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PROJECTIVE DUALITY

AND A CHERN-MATHER INVOLUTION

PAOLO ALUFFI

Abstract. We observe that linear relations among Chern-Mather classes of
projective varieties are preserved by projective duality. We deduce the exis-
tence of an explicit involution on a part of the Chow group of projective space,
encoding the effect of duality on Chern-Mather classes. Applications include
Plücker formulae, constraints on self-dual varieties, generalizations to singular
varieties of classical formulas for the degree of the dual and the dual defect, for-
mulas for the Euclidean distance degree, and computations of Chern-Mather
classes and local Euler obstructions for cones.

1. Introduction

The conormal space of a projective variety V ⊆ Pn is intimately related with both
the dual variety V ∨ ⊆ Pn∨ and intersection-theoretic invariants of V , specifically
the Chern-Mather class of V . Not surprisingly, formulas for Chern-Mather classes
arise in the study of dual varieties, and invariants associated with the latter may
be expressed in terms of the former. The main result of this paper is a very
direct expression of this kinship: we will prove that the (push-forward to projective
space of the) Chern-Mather class of V ∨ may be obtained by applying an explicit
involution to the Chern-Mather class of V . While straightforward, this fact carries a
remarkable amount of information: we will present applications to Plücker formulae,
self-dual varieties, formulas for the dual defect of a variety, computations of Chern-
Mather classes and local Euler obstructions for cones, and more.

The main result of this note admits several equivalent formulations. Let V ⊆ Pn

be a projective variety over an algebraically closed field of characteristic 0. The
Chern-Mather class of V , introduced by R. MacPherson ([Mac74]), is a general-
ization to arbitrary varieties of the notion of the total Chern class of the tangent
bundle of a nonsingular variety. This note will be concerned with the push-forward
to Pn of the Chern-Mather class; we denote this push-forward by cMa(V ), and let
c−Ma(V ) = (−1)dimV cMa(V ). The first formulation expresses a basic compatibility
property of this signed Chern-Mather class under projective duality.

Theorem 1.1. Let V1, . . . , Vr � Pn be proper closed subvarieties and a1, . . . , ar
integers such that

r∑
k=1

ak c
−
Ma(Vk) = 0
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in A∗P
n. Then

r∑
k=1

ak c
−
Ma(V

∨
k ) = 0

in A∗P
n∨.

This result implies that we can define a ‘duality’ map on rational equivalence
classes α ∈ A∗Pn supported in dimension < n: write α as a linear combination of
signed Chern-Mather classes of proper subvarieties, α =

∑
i ai c

−
Ma(Vi), and then

define α∨ to be
∑

i ai c
−
Ma(V

∨
i ). This operation is well-defined by Theorem 1.1,

maps c−Ma(V ) to c−Ma(V
∨), and is uniquely determined by this property. The other

formulations of the result aim at making this duality map more explicit and effec-
tively computable.

For the second formulation, let H denote the hyperplane class and note that the
classes

(1.1) {Pk} := c−Ma(P
k) = (−1)k(1 +H)k+1Hn−k ∩ [Pn], k = 0, . . . , n,

form an additive basis of A∗P
n, so that every rational equivalence class may be

written as a combination of these classes.

Theorem 1.2. Let V � Pn be a projective variety. If

c−Ma(V ) =

n−1∑
i=0

ai {Pi},

then

c−Ma(V
∨) =

n−1∑
i=0

an−1−i {Pi}.

The integers ai may be expressed as certain explicit combinations of the degrees
of the components of cMa(V ):

ai =

dimV∑
j=i

(
j + 1

i+ 1

)
(−1)dimV−jcMa(V )j

(see §2.3 and Proposition 3.13). In fact, ai equals the i-th ‘rank’, or ‘polar class’,
of V (Remark 2.7). Theorem 1.2 amounts to an alternative viewpoint on the very
classical theory of these ranks: the ranks are interpreted here as the coefficients of
the signed Chern-Mather class in an additive basis for the Chow group of the ambi-
ent variety (projective space) obtained by considering signed Chern-Mather classes
of certain distinguished subvarieties (linear subspaces). It is tempting to guess that
a similar approach may yield tools analogous to the ranks in more general settings.
Also, the ranks are essentially obtained by applying to the Chern-Mather class of
a variety a change-of-basis matrix whose entries are the coefficients of the (signed)
Chern classes of the distinguished subvarieties in terms of their fundamental classes.
The square of this ‘Chern matrix’ is the identity (Proposition 2.8), a simple but
intriguing fact that is likely just a facet of a substantially more general result and
that seems (to us) less apparent from the classical point of view on ranks.

The third formulation of the main result amounts to an explicit form of the
duality introduced above. For a fixed n, consider the following Z-linear map defined
on polynomials p(t) ∈ Z[t]:

p �→ Jn(p), p(t) �→ p(−1− t)− p(−1)
(
(1 + t)n+1 − tn+1

)
.
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It is immediately verified that if deg p ≤ n, then degJn(p) ≤ n, and that J 2
n (p) = p

for polynomials p(t) ∈ (t).

Theorem 1.3. Let V � Pn be a projective variety. If

c−Ma(V ) = q(H) ∩ [Pn]

for a polynomial q of degree ≤ n in the hyperplane class H in Pn, then

c−Ma(V
∨) = Jn(q) ∩ [Pn∨],

where Jn(q) is viewed as a polynomial in the hyperplane class in Pn∨.

The equivalence of Theorems 1.1–1.3 is verified in §2.1, and then Theorem 1.1
is proven in §2.2. Corollary 2.3, proven along the way, has a direct application to
the Euclidean distance degree, and this is presented in §2.4 as a generalization of a
result from [DHO16].

Other applications illustrating the use of the main theorem are presented in §3.
With some exceptions, these results are standard; our main goal here is to illus-
trate that the simple ‘Chern-Mather involution’ defined above leads to very efficient
proofs of these facts, often providing at the same time a straightforward generaliza-
tion to the singular case. In §3.1 we recover a general form of the classical Plücker
formula for plane curves and give a transparent derivation of B. Teissier’s general-
ization of this formula from a result of R. Piene on Chern-Mather classes. (This is
essentially a re-packaging of Piene’s own proof in [Pie88]. Also see [Kle77, pp. 356–
357] for an equally transparent derivation of a generalization of this formula.)
In §3.2 we obtain constraints for a variety to be self-dual; for example, we show
(Proposition 3.9) that the singular locus of a self-dual hypersurface of degree d
in Pn has dimension ≥ n−3

2 . This simple statement may be new; we were not able
to find it in the literature. Proposition 3.13 in §3.3 recovers and generalizes to
singular varieties the Katz-Kleiman-Holme formula for the ‘dual defect’ and degree
of V ∨. The formula we obtain is equivalent to, but somewhat leaner than, the
generalization given in [MT07] (see Remark 3.15 for a comparison).

