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MARKED-LENGTH-SPECTRAL RIGIDITY

FOR FLAT METRICS

ANJA BANKOVIC AND CHRISTOPHER J. LEININGER

Abstract. In this paper we prove that the space of flat metrics (nonpositively
curved Euclidean cone metrics) on a closed, oriented surface is marked-length-
spectrally rigid. In other words, two flat metrics assigning the same lengths
to all closed curves differ by an isometry isotopic to the identity. The novel
proof suggests a stronger rigidity conjecture for this class of metrics.

1. Introduction

Let S be a closed, orientable surface and M(S) a set of metrics on S, defined up
to isometry isotopic to the identity. For m ∈ M(S), we denote the marked-length-
spectrum of m by

Λ(m) = {�m(γ)}γ∈C(S),

where C(S) denotes the set of homotopy classes of nonnull homotopic closed curves
on S and �m(γ) the length of a minimal m–geodesic representative of γ. We say
that M(S) is spectrally rigid if m �→ Λ(m) is injective on M(S). Let Flat(S) denote
the space of nonpositively curved Euclidean cone metrics. In this paper we prove
the following.

Main Theorem. If ϕ1, ϕ2 ∈ Flat(S) and Λ(ϕ1) = Λ(ϕ2), then ϕ1 = ϕ2.

The first results on spectral rigidity for surfaces are due to Fricke and Klein
[FK65], who showed that the Teichmüller space of Riemannian metrics with con-
stant curvature −1 is spectrally rigid. Otal [Ota90] generalized this and showed
that the set of all negatively curved Riemannian metrics is spectrally rigid (see
also Croke [Cro90]). This was further generalized in two directions, first by Croke,
Fathi, and Feldman [CFF92] who proved that the space of nonpositively curved Rie-
mannian metrics is spectrally rigid, and second by Hersonsky and Paulin [HP97]
who showed that negatively curved cone metrics are spectrally rigid. Frazier shows
in [Fra12] that Λ(ϕ) distinguishes metrics ϕ ∈ Flat(S) from negatively curved Rie-
mannian and negatively curved cone metrics (and in fact, from nonpositively curved
Riemannian metrics). Duchin, Leininger, and Rafi [DLR10] showed that the sub-
set of metrics in Flat(S) coming from quadratic differentials is spectrally rigid; see
[Dan14] for a related result on this class of metrics. The literature on marked-
length-spectral rigidity is vast, and we have only referenced the results pertinent to
our work.
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The metrics coming from quadratic differential metrics are rather special. Let-
ting S(S) denote the set of homotopy classes of simple closed curves on S, in [DLR10]
the authors prove that ϕ �→ {�ϕ(γ)}γ∈S(S) is injective on the class of quadratic dif-
ferential metrics. For negatively curved metrics, this is far from true, as we now
briefly recall. Birman and Series [BS85] proved that for any k > 0 and any hyper-
bolic metric, the union of all closed geodesics with at most k self-intersections is a
nowhere dense set Xk ⊂ S. Consequently, the metric can be deformed on an open
subset of S −Xk to negatively curved metrics without changing the lengths of any
curves with at most k self-intersections. Therefore, not only are the set of lengths
of simple closed curves on S insufficient to distinguish any two negatively curved
metrics, but the same is true for curves with at most k self-intersections. Approxi-
mating a hyperbolic metric by a sequence of metrics in Flat(S) (see, e.g., [Ban14]),
one can similarly construct deformations proving that such classes of closed curves
are insufficient to distinguish metrics in Flat(S).

To prove the Main Theorem, we follow [Ota90, CFF92, HP97], associating the
Liouville geodesic current Lϕ to each metric ϕ ∈ Flat(S), which has the prop-
erty that for every closed curve, its length is calculated via Bonahon’s intersection
number with Lϕ [Bon88]. Appealing to a result of Otal [Ota90], recorded as Theo-
rem 3.2 here, reduces the proof to proving that two metrics with the same Liouville
current are equivalent. Our analysis diverges at this point as we determine a great
deal about ϕ from the support of the measure Lϕ. Unlike nonpositively curved
Riemannian metrics, Lϕ does not have full support. Indeed, we prove that the
support consists of the closure of the set of nonsingular geodesics; see Corollary 3.5
for a precise statement. Here we outline the main ideas involved in proving that
Lϕ determines ϕ.

Cone points of ϕ in the universal covering determine gaps in the support of
Lϕ encoded by objects we call chains; see Section 4. We prove that chains only
arise from cone points (Proposition 4.1) and that the set of cone points of ϕ can
be recovered from the set of (equivalence classes of) chains (Lemma 4.4). For
two cone points ζ1, ζ2 of ϕ, the ϕ–distance between ζ1, ζ2 is computed as the Lϕ–
measure of the set of geodesics “between” the gaps for ζ1 and the gaps for ζ2
(Proposition 4.5). Therefore, given ϕ1, ϕ2 ∈ Flat(S) with Lϕ1

= L = Lϕ2
, we may

construct an equivariant, distance preserving bijection between the cone points
of ϕ1 and ϕ2. Extending this to a path-isometry from the 1–skeleton of a nice
ϕ1–geodesic triangulation, an application of Reshetnyak’s Majorization Theorem
(Proposition 2.1) ensures that we can extend over the triangles to an isometry; see
Section 5.

The very special behavior of the support was evident in [DLR10], and played a
key role in [Fra12]. We conjecture that up to an obvious ambiguity, the support of
Lϕ determines ϕ; see Section 6.

The outline of the paper is as follows. In Section 2 we describe Euclidean cone
metrics, the induced metrics in the universal cover, and prove various facts about
their geodesics. In Section 3 we define geodesic currents and the Liouville current
for a flat metric. Section 4 provides key relationships between the Liouville current,
cone points in a flat metric, and distances between cone points. The proof of the
Main Theorem is given in Section 5. We end with a conjecture and question in
Section 6.
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2. Euclidean cone metrics and their geodesics

2.1. CAT(0) geometry. A geodesic metric ϕ on S is called a Euclidean cone metric
if there is a finite set of points on S, denoted cone(ϕ), so that the following hold:

(i) ϕ is locally isometric to R
2 with the Euclidean metric on S \ cone(ϕ), and

(ii) every point in cone(ϕ) has an ε–neighborhood isometric to the metric space
obtained by gluing together some (finite) number of sectors of ε–balls about
0 in R

2 by isometries along their edges.

