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RANDOMIZED DYNAMIC PROGRAMMING PRINCIPLE AND

FEYNMAN-KAC REPRESENTATION FOR OPTIMAL CONTROL

OF MCKEAN-VLASOV DYNAMICS

ERHAN BAYRAKTAR, ANDREA COSSO, AND HUYÊN PHAM

Abstract. We analyze a stochastic optimal control problem, where the state
process follows a McKean-Vlasov dynamics and the diffusion coefficient can be
degenerate. We prove that its value function V admits a nonlinear Feynman-
Kac representation in terms of a class of forward-backward stochastic differ-
ential equations, with an autonomous forward process. We exploit this proba-
bilistic representation to rigorously prove the dynamic programming principle
(DPP) for V . The Feynman-Kac representation we obtain has an impor-
tant role beyond its intermediary role in obtaining our main result: in fact
it would be useful in developing probabilistic numerical schemes for V . The
DPP is important in obtaining a characterization of the value function as a
solution of a nonlinear partial differential equation (the so-called Hamilton-

Jacobi-Belman equation), in this case on the Wasserstein space of measures.
We should note that the usual way of solving these equations is through the
Pontryagin maximum principle, which requires some convexity assumptions.
There were attempts in using the dynamic programming approach before, but
these works assumed a priori that the controls were of Markovian feedback
type, which helps write the problem only in terms of the distribution of the
state process (and the control problem becomes a deterministic problem). In
this paper, we will consider open-loop controls and derive the dynamic pro-
gramming principle in this most general case. In order to obtain the Feynman-
Kac representation and the randomized dynamic programming principle, we
implement the so-called randomization method, which consists of formulating
a new McKean-Vlasov control problem, expressed in weak form taking the
supremum over a family of equivalent probability measures. One of the main
results of the paper is the proof that this latter control problem has the same
value function V of the original control problem.

1. Introduction

In the present paper we study a stochastic optimal control problem of McKean-
Vlasov type. More precisely, let T > 0 be a finite time horizon, let (Ω,F ,P)
be a complete probability space, let B = (Bt)t≥0 be a d-dimensional Brownian
motion defined on (Ω,F ,P), let FB = (FB

t )t≥0 be the P-completion of the filtration
generated by B, and let G be a sub-σ-algebra of F independent of B. Also let
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P2(R
n) denote the set of all probability measures on (Rn,B(Rn)) with a finite

second-order moment. We endow P2(R
n) with the 2-Wasserstein metric W2 and

assume that G is rich enough in the sense that P2(R
n) = {Pξ : ξ ∈ L2(Ω,G,P;Rn)},

where Pξ denotes the law of ξ under P. Then, the controlled state equations are
given by

Xt,ξ,α
s = ξ +

∫ s

t

b
(
r,Xt,ξ,α

r ,PXt,ξ,α
r

, αr

)
dr +

∫ s

t

σ
(
r,Xt,ξ,α

r ,PXt,ξ,α
r

, αr

)
dBr,

(1.1)

Xt,x,ξ,α
s = x+

∫ s

t

b
(
r,Xt,x,ξ,α

r ,PXt,ξ,α
r

, αr

)
dr +

∫ s

t

σ
(
r,Xt,x,ξ,α

r ,PXt,ξ,α
r

, αr

)
dBr,

(1.2)

for all s ∈ [t, T ], where (t, x, ξ) ∈ [0, T ]×Rn×L2(Ω,G,P;Rn), and α is an admissible
control process, namely an FB-progressive process α : Ω × [0, T ] → A, with A a
Polish space. We denote by A the set of admissible control processes. On the
coefficients b : [0, T ]×Rn ×P2(R

n)×A → Rn and σ : [0, T ]×Rn ×P2(R
n)×A →

Rn×d we impose standard Lipschitz and linear growth conditions, which guarantee
existence and uniqueness of a pair (Xt,ξ,α

s , Xt,x,ξ,α
s )s∈[t,T ] of continuous (FB

s ∨G)s-
adapted processes solutions to equations (1.1)-(1.2). Notice that Xt,x,ξ,α depends
on ξ only through its law π := Pξ. Therefore, we define Xt,x,π,α := Xt,x,ξ,α.

