer.

Theorem 3.3 (Gradient Lp estimate). There exist constants p2 > 1 and C, ε25 > 0
(depending on n,Q) with the following property. Assume T satisfies (1.2) in the
cylinder C4. If T is an Ω-almost minimizer and E = E(T,C4) < ε25, then

(3.16)

∫
{d≤1}∩B2

dp2 ≤ C Ep2−1
(
E +Ω2

)
.

Proof. The proof is the same as the proof of [7, Theorem 2.3], where [7, Proposi-
tion 6.4] is replaced by our Proposition 3.2. �

4. Strong excess estimate and proof of Theorem 1.4

4.1. Almgrem’s strong excess estimate. Thanks to the higher integrability of
Theorem 3.3, we can control the excess where d ≤ 1. To control it outside this
region, we prove the following strengthened version of Proposition 3.2.

Theorem 4.1 (Almgren’s strong excess estimate). There are constants ε21, γ2, C27

> 0 (depending on n,Q) with the following property. Assume T satisfies Assump-
tion 1.2 in C4 and is Ω-almost minimizing. If E = E(T,C4) < ε21, then

(4.1) eT (A) ≤ C27

(
Eγ2 + |A|γ2

) (
E +Ω2

)
for every Borel A ⊂ B1.

Proof. The proof follows the same scheme as in [7]. First of all, by a regularization
by convolution technique, we construct a subset of radii B ⊂ [1, 2] with |B| > 1

2
with the property that, for every σ ∈ B, there exists a Q-valued function g ∈
Lip(Bσ,AQ(R

n)) such that

g|∂Bσ
= f |∂Bσ

, Lip(g) ≤ C28 E
β1 ,(4.2) ∫

Bσ

|Dg|2 ≤
∫
Bσ∩K

|Df |2 + C28 E
γ3
(
E +Ω2

)
,(4.3)

where f is the Eβ1-Lipschitz approximation of the Ω-minimal current T and γ3, C28

are dimensional positive constants. The proof of the above estimates is given in
[7, Proposition 7.3].

Now using the isoperimetric inequality and a slicing argument, we find a radius
σ ∈ B and P ∈ Im(Rm+n) with ∂P = ∂((T −Gf ) Cs) and M(P ) ≤ CE1+γ . We
can therefore apply the Homotopy Lemma 2.2 to conclude that

(4.4) ‖T‖(Cσ) ≤ ‖Gg‖(Cσ) + CΩ

∫
Bσ

G(g, f) + CE1+γ+CΩE
3/4.
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Then, from (4.4), (4.3), the inequality 2ΩE
3/4 ≤ EγΩ2 +E

3/2−γ (for any γ < 1/2),
and the Taylor expansion for M(Gg) we achieve

(4.5) ‖T‖(Cσ) ≤ Q |Bσ|+
∫
Bσ∩K

|Df |2
2

+ CEγ(E +Ω2) + CΩ

∫
Bσ

G(g, f) ,

for some γ > 0. On the other hand, by the Taylor expansion in [8, Corollary 3.3],

‖T‖(Cs) = ‖T‖((Bs \K)× R
n) + ‖Gf‖((Bs ∩K)× R

n)

≥ ‖T‖((Bs \K)× R
n) +Q |K ∩Bs|+

∫
K∩Bs

|Df |2
2

− C E1+γ ,(4.6)

possibly changing the value of γ > 0. Hence, from (4.5) and (4.6), we get

(4.7) eT (Bs \K) ≤ C Eγ (E +Ω2) + CΩ

∫
Bσ

G(g, f).

Next note that, by the Taylor expansion of the mass of the graph of f , it follows
that |Df |2 ≤ C dT ≤ CE2β < 1 a.e. in K; indeed, in all Lebesgue points of K and
|Df |2 we have that

|Df |2(x) = lim
s→0

∫
Bs(x)∩K

|Df |2

ωm sm
≤ C lim

s→0

eGf
(Bs(x) ∩K)

ωm sm

≤ C lim sup
s→0

eT (Bs(x))

ωm sm
= CdT (x).