The points in cone(ϕ) will be called the cone points of ϕ. Each ζ ∈ cone(ϕ) has
a well-defined cone angle ang(ζ), which is equal to the sum of the angles of the
sectors from (ii) above. We can extend the definition of angle on noncone points
by defining ang(ζ) = 2π for all ζ ∈ S \ cone(ϕ).

Every Euclidean cone surface S has a triangulation (more precisely a Δ–complex
structure) for which the vertex set is precisely the set of cone points; see, e.g.,
[MS91]. By Gromov’s link condition, it follows that a Euclidian cone metric ϕ
is nonpositively curved if and only if ang(ζ) > 2π for every point ζ ∈ cone(ϕ);
see [BH99, Theorem II.5.2]. A nonpositively curved Euclidean cone metric will be
called a flat metric. The space of all flat metrics on S, up to isometry isotopic to
the identity, is denoted Flat(S). We will not distinguish between a metric and its
equivalence class.

We will eventually use the following to construct our isometry in the proof of the
Main Theorem. Here, a geodesic triangle Δ in a CAT(0) Euclidean cone surface
actually means the convex hull of the three geodesic sides. We write Δ1 for the
union of the sides.

Proposition 2.1. Suppose Δ is a geodesic triangle in a complete, locally compact,
CAT(0) Euclidean cone surface X and Δ0 ⊂ R

2 is its comparison triangle. Then
Area(Δ) ≤ Area(Δ0) with equality if and only if Δ is isometric to Δ0.

Proof. According to Reshetnyak’s Majorization Theorem [Res], [AKP, Chapter
9.8], the comparison path isometry from Δ1

0 to Δ1 extends to a 1–Lipschitz map
f : Δ → X into the convex hull of Δ1 (which is just Δ in our setting). Therefore, we
must show that Area(Δ) ≤ Area(Δ0) with equality if and only if f is an isometry.
However, the 1–Lipschitz map is area nonincreasing, and it is area preserving if and
only if it is an isometry. This is obvious for smooth surfaces X, and follows in our
slightly more general case since Δ contains at most finitely many cone points. �

2.2. Spaces of geodesics. Let p : S̃ → S denote the universal cover. For any
geodesic metric σ on S, we use the same name σ to denote the induced geodesic

metric on S̃. Let S1
∞ denote the circle at infinity of S̃ — equivalently, the Gromov

boundary of S̃ — with respect to σ. This compactifies S̃ to a closed disk, and the

action of π1(S) on S̃ extends to an action by homeomorphisms on this disk. Any
other geodesic metric σ′ on S induces its own circle at infinity, but the identity on

S̃ extends to a homeomorphism between the corresponding closed disks, and so we

view S1
∞ as the boundary of S̃, independent of σ; see [BH99, Chapter III.H.3].

Let G(σ) denote the space of bi-infinite σ–geodesics in S̃. This is given as the
quotient of the space of unit speed parameterized geodesics with the compact-open
topology, where we forget the parameterization. We record the endpoints-at-infinity
of any δ ∈ G(σ) and denote it ∂σ(δ) = {x, y}. We view this as an unordered pair of
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points; that is, an element of

G(S̃) = (S1
∞ × S1

∞ \D)/(x,y)∼(y,x),

where D is the diagonal, D = {(x, x) |x ∈ S1
∞}. The function ∂σ is a continuous,

π1(S)–equivariant surjective map

∂σ : G(σ) → G(S̃).

When σ is a negatively curved metric, ∂σ is a homeomorphism, but for a general
metric σ, it need not be.

Proposition 2.2. For any geodesic metric σ, the map ∂σ is a closed map.

Proof. Let E ⊂ G(σ) be a closed set, and we must show that ∂σ(E) is a closed

set in G(S̃). Since G(S̃) is metrizable, it suffices to show that if {δn}∞n=1 ⊂ E is
a sequence such that ∂σ(δn) converges to some {x, y}, then there is some δ ∈ E

such that ∂σ(δ) = {x, y}. For this, fix a point ζ ∈ S̃ and observe that since
∂σ(δn) converges to {x, y} (and x �= y), the distance from ζ to the geodesics δn is

bounded by some constant R > 0, independent of n. Since the metric σ on S̃ is
proper, the closed ball BR of radius R > 0 about ζ is compact. Since the δn all
intersect BR for all n, the Arzela-Ascoli Theorem implies that some subsequence
{δnk

} converges to some geodesic δ. Since E is closed, δ ∈ E, and continuity of ∂σ
implies ∂σ(δ) = {x, y}. �

2.3. Linking and betweenness. Fix a hyperbolic metric ρ inducing a homeo-

morphism ∂ρ : G(ρ) → G(S̃). Let δ1, δ2 ∈ G(ρ) be two distinct geodesics, and write
∂ρ(δi) = {xi, yi}, for i = 1, 2. If δ1, δ2 transversely intersect, then we say that
{x1, y1} and {x2, y2} link. This is equivalent to saying that the 0–spheres {x1, y1}
and {x2, y2} in the 1–sphere S1

∞ are linked, meaning that x1, x2, y1, y2 are all dis-
tinct, and the two components of S1

∞\{x1, y1} each contain one of the points x2, y2.
The point is that intersection of δ1, δ2 can be determined from the image in ∂ρ. We
will also say that δ1, δ2 link.

Suppose δ1, δ2 are disjoint (so their endpoints do not link). Then write [δ1, δ2] ⊂
G(ρ) for the set of geodesics between δ1, δ2. These are precisely the geodesics that
link neither of δ1 nor δ2 but do link every geodesic which is linked with both δ1
and δ2; See Figure 1. Equivalently, if we let ∂ρ(δi) = {xi, yi}, i = 1, 2, with the
points appearing in S1

∞ in the counterclockwise, cyclic order x1, y1, y2, x2, and if
we let [a, b] denote the counterclockwise interval between a and b in S1

∞ (where
[a, b] = {a} if a = b), then

[δ1, δ2] = {δ ∈ G(ρ) | ∂ρ(δ) = {x, y} with x ∈ [x2, x1], y ∈ [y1, y2]}.

The image of [δ1, δ2] in G(S̃) is similarly denoted
[
{x1, y1}, {x2, y2}

]
= ∂ρ([δ1, δ2]) = {{x, y} | x ∈ [x2, x1], y ∈ [y1, y2]}.

For ϕ ∈ Flat(S), the endpoints of δ1, δ2 ∈ G(ϕ) link if and only if either δ1, δ2
transversely intersect once, or they share a compact segment, with δ1 crossing from
one side of δ2 to the other. In this case, we will also say that δ1, δ2 link. Betweenness
for δ1, δ2 ∈ G(ϕ) is also defined as betweenness for the endpoints.
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Figure 1. δ1, δ2 do not link, and δ ∈ [δ1, δ2] since any geodesic δ′

linking δ1, δ2 will also link δ.

