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STRICTLY CONVEX CENTRAL CONFIGURATIONS

OF THE PLANAR FIVE-BODY PROBLEM

KUO-CHANG CHEN AND JUN-SHIAN HSIAO

Abstract. In this paper we investigate strictly convex central configurations
of the planar five-body problem, and prove some necessary conditions for such
configurations. In particular, given such a central configuration with mul-
tiplier λ and total mass M , we show that all exterior edges are less than
r0 = (M/λ)1/3, at most two interior edges are less than or equal to r0, and
its subsystem with four masses cannot be a central configuration. We also
obtain some other necessary conditions for strictly convex central configura-
tions with five bodies, and show numerical examples of strictly convex central
configurations with five bodies that have either one or two interior edges less
than or equal to r0. Our work develops some formulae in a classic work by
W. L. Williams in 1938 and we rectify some unsupported assumptions there.

1. Introduction

Central configurations are special configurations for the n-body problem char-
acterized by the property that gravitational acceleration at each mass point is a
constant multiple of the vector from the mass point to the mass center. They
generate self-similar solutions for the n-body problem. In the planar case, they
also generate relative equilibrium solutions which move like rigid bodies, for which
reason they were also known as permanent configurations. There are many reasons
why such configurations and solutions are of special importance, and why many fun-
damental questions about them are still open. Readers are referred to [1,2,4,16,19]
for introductions, bibliographies, recent advances, and open questions.

A problem which attracted considerable attention is the finiteness conjecture,
also known as the Chazy-Wintner conjecture, a problem included in Smale’s list
of problems for the 21st century [22]. It asserts that for any choice of n positive
masses, there are only finitely many similarity classes of central configurations. The
conjecture was completely resolved for n = 4 [13] and for n = 5 except for masses in
some codimension two variety [4]. The finiteness conjecture is wide open for n ≥ 6.

A problem closely related to the finiteness conjecture is the determination of
possible shapes for central configurations. It is well known that for any choices
of n masses the n-body problem has n!/2 similarity classes of collinear central
configurations [7, 20]. When n = 3, a celebrated discovery by Lagrange [14] states

Received by the editors February 29, 2016 and, in revised form, April 28, 2016, May 10, 2016,
and June 27, 2016.

2010 Mathematics Subject Classification. Primary 70F10, 70F15; Secondary 37J45.
Key words and phrases. n-body problem, central configuration, relative equilibrium.
This work was supported in part by the Ministry of Science and Technology (Grant NSC

102-2628-M-007-004-MY4) and the National Center for Theoretical Sciences in Taiwan.

c©2017 American Mathematical Society

1907

http://www.ams.org/tran/
http://www.ams.org/tran/
http://dx.doi.org/10.1090/tran/7010


1908 KUO-CHANG CHEN AND JUN-SHIAN HSIAO

that a noncollinear configuration is central if and only if it is an equilateral triangle.
With only one possible shape, the number of their similarity classes is obviously
finite. Although the finiteness conjecture is now settled for n = 4, there are still
many unsolved problems regarding shapes of four-body central configurations [2].
Much less is known for n ≥ 5.

In 1932 W. MacMillan and W. Bartky [15] studied shapes of central configura-
tions for the planar four-body problem using mutual distances as primary variables.
Mutual distances are ideal and natural variables for studying shapes since they
eliminate dependence on translations and rotations from original coordinates. It is
known that central configurations for the n-body problem, which has (n2 ) mutual
distances, are zeros of a system of (n2 ) algebraic equations (called Albouy-Chenciner
equations) in mutual distances [3]. Presumably there are finitely many zeros for
this system for arbitrary positive masses, then the finiteness conjecture would be
settled. One result in [15] states that there exists a convex central configuration
for any given four masses and cyclic order. An elegant and much shorter proof
was given by Z. Xia [24]. Existence of concave central configurations was posed
in [15] and settled by M. Hampton [11]. Another simpler proof was again found
by Z. Xia [25]. The work of MacMillan-Bartky [15] was generalized to the planar
five-body problem by W. L. Williams [23] in 1938, and to the spatial five-body
problem by D. Schmidt [21] in 1988.

The work of W. L. Williams [23] contains some valuable formulae but several
conclusions in there are problematic, due to an unsupported assumption which were
explicitly or implicitly invoked multiple times in that paper. Although the paper
contains several inspirational observations, certain parts of the paper are difficult
to follow and no further development on shapes of five-body central configurations
have been published on the grounds of this paper. We will discuss some of Williams’
formulae and rectify the unsupported assumption in section 3.

To a very large extent, the shapes that five-body central configurations can be
remains a mysterious question. There are a few things we know. For example, a
general criterion known as the perpendicular bisector theorem [16] can be used to
rule out certain possibilities. Our goal is to better understand this question, and
in this paper we focus on strictly convex configurations.

The main results in these paper are as follows. Let r0 be the cubic root of
the ratio of total mass and the multiplier. It is a canonical variable whose ratios
with mutual distances rij = |qi − qj | determine the shape of the configuration (see
section 2 for details). Given a strictly convex central configuration with five bodies
in the plane with vertices in cyclic order (q1, q2, q3, q4, q5), we find

1. if Sij = 1/r3ij − 1/r30, then S12S34 > S13S24 > S14S23 (Theorem 5.1);

2. all exterior edges are less than r0 (Theorem 5.2);

3. at most two interior edges are less than or equal to r0 (Theorem 6.1);

4. if two interior edges are less than or equal to r0, then they cross each other
(Theorem 6.1);

5. its subsystem with four masses cannot be a central configuration (Theo-
rem 7.1).