The control problem consists of maximizing over all admissible control processes
α ∈ A the functional

J(t, x, π, α) = E

[ ∫ T

t

f
(
s,Xt,x,π,α

s ,PXt,ξ,α
s

, αs

)
ds+ g

(
Xt,x,π,α

T ,P
X

t,ξ,α
T

)]
,

for any (t, x, π) ∈ [0, T ]× Rn × P2(R
n), where f : [0, T ] × Rn × P2(R

n) × A → R

and g : Rn × P2(R
n) → R satisfy suitable continuity and growth conditions; see

Assumptions (A1) and (A2). We define the value function

(1.3) V (t, x, π) = sup
α∈A

J(t, x, π, α),

for all (t, x, π) ∈ [0, T ] × Rn × P2(R
n). We will show in Proposition 2.2 that the

mapping V is the disintegration of the value function

(1.4) VMKV(t, ξ) = sup
α∈Aξ

E

[ ∫ T

t

f
(
s,Xt,ξ,α

s ,Pξ

Xt,ξ,α
s

, αs

)
ds+ g

(
Xt,ξ,α

T ,Pξ

X
t,ξ,α
T

)]
,

for every (t, ξ) ∈ [0, T ] × L2(Ω,G,P;Rn), where Aξ denotes the set of A-valued
(FB

s ∨ σ(ξ))-progressive processes, and P
ξ

Xt,ξ,α
s

denotes the regular conditional dis-

tribution of the random variable Xt,ξ,α
s : Ω → Rn with respect to σ(ξ). That is,

VMKV(t, ξ) =

∫
V (t, x, π)π(dx).(1.5)

Notice that at time t = 0, when ξ = x0 is a constant, VMKV(0, x0) is the natural
formulation of the McKean-Vlasov control problem as in [13].

Optimal control of McKean-Vlasov dynamics is a new type of stochastic control
problem related to, but different from, what is well-known as mean field games
(MFG) and has attracted a surge of interest in the stochastic control community
since the lectures by P.L. Lions at Collège de France; see [25] and [10] and the
recent books [6] and [11]. Both of these problems describe equilibrium states of
large population of weakly interacting symmetric players, and we refer to [14] for a
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discussion pointing out the differences between the two frameworks: In a nutshell
MFGs describe Nash equilibrium in large populations, and the optimal control of
McKean-Vlasov dynamics describes the Pareto optimality, as heuristically shown in
[14] and recently proved in [23]. As an example we mention the model of systemic
risk due to [15], where, using our notation, Xt,ξ,α (as well as the auxiliary process
Xt,x,ξ,α) represents the log-reserve of the representative bank, and α is the rate of
borrowing/lending to a central bank.

In the literature the McKean-Vlasov control problem is tackled by two different
approaches: On the one hand, the stochastic Pontryagin maximum principle allows
one to characterize solutions to the controlled McKean-Vlasov systems in terms
of an adjoint backward stochastic differential equation (BSDE) coupled with a
forward SDE; see [1], [8] in which the state dynamics depend upon moments of the
distribution and [13] for a deep investigation in a more general setting. On the other
hand, the dynamic programming (DP) method (also called Bellman principle),
which is known to be a powerful tool for the standard Markovian stochastic control
problem and does not require any convexity assumption usually imposed in the
Pontryagin principle, was first used in [24] and [5] for a specific McKean-Vlasov SDE
and cost functional, depending only upon statistics like the mean of the distribution
of the state variable. These papers assume a priori that the state variable marginals
at all times have a density. Recently, [26] managed to drop the density assumption,
but still restricted the admissible controls to be of closed-loop (a.k.a. feedback)
type, i.e., deterministic and Lipschitz functions of the current value of the state,
which is somewhat restrictive. This feedback form on the class of controls allows
one to reformulate the McKean-Vlasov control problem (1.4) as a deterministic
control problem in an infinite dimensional space with the marginal distribution as
the state variable. In this paper we will consider the most general case and allow
the controls to be open-loop. In this case reformulation mentioned above is no
longer possible. We will instead work with a proper disintegration of the value
function, which we described in (1.4). The disintegration formula (1.5) was pointed
out heuristically in [12] (see their formulae (40) and (41)), but the value function
V was not identified. The idea of formulating the McKean-Vlasov control problem
as in (1.3) (rather than as in (1.4)) is inspired by [9], where the uncontrolled case is
addressed. We will then generalize the randomization approach developed by [21]
to the McKean-Vlasov control problem corresponding to V .

