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SEQUENTIAL TESTING PROBLEMS

FOR BESSEL PROCESSES

PETER JOHNSON AND GORAN PESKIR

Abstract. Consider the motion of a Brownian particle that takes place either
in a two-dimensional plane or in three-dimensional space. Given that only the
distance of the particle to the origin is being observed, the problem is to detect
the true dimension as soon as possible and with minimal probabilities of the
wrong terminal decisions. We solve this problem in the Bayesian formulation

under any prior probability of the true dimension when the passage of time is
penalised linearly.

1. Introduction

Imagine the motion of a Brownian particle that takes place either in a two-
dimensional plane or in three-dimensional space. Assuming that only the distance
of the particle to the origin is being observed (Figure 1), the problem is to detect
the true dimension as soon as possible and with minimal probabilities of the wrong
terminal decisions. The purpose of the present paper is to derive the solution to
this problem in the Bayesian formulation under any prior probability of the true
dimension when the passage of time is penalised linearly.

Denoting the distance of the Brownian particle to the origin by X , it is well
known that X may be viewed as a Bessel process of dimension 2 or 3 . We study
the problem above by embedding it into the more general setting where a Bessel
process X of dimension δ0 ≥ 2 or δ1 > δ0 is being observed. In these cases 0
is known to be an entrance boundary point for X viewed as a diffusion process in
[0,∞) where X is also known to be recurrent when δ0 = 2 and transient when
δ1 > 2 . Our methods are developed to treat these cases, and we will leave other
cases of δ0 ∈ [0, 2) with δ1 > δ0 open for future development.

The loss to be minimised over sequential decision rules is expressed as the linear
combination of the expected running time and the probabilities of the wrong ter-
minal decisions with prior probabilities of the two dimensions given and fixed. This
problem formulation of sequential testing dates back to [14] and has been exten-
sively studied to date (see [3] and the references therein). The linear combination
represents the Lagrangian, and once the optimisation problem has been solved in
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Figure 1. Distance to the origin of a Brownian particle whose
simulated motion takes place either in a two-dimensional plane or
in three-dimensional space.

this form it will also lead to the solution of the constrained problem where upper
bounds are imposed on the probabilities of the wrong terminal decisions. Standard
arguments show that the initial optimisation problem can be reduced to an opti-
mal stopping problem for the posterior probability process Π of δ1 given X .
A canonical example is the Brownian motion process with one or another constant
drift (see [5] and [11]). This problem has also been solved in finite horizon (see
[2] and the references therein). Books [12, Section 4.2] and [8, Section 21] contain
expositions of these results and provide further details and references. In all these
problems, however, the signal-to-noise ratio (defined as the difference between the
two drifts divided by the diffusion coefficient) is constant. This is no longer the
case in the sequential testing problem of the present paper, and to our knowledge
this is the first time that such a problem has been solved in the literature.

A more general problem formulation for one-dimensional diffusion processes hav-
ing one or another non-constant drift has been considered in the recent paper [3].
This reference serves as a starting point for the present paper, and for future refer-
ence we will also make explicit in the analysis below which arguments/results are
applicable/valid in the general case as well. To recognise the Markovian structure
in the optimal stopping problem referred to above one considers the posterior prob-
ability process Π of δ1 given X , as well as the posterior probability ratio process
Φ of δ1 given X , in addition to the observed process X . These considerations
take place under the probability measure Pπ = πP1+(1−π)P0 where π is a prior
probability of δ1 being true and 1−π is a prior probability of δ0 being true. The
process Φ happens to coincide (up to the initial point) with the likelihood ratio
process L of P1 and P0 given X that provides an explicit link to the observed
process X . The two processes Π and Φ are in one-to-one correspondence so
that one of them is Markov if and only if the other is Markov. This is the case when
the signal-to-noise ratio is constant. On the other hand, if the signal-to-noise ratio
is not constant, then both Π and Φ fail to be Markov processes. To remedy the
situation, as noted in [3], one needs to account for X and then both (Π,X) and
(Φ,X) become Markov processes. This shows that if the signal-to-noise ratio is not
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constant, as in the sequential testing problem of the present paper, then the opti-
mal stopping problem under consideration is inherently/fully two-dimensional and
hence more difficult. Finding and fully characterising the solution to this problem
is the main/principal result of the present paper.

The exposition of the material is organised as follows. In Section 2 we formulate
the optimal stopping problem and recall the stochastic differential equations for
Π , Φ , L and X from [3, Section 2]. The stochastic differential equations
for Π , Φ and X are expressed in terms of the innovation process (standard
Brownian motion) so that the stochastic differential equations for both (Π,X)
and (Φ,X) are fully coupled. This makes the analysis of the optimal stopping
problem more complicated. In Section 3 we show that a measure change from
Pπ to P0 simplifies the matters in that the stochastic differential equations for
both (Π,X) and (Φ,X) become uncoupled in the second component. This is
an important step that abandons the innovation process and makes the subsequent
analysis possible. The resulting optimal stopping problem for (Φ,X) is expressed
in Bolza form, and in Section 4 we disclose its Lagrange and Mayer formulations
(see [8, Section 6] for the terminology). The Lagrange form is expressed in terms
of the local time of Φ that makes the problem more intuitive.

In Section 5 we make use of the fact that a Bessel process of dimension δ ≥ 2
can be time changed into a geometric Brownian motion. This has a dramatic ef-
fect on the problem since the stochastic differential equations for the time-changed
process (Φ̂, X̂) get completely decoupled and moreover reduce to two geometric
Brownian motions driven by the same standard Brownian motion. To understand
this phenomenon within a more general context, one may note that since the sto-
chastic differential equations for the process (Φ,X) are also driven by the same
Brownian motion, we know that the resulting infinitesimal generator equation must
be of parabolic type. Reducing this equation to its canonical form by means of a
diffeomorphic transformation replaces the process (Φ,X) by the process (U,Φ)
where U is a process of bounded variation. It turns out moreover that the process
U coincides with the additive functional A which is used to time change (Φ,X)

to (Φ̂, X̂) through its inverse. Making use of the diffeomorphic transformation in

the Bolza problem for (Φ̂, X̂) or solving the stochastic differential equations for Φ̂

and X̂ explicitly, we then show that this problem reduces to an optimal stopping
problem for the time-space process (t+s, Φ̂s)s≥0 where the initial time t is ex-
pressed in terms of the initial points of Φ0 = π/(1−π) and X0 = x and as such
can also be negative. The resulting optimal stopping problem for the time-space
process is also expressed in Bolza form, and in Section 6 we disclose its Lagrange
and Mayer formulations.

Exploiting the equivalence of the optimal stopping problems for (Φ̂, X̂) and

(t+s, Φ̂s)s≥0 in Section 7 we prove the existence of the optimal stopping boundaries,
describe their shape, and derive their asymptotic behaviour at zero and infinity. The
proof of their monotonicity endorses by different/rigorous means the implication
stated in [3, Lemma 2.1] that the optimal stopping boundaries are monotone if
the signal-to-noise ratio is monotone. Making use of the established techniques for
the treatment of time-space optimal stopping problems, in Section 8 we disclose
the free-boundary problems which stand in one-to-one correspondence with the
optimal stopping problems. Further, in Section 9 we show that the optimal stopping
boundaries can be characterised as the unique solution to a coupled system of
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nonlinear Volterra integral equations. These equations can be used to find the
optimal stopping boundaries numerically.

2. Formulation of the problem

In this section we formulate the sequential testing problem under consideration
and recall stochastic differential equations for the underlying stochastic processes
(cf. [3, Section 2]). These traditional formulations will then be evaluated under a
change of measure in the next section.

1. We consider a Bayesian formulation of the problem where it is assumed that
one observes a sample path of the Bessel process X of dimension δ0 ≥ 2 or
δ1 > δ0 with prior probabilities 1−π and π respectively. The problem is to
detect the true dimension as soon as possible and with minimal probabilities of the
wrong terminal decisions. This problem belongs to the class of sequential testing
problems as discussed in Section 1 above.

2. Standard arguments imply that the previous setting can be realised on a
probability space (Ω,F ,Pπ) with the probability measure Pπ decomposed as

(2.1) Pπ = (1−π)P0 + πP1

for π ∈ [0, 1] where Pi is the probability measure under which the observed
Bessel process X has dimension δi for i = 0, 1 . This can be formally achieved
by introducing an unobservable random variable θ taking values 0 and 1 with
probabilities 1−π and π under Pπ and assuming that X after starting in [0,∞)
solves the stochastic differential equation

(2.2) dXt =
[
μ0(Xt) + θ

(
μ1(Xt)−μ0(Xt)

)]
dt+ σ(Xt) dBt

driven by a standard Brownian motion B that is independent from θ under Pπ
where we set

(2.3) μ0(x) =
δ0−1

2x
& μ1(x) =

δ1−1

2x
& σ(x) = 1

for x > 0 and π ∈ [0, 1] . We will often assume below that X starts at a strictly
positive point and we will see below that this also yields a solution when X starts
at zero.

3. Being based upon the continued observation of X , the problem is to test
sequentially the hypotheses H0 : θ = 0 and H1 : θ = 1 with a minimal loss. For
this, we are given a sequential decision rule (τ, dτ ) , where τ is a stopping time of
X (i.e. a stopping time with respect to the natural filtration FX

t = σ(Xs | 0 ≤ s ≤
t) of X for t ≥ 0 ), and dτ is an FX

τ -measurable random variable taking values
0 and 1 . After stopping the observation of X at time τ , the terminal decision
function dτ takes value i if and only if the hypothesis Hi is to be accepted for
i = 0, 1 . With constants a > 0 and b > 0 given and fixed, the problem then
becomes to compute the risk function

(2.4) V (π) = inf
(τ,dτ )

Eπ

[
τ + aI(dτ = 0, θ = 1) + bI(dτ = 1, θ = 0)

]

for π ∈ [0, 1] and find the optimal decision rule (τ∗, d
∗
τ∗) at which the infimum in

(2.4) is attained. Note that Eπ(τ ) in (2.4) is the expected waiting time until the
terminal decision is made, and Pπ(dτ = 0, θ = 1) and Pπ(dτ = 1, θ = 0) in (2.4)
are probabilities of the wrong terminal decisions respectively.
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4. To tackle the sequential testing problem (2.4) we consider the posterior prob-
ability process Π = (Πt)t≥0 of H1 given X that is defined by

(2.5) Πt = Pπ(θ = 1 | FX
t )

for t ≥ 0 . Noting that Pπ(dτ =0, θ=1) = Eπ[(1−dτ )Πτ ] and Pπ(dτ =1, θ=0) =

Eπ[dτ (1−Πτ )] , and defining d̃τ = I(aΠτ ≥ b(1−Πτ )) for any given (τ, dτ ) , it is
easily seen that the problem (2.4) is equivalent to the optimal stopping problem

(2.6) V (π) = inf
τ

Eπ

[
τ +M(Πτ )

]
where the infimum is taken over all stopping times τ of X and M(π) = aπ ∧
b(1−π) for π ∈ [0, 1] . Letting τ∗ denote the optimal stopping time in (2.6) and
setting c = b/(a+b) , these arguments also show that the optimal decision function
in (2.4) is given by d∗τ∗ = 0 if Πτ∗ < c and d∗τ∗ = 1 if Πτ∗ ≥ c . Thus to solve
the initial problem (2.4) it is sufficient to solve the optimal stopping problem (2.6).
If the signal-to-noise ratio defined by

(2.7) ρ(x) =
μ1(x)−μ0(x)

σ(x)

is constant for x > 0 , then Π is known to be a one-dimensional Markov (diffusion)
process so that the optimal stopping problem (2.6) can be tackled using established
techniques both in infinite and finite horizon (see [8, Section 21]). Note that this
is no longer the case in the setting of the present problem since from (2.3) we see
that

(2.8) ρ(x) =
γ

x
�= constant

for x > 0 where we set γ = (δ1−δ0)/2 .