Apart from these, we also show some numerical examples of symmetric central
configurations of five bodies that have either one or two interior edges less than or
equal to r0 (section 8).
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2. Basic concepts, equations, notation, and assumptions

The Newtonian n-body problem concerns the motion of nmass pointsm1, · · ·,mn

moving in space in accordance with Newton’s law of gravitation:

q̈k =
∑
i �=k

mi(qi − qk)

|qi − qk|3
, k = 1, 2, · · · , n.(2.1)

Here qk ∈ R
d (1 ≤ d ≤ 3) is the position of mass mk > 0. The position vector

q = (q1, · · · , qn) ∈ (Rd)n is often referred to as the configuration of the system, and
vectors {qk} are vertices of the configuration q. The system (2.1) is smooth except
on the collision set Δ:

Δ = {q ∈ (Rd)n : qi = qj for some i �= j}.
Let M = m1 + · · ·+mn be the total mass and let

cq =
1

M
(m1q1 + · · ·+mnqn)

be the mass center. A noncollision configuration q = (q1, · · · , qn) ∈ (Rd)n \ Δ is
called a central configuration for the system of masses (m1, · · · ,mn) if there exists
some positive constant λ, called the multiplier, such that

−λ(qk − cq) =
∑
i �=k

mi(qi − qk)

|qi − qk|3
, k = 1, 2, · · · , n.(2.2)

The definition of central configuration can be extended to cases with some zero
masses but we shall only consider positive masses throughout this paper.

Below we briefly describe a few features and equivalent formulations of central
configurations which will be helpful here. We refer to [1,19] for further discussions.

Central configurations are clearly invariant under similarity transformations; i.e.,
compositions of translations, rotations, and scalings. Translations and rotations do
not affect the multiplier, while the scaling q �→ cq changes the multiplier from
λ to λ/c3. Central configurations within the same similarity class are considered
equivalent. A central configuration for masses m = (m1, · · · ,mn) with multiplier
λ is also a central configuration for masses αm, α > 0, with multiplier αλ.

By restricting the mass center to the origin, (2.2) can be alternatively written

−λ

2
∇I(q) = ∇U(q),(2.3)

where the moment of inertia I and potential U are given by

I(q) :=
n∑

k=1

mk|qk|2 =
1

M

∑
i<j

mimj |qi − qj |2, U(q) :=
∑
i<j

mimj

|qi − qj |
.

This justifies the choice of terminology “multiplier” for λ as it is the Lagrange
multiplier of −U constrained to constant levels of I/2. Equation (2.3) can be
equivalently expressed as∑

i �=k

mi

(
1

|qi − qk|3
− λ

M

)
(qi − qk) = 0, k = 1, 2, · · · , n.(2.4)

Another equivalent formulation for (2.2) is

−λ(qi − qj) = Ai −Aj for any i �= j,(2.5)
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where

Ak =
∑
i �=k

mi(qi − qk)

|qi − qk|3
(2.6)

is the gravitational acceleration of mass mk. Clearly (2.2) implies (2.5). That (2.5)
implies (2.2) follows from

MAi =
N∑
j=1

mj(Ai − Aj) = −λ
N∑
j=1

mj(qi − qj) = −λM(qi − cq).

Due to homogeneity of I and U , from (2.3) it is easy to see that λ = U(q)/I(q).
The term I/U depends not only on mutual distances rij = |qi − qj | but also on
masses m = (m1, · · · ,mn). It is homogeneous in r = (rij)i<j of degree −3 and
homogeneous in m of degree 1, so the set of dimension-less “shape” variables u =
(uij)i<j given by

uij = rij

(
λ

M

) 1
3

reveals the shape of the central configuration, and is independent of the total mass
and size. With this in mind, it is natural to introduce a variable r0 in place of λ/M
and consider their ratios with rij ’s:

r0 =

(
λ

M

)− 1
3

=

⎛
⎜⎝

∑
i<j

mimjr
2
ij∑

i<j

mimj/rij

⎞
⎟⎠

1
3

, uij =
rij
r0

.(2.7)

In terms of mutual distances rij and r0, the system (2.3) can be written

∑
i �=k

mi

(
1

r3ik
− 1

r30

)
(qi − qk) = 0, k = 1, 2, · · · , n.(2.8)

Given n masses (m1, · · · ,mn), let q = (q1, · · · , qn) ∈ (Rd)n be its configuration
and Conv(q) be the convex hull of vertices {qk}. Assume Conv(q) is d-dimensional;
otherwise we may choose an affine equivalent coordinate system for which Conv(q)
lies in a subspace having the same dimension as Conv(q), and then work on this
subspace. We say the configuration q is convex if each qk is on the boundary of
Conv(q) and it is strictly convex if no qk is in the convex hull of other vertices.
Concave configurations are configurations which are not strictly convex. Strictly
concave configurations are configurations which are not convex.

The objective of this paper is to understand strictly convex planar central con-
figurations with five bodies, in which case their vertices have a well-defined cyclic
order. We say vertices (or masses) are ordered counterclockwise (clockwise) if, by
starting with q1, (q1, · · · , qn) is the order of their appearance when traversed along
∂Conv(q) counterclockwise (clockwise). To understand shapes of central configu-
rations, it is sufficient to fix the orientation since central configurations are clearly
invariant under reflections.

For convenience, and without loss of generality, throughout this paper we accept
the following assumptions and terminologies.
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Assumptions/Terminologies:

(1) Vertices of any convex central configuration (q1, · · · , q5) are as-
sumed to be ordered counterclockwise.

(2) Indices (subscripts) are considered elements in Z5.
For example, q6 = q1, q7 = q2, r56 = r15, S79 = S24, etc.
When there are n masses, these indices are elements in Zn.

(3) Edges refer to line segments connecting two different vertices of a polygon.
For a convex pentagon with vertices (q1, · · · , q5) ordered counterclockwise,
edges of the form qiqi+1 are called exterior edges, and edges of the form
qiqj are diagonals or interior edges when |i− j| ≥ 2.

3. Some remarks on Williams’ formulae

In this section we discuss some formulae by W. L. Williams [23] and a few corol-
laries. These formulae are identities for planar five-body central configurations. At
the end of this section we discuss the previously mentioned unsupported assumption
in [23].

We incorporate two types of Williams’ formulae, the first type relates mass ratios
to oriented areas of triangles, the second type are mass-independent equations which
relate mutual distances and oriented areas of triangles. In order to make those
formulae more accessible, to avoid ambiguities on signs of oriented areas, and to
make those consequences clearer, below we quickly review and prove Williams’
formulae. The derivation and notation follow those in [23].

