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CONNECTIONS BETWEEN UNIT-REGULARITY,

REGULARITY, CLEANNESS, AND STRONG CLEANNESS

OF ELEMENTS AND RINGS

PACE P. NIELSEN AND JANEZ ŠTER

Abstract. We construct an example of a unit-regular ring which is not
strongly clean, answering an open question of Nicholson. We also characterize

clean matrices with a zero column, and this allows us to describe an inter-
esting connection between unit-regular elements and clean elements. Next we
study in arbitrary rings those elements whose powers are regular, and provide
a method for constructing inner inverses which satisfy many additional strong
relations. As a corollary we show that if each of the powers a, a2, . . . , an is
a regular element in some ring R (for some n ≥ 1), then there exists w ∈ R
such that akwkak = ak and wkakwk = wk for 1 ≤ k ≤ n. Similar statements
are also obtained for unit-regular elements. The paper ends with a large num-
ber of examples elucidating further connections (and disconnections) between
cleanness, regularity, and unit-regularity.

1. Introduction

Regular rings were defined by von Neumann in his study of continuous geome-
tries and have become a staple of noncommutative ring theory due to their simple
definition and connection to decomposition theory. An element a in a ring R is said
to be (von Neumann) regular if there exists some r ∈ R with ara = a. We denote
the set of all regular elements of R by reg(R), and if reg(R) = R one says that R
is a regular ring. The element r is called an inner inverse for a, and it need not be
unique.

As defined by Ehrlich [12], an element a ∈ R is unit-regular if it has an inner
inverse which is a unit of R. The set of unit-regular elements is denoted by ureg(R),
and if ureg(R) = R we say R is a unit-regular ring. Examples include all semisimple
rings and all commutative regular rings. However, there are regular rings which
are not unit-regular. Additional information on regular rings can be found in the
textbook [14]. The utility of these definitions is most easily seen by the following
classical result.

Lemma 1.1. Let Mk be a right k-module for some ring k, and let a ∈ R :=
End(M). We have a ∈ reg(R) if and only if ker(a) and im(a) are direct summands
of M . Moreover, a ∈ ureg(R) if and only if a ∈ reg(R) and ker(a) ∼= coker(a).
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Proof. See Exercises 4.14A1 and 4.14C from [18], and the comments following them.
The second exercise appears as part of [13, Theorem 1]. Both contain the additional
hypothesis that the entire ring R is regular, but the proofs can be modified to avoid
this assumption. �

An important generalization of regular rings arose in the work of Warfield [24],
based on earlier work of Crawley and Jónsson on direct sum decomposition the-
ory [10]. Nicholson [19] showed that Warfield’s rings are exactly those for which
idempotents lift modulo every one-sided ideal, and they are called the exchange
rings.

Many exchange rings satisfy additional properties, which Nicholson described in
[19] and [20]. Following that work, we say that an element a ∈ R is clean if a = e+u
for some idempotent e and some unit u of R. The additive decomposition a =
e+u is sometimes called a clean decomposition. If a has some clean decomposition
a = e + u where additionally e and u commute, then we say a is strongly clean.
When every element of R is (strongly) clean, then one says that R is a (strongly)
clean ring. Surprisingly, most natural examples of exchange rings are clean rings,
including all endomorphism rings of continuous modules [5], all commutative (and
more generally abelian) exchange rings [19, Proposition 1.8], and all strongly π-
regular rings [20, Theorem 1]. (The last two classes are also strongly clean.)

Bergman has constructed a regular (hence exchange) ring which is not clean; see
[9, p. 4746] and [22, Example 3.1]. All other examples of nonclean exchange rings
seem to be based on this single example. Remarkably, unit-regularity of rings does
imply cleanness by [9, Theorem 5] and [8, Theorem 1].

This raises the question of whether every unit-regular ring is strongly clean,
which appears as the fourth of five questions in [20]. In Section 2 we answer this
question in the negative by constructing a unit-regular ring which is not strongly
clean. (Thus, of the five questions from [20], only Questions 1 and 2 remain open.)
It is also well-known that unit-regular elements are not always clean. We clarify this
relationship in Section 3 by showing that there is a natural element-wise extension
of unit-regularity which is equivalent to an enhanced form of cleanness, proven in
Theorem 3.14. One of the conditions of that theorem leads us, in Section 4, to
consider powers of regular elements. We prove that if a is an element of a ring
R such that a, a2, . . . , an are all regular in R, then there exists some w ∈ R such
that aiwjak = wj−iajwj−k for all 0 ≤ i, k ≤ j ≤ n. In particular, w satisfies the
“power inner inverse” conditions akwkak = ak and wkakwk = wk for all 1 ≤ k ≤ n.
Similar statements hold when a is unit-regular. We finish by proving some natural
limitations on these theorems and providing many examples.

Rings in this paper are associative and have 1, but are not necessarily commuta-
tive. Modules are unital, and endomorphisms will be written on the side opposite
the scalars. The set of units in a ring R will be denoted by U(R), while the set of
idempotents is idem(R).

2. Unit-regular rings are not always strongly clean

This section is devoted to constructing a unit-regular ring which is not strongly
clean. The ring we will create is isomorphic to a complicated example of Bergman
found in [14, Example 5.12], given there as an instance of a unit-regular ring with
a regular subring which is not unit-regular. Instead of following the steps taken
there to define the ring as a set of certain endomorphisms, we find it easier to
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view the ring as a set of infinite Z × Z matrices, so we will form the ring along
independent lines. (As shown to us after writing this paper, O’Meara in [21] has
recast Bergman’s example in similar terms.)

Let F be a field. Let F ((t)) denote the field of formal Laurent series over F . We
define R to be the set of all Z× Z matrices A = (ai,j)i,j∈Z over F such that there
exist m,n ∈ Z and f(t) =

∑∞
k=k0

akt
k ∈ F ((t)) with the following properties:

(R1) if i ≥ m or j < n, then ai,j = aj−i (where we set ak = 0 if k < k0);
(R2) the submatrix A0 = (ai,j)i<m,j≥n has finite rank (i.e., it has only finitely

many linearly independent columns or, equivalently, finitely many linearly
independent rows).

Thus, the matrix A ∈ R in the above definition is of the following form:

m

n⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

. . . an−m

... A0

an−m−1 an−m

... an−m−1 an−m · · ·
... an−m−1 an−m · · ·

...
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The indices of the entries ai,j in this matrix increase when we move down or right
(respectively). The lower left corner of A0 is at position (m− 1, n).

The small letterm on the left of the horizontal line indicates that the row directly
below this line is the mth row of A (i.e. the row (am,j)j∈Z). Similarly, the small
letter n above the vertical line indicates that the column directly to the right of the
vertical line is the nth column of A (i.e. (ai,n)i∈Z). In subsequent computations,
we will often use these small letters since they will simplify notation.

Note that in the definition of R given above, we may always increase m or
decrease n by any finite number, because these changes do not affect the finite
rank condition on A0. Moreover, the condition (R2) in the above definition may be
made independent of m and n by simply saying that (ai,j)i<0,j≥0 has finite rank or
alternatively that (ai,j)i<p,j≥q has finite rank for some (arbitrary) p, q ∈ Z.

There is one more way of characterizing the finite rank condition (R2). Note
that if the matrix A0 = (ai,j)i<m,j≥n has finite rank, then there exists c ≥ 1 such
that each row in A0 is a linear combination of the bottom c rows of A0. Writing a
decomposition

A0 =

(
A2

A1

)
,

with A1 composed of the last c rows of A0, this means that we can factor A2 = Y A1

for a suitable infinite matrix Y (with c columns). Moreover, since A1 has only
finitely many independent columns, we can find d ≥ 1 such that A1 decomposes as

A1 =
(
X0 X0Z

)
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where X0 contains the first d columns of A1 and Z is an infinite matrix with d
rows. Putting this together, we get a decomposition of A0:

(2.1) A0 =

(
Y X0 Y X0Z
X0 X0Z

)
.

It is clear that such a decomposition is also sufficient for A0 to have finite rank.
Let us now proceed with our construction. We endow the set R with the usual

matrix addition and multiplication. It is clear that addition on R is well-defined.
Let us briefly sketch the proof of why multiplication is also well-defined. First, it is
clear that if A,B ∈ R, then AB is well-defined as a Z× Z matrix over F , because
rows of A are bounded from the left and columns of B are bounded from below.
Next, if the Laurent series f(t), g(t) ∈ F ((t)) correspond to A and B respectively,
then a straightforward computation shows that f(t)g(t) ∈ F ((t)) corresponds to AB
in the sense that condition (R1) holds for that Laurent series (for sufficiently large
m and sufficiently small n). And finally, to see that AB satisfies the finite rank
condition, decompose

A = 0

0(
A11 A12

A21 A22

)
and B = 0

0(
B11 B12

B21 B22

)
.