In §3.4 (Propositions 3.16, 3.17, and 3.20) we obtain formulas for the Chern-
Mather class of a cone and for the local Euler obstruction along the vertex of
a cone. These formulas also appear to be new, although they would likely be
straightforward consequences of other known results, such as the expression of the
local Euler obstruction as an alternating sum of multiplicities of polar varieties
from [LT81]. For instance, we prove that if V is a cone over a variety W , then the
local Euler obstruction of V at a point p on the vertex equals

EuV (p) =
dimW∑
j=0

(−1)jcMa(W )j ,

where cMa(W )j denotes the degree of the j-dimensional component of the Chern-
Mather class of W . (This answers a question of Jesse Kass.) Questions of this type
do not involve duality in their formulation, but duality offers an effective tool to
address them, relying directly on the Chern-Mather involution. The proofs given
here are direct and self-contained.

An alternative treatment of the connection between the Chern-Mather classes
of a projective variety V and of its dual V ∨ (including the more general case of
higher order duals in Grassmannians) may be found in [EOY97] (Theorem 4.5),
with focus on the relation between the corresponding constructible functions via
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the topological Radon transform studied by L. Ernström; cf. [Ern94]. (We should
also mention the formalism of [KS94, §9.7], particularly the ‘Fourier transform’ of
pp. 403ff.) The approach taken in this note is different: here we decompose the
Chern-Mather class of a variety as a linear combination of Chern-Mather classes
of a priori unrelated varieties, such as linear subspaces; no such decomposition
holds at the level of constructible functions. Working directly at the level of classes
results in a coarser theory but affords a greater level of flexibility, which plays a key
role in the applications presented in §3. The involution introduced here is also a
Radon-type transformation, but it is different from either the ‘homological Radon
transformation’ or the ‘homological Verdier Radon transformation’ of [EOY97, §3].
It would be interesting to study precise relationships between these notions.

2. Proofs

2.1. Theorems 1.1–1.3 are equivalent. The fact that Theorem 1.1 implies The-
orem 1.2 follows immediately from the fact that the dual of a dimension i linear
subspace of Pn is a dimension n− 1− i linear subspace of Pn∨: if

c−Ma(V ) =
n−1∑
i=0

ai{Pi},

then

c−Ma(V )−
n−1∑
i=0

aic
−
Ma(P

i) = 0,

so c−Ma(V
∨)−

∑n−1
i=0 aic

−
Ma(P

n−1−i) = 0 by Theorem 1.1, and Theorem 1.2 follows.

To see that Theorem 1.2 implies Theorem 1.3, observe that {Pk} = πk(H)∩ [Pn]
with

πk(H) = (−1)k
(
(1 +H)k+1Hn−k −Hn+1

)
a polynomial in H of degree ≤ n. If c−Ma(V ) = q(H) ∩ [Pn] as in the statement

of Theorem 1.3, and c−Ma(V ) =
∑

i ai{Pi}, then q(H) =
∑

i aiπi(H). Therefore
Jn(q) =

∑
i aiJn(πi) by linearity, while by Theorem 1.2

c−Ma(V
∨) =

∑
i

ai{Pn−i−1}.

It suffices then to observe that Jn(πk) ∩ [Pn] = {Pn−k−1}, that is,

Jn

(
(−1)k

(
(1 +H)k+1Hn−k −Hn+1

))
= (−1)n−k−1

(
(1 +H)n−kHk−1 −Hn+1

)
,

and this is an immediate consequence of the definition of Jn.
Finally, to verify that Theorem 1.3 implies Theorem 1.1, assume as in the state-

ment of Theorem 1.1 that
∑r

k=1 ak c
−
Ma(Vk) = 0. If qk ∈ (H) ⊆ A∗(P

n) are the

polynomials of degree ≤ n corresponding to the classes c−Ma(Vk), we have

r∑
k=1

ak c
−
Ma(Vk) = 0 =⇒

r∑
k=1

ak qk = 0 =⇒
r∑

k=1

ak Jn(qk) = 0

by linearity, and this implies
∑r

k=1 ak c
−
Ma(V

∨
k ) = 0 according to Theorem 1.3,

yielding Theorem 1.1.
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2.2. Proof of Theorem 1.1. We work over an algebraically closed field of charac-
teristic 0. This restriction on the characteristic is commonly adopted in dealing with
characteristic classes of singular varieties, and it is further needed for Lemma 2.1
below.

The (total) Chern-Mather class of V is defined by MacPherson as the push-
forward of the Chern class of the tautological bundle of the Nash blow-up of V
[Mac74, §2]. By construction the tautological bundle restricts to the pull-back
of the tangent bundle over the nonsingular part Vreg of V , and it follows that
the Chern-Mather class restricts to c(TVreg) ∩ [Vreg] on Vreg. In particular, the
Chern-Mather class agrees with c(TV ) ∩ [V ] if V is nonsingular. MacPherson’s
theory of Chern classes for singular varieties is based on a natural transformation
defined by associating the Chern-Mather class with the local Euler obstruction;
cf. [Mac74, §3]. (The local Euler obstruction was independently introduced and
studied by M. Kashiwara in the context of index theorems for holonomic D-modules
[Kas73].)

We will use an alternative formulation, given by C. Sabbah in terms of the
conormal variety [Sab85, §1.2.1]. For V a proper closed subvariety of Pn, we denote
by P(C∗

V P
n) ⊆ P(T ∗Pn) the projective conormal variety of V , obtained as the

Zariski closure of the projectivization of the conormal bundle of the nonsingular
part Vred of V . Letting g : P(C∗

V P
n) → V ↪→ Pn be the projection followed by the

inclusion in Pn, the Chern-Mather class of V pushes forward to the class

cMa(V ) = (−1)n−1−dimV c(TPn) ∩ g∗
(
c(O(1))−1 ∩ [P(C∗

V P
n)]

)
in A∗P

n (cf. [PP01, §1]). Here, O(1) is the restriction of the universal quotient

bundle over P(T ∗Pn). If V
ι
↪→ Pn is a nonsingular variety, then

cMa(V ) = ι∗(c(TV ) ∩ [V ]).

As in §1 we introduce a sign according to the dimension of V and let

c−Ma(V ) = (−1)n−1c(TPn) ∩ g∗
(
c(O(1))−1 ∩ [P(C∗

V P
n)]

)
∈ A∗P

n.

Now P(T ∗Pn) may be realized as the incidence correspondence I ⊆ Pn × Pn∨, a
divisor of class H + h (denoting by H, resp. h, the hyperplane classes in Pn,
resp. Pn∨, and their pull-backs). It is easy to verify that in this realization the
universal bundle O(1) agrees with the normal bundle to I in Pn × Pn∨. Further,
the projective conormal variety P(C∗

V P
n) may then be identified with the closure

of the correspondence

ΦV := {(p,H) | p ∈ Vreg and H ⊇ TpV }.
Therefore we may write

(2.1) c−Ma(V ) = (−1)n−1(1 +H)n+1 ∩ π1∗

(
1

1 +H + h
∩ [ΦV ]

)

where π1∗ is the restriction of the projection onto the first factor Pn × Pn∨ → Pn.
Switching factors gives the canonical isomorphism

(*) Pn × Pn∨ ∼= Pn∨ × Pn ∼= Pn∨ × Pn∨∨,

and we recall the following classical result, which holds under our blanket char-
acteristic 0 hypothesis. (In fact, this reflexivity holds as soon as the projection
ΦV → V ∨ is generically smooth; cf. [Kle86, p. 169].)
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Lemma 2.1. Via the identification (*), ΦV = ΦV ∨ .