By (2.8), q = (q1, · · · , q5) ∈ (R2)5 \ Δ is a central configuration for masses
m1, · · · ,m5 with multiplier λ if and only if∑

i �=k

mi

(
1

r3ik
− 1

r30

)
(qi − qk) = 0, k = 1, 2, · · · , 5,(3.1)

where rik = |qi−qk| and r0 is as in (2.7). Taking the wedge product with (qj−qk)/2,
we find ∑

i �=k,j

miSikΔikj = 0, j, k = 1, 2, · · · , 5, j �= k,(3.2)

where

Sik :=
1

r3ik
− 1

r30
, Δikj := (qj − qk) ∧ (qi − qk)/2.(3.3)

For (k, j) = (i+ 3, i+ 4) and (i+ 4, i+ 3), i ∈ {1, 2, · · · , 5}, we obtain

miSi,i+3Δi,i+3,i+4 +mi+1Si+1,i+3Δi+1,i+3,i+4 +mi+2Si+2,i+3Δi+2,i+3,i+4 = 0,

miSi,i+4Δi,i+4,i+3 +mi+1Si+1,i+4Δi+1,i+4,i+3 +mi+2Si+2,i+4Δi+2,i+4,i+3 = 0.

Given {i, j, r, k, l} = {1, 2, 3, 4, 5} with r < k < l, denote by Dij := Δrkl the
oriented area of the triangle with vertices (qr, qk, ql). Then each Dij = Dji is
strictly positive (since the pentagon is strictly convex and vertices are ordered
counterclockwise) and the identities above can be written

miSi,i+3Di+1,i+2 +mi+1Si+1,i+3Di,i+2 +mi+2Si+2,i+3Di,i+1 = 0,(3.4)

miSi,i+4Di+1,i+2 +mi+1Si+1,i+4Di,i+2 +mi+2Si+2,i+4Di,i+1 = 0.(3.5)
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Eliminating mi+2 by calculating (3.4)× Si+2,i+4 − (3.5)× Si+2,i+3, we find

0 = (miSi,i+3Di+1,i+2 +mi+1Si+1,i+3Di,i+2)Si+2,i+4

−(miSi,i+4Di+1,i+2 +mi+1Si+1,i+4Di,i+2)Si+2,i+3

= (Si+2,i+4Si,i+3 − Si+2,i+3Si,i+4)Di+1,i+2mi

+(Si+1,i+3Si+2,i+4 − Si+1,i+4Si+2,i+3)Di,i+2mi+1.

Therefore

(3.6)
mi

mi+1
=

(Si+1,i+3Si+2,i+4 − Si+1,i+4Si+2,i+3)Di,i+2

(Si+2,i+3Si,i+4 − Si+2,i+4Si,i+3)Di+1,i+2
, i = 1, 2, · · · , 5.

Similarly, (3.4)× Si+1,i+4 − (3.5)× Si+1,i+3 eliminates mi+1 and yields

(3.7)
mi

mi+2
=

(Si+1,i+3Si+2,i+4 − Si+1,i+4Si+2,i+3)Di,i+1

(Si,i+3Si+1,i+4 − Si,i+4Si+1,i+3)Di+1,i+2
, i = 1, 2, · · · , 5.

Identities (3.6) and (3.7) form the first set of Williams’ formulae, from which we
obtain

1 =
mi

mi+2

mi+2

mi+4

mi+4

mi
=

(Si+1,i+3Si+2,i+4 − Si+1,i+4Si+2,i+3)Di+2,i+3Di+4,i+1

(Si+1,i+2Si+3,i+4 − Si+1,i+3Si+2,i+4)Di+1,i+2Di+3,i+4
.

Substituting i by i+ 4, we obtain the second set of Williams’ formulae:

(3.8)
Si,i+3Si+1,i+2 − Si,i+2Si+1,i+3

Si,i+2Si+1,i+3 − Si,i+1Si+2,i+3
=

Di+2,i+3Di,i+1

Di+1,i+2Di,i+3
, i = 1, 2, · · · , 5.

By normalizing the rij ’s into dimensionless variables uij in (2.8) we see that (3.8) is
indeed mass-independent. We will see later (Proposition 4.4) that the denominators
appearing in Williams’ formulae (3.6), (3.7), (3.8) are nonzero.

Now we introduce the following symbols to replace the Sij ’s in Williams’ formu-
lae:

Pi = Si,i+2Si+1,i+3 − Si,i+3Si+1,i+2,(3.9)

Qi = Si,i+1Si+2,i+3 − Si,i+2Si+1,i+3, i ∈ {1, 2, 3, 4, 5}.

Then Williams’ formulae (3.6), (3.7), (3.8) can be written

miQi+2Di+1,i+2 = mi+1Pi+1Di,i+2,

miPi+3Di+1,i+2 = mi+2Pi+1Di,i+1,(3.10)

PiDi+1,i+2Di,i+3 = QiDi+2,i+3Di,i+1, i ∈ {1, 2, 3, 4, 5}.

As a corollary of formulae (3.10), we obtain the following equivalent conditions
for these Pi and Qi.

Proposition 3.1. Let q ∈ (R2)5 \Δ be a strictly convex central configuration given
in (3.1). Assume vertices of the resulting pentagon are ordered counterclockwise.
Let Pi, Qi, Sij be as in (3.9), (3.3). Then the following statements are equivalent:

(a) Pi is positive (resp. zero, negative) for some i ∈ {1, · · · , 5};
(b) Pi is positive (resp. zero, negative) for every i ∈ {1, · · · , 5};
(c) Qi is positive (resp. zero, negative) for some i ∈ {1, · · · , 5};
(d) Qi is positive (resp. zero, negative) for every i ∈ {1, · · · , 5}.
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Proof. For a strictly convex pentagon, each Dij is strictly positive. It follows im-
mediately from the last identity of (3.10) that Pi and Qi have the same sign, and
Pi = 0 if and only if Qi = 0. Therefore (b) and (d) are equivalent.