2.4. Flat metric geodesics. Let ϕ ∈ Flat(S) be any flat metric. A (bi-infinite)
ϕ–geodesic δ ∈ G(ϕ) is called nonsingular if it contains no cone points. We let

G◦(ϕ) ⊂ G(ϕ) denote the set of nonsingular geodesics, and G∗(ϕ) = G◦(ϕ) ⊂ G(ϕ).

Remark 1. The relevance of G∗(ϕ) is explained in the next section where we see that
it describes the support of the Liouville current for ϕ mentioned in the introduction
(see Corollary 3.5). For the remainder of this section, we develop the necessary facts
about geodesics in G∗(ϕ) we will need to study this current.

Since there are countably many cone points of ϕ in S̃, and the set of ϕ–geodesics
through any cone point is closed, it follows that G◦(ϕ) is the complement of a
countable union of closed sets, and hence a Borel set. Each δ ∈ G(ϕ) is two-sided
and we choose a transverse orientation so that we can refer to the positive and

negative sides of ϕ. At every cone point x ∈ cone(ϕ) ⊂ S̃, δ makes two angles, one
on the positive side and one on the negative side. Because δ is a geodesic, at every
x ∈ cone(ϕ), both angles at x must be at least π.

Proposition 2.3. If δ ∈ G(ϕ) is a geodesic containing at most one cone point and
making an angle π on one side at that point, then δ ∈ G∗(ϕ).

Proof. Suppose δ makes an angle π on the positive side at ζ ∈ cone(ϕ). Fix a short
reference geodesic arc α emanating from ζ on the positive side of δ, orthogonal
to δ, meeting no other cone points. At every point α(t), we consider the geodesic
through α(t) orthogonal to α, and hence parallel to δ. Since these are all parallel
along α and ϕ is CAT(0), these are pairwise disjoint. At most countably many of
these can meet a cone point (since there are only countably many cone points), and
hence δ is a limit of nonsingular geodesics approaching it from the positive side.
Therefore δ ∈ G∗(ϕ). �
Proposition 2.4. If δ ∈ G∗(ϕ), then at every cone point ζ ∈ δ, δ makes an angle
exactly π on one side. Furthermore, ordering the cone points linearly along δ, the
side on which the angle is π can only switch at most once.

Proof. Let {δn} ⊂ G◦(ϕ) be a sequence converging to δ. For the first claim, suppose
ζ ∈ cone(ϕ) is contained in δ. Since δn contains no cone points, ζ �∈ δn, and therefore
up to subsequence δn approaches δ from either its positive or negative side near
ζ. In this case, the cone angle of δ at ζ on the side of approach must be π. See
Figure 2.
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If ζ1, ζ2, ζ3 are three ordered cone points along δ, and the angle π is on the
positive side at ζ1 and ζ3 and on the negative side at ζ2, say, then it follows that
for n sufficiently large, the approximating geodesic δn ∈ G◦(ϕ) for δ must be on the
positive side near ζ1 and ζ3 and the negative side near ζ2; see Figure 2. But then
δn crosses δ twice, which is impossible since ϕ is CAT(0). �

ζ

δ

δn

ζ1

ζ2

ζ3δn

δ

Figure 2. Approximating δ by δn ∈ G◦(ϕ). Left: Side of δ near
ζ containing δn must make angle π. Right: The points ζ1, ζ2, ζ3
have cone angle π on the side indicated, switching sides from ζ1 to
ζ2 and again from ζ2 to ζ3.

If we define G2(ϕ) ⊂ G∗(ϕ) to be the set of geodesics in G∗(ϕ) containing at least
two cone points, we have the following corollary of the previous proposition.

Corollary 2.5. The set G2(ϕ) is countable.

Proof. Any ϕ–geodesic containing more than one cone point must a contain a ge-
odesic segment connecting a pair of cone points. Furthermore, by Proposition 2.4,
every geodesic in G∗(ϕ) switches the sides with angle π at most once. Therefore,
there are at most countably many geodesics in G∗(ϕ) containing a given geodesic
segment between cone points. On the other hand, there are countably many geo-
desic segments between cone points. Thus G2(ϕ) is a countable union of countable
sets, hence countable. �

We are also interested in the ∂ϕ–images of the subsets defined above, and we
denote these

G2
ϕ(S̃) = ∂ϕ(G

2(ϕ)) G◦
ϕ(S̃) = ∂ϕ(G

◦(ϕ)) G∗
ϕ(S̃) = ∂ϕ(G

∗(ϕ)).

2.5. Asymptotic geodesics. Geodesics in G∗(ϕ) can only be asymptotic in one
or both directions in particularly special ways. We will exploit this information,
and so we describe this precisely.

A ϕ–flat strip in S̃ is an isometric embedding F : R × [a, b] → S̃ for some [a, b],

and a ϕ–flat half-strip in S̃ is an isometric embedding of F : [0,∞)× [a, b] → S̃ for
some [a, b]. In both cases we require a �= b.

The failure of injectivity of ∂ϕ is entirely accounted for by ϕ–flat strips. More
precisely, the fiber of ∂ϕ is either a single geodesic, or else a ϕ–flat strip; see

[BH99, Theorem II.2.13]. In particular, for any point {x, y} ∈ G(S̃), ∂−1
ϕ ({x, y}) is

either a point or an arc.
We say that two rays δ1, δ2 ∈ G(ϕ) are asymptotic in one direction, if there

are subrays δ+i ⊂ δi, for i = 1, 2, so that δ+1 and δ+2 remain a bounded Hausdorff
distance apart (equivalently, the endpoints of δ+1 and δ+2 on S1

∞ are equal). One way
this can happen is if δ+1 and δ+2 are boundary rays of a ϕ–flat strip. Another way
this can happen is if δ+1 = δ+2 . In this latter case, we say that δ1, δ2 are ϕ–cone point
asymptotic in one direction. Note that when δ1 and δ2 are ϕ–cone point asymptotic,
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then there is a maximal common ray δ+1 = δ+2 which necessarily emanates from a
cone point. The next lemma says that for geodesics in G∗(ϕ) \ G2(ϕ), this is the
only way two geodesics can be asymptotic.

Lemma 2.6. Suppose δ1, δ2 ∈ G∗(ϕ)\G2(ϕ) are asymptotic in one direction. Then
either δ1, δ2 are ϕ–cone point asymptotic, or else they are separated by a ϕ–flat
half-strip.