5. To connect the process Π to the observed process X we consider the like-
lihood ratio process L = (Lt)t≥0 defined by

(2.9) Lt =
dP1,t
dP0,t

where P0,t and P1,t denote the restrictions of the probability measures P0 and
P1 to FX

t for t ≥ 0 . By the Girsanov theorem one finds that

(2.10) Lt = exp
(∫ t

0

μ1(Xs)−μ0(Xs)

σ2(Xs)
dXs −

1

2

∫ t

0

μ2
1(Xs)−μ2

0(Xs)

σ2(Xs)
ds
)

for t ≥ 0 . A direct calculation based on (2.1) shows that the posterior probability
distribution ratio process Φ = (Φt)t≥0 of θ given X that is defined by

(2.11) Φt =
Πt

1−Πt

can be expressed in terms of L (and hence X as well) as

(2.12) Φt = Φ0 Lt

for t ≥ 0 where Φ0 = π/(1−π) . Note that Lt in (2.10) is expressed in terms of a
stochastic integral with respect to X and as such may not be an explicit functional
of the observed sample path of X up to time t . We will see in Section 7 below
that such an explicit functional can be determined and that this issue is closely
related to the parabolic nature of the underlying partial differential equation.
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6. To derive stochastic differential equations for the posterior processes Π and
Φ one may apply Itô’s formula in (2.10) to find that

(2.13) dLt =
μ1(Xt)−μ0(Xt)

σ2(Xt)
Lt

[
dXt − μ0(Xt) dt

]

with L0 = 1 . Further applications of Itô’s formula in (2.11) and (2.12) then show
that

dΠt = ρ(Xt)Πt(1−Πt) dB̄t,(2.14)

dΦt = ρ2(Xt)
Φ2
t

1+Φt
dt+ ρ(Xt)Φt dB̄t(2.15)

upon noting that X solves

(2.16) dXt =
[
μ0(Xt) +Πt

(
μ1(Xt)−μ0(Xt)

)]
dt+ σ(Xt) dB̄t

where B̄ = (B̄t)t≥0 is the innovation process defined by

(2.17) B̄t =

∫ t

0

dXs

σ(Xs)
−

∫ t

0

[ μ0(Xs)

σ(Xs)
+Πs

μ1(Xs)−μ0(Xs)

σ(Xs)

]
ds

for t ≥ 0 from where we see by Lévy’s characterisation theorem that B̄ is a
standard Brownian motion with respect to (FX

t )t≥0 under Pπ for π ∈ [0, 1] .

7. From (2.14) and (2.15) it is evident that Π and Φ cannot be Markov
processes unless the signal-to-noise ratio ρ defined in (2.7) is constant. If ρ is
not constant such as in (2.8) above, then one needs to look at (2.14)+(2.16) and
(2.15)+(2.16) as two systems of stochastic differential equations for the pairs of pro-
cesses (Π,X) and (Φ,X) respectively. It is well known (see e.g. [10, pp. 158–163])
that when these systems have a unique weak solution then (Π,X) and (Φ,X) are
(time-homogeneous) strong Markov processes under Pπ for π ∈ [0, 1] . Recalling
known sufficient conditions for the existence and uniqueness of weak solutions (see
e.g. [10, pp. 166–173]) we see that this is the case whenever x �→ μ0(x) , x �→ μ1(x)
and x �→ σ(x) are continuous with μ0(x) �= μ1(x) and σ(x) > 0 for all x in the
state space of X (possibly excluding entrance boundary points). Note that these
conclusions are not confined to the setting of Bessel processes but hold generally
in the sequential testing problems for diffusion processes X solving (2.2) when
the drift equals either μ0 or μ1 depending on the outcome of the unobservable
random variable θ .

8. The preceding considerations show that the optimal stopping problem (2.6) is
inherently/fully two-dimensional with the pairs of processes (Π,X) and (Φ,X)
solving (2.14)+(2.16) and (2.15)+(2.16) being strong Markov when (2.8) holds.
This fact makes the subsequent analysis of these problems more challenging than
when the signal-to-noise ratio ρ defined in (2.7) is constant. The analysis of (2.6)
performed in [3] is based on the stochastic differential equations (2.14)+(2.16) and
(2.15)+(2.16) under the probability measure Pπ for π ∈ [0, 1] . In this case one
sees that these two systems of stochastic differential equations are fully coupled (as
both Π and X as well as Φ and X enter both (2.14) and (2.16) as well as
(2.15) and (2.16) respectively). This makes the analysis of (2.6) more involved. In
the next section we will see that a change of measure argument simplifies the setting
and decouples the systems (2.14)+(2.16) and (2.15)+(2.16) in the second equation
so that the analysis of (2.6) becomes easier and more penetrating. This change of
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measure argument is not confined to the Bessel process setting and holds in general.
Moreover, another major difficulty encountered in [3] is that both Π and X as
well as Φ and X enter the diffusion coefficient in (2.14) and (2.15) respectively.
This makes the use of comparison theorems for the systems of stochastic differential
equations (2.14)+(2.16) and (2.15)+(2.16) more challenging. We will see in Section
5 below that time change arguments remove the dependence of the diffusion coef-
ficient on the process X in both systems and in fact completely decouple the two
equations in both systems. This change of time argument is confined to the Bessel
process setting, and it will enable us in Section 7 to reduce the optimal stopping
problem (2.6) to a solvable form.

3. Measure change

In this section we show that changing the measure Pπ for π ∈ [0, 1] to P0 in the
optimal stopping problem (2.6) above provides crucial simplifications of the setting
which makes the subsequent analysis possible. The change of measure arguments
are presented in the proof of Lemma 1. Recalling that the systems of stochastic
differential equations (2.14)+(2.16) and (2.15)+(2.16) are equivalent, our focus in
the sequel will be on the system (2.15)+(2.16) for the pair of processes (Φ,X)
after showing that this system takes a simpler form under the new measure P0 .
This is then followed by a reformulation of the optimal stopping problem (2.6) in
terms of (Φ,X) under the new measure P0 in Proposition 2 below.

1. In the sequel we let Pπ,τ denote the restriction of the measure Pπ to FX
τ

for π ∈ [0, 1] where τ is a stopping time of X .

Lemma 1. The identity

(3.1)
dPπ,τ
dP0,τ

=
1−π

1−Πτ

holds for all stopping times τ of X and all π ∈ [0, 1) .

Proof. A standard rule for the Radon-Nikodym derivatives based on (2.1) gives

Πτ = Pπ(θ=1 | FX
τ ) = (1−π)P0(θ=1 | FX

τ )
dP0,τ
dPπ,τ

+ π P1(θ=1 | FX
τ )

dP1,τ
dPπ,τ

(3.2)

= π
dP1,τ
dPπ,τ

for any τ and π as above given and fixed since P0(θ=1) = 0 and P1(θ=1) = 1 .
Using the identity (2.1) again this shows that

(3.3)
dPπ,τ
dP1,τ

= π + (1−π)
dP0,τ
dP1,τ

=
π

Πτ

from where by (2.9) we see that

(3.4) Lτ =
dP1,τ
dP0,τ

=
1−π

π

Πτ

1−Πτ

as stated in (2.11) and (2.12). From (3.3) and (3.4) we find that

(3.5)
dPπ,τ
dP0,τ

=
dPπ,τ
dP1,τ

dP1,τ
dP0,τ

=
π

Πτ

1−π

π

Πτ

1−Πτ
=

1−π

1−Πτ

as claimed in (3.1), and the proof is complete. �
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2. From (2.12) and (2.13) we see that the stochastic differential equations (2.15)
and (2.16) for (Φ,X) under the measure P0 simplify to read

dΦt = ρ(Xt)Φt dBt,(3.6)

dXt = μ0(Xt) dt+ σ(Xt) dBt,(3.7)

where (3.7) follows from (2.2) upon recalling that θ equals 0 under P0 . Recall
that ρ in (3.6) is given by (2.7) above, and μ0 and σ in (3.7) are given in (2.3)
above. The stochastic differential equations (3.6)+(3.7) also hold in general under
P0 whenever μ0 �= μ1 and σ > 0 in (2.12) are continuous, and for the reasons
stated at the end of Section 2 in this case we know that (Φ,X) is a strong Markov
process under P0 . Note also from (2.10) and (2.12) with (3.7) that under P0 we
have

(3.8) Φt = Φ0 exp
(∫ t

0

ρ(Xs) dBs −
1

2

∫ t

0

ρ2(Xs) ds
)

for t ≥ 0 . The stochastic differential equation (2.14) for the process Π takes a
slightly more complicated form under the measure P0 , and given that this equation
is equivalent to (3.6) due to (2.11) we will not state it explicitly. Thus our focus in
the sequel will be on the system (3.6)+(3.7) for the pair of processes (Φ,X) under
the measure P0 .

3. We now show that the optimal stopping problem (2.6) admits a transparent
reformulation under the measure P0 in terms of the process Φ solving (3.6) with
(3.7). Recall that Φ starts at Φ0 = π/(1−π) and this dependence on the initial
point will be indicated by a superscript to Φ when needed.

Proposition 2. The value function V from (2.6) satisfies the identity

(3.9) V (π) = (1−π) V̂ (π)

where the value function V̂ is given by

(3.10) V̂ (π) = inf
τ

E0

[ ∫ τ

0

(
1+Φ

π/(1−π)
t

)
dt+ M̂

(
Φπ/(1−π)
τ

)]

for π ∈ [0, 1) with M̂(ϕ) = aϕ ∧ b for ϕ ∈ [0,∞) and the infimum in (3.10) is
taken over all stopping times τ of X .

