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EXTENDED DE FINETTI THEOREMS FOR BOOLEAN

INDEPENDENCE AND MONOTONE INDEPENDENCE

WEIHUA LIU

Abstract. We construct several new spaces of quantum sequences and their
quantum families of maps in the sense of So�ltan. The noncommutative dis-
tributional symmetries associated with these quantum maps are noncommu-

tative versions of spreadability and partial exchangeability. Then, we study
simple relations between these symmetries. We will focus on studying two
kinds of noncommutative distributional symmetries: monotone spreadability
and boolean spreadability. We provide an example of a spreadable sequence of
random variables for which the usual unilateral shift is an unbounded map. As
a result, it is natural to study bilateral sequences of random objects, which are
indexed by integers, rather than unilateral sequences. At the end of the pa-
per, we will show Ryll-Nardzewski type theorems for monotone independence
and boolean independence: Roughly speaking, an infinite bilateral sequence of
random variables is monotonically (boolean) spreadable if and only if the vari-
ables are identically distributed and monotone (boolean) with respect to the
conditional expectation onto its tail algebra. For an infinite sequence of non-
commutative random variables, boolean spreadability is equivalent to boolean
exchangeability.

1. Introduction

The characterization of random objects with distributional symmetries is an im-
portant object in modern probability, and the recent text of Kallenberg [14] provides
a comprehensive treatment of distributional symmetries in classical probability. A
finite sequence of random variables (ξ1, ξ2, . . . , ξn) is said to be exchangeable if

(ξ1, . . . , ξn)
d
= (ξσ(1), . . . , ξσ(n)) ∀σ ∈ Sn,

where Sn is the permutation group of n elements and
d
= means that the joint

distribution of the two sequences are the same. Compared with exchangeability,
there is a weaker condition of spreadability: (ξ1, . . . , ξn) is said to be spreadable if
for any k < n, we have

(ξ1, . . . , ξk)
d
= (ξl1 , . . . , ξlk) ∀1 ≤ l1 < l2 < · · · < lk ≤ n.

An infinite sequence of random variables is said to be exchangeable or spreadable
if all its finite subsequences have this property. In the study of distributional
symmetries in classical probability, one of the most important results is de Finetti’s
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theorem, which states that an infinite sequence of random variables whose joint
distribution is invariant under all finite permutations is conditionally independent
and identically distributed. Later, in [23], Ryll-Nardzewski showed that de Finetti’s
theorem holds under the weaker condition of spreadability. Therefore, for infinite
sequences of random variables in classical probability, spreadability is equivalent to
exchangeability.

Recently, Köstler [15] studied three kinds of distributional symmetries, which
are stationarity, contractability and exchangeability, in noncommutative probabil-
ity. It was shown that exchangeability and spreadability do not characterize any
universal independent relation in his framework. In addition, for infinite sequences,
exchangeability is strictly stronger than spreadability in noncommutative probabil-
ity. It should be pointed out that the framework in his paper is a W ∗-probability
space with a faithful state. In this paper, we will consider our problems in a more
general framework.

In the 1980’s, Voiculescu developed his free probability theory and introduced a
universal independence relation, namely free independence, via reduced free prod-
ucts of unital C∗-algebras [30]. For more details on free probability, the reader is
referred to the monograph [31]. One can see that there is a deep parallel between
classical probability and free probability. Recently, in [16], Köstler and Speicher
extended this parallel to the aspect of distributional symmetries. In their work, by
strengthening classical exchangeability to quantum exchangeability, they proved a
de Finetti type theorem for free independence; i.e. for an infinite sequence of ran-
dom variables, quantum exchangeability is equivalent to the fact that the random
variables are identically distributed and free with respect to a conditional expec-
tation onto their tail algebra. The notion of quantum exchangeability is given
by invariance conditions associated with quantum permutation groups As(n) of
Wang [32]. This noncommutative de Finetti type theorem is an instance where
free independence plays in the noncommutative world the same role as classical
independence plays in the commutative world. It naturally raises a motivation for
further study of noncommutative symmetries that “any result in classical probabil-
ity should have an extension in free probability.” For applications of this philosophy,
see [2], [5], [6]. In particular, in [5] Curran introduced a quantum version of spread-
ability for free independence. It was shown that quantum spreadability is weaker
than quantum exchangeability for finite sequences and is a characterization of free
independence for infinite sequences. More specifically, in a W ∗-probability space
with a tracial faithful state, for an infinite sequence of random variables, quantum
spreadability is equivalent to the fact that the random variables are identically
distributed and free with respect to a conditional expectation onto their tail al-
gebra. In other words, for infinite sequences, quantum spreadability is equivalent
to quantum exchangeability in tracial W ∗-probability spaces. Another remarkable
application of quantum exchangeability was given by Freslon and Weber [10]. They
characterize Voiculescu’s bi-freeness [29] via certain invariance conditions associated
with Wang’s quantum groups As(n).

In [27], Speicher and Woroudi introduced another independence relation, which is
called boolean independence. It was shown that boolean independence is related to
the full free product of algebras [4] and the boolean product is the unique nonunital
universal product in noncommutative probability [26]. The study of distributional
symmetries for boolean independence was started in [17]. We constructed a family
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of quantum semigroups in analogy with Wang’s quantum permutation groups and
defined their coactions on joint distributions of sequences. It was shown that the
distributional symmetries associated with those coactions can be used to character-
ize boolean independence in a proper framework. For more details about boolean
independence and universal products, see [26]. It inspires us to study more dis-
tributional symmetries for boolean independence under the philosophy “any result
in classical probability and free probability should have an extension for boolean
independence”. In analogy with easy quantum groups in [1], “easy” boolean semi-
groups and their de Finetti type theorems are studied by Tomohiro [11] and the
author [18]. To apply our philosophy further, it is natural to find an extended
de Finetti type theorem for boolean independence. Specifically, we need to find a
“noncommutative version of spreadability” for boolean independence and prove an
extended de Finetti type theorem associated with noncommutative spreadability.

The main purpose of this paper is to study noncommutative versions of spread-
ability and extended de Finetti type theorems associated with them.

Some other objects come into consideration when we study spreadable sequences
of random objects. It was shown in [20] that there are two other universal products
in noncommutative probability if people do not require the universal construction to
be commutative. We call the two universal products monotone and anti-monotone
products. As tensor products, free products and boolean products, we can define
monotone and anti-monotone independence associated with monotone and anti-
monotone products. Monotone independence and anti-monotone independence are
essentially the same but with different orders; i.e. if a is monotone with b, then b
is anti-monotone with a. For more details of monotone independence, the reader is
referred to [19], [22]. It is well known that a sequence of monotone random variables
is not exchangeable but spreadable. Therefore, there should be a noncommutative
spreadability which can characterize conditionally monotone independence.

The first few sections are devoted to defining noncommutative distributional
symmetries in analogy with spreadability and partial exchangeability. Recall that in
[2], [5], noncommutative distributional symmetries are defined via invariance condi-
tions associated with certain quantum structures. For instance, Curran’s quantum
spreadability is described by a family of quantum increasing sequences and their
quantum family of maps in the sense of So�ltan. The family of quantum increasing
sequences are universal C∗-algebras Ai(n, k) generated by the entries of an n × k
matrix which satisfy certain relations R. Following the idea in [17], to construct a
boolean type of space of increasing sequences Bi(n, k), we replace the unit partition
condition in R by an invariant projection condition. Recall that in [8], Franz stud-
ied relations between freeness, monotone independence and boolean independence
via Bożejko, Marek and Speicher’s two-state free products [3]. In his construction,
a monotone product is something “between” a free product and a boolean product.
Thereby, we construct the noncommutative spreadability for monotone indepen-
dence by modifying quantum spreadability and our boolean spreadability. We will
study simple relations between those distributional symmetries, i.e. which one is
stronger.

As in the situation for boolean independence, there is no nontrivial pair of
monotonically independent random variables in W ∗-probability spaces with faithful
states. Therefore, the framework we use in this paper is a W ∗-probability space
with a nondegenerated normal state which gives a faithful GNS representation of
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the probability space. In this framework, we will see that spreadability is too weak
to ensure the existence of a conditional expectation. Recall that in W ∗-probability
spaces with faithful states, we can define a normal shift on a unilateral infinite
sequence of spreadable random variables. Here, “unilateral” means the sequence
is indexed by natural numbers N. An important property of this shift is that its
norm is one. Therefore, given an operator, we can construct a WOT convergent
sequence of bounded variables via shifts. This is the key step to constructing a nor-
mal conditional expectation in previous works. But, in W ∗-probability spaces with
nondegenerated normal states, the unilateral shift of spreadable random variables
is not necessarily norm one. An example is provided in the beginning of section 6.
Actually, the sequence of random variables is monotonically spreadable, which is
an invariance condition stronger than classical spreadability. Therefore, we cannot
construct a conditional expectation for unilateral sequences via shifts under the
condition of spreadability. To fix this issue, we will consider bilateral sequences
of random variables instead of unilateral sequences. “Bilateral” means that the
sequences are indexed by integers Z. In this framework, we will see that the shift
of spreadable random variables is norm one so that we can define a conditional ex-
pectation via shifts by following Köstler’s construction. Notice that the index set Z
has two infinities, i.e. the positive infinity and the negative infinity. Therefore, we
will have two tail algebras with respect to the two infinities and will consequently
define two conditional expectations. We denote by E+ the conditional expectation
which shifts indices to positive infinity and E− the conditional expectation which
shifts indices to negative infinity. We will see that the two tail algebras are subsets
of fixed points of the shift and the conditional expectations may not be extended
normally to the whole algebra. In general, the two tail algebras are different, and
the conditional expectation may have different properties. For noncommutative
spreadability for monotone independence, we have the following:

Theorem 1.1. Let (A, φ) be a nondegenerated W ∗-probability space and (xi)i∈Z a
bilateral infinite sequence of selfadjoint random variables which generate A as a von
Neumann algebra. Let A+

k be the WOT closure of the nonunital algebra generated
by {xi|i ≥ k}. Then, the following are equivalent:

(a) The joint distribution of (xi)i∈Z is monotonically spreadable.
(b) For all k ∈ Z, there exists a φ-preserving conditional expectation Ek :

A+
k → A+

tail such that the sequence (xi)i≥k is identically distributed and
monotonically independent with respect to Ek. Moreover, Ek|Ak′ = Ek′

whenever k ≥ k′.

In general, we cannot extend E+ to the whole algebra A, but we have the
following.

Proposition 1.2. Let (A, φ) be a nondegenerated W ∗-probability space and (xi)i∈Z

a bilateral infinite sequence of selfadjoint random variables which generate A as a
von Neumann algebra. If the joint distribution of (xi)i∈Z is monotonically spread-
able, then E− can be extended to the whole algebra A normally.

We will see that boolean spreadability implies monotone spreadability and anti-
monotone spreadability. Therefore, both E+ and E− can be extended normally to
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the whole algebra A. Moreover, for boolean spreadable sequences, E+ = E− and
the two algebras are identical. In summary, we have

Theorem 1.3. Let (A, φ) be a nondegenerated W ∗-probability space and (xi)i∈Z

a bilateral infinite sequence of selfadjoint random variables which generate A as a
von Neumann algebra. Then, the following are equivalent:

(a) The joint distribution of (xi)i∈N is boolean spreadable.
(b) The sequence (xi)i∈Z is identically distributed and boolean independent with

respect to the φ-preserving conditional expectation E onto the nonunital tail
algebra of (xi)i∈Z.

The paper is organized as follows: In section 2, we will introduce preliminaries
and notation from noncommutative probability and recall Wang’s quantum permu-
tation groups and boolean quantum semigroups. In section 3, we briefly review dis-
tributional symmetries for finite sequences of random variables in classical probabil-
ity and we restate these symmetries in words of quantum maps. Then, we introduce
noncommutative versions of these symmetries and their quantum maps. At the end
of this section, we will define quantum spreadability, monotone spreadability and
boolean spreadability for bilateral infinite sequences of random variables. In sec-
tion 4, we will study simple relations between our noncommutative symmetries. In
particular, we will show boolean exchangeability is strictly stronger than boolean
spreadability. Therefore, operator-valued boolean independent random variables
are boolean spreadable. In section 5, we will introduce an equivalence relation on
the set of sequences of indices. With the help of the equivalence relation, we will
show that operator-valued monotone independent sequences of random variables
are monotonically spreadable. In section 6, we provide an example that a mono-
tonically spreadable unilateral sequence of bounded random variables is unbounded.
Therefore, we cannot define a conditional expectation for unilateral spreadable se-
quences via shifts in a W ∗-probability space with a nondegenerated normal state.
Then we will turn to studying bilateral sequences of random variables. We will
introduce tail algebras associated with positive infinity and negative infinity and
study elementary properties of conditional expectations associated with the two tail
algebras. In section 7, we will study properties of conditional expectations under the
assumption that our bilateral sequences are monotonically spreadable. In section
8, we will prove a Ryll-Nardzewski type theorem for monotone independence. In
section 9, we will prove a Ryll-Nardzewski type theorem for boolean independence.

2. Preliminaries and examples

We recall some necessary definitions and notions from noncommutative proba-
bility. For further details, see [16], [21], [31], [22].

Definition 2.1. A noncommutative probability space (A, φ) consists of a unital
algebra A and a linear functional φ : A → C such that φ(1A) = 1. (A, φ) is called
a ∗-probability space if A is a ∗-algebra and φ(xx∗) ≥ 0 for all x ∈ A. (A, φ) is
called a W ∗- probability space if A is a W ∗-algebra and φ is a normal state on
it. We will not assume that φ is faithful. The elements of A are called random
variables. Let x ∈ A be a random variable. Then, the distribution of x is the linear
functional μx on C[X] (the algebra of complex polynomials in one variable) defined
by μx(P ) = φ(P (x)).
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Definition 2.2. Let A be a W ∗-algebra. A normal state φ on A is said to be
nondegenerated if x = 0 whenever φ(axb) = 0 for all a, b ∈ A.

By Proposition 7.1.15 in [12], the GNS representation of A associated to φ is
normal and faithful if φ is a nondegenerated normal state. In some lectures, nonde-
generated normal states are also called normal GNS-faithful states. In this paper,
we will work with W ∗-probability space with a nondegenerated normal state, since
there is no nontrivial pair of boolean or monotonically independent random vari-
ables in W ∗-probability spaces with faithful states. See [17].

Definition 2.3. Let I be an index set. The algebra of noncommutative polynomials
in |I| variables, C〈Xi|i ∈ I〉, is the linear span of 1 and noncommutative monomials

of the form Xk1
i1
Xk2

i2
· · ·Xkn

in
with i1 
= i2 
= · · · 
= in ∈ I and all kj ’s are positive

integers. For convenience, we will denote by C〈Xi|i ∈ I〉0 the set of noncommutative
polynomials without a constant term. Let (xi)i∈I be a family of random variables
in a noncommutative probability space (A, φ). Their joint distribution is the linear
functional μ : C〈Xi|i ∈ I〉 → C defined by

μ(Xk1
i1
Xk2

i2
· · ·Xkn

in
) = φ(xk1

i1
xk2
i2

· · ·xkn
in
),

and μ(1) = 1.

In general, joint distributions depend on the order of random variables, e.g.
μx,y may not equal μy,x. According to our notation, μx,y(X1X2) = φ(xy) whereas
μy,x(X1X2) = φ(yx). In this paper, our index set I is always an ordered set with
order “>” e.g. N, Z.