Since A12 and B12 have finite ranks, A11B12 and A12B22 also have finite ranks,
and hence the upper right corner of AB, which is A11B12 +A12B22, also has finite
rank.

By checking the ring axioms directly (associativity of multiplication being the
only step that isn’t completely trivial), this proves R is a ring. For every A ∈ R,
we denote by ψ(A) ∈ F ((t)) the Laurent series that corresponds to A. Note that
ψ : R → F ((t)) is a surjective ring homomorphism.

Proposition 2.2. The ring R constructed above is unit-regular.

Proof. Let A = (ai,j) ∈ R. Fix m,n ∈ Z and f(t) =
∑

k≥k0
akt

k such that

ai,j = aj−i if i ≥ m or j < n. First, suppose that f(t) �= 0. We may assume that
ak0

�= 0 and, after increasing m, that m+ k0 > n. Decompose A as

A =
n−k0

m

n m+k0⎛
⎜⎝

S Y W

0 X0 Z

0 0 T

⎞
⎟⎠ .

Observe that the matrices S and T are upper triangular, constant on diagonals,
and nonzero on the main diagonal. Therefore, they are invertible. In fact, the
inverses S−1 and T−1 are also upper triangular and constant on diagonals, with
entries that are precisely the coefficients of f(t)−1 (with the leading term on the
main diagonal). Moreover, since any finite matrix ring over a field is unit-regular,
there exists an invertible matrix U0 ∈ Mm+k0−n(F ) such that X0U0X0 = X0. Now
define

U :=
n

m+k0

n−k0 m⎛
⎜⎝

S−1 −S−1Y U0 S−1(Y U0Z −W )T−1

0 U0 −U0ZT−1

0 0 T−1

⎞
⎟⎠ .
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Since U0 and W have finite ranks, S−1(Y U0Z − W )T−1 has finite rank, hence
U ∈ R. Note that U is invertible, with the inverse

U−1 =
n−k0

m

n m+k0⎛
⎜⎝

S Y W

0 U−1
0 Z

0 0 T

⎞
⎟⎠ .

One also easily verifies that AUA = A, which completes the proof in this case.
Now suppose that f(t) = 0. Since A0 = (ai,j)i<m,j≥n has finite rank, we can

apply decomposition (2.1), so that A becomes

(2.3) A =
m−c

m

n n+d⎛
⎜⎝

0 Y X0 Y X0Z

0 X0 X0Z

0 0 0

⎞
⎟⎠ .

We may assume that c = d by increasing one or the other as needed. Taking an
invertible U0 ∈ Mc(F ) with X0U0X0 = X0, one now easily verifies that

U :=
n

n+c

m−c m⎛
⎜⎝

I 0 0

0 U0 0

0 0 I

⎞
⎟⎠

is invertible in R, with inverse

U−1 =
m−c

m

n n+c⎛
⎜⎝

I 0 0

0 U−1
0 0

0 0 I

⎞
⎟⎠,

and that AUA = A. This completes the proof. �

Theorem 2.4. The ring R constructed above is not strongly clean.

Proof. Let

A :=

−1

0

1

−2 −1 0⎛
⎜⎜⎜⎝

I 0 0 0

0 1 1 0

0 0 0 0

0 0 0 I

⎞
⎟⎟⎟⎠∈ R.

That is, A = (ai,j) where ai,i−1 = 1 for all i ∈ Z \ {0}, a−1,−1 = 1, and ai,j = 0 for
all other pairs (i, j). We will prove that A is not strongly clean in R.

Let E = (ei,j) ∈ R be any idempotent such that AE = EA. We have two
possible cases, ψ(E) = 0 or ψ(E) = 1. First, suppose that ψ(E) = 0. We claim
that in this case ei,j = 0 whenever i ≥ 0 and j ∈ Z. Assume by way of contradiction
that there are some i ≥ 0 and j ∈ Z such that ei,j �= 0. Suppose that i is the largest
integer with this property, so that ei′,j′ = 0 whenever i′ > i and j′ ∈ Z. In this
case, the (i + 1, j) entry of EA is 0, while the (i + 1, j) entry of AE is ei,j �= 0,
contradicting the fact that AE = EA. So E has the stated property. But this
means that the 0th row of A− E is all zeros, and hence A− E is not a unit.
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Now suppose that ψ(E) = 1. Then E′ = (e′i,j) = 1 − E satisfies ψ(E′) = 0 and
AE′ = E′A. Similarly as above, we can show that this implies e′i,j = 0 whenever

i ∈ Z and j < 0. Accordingly, A−E = A− 1+E′ has the (−1)th column all zeros
and hence it cannot be a unit. This proves that A is not strongly clean. �
Remark 2.5. (1) In the proof of this theorem, the only fact we needed about idem-
potents E ∈ idem(R) is that ψ(E) ∈ {0, 1}.

(2) In the above proof, one could prove that A − E is not a unit by merely
assuming that AE = EAE, rather than AE = EA. In fact, if AE = EAE and
ψ(E) = 0, then the same argument as above shows that E = (ei,j) must satisfy
ei,j = 0 for all i ≥ 0 and j ∈ Z. Hence A − E cannot be a unit as it has a zero
0th row. Similarly, if AE = EAE and ψ(E) = 1, then E′ = (e′i,j) = 1−E satisfies

ψ(E′) = 0 and E′A = E′AE′, from which we obtain e′i,j = 0 for all i ∈ Z and j < 0.
Hence A− E = A− 1 + E′ cannot be a unit as it has a zero (−1)th column. This
shows that R is not even capably clean in the terminology of [6]. In that paper it is
shown that one-sided continuous, Dedekind-finite, regular rings are capably clean.
In agreement with this fact, one can check directly that the ring R we have defined
is not left or right continuous.

It may be interesting to note that we can view R as a subring of the endomor-
phism ring of F ((t)). Given an element f(t) =

∑
k≥k0

akt
k ∈ F ((t)), we can identify

the Laurent series as an infinite row vector (ak)k∈Z which has zero entries for suf-
ficiently negative indices. The ring R acts on such vectors by right multiplication.
In this way one can identify the ring R we have constructed with the ring Q of
endomorphisms given in Example 5.12 from [14]. However, we will not give the
formal details of this identification, since that example is quite involved, and we
don’t need this fact.

3. Element-wise connections between unit-regularity

and clean decompositions

As shown in [9] unit-regular rings are clean rings, and as later clarified in [8]
unit-regularity for rings is equivalent to a strengthened form of cleanness. The
hypotheses of these statements cannot be significantly weakened, since there are
regular rings which are not clean. Nor can the conclusions of these statements be
significantly strengthened, because the example from the previous section demon-
strates that unit-regular rings need not be strongly clean rings.

The purpose of this section is to clarify the connection between unit-regular
elements and clean elements by showing that a “doubly unit-regular” condition
is equivalent to a strengthened form of cleanness. This result should come as
something of a surprise, since it was shown in [17] that unit-regular elements are
not necessarily clean. Before we state our main result, we first generalize some
results in the literature by characterizing when matrices with a column of zeros are
clean.

To begin we recall an easy alternate characterization of when a ∈ R is clean.

Lemma 3.1 ([25, Proposition 2]). Let a be an element of a ring R. The following
are equivalent:

(1) There exist e ∈ idem(R) and u ∈ U(R) such that a = e+ u.
(2) There exist g ∈ idem(R) and v ∈ U(R) such that g = gva and 1 − g =

−(1− g)v(1− a).
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Moreover, there is a natural bijection between the two conditions. Given u, e, we
can take v = u−1 and g = 1 − u−1eu; conversely, given v, g, we can take u = v−1

and e = 1− v−1gv.

Let R be a ring with an idempotent e and a ∈ Re. In the Peirce decomposition
corresponding to e and f := 1− e, we can write a as

(3.2) a =

(
α 0
τ 0

)
,

where α := ea ∈ eRe and τ := fa ∈ fRe. The following lemma characterizes when
such an element a is clean in R, in terms of the properties of the “corner” elements
α and τ . The lemma generalizes [22, Proposition 2.2], which deals with matrices
of the form (3.2) with the additional property τ = 0, and also [17, Theorem 3.2],
which deals with matrices in M2(K) with a zero row (or column) in the case when
the base ring K is commutative.