The DPP that we will prove is the so-called randomized dynamic programming
principle (see [4]), which is the dynamic programming principle for an intensity
control problem for a Poisson random measure whose marks live in a subclass of
control processes which is dense with respect to the Krylov metric (see Definition
3.2.3 in [22]). See (3.8) for the definition of the randomized control problem, Theo-
rem 3.1 for the equivalence to V (in itself one of the main technical contributions),
and Theorem 5.1, which is our main result, for the statement of the randomized
dynamic programming principle. Although the approach of replacing the original
control problem with a randomized version is also taken in [4] and [17], our con-
tribution here is in identifying the correct randomization that corresponds to the
McKean-Vlasov problem. The McKean-Vlasov nature of the control problem makes
this task rather difficult and as a result the marks of the Poisson random measure
live in an abstract space of processes. We should also emphasize that another rel-
evant issue resolved in this paper concerns the flow properties for the solutions to



2118 ERHAN BAYRAKTAR, ANDREA COSSO, AND HUYÊN PHAM

equations (1.1) and (1.2); see Section 5.1. The importance of the flow properties is
to prove an identification formula (Lemma 5.3) between V and the solution to the
BSDE, which in turn allows us to derive the randomized dynamic programming
principle for V . Our aim is then to use the randomized dynamic programming
principle to characterize V through a Hamilton-Jacobi-Bellman equation on the
Wasserstein space P2(R

n), using the recent notion of Lions’ differentiability.
Although it is an intermediary step in deriving the randomized DPP, we see

Theorem 4.1 as the second main result of our paper. Here we derive the non-
linear Feynman-Kac representation of the value function V in terms of a class of
forward-backward stochastic differential equations with constrained jumps, where
the forward process is autonomous. This representation has been derived in [21] for
the case of classical stochastic optimal control problems, and here we are generaliz-
ing it to McKean-Vlasov control problems. The importance of this representation,
beyond its intermediary role, is that it would be useful in developing probabilistic
numerical schemes for V (see [20] for the case treated in [21]).

The rest of the paper is organized as follows. Section 2 is devoted to the for-
mulation of the McKean-Vlasov control problem and its continuity properties. In
Section 3 we introduce the randomized McKean-Vlasov control problem and we
prove the fundamental equivalence result between V and V R (Theorem 3.1). In
Section 4 we prove the nonlinear Feynman-Kac representation for V in terms of
the so-called randomized equation, namely BSDE (4.1). In Section 5 we derive the
randomized dynamic programming principle, proving the flow properties (Lemma
5.2) and the identification between V and the solution to the BSDE (Lemma 5.3).
Finally, in the Appendix we prove some convergence results with respect to the
2-Wasserstein metric W2 (Appendix A), we report the proofs of the measurability
Lemmata 3.1 and 3.2 (Appendix B), we state and prove a stability result with re-
spect to the Krylov metric ρ̃ (Appendix C), and we consider an alternative random-
ization McKean-Vlasov control problem, more similar to the randomized problems
studied for instance in [4, 16, 17, 21] (Appendix D).

2. Formulation of the McKean-Vlasov control problem

2.1. Notation. Consider a complete probability space (Ω,F ,P) and a d-dimen-
sional Brownian motion B = (Bt)t≥0 defined on it. Let FB = (FB

t )t≥0 denote the
P-completion of the filtration generated by B. Fix a finite time horizon T > 0 and
a Polish space A, endowed with a metric ρ. We suppose, without loss of generality,
that ρ < 1 (if this is not the case, we replace ρ with the equivalent metric ρ/(1+ρ)).
We indicate by B(A) the family of Borel subsets of A.