Definition 2.4. Let (A, φ) be a noncommutative probability space. A family of
(not necessarily unital) subalgebras {Ai|i ∈ I} of A is said to be boolean indepen-
dent if

φ(x1x2 · · ·xn) = φ(x1)φ(x2) · · ·φ(xn)

whenever xk ∈ Aik with i1 
= i2 
= · · · 
= in. The family of subalgebras {Ai|i ∈ I}
is said to be monotonically independent if

φ(x1 · · ·xk−1xkxk+1 · · ·xn) = φ(xk)φ(x1 · · ·xk−1xk+1 · · ·xn)

whenever xj ∈ Aij with i1 
= i2 
= · · · 
= in and ik−1 < ik > ik+1. A set of random
variables {xi ∈ A|i ∈ I} is said to be boolean (monotonically) independent if the
family of nonunital subalgebras Ai, which are generated by xi’s respectively, is
boolean (monotonically) independent.

One should refer to [9] for more details on boolean products and monotone prod-
ucts of random variables. In general, the framework for boolean independence and
monotone independence is a nonunital algebra. Thereby, we will use the following
version of operator valued probability spaces:

Definition 2.5 (Operator valued probability space). An operator valued proba-
bility space (A,B, E : A → B) consists of an algebra A, a subalgebra B of A and a
B − B bimodule linear map E : A → B, i.e.

E[b1ab2] = b1E[a]b2, E[b] = b,

for all b1, b2, b ∈ B and a ∈ A. According to the definition in [28], we call E a
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conditional expectation from A to B if E is onto, i.e. E[A] = B. The elements of
A are called random variables.

Remark 2.6. In free probability theory, A and B are assumed to be unital and share
the same unit.

Definition 2.7. For an algebra B, we denote by B〈X〉 the algebra which is freely
generated by B and an indeterminate X. Let 1X be the identity of C〈X〉. Then
B〈X〉 is the set of linear combinations of noncommutative monomials b0Xb1Xb2
· · · bn−1Xbn where bk ∈ B ∪ {C1X} and n ≥ 0. The elements in B〈X〉 are called
B-polynomials. In addition, B〈X〉0 denotes the subalgebra of B〈X〉 which does not
contain a constant term in B, i.e. the linear span of the noncommutative monomials
b0Xb1Xb2 · · · bn−1Xbn where bk ∈ B ∪ {C1X} and n ≥ 1.

Now, we define the operator valued versions of noncommutative independences:

Definition 2.8. Let {xi}i∈I be a family of random variables in an operator valued
probability space (A,B, E : A → B), where A and B are not necessarily unital.
{xi}i∈I are said to be boolean independent over B if

E[p1(xi1)p2(xi2) · · · pn(xin)] = E[p1(xi1)]E[p2(xi2)] · · ·E[pn(xin)]

whenever i1, · · · , in ∈ I, i1 
= i2 
= · · · 
= in and p1, · · · , pn ∈ B〈X〉0. {xi}i∈I are
said to be monotonically independent over B if

E[p1(xi1) · · · pk−1(xik−1
)pk(xik)pk+1(xik+1

) · · · pn(xin)]
= E[p1(xi1) · · · pk−1(xik−1

)E[pk(xik)]pk+1(xik+1
) · · · pn(xin)]

whenever i1, · · · , in ∈ I, i1 
= i2 
= · · · 
= in, ik−1 < ik > ik+1 and p1, · · · , pn ∈
B〈X〉0.

Notice that there is another natural order “<” on I, i.e. a < b if b > a. Therefore,
we can define another noncommutative independence relation. {xi}i∈I are said to
be anti-monotonically independent with respect to E and index order “>” if {xi}i∈I

are monotonically independent with respect to E and index order “<”. See more
details in [20].

2.1. Noncommutative distributional symmetries. Recall that, in [33], Wang
introduced the following quantum analogue of permutation groups.

Definition 2.9. As(n) is defined as the universal unital C∗-algebra generated by
elements (ui,j)i,j=1,...,n such that we have the following:

• Each ui,j is an orthogonal projection; i.e. u∗
i,j = ui,j = u2

i,j for all i, j =
1, . . . , n.

• The elements in each row and column of u = (ui,j)i,j=1,...,n form a partition
of unit, i.e. are orthogonal and sum up to 1: for each i = 1, . . . , n and k 
= l
we have

ui,kui,l = 0 and uk,iul,i = 0,

and for each i = 1, . . . , n we have

n∑
k=1

ui,k = 1 =
n∑

k=1

uk,i.
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As(n) is a compact quantum group in the sense of Woronowicz [34], with comul-
tiplication, counit and antipode given by the formulas

Δ(ui,j) =

n∑
k=1

ui,k ⊗ uk,j ;

ε(ui,j) = δi,j ;

S(ui,j) = uj,i.

It was shown that quantum permutation groups can be used to characterize condi-
tionally free independence [16].

In [17], we modified the universal conditions of Wang’s quantum permutation
groups: By replacing the condition associated with partitions of the unit by a
condition associated with an invariant projection, we get the following universal
algebras.

Quantum semigroups (Bs(n), Δ). The algebra Bs(n) is defined as the universal
unital C∗-algebra generated by elements ui,j (i, j = 1, . . . , n) and a projection P
such that we have

• each ui,j is an orthogonal projection, i.e. u∗
i,j = ui,j = u2

i,j for all i, j =
1, . . . , n.

• ui,kui,l = 0 and uk,iul,i = 0,
whenever k 
= l.

• For all 1 ≤ i ≤ n, P =
∑n

k=1 uk,iP.

There is a natural comultiplication Δ : Bs(n) → Bs(n)⊗min Bs(n) defined by

Δ(ui,j) =
n∑

k=1

ui,k ⊗ uk,j , Δ(P) = P⊗P, Δ(I) = I ⊗ I,

where I is the identity of Bs(n) and ⊗min stands for the reduced C∗-tensor prod-
uct. The existence of these maps is guaranteed by universal properties of Bs(n).
Therefore, (Bs(n),Δ)’s are quantum semigroups in the sense of So�ltan [25]. These
quantum structures can conditionally characterize boolean independence; see more
details in [17].

3. Distributional symmetries for finite sequences

of random variables

In this section, we will review two kinds of distributional symmetries, spread-
ability and partial exchangeability, in classical probability. In [14], we see that
the distributional symmetries can be defined for either finite sequences or infinite
sequences. Moreover, each kind of distributional symmetry for infinite sequences
of random objects is determined by distributional symmetries on all its finite sub-
sequences. For example, an infinite sequence of random variables is exchangeable
if and only if all its finite subsequences are exchangeable. We will present distri-
butional symmetries for finite sequences and then introduce their counterparts in
the noncommutative case. In the first subsection, we recall notions of spreadability
and partial exchangeability in classical probability and rephrase these notions in
words of quantum maps. In the second subsection, we will introduce counterparts
of spreadability and partial exchangeability in the noncommutative case. Even
though there are many interesting properties of partial exchangeability, we are not
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going to study it too much here because the main problem we are concerned with
is extended de Finetti type theorems for noncommutative spreadable sequences.

3.1. Spreadability and partial exchangeability. Recall that in [13], a finite
sequence of random variables (x1, . . . , xn) is said to be spreadable if for any k < n,
we have

(1) (x1, . . . , xk)
d
= (xl1 , . . . , xlk), l1 < l2 < · · · < lk.

For fixed natural numbers n > k, it is mentioned in [5] that the above relation
can be described in words of quantum family of maps in the sense of So�ltan [24]:
Consider the space Ik,n of increasing sequences I = (1 ≤ i1 < · · · < ik ≤ n). For
1 ≤ a ≤ n, 1 ≤ b ≤ k, define fa,b : Ik,n → C by

fa,b(I) =
{

1, ib = a,
0, otherwise.

If we consider In,k as a discrete space, then the functions fi,j generate C(In,k)
by the Stone-Weierstrass theorem. Let C[X1, . . . , Xm] be the set of commutative
polynomials in m variables. The algebra C(In,k) together with an algebraic homo-
morphism α : C[X1, . . . , Xk] → C[X1, . . . , Xn]⊗ C(Ik,n) is defined by

α : Xj =
n∑

i=1

Xi ⊗ fi,j , α(1) = 1⊗ 1C(Ik,n),

which defines a quantum family of maps from {1, . . . , k} to {1, . . . , n}.
Equation (1) can be rephrased in the following way: For fixed natural numbers

n > k,

(2) μx1,...,xk
(p)1C(In,k) = (μx1,...,xn

⊗ idC(In,k))(α(p))

for all p ∈ C[x1, . . . , xk], where μx1,....,xn
is the joint distribution of (x1, . . . , xn).

For completeness, we provide a sketch of the proof here: Suppose equation (1)

holds. Let p = Xi1
j1
· · ·Xim

jm
be a monomial in C[X1, . . . , Xk] such that 1 ≤ j1 < j2 <

· · · < jm ≤ k and i1, . . . , im are positive integers. Let I = (1 ≤ l1 < · · · < lk ≤ n)

be a point in Ik,n. Then, the I-th component of μx1,...,xk
(p)1C(In,k) is E[xi1

j1
· · ·xim

jm
].

On the other hand, the I-th component of μx1,...,xn
⊗ idC(In,k)(α(p)) is

n∑
s1,...,sm=1

E[xi1
s1 · · ·x

im
sm ](fs1,j1 · · · fsm,jm)(I).

According to the definition of fi,j , (fs1,j1 · · · fsm,jm)(I) does not vanish only if
st = ljt for all 1 ≤ t ≤ m. Therefore,

n∑
s1,...,sm=1

E[xi1
s1 · · ·x

il
sl
](fs1,j1 · · · fsm,jm)(I) = E[xi1

lj1
· · ·xim

ljm
].

Since 1 ≤ j1 < j2 < · · · < jm ≤ k and I is an increasing sequence, we have
1 ≤ lj1 < · · · < ljm ≤ n. Hence, the I-components of the two sides of equation (2)
are equal to each other. Since I is arbitrary, equation (2) holds. By checking the
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I-th component of equation (2), we can also show that (2) implies (1). We will say
that (ξ1, . . . , ξn) is (n, k)-spreadable if (x1, . . . , xn) satisfies equation (2).

Remark 3.1. We see that the above (n, k)-spreadability describes limited relations
between the mixed moments of (x1, . . . , xn). For fixed n, k, the (n, k)-spreadability
gives no information about mixed moments which involve k + 1 variables. For
example, let n = 4, k = 2 and assume that (x1, . . . , x4) is a (4, 2)-spreadable
sequence. According to equation (1), we know nothing about the relation between
E[x1x2x3] and E[x2x3x4]. We will call this kind of distributional symmetry partial
symmetries because they just provide information for part of mixed moments but
not all.

By using the idea of partial symmetries, we can define another family of dis-
tributional symmetries which is stronger than (n, k)-spreadability but weaker than
exchangeability.

Definition 3.2. For fixed natural numbers n > k, we say a sequence of random
variables (x1, . . . , xn) is (n, k)-exchangeable if

(x1, . . . , xk)
d
= (xσ(1), . . . , xσ(k)) ∀σ ∈ Sn,

where Sn is the permutation group of n elements.

This kind of distributional symmetry is called partial exchangeability. See [7] for
more details. As well as (n, k)-spreadability, we can rephrase partial exchangeability
in terms of quantum family of maps: Consider the space En,k of length k sequences
{I = (i1, . . . , ik)|1 ≤ i1, . . . , ik ≤ n, ij 
= ij′ for j 
= j′}. For 1 ≤ a ≤ n, 1 ≤ b ≤ k,
define ga,b : In,k → C by

ga,b(I) =
{

1, ib = a,
0, otherwise.

Given two different sequences I = (i1, . . . , ik) and I ′ = (i′1, . . . , i
′
k), there must

exist a number j such that ij 
= i′j . Then, we have that gi,ij (I) = 1 
= 0 = gi,i′j (I).
Therefore, the set of functions {gi,j |i = 1, . . . , n; j = 1, . . . , k} separates En,k.
According to the Stone-Weierstrass theorem, the functions gi,j generate C(En,k).
Again, we can define a homomorphism α′ : C[X1, . . . , Xk] → C[X1, . . . , Xn] ⊗
C(En,k) by the following formulas:

α′ : Xj =

n∑
i=1

Xi ⊗ gi,j , α′(1) = 1C(Ik,n).

Lemma 3.3. Let μx1,....,xn
be the joint distribution of x1, . . . , xn. Then

μx1,...,xk
(p)1C(In,k) = (μx1,...,xn

⊗ idC(In,k))(α(p))

for all p ∈ C[X1, . . . , Xk] if and only if x1, . . . , xn is (n, k)-exchangeable.

The proof is similar to the proof of (n, k)-spreadability; we just need to check
the values at all components of En,k.
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3.2. Noncommutative analogue of partial symmetries. Now, we introduce
noncommutative versions of spreadability and partial exchangeability. The pio-
neering work was done by Curran [5]. He defined a quantum version of C(In,k) in
analogy with Wang’s quantum permutation groups as follows:

Definition 3.4. For k, n ∈ N with k ≤ n, the quantum increasing space A(n, k) is
the universal unital C∗-algebra generated by elements {ui,j |1 ≤ i ≤ n, 1 ≤ j ≤ k}
such that:

1. Each ui,j is an orthogonal projection: ui,j = u∗
i,j = u2

i,j for all i =
1, . . . , n; j = 1, . . . , k.

2. Each column of the rectangular matrix u = (ui,j)i=1,...,n;j=1,...,k forms a
partition of unity: for 1 ≤ j ≤ k we have

∑n
i=1 ui,j = 1.

3. Increasing sequence condition: ui,jui′,j′ = 0 if j < j′ and i ≥ i′.

Remark 3.5. Our notation is different from Curran’s; we use Ai(n, k) instead of his
Ai(k, n) for our convenience.

For any natural numbers k < n, in analogy with coactions of As(n), there
is a unital ∗-homomorphism αn,k : C〈X1, . . . , Xk〉 → C〈X1, . . . , Xn〉 ⊗ Ai(n, k)
determined by

αn,k(Xj) =

n∑
i=1

Xi ⊗ ui,j .

The quantum spreadability of random variables is defined as the following:

Definition 3.6. Let (A, φ) be a noncommutative probability space. A finite or-
dered sequence of random variables (xi)i=1,...,n inA is said to be Ai(n, k)-spreadable
if their joint distribution μx1,...,xn

satisfies

μx1,...,xk
(p)1Ai(n,k) = (μx1,...,xn

⊗ idAi(n,k))(αn,k(p)),

for all p ∈ C〈X1, . . . , Xk〉. (xi)i=1,...,n is said to be quantum spreadable if (xi)i=1,...,n

is Ai(n, k)-spreadable for all k = 1, . . . , n− 1.

Remark 3.7. In [5], Curran studied sequences of C∗-homomorphisms which are
more general than random variables. For consistency, we state his definitions in
words of random variables. It is routine to extend our work to the framework of
sequences of C∗-homomorphisms.

Recall that in [17], by replacing the condition associated with partitions of the
unity of Wang’s quantum permutation groups, we defined a family of quantum
semigroups with invariant projections. With a natural family of coactions, we
defined invariance conditions which can characterize conditional boolean indepen-
dence. Here, we can modify Curran’s quantum increasing spaces in the same way.

Definition 3.8. For k, n ∈ N with k ≤ n, the noncommutative increasing space
Bi(n, k) is the unital universal C∗−algebra generated by elements {ui,j |1 ≤ i ≤
n, 1 ≤ j ≤ k} and an invariant projection P such that:

1. Each ui,j is an orthogonal projection: ui,j = (ui,j)
∗ = (ui,j)

2 for all i =
1, . . . , n; j = 1, . . . , k.