Proof. With π ∈ [0, 1) given and fixed, and dropping the superscript from Φ in
the sequel for simplicity, by the monotone and dominated convergence theorems it
is enough to show that

(3.11) Eπ

[
τ+M(Πτ )

]
= (1−π)E0

[ ∫ τ

0

(
1+Φt

)
dt+ M̂

(
Φτ

)]

for all bounded stopping times τ of X . For this, suppose that such a stopping
time τ is given and fixed, and note by (3.1) that

Eπ

[
τ+M(Πτ )

]
= (1−π)E0

[ τ

1−Πτ
+

M(Πτ )

1−Πτ

]
(3.12)

= (1−π)E0

[
τ (1+Φτ ) + M̂(Φτ )

]
where in the final equality we use (2.11) above. Integration by parts then gives

(3.13) t Φt =

∫ t

0

Φs ds+

∫ t

0

s dΦs
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where the final term defines a continuous local martingale in view of (3.6) above.
Making use of a localising sequence of stopping times for this local martingale if
needed and applying the optional sampling theorem, we find from (3.13) that

(3.14) E0

(
τ Φτ

)
= E0

(∫ τ

0

Φt dt
)
.

Inserting this back into (3.12) we obtain (3.11) as claimed, and the proof is complete.
�

4. Note that the identities (3.9) and (3.10) are not confined to the setting of
Bessel processes but hold generally in the sequential testing problems for diffusion
processes X solving (2.2) when the drift equals either μ0 or μ1 depending on
the outcome of the unobservable random variable θ . If ρ is not constant such as
in (2.8) above, then to tackle the resulting optimal stopping problem (3.10) for the
strong Markov process (Φ,X) solving (3.6)+(3.7) we will enable (Φ,X) to start
at any point (ϕ, x) in [0,∞)×[0,∞) under the probability measure P0

ϕ,x (where
we move 0 from the subscript to a superscript for notational reasons) so that the
optimal stopping problem (3.10) extends as follows:

(3.15) V̂ (ϕ, x) = inf
τ

E0
ϕ,x

[ ∫ τ

0

(
1+Φt

)
dt+ M̂

(
Φτ

)]

for (ϕ, x) ∈ [0,∞)×[0,∞) with P0
ϕ,x((Φ0, X0) = (ϕ, x)) = 1 where the infimum in

(3.15) is taken over all stopping times τ of (Φ,X) . In this way we have reduced
the initial sequential testing problem (2.4) to the optimal stopping problem (3.15)
for the strong Markov process (Φ,X) solving the system of stochastic differential
equations

dΦt = γ
Φt

Xt
dBt,(3.16)

dXt =
δ0−1

2Xt
dt+ dBt(3.17)

under the measure P0
ϕ,x with (ϕ, x) ∈ [0,∞)× [0,∞) . Note that this optimal

stopping problem is inherently/fully two-dimensional.

4. Lagrange and Mayer formulations

The optimal stopping problem (3.15) is Bolza formulated. In this section we
derive its Lagrange and Mayer reformulations, which are helpful in the subsequent
analysis of the problem.

1. We first consider the Lagrange reformulation of the optimal stopping problem
(3.15).

Proposition 3. The value function V̂ from (3.15) can be expressed as

(4.1) V̂ (ϕ, x) = inf
τ

E0
ϕ,x

[ ∫ τ

0

(1+Φt) dt−
a

2
�b/aτ (Φ)

]
+ M̂(ϕ)

for (ϕ, x) ∈ [0,∞)×[0,∞) where �
b/a
τ (Φ) is the local time of Φ at b/a and τ

is given by

(4.2) �b/aτ (Φ) = P- lim
ε↓0

1

2ε

∫ τ

0

I
(
b
a−ε ≤ Φt ≤ b

a+ε
)
d〈Φ,Φ〉t

and the infimum in (4.1) is taken over all stopping times τ of (Φ,X) .
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Proof. Note that ϕ �→ M̂(ϕ) = a ϕ ∧ b is a concave function on [0,∞) with

M̂ ′(dϕ) = −a δb/a(dϕ) where δb/a is the Dirac measure at b/a . By the Itô-
Tanaka formula we therefore find using (3.16) that

M̂(Φt) = M̂(Φ0) +

∫ t

0

M̂ ′
±(Φs) dΦs +

1

2

∫ t

0

�ψt (Φ) M̂
′(dψ)(4.3)

= M̂(Φ0) +

∫ t

0

M̂ ′
±(Φs) γ

Φs

Xs
dBs −

a

2
�b/aτ (Φ)

for t ≥ 0 where the second term on the right-hand side defines a continuous local
martingale. Making use of a localisation sequence of stopping times for this local
martingale if needed and applying the optional sampling theorem, we find from
(4.3) that

(4.4) E0
ϕ,x

[
M̂(Φτ )

]
= M̂(ϕ)− a

2
E0
ϕ,x

[
�b/aτ (Φ)

]
for (ϕ, x) ∈ [0,∞)× [0,∞) and all stopping times τ of (Φ,X) . Inserting (4.4)
into (3.15) we obtain (4.1) as claimed, and the proof is complete. �

The Lagrange reformulation (4.1) of the optimal stopping problem (3.15) reveals
the underlying rationale for continuing vs. stopping in a clearer manner. Indeed,

recalling that the local time process t �→ �
b/a
t (Φ) strictly increases only when Φt

is at b/a , and that �
b/a
t (Φ) ∼

√
t is strictly larger than

∫ t

0
(1+Φs) ds ∼ t for

small t , we see from (4.1) that it should never be optimal to stop at ϕ = b/a and
the incentive for stopping should increase the further away Φt gets from b/a . We
will see in Section 7 below that these informal conjectures can be formalised and
this will give a new proof of the known fact in the wider diffusion setting that the
set { (ϕ, x) ∈ [0,∞)×[0,∞) | ϕ = b/a } is contained in the continuation set of the
sequential testing problem (2.4).

Note that the Lagrange reformulation (4.1) of the optimal stopping problem
(3.15) is not confined to the setting of Bessel processes but holds generally in the
sequential testing problems for diffusion processes X solving (2.2) when the drift
equals either μ0 or μ1 depending on the outcome of the unobservable random
variable θ .

2. We next consider the Mayer reformulation of the optimal stopping problem
(3.15).

Proposition 4. The value function V̂ from (3.15) can be expressed as

(4.5) V̂ (ϕ, x) = inf
τ

E0
ϕ,x

[( 1

δ0
+

1

δ1
Φτ

)
X2

τ + (aΦτ∧b)
]
−
( 1

δ0
+

1

δ1
ϕ
)
x2

for (ϕ, x) ∈ [0,∞)×[0,∞) where the infimum is taken over all stopping times τ
of (Φ,X) .

Proof. From (3.16)+(3.17) we read that the infinitesimal generator of (Φ,X) is
given by

(4.6) LΦ,X =
δ0−1

2x
∂x + γ

ϕ

x
∂ϕx +

1

2

γ2ϕ2

x2
∂ϕϕ +

1

2
∂xx.

Defining K(ϕ, x) = (1/δ0+ϕ/δ1)x
2 it is easily verified that

(4.7) LΦ,X(K)(ϕ, x) = 1+ϕ
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for all (ϕ, x) ∈ [0,∞)×[0,∞) . By Itô’s formula we thus get

K(Φt, Xt) = K(Φ0, X0) +

∫ t

0

LΦ,X(K)(Φs, Xs) ds(4.8)

+

∫ t

0

[
Kϕ(Φs, Xs)γ

Φs

Xs
+Kx(Φs, Xs)

]
dBs

= K(Φ0, X0) +

∫ t

0

(1+Φs) ds+

∫ t

0

[ 2

δ0
+

1

δ1
(2+γ)Φs

]
Xs dBs

for t ≥ 0 where the final term on the right-hand side defines a continuous local
martingale. Making use of a localisation sequence of stopping times for this local
martingale if needed and applying the optional sampling theorem, we find from
(4.8) that

(4.9) E0
ϕ,x

[
K(Φτ , Xτ )

]
= K(ϕ, x) + E0

ϕ,x

[ ∫ τ

0

(1+Φt)dt
]

for (ϕ, x) ∈ [0,∞)× [0,∞) and all (bounded) stopping times τ of (Φ,X) . In-
serting (4.9) into (3.15) we obtain (4.5) as claimed, and the proof is complete. �

Note that the Mayer reformulation (4.5) of the optimal stopping problem (3.15) is
specific to the setting of Bessel processes. To find a Mayer reformulation of (3.15)
in the sequential testing problems for diffusion processes X solving (2.2) when
the drift equals either μ0 or μ1 depending on the outcome of the unobservable
random variable θ , one needs to find a particular solution K to the equation (4.7)
where from (3.6)+(3.7) we read that the infinitesimal generator LΦ,X of (Φ,X)
is given by

(4.10) LΦ,X = μ0(x) ∂x + ϕρ(x)σ(x)∂ϕx +
1

2
ϕ2ρ2(x)∂ϕϕ +

1

2
σ2(x)∂xx

and ρ is given by (2.7) above. Note that if ρ is constant, then one needs to look
for a solution K to (4.7) that is a function of ϕ only since in this case Φ is a
one-dimensional (strong) Markov process.

5. Reduction to a time-space problem

Recall that we have reduced the initial sequential testing problem (2.4) to the
optimal stopping problem (3.15) for the strong Markov process (Φ,X) solving
(3.6)+(3.7), which in the setting of Bessel processes becomes (3.16)+(3.17). A key
difficulty in this setting is that X enters the diffusion coefficient of the stochastic
differential equation (3.16). This makes the applicability of available comparison
theorems for (Φ,X) more challenging. To tackle the problem in this section we
make use of the known fact that a Bessel process of dimension δ ≥ 2 can be time
changed into a geometric Brownian motion. We show that this has a dramatic effect
on the optimal stopping problem (3.15) since the stochastic differential equations for

the time-changed process (Φ̂, X̂) get completely decoupled and moreover reduce
to two geometric Brownian motions driven by the same standard Brownian motion.
Solving the stochastic differential equations for Φ̂ and X̂ explicitly, we then show
that the problem (3.15) reduces to an optimal stopping problem for the time-space
process (t+s, Φs)s≥0 where the initial time t is expressed in terms of the initial
points of Φ and X and as such can also be negative.
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To understand these steps within a more general context, note that since the
stochastic differential equations (3.16)+(3.17) are driven by the same Brownian
motion, we know that the resulting infinitesimal generator equation must be of
parabolic type. It follows therefore that reducing this equation to its canonical form
by means of a diffeomorphic transformation to be found replaces the process (Φ,X)
by the process (U,Φ) where U is a process of bounded variation. We will see below
that the process U happens to coincide with the additive functional A which is
used to time change (Φ,X) to (Φ̂, X̂) through its inverse. Moreover applying

A to the closed form expressions for Φ̂ and X̂ enables us to determine the
diffeomorphic transformation itself explicitly. This provides probabilistic arguments
for the reduction of the infinitesimal generator equation to its canonical form. Using
standard analytic arguments for this reduction first and then applying the time
change arguments would yield the same outcome. The resulting time-space problem
will be studied in Section 7 below.