Therefore, for every A ⊂ B1 Borel set, we can use the higher integrability of
|Df | in K given by Theorem 3.3 to get

eT (A) ≤ eT (A ∩K) + eT (A \K)

≤
∫
A∩K

|Df |2
2

+ C E1+γ + C Eγ (E +Ω2) + CΩ

∫
Bσ

G(g, f)

≤ C |A ∩K|
p2−1
p2

(∫
A∩K

|Df |q2
)2/q2

+ C Eγ (E +Ω2) + CΩ

∫
Bσ

G(g, f)

≤ C |A|
p2−1
p2

(
E +Ω2

)
+ C Eγ (E +Ω2) + CΩ

∫
Bσ

G(g, f).

In order to conclude the proof we only need to estimate the term
∫
Bσ

G(g, f).
For this part of the argument it is important to recall the construction of the map
g in [7]. We introduce the following notation. Given two (vector-valued) functions
h1 and h2 and two radii 0 < s < r, we denote by lin(h1, h2) the linear interpolation
in Br \ B̄s between h1|∂Br

and h2|∂Bs
, i.e., if (θ, t) ∈ S

m−1 × [0,∞) are spherical
coordinates, then

lin(h1, h2)(θ, t) =
r − t

r − s
h2(θ, s) +

t− s

r − s
h1(θ, r) .

Next, we fix two parameters δ > 0 and ε > 0 and radii 1 < r1 < r2 < r3 < 2, given
by

r3 = σ, r2 = r3 − s, and r1 = r2 − s,

with σ ∈ B the radius in the estimates (4.2) and (4.3) (whose existence is established
in [7]) and with ε = Ea, δ = Eb, and s = Ec, where

a =
1− 2β1

2m
, b =

1− 2β1

4m (nQ+ 1)
, and c =

1− 2β1

8nQ 4m (nQ+ 1)
.
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Fix also ϕ ∈ C∞
c (B1) as a standard nonnegative mollifier. We set f ′ := ξ ◦ f .

Recall the Lipschitz maps ρ and ρ	
δ of [6, Theorem 2.1] and [7, Proposition 7.2],

respectively, and define:

(4.8) g′ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
E ρ ◦ lin

(
f ′
√
E
,ρ	

δ

(
f ′
√
E

))
in Br3 \Br2 ,√

E ρ ◦ lin
(
ρ	
δ

(
f ′
√
E

)
,ρ	

δ

(
f ′
√
E
∗ ϕε

))
in Br2 \Br1 ,√

E ρ	
δ

(
f ′
√
E
∗ ϕε

)
in Br1 .

Finally set g := ξ−1 ◦ g′. In particular, recalling that ξ−1 is Lipschitz continuous
and f = ξ−1 ◦ f , we can estimate as follows:∫

Bσ

G(f, g) ≤ C

∫
Bσ\Bσ−s

∣∣∣f ′ −
√
Eρ ◦ lin

( f ′
√
E
,ρ	

δ

( f ′
√
E

))∣∣∣
︸ ︷︷ ︸

I1

+ C

∫
Bσ−s\Bσ−2s

∣∣∣f ′ −
√
Eρ ◦ lin

(
ρ	
δ

( f ′
√
E

)
,ρ	

δ

( f ′
√
E

∗ ϕε

))∣∣∣
︸ ︷︷ ︸

I2

+ C

∫
Bσ−2s

∣∣∣f ′ −
√
Eρ	

δ

( f ′
√
E

∗ ϕε

)∣∣∣
︸ ︷︷ ︸

I3

.