2. For 1 ≤ j ≤ k we have
∑n

i=1 ui,jP = P.
3. Increasing sequence condition: ui,jui′,j′ = 0 if j < j′ and i ≥ i′.



1970 WEIHUA LIU

Similarly as for Ai(n, k), there is a unital ∗-homomorphism α
(b)
n,k : C〈X1, . . . , Xk〉

→ C〈X1, . . . , Xn〉 ⊗Bi(n, k) determined by

α
(b)
n,k(xj) =

n∑
i=1

xi ⊗ ui,j .

As boolean exchangeability was defined in [17], we have

Definition 3.9. A finite ordered sequence of random variables (xi)i=1,...,n in (A, φ)
is said to be Bi(n, k)-spreadable if their joint distribution μx1,...,xn

satisfies

μx1,...,xk
(p)P = P(μx1,...,xn

⊗ idBi(n,k)(α
(b)
n,k)(p))P

for all p ∈ C〈X1, . . . , Xk〉. (xi)i=1,...,n is said to be boolean spreadable if (xi)i=1,...,n

is Bi(n, k)-spreadable for all k = 1, . . . , n− 1.

We will see that Bi(k, n) is an increasing space of boolean type, because we can
derive an extended de Finetti type theorem for boolean independence.

Recall that, in [8], Franz showed some relations between free independence,
monotone independence and boolean independence via Bożejko, Marek and Spe-
icher’s two-states free products [3]. We can see that a monotone product is “be-
tween” a free product and a boolean product. From this viewpoint of Franz’s work,
we may hope to define a kind of “spreadability” for monotone independence by
modifying quantum spreadability and boolean spreadability. Notice that there are
at least two ways to get quotient algebras of Bi(k, n) such that the P-invariance
condition of the quotient algebras is equivalent quantum spreadability:

1. Require P to be the unit of the algebra.
2. Let Pj =

∑n
i=1 ui,j , and require Pj′uij = uijPj′ for all 1 ≤ j, j′ ≤ k and

1 ≤ i ≤ n.

To define our monotone increasing spaces, we will modify the second condition a
little:

Definition 3.10. For fixed n, k ∈ N and k < n, a monotone increasing se-
quence space Mi(n, k) is the universal unital C∗-algebra generated by elements
{ui,j}i=1,...,n;j=1,...,k such that:

1. Each ui,j is an orthogonal projection.
2. Monotone condition: Let Pj =

∑n
i=1 ui,j , Pjui′j′ = ui′j′ if j

′ ≤ j.
3.

∑n
i=1 ui,jP1 = P1 for all 1 ≤ j ≤ k.

4. Increasing condition: ui,jui′,j′ = 0 if j < j′ and i ≥ i′.

We see that P1 plays the role as the invariant projection P in the boolean case.
For consistency, we denote P1 by P. Then, we can define a P-invariance condition
associated with Mi(n, k) in analogy with Bi(n, k): For fixed n, k ∈ N and k < n,

there is a unique unital ∗-homomorphism α
(m)
n,k : C〈X1, . . . , Xk〉 → C〈X1, . . . , Xn〉⊗

Mi(n, k) such that

α
(m)
n,k (Xj) =

n∑
i=1

Xi ⊗ ui,j .

The existence of such a homomorphism is given by the universality of C〈X1, . . . , Xk〉.
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Definition 3.11. A finite ordered sequence of random variables (xi)i=1,...,n in
(A, φ) is said to be Mi(n, k)-invariant if their joint distribution μx1,...,xn

satisfies

μx1,...,xk
(p)P = P(μx1,...,xn

⊗ idMi(n,k))(α
(m)
n,k (p))P

for all p ∈ C〈X1, . . . , Xk〉. (xi)i=1,...,n is said to be monotonically spreadable if it
is Mi(n, k)-invariant for all k = 1, . . . , n− 1.

We will see that these invariance conditions can characterize conditionally mono-
tone independence in a proper framework.

As in Remark 2.3 in [5], a first question to our definitions is whether Ai(n, k),
Bi(n, k),Mi(n, k) exist. In [5], Curran has showed several nontrivial representations
of Ai(n, k). In the following, we provide a family of representations of Ai(n, k),
Bi(n, k), Mi(n, k) for n > k. Fix natural numbers n > k, let l1, . . . , lk ∈ N such
that

l1 + · · ·+ lk = n,

and consider the following matrix:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1,1 0 · · · 0
...

...
. . .

...
Pl1,1 0 · · · 0
0 P1,2 · · · 0
...

...
. . .

...
0 Pl2,2 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · P1,k

...
...

. . .
...

0 0 · · · Plk,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We see that the entries of the matrix satisfy the increasing condition of spaces of in-
creasing sequences. By choosing proper projections Pi,j , we will get representations
for our universal algebras:

We denote by Hj an lj-dimensional Hilbert spaces with orthonormal basis

{e(j)i |i = 1, . . . , li}. Let Ij be the unit of the algebra B(Hj), P
e
(j)
i

be the one

dimensional orthogonal projection onto Ce
(j)
i , Pj be the one dimensional projec-

tion onto C
∑lj

i=1 e
(j)
i . Then, some representations of Ai(n, k), Bi(n, k), Mi(n, k)

can be constructed in the following way:

A representation of Ai(n, k). For each 1 ≤ j ≤ k, the algebra generated by
{Peij

|i = 1, . . . , lj} is isomorphic to C∗(Zlj ). The reduced free product ∗kj=1Zli is a

quotient algebra of Ai(n, k). One can define a C∗-homomorphism π from Ai(n, k)
to ∗kj=1C

∗(Zlj ) such that

π(ui,j) =

⎧⎨
⎩

the image of P
e
(j)

i′
in ∗kj=1 C

∗(Zlj ) if 0 < i′ = i−
j−1∑
l=m

lm ≤ lj ,

0 otherwise.
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A representation of Bi(n, k). One can define a C∗-homomorphism π from

Bi(n, k) into B(
⊗k

i=1 Hi) such that

π(ui,j) =

⎧⎨
⎩

i−1⊗
m1=1

Pm1
⊗ P

e
(j)

i′

k⊗
m2=i+1

Pm2
if 0 < i′ = i−

j−1∑
l=m

lm ≤ lj ,

0 otherwise

and

π(P) =
k⊗

j=1

Pj .

A representation of Mi(n, k). One can define a C∗-homomorphism π from

Mi(n, k) into B(
⊗k

i=1 Hi) :

π(ui,j) =

⎧⎨
⎩

i−1⊗
m1=1

Im1
⊗ P

e
(j)

i′

k⊗
m2=i+1

Pm2
if 0 < i′ = i−

i−1∑
l=m

lm ≤ lj ,

0 otherwise.

The existence of these homomorphisms is given by the universal conditions for
Ai(n, k), Bi(n, k) and Mi(n, k) respectively. The case of Mi(n, k) plays an impor-
tant role in our work; we summarize it as the following proposition.

Proposition 3.12. For fixed natural numbers n > k, let l1, . . . , lk ∈ N such that
l1 + · · · + lk = n. Let Hi be li-dimensional Hilbert spaces with orthonormal basis

{e(i)j |j = 1, . . . , li}, let Ili be the unit of the algebra B(Hli), let Pe
(li)

j

be the one-

dimensional orthogonal projection onto Ce
(li)
j , and let Pi be the one-dimensional

projection onto C
∑

j e
(li)
j . Then, there is a C∗-homomorphism π : Mi(n, k) →

B(H1 ⊗ · · · ⊗ Hk) defined as follows:

π(ui,j) =

⎧⎨
⎩

i−1⊗
m1=1

Ilm1
⊗ P

e
(li)

j′

k⊗
m2=i+1

Plm2
if 0 < j′ = j −

i−1∑
l=m

lm ≤ li,

0 otherwise.

In addition, we need the following property.

Lemma 3.13. Given natural numbers n1, n2, n, k ∈ N such that n > k. Let
(ui,j)i=1,...,n;j=1,...,k be the standard generators of Mi(n, k), and let
(u′

i,j)i=1,...,n+n1+n2;j=1,...,k+n1+n2
be the standard generators of Mi(n+n1+n2, k+

n1+n2). Then, there exists a C∗-homomorphism π : Mi(n+n1+n2, k+n1+n2) →
Mi(n, k) such that

π(u′
i,j) =

⎧⎪⎪⎨
⎪⎪⎩

δi,jP if 1 ≤ i ≤ n1,
ui−n1,j−n1

if n1 + 1 ≤ i ≤ n+ n1, n1 ≤ j ≤ n1 + k,
0 if n1 + 1 ≤ i ≤ n+ n1, j ≤ n1 or j > n1 + k,

δi−n,j−kI if i ≥ n+ n1 + 1,

where P = P1 =
∑n

i=1 ui,1 and I is the identity of Mi(n, k).
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Proof. We can see that the matrix form of (π(u′
i,j))i=1,...,n+n1+n2;j=1,...,k+n1+n2

is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · P 0 · · · 0 0 · · · 0
0 · · · 0 u1,1 · · · u1,k 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 un,1 · · · un,k 0 · · · 0
0 · · · 0 0 · · · 0 I · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0 0 · · · I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to check that the coordinates of the above matrix satisfy the universal
conditions of Mi(n+ n1 + n2, k + n1 + n2). The proof is complete. �

In analogy with the (n, k)-partial exchangeability, we can define noncommutative
versions of partial exchangeability for free independence and boolean independence.

Definition 3.14. For k, n ∈ N with k ≤ n, the quantum space Al(n, k) is the
universal unital C∗-algebra generated by elements {uij |1 ≤ i ≤ n, 1 ≤ j ≤ k} such
that:

1. Each uij is an orthogonal projection: uij = u∗
ij = u2

ij .
2. Each column of the rectangular matrix u = (uij) forms a partition of unity:

for 1 ≤ j ≤ k we have
∑n

i=1 uij = 1.

Remark 3.15. Ai(n, k) is a quotient algebra of Al(n, k), because the definition of
Ai(n, k) has one more restriction than Al(n, k). Al(n, n) is exactly Wang’s quantum
permutation group As(n).

There is a well defined unital algebraic homomorphism

α
(fp)
n,k : C〈X1, . . . , Xk〉 → C〈X1, . . . , Xn〉 ⊗Al(n, k)

such that

α
(fp)
n,k Xj =

n∑
i=1

Xi ⊗ ui,j

where 1 ≤ j ≤ k.

Definition 3.16. Let x1, . . . , xn ∈ (A, φ) be a sequence of n-noncommutative
random variables, and let k ≤ n be a positive integer. We say the sequence is
(n, k)-quantum exchangeable if

μx1,...,xk
(p) = μx1,...,xn

⊗ idAl(n,k)(α
(fp)
n,k (p)),

for all p ∈ C〈X1, . . . , Xk〉, where μx1,...,xj
is the joint distribution of x1, . . . , xj with

respect to φ for j = k, n.

By modifying the second universal condition of Al(n, k), we can define a boolean
version of partial exchangeability.
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Definition 3.17. For natural numbers k ≤ n, Bl(n, k) is the nonunital univer-
sal C∗-algebra generated by the elements {ui,j}i=1,...,n;j=1,...,k and an orthogonal
projection P, such that:

1. ui,j is an orthogonal projection, i.e. ui,j = u∗
i,j = u2

i,j .

2.
∑n

i=1 ui,jP = P for all 1 ≤ j ≤ k.

Remark 3.18. Bl(n, n) is exactly the boolean exchangeable quantum semigroup
Bs(n).

There is a well defined unital algebraic homomorphism

α
(bp)
n,k : C〈X1, . . . , Xk〉 → C〈X1, . . . , Xn〉 ⊗Bl(n, k)

such that

α
(bp)
n,k Xj =

n∑
i=1

Xi ⊗ ui,j ,

where 1 ≤ j ≤ k.

Definition 3.19. Let x1, . . . , xn ∈ (A, φ) be a sequence of n-noncommutative
random variables, and let k ≤ n be a positive integer. We say the sequence is
(n, k)-boolean exchangeable if

μx1,...,xk
(p)P = P(μx1,...,xn

⊗ idBl(n,k))(α
(bp)
n,k (p))P

for all p ∈ C〈X1, . . . , Xk〉, where μx1,...,xj
is the joint distribution of x1, . . . , xj with

respect to φ.

Proposition 3.20. Let (x1, . . . , xn+1) be a monotonically spreadable sequence of
random variables in (A, φ). Then, all its subsequences are monotonically spreadable.

Proof. By induction, it suffices to show that the subsequence (x1, . . . , xl−1,
xl+1, . . . , xn+1) is monotonically spreadable for all 1 ≤ l ≤ n. If we denote
(x1, . . . , xl−1, xl+1, . . . , xn+1) by (y1, . . . , yn), then we need to show that (y1, . . . , yn)
is Mi(n, k)-spreadable for all k < n.

Fix k < n; let {ui,j}i=1,...,n;j=1,...,k be the set of generators of Mi(n, k) and let
{Pi,j}i=1,...,n+1;j=1,...,k+1 be an n+1 by k+1 matrix with entries in Mi(n, k) such
that

Pi,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui,j if 1 ≤ i, j < l,
ui−1,j if 1 ≤ j < l, i ≥ l,
ui,j−1 if 1 ≤ i < l, j ≥ l,

ui−1,j−1 if i, j ≥ l,
0 otherwise.

It is routine to check that the set {Pi,j}i=1,...,n+1;j=1,...,k+1 satisfies the universal
conditions of Mi(n+ 1, k+ 1). Thus, there exists a C∗-homomorphism ψ : Mi(n+
1, k + 1) → Mi(n, k) such that

ψ(u′
i,j) = Pi,j ,

where {u′
i,j} is the set of generators of Mi(n + 1, k + 1). For convenience, we will

use the following notation:

σ(i) =

{
i if 1 ≤ i < l,

i+ 1 if i ≥ l.
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Then, Pσ(i),σ(j) = ui,j and yi = xσ(i) for all i = 1, . . . , n and j = 1, . . . , k+1. For all

monomial Xj1 · · ·Xjm ∈ C〈X1, . . . , Xk〉, let P ′
1 =

∑n
i=1 u

′
i,1 and P be the invariant

projection of Mi(n, k). We have

ψ(P ′
1) =

n∑
i=1

ui,1 = P1 = P

and

μy1,...,yn
(Xj1 · · ·Xjm)P

= Pμx1,...,xn+1
(Xσ(j1) · · ·Xσ(jm))ψ(P

′
1)P

= Pψ(μx1,...,xn+1
(Xσ(j1) · · ·Xσ(jm))P

′
1)P

= Pψ((μx1,...,xn+1
⊗idMi(n+1,k+1))(

n+1∑
i1,...,im=1

Xi1 · · ·Xim⊗ u′
i1,σ(j1)

· · ·u′
im,σ(jm)))P.

Notice that u′
l,σ(j) = 0 since σ(j) never equals l, so it follows that:

μy1,...,yn
(Xj1 · · ·Xjm)P

= Pψ((μx1,...,xn+1⊗idMi(n+1,k+1))(
∑n

i1,...,im=1 Xσ(i1)···Xσ(im)

⊗ u′
σ(i1),σ(j1)

· · ·u′
σ(im),σ(jm)))P

= P

n∑
i1,...,im=1

μx1,...,xn+1
(Xσ(i1) · · ·Xσ(im))ψ(u

′
σ(i1),σ(j1)

· · ·u′
σ(im),σ(jm))P

=

n∑
i1,...,im=1

μy1,...,yn
(Xi1 · · ·Xim)Pui1,j1 · · ·uim,jmP,

which completes the proof. �

Now, we define our noncommutative distributional symmetries for infinite se-
quences. In this paper, our infinite ordered index set I would be either N or Z.