1. Time change. Consider the additive functional A = (At)t≥0 defined by

(5.1) At =

∫ t

0

ds

X2
s

and note that t �→ At is continuous and strictly increasing with A0 = 0 and
At ↑ ∞ as t ↑ ∞ (the latter property is well known for Bessel processes X of
dimension δ ≥ 2 but will also be verified below). Hence the same properties hold
for its inverse T = (Tt)t≥0 defined by

(5.2) Tt = A−1
t

for t ≥ 0 . Since A is adapted to (FX
t )t≥0 it follows that each Tt is a stopping

time with respect to (FX
t )t≥0 so that T = (Tt)t≥0 defines a time change relative

to (FX
t )t≥0 . The fact that t �→ Tt is continuous and strictly increasing with

Tt < ∞ for t ≥ 0 (or equivalently At ↑ ∞ as t ↑ ∞ ) implies that standard
time change transformations are applicable to continuous semimartingales and their
stochastic integrals without extra conditions on their sample paths (see e.g. [9,
pp. 7–9 and pp. 179–181]), and they will be used below without explicit mention.
Moreover, since (Φ,X) is a strong Markov process by the well-known result dating
back to [13] (see e.g. [10, p. 175] for a modern exposition) we know that the time-

changed process (Φ̂, X̂) = ((Φ̂t, X̂t))t≥0 defined by

(5.3) (Φ̂t, X̂t) = (ΦTt
, XTt

)

for t ≥ 0 is a Markov process under P0
ϕ,x for (ϕ, x) ∈ (0,∞)×(0,∞) . It is possible

to verify that (Φ,X) is a Feller process, and hence by the same well-known result

we could also conclude that (Φ̂, X̂) is a strong Markov process. However, we
will make no use of the former fact, while the latter fact will also follow from the
existence and uniqueness of a weak solution to the system of stochastic differential
equations for (Φ̂, X̂) derived below. Moreover from (5.1) one can read off that the

infinitesimal generator of (Φ̂, X̂) is given by

(5.4) LΦ̂,X̂ = x2
LΦ,X

where LΦ,X is the infinitesimal generator of (Φ,X) . Note also that σ = Aτ is

a stopping time of (Φ̂, X̂) if and only if τ = Tσ is a stopping time of (Φ,X)
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(where we recall that the natural filtration of (Φ̂, X̂) coincides with the time-

changed natural filtration of (Φ,X) given by F̂Φ,X
t = FΦ,X

Tt
for t ≥ 0 ). Finally,

in addition to (5.1) it is easily seen using (5.2) that

(5.5) Tt =

∫ t

0

X̂2
s ds

for t ≥ 0 . Below we will make use of this relation too.

2. Recalling that the process (Φ,X) solves the system of stochastic differential
equations (3.16)+(3.17) and making use of these equations we find that

Φ̂t = ΦTt
= Φ0 +

∫ Tt

0

γ
Φs

Xs
dBs = Φ0 +

∫ t

0

γ
ΦTs

XTs

dBTs
= Φ̂0 +

∫ t

0

γ Φ̂s dB̃s,(5.6)

X̂t = XTt
= X0 +

∫ Tt

0

δ0−1

2Xs
ds+

∫ Tt

0

dBs(5.7)

= X0 +

∫ t

0

δ0−1

2XTs

dTs +

∫ t

0

dBTs

= X̂0 +

∫ t

0

δ0−1

2
X̂s ds+

∫ t

0

X̂s dB̃s

where the process B̃ = (B̃t)t≥0 is defined by

(5.8) B̃t =

∫ t

0

dBTs

XTs

=

∫ t

0

dB̂s

X̂s

=

∫ Tt

0

dBs

Xs
= MTt

upon setting Mt =
∫ t

0
dBs/Xs for t ≥ 0 . Since M = (Mt)t≥0 is a contin-

uous local martingale with respect to (FX
t )t≥0 it follows that B̃ = (B̃t)t≥0 is

a continuous local martingale with respect to (F̂X
t )t≥0 . Note moreover that

〈B̃, B̃〉t = 〈MT ,MT 〉t = 〈M,M〉Tt
=

∫ Tt

0
ds/X2

s = ATt
= t for t ≥ 0 . Hence

by Lévy’s characterisation theorem (see e.g. [9, p. 150]) we can conclude that B̃

is a standard Brownian motion with respect to (F̂X
t )t≥0 . It follows therefore that

(5.6)+(5.7) can be written as the stochastic differential equations

dΦ̂t = γ Φ̂t dB̃t,(5.9)

dX̂t =
(δ0−1

2

)
X̂t dt+ X̂t dB̃t(5.10)

under P0
ϕ,x for (ϕ, x) ∈ (0,∞)×(0,∞) . This shows that Φ̂ and X̂ are fully

decoupled geometric Brownian motions (driven by the same standard Brownian
motion) whose unique strong solutions under P0 are given by

Φ̂ϕ
t = ϕ exp

(
γB̃t −

γ2

2
t
)
,(5.11)

X̂x
t = x exp

(
B̃t +

(δ0
2
−1

)
t
)

(5.12)

for (ϕ, x) ∈ (0,∞)×(0,∞) . Recalling known sufficient conditions (see e.g. [10,
pp. 166–173]) we formally see that the system of stochastic differential equations
(5.9)+(5.10) has a unique weak solution, and hence by the well-known result (see

e.g. [10, pp. 158–163]) we can conclude that (Φ̂, X̂) is a (time-homogeneous) strong
Markov process under P0

ϕ,x for (ϕ, x) ∈ (0,∞)×(0,∞) (this can also be verified
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directly using (5.11)+(5.12) above). These facts will be useful in the subsequent
analysis of the optimal stopping problem (3.15) since both (5.11) and (5.12) pro-
vide Markovian representations of the solutions where initial points are expressed
explicitly.

3. We can now make use of the previous facts and derive a time-changed version
of the optimal stopping problem (3.15) above.

Proposition 5. The value function V̂ from (3.15) satisfies the identity

(5.13) V̂ (ϕ, x) = inf
σ

E0
ϕ,x

[ ∫ σ

0

(
1+Φ̂t

)
X̂2

t dt+ M̂
(
Φ̂σ

)]

for (ϕ, x) ∈ (0,∞)×(0,∞) where the infimum is taken over all stopping times σ

of (Φ̂, X̂) .

Proof. Recall that τ = Tσ is a stopping time of (Φ,X) if and only if σ = Aτ is

a stopping time of (Φ̂, X̂) . Thus if either τ or σ is given we can form σ or τ
respectively and using (5.5) note that

E0
ϕ,x

[ ∫ τ

0

(
1+Φt

)
dt+ M̂

(
Φτ

)]
= E0

ϕ,x

[ ∫ Tσ

0

(
1+Φt

)
dt+ M̂

(
ΦTσ

)]
(5.14)

= E0
ϕ,x

[ ∫ σ

0

(
1+ΦTt

)
dTt + M̂

(
Φ̂σ

)]
= E0

ϕ,x

[ ∫ σ

0

(
1+Φ̂t

)
X̂2

t dt+ M̂
(
Φ̂σ

)]
.

Taking the infimum over all τ and/or σ on both sides of (5.14) as above we see
that (5.13) holds as claimed, and the proof is complete. �

It follows from Proposition 5 that the optimal stopping problem (3.15) is equiv-
alent to the optimal stopping problem defined on the right-hand side of (5.13)

for the strong Markov process (Φ̂, X̂) solving the system of stochastic differential
equations (5.9)+(5.10) under Pϕ,x and given explicitly by (5.11)+(5.12) under P0
for (ϕ, x) ∈ (0,∞)×(0,∞) . This equivalence will be exploited in Section 7 when
deriving basic properties of the optimal stopping boundaries.

4. Reduction to a time-space problem. We now show that the problem (5.13) can
be further reduced to a time-space problem of optimal stopping in dimension one.
For this, note from (5.11) and (5.12) that the following identity holds:

(5.15) X̂x
t =

x

ϕ1/γ

(
Φ̂ϕ
t

)1/γ
e

κ
2 t

where we set κ = (δ1+δ0−4)/2 (the scaling of this constant in (5.15) is motivated

by the presence of X̂2
t in (5.13) above). Note that κ > 0 since δ1 > δ0 ≥ 2 .

Replacing t in (5.15) by At from (5.1) above and setting Aa
t = a+At , we see

that (5.15) is equivalent to

(5.16) Xx
t =

(
Φϕ
t

)1/γ
e

κ
2 A

a
t

where a = (2/κ) log(x/ϕ1/γ) for (ϕ, x) ∈ (0,∞)× (0,∞) . It is easily verified
(using purely analytic arguments) that the mapping defined by (5.16) is a dif-
feomorphism which reduces the infinitesimal generator equation of (Φ,X) to its
canonical form. This replaces the process (Φ,X) by the process (U,Φ) where
the bounded variation process U happens to coincide with the process A used to
time change (Φ,X) to (Φ̂, X̂) in (5.3) above. The time-changed version (5.15) of
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(5.16) does the same job for the process (Φ̂, X̂) , which then gets replaced by the

time-space process (t+s, Φ̂s)s≥0 upon noting that (5.15) can be rewritten as

(5.17) X̂x
s =

(
Φ̂ϕ
s

)1/γ
e

κ
2 (t+s)

where we set the initial time to be

(5.18) t =
2

κ
log

( x

ϕ1/γ

)

for (ϕ, x) ∈ (0,∞)×(0,∞) . Note that t in (5.18) can also be negative. Recalling
that ϕ = π/(1−π) we see that the initial time t is determined by the initial
values of x and π in the sequential testing problem (2.4). Once set in motion at

the state (t, ϕ) , the time-space process (t+s, Φ̂ϕ
s )s≥0 travels only forward in time

(thus exhibiting a pure parabolic nature), and the negativity of t plays no role
afterwards. The identification (5.18) plays an important conceptual role in placing
the optimal stopping problem (3.15) in the solvable setting.

5. We can now make use of the previous facts and derive a time-space version of
the optimal stopping problem (3.15) above. In addition to M̂(ϕ) = aϕ∧ b defined

above we also set L̂(ϕ) = (1+ϕ)ϕ2/γ for ϕ ∈ [0,∞) in what follows.

Proposition 6. The value function V̂ from (3.15) satisfies the identity

(5.19) V̂ (ϕ, x) = Ṽ
( 2

κ
log

( x

ϕ1/γ

)
, ϕ

)

for (ϕ, x) ∈ (0,∞)×(0,∞) where the value function Ṽ is defined by

(5.20) Ṽ (t, ϕ) = inf
σ

E0

[ ∫ σ

0

eκ(t+s)L̂(Φ̂ϕ
s )ds+ M̂

(
Φ̂ϕ
σ

)]

for (t, ϕ) ∈ R×(0,∞) and the infimum is taken over all stopping times σ of Φ̂ .