Proof. See [Kle86] or, e.g., [Tev05, Theorem 1.7]. �

Then let Φ := ΦV = ΦV ∨ . The class of Φ in Pn × Pn∨ determines c−Ma(V ) by

(2.1), and c−Ma(V
∨) by the same token:

(2.2) c−Ma(V
∨) = (−1)n−1(1 + h)n+1 ∩ π2∗

(
1

1 +H + h
∩ [Φ]

)
where π2 is the restriction of the projection onto the second factor Pn×Pn∨ → Pn∨.
In order to prove Theorem 1.1 it suffices to prove that, conversely, [Φ] is determined
by the class c−Ma(V ) and depends linearly on this class.

This is a general fact, with no direct relation to Chern-Mather classes.

Proposition 2.2. Let γ =
∑n−1

i=0 γi [P
i] be a class in A∗P

n. Then the unique class
Γ in An−1I such that

γ = (−1)n−1(1 +H)n+1 ∩ π1∗

(
1

1 +H + h
∩ Γ

)
is

Γ =

n−1∑
i=0

(−1)iγi (H + h)iHn−i ∩ [I].

Proof. Since I ∼= P(T ∗Pn), every class Γ ∈ An−1I may be written uniquely as

Γ =
n−1∑
i=0

ai c1(O(1))i ·Hn−i ∩ [I],

by [Ful84, Theorem 3.3(b)]. Therefore, as a class in Pn × Pn∨,

Γ =

n−1∑
i=0

ai (H + h)i+1 ·Hn−i ∩ [Pn × Pn∨].

It follows that the push-forward

π1∗

(
1

1 +H + h
∩ Γ

)
is the coefficient of hn in the series expansion of

n−1∑
i=0

ai
(H + h)i+1 ·Hn−i

1 +H + h
,

and this is easily computed to be

n−1∑
i=0

ai
(−1)n−i−1Hn−i

(1 +H)n+1
.

Therefore

(−1)n−1(1 +H)n+1 ∩ π1∗

(
1

1 +H + h
∩ Γ

)
=

n−1∑
i=0

(−1)iai H
n−i.

Equating this class with γ gives the statement. �

Theorem 1.1 is an easy consequence of Proposition 2.2.
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Proof of Theorem 1.1. Assume
∑r

k=1 ak c
−
Ma(Vk) = 0. By Proposition 2.2,

r∑
k=1

ak [Φk] = 0,

where Φk = ΦVk
= ΦV ∨

k
. By (2.2) this implies that

∑r
k=1 ak c

−
Ma(V

∨
k ) = 0, com-

pleting the proof. �

The explicit relation between the Chern-Mather class of V and the conormal
cycle Φ = ΦV is the following.

Corollary 2.3. Let V be a proper closed subvariety of Pn. Then the class of the
conormal variety of V in Pn × Pn∨ is given by

(2.3) [ΦV ] =
n−1∑
j=0

(−1)dimV+jcMa(V )j (H + h)j+1Hn−j ∩ [Pn × Pn∨],

where cMa(V )j denotes the degree of the j-dimensional component of the Chern-

Mather class of V in Pn: cMa(V ) =
∑n−1

j=0 cMa(V )j [P
j ].

Proof. This follows from (2.1) and Proposition 2.2. (Note the correction in the sign
of the coefficients to account for the difference between cMa(V ) and c−Ma(V ).) �

2.3. The {Pi} coefficients. It is occasionally useful to extract explicit expressions
for the coefficients ai appearing in Theorem 1.2. It is in fact a simple matter
to obtain Poincaré duals of the classes {Pi}, and this yields expressions of the
coefficients for any given class α as intersection degrees of α with certain explicit
classes in Pn.

Lemma 2.4. For i = 0, . . . , n let

{Pi}∗ =
(−1)i

(1 +H)i+2
[Pn−i].

Then for all 0 ≤ i, j ≤ n,
∫
{Pi}∗ · {Pj} = δij.

Proof. The claim is that ∫
(−1)iHi

(1 +H)i+2
∩ {Pj} = δij

for 0 ≤ i, j ≤ n, i.e., that the degree of Hn in the expansion of

(−1)iHi

(1 +H)i+2
· (−1)j(1 +H)j+1Hn−j = (−1)i+j(1 +H)j−i−1Hn+i−j

is the Kronecker delta δij , and this is immediate. �

Proposition 2.5. Let α =
∑

j αj [P
j ] ∈ A∗P

n, and assume α =
∑

i ai{Pi}. Then

(2.4) ai =

∫
(−1)iHi

(1 +H)i+2
∩ α =

dimV∑
j=i

(
j + 1

i+ 1

)
(−1)jαj .

Proof. By Lemma 2.4,

ai =
n−1∑
j=0

ajδij =
n−1∑
j=0

aj

∫
{Pi}∗ · {Pj} =

∫
{Pi}∗ · α,
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giving the first equality. The second equality is obtained by computing the coeffi-

cient of Hn in (−1)iHi

(1+H)i+2

∑
j αjH

j . �

Example 2.6. Let V
ι
↪→ Pn be a nonsingular hypersurface of degree d. Then

c−Ma(V ) = (−1)n−1ι∗c(TV ) ∩ [V ] =

n−1∑
i=0

d(d− 1)n−1−i{Pi}.

Indeed,

(2.5) ι∗c(TV ) ∩ [V ] =
(1 +H)n+1 dH

1 + dH
∩ [Pn],

so by Proposition 2.5 the coefficient of {Pi} in c−Ma(V ) equals the coefficient of Hn

in the expansion of

(−1)n−1 (−1)iHi

(1 +H)i+2
· (1 +H)n+1 dH

1 + dH
= (−1)n−i−1 (1 +H)n−1−i dHi+1

1 + dH
,

i.e., the coefficient of Hn−i−1 in

(−1)n−i−1d
(1 +H)n−1−i

1 + dH
.

By [AF95], this equals the coefficient of Hn−i−1 in

(−1)n−i−1d (1 + (1− d)H)n−1−i,

and this is d(d− 1)n−1−i.
More generally, we see that if V is a hypersurface in Pn and dim(Sing V ) ≤ r,

and c−Ma =
∑n−1

i=0 ai{Pi}, then
ai = d(d− 1)n−1−i for i = r + 1, . . . , n− 1.