Definition 3.21. Let (A, φ) be a noncommutative probability space, I be an
ordered index set and (xi)i∈I a sequence of random variables in A. (xi)i∈I is
said to be monotonically (boolean) spreadable if all its finite ordered subsequences
(xi1 , . . . , xil) are monotonically (boolean) spreadable.

Proposition 3.22. Let (A, φ) be a noncommutative probability space and (xi)i∈Z

be a sequence of random variables in A. Then, (xi)i∈Z is monotonically (quantum,
boolean) spreadable if and only if (xi)i=−n,−n+1,...,n−1,n is monotonically (quantum,
boolean) spreadable for all n.

Proof. It is sufficient to prove “⇐”. Given a subsequence (xi1 , . . . , xil) of (xi)i∈Z,
there exists an n such that −n < i1, . . . , il < n. Since (xi)i=−n,−n+1,...,n−1,n is
monotonically spreadable, by Proposition 3.20, we have that (xi1 , . . . , xil) is mono-
tonically spreadable. The same for quantum spreadability and boolean spreadabil-
ity. �
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4. Relations between noncommutative probabilistic symmetries

In this section, we will study some simple relations between noncommutative
distributional symmetries introduced in the previous section.

It is well known that every C∗-algebra admits a faithful representation. Fix
n, k ∈ N such that 1 ≤ k ≤ n − 1. Let Φ be a faithful representation of Bl(n, k)
into B(H) for some Hilbert space H. For convenience, we denote Φ(ui,j) by ui,j

and Φ(P) by P.
According to the definition of Bl(k, n), ui,j and P are orthogonal projections in

B(H). Let Qi =
∑k

j=1 ui,j for 1 ≤ i ≤ n. In [12], we know that the set P (H) of
orthogonal projections on H is a lattice with respect to the usual order ≤ on the
set of selfadjoint operators, i.e. two selfadjoint operators A and B, A ≤ B iff B−A
is a positive operator.

Now, we need the following notation in our construction. Given two projections
E and F , we denote by E ∨ F the minimal orthogonal projection in P (H), such
that E ∨ F is greater than or equal to E and F . E ∨ F is well defined and unique;
we call it the supremum of E and F . It is easy to see that (E ∨ F )E = E and
(E ∨ F )F = F .

We define a sequence of orthogonal projections {P ′
i}i=1,...,n in P (H) as follows:

P ′
1 = I −Q1,

P ′
i = I − P ′

1 ∨ · · · ∨ P ′
i−1 ∨Qi

for 2 ≤ i ≤ n.
To proceed with our work, we need the following well known lemma:

Lemma 4.1. Given a nonzero vector v ∈ H, E and F are two orthogonal projec-
tions on H. If (E ∨ F )x = x and Ex = 0, then Fx = x.

According to the construction of {P ′
i}1≤i≤n, we have

P ′
iP

′
j = δi,jP

′
i

and

P ′
iui,j = 0

for all 1 ≤ i ≤ n and 1 ≤ j ≤ k.

Lemma 4.2.
∑n

i=1 P
′
i = I, where I is the identity in B(H).

Proof. Since the orthogonal projections P ′
i are orthogonal to each other,

∑n
i=1 P

′
i is

an orthogonal projection which is less than or equal to the identity I. If
∑n

i=1 P
′
i <

I, then there exists a nonzero vector v ∈ H such that

n∑
i=1

P ′
iv = 0.

Then, we have

0 = P ′
ix = (I − P ′

1 ∨ · · · ∨ P ′
i−1 ∨Qi)v

or, say,

(P ′
1 ∨ · · · ∨ P ′

i−1 ∨Qi)v = v
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for all i. Since P ′
mv = 0 for all 1 ≤ m ≤ i− 1, by Lemma 4.1, Qix = x. Then, we

have

nv =

n∑
i=1

Qiv

=
n∑

i=1

k∑
j=1

ui,jv

=
k∑

j=1

(
n∑

i=1

ui,jv),

which implies that n is in the spectrum of
∑k

j=1

∑n
i=1 ui,j . Notice that to every

1 ≤ j ≤ k,
∑n

i=1 ui,j ≤ I since they are orthogonal projections and orthogonal to
each other. Therefore,

0 ≤
k∑

j=1

n∑
i=1

ui,j ≤
k∑

j=1

I ≤ kI.

This contradicts the implication above. The proof is complete. �

Corollary 4.3.
∑n

i=1 P
′
iP = P.

Now, we show some relations between partial distributional symmetries. The
above construction can be applied to quantum partial exchangeability.

Proposition 4.4. Let (A, φ) be a noncommutative probability space, and let
(xi)i=1,...,n be a finite ordered sequence of random variables in A. For fixed n > k,
the joint distribution μx1,...,xn

is Al(n, k)-invariant if it is Al(n, k + 1)-invariant.

Proof. Let {uij |1 ≤ i ≤ n, 1 ≤ j ≤ k} be the set of standard generators of Al(n, k),
and let Φ be a faithful representation of Al(n, k) into B(H) for some Hilbert space
H. With the above construction, we can define {u′

i,j}i=1,...,n;j=1,...,k+1 as follows:

u′
i,j =

{
Φ(ui,j) if j ≤ k,
P ′
i if j = k + 1.

By Lemma 4.2, {u′
i,j}i=1,...,n;j=1,...,k+1 satisfies the universal conditions for

Al(n, k + 1). Let {u′′
ij |1 ≤ i ≤ n, 1 ≤ j ≤ k + 1} be the set of standard generators

of Al(n, k + 1). Then, there exists a C∗-homomorphism Φ′ : Al(n, k + 1) → B(H)
such that

Φ′(u′′
ij) = u′

i,j .

Therefore, Φ−1Φ′ defines a unital C∗-homomorphism

Φ−1Φ′ : C∗ − alg{u′
i,j |1 ≤ i ≤ n, 1 ≤ j ≤ k} → Al(n, k)

such that

Φ−1Φ′(u′
i,j) = ui,j

for all 1 ≤ i ≤ n, 1 ≤ j ≤ k.
If μx1,...,xn

is Al(n, k + 1)-invariant, then

μx1,...,xk+1
(p)1Al(n,k+1) = (μx1,...,xk

⊗ idAl(n,k+1))(α
(fp)
n,k+1(p))
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for all p ∈ C〈X1, . . . , Xk+1〉. Let p = Xj1 · · ·Xjl ∈ C〈X1, . . . , Xk〉. Then, we have

μx1,...,xk
(p)1A(n,k)

Φ−1Φ′(μx1,...,xk+1
(p)1A(n,k+1))

= Φ−1Φ′((μx1,...,xn
⊗ idAl(n,k+1))(α

(fp)
n,k+1(Xj1 · · ·Xjl)))

= Φ−1Φ′((μx1,...,xn
⊗ idAl(n,k+1))(

n∑
i1,...,il

Xi1 · · ·Xil ⊗ u′
i1,j1

· · ·u′
il,jl

))

= (μx1,...,xn
⊗ idAl(n,k))(

n∑
i1,...,il

Xi1 · · ·Xil ⊗ ui1,j1 · · ·uil,jl)

= (μx1,...,xn
⊗ idAl(n,k))(α

(fp)
n,k (p)).

Since p is an arbitrary monomial, the proof is complete. �

Similarly, by comparing universal conditions, we have

Corollary 4.5. μx1,...,xn
is Bl(n, k)-invariant if it is Bl(n, k + 1)-invariant

Lemma 4.6. μx1,...,xn
is (n, k)-quantum spreadable if it is Al(n, k)-invariant.

Proof. Let {ui,j}i=1,...,n;j=1,...,k be generators of Ai(n, k) and {u′
i,j}i=1,...,n;j=1,...,k

be generators of Al(n, k). Then, there is a well defined C∗-homomorphism β :
Al(n, k) → Ai(n, k) such that β(u′

i,j) = ui,j . The existence of β is given by the
universality of Al(n, k). Since μx1,...,xn

is Al(n, k)-invariant, for all monomials p =
Xi1 · · ·Xim ∈ C〈X1, . . . , Xk〉, we have

μx1,...,xk
(p)1Al(n,k) = (μx1,...,xn

⊗ idAl(n,k))(α
(fp)
n,k (p))

=
∑

j1,...,jm

φ(xj1 · · ·xjm)u′
j1,i1 · · ·u

′
jm,im .

Applying β on both sides of the above equation, we have

μx1,...,xk
(p)1Ai(n,k) =

∑
j1,...,jm

φ(xj1 · · ·xjm)uj1,i1 · · ·ujm,im

= (μx1,...,xn
⊗ idAi(n,k))(αn,k(p)).

The proof is complete. �

Similarly, we have

Corollary 4.7. μx1,...,xn
is (n, k)-boolean spreadable if it is Bl(n, k)-invariant.

Corollary 4.8. (x1, . . . , xn) is boolean spreadable if it is boolean exchangeable.
(x1, . . . , xn) is quantum spreadable if it is quantum exchangeable.

Let {ui,j}i=1,...,n;j=1,...,k ∪ {P} be generators of Bi(n, k), {u′
i,j}i=1,...,n;j=1,...,k

be generators of Mi(n, k) and {u′′
i,j}i=1,...,n;j=1,...,k be generators of Ai(n, k). By

comparing universal conditions of Bi(n, k), Mi(n, k) and Ai(n, k), we have two well
defined C∗-homomorphisms

Φ : Bi(n, k) → Mi(n, k)

and

Ψ : Mi(n, k) → Ai(n, k)
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such that

Φ(ui,j) = u′
i,j , ∀i = 1, . . . , n; j = 1, . . . , k,

Φ(P) =

n∑
i=1

u′
i,1

and

Ψ(u′
i,j) = u′′

i,j , ∀i = 1, . . . , n; j = 1, . . . , k.

By using a similar proof to Lemma 4.6, we have

Corollary 4.9. μx1,...,xn
is Mi(n, k)-invariant if it is Bi(n, k)-invariant.

Corollary 4.10. μx1,...,xn
is Ai(n, k)-invariant if it is Mi(n, k)-invariant.

In summary, for fixed n, k ∈ N such that k < n, we have the following diagrams:

B(n, n)inv ��

��

Bl(n, k)inv ��

��

Bi(n, k)inv

��
Mi(n, k)inv

��
A(n, n)inv �� Al(n, k)inv �� Ai(n, k)inv

and

Boolean exchangeability ��

��

Boolean spreadability

��
Monotone spreadability

��
Quantum exchangeability �� Quantum spreadability.

The arrow “condition (a) → condition (b)” means that condition (a) implies con-
dition (b).

5. Monotonically equivalent sequences

In order to study monotone spreadability, we need to find some relations between
mixed moments of monotonically spreadable sequences of random variables. In this
section, we will introduce an equivalence relation, which has a deep relation with
monotone spreadability, on finite sequences of ordered indices.

Definition 5.1. Given two pairs of integers (a, b), (c, d), we say these two pairs
have the same order if a− b, c− d are both positive or negative or 0.

For example, (1, 2) and (3, 5) have the same order, but (1, 2) and (5, 3) do not
have the same order.
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Definition 5.2. Let Z be the set of integers with the natural order “>” and
ZL = Z×· · ·×Z be the set of finite sequences of length L. We define a partial relation
∼m on Z

L: Given two sequences of indices I = {i1, . . . , iL},J = {j1, . . . , jL} ∈ Z
L.

If for all 1 ≤ l1 < l2 ≤ L such that il3 > max{il1 , il2} for all l1 < l3 < l2, (il1 , il2)
and (jl1 , jl2) have the same order, then we denote I ∼m J .

Example. (5, 3, 4) ∼m (5, 3, 5), but (5, 6, 4) 
∼m (5, 6, 5). It follows from the defi-
nition that (il, il+1) and (jl, jl+1) have the same order for all 1 ≤ l < L if I ∼m J .

Remark 5.3. In general, the relation can be defined on any ordered set, not only
Z. We will show this partial relation is actually an equivalence relation.

To show that ∼m is an equivalence relation, we need to show that the relation
∼m is reflexive, symmetric and transitive.

Reflexivity. First, reflexivity is obvious, because a pair (il1 , il2) always has the same
order as itself.

Lemma 5.4 (Symmetry). Let I = {i1, . . . , iL},J = {j1, . . . , jL} ∈ ZL such that
I ∼m J . Then, we have J ∼m I.

Proof. Suppose that J 
∼m I. Then, there exist two natural numbers 1 ≤ l1 <
l2 ≤ L such that

jl3 > max{jl1 , jl2}
for all l1 < l3 < l2, but (jl1 , jl2) and (il1 , il2) do not have the same order. Fixing l1,
we choose the smallest l2 which satisfies the above property. Notice that I ∼m J ,
(jl1 , jl1+1) and (il1 , il1+1) have the same order; then

l2 
= l1 + 1.

According to our assumption, we have

jl′3 > max{jl1 , jl2}

for l1 < l′3 < l2.
Suppose that there exists an l′′3 between l1 and l2 such that

il′′3 ≤ max{il1 , il2}.

Without loss of generality, we assume that

il1 ≥ il2 ;

then

il′′3 ≤ il1 .

Again, among these l′′3 , we choose the smallest one. Then, we have il > il1 ≥ il′′3
for

l1 < l < l′′3 .

Since I ∼m J , (il1 , il′′3 ) and (jl1 , jl′′3 ) must have the same order, but il1 ≥ il′′3 and
il1 < jl′′3 . This contradicts the existence of our l′′3 . Hence, il′3 > max{il1 , il2} for
all l1 < l′3 < l2. It follows that (il1 , il2) and (jl1 , jl2) have the same order. But, it
contradicts our original assumption. Therefore, J ∼m I. �
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Lemma 5.5. Given two sequences I = {i1, . . . , iL},J = {j1, . . . , jL} ∈ ZL such
that I ∼m J , let 1 ≤ l1 < l2 ≤ L such that il3 > max{il1 , il2} for all l1 < l3 < l2.
Then, we have

jl3 > max{jl1 , jl2}
for all l1 < l3 < l2.

Proof. If the statement is false, then there exists l3 between l1 and l2 such that

jl3 ≤ max{jl1 , jl2}.
Suppose jl1 ≥ jl2 ; then

jl3 ≤ jl1 .

Among all these l3, we take the smallest one. Then, we have

jl4 > max{jl1 , jl3}
for all l1 < l4 < l3. By Lemma 5.4, J ∼m I since I ∼m J . Therefore, (jl1 , jl3)
and (il1 , il3) must have the same order, which means

il1 ≥ il3 .

This is a contradiction. If we assume that jl1 < jl2 , then we just need to consider
the largest one among those l3 and we will get the same contradiction. The proof
is complete. �
Lemma 5.6 (Transitivity). Given three sequences I={i1, . . . , iL},J ={j1, . . . , jL},
Q={q1, . . . , qL} ∈ ZL such that I ∼m J and J ∼m Q, we have I ∼m J .

Proof. Given 1 ≤ l1 < l2 ≤ L such that

il3 > max{il1 , il2}
for all l1 < l3 < l2. By Lemma 5.5, we have

jl3 > max{jl1 , jl2}
for all l1 < l3 < l2. It follows the definition that (il1 , il2), (jl1 , jl2) have the same
order and that (jl1 , jl2), (ql1 , ql2) have the same order. Therefore, (il1 , il2), (ql1 , ql2)
have the same order. Since l1, l2 are arbitrary, the proof is complete. �

So now we have shown that the relation∼m is reflexive, symmetric and transitive.

Proposition 5.7. ∼m is an equivalence relation on Z
L.

As we mentioned before, Z can be replaced by any ordered set I. When there is
no confusion, we always use ∼m to denote the monotone equivalence relation on IL

for ordered set I and positive integers L. For example, I can be [n] = {1, . . . , n}.