The second identity of (3.10) tells us that Pi+1 and Pi+3 have the same sign,
and Pi+1 = 0 if and only if Pi+3 = 0. Since it is valid for each i ∈ {1, 2, 3, 4, 5}, we
find that one Pi is positive (resp. zero, negative) implies every Pi is positive (resp.
zero, negative). Thus (a) and (b) are equivalent.

The first identity of (3.10) shows that Pi+1 and Qi+2 have the same sign, and
Pi+1 = 0 if and only if Qi+2 = 0. This proves that (c) is equivalent to (a). �

An immediate corollary of Proposition 3.1 is

Corollary 3.2. Let q ∈ (R2)5\Δ and let Sij be as in Proposition 3.1. Then exactly
one of the following holds:

Si,i+1Si+2,i+3 > Si,i+2Si+1,i+3 > Si,i+3Si+1,i+2 for every i,(3.11)

Si,i+1Si+2,i+3 < Si,i+2Si+1,i+3 < Si,i+3Si+1,i+2 for every i,(3.12)

Si,i+1Si+2,i+3 = Si,i+2Si+1,i+3 = Si,i+3Si+1,i+2 for every i.(3.13)

This is a conclusion drawn from Williams’ formulae. In the next two sections
we will show that only (3.11) can happen; i.e., every Pi and Qi is positive. This
poses a very concrete geometric constraint on strictly convex central configurations
of the planar five-body problem.

Another simple corollary of the formulae in this section will be useful later:

Proposition 3.3. Let q = (q1, · · · , q5) ∈ (R2)5 \ Δ be a strictly convex central
configuration given in (3.1) with their vertices ordered counterclockwise. Let Sij be
as in (3.3). For any i, either Si,i+1, Si,i+2, Si,i+3 are all zero, or at least two of
them are nonzero and have opposite signs. Similarly, either Si,i+4, Si,i+3, Si,i+2

are all zero, or at least two of them are nonzero and have opposite signs.

Proof. Note that we are dealing with strictly convex configurations, those Dij in
(3.4), (3.5) are positive. Those Sij in (3.4) (or (3.5)) are either all zero or include
two nonzero terms with opposite signs. Replace i in (3.4), (3.5) by i + 2, i + 1,
respectively; then the proposition is an immediate corollary of (3.4), (3.5). �

We mentioned in the introductory section that there is an unsupported assump-
tion in Williams’ work [23] that has been invoked explicitly or implicitly multiple
times in that paper. This unsupported assumption is [23, p. 570]

r12, r23, r34, r15, r45 ≤ r0 ≤ r13, r14, r24, r25, r35.(3.14)

It appears to be motivated by MacMillan-Bartky’s work for the four-bodies prob-
lem [15, §14] where a similar condition was proved to hold. More precisely, if
(q1, q2, q3, q4) is a convex central configuration for the planar four-body problem,
then

r12, r23, r34, r14 ≤ r0 ≤ r13, r24.(3.15)

The r0 in (3.15) is, of course, defined using multiplier and total mass of the four-
body system as in (2.7). According to Williams, the assumption (3.14) was intro-
duced to “assure masses are all positive”, a statement which was briefly explained
in [23] without details because a complete proof would be “too long to write down”.
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Assumption (3.14) trivializes certain propositions. For example, it follows triv-
ially from (3.14) that (3.12) fails to hold, and 0 < Si,i+1 for every i. These con-
clusions are indeed correct (Theorem 5.1, Theorem 5.2 in our paper) but without
(3.14) they are by no means obvious. In [23, pp. 565–570] there are related asser-
tions which appear to be independent of (3.14) but we find certain parts difficult to
follow. We will see later (section 8) that there are examples which violate (3.14).

4. Some applications of the perpendicular bisector theorem

In this section we will rule out the possibility (3.13) in Corollary 3.2. This is
done by repeated applications of two lemmas, both of which are corollaries of a
beautiful theorem known as the perpendicular bisector theorem. These lemmas
will also be used in the next two sections.

The perpendicular bisector theorem was attributed to C. Conley by R. Moeckel
in [16], where the theorem and its proof appeared in the literature for the first time.
A simpler proof can be found in A. Albouy [1].

Given two points p1, p2 on the plane, their perpendicular bisector and the line
through p1 and p2 determine two open double cones. Each open double cone consists
of a pair of open cones which are symmetric with respect to the midpoint of p1, p2.
We call them open double cones determined by p1 and p2.

Theorem 4.1 (Perpendicular bisector theorem). Let qi and qj be two points of a
planar central configuration, and let C1, C2 be the two open double cones deter-
mined by qi and qj. If one of C1, C2 has nonempty intersection with the central
configuration, then so does the other open double cone.

The perpendicular bisector theorem is very useful in restricting possible shapes
of planar central configurations. The next two lemmas for planar convex central
configurations are simple corollaries of this theorem.

Lemma 4.2. If masses m1, · · · ,mn of a convex central configuration (q1, · · · , qn) ∈
(R2)n are ordered counterclockwise and n ≥ 4, then

ri,i+2 > ri,i+1, ri+1,i+2 for i = 1, 2, · · · , n
(i.e., Si,i+2 < Si,i+1, Si+1,i+2 for i = 1, 2, · · · , n).

Proof. Suppose not. Assume ri,i+2 ≤ ri,i+1. Consider the open double cones
determined by qi+1 and qi+2. One of the open double cones intersects the central
configuration but the other does not. This contradicts the perpendicular bisector
theorem. The other case ri,i+2 ≤ ri+1,i+2 is similar. �

Lemma 4.3. If masses m1, · · · ,mn of a convex central configuration (q1, · · · , qn) ∈
(R2)n are ordered counterclockwise and n ≥ 5, then

ri,i+1 ≥ ri+1,i+2 implies ri,i+3 > ri+2,i+3

(i.e., Si,i+1 ≤ Si+1,i+2 implies Si,i+3 < Si+2,i+3).

Similarly,

ri+2,i+3 ≥ ri+1,i+2 implies ri,i+3 > ri,i+1

(i.e., Si+2,i+3 ≤ Si+1,i+2 implies Si,i+3 < Si,i+1).