Indeed, the Chern-Mather class of V restricts to c(TVreg)∩ [Vreg] on the nonsingular
part Vreg, so it agrees with the Chern class of the virtual tangent bundle of V (given
by the right-hand side of (2.5)) in dimension > r.

For instance, this implies that the dual of a nonsingular hypersurface V of degree
d > 1 is a hypersurface of degree d(d − 1)n−1: indeed, the degree of V ∨ is the
coefficient of {Pn−1} in c−Ma(V

∨), hence (by Theorem 1.2) the coefficient of {P0} in

c−Ma(V ); hence (by Example 2.6) it equals d(d− 1)n−1.

Remark 2.7. In terms of conormal spaces, the equality c−Ma(V ) =
∑

i ai{Pi} is
equivalent to [ΦV ] =

∑
i ai[ΦPi ]. Now ΦPi = Pi×Pn−1−i as a subvariety of Pn×Pn;

thus
[ΦV ] = a0H

nh+ · · ·+ an−1Hhn.

Classically, the ai are known as the ranks (or polar classes) of V .

By Proposition 2.5, the ranks of a projective variety V � Pn may be obtained
from c−Ma(V ) =

∑
j αj [P

j ] by multiplying the n× n matrix M with entries

Mij = (−1)j−1

(
j

i

)
by the column vector (α0, . . . , αn−1)

t. We can now observe that this matrix is
also the matrix expressing the coefficients αj of the signed c−Ma(V ) in terms of the
ranks ai, that is, the n × n matrix whose (i, j) entry is the coefficient of [Pi−1]
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in c−Ma(P
j−1). In other words, this ‘matrix of Chern coefficients’ M satisfies the

following identity.

Proposition 2.8. For all n, M2 = Idn.

Proof. For all 1 ≤ i, j ≤ n,

n∑
k=1

(−1)k−1(−1)j−1

(
i

k

)(
k

j

)
=

n∑
k=1

(−1)k−j

(
i− j

k − j

)(
i

j

)
= δij

(
i

j

)
= δij

as needed. �

This intriguing fact appears to admit a nontrivial generalization to the setting
of flag varieties, which will be discussed elsewhere.

2.4. The Euclidean distance degree. The Euclidean distance degree of a variety
is the number of critical points of the squared distance to a general point outside
the variety. It is proven in [DHO16, Theorem 5.4] that if the incidence variety
Φ = ΦV , i.e., the projective conormal variety P(C∗

V P
n), does not meet the diagonal

Δ(Pn) ⊆ Pn × Pn, then the Euclidean distance degree of V equals the sum

(2.6) δ0(V ) + · · ·+ δn−1(V ),

where δi(V ) are the polar degrees of V (and hence equal the coefficients ai computed
in §2.3; cf. Remark 2.7):

[ΦV ] = δ0(V )Hnh+ · · ·+ δn−1(V )Hhn.

The quantity (2.6) is easy to compute in terms of the Chern-Mather class of V , by
means of Corollary 2.3.

Proposition 2.9. Let V be a proper subvariety of Pn of dimension m. Then
δi(V ) = 0 for i > m, and

δ0(V ) + · · ·+ δm(V ) =
m∑
j=0

(−1)m+jcMa(V )j (2
j+1 − 1),

where cMa(V )j is the degree of the j-dimensional component of the Chern-Mather
class of V in Pn.

Proof. Formally set H = h = 1 in the formula for [ΦV ] obtained in Corollary 2.3.
(The fact that Hn+1 = 0 accounts for the ‘−1’.) The vanishing of δi(V ) for i > m
is also immediate from (2.3). �

Proposition 2.9 generalizes to arbitrarily singular varieties the formula appearing
in Theorem 5.8 in [DHO16]: in the singular case, Chern-Mather classes play in this
formula the same role as ordinary Chern classes in the nonsingular case. The
right-hand side of this formula computes the Euclidean distance degree of any
(nonsingular or otherwise) closed subvariety V � Pn such that ΦV does not meet
the diagonal Δ(Pn) ⊆ Pn × Pn∨.

Other general formulas for the Euclidean distance degree in terms of degrees of
polar classes are given in [Pie15, §5]. The precise relation between polar classes and
Chern-Mather classes is studied in [Pie88].
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3. Examples and applications

3.1. Plücker formulae. Several formulas of Plücker type may be recast in terms
of Theorem 1.3; we recover the classical form of the Plücker formulae for plane
curves as an illustration.

Let C be a reduced, irreducible plane curve of degree d ≥ 2, and let p1, . . . , pr
be the singular points of C. Let mi, resp. μi, be the multiplicity, resp. Milnor
number, of C at pi. A standard computation gives

(3.1) c−Ma(C) = −(dH + (3d− d2 +
∑
i

(μi +mi − 1))H2) ∩ [P2].

Proof. The Chern-Mather class of C is the image of the local Euler obstruction
EuC via MacPherson’s natural transformation. Since the local Euler obstruction
of a curve equals the multiplicity function, we have EuC = �C +

∑
i(mi − 1)�pi

,
and therefore

cMa(C) = d[P1]+χ(C)[P0]+
∑
i

(mi−1)[pi] = (dH+(χ(C)+
∑
i

(mi−1))H2)∩ [P2]

after push-forward to P2. The Euler characteristic of C equals the Euler charac-
teristic of a nonsingular curve of degree d corrected by the presence of the singular
points; each point contributes by its Milnor number, and this gives the stated for-
mula. �

Let ρi = μi +mi − 1. For example, ρi = 2 if pi is a node, and ρi = 3 if pi is a
cusp.

Proposition 3.1. With notation as above:

(3.2) c−Ma(C
∨) = −

(
(d(d− 1)−

∑
i

ρi)H + (d(2d− 3)− 2
∑
i

ρi)H
2

)
∩ [P2].

Proof. Apply the involution in Theorem 1.3 to (3.1). �

As an immediate consequence, we recover a (well-known) general form of the
classical Plücker formula for plane curves.

Corollary 3.2. degC∨ = d(d− 1)−
∑

i ρi.

The coefficient of H2 in (3.2) also gives some information. Let q1, . . . , qs be
the singular points of C∨, and ρ∨j , j = 1, . . . , s, the corresponding ρ numbers.
Then (3.2) implies that∑

j

ρ∨j = R2 − (2d2 − 2d− 1)R+ d3(d− 2),

where R =
∑

i ρi.

Proof. Applying (3.1) to C∨ gives the identity

3(d(d− 1)−R)− (d(d− 1)−R)2 +
∑
j

ρ∨j = d(2d− 3)− 2R,

with the stated consequence. �
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The same conclusion may be drawn by applying biduality. For example, if C is
nonsingular so that R = 0, and C has b bitangents and f inflection points (counted
with appropriate multiplicities), this shows that 2b+ 3f = d3(d− 2).