Proof. If δ1 and δ2 do not share a common ray, consider the region bounded by
their asymptotic rays δ+1 and δ+2 . Since these geodesics are in G∗(ϕ) \ G2(ϕ) we
can choose these rays to contain no cone points. Consider the convex hull of these
two rays. Note that there can be no cone points in this region as this would force
the rays to diverge. Therefore, this region can be embedded into R

2 as the convex
hull of two asymptotic Euclidean rays. But such a convex hull must contain an
isometrically embedded [0,∞]× [0, ε] for some ε > 0. �
Lemma 2.7. If x, x1, x2 ∈ S1

∞ are three distinct points with the property that

{x, x1}, {x, x2} ∈ G∗
ϕ(S̃) \ G2

ϕ(S̃), then the following conditions are equivalent.

(1) There exists δ1, δ2 ∈ G∗(ϕ) with ∂ϕ(δi) = {x, xi} for i = 1, 2, such that
δ1, δ2 are ϕ–cone point asymptotic.

(2) [{x, x1}, {x, x2}] ∩ ∂ϕ(G
∗(ϕ)) = {{x, x1}, {x, x2}}.

When this happens, δ1, δ2 are unique and hence so is the cone point they contain.

Recall that [{x, x1}, {x, x2}] denotes the set of endpoints between {x, x1} and
{x, x2}; see Section 2.3.

Proof. The first condition implies the second: any geodesic δ strictly between δ1, δ2
(i.e. between, and not equal to either δi) would have to contain the common ray of
these two geodesics. Note that δ cannot agree with, say, δ1 beyond this ray, since
there are no more cone points along it where δ could depart from δ1 (similarly for
δ2). But then δ cannot make an angle π at the cone point.

Now suppose the {x, x1}, {x, x2} satisfy the second condition and let δ1, δ2 ∈
G∗(ϕ) be any two geodesics with ∂ϕ(δi) = {x, xi} for i = 1, 2. Note that δ1, δ2 ∈
G∗(ϕ) \ G2(ϕ) by assumption. These geodesics are asymptotic, and so by Lemma
2.6 they are either cone-point asymptotic or else there is a ϕ–flat half-strip between
them. If they are cone-point asymptotic we are done, so suppose there is a ϕ–flat
half-strip between them.

Suppose first that there is an entire ϕ–flat strip between δ1, δ2, and one of the
geodesics, say δ1, is a geodesic in this strip. Then δ2 is not also a geodesic in this
strip as this would imply x1 = x2, contradicting our assumption that x1 and x2 are
distinct. Since δ2 is asymptotic to δ1 in one direction, there must be a ray of δ2
that lies on the boundary of the strip, and so we can replace δ1 with the boundary
component δ′1 containing this ray (since ∂ϕ(δ

′
1) = ∂ϕ(δ1)), and we see that δ′1 and

δ2 are the required ϕ–cone point asymptotic pair.
If there is an entire ϕ–flat strip between δ1 and δ2, and neither of the geodesics are

in this strip, then any geodesic δ in the strip lies between δ1, δ2, and has endpoints
x, y ∈ S1

∞ with y �= x1, x2. This contradicts condition (2), and therefore we may
assume that there is no such flat strip. Similarly, if there is only a ϕ–flat half-strip
between δ1, δ2, it is easy to find a nonsingular geodesic δ containing a ray in this
half-strip. The endpoints of δ are x, y ∈ S1

∞ with y �= x1, x2, producing the same
contradiction.
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We have now found the required cone-point asymptotic geodesics δ1, δ2, and we
suppose that δ′1, δ

′
2 ∈ G∗(ϕ) are such that ∂ϕ(δi) = ∂ϕ(δ

′
i) = {x, xi}, for i = 1, 2,

and that δ′1, δ
′
2 are also cone-point asymptotic. Either δi = δ′i or else δi and δ′i

cobound a flat strip. It is clear that the latter is impossible for either i = 1 or 2
(the flat strip obstructs the cone-point asymptotic condition as above). Therefore,
the former holds, and we have the required uniqueness. �

3. Geodesic currents

3.1. Geodesic currents and intersection numbers. The action of π1(S) on S̃

(or on S1
∞) determines an action on G(S̃). A geodesic current is defined to be a

π1(S)–invariant Radon measure on G(S̃). The space of all geodesic currents on S
with the weak* topology is denoted Curr(S). Given a nonnull homotopic closed

curve γ on S, the endpoints of components of the preimage in S̃ is a discrete, π1(S)–

invariant set of points in G(S̃). The counting measure on this set defines a geodesic
current on S which we also denote γ. The set of real multiples of such currents are
dense in Curr(S). For a discussion of these facts, as well as the following theorem,
see Bonahon [Bon86,Bon88].

Theorem 3.1. There exists a continuous, symmetric, bilinear form

i : Curr(S)× Curr(S) → R

such that for any two currents γ1, γ2 associated to closed curves of the same name,
i(γ1, γ2) is the geometric intersection number of the homotopy classes of these
curves.

For geodesic currents μ, γ, where γ is the current associated to a closed curve
of the same name, i(γ, μ) can be calculated as follows; see [Bon88]. Choose a

component γ̃ ⊂ S̃ of p−1(γ). Let I(γ̃) be a μ–measurable fundamental domain for

the action of the stabilizer of γ̃ in π1(S) on the subset of G(S̃) consisting of pairs
of points linking the endpoints of γ̃. Then i(γ, μ) is computed as the μ–measure of
I(γ̃):

(1) i(μ, γ) = μ(I(γ̃)).

The following result of Otal [Ota90] is an important ingredient in marked-length-
spectral rigidity.

Theorem 3.2. Two currents μ1, μ2 ∈ Curr(S) are equal if and only if i(γ, μ1) =
i(γ, μ2) for every curve γ ∈ C(S).

3.2. Flat Liouville current. Fix ϕ ∈ Flat(S). Here we define the pre-Liouville

current L̂ϕ for ϕ as a π1(S)–invariant measure on G(ϕ) as follows; see [Pat99,AL13].
First, we let T 1(S∗) denote the unit tangent bundle over S∗ = S \ cone(ϕ). The
(local) geodesic flow on T 1(S∗), has a canonical invariant volume form given locally
as one-half of the product of the area form on S∗ and the angle form on the fiber
circles. Contracting this 3–form with the vector field generating the flow gives a
flow-invariant 2–form. The absolute value is an invariant measure on the local leaf
spaces of the foliation by flow lines. Now lift to the universal cover, and restrict to
the subspace where the flow is defined for all time. The flow lines are precisely the
geodesics in G◦(ϕ) (though they are oriented). Thus the measure on the local leaf
space determines a measure on the Borel set G◦(ϕ) which is invariant by π1(S). This
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is extended by zero to the rest of G(ϕ). Therefore the support of L̂ϕ is contained
in the closure G∗(ϕ) of G◦(ϕ).