Lemma 3.3. Let R be a ring, e ∈ idem(R), f := 1− e, and a ∈ Re. Put α := ea
and τ := fa as above. The following are equivalent:

(1) The element a is clean in R.
(2) There exist ε ∈ idem(eRe), μ ∈ U(eRe), β ∈ eRf , and γ ∈ fRe such that

ε = εμα+ εβ(τ + γα) and e− ε = −(e− ε)μ(e− α).

(3) There exist ε ∈ idem(eRe), μ ∈ U(eRe), β ∈ eRf , and γ ∈ fRe such that

α = ε+ μ+ (e− ε)β(τ + γα).

Proof. (1) ⇒ (2): We imitate the proof of [22, Proposition 2.2]. Assume that a
is clean. Write g = gva and 1 − g = −(1 − g)v(1 − a) where g ∈ idem(R) and
v ∈ U(R). Since g ∈ Ra ⊆ Re, it must be the case that g has a zero second column
(in the e-f -Peirce decomposition), so that

g =

(
ε 0
χ 0

)
for some ε ∈ idem(eRe) and χ ∈ fRε. Write ζ := e− ε and set

v =

(
π β
σ δ

)
.

By matrix expansion of the equation g = gva we get the following two equalities:

ε = επα+ εβτ,(3.4)

χ = χπα+ χβτ.(3.5)

(Note that (3.5) also follows from (3.4) since χ = χε.) Furthermore, from 1 − g =
−(1− g)v(1− a) we get the following four equations:

ζ = −ζπ(e− α) + ζβτ,(3.6)

0 = ζβ,(3.7)

−χ = −(σ − χπ)(e− α) + (δ − χβ)τ,(3.8)

f = −δ + χβ.(3.9)

The invertibility of v, in conjunction with (3.9), yields that(
e β
0 f

)(
e 0
−χ f

)
v =

(
π + β(σ − χπ) 0

σ − χπ −f

)
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is invertible. As the lower-right corner is a unit (in the corner ring fRf) and the
entire matrix is a lower-triangular invertible matrix, we see that μ := π+β(σ−χπ)
is invertible in eRe.

From (3.7) we have ζπ = ζμ, so that (3.6) becomes ζ = −ζμ(e − α), which is
the second of the two equations we need. Moreover, (3.4) yields

ε = ε(μ− β(σ − χπ))α+ εβτ = εμα + εβ(τ − (σ − χπ)α).

Taking γ := −σ + χπ gives the other needed equation. (It may be interesting to
note that we never needed to use (3.8).)

(2) ⇒ (1): Suppose that ε = εμα + εβ(τ + γα) and ζ = −ζμ(e − α) for some
ε = e−ζ ∈ idem(eRe), μ ∈ U(eRe), β ∈ eRf and γ ∈ fRe. Write τ ′ := τ+γα−γ ∈
fRe, and let

g :=

(
ε 0
τ ′ε 0

)
and

v :=

(
e 0
τ ′ε f

)(
e −εβ
0 f

)(
(e+ εβτ ′ζ)μ 0
τ ′ζμ− γ −f

)
.

Clearly, g ∈ idem(R) and v ∈ U(R), and a straightforward verification shows that
g = gva and 1− g = −(1− g)v(1− a). Thus a is clean in R by Lemma 3.1.

(2) ⇒ (3): The proof of this implication and its converse are similar to the proof
of Lemma 3.1, but we include the details for completeness. Given the two equations
of (2), adding them together we get

e = εμα+ εβ(τ + γα)− (e− ε)μ(e− α) = μα+ εβ(τ + γα)− (e− ε)μ,

so that

α = μ−1(e− ε)μ+ μ−1 − μ−1εβ(τ + γα),

which gives the desired equation taking ε′ := μ−1(e− ε)μ, μ′ := μ−1, β′ := −μ−1β,
and γ′ := γ.

(3) ⇒ (2): Starting with the equation given in (3), multiplying on the left by
μ−1ε gives μ−1εα = μ−1ε+ μ−1εμ. Hence

(3.10) μ−1εμ = −(μ−1εμ)μ−1(e− α).

Taking ε′ := μ−1(e− ε)μ and μ′ := μ−1, then (3.10) is exactly the second equation
of (2). Similarly, multiplying (3) on the left by μ−1(e− ε) gives the first equation
of (2). �

Remark 3.11. (1) If τ = 0, then Lemma 3.3 says that a = α ∈ eRe is clean in R if
and only if

(3.12) α = ε+ μ+ (e− ε)βγα

for some ε ∈ idem(eRe), μ ∈ U(eRe), β ∈ eRf , and γ ∈ fRe. Thus a is weakly
clean in eRe, following the terminology of [22, Definition 2.3].

Conversely, if a ∈ eRe is weakly clean in eRe and

(3.13) e = exfye for some x, y ∈ R,

then a satisfies (3.12) and hence is clean in R. However, without assuming any
extra condition such as (3.13), weakly clean elements of corner rings need not be
clean in the entire ring. This is easy to see by taking e = 1 and R to be any weakly
clean ring which is not clean, such as in [22, Example 3.1].
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(2) Lemma 3.3 provides an easy way to see that regular elements in rings with
stable range one are always clean, which was originally proved in [23, Theorem 3.3].

To see this, let R have stable range one and write a = ara ∈ R with r ∈ R.
Setting e := ra we have a ∈ Re, so that a decomposes as in (3.2). Since e = era =
ereα + erfτ and eRe has stable range one, we have e = μα + ωerfτ for some
μ ∈ U(eRe) and ω ∈ eRe. Thus, ε := e, μ, β := ωerf , and γ := 0 satisfy Lemma
3.3(2), and hence a is clean in R.

We are now prepared to present the main theorem of this section, which demon-
strates that certain unit-regular elements, which we call “doubly unit-regular”,
possess an extended version of the clean property.

As mentioned previously, not all unit-regular elements are clean. To get around
this problem, we assume two instances of unit-regularity; once for the original
element, and once for a corner of the element. However, as it turns out, unit-
regularity is only needed for the corner and mere regularity for the original element.

Theorem 3.14. Let a be an element of a ring R. The following are equivalent:

(1) There exists u ∈ U(R) with aua = a such that writing e := ua ∈ idem(R),
the element eae is unit-regular in eRe.

(2) There exists r ∈ R with ara = a such that writing e := ra ∈ idem(R), the
element eae is unit-regular in eRe.

(3) There exist g ∈ idem(R) and v ∈ U(R) such that putting h := 1 − g we
have g = gva, h = −hv(1− a), hvh = −h, and gvhvgvh = −gvh.

(4) There exist e ∈ idem(R) and u ∈ U(R) such that a = e+u, aR∩ eR = (0),
and a2R ∩ aeR = (0).

(5) There exist e ∈ idem(R) and u ∈ U(R) such that a = e+u, aR∩ eR = (0),
and a2R ∩ aeaR = (0).

(6) There exist e ∈ idem(R) and u ∈ U(R) such that a = e+u with au−1a = a
and a2u−2a2 = a2.

Proof. (1) ⇒ (2) is a tautology.
(2) ⇒ (3): Put f := 1−e. Since a ∈ Re, we can write a = ( α 0

τ 0 ) in the e-f -Peirce
decomposition. As α is unit-regular by hypothesis, we can find μ ∈ U(eRe) such
that αμα = α. Now

e = e3 = erae = ereae+ erfae = ereα+ erfτ

gives erfτ (e− μα) = (e− ereα)(e− μα) = e− μα. Multiplying on the left by the
idempotent e− μα yields

(e− μα)erfτ (e− μα) = e− μα

so that

(3.15) e = μα+ (e− μα)erfτ (e− μα) = μα+ (e− μα)erf(τ − τμα).