More generally, R. Piene evaluates the contribution to the Chern-Mather class
of a hypersurface X in Pn due to isolated singularities pi ([Pie88, p. 25]):

(3.3) cMa(X) = cMa(Xg) +
∑
i

(−1)n(μX(pi) + μX∩Hi
(pi))[P

0],

where Xg is a nonsingular hypersurface of the same degree as X (so that cMa(Xg)
equals the push-forward of the ordinary total Chern class of Xg) and Hi is a general
hyperplane through pi. Therefore, with notation as in §1 we have

c−Ma(X) = c−Ma(Xg)−
∑
i

(μX(pi) + μX∩Hi
(pi)){P0},

and Theorem 1.1 implies

c−Ma(X
∨) = c−Ma(X

∨
g )−

∑
i

(μX(pi) + μX∩Hi
(pi)){Pn−1}.

Reading off the terms of dimension n− 1 in this identity (cf. Example 2.6) yields

(3.4) deg(X∨) = d(d− 1)n−1 −
∑
i

(μX(pi) + μX∩Hi
(pi)),

that is, B. Teissier’s generalized Plücker formula [Tei80, II.3], [Pie88, p. 16]. Of
course the nontrivial input here is Piene’s generalization (3.3) of the basic for-
mula (3.1); we are simply observing that Theorem 1.1 makes the derivation of (3.4)
from (3.3) particularly transparent. Teissier has shown that μX(p) + μX∩Hi

(p)
equals the multiplicity of the Jacobian ideal at p (in fact this is an ingredient in
Piene’s proof of (3.3)), and S. Kleiman generalized the Teissier-Plücker formula
to arbitrary varieties with isolated singularities by replacing this multiplicity with
the Buchsbaum-Rim multiplicity of the Jacobian matrix [Kle94, Theorem 2]. It
would be interesting to interpret Kleiman’s formula as a computation of a Chern-
Mather class; for complete intersections, the Buchsbaum-Rim multiplicity at p
equals μX(p) + μX∩Hi

(p) (see [Kle99, (3.3.1)]).
The same invariants appearing in the Plücker formula for curves allow us to gen-

eralize another result from [DHO16] by applying Proposition 2.9 to expression (3.1)
(or equivalently (3.2)).

Corollary 3.3. Let C ⊆ Pn be a reduced curve of degree d. Assume that C meets
the isotropic quadric transversally, and let R =

∑
i ρi be the invariant associated

with a general plane projection of C. Then the Euclidean distance degree of C is
given by

EDdegree(C) = d2 −R.

Here we also use the fact that the Chern-Mather class is preserved by a general
projection ([Pie88, Corollaire, p. 20] and cf. [DHO16, Corollary 6.1]). The ‘isotropic
quadric’ in Pn is the quadric with equation x2

0+ · · ·+x2
n = 0. For a discussion of the

requirement that C meet it transversally see [DHO16], particularly the comment
following Theorem 5.4. Corollary 3.3 generalizes [DHO16, Corollary 5.9] to singular
curves.
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3.2. Self-dual varieties. A variety V ⊆ Pn is self-dual if there exists an isomor-
phism Pn → Pn∨ restricting to an isomorphism V → V ∨. Theorem 1.3 implies
immediately that the Chern-Mather class of a self-dual plane curve is determined
by its degree.

Proposition 3.4. If C is a self-dual curve of degree d in P2, then

cMa(C) = d[P1] + d[P0].

Proof. If cMa(C) = (dH + eH2) ∩ [P2] and C is self-dual, then J2(dH + eH2) =
dH+eH2 by Theorem 1.3. By definition, J2(dH+eH2) = (2d−e)H+(3d−2e)H2.
Thus necessarily d = e for self-dual curves. �

Applying Proposition 2.9, we see that the Euclidean distance degree of a self-
dual curve of degree d (meeting the isotropic conic transversally) is 2d. There are
self-dual curves of all degrees d ≥ 2: for all 1 ≤ k ≤ d − 1, the curve yd = xkzd−k

is self-dual.
Analogous results can be obtained, e.g., for surfaces in P3.

Proposition 3.5. Let S ⊆ P3 be a self-dual surface of degree d. Then

cMa(S) = d[P2] + e[P1] + 2(e− d)[P0]

for some integer e.

Proof. According to Theorem 1.3, if cMa(S) = (dH + eH2 + fH3) ∩ [P3], then

cMa(S
∨) = ((3d− 2e+ f)H + (6d− 5e+ 3f)H2 + (4d− 4e+ 3f)H3) ∩ [P3]

(if 3d− 2e+ f �= 0). Equating these two expressions determines f . �

If S has isolated singularities, then necessarily e = −d(d−4), so this class equals

(3.5) cMa(S) = d[P2]− d(d− 4)[P1]− 2d(d− 3)[P0].

Examples include the nonsingular quadric, the cubic surface x3
0 = x1x2x3, and

the Kummer quartic surface ([GH78, p. 784]). According to (3.5), any self-dual
quartic surface with isolated singularities must have Chern-Mather class equal to
4[P2]−8[P0]. (Another candidate is a quartic surface with 7 ordinary double points
and 3 singularities of type A3 constructed in [Nar83].) This is a direct consequence
of Theorem 1.3 and does not require any specific knowledge of these surfaces. Sim-
ilarly, no further work is needed to establish the following result.

Corollary 3.6. The Euclidean distance degree of a self-dual surface of degree d
with isolated singularities in P3, transversal to the isotropic quadric, is d2 + d.

(Use Proposition 2.9.) With notation as in Proposition 3.5, the Euclidean dis-
tance degree of a self-dual surface with arbitrary singularities in P3 is 5d− e. The
Euclidean distance degree of a general nonsingular surface of degree d in P3 is
d3 − d2 + d.

For more refined considerations, we can again invoke Piene’s result (3.3): an
isolated singularity p corrects the Chern-Mather class of S by ρ(p) = μS(p) +
μS∩H(p), where H is a general plane through p. For example, ρ = 2 for an ordinary
double point.

Proposition 3.7. Let S ⊆ P3 be a self-dual surface of degree d with isolated sin-
gularities p1, . . . , ps. Then

∑
j ρ(pj) = d2(d− 2).
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Proof. We have

cMa(S) = d[P2] + d(4− d)[P1] + (d(d2 − 4d+ 6)−
∑
j

ρ(pj))[P
0]

by (3.3) (i.e., [Pie88, p. 25]). Comparing with (3.5), we see that∑
j

ρ(pj) = 2d(d− 3) + d(d2 − 4d+ 6) = d2(d− 2)

as stated. �

Corollary 3.8. A self-dual surface in P3 of degree d with only ordinary double
points as singularities must have d2(d − 2)/2 singular points. (In particular, d is
necessarily even.)

The Kummer surface is an example.
Analogous results may be obtained in higher dimension by the same method.

For hypersurfaces, one finds the following constraint.

Proposition 3.9. The singular locus of a self-dual hypersurface of degree d ≥ 3
in Pn has dimension ≥ n−3

2 .