Proof. We see from (5.13) using (5.17) that

V̂ (ϕ, x) = inf
σ

E0
ϕ,x

[ ∫ σ

0

(
1+Φ̂s

)
X̂2

s dt+ M̂
(
Φ̂σ

)]
(5.21)

= inf
σ

E0

[ ∫ σ

0

(
1+Φ̂ϕ

s

)
(X̂x

s )
2 dt+ M̂

(
Φ̂ϕ
σ

)]

= inf
σ

E0

[ ∫ σ

0

(
1+Φ̂ϕ

s

)
(Φ̂ϕ

s )
2/γeκ(t+s) dt+ M̂

(
Φ̂ϕ
σ

)]

= inf
σ

E0

[ ∫ σ

0

eκ(t+s)L̂(Φ̂ϕ
s )ds+ M̂

(
Φ̂ϕ
σ

)]
= Ṽ (t, x)

for (ϕ, x) ∈ (0,∞)× (0,∞) with t given in (5.18) above. This completes the
proof. �

We undertake the study of the optimal stopping problem (5.20) in Section 7
below by deriving basic properties of the optimal stopping boundaries.
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6. Lagrange and Mayer time-space formulations

The optimal stopping problem (5.20) is Bolza formulated. In this section we
derive its Lagrange and Mayer reformulations which are helpful in the subsequent
analysis of the problem.

1. We first consider the Lagrange reformulation of the optimal stopping problem
(5.20).

Proposition 7. The value function Ṽ from (5.20) can be expressed as

(6.1) Ṽ (t, ϕ) = inf
σ

E0

[ ∫ σ

0

eκ(t+s)L̂(Φ̂ϕ
s )ds−

a

2
�b/aσ (Φ̂ϕ)

]
+ M̂(ϕ)

for (t, ϕ) ∈ R×(0,∞) where �
b/a
σ (Φ̂ϕ) is the local time of Φ̂ϕ at b/a and σ

given by

(6.2) �b/aσ (Φ̂ϕ) = P- lim
ε↓0

1

2ε

∫ σ

0

I
(
b
a−ε ≤ Φ̂ϕ

t ≤ b
a+ε

)
d〈Φ̂ϕ, Φ̂ϕ〉t

and the infimum in (6.1) is taken over all stopping times σ of Φ̂ .

Proof. This can be derived in exactly the same way as Proposition 3 above (replac-

ing the process Φ by its time-changed version Φ̂ ). �

The Lagrange reformulation (6.1) of the optimal stopping problem (5.20), sim-
ilarly to (4.1) in relation to (3.15), reveals the underlying rationale for continuing
vs. stopping in a clearer manner. This again can be seen by recalling that the local
time process s �→ �

b/a
s (Φ̂ϕ) strictly increases only when Φ̂ϕ

s is at b/a and that

�
b/a
s (Φ̂ϕ) ∼ √

s is strictly larger than
∫ s

0
eκ(t+r)L̂(Φ̂ϕ

r ) dr ∼ s for small s . We see
from (6.1) that it should never be optimal to stop at ϕ = b/a and the incentive
for stopping should increase the further away Φϕ

s gets from b/a . We will see in
Section 7 below that these informal conjectures can be formalised as stated in the
paragraph following the proof of Proposition 3 above.

2. We next consider the Mayer reformulation of the optimal stopping problem
(5.20).

Proposition 8. The value function Ṽ from (5.20) can be expressed as

(6.3) Ṽ (t, ϕ) = inf
σ

E0
[
eκ(t+σ)

( 1

δ0
+

1

δ1
Φ̂ϕ
σ

)(
Φ̂ϕ
σ

)2/γ
+
(
aΦ̂ϕ

σ∧b
)]
−eκt

( 1

δ0
+

1

δ1
ϕ
)
ϕ2/γ

for (t, ϕ) ∈ R×(0,∞) where the infimum is taken over all stopping times σ of

Φ̂ .

Proof. This can be derived by time changing (4.5) via (5.2) and using (5.17) above.

Alternatively we see from (5.9) that the infinitesimal generator of (t+s, Φ̂ϕ
s )s≥0 is

given by

(6.4) ∂t+LΦ̂ = ∂t+
γ2

2
ϕ2∂ϕϕ.

Defining K̂(t, ϕ) = eκt((1/δ0)+(ϕ/δ1))ϕ
2/γ it is easily verified that

(6.5) (∂t+LΦ̂)(K̂)(t, ϕ) = eκtL̂(ϕ)
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for (t, ϕ) ∈ R×(0,∞) where L̂ is defined above Proposition 6. By Itô’s formula
we thus get

K̂(t+s, Φ̂ϕ
s )(6.6)

= K̂(t, ϕ) +

∫ s

0

(∂t+LΦ̂)(K̂)(t+r, Φ̂ϕ
r ) dr +

∫ s

0

K̂ϕ(t+r, Φ̂ϕ
r )γ Φ̂

ϕ
r dB̃r

= K̂(t, ϕ) +

∫ s

0

eκ(t+r)L̂(Φ̂ϕ
r ) dr +

∫ s

0

γeκ(t+r)
( 2

γδ0
+
2+γ

γδ1
Φ̂ϕ
r

)(
Φ̂ϕ
r

)2/γ
dB̃r

for t ≥ 0 where the final term on the right-hand side defines a continuous local
martingale. Making use of a localising sequence of stopping times for this local
martingale if needed and applying the optional sampling theorem, we find from
(6.6) that

(6.7) E0

[
K̂(t+σ, Φ̂ϕ

σ)
]
= K̂(t, ϕ) + E0

[ ∫ σ

0

eκ(t+r)L̂(Φ̂ϕ
r ) dr

]

for all (bounded) stopping times σ of Φ̂ . Inserting (6.7) into (5.20) we obtain
(6.3) as claimed, and the proof is complete. �

Note that the Mayer reformulation (6.3) of the optimal stopping problem (5.20)
is specific to the setting of Bessel processes.

7. Properties of the optimal stopping boundaries

In this section we establish the existence of an optimal stopping time in (3.15)
and derive basic properties of the optimal stopping boundaries. Given that the
optimal stopping problem (3.15) stands in one-to-one correspondence with the op-
timal stopping problem (5.20) as shown in Proposition 6 above, these facts then
translate from (3.15) to (5.20) in a straightforward manner. In the first part of this
section we focus on the former problem.

1. Looking at (3.15) we may conclude that the (candidate) continuation and
stopping sets in this problem need to be defined as follows:

C = { (ϕ, x) ∈ [0,∞)×[0,∞) | V̂ (ϕ, x) < M̂(ϕ) },(7.1)

D = { (ϕ, x) ∈ [0,∞)×[0,∞) | V̂ (ϕ, x) = M̂(ϕ) }(7.2)

respectively. Time changing (4.5) by (5.2) and recalling that (5.11)+(5.12) define
Markovian functionals of the initial points, we see that the expectation in (4.5) de-
fines a continuous function of the initial point (ϕ, x) for every (bounded) stopping
time τ given and fixed. Taking the infimum over all (bounded) stopping times τ

we can thus conclude that the value function V̂ is upper semicontinuous. From
(4.5) we see that the loss function is continuous and hence lower semicontinuous
too. It follows therefore by [8, Corollary 2.9] that the first entry time of the process
(Φ,X) into the closed set D defined by

(7.3) τD = inf{ t ≥ 0 | (Φt, Xt) ∈ D }

is optimal in (3.15) whenever Pϕ,x(τD < ∞) = 1 for all (ϕ, x) ∈ [0,∞)×[0,∞) .
In the sequel we will establish this and other properties of τD by analysing the
boundary of D .
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2. We first show that the vertical line ϕ = b/a is contained in C . This fact
is usually established using the scale function and speed measure techniques (see
[8, pp. 292–293] and [3, pp. 523–524]). Motivated by the Lagrange reformulation
(4.1) of (3.15) we now give a new proof of this fact based on the local time as
discussed following the proof of Proposition 3 above.

Lemma 9. The set { (ϕ, x) ∈ [0,∞)× [0,∞) | ϕ = b/a } is contained in the
continuation set C of the optimal stopping problem (3.15).

Proof. Time changing (3.15) as in the proof of (5.13) and passing from M̂(Φ̂) to

�b/a(Φ̂) as in the proof of (6.1) we see that

(7.4) V̂ (ϕ, x) = inf
σ

E0

[ ∫ σ

0

(
1+Φ̂ϕ

s

)
(X̂x

s )
2ds− a

2
�b/aσ (Φ̂ϕ)

]
+ M̂(ϕ)

for (ϕ, x) ∈ (0,∞)×(0,∞) . By Itô-Tanaka’s formula we find using (5.9) that

(7.5)
∣∣Φ̂b/a

t − b/a
∣∣ = Mt + �

b/a
t (Φ̂b/a)

for t ≥ 0 where M = (Mt)t≥0 is a continuous martingale. Recalling (5.11) we
see that the left-hand side in (7.5) equals

(7.6)
∣∣∣ b
a

(
eγB̃t− γ2

2 t− 1
)∣∣∣ = b

a

∣∣∣
∞∑

n=1

(γB̃t− γ2

2 t)n

n!

∣∣∣
for t ≥ 0 . Taking E0 on both sides of (7.5)+(7.6) and using that B̃t ∼

√
tB̃1

we get

(7.7) E0

[
�
b/a
t (Φ̂b/a)

]
=

b

a
E0

∣∣∣√t
(
γB̃1−

γ2

2

√
t
) ∞∑

n=1

(
√
t γB̃1− γ2

2 t)n−1

n!

∣∣∣
for t ≥ 0 . Dividing both sides of (7.6) by

√
t > 0 and letting t ↓ 0 shows that

(7.8) lim
t↓0

1√
t
E0

[
�
b/a
t (Φ̂b/a)

]
= γ

b

a
E0|B̃1| = γ

b

a

√
2

π
.

This means that E0[�
b/a
t (Φ̂b/a)] ∼

√
t as t ↓ 0 . On the other hand, it is clear

from (5.11) and (5.12) that E0[
∫ t

0

(
1+Φ̂

b/a
s

)
(X̂x

s )
2 ds] ∼ t as t ↓ 0 . Combining

these two facts it is evident that the expectation in (7.4) is strictly negative when
ϕ = b/a if σ = t is taken sufficiently small. This shows that each point (b/a, x)
belongs to C for x > 0 , and the proof is complete. �

3. Moving from the vertical line ϕ = b/a outwards lets us formally define the
(least) boundaries between C and D by setting

b0(x) = sup
{
ϕ∈

[
0, b

a

]
| (ϕ, x)∈D

}
&(7.9)

b1(x) = inf
{
ϕ∈

[
b
a ,∞

]
| (ϕ, x)∈D

}
for every x > 0 given and fixed. Clearly b0(x) <

b
a < b1(x) for all x > 0 and

the supremum and infimum in (7.9) are attained since D is closed.