Wewill estimate I1, I2, I3 separately. For what concerns I1, we recall that ρ◦f ′ = f ′,
ρ is Lipschitz continuous, and λρ(P ) = ρ(λP ), for every λ > 0, P ∈ Q, since Q is
a cone; therefore,

I1 ≤ C

∫ σ

σ−s

∫
∂Bt

√
E
∣∣∣ f ′
√
E

− t+ s− σ

s

f ′
√
E

− σ − t

s
ρ	
δ

( f ′
√
E

)∣∣∣ dt
= C

√
E

∫ σ

σ−s

σ − t

s

∫
∂Bt

∣∣∣ f ′
√
E

− ρ	
δ

( f ′
√
E

)∣∣∣ dt
≤ C

√
Eδ8

−nQ |Bσ \Bσ−s| ≤ CE
1/2+c ,

where we used |ρ	
δ(P )− P | ≤ C δ8

−nQ

from [7, Proposition 7.2] and |Bσ \Bσ−s| ≤
Cs ≤ CEc. We next bound I2; similarly as for I1

I2 ≤ C
√
E

∫ σ−s

σ−2s

∫
∂Bt

∣∣∣ f ′
√
E

− t+ 2s− σ

s
ρ	
δ

( f ′
√
E

)
− σ − s− t

s
ρ	
δ

( f ′
√
E

∗ ϕε

)∣∣∣
≤ C

√
E

∫ σ−s

σ−2s

∫
∂Bt

(∣∣∣ f ′
√
E

− ρ	
δ

( f ′
√
E

)∣∣∣+ σ−s−t

s

∣∣∣ρ	
δ

( f ′
√
E

)
−ρ	

δ

( f ′
√
E

∗ ϕε

)∣∣∣
)
dt

≤ CE
1/2+c + C

∫
Bσ−s\Bσ−2s

∣∣f ′ − f ′ ∗ ϕε

∣∣ ,
where we have used the fact that ρ	

δ is Lipschitz. The estimate for I3 is similarly
given by

I3 ≤ C
√
E

∫
Bσ−2s

(∣∣∣ f ′
√
E

− ρ	
δ

( f ′
√
E

)∣∣∣+ ∣∣∣ρ	
δ

( f ′
√
E

)
− ρ	

δ

( f ′
√
E

∗ ϕε

)∣∣∣)

≤ CE
1/2+c + C

∫
Bσ−2s

|f ′ − f ′ ∗ ϕε| .
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We therefore achieve the estimate

I2 + I3 ≤ CE
1/2+c +

∫
Bσ−s

|f ′ − f ′ ∗ ϕε| ,

and to conclude, we compute∫
Bσ−s

∣∣f ′ − f ′ ∗ ϕε

∣∣ ≤
∫
Bσ−s

∫
Bε

ϕε(x)|f ′(y − x)− f ′(y)| dy dx

≤
∫
Bσ−s

∫
Bε

∫ 1

0

ϕε(x)|Df ′(y − tx) · x| dt dy dx

≤
∫ 1

0

∫
Bε

ϕε(x)ε

∫
Bσ−s

|Df(y − tx)| dy dx dt ≤ ε ‖Df‖L1(Bσ)
≤ CE

1/2+a

(where we have used the fact that ε ≤ s). Putting everything together we conclude
that

Ω

∫
Bσ

G(f, g) ≤ CΩE
1/2+γ≤ C Eγ

(
E +Ω2

)
for a suitable γ > 0, thus concluding the proof of Theorem 4.1. �
4.2. Proof of Theorem 1.4. Without loss of generality, we can assume r = 1 and
x = 0. Choose β2 < min{ 1

2m , γ3

2(1+γ3)
}, where γ3 is the constant in Theorem 4.1.

Let f be the Eβ2-Lipschitz approximation of T . Clearly (1.3) follows directly from
[7, Proposition 3.2] if β0 < β2. Next set A :=

{
meT > 2−mE2β2

}
∩ B9/8. By

[7, Proposition 3.2], |A| ≤ CE1−2β2 . Apply estimate (4.1) to A to conclude:

|B1 \K| ≤ C E−2β2 eT (A) ≤ C Eγ3−2β2(1+γ3)(E +Ω2).