Definition 5.8. Let I = (i1, . . . , iL) be a sequence of ordered indices. An ordered
subsequence (il′1 , . . . , il′2) of I is called an interval if the sequence contains all the
elements il′3 whose position l′3 is between l′1 and l′2. An interval (il′1 , . . . , il′2) of I
is called a crest if il′1 = il′1+1 · · · = il′2 > max{il′1−1, il′2+1}. In addition, we always
assume that i0 < i1 and iL > iL+1 even though i0, iL+1 are not in I.

Example. (1, 2, 3, 4) has one crest of length 1, namely (4). (1, 2, 1, 3, 4, 4, 3, 5) has
3 crests (2), (4, 4), (5), and (2) is the first peak of the sequence. (1, 1, 1, 1, 1) has
one crest (1, 1, 1, 1, 1), which is the sequence itself.

Lemma 5.9. Given I = (i1, . . . , iL) ∈ ZL, I has at least one crest.
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Proof. Since I consists of finite elements, it has a maximal one, i.e. il such that
il ≥ il′ for 1 ≤ l′ ≤ L. It is obvious that il must be contained in an interval
(il′1 , . . . , il′2) such that

il′1 = il′1+1 · · · = il′2 = il′

and

il′ > max{il′1−1, il′2+1}.
Therefore, I contains a crest. �

Lemma 5.10. Given two index sequences I,J ∈ ZL such that I ∼m J . If
(il′1 , . . . , il′2) is a crest of I, then (jl′1 , . . . , jl′2) is a crest of J .

Proof. Since I ∼m J , all consecutive pairs (il, il+1) and (jl, jl+1) have the same
order. According to the definition, we have

il′1−1 < il′1 = il′1+1 · · · = il′2 > jl′2+1.

If follows that

jl′1−1 < jl′1 = jl′1+1 · · · = jl′2 > jl′2+1;

thus (jl′1 , . . . , jl′2) is a crest of J . �

Now, we will introduce some ∼m preserving operations on index sequences.
The first operation is to remove a crest from a sequence. Let (il′1 , . . . , il′2) be
an interval of I = (i1, . . . , iL). We denote by I \ (il′1 , . . . , il′2) the new sequence
(i1, . . . , il′1−1, il′2+1, . . . , iL). We denote the empty set by ∅ = I \ I and we assume
that ∅ ∼m ∅.

Lemma 5.11. Let I = (i1, . . . , iL),J = (j1, . . . , jL) ∈ ZL such that I ∼m J . If
(il′1 , . . . , il′2) is a crest of I and (jl′1 , . . . , jl′2) is a crest of J , then

I \ (il′1 , . . . , il′2) ∼m J \ (jl′1 , . . . , jl′2).

Proof. If I \ (il′1 , . . . , il′2) is empty, then J \ (jl′1 , . . . , jl′2) must be empty because
the lengths of I, J are the same. The statement is true in this situation. If
I \ (il′1 , . . . , il′2) is nonempty, then I can be written as

(i1, . . . , il′1 , . . . , il′2 , . . . , iL)

and

I \ (il′1 , . . . , il′2) = (i1, . . . , il′1−1, il′2+1, . . . , iL) = (i′1, . . . , i
′
l′1−1, i

′
l′1
, . . . , i′L−l′2+l′1−1)

and

J \ (jl′1 , . . . , jl′2) = (j1, . . . , jl′1−1, jl′2+1, . . . , jL) = (j′1, . . . , j
′
l′1−1, j

′
l′1
, . . . , j′L−l′2+l′1−1).

For any indices 1 ≤ l1 < l2 < L − l′2 + l′1 − 1 such that il3 > max{i′l1 , i
′
l2
} for all

l1 < l3 < l2:
If l1, l2 ≤ l′1−1 or l1, l2 ≥ l′1, then (i′l1 , . . . , i

′
l2
) is an interval of I. Since I ∼m J ,

(i′l1 , i
′
l2
) and (j′l1 , j

′
l2
) have the same order.

If l1 < l′1 ≤ l2, then i′l2 = il2+l′2−l′1+1. We have

il3 > il′1−1 ≥ max{i′l1 , i
′
l2}

for all l′1 ≤ l3 ≤ l′2. It follows that

il3 > max{il1 , il2}
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for all l1 < l3 < l2 + l′2 − l′1 + 1. Therefore, (il1 , il2+l′2−l′1+1) and (jl1 , jl2+l′2−l′1+1)
have the same order, which shows that (i′l1 , i

′
l2
) and (j′l1 , j

′
l2
) have the same order.

The proof is complete. �

Similarly, as in the previous proof, by checking the definition of ∼m, we have

Lemma 5.12. Let I = (i1, . . . , iL) ∈ Z
L and (il′1 , . . . , il′2) be a crest of I. Then we

have

I = (i1, . . . , iL) ∼m (i1, . . . , il′1−1, il′1 +K, . . . , il′2 +K, il′2+1, . . . , il)

for any integer K such that il′1 +K > max{il′1−1, il′2+1}.

Now, we study some relations between Mi(n, k) and ∼m:

Proposition 5.13. Given two sequences I={i1, . . . , iL} ∈ [k]L,J ={j1, . . . , jL} ∈
[n]L, let {ui,j}i=1,...,n;j=1,...,k be the set of standard generators of Mi(n, k). Then
we have ∑

(q1,...,qL)∼mJ
uq1,i1 · · ·uqL,iLP =

{
P if J ∼m I,
0 otherwise.

Proof. We will prove the proposition by induction.
When L = 1, the statement is obviously true.
Suppose the statement is true for all L ≤ L′. Let us consider the case L = L′+1.

Let (il′1 , . . . , il′2) be a crest of I.

Case 1. If (jl′1 , . . . , jl′2) is not a crest of J , then I 
∼m J and one of the following
cases happens:

1. There exists an index jl′3 of J such that jl′3 
= jl′3+1 for some l′1 ≤ l′3 < l′2.
2. jl′1 ≤ jl′1−1.
3. jl′2 ≤ jl′2+1.

But, for all Q = (q1, . . . , qL) ∼m J , we have:

1. (ql′3 , ql′3−1) and (jl′3 , jl′3−1) have the same order.
2. (ql′1 , ql′1−1) and (jl′1 , jl′1−1) have the same order.
3. (ql′2 , ql′2+1) and (jl′2 , jl′2+1) have the same order.

Therefore, we have at least one of the following:

1. ql′3 
= ql′3−1 and il′3 = il′3−1 for some l′1 ≤ l′3 < l′2.
2. ql′1 ≤ ql′1−1 and il′1 > il′1−1.
3. ql′2 ≤ ql′2+1 and il′2 > il′2+1.

According to the definition of Mi(n, k), we have one of the following equations:

1. uql′3
,il′3

uql′3+1,il′3+1
= 0 for some l′1 ≤ l′3 < l′2.

2. uql′
1
−1,il′

1
−1
uql′

1
,il′

1
= 0.

3. uql′2
,il′2

uql′2+1,il′2+1
= 0.

In this case, we always have ∑
(q1,...,qL)∼mJ

uq1,i1 · · ·uqL,iLP = 0.

Case 2. If (jl′1 , . . . , jl′2) is a crest of J , then (ql′1 , . . . , ql′2) is a crest of Q. Therefore,

uql′1
,il′1

· · ·uql′2
,il′2

= uql′1
,il′1

.
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By Lemma 5.12, if we fix the indices of Q\ (ql′1 , . . . , ql′2), then ql′1 , . . . , ql′2 can be
any integers such that ql′1 = · · · = ql′2 and max{ql′1−1, ql′2+1)} < ql′1 ≤ n. Therefore,
we have ∑

max{ql′
1
−1,ql′

2
+1)}<ql′

1
≤n

uql′1−1,il′1−1
uql′1

,il′1
uql′2+1,il′2+1

=
∑

1≤ql′1
≤n

uql′1−1,il′1−1
uql′1

,il′1
uql′2+1,il′2+1

= uql′1−1,il′1−1
uql′2+1,il′2+1

.

The first equality holds because the extra terms are 0. The second equality uses
the monotone universal condition of Mi(n, k). Let L

′′ = L− l′2 + l′1 + 1 ≤ L′; then

J \ (jl′1 , . . . , jl′2) ∈ [n]L
′′
. By Lemma 5.10, Q\ (ql′1 , . . . , ql′2) ∼m J \ (jl′1 , . . . , jl′2). If

we denote by (i′1, . . . , i
′
L′′) the sequence I \ (il′1 , . . . , il′2), then we have∑

(q1,...,qL)∼mJ
uq1,i1 · · ·uqL,iLP

=
∑

(q′1,...,q
′
L′′ )∼mJ\(jl′1 ,...,jl′2 )

uq′1,i
′
1
· · ·uq′

L′′ ,i
′
L′′P

=

{
P if J \ (jl′1 , . . . , jl′2) ∼m I \ (il′1 , . . . , il′2),
0 otherwise.

The last equality comes from the assumption of our induction. By Lemma 5.10
and Lemma 5.11, J \ (jl′1 , . . . , jl′2) ∼m I \ (il′1 , . . . , il′2) iff J ∼m I. The proof is
complete. �

Now, we show that operator valued monotone finite sequences of random vari-
ables are monotonically spreadable.

Definition 5.14. Let I = (i1, . . . , iL) be a sequence of ordered indices and a =
min{i1, . . . , iL}. We call the set §(I) = {l|il = a} the positions of the smallest
elements of I. An interval of (il′1 , . . . , il′2) is called a hill of I if il′1−1 = il′2+1 = a
and i′l3 
= a for all l′1 ≤ l′3 ≤ l′2. Here, we assume that i0 = iL+1 = a for convenience.

Example. (1, 2, 3, 4, 1, 2, 1) has two hills (2, 3, 4) and (2). (1, 2, 1, 3, 4) has two hills
(2) and (3, 4). (1, 1, 1, 1, 1) has no hill.

Lemma 5.15. Given two sequences I = {i1, . . . , iL},J = {j1, . . . , jL} ∈ [n]L such
that I ∼m J , then §(I) = §(J ). Let (il′1 , . . . , il′2) be a hill of I; then

(il′1 , . . . , il′2) ∼m (jl′1 , . . . , jl′2).

Proof. We just need to check the elements of J one by one. Suppose

§(I) = {l′′1 < · · · < l′′k′},
where k′ is the cardinality of §(I). Let b = min{j1, . . . , jL}. We need to show that
jl′′1 = · · · = jl′′

k′ = b and jl > b for all l 
∈ §(I).
Given an integer 1 ≤ p < k′, we have

il > a = il′′p = il′′p+1

for all l′′p < l < l′′p+1. According to the definition of ∼m and Lemma 5.5, we have

jl′′p = jl′′p+1
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and

jl > max{jl′′p , jl′′p+1
}

for all l′′p < l < l′′p+1. What’s left is to check the elements jl with l < l′′1 or l > l′′k′ . If
there exists l < l′′1 such that jl ≤ jl′′1 , we choose the greatest such l. Then, we have

jl′ > max{jl, jl′′1 }
for all l < l′ < l′′1 . Therefore, we have

il ≤ il′′1 ,

which is a contradiction. This implies that

jl > jl′′1

for all l < l′′1 . Similarly we have

jl > jl′′1
for all l > l′′k . Therefore, jl′′1 = · · · = jl′′

k′ = min{j1, . . . , jL}. The last statement of

this lemma is obvious from the definition of ∼m. �

Given I = {i1, . . . , iL} ∈ Z
L, we will denote xI = xi1xi2 · · ·xjL for short.

Proposition 5.16. Let (A,B, E) be an operator valued probability space and
(xi)i=1,...,n be a sequence of random variables in A. If (xi)i=1,...,n are identi-
cally distributed and monotonically independent, then for indices sequences I =
{i1, . . . , iL},J = {j1, . . . , jL} ∈ [n]L such that I ∼m J , L ∈ N, we have

E[xI ] = E[xJ ].

Proof. When L = 1, the statement is true since the sequence is identically dis-
tributed.

Suppose the statement is true for all L ≤ L′ ∈ N. Let us consider the case
L = L′ + 1:

If I has no hill, then i1 = · · · = iL, which implies that j1 = · · · = jL. The
statement is true, since the sequence is identically distributed.

Suppose I has hills I1, . . . , Il and a = min{i1, . . . , iL}. Then, xI can be written
as

xn1
a xI1

xn2
a xI2

· · ·xnl
a xIl

xnl+1
a ,

where n2, . . . , nl ∈ N and n1, nl+1 ∈ N ∪ {0}. Since the xi’s are monotonically
independent, we have

E[xI ] = E[xn1
a E[xI1

]xn2
a E[xI2

] · · ·xnl
a E[xIl

]xnl+1
a ].

Let b = min{j1, . . . , jL}. By Lemma 5.15, J has hills J1, . . . ,Jl whose positions
of elements correspond to the positions of elements of I1, . . . , Il and Jl′ ∼m Jl′ for
all 1 ≤ l′ ≤ k′. Therefore, we have

E[xJ ] = E[xn1

b E[xJ1
]xn2

b E[xJ2
] · · ·xnl

b E[xJl
]x

nl+1

b ]

= E[xn1

b E[xI1
]xn2

b E[xI2
] · · ·xnl

b E[xIl
]x

nl+1

b ]

= E[xn1
a E[xI1

]xn2
a E[xI2

] · · ·xnl
a E[xIl

]x
nl+1
a ]

= E[xI ],

where the second equality follows the induction and the third equality holds because
xa and xb are identically distributed. The proof is complete. �
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Proposition 5.17. Let (A,B, E) be an operator valued probability space, and
(xi)i=1,...,n be a sequence of random variables in A which are identically distributed
and monotonically independent with respect to E. Let φ be a state on A such that
φ(·) = φ(E[·]). Then, (xi)i=1,...,n is monotonically spreadable with respect to φ.

Proof. For fixed natural numbers n, k ∈ N, let (ui,j)i=1,...,n;j=1,...,k be standard
generators of Mi(n, k). Let J = (j1, . . . , jL) ∈ [k]L and denote xj1 · · ·xjL by

xJ . We denote the equivalent class of [n]L associated with ∼m by [nL]. For each
I ∈ [n]L, we denote ui1,j1 · · ·uiL,jL by uI,J . Then, by Proposition 5.13, we have∑

I∈[n]L

φ(xI)PuI,JP

=
∑

I∈[n]L

φ(E[xI ])PuI,JP

=
∑

Q̄∈[n]L

∑
I∈Q̄

φ(E[xI ])PuI,JP

=
∑

J 	∈Q̄∈[n]L

∑
I∈Q̄

φ(E[xI ])PuI,JP+
∑

J∈Q̄∈[n]L

∑
I∈Q̄

φ(E[xI ])PuI,JP

=
∑

J 	∈Q̄∈[n]L

∑
I∈Q̄

φ(E[xQ])PuI,JP+
∑

I∼mJ
φ(E[xJ ])PuI,JP

= 0 + φ(E[xJ ])P
= φ(xJ )P.

Since n, k are arbitrary, the proof is complete. �

6. Tail algebras

In the previous work on distributional symmetries, infinite sequences of objects
are indexed by natural numbers. For these kinds of infinite sequences, the condi-
tional expectations in de Finetti type theorems are defined via the limit of unilateral
shifts. It was shown in [15] that a unilateral shift is an isometry from A into itself
if (A, φ) is a W ∗-probability space generated by a spreadable sequence of random
variables and φ is faithful. Therefore, a normal conditional expectation defined via
the limit of unilateral shifts exists under a very weak condition; i.e. the sequence
of random variables just needs to be spreadable. However, our work is in a more
general situation where the state φ is not necessarily faithful. In our framework, we
will provide an example in which the sequence is monotonically spreadable, but the
unilateral shift is not an isometry. Therefore, we cannot get an extended de Finetti
type theorem for monotone independence in the usual way. Therefore, we will con-
sider bilateral sequences of random variables. Here, we begin with an interesting
example.