Let P2(R
n) denote the set of all probability measures on (Rn,B(Rn)) with a

finite second-order moment. We endow P2(R
n) with the 2-Wasserstein metric W2

defined as follows:

(2.1) W2(π, π
′) = inf

{(∫
Rn×Rn

|x− x′|2 π(dx, dx′)

)1/2

: π ∈ P2(R
n × Rn)

with marginals π and π′
}
,
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for all π, π′ ∈ P2(R
n). We recall from Theorem 6.18 in [31] that (P2(R

n),W2) is
a complete separable metric space. Notice that

W2(Pξ,Pξ′) ≤ (E[|ξ − ξ′|2])1/2, for every pair ξ, ξ′ ∈ L2(Ω,F ,P;Rn),

where Pξ denotes the law under P of the random variable ξ : Ω → Rn. We also
denote by ‖π‖2 the square root of the second-order moment of π ∈ P2(R

n):

(2.2) W2(π, δ0) = ‖π‖2 =

(∫
Rn

|x|2 π(dx)
) 1

2

, for all π ∈ P2(R
n),

where δ0 is the Dirac measure on Rn concentrated at the origin. We denote by
B(P2(R

n)) the Borel σ-algebra on P2(R
n) induced by the 2-Wasserstein metric

W2.
We assume that there exists a sub-σ-algebra G ⊂ F such that B is independent

of G and P2(R
n) = {Pξ : ξ ∈ L2(Ω,G,P;Rn)}.

Finally, we denote by C2(R
n) the set of real-valued continuous functions with

at most quadratic growth, and by B2(R
n) the set of real-valued Borel measurable

functions with at most quadratic growth.

Remark 2.1. For every ϕ ∈ C2(R
n), let Λϕ : P2(R

n) → R be given by

Λϕ(π) =

∫
Rn

ϕ(x) π(dx), for every π ∈ P2(R
n).

We notice that (as remarked on pages 6-7 in [18]) B(P2(R
n)) coincides with the

σ-algebra generated by the family of maps Λ
ϕ
, ϕ ∈ C2(R

n). As a consequence,
we observe, given a measurable space (E, E) and a map F : → P2(R

n), that F
is measurable if and only if Λϕ ◦ F is measurable, for every ϕ ∈ C2(R

n). Finally,
we notice that if ϕ ∈ B2(R

n), then the map Λ
ϕ
is B(P2(R

n))-measurable. This
latter property can be proved using a monotone class argument, noting that Λ

ϕ
is

B(P2(R
n))-measurable whenever ϕ ∈ C2(R

n).

2.2. Optimal control of McKean-Vlasov dynamics. Let A denote the set of
admissible control processes, which are FB-progressive processes α : Ω× [0, T ] → A.
Given (t, x, ξ) ∈ [0, T ] × Rn × L2(Ω,G,P;Rn) and α ∈ A, the controlled state
equations are given by

(2.3) dXt,ξ,α
s = b

(
s,Xt,ξ,α

s ,PXt,ξ,α
s

, αs

)
ds+ σ

(
s,Xt,ξ,α

s ,PXt,ξ,α
s

, αs

)
dBs,

Xt,ξ,α
t = ξ,

(2.4) dXt,x,ξ,α
s = b

(
s,Xt,x,ξ,α

s ,PXt,ξ,α
s

, αs

)
ds+ σ

(
s,Xt,x,ξ,α

s ,PXt,ξ,α
s

, αs

)
dBs,

Xt,x,ξ,α
t = x,

for all s ∈ [t, T ]. The coefficients b : [0, T ]×Rn×P2(R
n)×A → Rn and σ : [0, T ]×

Rn×P2(R
n)×A → Rn×d are assumed to be Borel measurable. Recall that PXt,ξ,α

s

denotes the law under P of the random variable Xt,ξ,α
s : Ω → Rn. Notice that

(PXt,ξ,α
s

)s∈[t,T ] depends on ξ only through its law π = Pξ, and π is an element of

P2(R
n). As a consequence, Xt,x,ξ,α = (Xt,x,ξ,α

s )s∈[t,T ] depends on ξ only through

π. Therefore, we denote Xt,x,ξ,α simply by Xt,x,π,α whenever π = Pξ.
Our aim is to maximize, over all α ∈ A, the functional