By our choice of γ3 and β2, this gives (1.4) for some positive β0. Finally, set
S = Gf . Recalling the strong Almgren’s estimate (4.1) and the Taylor expansion
in [8, Corollary 3.3], we conclude:∣∣∣∣‖T‖(C1)−Qωm −

∫
B1

|Df |2
2

∣∣∣∣
≤ eT (B1 \K) + eS(B1 \K) +

∣∣∣∣eS(B1)−
∫
B1

|Df |2
2

∣∣∣∣
≤ C Eγ3(E +Ω2) + C |B1 \K|+ C Lip(f)2

∫
B1

|Df |2 ≤ C Eγ1(E +Ω2).

The L∞ bound follows straightforwardly from [7, Proposition 3.2].

5. Approximation of 2-dimensional almost minimizing currents

As mentioned in the introduction, we state here the approximation result for
2-dimensional currents as in (a), (b), and (c) of Definition 0.1, which will be used
in our subsequent notes [11, 12]. The following are the main assumptions.

Assumption 5.1. In case (a) Σ ⊂ R
m+n is a C2 submanifold of dimension m+n̄ =

m+n− l, which is the graph of an entire function Ψ : Rm+n̄ → R
l and satisfies the

bounds

(5.1) ‖DΨ‖0 ≤ c0 and A := ‖AΣ‖0 ≤ c0,

where c0 is a positive (small) dimensional constant. ω is a C1 m-form. T is an
integral current of dimension 2 with bounded support. Moreover it satisfies one of
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the three conditions (a), (b), or (c) in Definition 0.1. In particular in case (a) we
have spt(T ) ⊂ Σ and T is area-minimizing in Σ. In case (b) we assume Σ = R

m+n

and T is semicalibrated by ω. In case (c) we have that Σ coincides with a portion
of ∂BR(p), which is the graph of a map Ψ : Ω → R satisfying (5.1), for some
Ω ⊂ R

m+n−1. Finally, for some open cylinder C4r(x) (with r ≤ 1) and some
positive integer Q, we assume that Assumption 1.2 still holds.

Theorem 5.2. There exist constants M,C21, β0, ε21 > 0 (depending on m,n, n̄, Q)
with the following property. Assume that T satisfies Assumption 1.2 in the cylinder
C4r(x) and E = E(T,C4r(x)) < ε21. Then, there exist a map f : Br(x) → AQ(R

n),
with {x} × spt(f(x)) ⊂ Σ for every x, and a closed set K ⊂ Br(x) such that

Lip(f) ≤ C21E
β0 + C21Ωr in cases (a) and (c) ,(5.2)

Lip(f) ≤ C21E
β0 in case (b) ,(5.3)

(5.4) Gf (K ×R
n) = T (K ×R

n) and |Br(x) \K| ≤ C21E
β0
(
E + r2Ω2

)
rm ,

(5.5)
∣∣∣‖T‖ (Cr(x))−Qωmrm − 1

2

∫
Br(x)

|Df |2
∣∣∣ ≤ C21E

β0
(
E + r2Ω2

)
rm ,

where Ω = A in case (a), Ω = ‖dω‖0 in case (b), and Ω = 3
R in case (c). If in

addition h(T,C4r(x)) := sup{|p⊥(x)− p⊥(y)| : x, y ∈ spt(T ) ∩C4r(x)} ≤ r, then

osc(f) ≤ C21h(T,C4r(x)) + C21(E
1/2 + rΩ)r in cases (a) and (c) ,(5.6)

osc(f) ≤ C21h(T,C4r(x)) in case (b).(5.7)

Proof. Case (a) is proved in [7, Theorem 2.4], while case (b) follows directly from
Theorem 1.4 after recalling that semicalibrated currents are Ω-minimal currents for
Ω = ‖dω‖0 by [13, Proposition 1.2].