Proof. Let X be a self-dual hypersurface of degree d, and assume that dim(SingX)
< n−3

2 ; that is, dim(SingX) ≤ n−1
2 − 2 if n is odd, and dim(SingX) ≤ n

2 − 2 if n
is even. We will show that this forces d ≤ 2. As we saw in Example 2.6, under the
stated conditions on SingX we must have

c−Ma(X) = d{Pn−1}+ d(d− 1){Pn−2}+ · · ·

+ d(d− 1)
n−1
2 −1{P

n−1
2 +1}+ d(d− 1)

n−1
2 {P

n−1
2 }+ d(d− 1)

n−1
2 +1{P

n−1
2 −1}

+ an−1
2 −2{P

n−1
2 −2}+ · · ·+ a0{P0}

if n is odd, and

c−Ma(X) = d{Pn−1}+ d(d− 1){Pn−2}+ · · ·
+ d(d− 1)

n
2 −1{Pn

2 }+ d(d− 1)
n
2 {Pn

2 −1}
+ an

2 −2{P
n
2 −2}+ · · ·+ a0{P0}

if n is even, for some integers ai. If X is self-dual, by Theorem 1.2 necessarily
ai = d(d− 1)i and{

d(d− 1)
n−1
2 −1 = d(d− 1)

n−1
2 +1 if n is odd,

d(d− 1)
n
2 −1 = d(d− 1)

n
2 if n is even.

Since

d(d− 1)
n−1
2 +1 = d(d− 1)

n−1
2 −1 ⇐⇒ d2(d− 1)

n−1
2 −1(d− 2) = 0

and

d(d− 1)
n
2 = d(d− 1)

n
2 −1 ⇐⇒ d(d− 1)

n
2 −1(d− 2) = 0,

we see that this cannot occur for d ≥ 3. �
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For example, the singular locus of a self-dual hypersurface of degree d ≥ 3 in P6

or P7 has dimension at least 2. One example in P7 is the Coble quartic, which is
singular along a 3-dimensional Kummer variety ([Pau02]). Applying Theorem 1.3
shows that the Chern-Mather class of the Coble quartic must be

4[P6]+16[P5]+48[P4]+(R+32)[P3]+(4R−136)[P2]+(6R−288)[P1]+(4R−208)[P0]

for some integer R. This integer may be determined by taking into account the
fact that the Kummer variety Y has degree 24 and that the Coble quartic X has
multiplicity 2 along it ([Pau02, §2.2]). It follows that the Segre class s(Y,X) pushes
forward to 48[P3] + · · · in P7, and [AB03, Proposition 2.2] then yields R = 48.
Assuming transversality with the isotropic quadric, Proposition 2.9 gives that the
Euclidean distance degree of the Coble quartic equals 164.

As another example, the hypersurface xn
0 = x1 · · ·xn is self-dual for every n, and

its singular locus has dimension n− 3.
In arbitrary codimension, one simple constraint holds for proper subvarieties

of even dimensional projective spaces. Let cMa(V )j denote the degree of the j-
dimensional component of cMa(V ).

Proposition 3.10. Let V be a self-dual subvariety of Pn with n even. Then∑dimV
j=0 (−1)jcMa(V )j = 0.

Proof. Let cMa(V ) = q(H) ∩ [Pn] with deg q(H) ≤ n. Then

dimV∑
j=0

(−1)jcMa(V )j = (−1)nq(−1).

By self-duality and Theorem 1.3, Jn(q) = q. It is immediately seen that Jn(q)(−1)
= (−1)n+1q(−1), and the result follows. �
3.3. Dual defect and the Katz-Kleiman-Holme formula. The (dual) defect
of a variety V ⊆ Pn is def V := n− 1 − dimV ∨, so that the defect of V is 0 when
V ∨ is a hypersurface. It is known that nonlinear nonsingular complete intersections
have 0 defect ([Kle77, p. 362]; also see [Ein86, Proposition 3.1]). In the nonsingular
case, the Katz-Kleiman-Holme formula [Tev05, Theorem 6.2] shows that the defect
is determined by the total Chern class of V . Theorem 1.3 implies that in general
the defect of V is determined by its Chern-Mather class and gives an effective way
to compute the defect and degree of V ∨.

Proposition 3.11. Let V be a proper closed subvariety of Pn, and let cMa(V ) =
q(H) ∩ [Pn] for a polynomial q of degree ≤ n in the hyperplane class H in Pn.
Then codimV ∨ equals the order of vanishing of Jn(q) at 0, and deg V ∨ equals the
absolute value of its trailing coefficient.

Proof. This is an immediate consequence of Theorem 1.3, since Jn((−1)dimV q) =
(−1)dimV Jn(q). �
Example 3.12 (Cf. [MT07, Example 4.2]). Consider the hypersurface X of P4

with equation
x2
0x1 + x0x2x4 + x3x

2
4 = 0

(this threefold and its dual are studied in [FP01, pp. 78–81]). The algorithm
in [Har17] may be used to compute the Chern-Mather class ofX from this equation:

cMa(X) = (3H + 8H2 + 9H3 + 6H4) ∩ [P4],
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so that c−Ma(X) = −(3H + 8H2 + 9H3 + 6H4) ∩ [P4]. Applying J4, we get

c−Ma(X
∨) = (3H2 + 5H3 + 4H4) ∩ [P4]

and we conclude that X∨ is a cubic surface.

The same result may be recast in terms closer to the Katz-Kleiman-Holme
formula by using Theorem 1.2. If c−Ma(V ) =

∑n−1
i=0 ai{Pi}, then c−Ma(V

∨) =∑n−1
i=0 an−1−i{Pi} by Theorem 1.2, and it follows that def V equals the minimum

i such that ai �= 0, and deg V ∨ = adef V . The ranks ai were computed in Proposi-
tion 2.5, and we get the following consequence.

Proposition 3.13. Let V be a proper closed subvariety of Pn, and let

(3.6) ai =
dimV∑
j=i

(
j + 1

i+ 1

)
(−1)dimV−jcMa(V )j

where cMa(V )j is the degree of the j-dimensional component of cMa(V ). Then def V
equals the minimum i such that ai �= 0, and deg V ∨ = adef V .

In the nonsingular case, this expression may be found in [Hol88, formula (3)].
In this reference it is stated that ‘The full content of formula (3) does not seem to
have an immediate generalization to the singular case.’ Proposition 3.13 provides
such a generalization. The first full treatment of the singular case was provided
by R. Piene ([Pie78]), who should be credited with the realization that, in dealing
with such issues, Chern-Mather classes play the same role in the singular case as
ordinary Chern classes in the nonsingular case (cf. [Pie88]).

Example 3.14. Consider the (singular) surface S with equation

16x2
0x

3
3 − 8x0x

2
1x

2
3 + 36x0x1x

2
2x3 − 27x0x

4
2 + x4

1x3 − x3
1x

2
2 = 0

in P3. Again using the algorithm in [Har17], we get

cMa(S) = c−Ma(S) = 5[P2] + 11[P1] + 7[P0].