Hence ε := e, μ, β := (e− μα)erf , and γ := −τμ satisfy the conditions of Lemma
3.3(2). Accordingly, a is clean in R, i.e. g = gva and h = −hv(1 − a), with
g = 1− h ∈ idem(R) and v ∈ U(R). Moreover, the proof of the implication (2) ⇒
(1) in Lemma 3.3 tells us that we can take

g :=

(
e 0
τ ′ 0

)
and v :=

(
e 0
τ ′ f

)(
e −β
0 f

)(
μ 0
−γ −f

)
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where τ ′ := τ + γα − γ (since ε = e and hence ζ = 0). It is a matter of a routine
verification that g, h, and v satisfy hvh = −h, so it only remains to see that
gvhvgvh = −gvh. By direct computation we get

gvh =

(
−βτ ′ β
−τ ′βτ ′ τ ′β

)
and gvhvgvh =

(
β(γ + τ ′)βτ ′ −β(γ + τ ′)β
τ ′β(γ + τ ′)βτ ′ −τ ′β(γ + τ ′)β

)
,

so we only need to see that β(γ + τ ′)β = β. This follows from β = (e− μα)β and

β(γ + τ ′) = β(τ + γα) = (e− μα)erf(τ − τμα) = e− μα,

where the last equality follows from (3.15).
(3) ⇒ (4): Assuming (3), Lemma 3.1 gives us an idempotent e := v−1hv and

a unit u := v−1 such that a = e + u. From hvh = −h we have −ve = −hv ∈
idem(R). The orthogonal complement of this idempotent is precisely 1 + ve =
1 + v(a − v−1) = va. As orthogonal idempotents have disjoint images, it follows
that vaR ∩ (−ve)R = (0), which is nothing but aR ∩ eR = (0).

To prove the remaining equality a2R ∩ aeR = (0), first apply hv = hvg − h and
vh = gvh− h to get

v2ae = v(va)e = v(1 + hv)e = (1 + vh)ve = (1 + vh)hv

= (gvh+ g)(hvg − h) = gvhvg − gvh

and

v2a2 = v(va)a = v(1 + hv)a = (1 + vh)va = (1 + vh)(1 + hv)

= (gvh+ g)(hvg + g) = gvhvg + g.

Using gvhvgvh = −gvh, it is now a routine verification to see that −v2ae and v2a2

are orthogonal idempotents. Therefore v2a2R ∩ (−v2ae)R = (0), which readily
gives the needed equality.

(4) ⇒ (5) is trivial since aeaR ⊆ aeR.
(5) ⇒ (6): Assume that (5) holds. Denote f := 1− e; then

f(au−1a− a) = fa(u−1a− 1) = f(e+ u)(u−1a− 1)

= fu(u−1a− 1) = f(a− u) = fe = 0.

Hence au−1a− a ∈ aR ∩ eR = (0) and therefore au−1a = a. Moreover, from

eu−1a = (a− u)u−1a = au−1a− a = 0

we have afau−2a = af(e+ u)u−2a = afu−1a = au−1a = a, which gives

a2u−2a2 − a2 = aeau−2a2 + afau−2a2 − a2 = aeau−2a2.

Thus, a2u−2a2 − a2 ∈ a2R ∩ aeaR = (0), which yields a2u−2a2 = a2.
(6) ⇒ (1): Write e′ := u−1a. We will prove that e′ae′ = e′a is unit-regular in

e′Re′. Set f := 1− e. From

fue′ = fuu−1a = fa = f(e+ u) = fu

and

e′fu = u−1afu = u−1(e+ u)fu = fu

we have fu ∈ e′Re′. This, together with ee′ = eu−1a = (a − u)u−1a = 0 and
au−1e = au−1(a− u) = 0, gives

fue′u−1e′ = fuu−1e′ = fe′ = e′
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and

e′u−1e′fu = e′u−1fu = u−1au−1fu = u−1au−1u = u−1a = e′.

Hence e′u−1e′ is a unit in e′Re′, with inverse fu. We also have

e′ae′u−1e′a = e′au−1e′a = u−1a2u−2a2 = u−1a2 = e′a,

which proves that indeed e′a ∈ ureg(e′Re′). This completes the proof of the theo-
rem. �

Condition (6) of Theorem 3.14 is visually left-right symmetric, and so we could
replace any of the other conditions by their left-right analogue. Further, assume
a ∈ R is unit-regular. Let r, r′ be any two inner inverses, so ara = ar′a = a.
Putting e = ra and e′ = r′a we claim that eae is unit-regular in eRe if and only
if e′ae′ is unit-regular in e′Re′, and hence conditions (1) and (2) do not depend on
which (unit) inner inverse one chooses. This can be shown directly, but is also a
consequence of the following:

Proposition 3.16. If R is the endomorphism ring of some left k-module kM , then
the conditions of Theorem 3.14 are also equivalent to:

(7) The element a ∈ End(M) is regular in End(M), and a|Ma ∈ End(Ma) is
unit-regular in End(Ma).

Proof. (2) ⇔ (7): Assume a ∈ R is regular, and let r ∈ R be any inner inverse.
Putting e := ra ∈ idem(R), we then have Ma = Me. There is a natural identifica-
tion End(Ma) = End(Me) ∼= eRe. Under this identification, a|Ma corresponds to
eae. Thus eae is unit-regular if and only if a|Ma is as well. �

Remark 3.17. (1) As Theorem 3.14 is an element-wise statement, in principle one
should be able to give precise formulas for some clean decomposition of a, using
the following two conditions: (A) ara = a for some r ∈ R and (B) w ∈ U(raRra)
is an inner inverse for the element (ra)a(ra) in the corner ring raRra. Indeed, put
t = w−1 ∈ U(raRra). With some work we obtain the relations

(1) ara = a, (2) a2wa = a2, (3) wawa = wa, (4) tawa = ta,
(5) wra = w, (6) raw = w, (7) tra = t, (8) rat = t,
(9) wt = ra, (10) tw = ra.

Putting

e :=1− ra+ tr + ar2a− artr − awaw − ra2r + ra2w

+ ar2a2r − ar2a2w − awar2a+ awar2a2w

then a direct computation (which we performed using a computer and only the ten
relations above) shows e2 = e and u := a − e is a unit satisfying condition (6) of
Theorem 3.14, whose inverse v has 53 monomials in its support when written in the
letters a, r, t, w! (It is possible that a different choice for e may lead to a slightly
simpler expression for v. However, adjoining an inverse for r does not simplify any
of the formulas given here.)

(2) As one may expect, the statements (4) and (5) of Theorem 3.14 are not
equivalent in the sense that a fixed idempotent e and a unit u would satisfy the
conditions of (4) if and only if they would satisfy the conditions of (5). For example,
taking a = ( 0 0

1 1 ), e = ( 1 0
0 0 ) and u =

(−1 0
1 1

)
in the 2 × 2 matrix ring over a field,

one easily checks that a, e, u satisfy (5) but a2R ∩ aeR �= (0).
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A well-known result of Ara says that strongly π-regular rings have stable range 1.
A key step in the proof is the observation that any regular, nilpotent element of an
exchange ring is a unit-regular element (by [1, Theorem 2], but also see [16]). One
might ask: Is the assumption that R is an exchange ring necessary? If a ∈ reg(R)
and a2 = 0, then Proposition 3.16 tells us a is doubly unit-regular, and thus both
unit-regular and clean.

However, to end this section we construct an example of a ring S and a regular
element a ∈ S such that a3 = 0, but a is not unit-regular in S. Our construction is
based on the ring F 〈x, y : x2 = 0〉. The following lemma lists some properties of
this ring.

Lemma 3.18. Let F be a field and R := F 〈x, y : x2 = 0〉. The following hold:

(1) If ab = 0 for some nonzero a, b ∈ R, then a ∈ Rx and b ∈ xR. In particular,
the set of nilpotent elements of R is precisely Rx ∩ xR = Fx+ xRx.

(2) The idempotents of R are trivial, so idem(R) = {0, 1}.
(3) The ring R is Dedekind-finite, meaning ab = 1 implies ba = 1 for all

a, b ∈ R.
(4) Units in R are exactly the elements of the form μ + a where μ ∈ F \ {0}

and a ∈ Rx ∩ xR. In particular, U(R) + Fx ⊆ U(R), and 1− yx /∈ U(R).

Proof. (1) is found in [7, Example 9.3].
(2) If e �= 1 is an idempotent in R, then e is both a left and a right zero divisor,

so that e ∈ Rx ∩ xR by (1). Hence e is a nilpotent and thus e = 0. (Alternatively,
this follows by an easy minimal degree argument.)

(3) follows from (2) since ab = 1 always implies that ba is a nonzero idempotent
(when 1 �= 0).

(4) Clearly (F \ {0}) + (Rx ∩ xR) ⊆ U(R), so it suffices to prove the other
inclusion. Let u ∈ U(R). We may write u = μ + u1 + u2 + u3 + u4 with μ ∈ F ,
u1 ∈ Rx∩ xR, u2 ∈ Rx∩ yR, u3 ∈ Ry ∩ xR and u4 ∈ Ry ∩ yR. Clearly, μ �= 0. We
need to prove that u2 = u3 = u4 = 0.