There is a simple local formula for L̂ϕ we now describe. First, for any ϕ–geodesic

segment α ⊂ S̃, parameterized by t �→ α(t) for t ∈ [a, b], containing no cone points
in its interior, consider the subset E◦(α) ⊂ G◦(ϕ) of geodesics transversely crossing
α:

E◦(α) = {γ ∈ G◦(ϕ) | γ � α �= ∅}.
Any geodesic γ ∈ E◦(α) is uniquely determined by t ∈ [a, b] with α(t) = γ ∩ α
and the angle θ ∈ (0, π) counterclockwise from α (with positive orientation) and
γ. Let D◦(α) ⊂ [a, b] × (0, π) denote the set of pairs (t, θ) such that there exists
a (necessarily unique) geodesic γ(t, θ) ∈ E◦(α) meeting α at α(t) and making an
angle θ. The assignment (t, θ) �→ γ(t, θ) defines a bijection D◦(α) → E◦(α), which

is easily seen to be a homeomorphism. The measure L̂ϕ restricted to E◦(α) is given
by the push forward of the measure on D◦(α) given by

(2) L̂ϕ =
1

2
sin(θ) dθ dt.

The measure on the right is absolutely continuous with respect to Lebesgue
measure on [a, b]× (0, π), and we note that D◦(α) is a set of full Lebesgue measure.

Indeed, for every t, and each of the countably many cone points in S̃, there is
exactly one geodesic segment from the cone point to α(t). Consequently, D◦(ϕ) is
the complement of a countable set of closed sets, each intersecting the sets {t}×[0, π]
in a single point, for each t. Consequently, every point of E◦(α) is in the support of

L̂ϕ. It follows that every element of G◦(ϕ) is in the support, and hence supp(L̂ϕ) =
G∗(ϕ). From (2) we easily deduce the following.

Proposition 3.3. For any geodesic segment α, we have L̂ϕ(E
◦(α)) = �ϕ(α), the

ϕ–length of α. �

Now we use the map ∂ϕ : G(ϕ) → G(S̃) to push this forward to currents, and
declare this to be the Liousville current for ϕ:

Lϕ = ∂ϕ∗L̂ϕ.

Since the geodesic representative of a closed curve α is a union of finitely many Eu-
clidean segments between cone points, the following is straightforward from Propo-
sition 3.3 and equation (1).

Proposition 3.4. For every closed curve α we have i(Lϕ, α) = �ϕ(α). �

We also have the following corollary of Proposition 2.2.

Corollary 3.5. For any ϕ ∈ Flat(S), supp(Lϕ) = G∗
ϕ(S̃).

Proof. A continuous, closed map always sends the support of a Borel measure to
the support of the push-forward measure. �

4. Chains and cone points

Let L = Lϕ be the Liouville current associated to ϕ ∈ Flat(S). An L–chain is a
sequence of points (finite, half-infinite, or bi-infinite)

x = (. . . , x0, x1, . . .) ⊂ S1
∞
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such that for all i we have:

(1) {xi, xi+1} ∈ supp(L), and
(2) xi, xi+1, xi+2 is a counterclockwise ordered triple of distinct points and[

{xi, xi+1}, {xi+1, xi+2}
]
∩ supp(L) = {{xi, xi+1}, {xi+1, xi+2}}.

Recall that
[
{xi, xi+1}, {xi+1, xi+2}

]
is the set {x, y} ∈ G(S̃) between {xi, xi+1} and

{xi+1, xi+2} as in Section 2.3. For the motivation for condition (2), see Lemma 2.7.
Two chains that differ by a shift of the indices are considered the same.

4.1. Constructing chains. Fix a cone point ζ ∈ cone(ϕ) in S̃. Let G(ϕ, ζ) denote

those ϕ–geodesics in G∗(ϕ) containing ζ. Let G1(ϕ, ζ) = G(ϕ, ζ) \ ∂−1
ϕ (G2

ϕ(S̃)).

Alternatively, G1(ϕ, ζ) consists of those δ ∈ G(ϕ, ζ) which contain no other cone
points besides ζ, and which are asymptotic only to geodesics containing at most
one cone point.

x0

x1

x2

x3

x4

x5

x6

x7

ζ

Figure 3. A finite chain (x0, x1, . . . , x7) = ∂ϕ(δ1, . . . , δ7). The
geodesics δj are constructed from the rays emanating from the cone
point ζ. We have also drawn nonsingular geodesics approximating
each δj (from the side of δj where the angle is π) to clarify which
pairs of rays are used for each δj .

Declare two geodesics δ1, δ2 ∈ G1(ϕ, ζ) to be adjacent at ζ if they are asymptotic
in one direction. We make a few simple observations. First, adjacent geodesics
must be ϕ–cone point asymptotic: since they contain the point ζ they cannot be
separated by a ϕ–flat half-strip; see Lemma 2.6. Second, any δ ∈ G1(ϕ, ζ) can be
adjacent at ζ to at most two other geodesics in G1(ϕ, ζ): δ is made up of exactly
two rays emanating from ζ and each of these is the common ray of at most one
other geodesic in G1(ϕ, ζ).

If δ1, δ2 ∈ G1(ϕ, ζ) are adjacent at ζ with endpoints ∂ϕ(δi) = {x, xi} for i =
1, 2, and x1, x, x2 are a counterclockwise ordered triple around S1

∞, then we write
δ1 ≤ δ2. Note that by Lemma 2.7, the triple x1, x, x2 satisfy condition (2) in the
definition of chain.

Now suppose δ = (. . . , δi, δi+1, . . .) ⊂ G1(ϕ, ζ) is a sequence (finite, half-infinite,
or bi-infinite) such that for all i we have δi ≤ δi+1. Then let x = (. . . , xi, xi+1, . . .)
be the associated sequence of common endpoints; see Figure 3. When δ is bi-infinite
(the primary case of interest), this is given by

xi = ∂ϕ(δi) ∩ ∂ϕ(δi+1).
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The same formula is valid in the finite or half-infinite case, except for the first
and/or last terms of x. We write ∂ϕ(δ) = x, which is a chain.

Proposition 4.1. Suppose x is an L–chain with at least 3 terms such that all

consecutive pairs {xi, xi+1} are in G∗
ϕ(S̃) \ G2

ϕ(S̃). Then there exists a unique cone

point ζ and sequence δ ⊂ G1(ϕ, ζ) such that ∂ϕ(δ) = x.