(2.5) J(t, x, π, α) = E

[ ∫ T

t

f
(
s,Xt,x,π,α

s ,PXt,ξ,α
s

, αs

)
ds+ g

(
Xt,x,π,α

T ,P
X

t,ξ,α
T

)]
,
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where f : [0, T ] × Rn × P2(R
n) × A → R and g : Rn × P2(R

n) → R are Borel
measurable. We impose the following assumptions.

(A1)

(i) For every t ∈ [0, T ], b(t, ·), σ(t, ·), and f(t, ·) are continuous on Rn ×
P2(R

n)×A, and g is continuous on Rn × P2(R
n).

(ii) For every (t, x, x′, π, π′, a) ∈ [0, T ]× Rn × Rn × P2(R
n)× P2(R

n)×A,

|b(t, x, π, a)− b(t, x′, π′, a)|+ |σ(t, x, π, a)− σ(t, x′, π′, a)|
≤ L
(
|x− x′|+W2(π, π

′)
)
,

|b(t, 0, δ0, a)|+ |σ(t, 0, δ0, a)| ≤ L,

|f(t, x, π, a)|+ |g(x, π)| ≤ h(‖π‖2)
(
1 + |x|p

)
,

for some positive constants L and p and some continuous function h : R+ →
R+.

Under Assumption (A1), and recalling property (2.1), it can be proved by
standard arguments that there exists a unique (up to indistinguishability) pair
(Xt,ξ,α

s , Xt,x,π,α
s )s∈[t,T ] of continuous (FB

s ∨G)s-adapted processes solution to equa-
tions (2.3)-(2.4), satisfying

(2.6) sup
α∈A

E

[
sup

s∈[t,T ]

(∣∣Xt,ξ,α
s

∣∣2 + ∣∣Xt,x,π,α
s

∣∣q)] < ∞,

for all q ≥ 1. The estimate supα∈A E[sups∈[t,T ] |Xt,ξ,α
s |q] < ∞ holds whenever |ξ|q

is integrable. Notice that (Xt,x,π,α
s )s∈[t,T ] is F

B-adapted.

Recalling P2(R
n) = {Pξ : ξ ∈ L2(Ω,G,P;Rn)}, we see that J(t, x, π, α) is defined

for every quadruple (t, x, π, α) ∈ [0, T ]× Rn × P2(R
n)×A. The value function of

our stochastic control problem is the function V on [0, T ] × Rn × P2(R
n) defined

as

(2.7) V (t, x, π) = sup
α∈A

J(t, x, π, α),

for all (t, x, π) ∈ [0, T ]× Rn × P2(R
n).

From estimate (2.6), we see that ‖PXt,ξ,α
s

‖2 ≤ M , for some positive constant M

independent of α ∈ A and s ∈ [t, T ]. It follows from the continuity of h that the
quantity h(‖PXt,ξ,α

s
‖2) is bounded uniformly with respect to α and s. Therefore,

by the polynomial growth condition on f and g in Assumption (A1)(ii), we deduce
that the value function V in (2.7) is always a finite real number on its domain
[0, T ]×Rn×P2(R

n), namely V : [0, T ]×Rn×P2(R
n) → R. In particular, it is easy

to see, under Assumption (A1), that V satisfies the following growth condition:

(2.8) |V (t, x, π)| ≤ ψ(‖π‖2)
(
1 + |x|p

)
,

for some continuous function ψ : R+ → R+.
We now study the continuity of V . Firstly, we impose the following additional

assumption.
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(A2) For every t ∈ [0, T ] and R > 0, the map (x, π) �→ f(t, . . . , a) is uniformly
continuous and bounded on {(x, π) ∈ Rn×P2(R

n) : |x|, ‖π‖2 ≤ R}, uniformly with
respect to a ∈ A. For every R > 0, the map g is uniformly continuous and bounded
on {(x, π) ∈ Rn × P2(R

n) : |x|, ‖π‖2 ≤ R}.