Let v := u−1 = ν + v1 + v2 + v3 + v4, with ν ∈ F , v1 ∈ Rx ∩ xR, v2 ∈ Rx ∩ yR,
v3 ∈ Ry ∩ xR, and v4 ∈ Ry ∩ yR. We have xu · vx = 0 and xu, vx �= 0, so that (1)
yields xu ∈ Rx. This gives xu4 ∈ Rx, so that u4 = 0. Similarly, v4 = 0.

Suppose that u2 �= 0 and v2 �= 0. Taking any monomial p in u2 of the largest
degree and any monomial q in v2 of the largest degree, we see that the monomial pq
cannot cancel with any other monomial in the product uv, so that uv �= 1, which
is a contradiction. Thus u2 �= 0 forces v2 = 0. Similarly, u3 �= 0 forces v3 = 0.
Therefore, if both u2, u3 �= 0, then v = ν + v1, which gives u = v−1 = ν−1 − ν−2v1,
a contradiction. Hence u2 = 0 or u3 = 0; we may assume by symmetry that u3 = 0.

Finally, suppose that u2 �= 0, so that v2 = 0. Then

x = xvu = x(ν + v1 + v3)(μ+ u1 + u2) = νx(μ+ u1 + u2) = μνx+ νxu2.

Hence xu2 ∈ Fx, which is again a contradiction. Thus u2 = 0, which completes
the proof. �

Example 3.19. There exists a ring S and an element a ∈ reg(S) with a3 = 0, but
a /∈ ureg(S).
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Proof. Let F be a field, and set R := F 〈x, y : x2 = 0〉. Let I := R(1− yx), which
is a left ideal in R. We let S be the unital subring of M2(R) given by

S :=

(
R I
R F + I

)
.

The element A := ( x 0
1 0 ) is regular with inner inverse

(
y 1−yx
0 0

)
. Further A3 = 0.

Assume, by way of contradiction, that A is unit-regular in S, so A = AUA for
some unit U of S. As E := UA is an idempotent with a second column of zeros, it
is of the form

E =

(
e 0
te 0

)
for some t ∈ R, and some nonzero idempotent e2 = e ∈ R. The ring R has only
trivial idempotents so e = 1. Now V := U−1 ( 1 0

t 1 ) is an invertible matrix in S
satisfying

V

(
1 0
0 0

)
= U−1

(
1 0
t 1

)(
1 0
0 0

)
= U−1E = A;

hence the first columns of V and A coincide, so we may write V = ( x a
1 b ) for some

a ∈ I and b ∈ F + I.
Now, since V is invertible in the larger ring M2(R), we see that

V

(
−b 1
1 0

)
=

(
a− xb x

0 1

)
is also invertible, and hence c := a − xb ∈ U(R). On the other hand xb ∈ I + Fx
so that c ∈ I +Fx. Writing c = λx+ c′(1− yx) with λ ∈ F and c′ ∈ R, by Lemma
3.18(4) we have

c′(1− yx) = c− λx ∈ U(R)

so that 1− yx ∈ U(R), yielding the needed contradiction. �

Remark 3.20. Ara and O’Meara have also proven the existence of a regular, nilpo-
tent element which is not unit-regular, independently and simultaneously with this
work. They work directly with the generic ring F 〈a, x : axa = a, xax = x, a3 = 0〉,
but after seeing our example they have subsequently shown that in fact their ex-
ample is isomorphic to the one given here (see [2])! As their methods are different
from ours, we continue to include our example here.

It may be interesting to note that there is a special case of the “nilpotent regular
element problem” which has a positive solution. (O’Meara has shown us in personal
communication that he also independently discovered this result.)

Proposition 3.21. If a, b ∈ R are nilpotents in a ring R and aba = a, then
a ∈ ureg(R).

Proof. Let u := b+ (1 + a)−1(1− ab). Clearly, ua = ba and so aua = aba = a. We
also compute

u = (1 + a)−1(1 + a)b+ (1 + a)−1(1− ab) = (1 + a)−1(b+ ab+ 1− ab)

= (1 + a)−1(1 + b) ∈ U(R). �

This proposition leaves open the possibility that a nilpotent element with a
strongly π-regular inner inverse is unit-regular, but we were unable to solve that
problem.
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4. Elements with regular powers

Condition (6) of Theorem 3.14 is interesting not only because it tells us that
any doubly unit-regular element a is clean but also because it shows us that in a
unit-regular ring, every element a has a unit inner inverse u such that u2 is an
inner inverse of a2. This unexpected result raises the question if, for example, one
could also find u such that additionally, u3 would be an inner inverse of a3. In this
section we show that in fact such a generalization can be obtained, and much more.
First, we can find v such that vk is an inner inverse of ak, for all k up to some
arbitrary (but fixed) upper bound n. Second, we can replace the “unit-regularity”
assumption just by regularity. (Of course, in this case v is no longer a unit.) Third,
we can reduce the strength of our assumptions to merely saying that the powers
a, a2, . . . , an are regular rather than positing regularity of the whole ring. Hence,
only extremely minimal conditions on the element a are required to find the desired
element v.

Our first result gives this generalization. Since its statement will be further
strengthened shortly, we just call it a “lemma” here. In subsequent proofs, x0 will
always mean 1 for any element x of a ring.

Lemma 4.1. Let R be a ring. If a ∈ R is an element such that a, a2, . . . , an ∈
reg(R) for some n ≥ 1, then there exists r ∈ R such that

(4.2) airjaj = rj−iaj and ajrjai = ajrj−i for all 0 ≤ i ≤ j ≤ n.

In particular, ajrjaj = aj for all 1 ≤ j ≤ n. Moreover, if a ∈ ureg(R), then one
can take r ∈ U(R).

Proof. We prove the statement by induction on n. If n = 1 there is nothing to
prove, so let n ≥ 2 and suppose that the lemma holds for integers less than n. Take
a ∈ R such that a, a2, . . . , an ∈ reg(R). By the inductive hypothesis we can find
r0 ∈ R satisfying (4.2) with n− 1 in place of n. Moreover, if a ∈ ureg(R), then we
can also assume that r0 ∈ U(R).

Define the idempotents e := r0a, f := 1− e, e′ := ar0, and f ′ := 1− e′, so that
af = 0 and f ′a = 0. Further take x ∈ R with anxan = an. Let us prove that

r := (1 + fan−1xa)r0(1 + axan−1f ′)

satisfies all the desired properties. First observe that if r0 ∈ U(R), then r is a unit
since it is a product of three units (note that fan−1xa and axan−1f ′ are nilpotents).
It remains to see that (4.2) holds.

We prove (4.2) by way of induction on j. If j = 0 there is nothing to prove, so

let j ≥ 1. If j ≤ n−1, then the inductive assumption on r0 gives r0a
j = aj−1rj0a

j ∈
aj−1R and consequently fan−1 = an−1 − r0a

n = aj−1an−j − (r0a
j)an−j ∈ aj−1R,

so that

(4.3) raj = (1 + fan−1xa)r0(1 + axan−1f ′)aj = (1 + fan−1xa)r0a
j ∈ aj−1R.

Moreover, ran ∈ an−1R also holds (i.e. the containment raj ∈ aj−1R of (4.3) when
j = n), since

ran = (1 + fan−1xa)r0a
n = (1 + an−1xa− r0a

nxa)r0a
n

= r0a
n + an−1xan − r0a

nxan = an−1xan.
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Hence, in any case we may write raj = aj−1tj for some tj ∈ R. Now, to prove
(4.2), first consider the case i = j. Applying the inductive hypothesis on j we have

ajrjaj = ajrj−1raj = ajrj−1aj−1tj = a(aj−1rj−1aj−1)tj

= aaj−1tj = araj = ar0a
j = aj ,

as desired. In the remaining case i ≤ j − 1, apply the inductive hypothesis on j
again to get

airjaj = airj−1raj = airj−1aj−1tj = rj−1−iaj−1tj = rj−1−iraj = rj−iaj .

This proves the first half of the equations in (4.2). For the remaining equations
ajrjai = ajrj−i, just note that r is defined in a left-right symmetric way, so that
the equations hold by symmetry. �

With this lemma at hand, we can now prove an even stronger statement. We
would like to thank George Bergman for pointing out to us that the set of relations
(4.2) we had discovered could be further enlarged, as was done in an early draft of
[4] but under slightly different assumptions. We also want to note that many of the
later results in this section were inspired by subsequent discussions with Bergman,
and questions raised in [4].

Theorem 4.4. Let R be a ring. If a ∈ R is an element such that a, a2, . . . , an ∈
reg(R) for some n ≥ 1, then there exists v ∈ R such that

(4.5) aivjak = vj−iajvj−k for all 0 ≤ i, j, k ≤ n with i, k ≤ j and i+ k ≤ j.