It remains to handle case (c). Again by [13, Proposition 1.2], a current sat-
isfying (c) of Definition 0.1 is an Ω-minimal current for Ω = 3

R . Therefore, we
can apply Theorem 1.4. However, the graph of the map f so obtained is not nec-
essarily contained in Σ. We show here how to modify it in such a way to fulfill
the requirements of Theorem 5.2. We assume that Ψ is a function whose graph
coincides with Σ (the connected component of ∂BR(p)∩C4r(x) containing spt(T ))
and arguing as in [7, Remark 1.5] we can assume that ‖Ψ0‖ ≤ CE

1/2r + CΩr2,
‖DΨ‖0 ≤ CE

1/2 + CΩr, and ‖D2Ψ‖0 ≤ CΩ. The domain of Ψ is a subset of
B4r(x)×R

n−1. Now let f =
∑

i �fi� be the function given by Theorem 1.4 and let

f̄ =
∑

i

�
f̄i

�
, where f̄i(y) gives the first n − 1 coordinates of fi(y). Observe that

on the set K we necessarily have

f(y) =
∑
i

�
(f̄i(y),Ψ(y, f̄i(y)))

�
.

We then can extend f̄ to Br(x) \K with Lip(f̄) ≤ CLip(f) and osc (f̄) ≤ Cosc (f)

and hence define f̂(y) =
∑

i

�
(f̄i(y),Ψ(y, f̄i(y)))

�
for every y ∈ Br(x) (it must be

shown that (y, f̄i(y)) belongs to the domain of definition of Ψ, but this follows easily

from the smallness of osc (f̄)). Obviously f = f̂ on K. On the other hand it is
straightforward to check that

Lip(f̂) ≤ C Lip(f̄) + C(Lip(f̄) + 1)‖DΨ0‖ ≤ CEβ0 + CΩr ,

osc (f̂) ≤ C osc (f) + ‖Ψ‖0 ≤ Ch(T,C4r(x)) + C(E
1/2 +Ωr)r .
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In addition we conclude∣∣∣∣∣
∫
Br(x)

|Df |2 −
∫
Br(x)

|Df̂ |2
∣∣∣∣∣ ≤ (Lip(f)2 + Lip(f̂)2)|Br(x) \K| ≤ C|Br(x) \K| .

Thus the estimates in Theorem 1.4 complete the proof. �

Appendix A. A singular semicalibrated current

Here we give an explicit example of a 2-dimensional current with a singular point
that is semicalibrated by a differential form which is not closed.

Consider a function u : R2 → R
2 which is C∞ but not analytic, and assume that

u(0) = |∇u(0)| = 0.

We need to introduce the following:

(1) E1, E2 ∈ T
(
Gr(u)

)
and E3, E4 ∈ N

(
Gr(u)

)
smooth sections of the tangent

and the normal bundles of Gr(u) ⊂ R
4 considered as a smooth oriented

submanifold such that

Ei(p) · Ej(p) = δij ∀ p ∈ Gr(u), ∀ i, j = 1, . . . , 4;

moreover we assume thatEi(0) = ei for every i = 1, . . . , 4, where {ei}i=1,...,4

is the standard basis of R4;
(2) θ1, . . . , θ4 the dual fields:

θi(p)
(
Ej(p)) = δij ∀ p ∈ Gr(u), ∀ i, j = 1, . . . , 4;

(3) pu the nearest point projection on Gr(u), which exists in a tubular neigh-
borhood of the submanifold Gr(u) and therefore, in particular, in Br0 for
some r0 > 0;

(4) �D� := (e3 ∧ e4) · H2 {x1 = x2 = 0} the current associated to the oriented
integration on the vertical plane D = {x1 = x2 = 0}.

It is now elementary to verify the following claims:

(i) the smooth 2-dimensional differential form

ω(x) := θ1(pu(x)) ∧ θ2(pu(x)) + θ3(pu(x)) ∧ θ4(pu(x))

is a semicalibration in Br0 ;
(ii) the current T := Gu + �D� is semicalibrated by ω in Br0 and 0 ∈ Sing(T ).

Note that ω is not a closed form, for in this case T would be an area-minimizing
current thus implying that spt(T ) \ {0} is locally the graph of an analytic map
(cf. [19, Theorem 5.5]); this is obviously not the case for a generic smooth u.

Actually, following the same principles, it is simple to construct many more ex-
amples. In particular it is possible to construct examples where the semicalibrated
current has a branching singularity. However the corresponding computations are
slightly more involved.
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