Proof. We only consider ri,i+1 ≥ ri+1,i+2 since the other case is similar. Consider
the two open double cones determined by qi and qi+2. If ri,i+3 ≤ ri+2,i+3, then one
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of the double cone contains qi+4 while the other has empty intersection with the
central configuration. This contradicts the perpendicular bisector theorem. �

Lemmas 4.2 and 4.3 concern triangles and quadrilaterals, respectively, of a pla-
nar convex central configuration whose edges include precisely one interior edge.
Lemma 4.2 says that, for triangles, the interior edge is strictly greater than the two
exterior edges. Lemma 4.3 says that, for quadrilaterals, the interior edge is strictly
greater than one of its neighboring exterior edges if the other neighboring exterior
edge is no less than the remaining exterior edge. With the assistance of Lemmas 4.2
and 4.3, we can sharpen the result in Proposition 3.1:

Proposition 4.4. Let q = (q1, · · · , q5) ∈ (R2)5 \ Δ be a strictly convex central
configuration given in (3.1). Assume vertices of the resulting pentagon are ordered
counterclockwise. Let Pi, Qi, Sij be as in (3.9), (3.3). Then every Pi, Qi is nonzero,
and exactly one of (3.11), (3.12) holds.

Proof. By Proposition 3.1, every Pi, Qi is nonzero if and only if exactly one of
(3.11), (3.12) holds. To prove by contradiction, we assume that equalities (3.13) in
Corollary 3.2 hold.

Take the largest diagonal d and the largest exterior edge e. Either they have
no common vertex, or they have one common vertex v. We will show that neither
case is possible.

First observe that |d| > |e|, where | · | means the length. This follows easily from
Lemma 4.2, since e is shorter than some diagonal, and d is the longest diagonal.

Assume d and e have no common vertex. Without loss of generality, let d = q1q4,
e = q2q3; then |d| = r14, |e| = r23. By the observation and assumptions above,
we have r14 > r23 ≥ r12, r34. This implies S14 < S23 ≤ S12, S34. By Lemma 4.2,
r13, r24 > r23, so that S13, S24 < S23. Since d = q1q4 is the longest diagonal,
r14 ≥ r13, r24. Putting these observations together, we find

S14 ≤ S13, S24 < S23 ≤ S12, S34.(4.1)

From (3.13) we know

S12S34 = S13S24 = S14S23.(4.2)

It is easy to see that none of these Sij (1 ≤ i �= j ≤ 4) is zero: if S12 or S34 = 0,
then S13, S24 < 0, which clearly contradicts (4.2). Clearly these Sij cannot have
the same sign, so S14 < 0 and at least one of S12, S34 is positive. By (4.1), (4.2)
we have S23 < 0, for otherwise we would have S14S23 < 0 < S12S34. By (4.1), (4.2)
we also have 0 < S12, S34, for otherwise we would have S12S34 < 0 < S14S23. To
summarize, we have proved

S14 ≤ S13, S24 < S23 < 0 < S12, S34.

Now consider the effect of the fifth body. If both S15, S45 were positive, then
S15S24 < 0 < S12S45, which contradicts (3.13). If S15 < 0, then 0 < S35 (since
S12S35 = S23S15), and so r35 < r15, which contradicts Lemma 4.3. Likewise, if
S45 < 0, then 0 < S25 (since S23S45 = S34S25) and so r45 > r25, which again
contradicts Lemma 4.3. Therefore at least one of S15, S45 is zero. If S15 = 0, then
S14, S25 < 0 (since r14, r25 > r15, by Lemma 4.2), but this contradicts the identity
S14S25 = S15S24 in (3.13). The case S45 = 0 is similar; it implies S14, S35 < 0 but
that contradicts the identity S14S35 = S13S45 in (3.13). We have now ruled out all
possibilities, so it is impossible that d and e have no common vertex.
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Next we deal with the case that d and e have one common vertex v. It is
sufficient to consider the following two cases: (i) e = q1q2, d = q2q4; (ii) e = q2q3,
d = q2q4.

In case (i), since r24 ≥ r13 > r12 ≥ r23, r34, we find

S24 ≤ S13 < S12 ≤ S23, S34.

Since S13S24 = S12S34, none of these four Sij (i.e., S13, S24, S12, S34) is zero.
The inequalities above show that these four Sij cannot have the same sign, so
S24 < 0 < S34. In order that S13S24 = S12S34, we must have S13 < 0 < S12. To
summarize, we have proved

S24 ≤ S13 < 0 < S12 ≤ S23, S34.

We have assumed that q1q2 is the longest exterior edge, so

S24 ≤ S13 < 0 < S12 ≤ S23, S34, S45, S15.

But then S13S45 < 0 < S34S15, contradicting (3.13).
In case (ii) we have r24 ≥ r13 > r23 ≥ r12, r34, and so

S24 ≤ S13 < S23 ≤ S12, S34.

Using S13S24 = S12S34, we find these four Sij are nonzero, and they cannot have
the same sign. Therefore we must have

S24 ≤ S13 < 0 < S12, S34.

To determine the sign of S23, we use inequalities S24 ≤ S14 (since r24 ≥ r14) and
S13 < S23. Since 0 < S13S24 = S23S14, S23 and S14 must both be positive. Now
since q2q3 is the longest exterior edge, we conclude that

S24 ≤ S13 < 0 < S23 ≤ S12, S34, S45, S15.

This implies S13S45 < 0 < S34S15, which again contradicts (3.13). �

5. Geometric constraints in terms of Sij

In this section we provide some geometric constraints for strictly convex central
configurations of the planar five-body problem in terms of the Sij ’s defined in (3.3).
We have already observed one such constraint in Proposition 3.3. A much less trivial
one states that only one option in Corollary 3.2 holds:

Theorem 5.1. Let q = (q1, · · · , q5) ∈ (R2)5 \ Δ be a strictly convex central con-
figuration given in (3.1), and let Sij be as in (3.3). Assume vertices are ordered
counterclockwise. Then

Si,i+1Si+2,i+3 > Si,i+2Si+1,i+3 > Si,i+3Si+1,i+2 for every i.