6.1. Unbounded spreadable sequences.

Example. Let H be the standard 2-dimensional Hilbert space with orthonormal
basis

{v =

(
1
0

)
, w =

(
0
1

)
}.

Let p,A, x ∈ B(H) be operators on H with the following matrix forms:

p =

(
1 0
0 0

)
, A =

(
1 0
0 2

)
, x =

(
0 1
1 0

)
.
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Let H =
⊗∞

n=1 H be the infinite tensor product of H. Let {xi}∞i=1 be a sequence
of selfadjoint operators in B(H ) defined as follows:

xi =

i−1⊗
n=1

A⊗ x⊗
∞⊗

m=1

p.

Let φ be the vector state 〈·v, v〉 on H and let Φ =
⊗∞

n=1 φ be a state on B(H ).
It is obvious that Φ(xn

i ) = φ(xn) for i. Therefore, the sequence (xi)i∈N is identically
distributed. For any y, z ∈ B(H), an elementary computation shows that

φ(ypz) = φ(y)φ(z).

For convenience, we denote A⊗i−1 =
⊗i−1

n=1 A and P⊗∞ =
⊗∞

n=1 P . Also, we
denote xi1 · · ·xiL = xI for I = (i1, . . . , iL) ∈ NL . We will show that the sequence
{xi}i∈N is Mi(n, k)-spreadable with respect to Φ.

Lemma 6.1. For indices sequences I = (i1, . . . , iL),J = (j1, . . . , jL) ∈ [n]L such
that I ∼m J and L ∈ N, we have

Φ(xI) = Φ(xJ ).

Proof. When L = 1, the statement is true since the sequence is identically dis-
tributed.

Suppose the statement is true for all L ≤ L′. Let us consider the case L = L′+1.
If I has no hill, then i1 = · · · = iL, which implies that j1 = · · · = jL. The statement
is true for this case, because the sequence is identically distributed. Also, we denote

by x
(n)
i the n-th component of xi. Then,

x
(n)
i =

⎧⎨
⎩

a if n < i,
x if n = i,
p if n > i,

and x
(n)
I = x

(n)
i1

x
(n)
i2

· · ·x(n)
iL

.
According to the definition of Φ, we have that

Φ(xi1xi2 · · ·xjL) =

∞∏
n=1

φ(

L∏
l=1

x
(n)
i ).

Suppose that I has hills I1, . . . , Il and a = min{i1, . . . , iL}. Then xI can be written
as

xn1
a xI1

xn2
a xI2

· · ·xnl
a xIl

xnl+1
a

and

φ(

L∏
l=1

x
(n)
i ) =

⎧⎨
⎩

1 if n < a,
φ(xn1A|I1|xn2A|I2| · · ·xnlA|Il|xnl+1) if n = a,

φ(px
(n)
I1

px
(n)
I2

p · · · px(n)
Il

p) if n > a.

It follows that

φ(
L∏

l=1

x
(n)
i ) =

∞∏
n≥min{I}

φ(
L∏

l=1

x
(n)
i ).

Because

φ(px
(n)
I1

px
(n)
I2

p · · · px(n)
Il

p) = φ(x
(n)
I1

)φ(x
(n)
I2

) · · ·φ(x(n)
Il

),
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we have

Φ(xi1xi2 · · ·xjL)

= φ(xn1A|I1|xn2A|I2| · · ·xnlA|Il|xnl+1)
∞∏

n>a

φ(px
(n)
I1

px
(n)
I2

p · · · px(n)
Il

p)

= φ(xn1A|I1|xn2A|I2| · · ·xnlA|Il|xnl+1)

∞∏
n>a

φ(x
(n)
I1

)φ(x
(n)
I2

) · · ·φ(x(n)
Il

)

= φ(xn1A|I1|xn2A|I2| · · ·xnlA|Il|xnl+1)Φ(xI1
)Φ(xI2

) · · ·Φ(xIl
).

Let b = min{j1, . . . , jL}. By Lemma 5.15, J has hills J1, . . . ,Jl whose positions
of elements correspond to the positions of elements of I1, . . . , Il and Jl′ ∼m Jl′ for
all 1 ≤ l′ ≤ k′. Therefore, we have

Φ(xJ ) = Φ(xi1xi2 · · ·xiL)
= φ(xn1A|J1|xn2A|J2| · · ·xnlA|Jl|xnl+1)Φ(xJ1

)Φ(xJ2
) · · ·Φ(xJl

)
= φ(xn1A|I1|xn2A|I2| · · ·xnlA|Il|xnl+1)Φ(xI1

)Φ(xI2
) · · ·Φ(xIl

)
= Φ(xI),

where the second equality follows from induction, the fact that Jk ∼m Ik and
|Jk| = |Ik| for all 1 ≤ k ≤ l. �

Proposition 6.2. The joint distribution of (xi)i∈N with respect to Φ is monotoni-
cally spreadable.

Proof. Fix n > k ∈ N, and let {ui,j}i=1,...,n;j=1,...,k be the set of standard generators

of Mi(n, k). For all I = (i1, . . . , iL) ∈ [k]L, we denote by [n]L the ∼m equivalence
classes of [n]L. Then we have

P(μx1,...,xn
⊗ idMi(n,k))(α

(m)
n,k (XI))P

=
∑

J∈[n]L

μx1,...,xn
(XJ )PuJ ,IP

=
∑

Q̄∈[n]L

∑
J∈Q̄

μx1,...,xn
(XJ )PuJ ,IP

=
∑

Q∈[n]L\{Ī}

∑
J∈Q̄

μx1,...,xn
(XJ )PuJ ,IP+

∑
J∼mI

μx1,...,xn
(XJ )PuJ ,IP

=
∑

Q∈[n]L\{Ī}

∑
J∈Q̄

μx1,...,xn
(XQ)PuJ ,IP+

∑
J∼mI

μx1,...,xn
(XI)PuJ ,IP

=
∑

Q∈[n]L\{Ī}

μx1,...,xn
(XQ)

∑
J∈Q̄

PuJ ,IP+
∑

J∼mI
μx1,...,xn

(XI)PuJ ,IP

=
∑

Q∈[n]L\{Ī}

μx1,...,xn
(XQ) · 0 +

∑
J∼mI

μx1,...,xn
(XI)PuJ ,IP

=
∑

J∼mI
μx1,...,xn

(XI)PuJ ,IP

= μx1,...,xn
(XI)P.

The proof is complete. �

By direct computations, we have

(

n∏
i=1

xn+1−i)v
⊗∞ = w⊗n ⊗ v⊗∞
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and

(3) xn+1(w
⊗n ⊗ v⊗∞) = 2nw⊗n+1 ⊗ v⊗∞.

Let (H′, π′, ξ′) be the GNS representation of the von Neumann algebra generated
by (xi)i=1,...,∞ associated with Φ. We have

‖π′(xn+1)‖ ≤ ‖xn+1‖ = 2n,

but equation (3) shows that ‖π′(xn+1)‖ ≥ 2n. Therefore, ‖π′(xn+1)‖ = 2n.
Let A be the von Neumann algebra generated by π(xi)’s. Then, there is no

bounded endomorphism α on π(A) such that α(π(xi)) = π(xi+1).

6.2. Tail algebras of bilateral sequences of random variables. We have
shown that in a W ∗-probability space with a nondegenerated normal state, the
unilateral shift of a spreadable unilateral sequence of random variables may not be
extended to a bounded endomorphism. Therefore, in general, we cannot define a
normal condition expectation by taking the limit of unilateral shifts of variables.
In (A, φ), a W ∗-probability space with a faithful state, the norm of a selfadjoint
random variable x ∈ A is controlled by the moments of X, i.e.

‖x‖ = lim
n→∞

φ(|x|n) 1
n .

But, in nondegenerated W ∗-probability spaces, the norm of a random variable
depends on all mixed moments which involve it. As a kind of partial distribu-
tional symmetry, spreadability cannot provide relations between all mixed mo-
ments, which means a spreadable sequence can be unbounded. To create a well
defined conditional expectation, we consider spreadable sequences of random vari-
ables indexed by Z but not N. As a consequence, we will have two choices to take
limits on defining normal conditional expectations and tail algebras. Before study-
ing tail algebras of bilateral sequences, we introduce some necessary notation and
assumptions here.

Let (A, φ) be a W ∗-probability space generated by a spreadable bilateral se-
quence of bounded random variables (xi)i∈Z and let φ be a nondegenerated normal
state. We assume that the unit of A is contained in the WOT-closure of the non-
unital algebra generated by (xi)i∈Z. Let (H, π, ξ) be the GNS representation of A
associated with φ. Then, {π(P (xi|i ∈ Z))ξ|P ∈ C〈Xi|i ∈ Z〉} is dense in H. For
convenience, we will denote π(y)ξ by ŷ for all y ∈ A. When there is no confusion,
we will write y for π(y). We denote by Ak+ the nonunital algebra generated by
(xi)i≥k and Ak− the nonunital algebra generated by (xi)i≤k. Let A+

k and A−
k be

the WOT-closure of Ak+ and Ak−, respectively.

Definition 6.3. Let (A, φ) be a nondegenerated noncommutative W ∗-probability
space, and let (xi)i∈Z be a bilateral sequence of bounded random variables in A
such that A is the WOT closure of the nonunital algebra generated by (xi)i∈Z. The
positive tail algebra A+

tail of (xi)i∈Z is defined as follows:

A+
tail =

⋂
k>0

A+
k .

In the opposite direction, we define the negative tail algebra A−
tail of (xi)i∈Z as

follows:

A−
tail =

⋂
k<0

A−
k .
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Remark 6.4. In general, the positive tail algebra and the negative tail algebra are
different.

Even though our framework looks quit different from the framework in [15], we
can show that there exists a normal bounded shift of the sequence in a similar way.
For completeness, we provide the details here.

Lemma 6.5. There exists a unitary map U : H → H such that U(P (xi|i ∈ Z))ξ =
P (xi+1|i ∈ Z)ξ.

Proof. Since (xi)i∈Z is spreadable, we have

φ((P (xi|i ∈ Z))∗P (xi|i ∈ Z)) = φ((P (xi+1|i ∈ Z))∗P (xi+1|i ∈ Z)).

This implies that

U(P (xi|i ∈ Z)ξ) = P (xi+1|i ∈ Z)ξ

is a well defined isometry on {π(P (xi|i ∈ Z))ξ|P ∈ C〈Xi|i ∈ Z〉}. Since
{π(P (xi|i ∈ Z))ξ|P ∈ C〈Xi|i ∈ Z〉} is dense in H, U can be extended to the
whole space H. It is obvious that {π(P (xi|i ∈ Z))ξ|P ∈ C〈Xi|i ∈ Z〉} is contained
in the range of U . Therefore, the extension of U is a unitary map on H. �

Now, we can define an automorphism α on A by the following formula:

α(y) = UyU−1.

Lemma 6.6. α is the bilateral shift of (xi)i∈Z, i.e.

α(xk) = xk+1

for all k ∈ Z.

Proof. For all y = P (xi|i ∈ Z)ξ, we have

α(xk)y = UxkU
−1P (xi|i ∈ Z)ξ = UxkP (xi−1|i ∈ Z)ξ = xk+1P (xi|i ∈ Z)ξ.

By the density of {π(P (xi|i ∈ Z))ξ|P ∈ C〈Xi|i ∈ Z〉}, we have α(xk) = xk+1. The
proof is complete. �

Since α is a normal automorphism of A, we have

Corollary 6.7. For all k ∈ Z, we have α(A+
k ) = A+

k+1.

Lemma 6.8. Fix n ∈ Z. Let y1, y2 ∈ An−. Then, we have

〈αl(a)ŷ1, ŷ2〉 = 〈aŷ1, ŷ2〉,
where l ∈ N and a ∈ A+

n+1.

Proof. It is sufficient to prove the statement under the assumption that l = 1. Since
a ∈ A+

n+1, by Kaplansky’s theorem, there exists a sequence (am)m∈N ⊂ A(n+1)+

such that ‖am‖ ≤ ‖a‖ for all m and am converges to a in WOT. Then, by the
spreadability of (xi)i∈Z, we have

〈α(a)ŷ1, ŷ2〉 = lim
m→∞

〈α(am)ŷ1, ŷ2〉 = lim
m→∞

φ(y∗2amŷ1) = 〈aŷ1, ŷ2〉.

�

In the following context, we fix k ∈ Z.
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Lemma 6.9. For all a ∈ A+
k , we have that

E+[a] = WOT − lim
l→∞

αl(a)

exists. Moreover, E+[a] ∈ A+
tail.

Proof. For all y1, y2 ∈ {π(P (xi|i ∈ Z))ξ|P ∈ C〈Xi|i ∈ Z〉}, there exists n ∈ Z such
that y1, y2 ∈ An−. For all l > n− k, we have αl(a) ∈ A(n+1)+. By Lemma 6.8, we
have

〈αn+1−k(a)y1, y2〉 = 〈αn+2−k(a)y1, y2〉 = · · · .
Therefore,

lim
l→∞

〈αl(a)y1, y2〉 = 〈αn+1−k(a)y1, y2〉.

αl(a) converges pointwisely to an element E+[a]. Since for all n > 0, we have
αl(a) ∈ A+

n for all l > n− k + 1 it follows that WOT − liml→∞ αl(a) ∈ A+
n for all

n. Hence, E+[a] ∈ A+
tail. �

Proposition 6.10. E+ is normal on A+
k for all k ∈ Z.

Proof. Let (am)m∈N ⊂ A+
k be a bounded sequence which converges to 0 in WOT.

For all y1, y2 ∈ {π(P (xi|i ∈ Z))ξ|P ∈ C〈Xi|i ∈ Z〉}, there exists n ∈ Z such that
y1, y2 ∈ An−. Then, we have

lim
m→∞

〈E+[am]y1, y2〉 = lim
m→∞

〈αn+1−k(am)y1, y2〉 = 0.

The last equality holds because αl is normal for all l ∈ N. The proof is complete. �

Remark 6.11. E+ is defined on
⋃

k∈Z
A+

k but not on A. In general, we cannot
extend E+ to the whole algebra A.

Lemma 6.12. We have that E+[a] = a for all a ∈ A+
tail.

Proof. For all ŷ1, ŷ2 ∈ {π(P (xi|i ∈ Z))ξ|P ∈ C〈Xi|i ∈ Z〉}, there exists n ∈ Z such
that y1, y2 ∈ An−. Since a ∈ A+

tail ⊂ A+
n+1, by Kaplansky’s theorem, there exists a

sequence (am)m∈N ⊂ A(n+1)+ such that am → a in WOT and ‖am‖ ≤ ‖a‖ for all
m. Then, we have

〈aŷ1, ŷ2〉 = lim
m→∞

〈amŷ1, ŷ2〉 = lim
m→∞

〈α(am)ŷ1, ŷ2〉 = 〈α(a)ŷ1, ŷ2〉.

Since y1, y2 are arbitrary, we have a = α(a). �

Remark 6.13. One should be careful that A+
tail could be a proper subset of the fixed

points set of α.

Lemma 6.14. We have

E+[a1ba2] = a1E
+[b]a2

for all b ∈ A+
k , a1, a2 ∈ A+

tail.