Lemma 10. The mapping x �→ b0(x) is increasing and the mapping x �→ b1(x)
is decreasing with 0 < b0(x) <

b
a < b1(x) < ∞ for all x > 0 , and we have

C = { (ϕ, x) ∈ [0,∞)×[0,∞) | b0(x) < ϕ < b1(x) },(7.10)

D = { (ϕ, x) ∈ [0,∞)×[0,∞) | 0 ≤ ϕ ≤ b0(x) or b1(x) ≤ ϕ < ∞}.(7.11)
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Proof. 1. Note from (5.11)-(5.13) that

ϕ �→ V̂ (ϕ, x) is increasing and concave on [0,∞),(7.12)

x �→ V̂ (ϕ, x)−M̂(ϕ) is increasing on [0,∞)(7.13)

for each x > 0 and ϕ > 0 given and fixed. Concavity of ϕ �→ V̂ (ϕ, x) in

(7.12) combined with non-negativity and piecewise linearity of ϕ �→ M̂(ϕ) in
(3.15) implies that if (ϕ, x) ∈ D with ϕ < b/a and ϕ1 < ϕ , then (ϕ1, x) ∈ D ,
as well as that if (ϕ, x) ∈ D with ϕ > b/a and ϕ2 > ϕ , then (ϕ2, x) ∈ D .
This shows that b0 and b1 from (7.9) alone separate C and D fully and hence
(7.10) and (7.11) are valid as claimed. Moreover, if (ϕ, x1) ∈ D and x2 ≥ x1

then by (7.13) we see that 0 = V̂ (ϕ, x1)−M̂(ϕ) ≤ V̂ (ϕ, x2)−M̂(ϕ) ≤ 0 so that

V̂ (ϕ, x2)−M̂(ϕ) = 0 and hence (ϕ, x2) ∈ D as well. This shows that x �→ b0(x)
is increasing and x �→ b1(x) is decreasing on (0,∞) as claimed.

2. We show that b0(x) > 0 for all x > 0 . For this, suppose that there exists
x1 > 0 such that b0(x1) = 0 . By the increase of b0 we then know that [0, ϕ1]×
[0, x1] is contained in C where we let ϕ1 stand for b/a . Set x0 = x1/3 and
x = 2x1/3 , choose any ϕ in (0, ϕ1) , and consider the stopping times

σϕ,x
ϕ1;x0,x1

= inf { t ≥ 0 | Φ̂ϕ
t ≥ ϕ1 or X̂x

t /∈ (x0, x1) },(7.14)

σx
x0,x1

= inf { t ≥ 0 | X̂x
t /∈ (x0, x1) }.(7.15)

Then σϕ,x
ϕ1;x0,x1

≤ σD where σD = inf { t ≥ 0 | (Φ̂t, X̂t) ∈ D } is an optimal
stopping time so that from (5.13) we find that

V̂ (ϕ, x) = E0
ϕ,x

[ ∫ σD

0

(
1+Φ̂t

)
X̂2

t dt+ M̂
(
Φ̂σD

)]
(7.16)

≥ E0

[ ∫ σϕ,x
ϕ1;x0,x1

0

(
1+Φ̂ϕ

t

)
(X̂x

t )
2dt

]

≥ x2
0 E0

[
σϕ,x
ϕ1;x0,x1

]
→ x2

0 E0

[
σx
x0,x1

]
> 0

as ϕ ↓ 0 . This shows that taking ϕ > 0 sufficiently small we get V̂ (ϕ, x) > aϕ =

M̂(ϕ) , which is a contradiction since V̂ ≤ M̂ . Hence b0(x) > 0 for all x > 0 as
claimed.

3. We show that b1(x) < ∞ for all x > 0 . For this, suppose that there
exists x1 > 0 such that b1(x1) = ∞ . By the decrease of b1 we then know
that [b/a,∞)×[0, x1] is contained in C . Set x = x1/2 , choose any ϕ0 < ϕ in
[b/a,∞) , and consider the stopping times

σϕ,x
ϕ0;x1

= inf { t ≥ 0 | Φ̂ϕ
t ≤ ϕ0 or X̂x

t ≥ x1 },(7.17)

σx
x1

= inf { t ≥ 0 | X̂x
t ≥ x1 }.(7.18)



2104 PETER JOHNSON AND GORAN PESKIR

Then σϕ,x
ϕ0;x1

≤ σD so that from (5.13) we find that

V̂ (ϕ, x) = E0
ϕ,x

[ ∫ σD

0

(
1+Φ̂t

)
X̂2

t dt+ M̂
(
Φ̂σD

)]
(7.19)

≥ E0

[ ∫ σϕ,x
ϕ0;x1

0

(
1+Φ̂ϕ

t

)
(X̂x

t )
2 dt

]

≥ (1+ϕ0)E0

[ ∫ σϕ,x
ϕ0;x1

0

(X̂x
t )

2dt
]
→ (1+ϕ0)E0

[ ∫ σx
x1

0

(X̂x
t )

2 dt
]
> b

as ϕ → ∞ if ϕ0 is taken large enough for the final/strict inequality to hold
(upon noting that the final expectation is strictly positive). This shows that taking

ϕ > 0 sufficiently large we get V̂ (ϕ, x) > b = M̂(ϕ) , which is a contradiction

since V̂ ≤ M̂ . Hence b1(x) < ∞ for all x > 0 as claimed, and the proof is
complete. �

Lemma 11. The following relations hold:

lim
x↓0

b0(x) = 0 & lim
x↓0

b1(x) = ∞,(7.20)

lim
x→∞

b0(x) = lim
x→∞

b1(x) =
b

a
.(7.21)

Proof. 1. For (7.20) in view of Lemma 10 it is enough to show that for every ϕ > 0
(small and large) there exists x > 0 small enough such that (ϕ, x) belongs to
C . For this, fix any ϕ > 0 and note from (5.13) that

(7.22) V̂ (ϕ, x) ≤ E0

[ ∫ s

0

(
1+Φ̂ϕ

t

)
(X̂x

t )
2dt+ M̂

(
Φ̂ϕ
s

)]

for all x > 0 with any s > 0 given and fixed. Since the random variable Φ̂ϕ
s has

for its support the entire (0,∞) , it is easily verified that the Jensen inequality is
strict, i.e., we have

(7.23) E0

[
M̂(Φ̂ϕ

s )
]
< M̂(ϕ),

where we note that ϕ �→ M̂(ϕ) = aϕ ∧ b is concave on (0,∞) . Recalling (5.12)
we see that

(7.24) E0

[ ∫ s

0

(
1+Φ̂ϕ

t

)
(X̂x

t )
2 dt

]
= x2 E0

[ ∫ s

0

(
1+Φ̂ϕ

t

)
(X̂1

t )
2 dt

]

can be made arbitrarily small in (0,∞) by choosing x > 0 sufficiently small.

Combining (7.22)-(7.24) we see that V̂ (ϕ, x) < M̂(ϕ) for x > 0 sufficiently small
so that (ϕ, x) belongs to C as needed, and the proof of (7.20) is complete.
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2. For (7.21) suppose that b0(∞) := lim x→∞ b0(x) < b/a and fix any ϕ ∈
(b0(∞), b/a) (e.g. the midpoint). Consider the stopping times

σϕ,x
ϕ0,ϕ1;x0

= inf { t ≥ 0 | Φ̂ϕ
t /∈ (ϕ0, ϕ1) or X̂x

t ≤ x0 },(7.25)

σϕ
ϕ0,ϕ1

= inf { t ≥ 0 | Φ̂ϕ
t /∈ (ϕ0, ϕ1) }(7.26)

with x > x0 in (0,∞) given and fixed where we set ϕ0 := b(∞) and ϕ1 = b/a .
Then σϕ,x

ϕ0,ϕ1;x0
≤ σD so that from (5.13) we find that

V̂ (ϕ, x) = E0
ϕ,x

[ ∫ σD

0

(
1+Φ̂t

)
X̂2

t dt+ M̂
(
Φ̂σD

)]
(7.27)

≥ E0

[ ∫ σϕ,x
ϕ0,ϕ1;x0

0

(
1+Φ̂ϕ

t

)
(X̂x

t )
2 dt

]

≥ x2 E0

[ ∫ σϕ,x
ϕ0,ϕ1;x0

0

(X̂1
t )

2 dt
]
→ ∞2 E0

[ ∫ σϕ
ϕ0,ϕ1

0

(X̂1
t )

2 dt
]
= ∞

as x → ∞ (upon noting that the final expectation is strictly positive), which

is a contradiction since V̂ ≤ M̂ ≤ b < ∞ . This shows that b0(∞) = b/a as
claimed. The case (b/a, b1(∞)) �= ∅ can be disproved similarly, and this completes
the proof. �

4. The results of Lemmas 9-11 translate from the optimal stopping problem (3.15)
to its time-space version (5.20) in a straightforward manner using the diffeomorphic
transformation described in (5.15)-(5.18). This can be summarised as follows (see
Figure 2 below).

Corollary 12. The continuation and stopping sets in the optimal stopping problem
(5.20) are given by

C̃ = { (t, ϕ) ∈ R×[0,∞) | Ṽ (t, ϕ) < M̂(ϕ) }(7.28)

= { (t, ϕ) ∈ R×[0,∞) | b̃0(t) < ϕ < b̃1(t) },

D̃ = { (t, ϕ) ∈ R×[0,∞) | Ṽ (ϕ, x) = M̂(ϕ) }(7.29)

= { (t, ϕ) ∈ R×[0,∞) | 0 ≤ ϕ ≤ b̃0(t) or b̃1(t) ≤ ϕ < ∞}

respectively, where the mapping t �→ b̃0(t) is increasing and the mapping t �→ b̃1(t)

is decreasing with 0 ≤ b̃0(t) <
b
a < b̃1(t) < ∞ for all t ∈ R and we have

lim
t→−∞

b̃0(t) = 0 & lim
t→−∞

b̃1(t) = ∞,(7.30)

lim
t→∞

b̃0(t) = lim
t→∞

b̃1(t) =
b

a
.(7.31)

Proof. All claims follow directly from the facts proved in Lemmas 9-11 using the
equivalence between the problem (3.15) and its time-changed version (5.13) com-
bined with diffeomorphic transformation (5.18) which realises the equivalence be-
tween the problem (5.13) and its time-space verson (5.20) as established in Propo-
sition 6 above. �

Remark 1. The conclusion that b̃0(t) > 0 for all t ∈ R in Corollary 12 cannot be
derived directly from the fact that b0(x) > 0 for all x > 0 with lim x↓0 b0(x) = 0
using (5.18) because this implication would require some information on the rate of
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convergence in the latter limit. We now show that b̃0(t) > 0 for all t ∈ R when
γ > 2 . This can be done through a direct analysis of the optimal stopping problem
(5.20) as follows. Suppose that b̃0(t1) = 0 for some t1 ∈ R and fix any t0 < t1 .
Set δ = t1−t0 and consider the stopping time

(7.32) σε
b/a = inf { s ∈ [0, δ] | Φ̂ε

s ≥ b/a }

for ε > 0 given and fixed. Since [t0, t1)× [0, b/a] ⊆ C̃ we see that σt0,ε

D̃
≥ σε

b/a

where σt0,ε

D̃
= inf { s ≥ 0 | (t0+s, Φ̂ε

s) ∈ D̃ } is the optimal stopping time in (5.20).
It follows therefore that

Ṽ (t0, ε) ≥ E0

[ ∫ σε
b/a

0

eκ(t0+s)(1+Φ̂ε
s)(Φ̂

ε
s)

2/γ ds
]

≥ ε2/γ E0

[ ∫ σε
b/a

0

eκ(t0+s) e2B̃s−γs ds
](7.33)

where we use (5.11) and note that

(7.34) E0

[ ∫ σε
b/a

0

eκ(t0+s) e2B̃s−γs ds
]
→ E0

[ ∫ δ

0

eκ(t0+s) e2B̃s−γs ds
]
=: I > 0

as ε ↓ 0 since σε
b/a ↑ δ due to Φε ↓ 0 . From (7.33) and (7.34) we see that taking

ε > 0 sufficiently small we get Ṽ (t0, ε) ≥ (I/2) ε2/γ > aε = M̂(ε) , which is a

contradiction since Ṽ ≤ M̂ . Hence b̃0(t) > 0 for all t ∈ R when γ > 2 as
claimed.