In particular, v satisfies (4.2). Moreover, if a ∈ ureg(R), then one can take v ∈
U(R).

Proof. Let n ≥ 1 and a ∈ R be as in the theorem. By Lemma 4.1 we can find
r ∈ R such that (4.2) holds and such that r ∈ U(R) if a ∈ ureg(R). For each
m = 2, . . . , n, set

xm := ramrm − am−1rmam−1rm−1

and define

v := r +

n∑
m=2

xm.

We will prove that v satisfies the properties stated in the theorem.
First observe that from ara = a and amrmam−1 = amr we have axm = amrm −

amrrm−1 = 0 for each m = 2, . . . , n, so that av = ar. From this we can prove that

(4.6) ajvj = ajrj for each j = 0, . . . , n.

Indeed, in the case j = 0 there is nothing to prove. Proceeding inductively, let
j ≥ 1, and then use the inductive hypothesis and ajrja = ajrj−1 to get

ajvj = a(aj−1vj−1)v = a(aj−1rj−1)v

= ajrj−1v = ajrjav = ajrjar = ajrj−1r = ajrj ,

as desired.
Next, let us prove that

(4.7) vakrk = ak−1rk−1var for each k = 1, . . . , n.
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If k = 1 there is nothing to prove, so fix k ≥ 2. For each 2 ≤ m ≤ k we have
amrmak = ak and am−1rm−1ak = ak, which, together with am−1rmam = ram,
yield

xmak = rak − am−1rmak = rak − am−1rmamak−m = rak − ramak−m = 0,

so that xmakrk = 0. Moreover, for each k+1 ≤ m ≤ n we have amrmak = amrm−k

and am−1rm−1ak = am−1rm−1−k, which yield

xmakrk = ramrm−krk − am−1rmam−1rm−1−krk

= ramrm − am−1rmam−1rm−1 = xm.

These two observations together yield

vakrk = rakrk +
n∑

m=2

xmakrk = rakrk +
n∑

m=k+1

xm.

Now let us compute ak−1rk−1var. First observe, similarly as above, that
ak−1rk−1xmar = xm whenever k + 1 ≤ m ≤ n, and that ak−1rk−1xm =
ak−1rk(amrm − am−1rm−1) whenever 2 ≤ m ≤ k. This yields

ak−1rk−1var = ak−1rkar +

k∑
m=2

ak−1rk(amrm − am−1rm−1) +

n∑
m=k+1

xm.

In the first of the two sums on the right-hand side all terms but two cancel, so that
the sum is equal to ak−1rkakrk − ak−1rkar = rakrk − ak−1rkar. It follows that

ak−1rk−1var = ak−1rkar + rakrk − ak−1rkar +

n∑
m=k+1

xm = rakrk +

n∑
m=k+1

xm.

Hence both sides of (4.7) are indeed equal for every k.
Now we are ready to prove that v satisfies (4.5). We prove the statement by

induction on k. If k = 0, then i = j, so that the equations in (4.5) are tautologies.
Now let k ≥ 1 and assume that the equations in (4.5) hold for all integers 0 ≤
i′, k′ ≤ j′ ≤ n with i′ + k′ ≥ j′ and k′ < k. We may also assume that i �= j
since otherwise (4.6) gives ajvjak = ajrjak = ajrj−k = ajvj−k, as needed. Thus
0 ≤ i, k− 1 ≤ j − 1 with i+ (k− 1) ≥ j − 1, so that the inductive hypothesis yields
aivj−1ak−1 = vj−1−iaj−1vj−k. This, together with (4.7), gives

aivjak = aivj−1(vakrk)ak = aivj−1(ak−1rk−1var)ak = vj−1−iaj−1vj−krk−1varak.

Now, applying (4.6) and (4.7) again, we see that this is further equal to

vj−1−iaj−1rj−krk−1varak = vj−1−i(aj−1rj−1var)ak = vj−1−ivajrjak

= vj−iajrj−k = vj−iajvj−k.

This completes the inductive step.
To conclude the proof, we need to see that v ∈ U(R) whenever r ∈ U(R). But

this is obvious because xm = xmar and axm = 0 for each m, so that v can be
written as v = (1 +

∑n
m=2 xma)r where

∑n
m=2 xma is a square-zero nilpotent. �

The element v in the above theorem satisfies, besides the “power inner inverse”
condition ajvjaj = aj , many other additional equations. For example, (4.5) implies
that the idempotents aivi and ajvj (resp. viai and vjaj) commute for all i, j ≤ n,
and aivi and vjaj commute whenever i+ j ≤ n.
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It is well-known that if a is a regular element in an arbitrary ring, then there
exists w such that awa = a and waw = w. Therefore, one might wonder if one
could obtain w such that, additionally to (4.5), equations like wjajwj = wj would
hold. In the following theorem we show that such a w can indeed be obtained. Of
course, in this case we lose the invertibility of w (even if a is unit-regular), since
waw = w with w a unit forces a = w−1 to be a unit.

Theorem 4.8. Let R be a ring. If a ∈ R is an element such that a, a2, . . . , an ∈
reg(R) for some n ≥ 1, then there exists w ∈ R such that

(4.9) aiwjak = wj−iajwj−k for all 0 ≤ i, j, k ≤ n with i, k ≤ j.

In particular, w satisfies ajwjaj = aj and wjajwj = wj when j ≤ n.

Proof. Let v be any element satisfying the statement of Theorem 4.4, and put
w := vav. An easy induction shows that wj = vjajvj for each j = 1, . . . , n.
Hence wj−iaj = vj−iaj−ivj−iaj = vj−iaj and similarly ajwj−k = ajvj−k for all
0 ≤ i, k ≤ j ≤ n, which in turn gives

aiwjak = ai(vjajvj)ak = vj−iajvj−k = wj−iajwj−k,

as desired. �

Remark 4.10. If we additionally assume a ∈ ureg(R) in Theorem 4.8, then we can
take w = vav with v a unit satisfying (4.5).

One might ask if there are any other relations that can be forced on the element
w. The inner inverse constructed in Theorem 4.8 was chosen to satisfy symmetric
relations, but there are indeed many other inner inverses which satisfy nonsymmet-
ric relations. Thus, (4.9) does not represent the only type of inner inverse possible.
Bergman has constructed an interesting example along these lines in [4].

In the remainder of this section we will discuss other limitations and consequences
of Theorems 4.4 and 4.8.

Remark 4.11. (1) Given that

(4.12) ax1a = a and a2x2a
2 = a2

hold in some ring R, since the results above are completely constructive, it is
straightforward to describe z ∈ R satisfying aza = a and a2z2a2 = a2. The
element r constructed in Lemma 4.1 when n = 2 is

r := x1 + ax2ax1 + x1ax2a− x1a
2x2ax1 − x1ax2a

2x1

+ax2ax2a− ax2ax2a
2x1 − x1a

2x2ax2a+ x1a
2x2ax2a

2x1

and has nine monomials in its support, whereas the element v constructed in The-
orem 4.4 and the element w of Theorem 4.8 each have twenty-four monomials in
their support. On the other hand, the following solution also works, with only three
monomials:

z := x1 + ax2ax1 − x1a
2x2ax1.

(2) As one might expect, if a is an element of a unit-regular ring R and r is some
(invertible) element with ara = a, then akrkak = ak can easily fail for every k ≥ 2.
For example, let R := M2(F (x)), with F a field and F (x) the field of rational
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functions over F . Put a := ( 1 0
0 0 ) and r :=

(
1 1
x x2

)
. An easy inductive argument

shows that

rk =

(
sk(x) tk(x)
uk(x) vk(x)

)
with deg(sk) = 2k − 3, deg(tk) = 2k − 2, deg(uk) = 2k − 1, and deg(vk) = 2k,
when k ≥ 2. Thus, akrkak �= ak when k ≥ 2. A quick check shows, however, that
ara = a.

The next corollary, which is immediate from Theorem 4.4, is also a consequence
of [15, Lemma 3.2].

Corollary 4.13. If a is a unit-regular element in a regular ring R, then ak is
unit-regular for all k ≥ 1.

If a is a nilpotent element, a very strong classification for when all powers of a
are unit-regular is given by Theorem 3.6 in [3].

To finish this section, we discuss examples showing that the statement of The-
orem 4.8 cannot be significantly improved. First, we prove that each of the n
different regularity conditions given as hypotheses in Theorem 4.8 is independent
of the others.