Proof. Suppose that {xi, xi+1, xi+2} are three consecutive terms. From the second
condition in the definition of chain, Lemma 2.7 guarantees a unique pair δi, δ

′
i+1 ∈

G∗(ϕ) \ G2(ϕ) such that ∂ϕ(δi) = {xi, xi+1} and ∂ϕ(δ
′
i+1) = {xi+1, xi+2}, and

such that δi, δ
′
i+1 are ϕ–cone point asymptotic. Let ζi be the unique cone point

contained in δi and δ′i+1. We similarly have δi+1, δ
′
i+2 and cone point ζi+1 for the

triple {xi+1, xi+2, xi+3}, assuming it exists.

Claim. For any four consecutive terms {xi, xi+1, xi+2, xi+3} of x, we have δ′i+1 =
δi+1 and ζi = ζi+1.

Proof of claim. We note that δ′i+1 and δi+1 are asymptotic (since they have the
same boundary points). Consequently, they are either equal and ζi = ζi+1 (being
the unique cone point in the geodesic), or they are boundary geodesics of a ϕ–flat

strip in S̃. In the former case, we are done, and hence we assume the latter case
and arrive at a contradiction. This implies that the ray r = δi \ δ′i+1 of δi (i.e. not
the ray in common with δ′i+1) must lie on the opposite side of δ′i+1 as the side where
the cone angle at ζi is π. Similarly, the ray r′ = δ′i+2 \ δi+1 lies on the opposite
side of δi+1 as the side where the cone angle at ζi+1 is π. Note that the side of
δi+1 (respectively, δ′i+1) containing the ϕ–flat strip is the side where the angle at
the cone point is π. It follows that xi and xi+3 must lie in different components
of S1

∞ \ {xi+1, xi+2}. This contradicts the counterclockwise order around S1
∞ for

consecutive triples. See Figure 4. �

δ′i+1

δi

δi+1

δ′i+2
ζi

ζi+1

xi

xi+1

xi+2

xi+3

r

r′

Figure 4. The ϕ–flat strip has boundary geodesics δ′i+1 on the left
and δi+1 on the right. The common rays of δi, δ

′
i+1 and δi+1, δ

′
i+2

start at ζi ∈ δi ∩ δ′i+1 and at ζi+1 ∈ δi+1 ∩ δ′i+2, respectively. The
other rays of δi and δ′i+2 are r and r′, respectively. The strip forces
one of the triples xi, xi+1, xi+2 or xi+1, xi+2, xi+3 to be clockwise
ordered.

By the claim, there is a single cone point ζ so that ζi = ζ for all i, and that

∂ϕ(. . . , δi, δi+1, . . .) = x. Since each {xi, xi+1} is in G∗
ϕ(S̃) \ G2

ϕ(S̃), it follows that

δi ∈ G1(ϕ, ζ). Uniqueness of ζ follows from uniqueness in Lemma 2.7. �
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4.2. Chain types and cone point identification. Continue to assume L =

Lϕ for some ϕ ∈ Flat(S). For any countable set Ω ⊂ G∗
ϕ(S̃) with G2

ϕ(S̃) ⊂ Ω
(cf. Corollary 2.5), we define an (L,Ω)–chain to be a bi-infinite L–chain x such

that the consecutive pair {xi, xi+1} is in G∗
ϕ(S̃) \ Ω for all i ∈ Z. Let Chain(L,Ω)

denote the set of all (L,Ω)–chains.

Remark 2. The reason for introducing the countable set Ω will become more clear

in the next section, but to explain briefly, we note that the set G2
ϕ(S̃) is not a priori

determined by L = Lϕ. In the proof of the Main Theorem, we will consider two
metrics ϕ1, ϕ2 ∈ Flat(S) such that Lϕ1

= Lϕ2
. This will give rise to two countable

sets G2
ϕ1
(S̃) and G2

ϕ2
(S̃), and the set Ω will be the union of these. Since this is

somewhat of a technical issue (and in the end, Ω can basically be ignored), we
suppress the dependence on Ω whenever it causes no confusion.

Since G2
ϕ(S̃) ⊂ Ω Proposition 4.1 implies that every (L,Ω)–chain x is given by

x = ∂ϕ(δ) for some unique ζ and δ ⊂ G1(ϕ, ζ). We therefore have a well-defined
map

∂#
ϕ : Chain(L,Ω) → cone(ϕ).

Lemma 4.2. For any countable Ω ⊃ G2
ϕ(S̃), ∂

#
ϕ is surjective.

Proof. Fix any ζ ∈ cone(ϕ) in S̃. Consider the set of ϕ–geodesics δ ∈ G(ϕ) so that
for one of the sides of δ, it makes an angle π on that side at every cone point it
contains. Such geodesics are parameterized by pairs of directions at ζ making angle
π. There are uncountably many such, with only countably many either containing
more than one cone point or being asymptotic to a geodesic with more than one cone
point. Let Δ be the remaining uncountable set of geodesics. All but countably many
geodesics in Δ are contained in a unique bi-infinite sequence δ = (. . . , δi, δi+1, . . .)
with each δi ∈ Δ (note that any such bi-infinite sequence is uniquely determined
by any of its elements). There are uncountably many such sequences. At most
countably many of these can contain a geodesic δ with ∂ϕ(δ) ∈ Ω. The remaining
uncountably many sequences δ have ∂ϕ(δ) ∈ Chain(L,Ω). Applying ∂#

ϕ to any of

these we get ζ. Since ζ was arbitrary, ∂#
ϕ is onto. �

As this proof shows, a sequence δ = (. . . , δi, δi+1, . . .) with ∂ϕ(δ) ∈ Chain(L,Ω)
with ∂#

ϕ (x) = ζ is determined by a sequence of rays emanating from ζ, so that
consecutive rays make counterclockwise angle π. The next lemma is clear from
this.

Lemma 4.3. Any (L,Ω)–chain x is either periodic or the sequence consists of
distinct points in S1

∞. These two cases correspond to the case when the ϕ–cone angle
at ∂#

ϕ (x) is a rational multiple of π and irrational multiple of π, respectively. �
The second case, when all points in x are distinct, we will call aperiodic.
The next lemma tells us that we can decide when two (L,Ω)–chains have the same

∂#
ϕ –image, appealing only to topological properties of supp(L). If ϕ1, ϕ2 ∈ Flat(S)

and Lϕ1
= L = Lϕ2

, this lemma will ultimately produce the bijection between cone
points of ϕ1 and ϕ2. To state the lemma, we first make a definition for periodic
chains.