Proof. By Proposition 4.4, we know that in Corollary 3.2 either (3.11) or (3.12)
holds. We need to show that only (3.11) holds. Suppose not, then there would
be some strictly convex central configuration, with their vertices ordered counter-
clockwise, such that inequalities in (3.12) hold:

S12S34 < S13S24 < S14S23,

S23S45 < S24S35 < S25S34,

S34S15 < S14S35 < S13S45,(5.1)

S45S12 < S14S25 < S24S15,

S15S23 < S25S13 < S12S35.
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Under assumption (5.1), we prove the following statements and then use them
to get a contradiction:

(a) There exists some i such that Si,i+1 < 0.
(b) There exists some i such that Si,i+1, Si+2,i+3 < 0.
(c) There exists a unique i such that 0 < Si,i+2.

Suppose (a) does not hold; then 0 ≤ Si,i+1 for each i. In this case the first
column in (5.1) is constituted by nonnegative terms, so the third column in (5.1) is
constituted by positive terms. These positive terms are of the form Si,i+1Si+2,i+4,
so we must have 0 < Si,i+1, Si+2,i+4. Since i is arbitrary, it follows that every Sij

is positive, but this contradicts both (3.4) and (3.5).1 Therefore (a) holds.
Without loss of generality, by (a) we may assume S12 < 0. Then S13, S25 < 0

since r12 < r13, r25 (by Lemma 4.2). Observe that Si,i+1 < 0 for some i �= 1; in fact,
we can find such an Si,i+1 among S23, S34, S45. Suppose not; i.e., 0 ≤ S23, S34, S45.
By the second line of (5.1),

0 ≤ S23S45 < S25S34.

This contradicts the fact that S25 < 0. Therefore at least one of S23, S34, S45 is
negative. Now statement (b) follows if one of S34, S45 is negative (corresponding
to i = 1 or 4 in (b)), or if both S15, S23 are negative (corresponding to i = 5 in
(b)). Suppose neither of S34, S45 is negative. From the observation above,

S23 < 0 ≤ S34, S45.

By the third line of (5.1),

S34S15 < S13S45 ≤ 0.

This implies S15 < 0 as desired.
Now we prove (c). Let’s begin with the existence part. If Si,i+2 ≤ 0 for every

i, then by (3.4) or (3.5) we would have Si,i+1 ≥ 0 for every i, but this contradicts
(a). Now, knowing that 0 < Si,i+2 for some i, we know from Lemma 4.2 that
0 < Si,i+1, Si+1,i+2. If there were another j �= i such that 0 < Sj,j+2, then
0 < Sj,j+1, Sj+1,j+2, and so by Lemma 4.2 there would be three connecting exterior
edges with their Sk,k+1 positive, but this contradicts (b). Thus, the i making
0 < Si,i+2 is unique.

Finally, we use (b), (c) to prove the theorem by showing a contradiction with
(5.1). By (b), we may assume without loss of generality that S12, S34 < 0. Then

S25, S13, S24, S35 < 0 < S14.

The first inequality follows from Lemma 4.2 and the second one follows from (c).
By Lemma 4.3, we must have S23 < S12 (< 0), for otherwise we would get the
contradictory inequality S14 < S34 (< 0). We conclude from these discussions that
S14S23 < 0 < S12S34, but this contradicts the first line of (5.1). �

According to Theorem 5.1, inequalities in (3.11) hold for a strictly convex central
configuration of the planar five-body problem. It will be convenient to write out

1Alternatively, one may consider the product pk of entries in the k-column of (5.1). It is easy
to see that p1 < p3 contradicts p2 < p3.
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all these correct inequalities for later purposes:

S14S23 < S13S24 < S12S34,

S25S34 < S24S35 < S23S45,

S13S45 < S14S35 < S34S15,(5.2)

S24S15 < S14S25 < S45S12,

S12S35 < S25S13 < S15S23.

Another geometric constraint for strictly convex central configurations of the
planar five-body problem is that the third column of (5.2) consists of positive terms.
This would be obvious if we can show that every Si,i+1 is positive.

Theorem 5.2. Let q = (q1, · · · , q5) ∈ (R2)5 \ Δ be a strictly convex central con-
figuration given in (3.1), and let Sij be as in (3.3). Assume vertices are ordered
counterclockwise. Then

0 < Si,i+1 for every i.

Proof. First we prove that the third column of (5.2) consists of positive terms:

0 < Si,i+1Si+2,i+3 for every i.(5.3)

Suppose otherwise; without loss of generality, assume S12S34 ≤ 0. There are two
cases. The first case is:

S12 ≤ 0 ≤ S34.

In the sequel we determine signs of some Sij by using Lemma 4.2 and (5.2):

S13 < S12 ≤ 0 ≤ S34 (by Lemma 4.2)

=⇒ S13 < S12 ≤ 0 < S24 < S34 (by first line of (5.2), Lemma 4.2)

=⇒ S13 < S12 ≤ 0 < S24 < S34, S23 (by Lemma 4.2)

=⇒ S14 < 0 (by first line of (5.2)).

In the last two lines, inequalities on the left sides that involve {S12, S13, S14} violate
Proposition 3.3.

The other case is similar:

S34 ≤ 0 ≤ S12

=⇒ S24 < S34 ≤ 0 ≤ S12 (by Lemma 4.2)

=⇒ S24 < S34 ≤ 0 < S13 < S12 (by first line of (5.2), Lemma 4.2)

=⇒ S24 < S34 ≤ 0 < S13 < S12, S23 (by Lemma 4.2)

=⇒ S14 < 0 (by first line of (5.2)).

As in the previous case, inequalities in the last two lines that involve {S14, S24, S34}
contradict Proposition 3.3. This proves (5.3).

According to (5.3), Si,i+1 and Si+1,i+2 are nonzero and have the same sign. Since
i is arbitrary, this implies that every Si,i+1 is nonzero and all of them have the same
sign. If they were all negative, by Lemma 4.2 every Sij would be negative, which
again contradicts Proposition 3.3. Therefore they are all positive. �
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6. A classification for strictly convex central configurations

This section is devoted to proving the following classification theorem for strictly
convex central configurations of the planar five-body problem.