From (3.6) we get a0 = 7− 2 · 11 + 3 · 5 = 0, a1 = −11 + 3 · 5 = 4, a2 = 5, and we
conclude that the dual of S is a quartic curve.

Remark 3.15. A formula for the degree of the dual variety at the same level
of generality as Proposition 3.13, and also using Chern-Mather classes, is given
in [MT07, Theorem 3.4]: according to this reference,

(3.7) deg V ∨ = (−1)dimV+r+1
r−1∑
j=0

(
r + 1

j

)
(r − j)

∫
V

Hj

(1 +H)r+1
∩ cMa(V )

where r = codimV ∨ = def V +1. At first blush this does not appear to be equivalent
to the statement of Proposition 3.13: for example, if dimV = 3 and def V ∨ = 2,
then with ci := cMa(V )i we have

a2 = −c2 + 4c3

according to (3.6), while the right-hand side of (3.7) equals

−3c0 + 4c1 − 4c2 + 4c3
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for r = 3. However, it can be shown that if a0 = · · · = ar−2 = 0, then the
right-hand side of (3.7) does equal ar−1. With dimV = 3, we have

a0 = −c0 + 2c1 − 3c2 + 4c3, a1 = c1 − 3c2 + 6c3,

and indeed −3c0 + 4c1 − 4c2 + 4c3 = −c2 + 4c3 if a0 = a1 = 0.
Expression (3.6) appears to be somewhat more efficient than (3.7), since it only

involves terms of the Chern-Mather class of dimension ≥ def V .

3.4. Chern-Mather classes of cones and local Euler obstruction at cone
points. Fix a subspace Pm of Pn, with m < n, and a complementary subspace
Λ = Pn−m−1. Let W be a proper subvariety of Pm, and let V be the cone over W
with vertex Λ. Duality considerations allow us to express the Chern-Mather class
of V in terms of the Chern-Mather class forW by means of the involution introduced
in §1.

Proposition 3.16. Let qW , resp. qV , be polynomials of degree less than m, resp.
n, such that

cMa(W ) = qW (H) ∩ [Pm], cMa(V ) = qV (H) ∩ [Pn].

Then

qV = Jn((−H)n−m · Jm(qW )).

The hypothesis that the vertex Λ be contained in a complementary subspace can
be relaxed; this will be pointed out at the end of the section.

Proof. The subspace dual to Λ ∼= Pn−m−1 in Pn∨ is naturally identified with Pm∨,
and it is easy to see that V ∨ coincides with W∨ in this subspace. (See, e.g.,
[Tev05, Theorem 1.23] for the case m = n− 1, from which the general case is easily
derived.) By Theorem 1.3,

c−Ma(V
∨) = Jn((−1)dimV qV ) ∩ [Pn∨]

and

c−Ma(W
∨) = Jm((−1)dimW qW ) ∩ [Pm∨] = (−1)dimWHn−m · Jm(qW ) ∩ [Pn∨].

Since these two classes coincide and Jn is an involution,

qV = J 2
n (qV ) = (−1)dimV−dimWJn(H

n−m · Jm(qW )).

The statement follows, since dimV − dimW = n−m. �

Explicitly,

(3.8) qV (H) = (1+H)n−mqW (H)+(−1)mqW (−1)Hm+1
(
(1 +H)n−m −Hn−m

)
.

There are analogous formulas expressing the Chern-Schwartz-MacPherson (CSM)
class of V in terms of the class of the CSM of W , and more generally the CSM
class of the join of two subvarieties W1, W2 in complementary subspaces in terms of
the CSM classes of W1 and W2 ([AM11, Theorem 3.13]; also cf. [BFK90]). Putting
these pieces of information together yields the following formula for the local Euler
obstruction of a cone singularity.
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Proposition 3.17. Let V be a cone over a subvariety W ⊆ Pm with vertex Λ in
a complementary subspace (as above). Let p ∈ Λ. Then the local Euler obstruction
EuV (p) equals

EuV (p) =

dimW∑
j=0

(−1)jcMa(W )j ,

where cMa(W )j denotes the degree of the j-dimensional component of cMa(W ).

Again, it is not necessary to require Λ to be contained in a complementary sub-
space; see Proposition 3.20. Proposition 3.17 is a consequence of Proposition 3.16
by means of a lemma which seems worth stating explicitly. In the situation de-
scribed above, let π : Pn � Λ → Pm be the projection, and let ϕ be a constructible
function defined on Pm. Let π∗ϕ be the constructible function on Pn defined by

π∗ϕ(p) =

{
0 if p ∈ Λ,

ϕ(π(p)) if p �∈ Λ.

Also, let qϕ, resp. qπ∗ϕ, be the polynomials of degrees ≤ m, resp. ≤ n, such that

c∗(ϕ) = qϕ(H) ∩ [Pm], c∗(π
∗ϕ) = qπ∗ϕ(H) ∩ [Pn].

Here c∗ is MacPherson’s natural transformation [Mac74]. For example c∗(�W ) =
cSM(W ) and c∗(EuW ) = cMa(W ) (cf. §2.2).
Lemma 3.18. With the above notation,

(3.9) qπ∗ϕ(H) = (1 +H)n−mqϕ(H).

Proof. By linearity we may assume that ϕ = �W for a subvariety W of Pm, and
therefore π∗ϕ = �V − �Λ, where V is the cone over W as above. By [AM11,
Theorem 3.13], the polynomial corresponding to cSM(V ) = c∗(�V ) equals

((qϕ(H) +Hm+1)(1 +H)n−m)(1 +H)n−m −Hn+1.

It follows that qπ∗ϕ is obtained from this polynomial by subtracting the polynomial
for �Λ, i.e., Hm+1((1 +H)n−m −Hn−m), and this yields the stated formula. �

A good interpretation (and, with due care, an alternative argument) for iden-
tity (3.9) is that MacPherson’s natural transformation preserves products ([Kwi92],
[Alu06]), and the factors 1 + H may be viewed as the cSM class of a linearly em-
bedded affine line.

Proof of Proposition 3.17. Recall that cMa(V ) = c∗(EuV ) (§2.2). The cone V is
the union of the vertex Λ and the inverse image π−1(W ). The restriction of EuV
to π−1(W ) equals π∗ EuW ; this follows for example from [Mac74, p. 426, 3]. The
restriction of EuV to Λ is constant, so it equals EuV (p). Thus

EuV = π∗ EuW +EuV (p)�Λ,
and therefore

(3.10) cMa(V ) = c∗(π
∗ EuW ) + EuV (p) c∗(�Λ).

Now Λ ∼= Pn−m−1 ⊆ Pn; therefore

c∗(�Λ) = c(TPn−m−1) ∩ [Λ] =
(
(1 +H)n−m −Hn−m

)
Hm+1 ∩ [Pn].

On the other hand, by Lemma 3.18,

c∗(π
∗ EuW ) = (1 +H)n−mqW (H).
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Therefore, identity (3.10) states that

qV (H) = (1 +H)n−mqW (H) + EuV (p)H
m+1

(
(1 +H)n−m −Hn−m

)
.