Proof. By Lemma 6.12, we have

E+[a1ba2]= lim
l→∞

αl(a1ba2)= lim
l→∞

αl(a1)α
l(b)αl(a2)= lim

l→∞
a1α

l(b)a2 = a1E
+[b]a2.

�
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7. Conditional expectations of bilateral monotonically

spreadable sequence

In this section, we assume that the joint distribution of (xi)i∈Z is monotonically
spreadable.

Lemma 7.1. Fix n > k ∈ N, and let (ui,j)i=1,...,n; j=1,...,k be the standard genera-
tors of Mi(n, k). Then, we have

φ(a1x
l1
i1
b1x

l2
i2
b2 · · · bm−1x

lm
im
a2)P

=
n∑

j1,...,jm=1

φ(a1x
l1
j1
b1x

l2
j2
b2 · · · bm−1x

lm
jm

a2)Puj1,i1 · · ·ujm,imP,

where 1 ≤ i1, . . . , im ≤ k, b1, . . . , bm−1 ∈ A(n+1)+ and a1, a2 ∈ A0−.

Proof. Without loss of generality, we assume that there exist n1, n2 ∈ N such that

a1, a2 ∈ A[−n1+1,0]

and

b1, . . . , bm−1 ∈ A[n+1,n2+k].

Since the map is linear, we just need to consider the case that a1, a2 and b1, . . . , bm−1

are products of (xi)i∈Z. Let

a1 = xs1,1 · · ·xs1,t1

and

a2 = xs2,1 · · ·xs2,t2

for some t1, t2 ∈ N and −n1 + 1 ≤ sc,d ≤ 0. Let

bi = xri,1 · · ·xri,t′
i

for t′1, . . . , t
′
m−1 ∈ N ∪ {0} and n + 1 ≤ rc,d ≤ k + n2. Then, (x−n1+1, . . . , xn+n2

)
is a sequence of length n + n1 + n2; we denote it by (y1, . . . , yn+n1+n2

). Let n′ =

n+n1+n2 and k′ = k+n1+n2. By our assumption, a1x
l1
i1
b1x

l2
i2
b2 · · · bm−1x

lm
im
a2 is in

the algebra generated by (y1, . . . , yk′). Let (u′
i,j)i=1,...,n′; j=1,...,k′ be the standard

generators of Mi(n
′, k′) and P′ be the invariant projection. Let π be the C∗-

homomorphism in Lemma 3.13 and id be the identity on C〈X1, . . . ., Xn′〉. Since
1 ≤ sc,d + n1 ≤ n1, we have

(id⊗ π)(α
(m)
n′,k′(Xsi,1+n1

· · ·Xsi,t1
+ n1)) = Xsi,1+n1

· · ·Xsi,t1+n1
⊗P.

Since n1 + n+ 1 ≤ rc,d + n1 ≤ n1 + n2 + k, we have

(id⊗ π)(α
(m)
n′,k′(Xri,1+n1

· · ·Xr1,t′
1
+ n1)) = Xri,1+n1+n−k · · ·Xri,t′

i
+n1+n−k ⊗ I,

where I is the identity ofMi(n, k). According to our assumption, we have 1 ≤ it ≤ k
for t = 1, . . . ,m. Then

(id⊗ π)(α
(m)
n′,k′(X

lt
it+n1

) =
n∑

jt=1

X lt
jt+n1

⊗ ujt,it .
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According to the monotone spreadability of (y1, . . . , yn′) and Lemma 3.13, we
have

φ(a1x
l1
i1
b1x

l2
i2
b2 · · · bm−1x

lm
im
a2)P

= μy1,...,yk′ (Xs1,1+n1
· · ·Xs1,t1+n1

X l1
i1+n1

· · ·X lm
im+n1

Xs1,1+n1
· · ·Xs2,t2+n1

)π(P′)

= P(μy1,...,yn′ ⊗ π)(α
(m)
n′,k′(Xs1,1+n1

· · ·Xs1,t1+n1
X l1

i1+n1

· · ·X lm
im+n1

Xs1,1+n1
· · ·Xs2,t2+n1

))P

=
n∑

j1,...,jm=1

μy1,...,yn′ (Xs1,1+n1
· · ·Xs1,t1+n1

X l1
j1+n1

Xr1,1+n1+n−k · · ·

Xrm−1,t′
m−1

+n1
+n−kX

lm+n1
jm

Xs1,1+n1
· · ·Xs2,t2

)Puj1,i1 · · ·ujm,imP.

Notice that (y1, . . . , yn′) is spreadable and n+1 ≤ r. The above equation becomes

φ(a1x
l1
i1
b1x

l2
i2
b2 · · · bm−1x

lm
im
a2)P

=
n∑

j1,...,jm=1

μy1,...,yn′ (Xs1,1+n1
· · ·Xs1,t1+n1

X l1
j1+n1

Xr1,1+n1
· · ·

Xrm−1,t′
m−1

+n1
X lm

jm+n1
Xs1,1+n1

· · ·Xs2,t2
)Puj1,i1 · · ·ujm,imP

=

n∑
j1,...,jm=1

φ(xs1,1 · · ·xs1,t1
xl1
j1
xr1,1 · · ·xrm−1,t′

m−1
xlm
jm

xs1,1 · · ·xs2,t2
)

×Puj1,i1 · · ·ujm,imP

=
n∑

j1,...,jm=1

φ(a1x
l1
j1
b1x

l2
j2
b2 · · · bm−1x

lm
jm

a2)Puj1,i1 · · ·ujm,imP.

The proof is complete. �
Lemma 7.2. Fix n > k ∈ N, let (ui,j)i=1,...,n; j=1,...,k be the standard generators of
Mi(n, k). Then, we have

E+[xl1
i1
b1x

l2
i2
b2 · · · bm−1x

lm
im
]⊗P

=
n∑

j1,...,jm=1

E+[xl1
j1
b1x

l2
j2
b2 · · · bm−1x

lm
jm

]⊗Puj1,i1 · · ·ujm,imP,

where 1 ≤ i1, . . . , im ≤ k, b1, . . . , bm−1 ∈ A(n+1)+.

Proof. It is necessary to check that the two sides of the equation are equal to each
other pointwisely, i.e.

φ(a1E
+[xl1

i1
b1x

l2
i2
b2 · · · bm−1x

lm
im
]a2)P(4)

=

n∑
j1,...,jm=1

φ(a1E
+[xl1

j1
b1x

l2
j2
b2 · · · bm−1x

lm
jm

]a2)Puj1,i1 · · ·ujm,imP

for all a1, a2 ∈ A[−∞,∞]. Given a1, a2 ∈ A[−∞,∞], there exists M ∈ N such that
a1, a2 ∈ AM−. Then,

α−m(a1), α
−m(a2) ∈ A0−

for all m > M . By Lemma 7.1, we have

φ(α−m(a1)x
l1
i1
b1x

l2
i2
b2 · · · bm−1x

lm
im
α−m(a2))P

=
n∑

j1,...,jm=1

φ(α−m(a1)x
l1
j1
b1x

l2
j2
b2 · · · bm−1x

lm
jm

α−m(a2))Puj1,i1 · · ·ujm,imP.
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Therefore, for all m > M ,we have

φ(a1α
m(xl1

i1
b1x

l2
i2
b2 · · · bm−1x

lm
im
)a2)P

=
n∑

j1,...,jm=1

φ(a1α
m(xl1

j1
b1x

l2
j2
b2 · · · bm−1x

lm
jm

)a2)Puj1,i1 · · ·ujm,imP.

Letting m go to +∞, we get equation (4).
The proof is complete since a1, a2 are arbitrary. �

Proposition 7.3. Let (A, φ) be a W ∗-probability space, (xi)i∈Z a sequence of self-
adjoint random variables in A, and E+ be the conditional expectation onto the
positive tail algebra A+

tail. Assume that the joint distribution of (xi)i∈Z is mono-
tonically spreadable. Then the same is true for the joint distribution with respect
to E+, i.e. for fixed n > k ∈ N and (ui,j)i=1,...,n; j=1,...,k the standard generators of
Mi(n, k), we have that

E+[xl1
i1
b1x

l2
i2
b2 · · · bm−1x

lm
im
]⊗P

=

n∑
j1,...,jm=1

E+[xl1
i1
b1x

l2
i2
b2 · · · bm−1x

lm
im
]⊗Puj1,i1 · · ·ujm,imP,

1 ≤ i1, . . . , im ≤ k, l1, . . . , lm ∈ N and b1, . . . , bn ∈ A+
tail.

Proof. Since b1, . . . , bm−1 ∈ A+
tail ∈ A+

n , by Kaplansky’s theorem, there exist se-
quences

{bs,t}s=1,...m−1;t∈N ⊂ An+

such that ‖bs,t‖ ≤ ‖bs‖ and limn→∞ bs,t = bs in SOT for each s = 1, . . . ,m − 1.
Therefore,

SOT − lim
t1→∞

xl1
i1
b1,t1x

l2
i2
b2,t2 · · · bm−1,tmxlm

im
= xl1

i1
b1x

l2
i2
b2,t2 · · · bm−1,tmxlm

im
.

By Lemma 7.2, we have

E+[xl1
i1
b1,t1x

l2
i2
b2,t2 · · · bm−1,tmxlm

im
]⊗P

=

n∑
j1,...,jm=1

E+[xl1
j1
b1,t1x

l2
j2
b2,t2 · · · bm−1,tm−1

xlm
jm

]⊗Puj1,i1 · · ·ujm,imP.

Letting t1 go to +∞, by normality of E+, we have

E+[xl1
i1
b1x

l2
i2
b2,t2 · · · bm−1,tmxlm

im
]⊗P

=

n∑
j1,...,jm=1

E+[xl1
j1
b1x

l2
j2
b2,t2 · · · bm−1,tm−1

xlm
jm

]⊗Puj1,i1 · · ·ujm,imP.

Again, taking t2, . . . , tm−1 to +∞, we have

E+[xl1
i1
b1x

l2
i2
b2 · · · bm−1x

lm
im
]⊗P(5)

=
n∑

j1,...,jm=1

E+[xj1b1xj2b2 · · · bm−1xjm ]⊗Puj1,i1 · · ·ujm,imP. �

If is = is+1 for some s, according to the universal conditions of Mi(n, k), the
terms on the right hand side do not vanish only if js = js+1. Therefore, we can
shorten the product on the right hand side of (5) if is = is+1 for some s. We have
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Proposition 7.4. Let (A, φ) be a W ∗-probability space, let (xi)i∈Z be a sequence
of selfadjoint random variables in A, and let E+ be the conditional expectation
onto the positive tail algebra A+

tail. Assume that the joint distribution of (xi)i∈Z

is monotonically spreadable. For fixed n > k ∈ N and (ui,j)i=1,...,n; j=1,...,k the
standard generators of Mi(n, k), we have that

E+[p1(xi1) · · · pm(xim)]⊗P =

n∑
j1,...,jm=1

E+[p1(xj1) · · · pm(xjm)]⊗Puj1,i1 · · ·ujm,imP,

whenever 1 ≤ i1, . . . , im ≤ k, i1 
= · · · 
= im and p1, . . . , pm ∈ A+
tail〈X〉0.

Lemma 7.5. Let (A, φ) be a W ∗-probability space, (xi)i∈Z a sequence of selfad-
joint random variables in A, and E+ the conditional expectation onto the positive
tail algebra A+

tail. Assume that the joint distribution of (xi)i∈Z is monotonically
spreadable. Then

E+[p1(xi1) · · · ps(xis) · · · pm(xim)] = E+[p1(xi1) · · ·E+[ps(xis)] · · · pm(xim)]

whenever is > it for all t 
= s, i1 
= · · · 
= im and p1, . . . , pm ∈ A+
tail〈X〉0.

Proof. Since (xi)i∈Z is spreadable, by Lemma 6.9, we have that

α(pt(xit)) = pt(α(xit))

and

E+[αk′
(a)] = E+[a]

for all a ∈
⋃

n′∈Z
A+

n′ and k′ ∈ Z.
Therefore, it is sufficient to prove the statement under the assumption that

i1, . . . , im > 0. Let is = k, (ui,j)i=1,...,n+1; j=1,...,k the standard generators of
Mi(n+ k, k). By Proposition 7.4, we have

E+[p1(xi1) · · · pm(xim)]⊗P =

n+k∑
j1,...,jm=1

E+[p1(xj1) · · · pm(xjm)]⊗Puj1,i1 · · ·ujm,imP.

Let l1 = · · · = lk−1 = 1 and lk = n+ 1. By Proposition 3.12, we have

E+[p1(xi1) · · · ps(xis) · · · pm(xim)]⊗P

=
1

n+ 1

n+k∑
js=k

E+[p1(xi1) · · · ps(xjs) · · · pm(xim)]⊗P.

Since n is arbitrary and E+ is normal on A+
0 , we have

E+[p1(xi1) · · · ps(xis) · · · pm(xim)]

= 1
n+1

n+k∑
js=k

E+[p1(xi1) · · · ps(xjs) · · · pm(xim)]

= WOT− lim
n→∞

E+[p1(xi1) · · · ( 1
n+1

n+k∑
js=k

ps(xjs)) · · · pm(xim)]

= WOT− lim
n→∞

E+[p1(xi1) · · · ( 1
n+1

n∑
t=0

αt(ps(xis))) · · · pm(xim)]

= WOT− lim
n→∞

E+[p1(xi1) · · ·E+[ps(xis)] · · · pm(xim)].

The proof is complete. �
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Now, we consider the case that the maximal index is not unique.

Proposition 7.6. Let (A, φ) be a W ∗-probability space, (xi)i∈Z a sequence of self-
adjoint random variables in A, and E+ the conditional expectation onto the positive
tail algebra A+

tail. Assume that the joint distribution of (xi)i∈Z is monotonically
spreadable. Then

E+[p1(xi1) · · · ps(xis) · · · pm(xim)] = E+[p1(xi1) · · ·E+[ps(xis)] · · · pm(xim)]

whenever is = max{i1, . . . , in} for all t 
= s, i1 
= · · · 
= im and p1, . . . , pm ∈
A+

tail〈X〉0.

Proof. Again, we can assume that i1, . . . , it > 0 and max{i1, . . . , im} = k. Suppose
the number k appears t times in the sequence, which are {ilj}j = 1, . . . , t such
that ilj = k and l1 < l2 < · · · < lt. Fix n, k and consider Mi(n + k, k). By
Proposition 7.4 and Proposition 3.12, we have

E+[p1(xi1) · · · pl1(xil1
) · · · pl2(xil2

) · · · pm(xim)]⊗ P

=
k+n∑

jl1 ,jl2 ,...jlt=k

E+[p1(xi1) · · · pl1(xjl1
) · · · pl2(xjl2

) · · · pm(xim)]

⊗PPjl1 ,k
PPjl2 ,k

P · · ·ujlt ,k
P

= 1
(n+1)t

k+n∑
jl1 ,jl2 ,...jlt=k

E+[p1(xi1) · · · pl1(xjl1
) · · · pl2(xjl2

) · · · pm(xim)]⊗ P

= 1
(n+1)t (

N∑
jls 	=jlr if s 	=r

E+[p1(xi1) · · · pl1(xjl1
) · · · pl2(xjl2

) · · · pm(xim)]⊗ P

+
N∑

jls=jlt for some s 	=t

E+[p1(xi1) · · · pl1(xjl1
) · · · pl2(xjl2

) · · · pm(xim)]⊗ P ).

In the first part of the sum, apply Lemma 7.5 on indices jl1 , . . . jllt recursively. It
follows that

E+[p1(xi1) · · · ps(xjl1
) · · · ps(xjl2

) · · · pm(xim)]

= E+[p1(xi1) · · ·E+[pl1(xjl1
)] · · ·E+[pl2(xjl2

)] · · · pm(xim)].