Example 4.14. Let I ⊆ Z>0 be an arbitrary subset of positive integers, and let
F be any field. There exist an F -algebra A and an element a ∈ A such that
ak ∈ ureg(A) whenever k ∈ I, and ak /∈ reg(A) whenever k ∈ Z>0 \ I.
Proof. We first construct, for each n ≥ 1, an algebra An and an element an ∈
An such that akn ∈ ureg(An) for all k �= n, and ann /∈ reg(An). If n = 1, take
A1 := F [t]/(t2) (the ring of polynomials modulo the ideal generated by t2) and
a1 := t. Then clearly a1 /∈ reg(A1) and ak1 = 0 ∈ ureg(A1) if k ≥ 2. If n ≥ 2, take
An := Mn(F [t]/(t2)) and define

an :=

⎛
⎜⎜⎜⎜⎜⎝

0
1

1
. . .

1 t

⎞
⎟⎟⎟⎟⎟⎠ ∈ An and un :=

⎛
⎜⎜⎜⎜⎜⎝

0 1
1

. . .

1
1 0

⎞
⎟⎟⎟⎟⎟⎠ ∈ U(An).

One then easily verifies that aknu
k
na

k
n = akn for every k = 1, . . . , n− 1 and an+1

n = 0.
Hence akn ∈ ureg(An) whenever k �= n. It is also easy to see that ann lies in the
Jacobson radical of An and hence ann /∈ reg(An), as desired.

With the above algebras An and elements an ∈ An at hand, now take

A :=
∏
n∈J

An and a := (an)n∈J ∈ A,

where J := Z>0 \ I. Since akn ∈ ureg(An) for every n �= k, we have ak ∈ ureg(A)
whenever k ∈ Z>0\J = I. Also, since ann /∈ reg(An) for every n, we have a

k /∈ reg(A)
whenever k ∈ J . Hence a ∈ A indeed satisfies the desired properties. �

In view of Theorem 4.8, a natural and important question arises: Assuming that
ak is regular for each k, can one obtain w such that (4.9) holds for unbounded
j? In particular, this would imply that wk is an inner inverse of ak, for every
k. The following example, however, demonstrates that in a general ring such an
“unbounded” w does not always exist.
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Example 4.15. For every field F , there exist an F -algebra A and an element a ∈ A
all of whose powers are unit-regular in A, but there is no element w ∈ A satisfying
akwkak = ak for every k ≥ 1.

Proof. Let An and an ∈ An be as in the proof of Example 4.14. Since the algebras
An are finite dimensional, we can embed each An into a unit-regular algebra Bn

(for example, we can take the vector space endomorphism ring Bn := EndF (An)).
Let B :=

∏
n∈Z>0

Bn, and let A be the subalgebra of all sequences (xn)n≥1 ∈ B
such that xn ∈ An for all but finitely many n. Let us prove that

a := (an)n≥1 ∈ A

satisfies the desired properties. First note that for each k ≥ 1 we have ak ∈ ureg(A),
because akn ∈ ureg(Bn) for n ≤ k and akn ∈ ureg(An) for n ≥ k + 1. Assume, to
the contrary, that there exists w := (wn)n≥1 ∈ A such that akwkak = ak for each
k ≥ 1. Taking any n such that wn ∈ An, this yields a

k
nw

k
na

k
n = akn for each k ≥ 1. In

particular, annw
n
na

n
n = ann, which means that ann is regular in An, a contradiction. �

Example 4.15 still leaves open the possibility that the unbounded “power inverse
condition” could hold in some special classes of rings, such as regular (or at least
unit-regular) rings. This was left as an open problem in a previous version of this
paper, but Bergman has shown in [4] the existence of a unit-regular ring R and an
element a ∈ R such that there is no w ∈ R satisfying akwkak = ak for all k ≥ 1!
Even though these examples show that the “power inner inverse” condition may
not always hold for all powers simultaneously, there are some situations where this
does happen. For instance, by general universal algebra techniques, an ultrapower
R′ of a regular ring R based on a nonprincipal ultrafilter on the natural numbers
has this property; indeed every element a ∈ R′ has an inner inverse satisfying (4.9)
for every n ≥ 0 simultaneously.

Another special case occurs when right annihilators of powers of elements stabi-
lize.

Corollary 4.16. Let R be any ring and assume a, a2, . . . , an ∈ reg(R) for some
n ≥ 1. If annr(a

n−1) = annr(a
n), then there exists v ∈ R such that akvkak = ak

for all k ≥ 1 (and, in particular, all powers of a ∈ R are regular). If in addition
a ∈ ureg(R), then we can take v ∈ U(R).

Proof. Construct v as in Theorem 4.4, and follow the notation given there. Since
an(1− vnan) = 0, we have an−1(1− vnan) = 0 and therefore

an−1 = an−1vnan = van

by (4.5) with i = n − 1 and j = k = n. From this, an easy induction shows that
vkak = vn−1an−1 for all k ≥ n− 1. Hence, for any k ≥ n− 1,

akvkak = akvn−1an−1 = ak−n+1(an−1vn−1an−1) = ak−n+1an−1 = ak. �

As a special case of this corollary we have:

Corollary 4.17. If R is a regular ring of bounded index of nilpotence (so, in
particular, R is unit-regular), then for every element a ∈ R there exists v ∈ U(R)
such that akvkak = ak for all k ≥ 1.

There is a further natural situation where elements satisfy this strong form of the
power inner inverse condition, which was pointed out to us by T.Y. Lam in personal
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communication, and has the added benefit of yielding additional information about
the powered inner inverses. We thank him for allowing us to include it here.

Proposition 4.18. Let R be any ring and suppose a ∈ ureg(R). Writing a = eu
with e ∈ idem(R) and u ∈ U(R), suppose further that eue = ue. Then for every
k ≥ 1, the element u−k is an inner inverse for ak.

Proof. Clearly au−1a = euu−1eu = e2u = eu = a, establishing the k = 1 case.
Now fixing k ≥ 2, we recursively compute

ak = (eu)k = (eueu)(eu)k−2 = ueu(eu)k−2 = u(eu)k−1 = · · · = uk−1(eu).

Thus aku−kak = uk−1(eu)u−kuk−1(eu) = uk−1(eu) = ak, as needed. �
Remark 4.19. Note that the elements of Proposition 4.18 also satisfy the con-
ditions of Corollary 4.16, since it happens that annr(a

k) = (1 − u−kak)R =
(1− u−kuk−1eu)R = (1− u−1eu)R holds for all k ≥ 1.

Another important situation when the unbounded power inner inverse condition
holds is when the ring is regular and (left or right) self-injective. An example of
such a ring is the endomorphism ring of a vector space. Thus the following result,
in particular, shows that the unbounded power inner inverse condition holds for
endomorphisms of a vector space.

Proposition 4.20. Let R be a regular left or right self-injective ring. For every
a ∈ R there exists w ∈ R such that anwnan = an for all n ≥ 1.

Proof. Without loss of generality we assume that R is right self-injective. Let
a ∈ R, and for every n ≥ 1 pick rn ∈ R such that anrna

n = an. We construct a
sequence (an)n≥1 of elements in R and a sequence (wn)n≥1 of homomorphisms of
right R-modules wn : In = a1R + · · · + anR → R inductively as follows. First set
a1 := a and w1 := r1 : aR → R (that is, w1(x) = r1x for all x ∈ aR). Now suppose
that n ≥ 2 and that an′ , wn′ have already been defined for all n′ < n. Set

an := wn−1(an−1)a.

In order to define wn, first note that since finitely generated submodules of projec-
tive modules over a regular ring are direct summands [14, Theorem 1.11] we can
write a direct sum decomposition In = In−1⊕Jn for some submodule Jn. Set, with
respect to this decomposition,

wn|In−1
:= wn−1 and wn|Jn

:= rna
n−1 : Jn → R.

This defines an and wn for every n.
We claim that

(4.21) anwn(an) = an

for every n. For n = 1 this is clear. Proceeding inductively, let n ≥ 2 and suppose
that the statement holds for all k < n. Write an = x + y where x = a1x1 + · · · +
an−1xn−1 ∈ In−1 and y ∈ Jn. By the inductive hypothesis we have anwn(ak) =
anwk(ak) = an−kakwk(ak) = an−kak = an for all k < n, hence

anwn(x) = anwn(a1x1 + · · ·+ an−1xn−1) = an(x1 + · · ·+ xn−1).