Any periodic (L,Ω)–chain x contains exactly k = k(x) ≥ 3 points in S1
∞ (re-

peated infinitely often)—this is precisely the minimal period of the sequence. There
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is thus a smallest integer n = n(x) > 0 so that the sequence

x0, xn, x2n, . . . , x(k−1)n

is this set of points cyclically ordered counterclockwise. To see this, note that
xi, xi+1 are endpoints of rays emanating from ζ making a counterclockwise angle
π. There are finitely many such rays by periodicity, and any two rays which are
counterclockwise consecutive, make the same angle. The shift xi �→ xi+1 generates
a group of rotations of these rays through an angle π, and this acts transitively on
the rays. Thus, rotating each ray to the next counterclockwise consecutive ray is
some minimal power n of our generator, and thus xi and xi+n are counterclockwise
consecutive points in x around S1

∞; see Figure 5.

x0

x1

x2x3

x4

y0

y1

y2

y3

y4

Figure 5. Endpoints of a periodic chain x = (. . . , x0, x1,
x2, x3, x4, . . .) with period 5. The periodic chain y = (. . . , y0, y1,
y2, y3, y4, . . .) shown, also with period 5, is perfectly interlaced
with x.

We say that periodic chains x and y are perfectly interlaced if k(x) = k(y) = k
and n(x) = n(y) = n and after shifting indices of y if necessary we have yjn lies in
the counterclockwise interval (xjn, x(j+1)n) for all j ∈ Z; see Figure 5. By period-
icity, this implies yjn+r lies in the counterclockwise interval (xjn+r, x(j+1)n+r) for
all j, r ∈ Z.

Lemma 4.4. Given x,y ∈ Chain(L,Ω) we have ∂#
ϕ (x) = ∂#

ϕ (y) if and only if

(a) x and y are both periodic and their endpoints are perfectly interlaced, or
(b) x and y are both aperiodic and for any yi, yi+1, there exists a sequence

xjn , xjn+1 → yi, yi+1 as jn → ∞.

Proof. Assume first that ζ = ∂#
ϕ (x) = ∂#

ϕ (y). Both are either periodic or both are
aperiodic as this only depends on the cone angle at the point ζ. If they are both
periodic, then the rays emanating from ζ defining x differ from those defining y
by rotating by some fixed angle. This clearly implies that x and y are perfectly
interlaced. If both are aperiodic, and ∂ϕ(δ) = x, then note that the set of geodesics
in δi ∈ δ are dense in the set of geodesics G1(ϕ, ζ). In particular for any consecutive
pair yi, yi+1, let δ ∈ G1(ϕ, ζ) be such that ∂ϕ(δ). Then there is a sequence δjn with
δjn → δ. This implies condition (b). We now prove the reverse implication.
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For case (a), we suppose x,y ∈ Chain(L,Ω) are perfectly interlaced and ζx =
∂#
ϕ (x) �= ∂#

ϕ (y) = ζy. Let δx and δy with ∂ϕ(δx) = x and ∂ϕ(δy) = y. For each

δi,y ∈ δy, let H
+
i,y denote the half-plane in S̃ bounded by δi,y containing the side on

which δi,y makes angle π at ζy. Observe that S̃ =
⋃

i H
+
i,y, and thus ζx ∈ H+

i,y, for

some i. Without loss of generality, suppose i = 0, and yjn+r ∈ (xjn+r, x(j+1)n+r)
for all j, r ∈ Z. In particular y0 ∈ (x0, xn) and y1 ∈ (x1, xn+1). The ϕ–geodesic
between x0 and xn+1 passes through ζx (though it may make angle greater than π
on both sides, and hence may not be in δx). On the other hand, the endpoints of

this geodesic are in the closure of the complementary half-plane S̃ \H+
0,y. Thus this

geodesic must meet δ0,y in two points, contradicting the fact that ϕ is CAT(0); see
Figure 6.

y0

y1

x0

xn+1

ζy

x1

xn

ζx π

Figure 6. Concatenating the ray from ζx to x0 with the ray from
ζx to xn+1 is a geodesic.

For case (b), we use the same notation as in case (a) writing δx and δy with
∂ϕ(δx) = x and ∂ϕ(δy) = y, andH+

i,y for the half-planes bounded by δi,y containing
the sides with angle π at ζy. In this case, we choose i so that ζy lies in the

complementary half-plane ζy ∈ S̃ \ H+
i,y. Condition (b) guarantees a sequence

{{xjn , xjn+1}}n = {∂ϕ(δjn,x)}n so that {xjn , xjn+1} converges to {yi, yi+1}. It
follows that δjn,x converges to a geodesic δ which is asymptotic to δi,y. However,
ζx ∈ δ (since it lies in all approximating geodesics) while ζy is the only cone point
in δi,y. Consequently there is a ϕ–flat strip between δ and δi,y. But this must be

in the closure of ζy ∈ S̃ \ H+
i,y, which is impossible since the cone angle at ζy on

that side of δi,y is strictly greater than π. �

Given two (L,Ω)–chains x and y, we write x ∼ y if and only if ∂#
ϕ (x) = ∂#

ϕ (y).
According to Lemma 4.4, we see that x ∼ y is determined by supp(L), without
reference of ϕ. We write [x] for the equivalence class of x.

4.3. Chains and distances. Continue to assume L = Lϕ for ϕ ∈ Flat(S) and

Ω ⊂ supp(L) a countable set containing G2
ϕ(S̃). As we have already seen, the data

of (L,Ω) can be used to reconstruct the cone points for the metric ϕ. In this section,
we continue to read off information about ϕ from L.
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For two distinct equivalence classes of (L,Ω)–chains [x] and [y], we define

[
[x], [y]

]
=

⋃
[{xi, xi+1}, {yj , yj+1}],

where the union is over x′ ∈ [x], y′ ∈ [y], and all consecutive pairs {xi, xi+1} in x′

and {yj , yj+1} in y′. In words,
[
[x], [y]

]
consists of all endpoints of geodesics that

lie between some geodesic from some x′ in [x] and some geodesic from some y′ in
[y]. Write dϕ for the distance function associated to ϕ.

Proposition 4.5. For any pair of distinct equivalence classes [x], [y] with ζx =
∂#
ϕ (x) and ζy = ∂#

ϕ (y) we have

L
([
[x], [y]

])
= dϕ(ζx, ζy).