Since E+[ps(xjl1
)] = E+[ps(xk)] for all jl1 , . . . , jlt ,

E+[p1(xi1) · · · pl1(xjl1
) · · · pl2(xjl2

) · · · pm(xim)]

= E+[p1(xi1) · · ·E+[pl1(xk)] · · ·E+[pl2(xk)] · · · pm(xim)].

Then, we have

1
(n+1)t (

N∑
jls 	=jlr if s 	=r

E+[p1(xi1) · · · pl1(xjl1
) · · · pl2(xjl2

) · · · pm(xim)]⊗ P

=

t−1∏
s=0

(n+ 1− s)

n+1t E+[p1(xi1) · · ·E+[pl1(xk)] · · ·E+[pl2(xk)] · · · pm(xim)]⊗ P,

which converges to E+[p1(xk)] · · ·E+[ps(xk)] · · · pm(xim)]⊗P in norm as n goes to
+∞.



NONCOMMUTATIVE SPREADABILITY 1997

In the second part of the sum, we have

‖E+[p1(xi1) · · · pl1(xjl1
) · · · pl2(xjl2

) · · · pm(xim)]‖
≤ ‖p1(xi1) · · · pl1(xjl1

) · · · pl2(xjl2
) · · · pm(xim)‖

≤ ‖p1(xi1)‖ · · · ‖pl1(xjl1
)‖ · · · ‖pl2(xjl2

)‖ · · · ‖pm(xim)‖
≤ ‖p1(x1)‖ · · · ‖pl1(x1)‖ · · · ‖pl2(x1)‖ · · · ‖pm(x1)‖,

which is finite. Therefore,

‖
N∑

jls=jlt for some s 	=t

E+[p1(xi1) · · · pl1(xjl1
) · · · pl2(xjl2

) · · · pm(xim)]‖

≤ (1−
∏t−1

s=0(n+1−s)
(n+1)t )‖p1(x1)‖ · · · ‖pl1(x1)‖ · · · ‖pl2(x1)‖ · · · ‖pm(x1)‖

goes to 0 as n goes to +∞.
Therefore, we have

E+[p1(xi1) · · · pl1(xil1
) · · · pl2(xil2

) · · · pm(xim)]

= E+[p1(xi1) · · ·E+[pl1(xk)] · · ·E+[pl2(xk)] · · · pm(xim)].

Similarly we can show that

E+[p1(xi1) · · · pl1(xk) · · ·E+[ps(xis)] · · · pl2(xk) · · · pm(xim)]

= E+[p1(xi1) · · ·E+[pl1(xk)] · · ·E+[pl2(xk)] · · · pm(xim)],

which implies that

E+[p1(xi1) · · · ps(xis) · · · pm(xim)] = E+[p1(xi1) · · ·E+[ps(xis)] · · · pm(xim)].

�

8. De Finetti type theorem for monotone spreadability

8.1. Proof of Main Theorem 1.1. Now, we prove our main theorem for mono-
tone independence.

Theorem 8.1. Let (A, φ) be a nondegenerated W ∗-probability space and (xi)i∈Z be
a bilateral infinite sequence of selfadjoint random variables which generate A. Let
A+

k be the WOT closure of the nonunital algebra generated by {xi|i ≥ k}. Then the
following are equivalent:

(a) The joint distribution of (xi)i∈Z is monotonically spreadable.
(b) For all k ∈ Z, there exists a φ-preserving conditional expectation Ek : A+

k →
A+

tail such that the sequence (xi)i≥k is identically distributed and monotone
with respect to Ek. Moreover, Ek|Ak′ = Ek′ when k ≥ k′.

Proof. “(b) ⇒ (a)” follows from Proposition 5.17.
We will prove “(a) ⇒ (b)” by induction. Since the sequence is spreadable, it

suffices to prove (a) ⇒ (b) for k = 1:
By the results in the previous two sections, there exists a conditional expectation

Ek : A+
k → A+

tail such that the sequence (xi)i≥k is identically distributed with
respect to Ek and Ek|Ak′ = Ek′ when k ≥ k′. Actually, Ek is the restriction of E+

on A+
k . Since the sequence is spreadable, we just need to show that the sequence

(xi)i∈N is monotonically independent with respect to E1, i.e.

(6) E+[p1(xi1) · · · ps(xis) · · · pm(xim)] = E+[p1(xi1) · · ·E+[ps(xis)] · · · pm(xim)],

is−1 < is > is+1, i1 
= · · · 
= im, i1, . . . , im ∈ N and p1, . . . , pm ∈ A+
tail〈X〉.



1998 WEIHUA LIU

Now, we prove this equality by induction on the maximal index of {i1, . . . , im}:
When max{i1, . . . , im} = 1, then equality is true because is = 1 and the length of
the sequence (i1, . . . , im) can only be 1.

Suppose the equality holds for max{i1, . . . , im} = n. When max{i1, . . . , im} =
n+ 1, we have two cases.

Case 1 (is = n+ 1). In this case the equality follows Proposition 7.6.

Case 2 (is ≤ n). Suppose the number n+1 appears t times in the sequence, which
is {ilj}j = 1, . . . , t such that ilj = k and l1 < l2 < · · · < lt. Since is−1 < is > is+1,
is−1, is, is+1 
= n+ 1. By Proposition 7.6, we have

E+[p1(xi1) · · · pl1(xil1
) · · · ps−1(xis−1

)ps(xis)ps+1(xis+1
) · · · plt(xilt

) · · · pm(xim)]

= E+[p1(xi1) · · ·E+[pl1(xil1
)] · · · ps−1(xis−1

)ps(xis)ps+1(xis+1
)

· · ·E+[plt(xilt
)] · · · pm(xim)].

Notice that

p1(xi1) · · ·E+[pl1(xil1
)] · · · ps−1(xis−1

)ps(xis)ps+1(xis+1
) · · ·E+[plt(xilt

)]

· · · pm(xim) ∈ A+
tail〈X1, . . . , Xn〉,

so by induction, we have

E+[p1(xi1) · · ·E+[pl1(xil1
)] · · · ps−1(xis−1

)ps(xis)ps+1(xis+1
)

· · ·E+[plt(xilt
) · · · pm(xim)]

= E+[p1(xi1) · · ·E+[pl1(xil1
)] · · · ps−1(xis−1

)E+[ps(xis)]ps+1(xis+1
)

· · ·E+[plt(xilt
)] · · · pm(xim)]

= E+[p1(xi1) · · · pl1(xil1
) · · · ps−1(xis−1

)E+[ps(xis)]ps+1(xis+1
) · · · plt(xilt

)

· · · pm(xim)].

The last equality follows Proposition 7.6. This is our desired conclusion. �
8.2. Conditional expectation E−. We do not know whether we can extend E+

to the whole space A. But, the conditional expectation E− can be extended to
the whole algebra A if the bilateral sequence (xi)i∈Z is monotonically spreadable.
Given a, b, c ∈ A[−∞,∞], there exists L ∈ N such that a, b, c ∈ A[−L,L]. Therefore,

α−3L(b) ∈ A[−4L,−3L]. Since (x−4L, x−4L+1, . . .) is monotonically independent with

respect to E+, we have

φ(aE−[b]c)
= lim

n→∞
φ(aα−n(b)c)

= lim
n→∞,n>4L

φ(aα−n(b)c)

= lim
n→∞,n>4L

φ(E+[aα−n(b)c])

= lim
n→∞,n>4L

φ(E+[E+[a]α−n(b)E+[c]])

= lim
n→∞

φ(E+[a]α−n(b)E+[c])

= lim
n→∞

φ(E+[a]E−[b]E+[c]).

Since A is generated by countably many operators, by Kaplansky’s density theo-
rem, for all y ∈ A, there exists a sequence {yn}n∈N ⊂ A[−∞,∞] such that ‖yn‖ ≤ ‖y‖
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for all n and yn converges to y in WOT. Then, for all a, c ∈ A[−∞,∞] we have

lim
n→∞

φ(aE−[yn]c) = lim
n→∞

φ(E+[a]ynE
+[c]) = φ(E+[a]yE+[c]).

Therefore, E−[yn] converges to an element y′ pointwisely. Moreover, y′ depends
only on y. If we define E−[y] = y′, then we have

Proposition 8.2. Let (A, φ) be a nondegenerated W ∗-probability space and (xi)i∈Z

be a bilateral infinite sequence of selfadjoint random variables which generate A. If
(xi)i∈Z is monotonically spreadable, then the negative conditional expectation E−

can be extended to the whole algebra A such that

φ(aE−[y]b) = φ(E+[a]yE+[c])

for all y ∈ A and a, c ∈ A[−∞,∞]. Moreover, the extension is normal.

9. De Finetti type theorem for boolean spreadability

In this section, we assume that (A, φ) is a W ∗-probability space with a non-
degenerated normal state and A is generated by a bilateral sequence of random
variables (xi)i∈Z which is boolean spreadable with respect to φ.

Lemma 9.1. Let yi = x−i for all i ∈ Z. Then (yi)i∈Z is also boolean spreadable.

Proof. Since we have assumed that (xi)i∈Z, (xi)i=−n,...,n, (xi)i=1,...,2n+1 and
(xi)i=−1,...,−2n−1 have the same spreadability (we can shift indices). By Propo-
sition 3.22, it suffices to show that (yi)i=1,...,n is boolean spreadable for all n ∈ N.
Given a natural number k < n, assume the standard generators of Bi(n, k) are
{ui,j}i=1,...,n;j=1,...,k and assume invariant projection P.

Consider the matrix {u′
i,j}i=1,...,n;j=1,...,k such that u′

i,j = un+1−i,k+1−j . It is
obvious that the entries of the matrix are orthogonal projections and

n∑
i=1

u′
i,jP =

n∑
i=1

ui,k+1−jP = P.

Given j, j′, i, i′ ∈ N such that 1 ≤ j < j′ ≤ k and 1 ≤ i ≤ i′ ≤ n, we have
n+ 1− i ≤ n+ 1− i′ and k + 1− j < k + 1− j′. Therefore,

u′
i,ju

′
i′,j′ = un+1−i,k+1−jun+1−i′,k+1−j′ = 0.

This implies that {u′
i,j}i=1,...,n;j=1,...,k and P satisfy the universal conditions of

Bi(n, k). It follows that there exists a unital C∗-homomorphism Φ : Bi(n, k) →
Bi(n, k) such that

Φ(ui,j) = u′
i,j and Φ(P) = P.
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Let zi = xi−n−1 for i = 1, . . . , n. Since (xi)i∈Z are boolean spreadable, (zi)i=1,...,n

is boolean spreadable. Therefore, for i1, . . . , iL ∈ [k], we have

φ(yi1 · · · yiL)P
= φ(yn−k+i1 · · · yn−k+iL)P
= φ(x−n+k−i1 · · ·x−n+k−iL)P
= Φ(φ(zk+1−i1 · · · zk+1−iL)P)

= Φ(
n∑

j1,...,jL=1

φ(zj1 · · · zjL)Puj1,k+1−i1 · · ·ujL,k+1−iLP)

=
n∑

j1,...,jL=1

φ(zj1 · · · zjL)Pun+1−j1,i1 · · ·un+1−jL,iLP

=

n∑
j1,...,jL=1

φ(xj1−n−1 · · ·xjL−n−1)Pun+1−j1,i1 · · ·un+1−jL,iLP

=
n∑

j1,...,jL=1

φ(yn+1−j1 · · · yn+1−jL)Pun+1−j1,i1 · · ·un+1−jL,iLP

=
n∑

j1,...,jL=1

φ(yj1 · · · yjL)Puj1,i1 · · ·ujL,iLP,

which completes the proof. �

Proposition 9.2. (A, φ) is a W ∗-probability space with a nondegenerated normal
state, and A is generated by a bilateral sequence of random variables (xi)i∈Z and
(xi)i∈Z which are boolean spreadable. Then, E− and E+ can be extended to the
whole algebra A. Moreover, E− = E+.

Proof. Since (xi)i∈Z is boolean spreadable, (xi)i∈Z is monotonically spreadable. By
Proposition 8.2, E− can be extended to the whole algebra. By Lemma 9.1, (x−i)i∈Z

is also boolean spreadable and its negative-conditional expectation is exactly the
positive conditional expectation of (xi)i∈Z. Therefore, E

+ can also be extended to
the whole algebra A normally. Given a, b, c ∈ A[−∞,∞], by Proposition 8.2, we have

φ(aE−[b]c) = φ(E+[a]bE+[c])
= φ(E+[E+[a]bE+[c]])
= φ(E+[a]E+[b]E+[c])
= lim

n→∞
φ(αn(a)E+[b]E+[c])

= lim
n→∞

lim
m→∞

φ(αn(a)E+[b]αm(c)).

Notice that, for fixed n,m,

φ(αn(a)E+[b]αm(c)) = φ(αn(a)αL(b)αm(c))

for L ∈ N which is large enough. Since (x−i)i∈Z is monotonically spreadable, by
Theorem 1.1, (x−i)i∈Z is monotonically independent with respect to E−. Therefore,
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we have
φ(αn(a)E+[b]αm(c))

= φ(αn(a)αL(b)αm(c))
= φ(E−[αn(a)αL(b)αm(c)])
= φ(E−[αn(a)]E−[αL(b)]E−[αm(c)])
= φ(E−[a]E−[b]E−[c])
= φ(E−[E−[a]bE−[c]])
= φ(E−[a]bE−[c])
= φ(aE+[b]c)

and
φ(aE−[b]c) = φ(E+[a]bE+[c])

= lim
n→∞

lim
m→∞

φ(αn(a)E+[b]αm(c))

= lim
n→∞

lim
m→∞

φ(aE+[b]c)

= φ(aE+[b]c).

This implies that E+[b] = E−[b] for all b ∈ A[−∞,∞]. Since A is the WOT closure
of A[−∞,∞], the proof is complete. �

Corollary 9.3. (A, φ) is a W ∗-probability space with a nondegenerated normal
state, and A is generated by a bilateral sequence of random variables (xi)i∈Z and
(xi)i∈Z which are boolean spreadable. Then, the positive tail algebra and the negative
tail algebra of (xi)i∈Z are the same.

Now, we are ready to prove Theorem 1.3.

Theorem 9.4. Let (A, φ) be a nondegenerated W ∗-probability space and (xi)i∈Z be
a bilateral infinite sequence of selfadjoint random variables which generate A as a
von Neumann algebra. Then the following are equivalent:

(a) The joint distribution of (xi)i∈N is boolean spreadable.
(b) The sequence (xi)i∈Z is identically distributed and boolean independent with

respect to the φ-preserving conditional expectation E+ onto the nonunital
positive tail algebra of the (xi)i∈Z.

Proof. “(b) ⇒ (a)”. If the sequence (xi)i∈Z is identically distributed and boolean
independent with respect to a φ-preserving conditional expectation E, then the
sequence (xi)i∈Z is boolean exchangeable by Theorem 7.1 in [17]. According to the
diagram in section 4, (xi)i∈Z is boolean spreadable.

“(a) ⇒ (b)”. By Proposition 9.2, (xi)i∈Z is monotone with respect to E+,
(x−i)i∈Z is monotone with respect to E− and E+ = E−. Therefore,

E+[p1(xi1) · · · pm(xim)] = E+[p1(xi1)]E
+[p2(xi2) · · · pm(xim)] = · · ·

= E+[p1(xi1)]E
+[p2(xi2)] · · ·E+[pm(xim)]

whenever i1 
= · · · 
= im and p1, . . . , pm ∈ A+
tail〈X〉. The proof is complete. �
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