Comparing this identity with (3.8) proves that

EuV (p) = (−1)mqW (−1).

Finally,

qW (H) =
∑
j

cMa(W )jH
m−j ,

hence

(−1)mqW (−1) = (−1)m
∑
j≥0

cMa(W )j(−1)m−j =
∑
j≥0

(−1)jcMa(W )j

as needed. �

Example 3.19. The local Euler obstruction at the vertex of a cone in Pn over a
nonsingular curve of degree d and genus g in Pn−1 equals 2 − 2g − d. Indeed, the
Chern-Mather class of a nonsingular curve equals the Chern class of its tangent
bundle, so it pushes forward to d[P1] + (2 − 2g)[P0], and the formula follows from
Proposition 3.17.

If the curve is a plane curve, then 2−2g = 3d−d2, so the local Euler obstruction
at the vertex of a cone in P3 over a nonsingular plane curve of degree d equals 2d−d2,
in agreement with [Mac74, p. 426, 2].

It is natural to ask whether the hypothesis that the vertex Λ be in a comple-
mentary subspace may be relaxed. In the situation presented at the beginning of
this subsection, the codimension of W is bounded below by dimΛ+2. It turns out
that this is the only requirement needed for the results, provided that Λ is general.

Proposition 3.20. Let W ⊆ Pn be a closed subvariety of codimension ≥ r ≥ 2,
and let Λ ∼= Pr−2 ⊆ Pn be a general subspace. Let V be the cone over W with vertex
Λ. Also, let qW , resp. qV , be polynomials of degree less than n − r − 1, resp. n,
such that

cMa(W ) = Hr−1 qW (H) ∩ [Pn], cMa(V ) = qV (H) ∩ [Pn].

Then

qV = Jn((−H)r−1 · Jn−r+1(qW ))

and EuV (p) =
∑dimW

j=0 (−1)jcMa(W )j for all p ∈ Λ.

Proof. The Chern-Mather class is preserved under general projections ([Pie88,
Corollaire, p. 20]). Therefore, cMa(W ) = cMa(π(W )) as classes in Pn, where
π : Pn � Λ → Pn−dimΛ−1 is the projection (W ∩ Λ = 0 by dimension consider-
ations, since Λ is general). Since the cone over W with vertex Λ equals the cone
over π(W ) with vertex Λ, we may then replace W with π(W ). This reduces the
general statement to the case in which Λ is a complementary subspace, so the stated
formulas follow from Propositions 3.16 and 3.17. �

Example 3.21. Let C be a twisted cubic in P3, p a general point of P3, and V the
cone over C with vertex at p. Then Proposition 3.20 gives cMa(V ) = 3[P2]+5[P1]+
[P0] (which is confirmed by an explicit computation performed with the algorithm
in [Har17]) and EuV (p) = −1.
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[DHO16] Jan Draisma, Emil Horobeţ, Giorgio Ottaviani, Bernd Sturmfels, and Rekha R. Thomas,
The Euclidean distance degree of an algebraic variety, Found. Comput. Math. 16 (2016),
no. 1, 99–149, DOI 10.1007/s10208-014-9240-x. MR3451425

[Ein86] Lawrence Ein, Varieties with small dual varieties. I, Invent. Math. 86 (1986), no. 1,
63–74, DOI 10.1007/BF01391495. MR853445

[EOY97] Lars Ernström, Toru Ohmoto, and Shoji Yokura, On topological Radon transformations,
J. Pure Appl. Algebra 120 (1997), no. 3, 235–254, DOI 10.1016/S0022-4049(96)00047-3.
MR1468918

[Ern94] Lars Ernström, Topological Radon transforms and the local Euler obstruction, Duke
Math. J. 76 (1994), no. 1, 1–21, DOI 10.1215/S0012-7094-94-07601-1. MR1301184

[FP01] Gerd Fischer and Jens Piontkowski, Ruled varieties: An introduction to algebraic dif-
ferential geometry, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braun-
schweig, 2001. MR1876644

[Ful84] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete
(3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984.
MR732620

[GH78] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied
Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR507725

[Har17] Corey Harris, Computing Segre classes in arbitrary projective varieties, J. Symbolic
Comput. 82 (2017), 26–37, DOI 10.1016/j.jsc.2016.09.003. MR3608229

[Hol88] Audun Holme, The geometric and numerical properties of duality in projective algebraic
geometry, Manuscripta Math. 61 (1988), no. 2, 145–162, DOI 10.1007/BF01259325.
MR943533

[Kas73] Masaki Kashiwara, Index theorem for a maximally overdetermined system of linear
differential equations, Proc. Japan Acad. 49 (1973), 803–804. MR0368085

[Kle77] Steven L. Kleiman, The enumerative theory of singularities, Real and complex singular-
ities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff
and Noordhoff, Alphen aan den Rijn, 1977, pp. 297–396. MR0568897

[Kle86] Steven L. Kleiman, Tangency and duality, Proceedings of the 1984 Vancouver conference
in algebraic geometry, CMS Conf. Proc., vol. 6, Amer. Math. Soc., Providence, RI, 1986,
pp. 163–225. MR846021

http://www.ams.org/mathscinet-getitem?mr=2020555
http://www.ams.org/mathscinet-getitem?mr=1348792
http://www.ams.org/mathscinet-getitem?mr=2209219
http://www.ams.org/mathscinet-getitem?mr=2782886
http://www.ams.org/mathscinet-getitem?mr=1078099
http://www.ams.org/mathscinet-getitem?mr=3451425
http://www.ams.org/mathscinet-getitem?mr=853445
http://www.ams.org/mathscinet-getitem?mr=1468918
http://www.ams.org/mathscinet-getitem?mr=1301184
http://www.ams.org/mathscinet-getitem?mr=1876644
http://www.ams.org/mathscinet-getitem?mr=732620
http://www.ams.org/mathscinet-getitem?mr=507725
http://www.ams.org/mathscinet-getitem?mr=3608229
http://www.ams.org/mathscinet-getitem?mr=943533
http://www.ams.org/mathscinet-getitem?mr=0368085
http://www.ams.org/mathscinet-getitem?mr=0568897
http://www.ams.org/mathscinet-getitem?mr=846021


1822 PAOLO ALUFFI

[Kle94] Steven L. Kleiman, A generalized Teissier-Plücker formula, Classification of algebraic
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[PP01] Adam Parusiński and Piotr Pragacz, Characteristic classes of hypersurfaces and char-
acteristic cycles, J. Algebraic Geom. 10 (2001), no. 1, 63–79. MR1795550

[Sab85] C. Sabbah, Quelques remarques sur la géométrie des espaces conormaux, Astérisque
130 (1985), 161–192. MR804052

[Tei80] Bernard Teissier, Résolution simultanée, II, in M. Demazure, H. C. Pinkham, and
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