Theorem 6.1. For any strictly convex five-body central configuration, all exterior
edges are less than r0. The number of interior edges larger than r0 is either 5, 4,
or 3. If there are precisely three interior edges larger than r0, then the other two
interior edges must cross each other.

Proof. That all exterior edges are less than r0 is simply a reiteration of Theorem 5.2.
According to Theorem 5.1, the inequalities in (5.2) hold. These inequalities will be
repeatedly used in the proof.

First we observe that Si,i+2 < 0 for some i. This is a simple consequence of
Lemma 4.2, for if 0 ≤ Si,i+2 for every i, we would have 0 ≤ Si,i+2 < Si,i+1 for every
i, and that contradicts Proposition 3.3.

Assume Si,i+2 < 0. We claim that:

(a) Si+1,i+3 < 0 or Si,i+3 < 0;
(b) Si+1,i+4 < 0 or Si+2,i+4 < 0.

Without loss of generality, it is sufficient to consider the case i = 1; i.e., S13 < 0.
To prove (a), we need to show that either S24 < 0 or S14 < 0. Suppose 0 ≤ S24.

By Lemma 4.2, this implies 0 < S23. By the first line of (5.2),

S14S23 < S13S24 ≤ 0.

This implies S14 < 0 as claimed.
To prove (b), we need to show that either S25 < 0 or S35 < 0. The proof is

similar to (a). Suppose 0 ≤ S25. By Lemma 4.2, this implies 0 < S12. By the last
line of (5.2),

S12S35 < S25S13 ≤ 0.

This implies S35 < 0 as claimed.
Following (a), (b), still assuming that S13 < 0, there are four possibilities:

(i) S13, S24, S25 < 0, S14, S35 undetermined;
(ii) S13, S24, S35 < 0, S14, S25 undetermined;
(iii) S13, S14, S25 < 0, S24, S35 undetermined;
(iv) S13, S14, S35 < 0, S24, S25 undetermined.

In any case, there are at least three interior edges with their Si,i+2 < 0, so the
number of interior edges larger than r0 is at least 3. Actually, in case (iv), by the
second line in (5.2) and by Theorem 5.2, one of S24, S25 must be negative:

S25 S34︸︷︷︸
(+)

< S24 S35︸︷︷︸
(−)

=⇒ if S25 ≥ 0, then S24 < 0.

Therefore, if there are precisely three interior edges with their Si,i+2 < 0, then one
of (i), (ii), (iii) holds, with those two undetermined Si,i+2, Sj,j+2 greater than or
equal to zero. In these three cases, those two undetermined Si,i+2, Sj,j+2 have no
index in common, with only five possible indices their corresponding interior edges
must cross each other. This proves that if two undetermined Sij are nonnegative,
or equivalently that two interior edges are less than or equal to r0, then they must
cross each other. �
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Theorem 6.1 is sharp in the sense that there are examples of strictly convex
five-body central configurations with either one or two interior edges less than or
equal to r0. Some of these examples will be shown in section 8.

7. An application to piling up central configurations

It is possible to add a mass to a central configuration with n bodies which
makes the new system a central configuration with n+ 1 bodies. A rather obvious
way is to place the additional mass at the mass center c of the system when each
mass is equally distant from c, and this new system is not convex. There are less
obvious ways. For instance, it is possible to add a mass to a co-circular central
configuration with four bodies which makes the new system a nonplanar convex
central configuration with five bodies, and it is impossible to do so if the original
planar configuration with four bodies is not co-circular [1, Proposition 5]. This
increases the dimension of the central configuration.

The procedure of adding one mass to a central configuration so as to make it an-
other central configuration is what we mean by piling up central configurations. The
piled up central configuration with at least four masses is a special case of stacked
central configurations defined by M. Hampton in [12]; they are central configura-
tions in which some subset of three or more points form a central configuration.

The following application of results in previous sections addresses the question
about piling up convex central configurations, without increasing the dimension of
the configuration: for convex central configurations with four bodies in the plane, is
it possible to add another mass on the same plane which makes it a strictly convex
central configuration? A negative answer has been obtained by A. C. Fernandes
and L. F. Mello [8].2 Here we provide an alternative (and less direct) proof.

Theorem 7.1. Let q = (q1, · · · , q5) ∈ (R2)5 \Δ be a strictly convex central config-
uration for the planar five-body problem with positive masses (m1, · · · ,m5). Then
(q1, q2, q3, q4) is not a central configuration for the four-body problem with masses
(m1,m2,m3,m4).

Proof. We follow notation in previous sections, such as multiplier λ, total mass M ,
r0, mutual distances rij , and Sij for the system q with five bodies. We will prove
the theorem by contradiction.

Suppose q̂ = (q1, q2, q3, q4) is a central configuration for masses (m1,m2,m3,m4).

We add a tilde sign ∼ to symbols for the four-body subsystem. That is, λ̃ is the
multiplier of the subsystem, M̃ = M −m5, and

r̃0 =

(
λ̃

M̃

)− 1
3

, S̃ik =
1

r3ik
− 1

r̃30
.

2In [8] a stronger statement was made: the only possible way to pile up a convex central
configuration with four bodies in the plane is to have four equal masses at vertices of a square
and the additional mass placed at the mass center. However, the proof there for the concave case
is incorrect, so the above mentioned assertion is still open. One ambiguity appears on page 296
of [8], where the authors claim the equivalence of (2) and (3). It should be emphasized that they
are equivalent only when the mass center is at the origin. An error appears on page 302 of [8],
where the authors claim to have a quadratic polynomial in m5, but coefficients of that “quadratic
polynomial” involve a term r5 which depends on m5. It depends on m5 because, by assuming
equivalence of (2) and (3), r5 must be given by r5 = − 1

m5
(m1r1 +m2r2 +m3r3 +m4r4).
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By strict convexity of q, q̂ must be a Dziobek configuration [6].3 A well-known
property of Dziobek configurations is that (see [6], [15], [18, §3])

S̃ijS̃kl = S̃ikS̃jl provided {i, j, k, l} = {1, 2, 3, 4}.
That is,

S̃12S̃34 = S̃13S̃24 = S̃14S̃23.(7.1)

As a convex central configuration with four bodies, by MacMillan-Bartky’s inequal-
ities (3.15) (with r0 in (3.15) replaced by r̃0),

S̃13, S̃24 ≤ 0 ≤ S̃12, S̃23, S̃34, S̃14.(7.2)

With all rij > 0 fixed, consider the following linear polynomial in w:

p(w) =

(
1

r312
− w

)(
1

r334
− w

)
−
(

1

r323
− w

)(
1

r314
− w

)

=

(
1

r312r
3
34

− 1

r323r
3
14

)
+

(
1

r323
+

1

r314
− 1

r312
− 1

r334

)
w.