Remark 2. We will see in Section 9 below that the optimal stopping boundaries b̃0
& b̃1 can be characterised as the unique solution to a coupled system of nonlinear
Volterra integral equations. These equations can be used to find the optimal stop-
ping boundaries b̃0 & b̃1 numerically (as shown in Figure 2 below). Using (5.18)
it is easily seen that

(7.35) b−1
0 (ϕ) = ϕ1/γ exp

(κ
2
b̃−1
0 (ϕ)

)
& b−1

1 (ϕ) = ϕ1/γ exp
(κ
2
b̃−1
1 (ϕ)

)

for ϕ ≥ 0 , and these identities can then be used to find b0 & b1 numerically (as
shown in Figure 3 below). We will return to this point at the end of Section 9.

8. Free-boundary problems

In this section we derive the free-boundary problems that stand in one-to-one
correspondence with the optimal stopping problems (3.15) and (5.20) respectively.
The two free-boundary problems are equivalent, and the latter problem can be
seen as a canonical time-changed reformulation of the former problem. Using re-
sults derived in the previous sections we show that the value functions and their
optimal stopping boundaries (V̂ ; b0, b1) and (Ṽ ; b̃0, b̃1) from (3.15) and (5.20)
solve the free-boundary problems respectively. This establishes the existence of
a solution. Its uniqueness in natural classes of functions will follow from a more
general uniqueness result established in Section 9 below. This will also yield a
double-integral representation for the value function Ṽ expressed in terms of the
optimal stopping boundaries b̃0 & b̃1 . A similar integral representation also holds
for the value function V̂ expressed in terms of the optimal stopping boundaries
b0 & b1 , but we will not state it explicitly.
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1. We first consider the optimal stopping problem (3.15) where the strong Markov
process (Φ,X) solves the system of stochastic differential equations (3.16)+(3.17)
under the measure Pϕ,x with (ϕ, x) ∈ [0,∞)× [0,∞) . Recalling that the infini-
tesimal generator LΦ,X of (Φ,X) is given by (4.10) with (2.3)+(2.8) above and

relying on other properties of V̂ and b0 & b1 derived in Section 7 above, we are
naturally led to formulate the following free-boundary problem for finding V̂ and
b0 & b1 :

δ0−1

2x
V̂x + γ

ϕ

x
V̂ϕx +

γ2

2

ϕ2

x2
V̂ϕϕ +

1

2
V̂xx = −L in C,(8.1)

V̂ (ϕ, x) = M̂(ϕ) for (ϕ, x) ∈ D (instantaneous stopping),(8.2)

V̂ϕ(ϕ, x) = M̂ ′(ϕ) for ϕ = b0(x) & ϕ = b1(x) with x > 0 (smooth fit),(8.3)

V̂x(ϕ, x) = 0 for ϕ = b0(x) & ϕ = b1(x) with x > 0 (smooth fit),(8.4)

where we set L(ϕ) = 1+ϕ for ϕ ∈ [0,∞) and the (continuation) set C and
the (stopping) set D are given by (7.10) and (7.11) respectively. Clearly the

global condition (8.2) can be replaced by the local condition V (ϕ, x) = M̂(ϕ) for
ϕ = b0(x) & ϕ = b1(x) with x > 0 so that the free-boundary problem (8.1)-(8.4)

needs to be considered on the closure of C only (extending V̂ to the rest of D

as M̂ being then evident).

2. We next consider the optimal stopping problem (5.20) where the strong

Markov process (t+s, Φ̂ϕ
s )s≥0 in its second/spatial component solves the stochastic

differential equation (5.9) under the measure P0 yielding the explicit representation

(5.11) for ϕ > 0 . Recalling that the infinitesimal generator ∂t+LΦ̂ of (t+s, Φ̂ϕ
s )s≥0

is given by (6.4) and relying on the connection between (t+s, Φ̂ϕ
s )s≥0 and (Φ,X)

realised through (5.13) and (5.15)-(5.18) combined with other properties of Ṽ and

b̃0 & b̃1 derived in Section 7 above, we are naturally led to formulate the following
free-boundary problem for finding Ṽ and b̃0 & b̃1 :

(
Ṽt +

γ2

2
ϕ2 Ṽϕϕ

)
(t, ϕ) = −eκtL̂(ϕ) for (t, ϕ) ∈ C̃,(8.5)

Ṽ (t, ϕ) = M̂(ϕ) for (t, ϕ) ∈ D̃ (instantaneous stopping),(8.6)

Ṽt(t, ϕ) = 0 for ϕ = b̃0(t) & ϕ = b̃1(t) with t ∈ R (smooth fit),(8.7)

Ṽϕ(t, ϕ) = M̂ ′(ϕ) for ϕ = b̃0(t) & ϕ = b̃1(t) with t ∈ R (smooth fit),(8.8)

where we recall that L̂(ϕ) = (1+ϕ)ϕ2/γ for ϕ ∈ [0,∞) and the (continuation) set

C̃ and the (stopping) set D̃ are given by (7.28) and (7.29) respectively. Clearly

the global condition (8.6) can be replaced by the local condition Ṽ (t, ϕ) = M̂(ϕ)

for ϕ = b̃0(t) & ϕ = b̃1(t) with t ∈ R so that the free-boundary problem (8.5)-

(8.8) needs to be considered on the closure of C̃ only (extending Ṽ to the rest

of D as M̂ being then evident).
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3. To formulate the existence and uniqueness result for the free-boundary prob-
lem (8.1)-(8.4) we let C denote the class of functions (F ; a0, a1) such that

F belongs to C1(C̄a0,a1
) ∩ C2(Ca0,a1

) and is bounded(8.9)

on [0,∞)×[0,∞),

a0 is continuous and increasing on (0,∞) with a0(0+) = 0(8.10)

and a0(∞) = b/a,

a1 is continuous and decreasing on (0,∞) with a1(0+) = ∞(8.11)

and a1(∞) = b/a,

where we set Ca0,a1
= { (ϕ, x) ∈ [0,∞)×[0,∞) | a0(x) < ϕ < a1(x) } .

Theorem 13. The free-boundary problem (8.1)-(8.4) has a unique solution

(V̂ ; b0, b1) in the class C where V̂ is given by (3.15) and b0 & b1 are defined
in (7.9).

Proof. The first fact to note is that the boundary points between C and D are
regular for D relative to (Φ,X) and (Φ̂, X̂) in the sense that

(8.12) τϕn,xn

D → 0 & σϕn,xn

D → 0

with P0 -probability one whenever (ϕn, xn) from C tends to (ϕ, x) at its bound-
ary ∂C specified by ϕ = b0(x) or ϕ = b1(x) for x > 0 as n → ∞ . Recall in
(8.12) that τϕn,xn

D is the first entry time of (Φϕn,xn , Xxn) into D and σϕn,xn

D

is the first entry time of (Φ̂ϕn,xn , X̂xn) into D for n ≥ 1 . It is well known (be-

cause both (Φ,X) and (Φ̂, X̂) are strong Feller processes) that (8.12) is equivalent

to the fact that the first hitting times of (Φ,X) and (Φ̂, X̂) to D defined by

τ̃D = inf { t > 0 | (Φt, Xt) ∈ D } and σ̃D = inf { t > 0 | (Φ̂t, X̂t) ∈ D } are equal
to zero with P∞ -probability one whenever (ϕ, x) belongs to ∂C . Given that

the time change t �→ Tt in (5.2), which builds (Φ̂, X̂) from (Φ,X) , is strictly
increasing on [0,∞) , we thus see that the boundary points in ∂C are regular for

D relative to (Φ,X) if and only if they are regular relative to (Φ̂, X̂) . The latter
process however is just a pair of geometric Brownian motions (5.11) and (5.12) for
which (upon recalling that b0 & b1 are monotone) the regularity at each point
ϕ or x for [ϕ,∞) or [x,∞) respectively is evident from the regularity of 0 for
[0,∞) relative to standard Brownian motion (with drift). These arguments estab-
lish (8.12), and equipped with this fact we can then adapt the proof of Proposition

13 from [4] and infer the global C1 regularity of the value function V̂ in the sense
that

(ϕ, x) �→ V̂ϕ(ϕ, x) is continuous on [0,∞)×[0,∞),(8.13)

(ϕ, x) �→ V̂x(ϕ, x) is continuous on [0,∞)×[0,∞).(8.14)

Moreover, since the problem (3.15) stands in one-to-one correspondence with the
problem (5.20) for the time-space process whose infinitesimal generator has only
one partial derivative with respect to time, and this correspondence is established
by the diffeomorphic transformation (5.18) (in addition to the time change (5.2)),
we see that the same arguments as in the proof of Corollary 14 from [4] imply that

(8.15) Ṽϕϕ admits a continuous extension from C̃ to cl(C̃)
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where for notational reasons we let cl(C̃) denote the closure of C̃ . For the same
reason we see that the analogous arguments as in the proof of Proposition 15 from
[4] imply the basic regularity of b0 & b1 in the sense that

(8.16) x �→ b0(x) & x �→ b1(x) are continuous on (0,∞).