Proof. We first observe that
[
[x], [y]

]
∩ G◦

ϕ(S̃) is precisely the ∂ϕ–image of the set

E◦(α) of all ϕ–geodesics in G0(ϕ) transversely crossing the ϕ–geodesic segment α

between ζx and ζy. Since G
◦(ϕ) is a set of full L̂ϕ–measure, so G◦

ϕ(S̃) is a set of full
L–measure. Therefore, appealing to Proposition 3.3 we have

L
([
[x], [y]

])
= L

([
[x], [y]

]
∩ G◦

ϕ(S̃)
)
= L̂ϕ(E

◦(α)) = �ϕ(α) = dϕ(ζx, ζy). �

5. Proof of the Main Theorem

The Main Theorem will follow easily from the next

Theorem 5.1. Suppose ϕ1, ϕ2 ∈ Flat(S) with Lϕ1
= L = Lϕ2

. Then ϕ1 = ϕ2 in
Flat(S), i.e., there is an isometry (S, ϕ1) → (S, ϕ2) isotopic to the identity.

Proof. Let Ω = G2
ϕ1
(S̃) ∪ G2

ϕ2
(S̃). According to Lemma 4.2, for each i = 1, 2 the

map ∂#
ϕi
: Chain(L,Ω) → cone(ϕi) is surjective. Appealing to Lemma 4.4 we have

∂#
ϕ1
(x) = ∂#

ϕ1
(y) ⇔ x ∼ y ⇔ ∂#

ϕ2
(x) = ∂#

ϕ2
(y).

Consequently, sending ∂#
ϕ1
(x) to ∂#

ϕ2
(x) well-defines a bijection

F : cone(ϕ1) → cone(ϕ2)

independent of the choice of x within the equivalence class. Both ∂#
ϕ1

and ∂#
ϕ2

are
π1(S)–equivariant, and so F is also. Furthermore, according to Proposition 4.5 we
have

(3) dϕ2
(F (ζ), F (ζ ′)) = dϕ1

(ζ, ζ ′).

Now without loss of generality, assume that Areaϕ1
(S) ≤ Areaϕ2

(S). Let T

be an ϕ1–triangulation of S such that cone(ϕ1) are the vertices of T. Lift T to a

triangulation T̃ on S̃ and define a map

f̃ : (S̃, ϕ1) → (S̃, ϕ2)

as follows. First, define f̃ on cone(ϕ1) by f̃ |cone(ϕ1) = F . This is π1(S)–equivariant,

and so we extend over edges of triangles of T̃, π1(S)–equivariantly mapping these to
geodesics. Note that by equation (3), we can assume that the restriction to every
edge is also an isometry.
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Let Δ̃ denote a lift of a triangle in T and Δ̃′ = f̃(Δ̃). The universal cover (S̃, ϕ1)

is a CAT(0) space and since all cone points are vertices, we conclude that Δ̃ contains

no cone points besides its vertices, and hence is itself a comparison triangle for Δ̃′.

Thus by Proposition 2.1, Area(Δ̃′) ≤ Area(Δ̃) for every triangle Δ̃ and its image

Δ̃′ = f̃(Δ̃). Consequently, applying this to every triangle in T we get Areaϕ1
(S) ≥

Areaϕ2
(S). Therefore Areaϕ1

(S) = Areaϕ2
(S) and Area(Δ̃′) = Area(Δ̃) for every

triangle Δ̃. Appealing to Proposition 2.1, it follows that we may extend f̃ over

every triangle by an isometry, and hence f̃ is a π1(S)–equivariant isometry. This
descends to an isometry f : (S, ϕ1) → (S, ϕ2).

All that remains is to prove that f is isotopic to the identity. However, the action
of π1(S) on S is independent of the metric ϕi. In particular, π1(S)–equivariance

implies that the continuous extension of f̃ to S1
∞ is the identity. It follows that f

induces the identity on π1(S), and hence is isotopic to the identity. �

The main theorem from the introduction is now an easy corollary of this.

Main Theorem. If ϕ1, ϕ2 ∈ Flat(S) and Λ(ϕ1) = Λ(ϕ2), then ϕ1 = ϕ2.

Proof. If Λ(ϕ1) = Λ(ϕ2), then by Proposition 3.4 and Theorem 3.2, it follows that
Lϕ1

= Lϕ2
. Theorem 5.1 completes the proof. �

6. Open questions

If ϕ ∈ Flat(S) is any metric, we can scale by a > 0, and the Liouville current
will scale the same: Laϕ = aLϕ. In particular supp(Lϕ) = supp(Laϕ). If ϕ is
defined by a holomorphic quadratic differential, then for any A ∈ SL2(R), one can
deform the quadratic differential, and hence the metric, by A. If we let ϕA be such
a deformation, then the identity S → S becomes an affine map (S, ϕ) → (S, ϕA):
there are locally isometric coordinates for ϕ and ϕA so that in these coordinates,
the identity is affine (with derivative A). The formula for the Liouville current
in [DLR10] shows that Lϕ and LϕA

will also have the same support. The scaling
deformation above is a special case which can be carried out for any ϕ ∈ Flat(S),
but if A is not simply a homothety, then this kind of deformation is special to
those metrics defined by quadratic differentials. This is because an eigenspace of
the derivative of the affine map must be parallel on (S, ϕ), and hence the holonomy
must lie in {±I}. We conjecture that this is the only way that two metrics in
Flat(S) can have Liouville currents with the same support.

Conjecture 6.1. Given ϕ1, ϕ2 ∈ Flat(S), if supp(Lϕ1
) = supp(Lϕ2

), then there
exists an affine map f : (S, ϕ1) → (S, ϕ2), isotopic to the identity.

The proof of the Main Theorem shows that if the supports are the same, then
there is a map isotopic to the identity sending cone points bijectively to cone points.
It is also straightforward to see this map actually preserves cone angles. With a
little more work, one can show that the metrics coming from quadratic differentials
can be distinguished from all other metrics in Flat(S) in terms of the supports
of their Liouville currents. The work in [DLR10] can then be used to prove the
conjecture for quadratic differential metrics. Since metrics coming from holomor-
phic q–differentials, q ∈ Z, can also be distinguished from other flat metrics, this
would be an interesting test case for the conjecture, but we have not carried out
this analysis.
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We also ask the following question which would provide a common generalization
of the Main Theoem, as well as the marked-length-spectral rigidity results in [Ota90,
Cro90,CFF92,HP97,DLR10].

Question 1. Are the nonpositively curved cone metrics spectrally rigid?

It seems likely that some combination of the techniques here and in [CFF92]
may be sufficient, but we have not investigated this.

Added in proof. David Constantine has now answered this question in [Con15].
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