By Theorem 5.1 and (7.1),

(7.3) p

(
1

r̃30

)
= S̃12S̃34 − S̃23S̃14 = 0 < S12S34 − S23S14 = p

(
1

r30

)
.

Assume that the coefficient of w in p(w) is nonpositive. In this case p(w) is
decreasing in w, so by (7.3) we find

1

r30
<

1

r̃30
, S̃ij < Sij for every 1 ≤ i �= j ≤ 4.

Then by (7.2),

0 < S12, S23, S34, S14.

By Theorem 5.1 again,

S12︸︷︷︸
(+)

S34︸︷︷︸
(+)

> S13S24 > S14︸︷︷︸
(+)

S23︸︷︷︸
(+)

.

Therefore S13 and S24 have the same sign, and they cannot be zero.
By Theorem 6.1, there are at least three interior edges larger than r0, so at least

three Si,i+2’s are negative. Knowing that 0 < S14, we are forced to conclude that

S13, S24 < 0, and hence S̃13, S̃24 < 0. Therefore, by (7.1), “≤” in (7.2) can be
replaced by “<”.

From discussions above, we find

S̃13 < S13 < 0 < S̃14 < S14,

S̃24 < S24 < 0 < S̃23 < S23.

Then

S13S24 < S̃13S̃24 = S̃14S̃23 < S14S23.

This contradicts Theorem 5.1 or the first line of (5.2).

3A Dziobek configuration for the n-body problem is a central configuration with n mass points
such that the convex hull of these mass points is an (n− 2)-dimensional simplex.
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We have proved that the coefficient of w in p(w) is positive. In this case p(w) is
strictly increasing in w, so by (7.3) we find

1

r̃30
<

1

r30
, Sij < S̃ij for every 1 ≤ i �= j ≤ 4.

Then by Theorem 5.2 we have 0 < S12, S34, and by (7.1) and (7.2) we find

S13 < S̃13 < 0 < S12 < S̃12,

S24 < S̃24 < 0 < S34 < S̃34.

Then
S12S34 < S̃12S̃34 = S̃13S̃24 < S13S24.

Again, this contradicts Theorem 5.1 or the first line of (5.2). Thus the subsystem
q̂ cannot be a central configuration for masses (m1,m2,m3,m4). �

We remark here that a convex central configuration for the planar four-body
problem with positive masses cannot have a three-body subsystem which forms an
equilateral triangle. This follows easily from the perpendicular bisector theorem. It
would be interesting to know if this phenomenon is valid for more general “piling”
of convex central configurations; i.e., whether “four” and “three” above could be
replaced by arbitrary “n” and “n − 1”, under the condition that the original and
new configurations have the same dimension.

8. Numerical examples with one axis of symmetry

Theorem 6.1 tells us that, for any strictly convex central configuration of the
planar five-body problem, the number ne of interior edges larger than r0 is at least
3. The regular pentagon with equal masses is a case with ne = 5. In this section
we show numerical examples with ne = 3, 4.

Consider pentagons with two pairs of equal masses and one axis of symmetry:

(m1,m2,m3,m4,m5) = (1, μ, μ, 1, ν),

q1 = (α, β), q2 = (−0.5, γ), q3 = (0.5, γ), q4 = (−α, β), q5 = (0, ζ).

In this case we only need to compare r13, r14, and r25 with r0. The position q5
of m5 is determined by setting the mass center at the origin: ζ = −(2β + 2μγ)/ν.
Figure 1 shows two numerical examples of such central configurations. Numerical
data accurate to the 16th decimal places are given in Table 1.

The example on the left side of Figure 1 has r13 = r24 < r0 < r25 < r14, so
that ne = 3. It is a central configuration with one dominant mass. The problem
with one dominant mass is also known as the (1 + n)-body problem. If all inferior
masses are equal, as in [10] and [17, §4.3], our numerical computations show that
all interior edges are larger than r0. In our example m2 = m3 are much smaller
than m1 = m4.

The example on the right side of Figure 1 has r14 < r0 < r25 < r13, so that
ne = 4. It is a perturbation of an example in [9, §4] and [5, §2], in which convex
but not strictly convex central configurations were considered. We perturb it to
a strictly convex central configuration by reducing masses m2 = m3 = μ. It is
interesting to note that, although interior edges r25 = r35 must be greater than r0
(according to Theorem 6.1), they approach r0 as μ increases to a threshold value
μ0 ≈ 11.23156073 (see [5, Table 1]). This is the critical case where the central
configurations cease to be strictly convex.
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Figure 1. Some strictly convex central configurations with five bodies.

Table 1. Numerical data for examples in Figure 1.

Example on the left side of Figure 1:

α = -2.0364473961007020, r0 = 3.0937834761596283,
β = -1.8075177021856360, r13 = 2.7009869413818559,
γ = -2.7358307228469223, r14 = 4.0728947922014040,
ζ = 0.4709367693510041, r25 = 3.2455134800239820,
(μ, ν) = (0.2,10).

Example on the right side of Figure 1:

α = -0.4816548712069194, r0 = 1.0214672502517865,
β = 0.7409158174373895, r13 = 1.3190064694925061,
γ = -0.1400675992049511, r14 = 0.9633097424138388,
ζ = 0.7592499524044385, r25 = 1.0289665002480437,
(μ, ν) = (8,1).
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