Moreover, using the inductive hypothesis we easily see that an−1ak = an for each
k = 1, . . . , n, so that

wn(y)=rna
n−1y=rna

n−1(an−a1x1−· · ·−an−1xn−1)=rna
n−rna

n(x1+· · ·+xn−1).
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These two equalities, together with anrna
n = an, now give

anwn(an) = anwn(x) + anwn(y)

= an(x1 + · · ·+ xn−1) + an(rna
n − rna

n(x1 + · · ·+ xn−1)) = an,

proving the claim.
Now define w :

∑
n≥1 In → R by setting w(x) = wn(x), where n is chosen subject

only to x ∈ In. Since R is right self-injective, we can extend w to a homomorphism
w : R → R and consider it as an element of R. In order to see that w fulfills the
statement of the proposition, it suffices to see that wnan = wn(an) for each n ≥ 1.
(Indeed, the equality anwnan = an then follows from (4.21).) The case n = 1 is
trivial, so let n ≥ 2 and proceed inductively. Applying the inductive hypothesis
gives wnan = w(wn−1an−1)a = wwn−1(an−1)a = wan = wn(an), which completes
the proof. �

We finish this section with two examples showing that the power inner inverse
condition for unit-regular elements does not imply cleanness, even if we add the ex-
tremely restrictive condition that we are working in a regular ring! So, in particular,
unit-regular elements of exchange rings need not be clean.

Example 4.22. There exists a regular ring S, an element a ∈ S, and a unit
w ∈ U(S), such that akwkak = ak for all k ≥ 1, but a is not clean in S.

Proof. We use an example of Bergman which can be found in [11, Theorem 6.11].
Let F be a field and put

R :=
{
A = (ai,j) (i, j ∈ Z>0) : there exist n ≥ 0 and ψ(A) =

∑
k≥k0

akt
k ∈ F ((t))

such that ai,j = aj−i whenever i > n and j ≥ 1
}
.

These are the Z>0×Z>0 column-finite matrices over F which have constant diago-
nals outside a finite set of rows, and thus this is just the ring R from [22, Example
3.1] defined in another way. As in [22], note that the set map ψ yields a homomor-
phism ψ : R → F ((t)). Put K := ker(ψ), so that

K = {A = (ai,j) ∈ R : there exists n ≥ 0 such that ai,j = 0

whenever i > n and j ≥ 1}
is the set of matrices which are zero outside a finite set of rows. From [22] we
know that R is a regular ring which is not clean (in fact, the matrices A ∈ R with
ψ(A) /∈ F �t� are not clean in R).

Let S be the subring of M2(R) defined as

S :=

(
R K
K R

)
.

Note that S is regular by [14, Lemma 1.3] since it has an ideal J := M2(K) such
that J and S/J ∼= F ((t))×F ((t)) are both regular. Let α ∈ R denote the right shift
operator, i.e. α = (ai,j) where ai,j = 1 if i− j = 1 and ai,j = 0 otherwise. Set

a :=

(
α 0
0 0

)
∈ S.

The element a is not clean in S. Indeed, suppose to the contrary that a = e+ u
for some e ∈ idem(S) and u ∈ U(S). The homomorphism ψ : R → F ((t)) naturally
induces a homomorphism ψ : S → F ((t)) × F ((t)). Write ψ(e) = (ε1, ε2) and
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ψ(u) = (μ1, μ2). Note that ε1, ε2 ∈ {0, 1} as e is an idempotent, and also note that
μ1, μ2 �= 0 as u is a unit. From a = e+ u we have

(t−1, 0) = ψ(a) = ψ(e) + ψ(u) = (ε1, ε2) + (μ1, μ2),

so that μ1 = t−1 − ε1 and μ2 = −ε2. Hence ε2 = 1, so that either ψ(u) = (t−1,−1)
or ψ(u) = (t−1−1,−1). Thinking of S as consisting of infinite matrices over F , this
means that u looks like diag(α,−I) or diag(α−I,−I) outside of finitely many rows.
A quick check shows that in none of these cases can u be a surjective endomorphism
of (

⊕
i≥1 F )2, and hence cannot be a unit in S. This proves that a is not clean in

S.
In order to construct the inner inverse w ∈ U(S) of a, denote by α′ ∈ R the left

shift operator, and let σ = (si,j) ∈ K be the matrix with si,j = 1 if i = j = 1 and
si,j = 0 otherwise. Set

w :=

(
α′ 0
σ α

)
∈ S and w′ :=

(
α σ
0 α′

)
∈ S.

Considering α′α = 1 and αα′ = 1 − σ, we easily check that ww′ = w′w = 1, so
that w is a unit in S. Moreover, an easy verification shows that wkak = ( 1 0

0 0 ) for
all k ≥ 1, which also gives akwkak = ak. �

This example still leaves open the possibility that by forcing certain algebraic
expressions to be unit-regular, the element might become clean. For instance, if
a, 1 − a ∈ ureg(R), is a clean in R? The answer to this question is no in general.
We can prove this by generalizing the previous example.

Example 4.23. For any field F , there exists a regular F -algebra S and an element
a ∈ S such that for every p(x) ∈ F [x] it happens that p(a) ∈ ureg(S), but a is not
clean in S.

Proof. We assume F is algebraically closed by replacing it with its algebraic closure
if necessary. Define the ring R and the ideal K just as in the proof of Example 4.22.
Similarly, let α ∈ R denote the right shift operator, α′ ∈ R the left shift operator,
and σ ∈ R the matrix with 1 in the upper-left corner and zeros elsewhere (just as in
the previous example). Let Λ := F ∪ {�} and let S be the set of all Λ×Λ matrices
A = (ai,j)i,j∈Λ over R, with only finitely many nonzero off-diagonal entries, each
of which belong to K.

The set S is a ring under the usual matrix addition and multiplication. Further
S is regular because it has the ideal

J := {A = (ai,j) ∈ S : ai,j ∈ K for all i, j ∈ Λ}

such that J and S/J ∼=
∏

λ∈Λ F ((t)) are both regular. (Elements of J look like finite
matrices over K, and since Mn(K) is regular, so are the elements of J .)

Let a ∈ S be the diagonal matrix with α in the (�, �) coordinate and λI in the
(λ, λ) coordinate for each λ ∈ F . Our first order of business will be to prove that
a is not clean in S. Suppose to the contrary that a = e + u for some e ∈ idem(S)
and u ∈ U(S). As e, u and u−1 all have only finitely many nonzero off-diagonal
entries, this means

a0 = diag(α, λ2I, λ3I, . . . , λnI) = e0 + u0
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for some n ≥ 2 and some distinct elements λ2, . . . , λn ∈ F , with e0 ∈ idem(Sn) and
u0 ∈ U(Sn), where Sn denotes the subring of Mn(R) with all off-diagonal entries
lying in K.

The homomorphism ψ : R → F ((t)) naturally induces a homomorphism ψ :
Sn → F ((t))n. Write ψ(e0) = (ε1, . . . , εn) and ψ(u0) = (μ1, . . . , μn). Clearly each
εi ∈ {0, 1} as e0 is an idempotent, and also each μi �= 0 as u0 is a unit. Similarly
as in the previous example, a0 = e0 + u0 yields

(t−1, λ2, . . . , λn) = ψ(a0) = ψ(e0) + ψ(u0) = (ε1, . . . , εn) + (μ1, . . . , μn),

so that μ1 = t−1 − ε1 and μi = λi − εi ∈ F if i ≥ 2. Hence we have either
ψ(u0) = (t−1, μ2, . . . , μn) or ψ(u0) = (t−1 − 1, μ2, . . . , μn) where μi ∈ F if i ≥ 2,
which means that u0 looks like diag(α, μ2I, . . . , μnI) or diag(α − I, μ2I, . . . , μnI)
outside of finitely many rows. As before, we see that in neither of these two cases
can u0 be surjective as an endomorphism of (

⊕
i≥1 F )n and hence cannot be a unit

in Sn, a contradiction. Therefore a is not clean in S.
Let us prove now that p(a) is unit-regular in S for every p(x) ∈ F [x]. We may

assume that p(x) is nonconstant. As F is algebraically closed, there exists λ ∈ F
with p(λ) = 0, so that p(a) is a diagonal matrix with at least one diagonal entry

zero. From this we see that it suffices to prove that z :=
(
p(α) 0
0 0

)
is unit-regular in

S2. Write β := p(α) and let β′ be any left inverse of β in R. Define v :=
(

β′ 0
1−ββ′ β

)
.

Clearly, v ∈ S2, and v is invertible with v−1 :=
(

β 1−ββ′

0 β′

)
, and a quick verification

shows that zvz = z. Thus z ∈ ureg(S2) and hence p(a) ∈ ureg(S). �
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