Combined with other properties derived in Section 7 above, this shows that the
triple (V̂ ; b0, b1) belongs to the class C . Moreover, from the Bolza formulation

(3.15) we know that V̂ solves (8.1) and from (8.13)+(8.14) we know that V̂

satisfies (8.3) and (8.4). Since V̂ evidently satisfies (8.2) this shows that the

triple (V̂ ; b0, b1) is a solution to the free-boundary problem (8.1)-(8.4) in the class
C . To derive uniqueness of the solution we will first see in the next section that
any solution (F̃ ; ã0, ã1) to the free-boundary problem (8.5)-(8.8) in the class C̃
defined analogously to C (to be specified below) admits a closed double-integral

representation for F̃ in terms of ã0 & ã1 , which in turn solve a coupled system
of nonlinear Volterra integral equations, and we will see that this system cannot
have other solutions satisfying the required properties. Recalling that the problem
(3.15) stands in one-to-one correspondence with the problem (5.20) and putting
these facts together we can conclude that there cannot be more than one solution
to (8.1)-(8.4) in the class C as claimed. �

4. To formulate the existence and uniqueness result for the free-boundary prob-
lem (8.5)-(8.8) we let C̃ be defined in exactly the same ways as C above with
the domains [0,∞)×[0,∞) and (0,∞) being replaced by the domains R×[0,∞)
and R respectively (the right-hand limits at 0 in (8.10) and (8.11) becoming the
limits at −∞ with the same values).

Corollary 14. The free-boundary problem (8.5)-(8.8) has a unique solution

(Ṽ ; b̃0, b̃1) in the class C̃ where Ṽ is given by (5.20) and b̃0 & b̃1 are defined
in (7.32).

Proof. This follows from Theorem 13 using the fact that the value function Ṽ
from (5.20) and its optimal stopping boundaries b̃0 & b̃1 are a canonical time-

changed reformulation of the value function V̂ from (3.15) and its optimal stopping
boundaries b0 and b1 obtained by means of the diffeomorphic transformation
(5.18) as explained in Section 5 above. �

9. Nonlinear integral equations

In this section we show that the optimal stopping boundaries b̃0 and b̃1 from
(7.29) can be characterised as the unique solution to a coupled system of nonlinear
Volterra integral equations. This also yields a closed double-integral representation
of the value function Ṽ from (5.20) expressed in terms of the optimal stopping

boundaries b̃0 and b̃1 . Analogous results also hold for the optimal stopping
boundaries b0 and b1 from (7.9) and the value function V̂ from (3.15), but we
will not state them explicitly. As a consequence of the existence and uniqueness
result for the coupled system of nonlinear Volterra integral equations we also obtain
uniqueness of the solution to the free-boundary problems (8.1)-(8.4) and (8.5)-(8.8)
as explained in the proofs of Theorem 13 and Corollary 14 above. Finally, collecting
the results derived throughout the paper we conclude our exposition at the end of
this section by disclosing the solution to the initial problem.
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From (5.11) we easily find that the probability density function of Φ̂ϕ
t is given

by

(9.1) f(ϕ; t, ψ) =
1

γ
√
2πtψ

exp
[
− 1

2γ2t

(
log

(ψ
ϕ

)
+
γ2

2
t
)2 ]

for t > 0 and ϕ & ψ in (0,∞) . Having f we can evaluate the expression of
interest appearing in the theorem below as follows:

(9.2) K(ϕ; t, ϕ1, ϕ2) := E0

[
L̂(Φϕ

t )I(ϕ1<Φϕ
t <ϕ2)

]
=

∫ ϕ2

ϕ1

L̂(ψ)f(ϕ; t, ψ) dψ

for t > 0 and ϕ , ϕ1 & ϕ2 in (0,∞) where L̂(ψ) = (1+ψ)ψ2/γ for ψ > 0 .

Theorem 15 (Existence and uniqueness). The optimal stopping boundaries b̃0
and b̃1 in the problem (5.20) can be characterised as the unique solution to the
coupled system of nonlinear Volterra integral equations

ab̃0(t) =

∫ ∞

0

eκ(t+s)K(b̃0(t); s, b̃0(t+s), b̃1(t+s)) ds,(9.3)

b =

∫ ∞

0

eκ(t+s)K(b̃1(t); s, b̃0(t+s), b̃1(t+s)) ds(9.4)

in the class of continuous functions b̃0 and b̃1 on R where t �→ b̃0(t) is increas-

ing and t �→ b̃1(t) is decreasing with 0 ≤ b̃0(t) <
b
a < b̃1(t) < ∞ for t ∈ R . The

value function Ṽ in the problem (5.20) admits the representation

(9.5) Ṽ (t, ϕ) =

∫ ∞

0

eκ(t+s)K(ϕ; s, b̃0(t+s), b̃1(t+s)) ds

for (t, ϕ) ∈ R×(0,∞) . The optimal stopping time in the problem (5.20) is given
by

(9.6) σb̃0,b̃1
= inf { s ≥ 0 | Φ̂ϕ

s /∈
(
b̃0(t+s), b̃1(t+s)

)
}

under P0 with (t, ϕ) ∈ R×(0,∞) given and fixed (see Figure 2).

Proof. 1. Existence. We first show that the optimal stopping boundaries b̃0 and
b̃1 in the problem (5.20) solve the system (9.3)+(9.4). Recalling that b̃0 and b̃1
satisfy the properties stated following (9.3)+(9.4) as established above, this will
prove the existence of the solution to (9.3)+(9.4). For this, we will first note that

Itô’s formula is applicable to Ṽ composed with (t+s, Φ̂ϕ
s ) for s ≥ 0 with t ∈ R

and ϕ ∈ (0,∞) given and fixed. Indeed, recalling that Ṽ is C1,2 on the closure of

C̃ and equals M̂ on D̃ (which also is C1,2 since the line ϕ = b/a at which M̂

as a function of two arguments is non-smooth belongs to C̃ as established above)

we see that the local time-space formula from [7] is applicable to Ṽ composed with

(t+s, Φ̂ϕ
s ) for s ≥ 0 , and moreover this formula reduces to Itô’s formula due to

the smooth fit condition (8.8). Using (8.5)+(8.6) this yields

Ṽ (t+s, Φ̂ϕ
s )(9.7)

= Ṽ (t, ϕ) +

∫ s

0

(
Ṽt+LΦ̂Ṽ

)
(t+r, Φ̂ϕ

r ) dr +

∫ s

0

Ṽϕ(t+r, Φϕ
r )γ Φ̂

ϕ
r dB̃r

= Ṽ (t, ϕ)−
∫ s

0

eκ(t+r)L̂(Φ̂ϕ
r )I

(
b̃0(t+r)<Φ̂ϕ

r <b̃1(t+r)
)
dr +Ms
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Figure 2. Location of the optimal stopping boundaries b̃0 and
b̃1 for the Bessel motion from Figure 1.

where Ms =
∫ s

0
Ṽϕ(t+r, Φϕ

r )γ Φ̂
ϕ
r dB̃r is a continuous local martingale for s ≥ 0 .

Taking a localisation sequence of stopping times (τn)n≥1 for M , replacing s on
both sides of (9.7) by s ∧ τn , applying the optional sampling theorem and letting
n → ∞ , we obtain

E0

[
Ṽ (t+s, Φ̂ϕ

s )
]

(9.8)

= Ṽ (t, ϕ)− E0

[ ∫ s

0

eκ(t+r)L̂(Φ̂ϕ
r )I

(
b̃0(t+r)<Φ̂ϕ

r <b̃1(t+r)
)
dr

]

for s ≥ 0 . Letting s → ∞ and noting that 0 ≤ Ṽ (t+ s, Φ̂ϕ
s ) ≤ M̂(Φ̂ϕ

s ) =

aΦ̂ϕ
s ∧ b → 0 we see that the dominated and monotone convergence theorems yield

(9.9) Ṽ (t, ϕ) = E0

[ ∫ ∞

0

eκ(t+r)L̂(Φ̂ϕ
r )I

(
b̃0(t+r)<Φ̂ϕ

r <b̃1(t+r)
)
dr

]

which establishes the representation (9.5) upon recalling (9.2) above. Recalling that

Ṽ (t, b̃0(t)) = M̂(b̃0(t)) = ab̃0(t) and Ṽ (t, b̃1(t)) = M̂(b̃0(t)) = b we see that (9.5)

implies (9.3) and (9.4). This shows that b̃0 and b̃1 solve the system (9.3)+(9.4)
as claimed.

2. Uniqueness. To show that b̃0 and b̃1 are a unique solution to the system
(3.3)+(3.4) one can adopt the four-step procedure from the proof of uniqueness
given in [1, Theorem 4.1] extending and further refining the original arguments from
[6, Theorem 3.1] in the case of a single boundary. Given that the present setting
creates no additional difficulties we will omit further details of this verification and
this completes the proof. �

The coupled system of nonlinear Volterra integral equations (9.3)+(9.4) can be

used to find the optimal stopping boundaries b̃0 and b̃1 numerically. Note that
the identity (9.8) can be used to produce a finite horizon approximation to the



2112 PETER JOHNSON AND GORAN PESKIR

Figure 3. Kinematics of the process (Φ,X) associated with the
Bessel motion from Figure 1 and location of the optimal stopping
boundaries b0 and b1 .

system obtained by replacing s with T−t in (9.8), which yields (9.9) and hence
(9.3)+(9.4) as well with T − t in place of ∞ as the upper limit of integration
(making (9.3)+(9.4) solvable numerically by backward recursion). Having found

b̃0 and b̃1 the identities (7.35) can be used to calculate b0 and b1 numerically.
Collecting the results derived throughout we now disclose the solution to the initial
problem.

Corollary 16. With the initial point x > 0 of the process X solving (2.2)+(2.3)
given and fixed, the value function of the initial problem (2.4) is given by

(9.10) V (π) = (1−π) Ṽ
(

2
κ log

[(
1−π
π

)1/γ
x
]
, π
1−π

)

for π ∈ (0, 1) with γ = (δ1−δ0)/2 and κ = (δ1+δ0−4)/2 where the function Ṽ
is given by (9.5) above. The optimal stopping time in the initial problem (2.4) is
given by

(9.11) τ∗ = inf
{
t ≥ 0

∣∣ π

1− π

(Xt

x

)γ
exp

(
− κγ

2

∫ t

0

ds

X2
s

)
/∈
(
b0(Xt), b1(Xt)

)}

(see Figure 3 upon noting that the random variable on the left-hand side from the
non-element sign equals Φϕ

t with ϕ = π/(1−π) for π ∈ (0, 1) fixed) where b0
& b1 are expressed in terms of b̃0 & b̃1 by (7.35) respectively and b̃0 & b̃1
are a unique solution to the coupled system of nonlinear Volterra integral equations
(9.3)+(9.4). The optimal decision function dτ∗ equals i and we conclude that the
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dimension of the observed process X is δi if the stopping in (9.11) happens at bi
for i = 0, 1 .

Proof. The identity (9.10) follows by combining (3.9)+(3.10) in Proposition 2 with
(5.19) in Proposition 6 and the result of Theorem 15. The explicit form (9.11)
follows from (9.6) in Theorem 15 combined with (5.15)-(5.18). The final claim on
the optimal decision function follows from the general argument invoked following
(2.6) above and this completes the proof. �
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