Proposition 2.1. Under Assumptions (A1) and (A2), for every t ∈ [0, T ] the
map (x, π) �→ V (t, x, π) is continuous on Rn × P2(R

n).

Proof. We begin by noting that, as a consequence of Assumption (A2), for every
t ∈ [0, T ] and R > 0, there exists a modulus of continuity δRt : [0,∞) → [0,∞) such
that, for t ∈ [0, T ),

∣∣f(t, x, π, a)− f(t, x′, π′, a)
∣∣ ≤ δRt

(
|x− x′|+W2(π, π

′)
)
,

and, for t = T ,

∣∣f(T, x, π, a)− f(T, x′, π′, a)
∣∣+ ∣∣g(x, π)− g(x′, π)

∣∣ ≤ δRT
(
|x− x′|+W2(π, π

′)
)
,

for all (x, π), (x′, π′) ∈ Rn × P2(R
n), a ∈ A, with |x|, |x′|, ‖π‖2, ‖π′‖2 ≤ R. Re-

call that, by definition (see for instance [2], p. 406), the modulus of continuity δRs
is nondecreasing and limε→0+ δRs (ε) = 0. Moreover, by Assumption (A2), we see
that δRs can be taken bounded. In particular, lim supε→+∞ δRs (ε)/ε = 0. Therefore,

without loss of generality, we can suppose that δRs is concave (see for instance The-
orem 1, p. 406, in [2]; we refer, in particular, to the concave modulus of continuity
constructed in the proof of Theorem 1 and given by formula (1.6) on p. 407). Then,
we notice that δRs is also subadditive.

Now, fix t ∈ [0, T ] and (x, π), (xm, πm) ∈ Rn × P2(R
n), with |xm − x| → 0 and

W2(πm, π) → 0 as m goes to infinity. Our aim is to prove that

(2.9) V (t, xm, πm)
m→∞−→ V (t, x, π).

By Lemma A.1 we know that there exist random variables ξ, ξm ∈ L2(Ω,G,P;Rn)
such that π = Pξ and πm = Pξm under P; moreover ξm converges to ξ pointwise
P-a.s. and in L2(Ω,G,P;Rn). In particular, supm E[|ξm|2] < ∞. Then, by standard
arguments, we have

max

{
sup

s∈[t,T ], α∈A

∥∥PXt,ξ,α
s

∥∥
2
, sup

m
sup

s∈[t,T ], α∈A

∥∥PXt,ξm,α
s

∥∥
2

}
=: R̄,

for some constant R̄ ≥ 0. For every R > R̄ and α ∈ A, define the set Eα ∈ F as

Eα :=
{
ω ∈ Ω: sup

s∈[t,T ]

|Xt,x,π,α
s (ω)|, sup

m
sup

s∈[t,T ]

|Xt,xm,πm,α
s (ω)| ≤ R

}
.
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Then, we have

|V (t, x, π)− V (t, xm, πm)|

≤ sup
α∈A

E

[
1Eα

∫ T

t

δRs
(∣∣Xt,x,π,α

s −Xt,xm,πm,α
s

∣∣) ds+ 1Eα
δRT
(∣∣Xt,x,π,α

T −Xt,xm,πm,α
T

∣∣)]

+ sup
α∈A

E

[
1Eα

∫ T

t

δRs
(
W2

(
PXt,ξ,α

s
,PXt,ξm,α

s

))
ds+1Eα

δRT
(
W2

(
PXt,ξ,α

T
,PXt,ξm,α

T

))]

+ sup
α∈A

E

[
1Ec

α

∣∣g(Xt,x,π,α
T ,PXt,ξ,α

T

)
− g
(
Xt,xm,πm,α

T ,PXt,ξm,α
T

)∣∣

+ 1Ec
α

∫ T

t

∣∣f(s,Xt,x,π,α
s ,PXt,ξ,α

s
, αs

)
− f
(
s,Xt,xm,πm,α

s ,PXt,ξm,α
s

, αs

)∣∣ ds
]

≤ sup
α∈A

E

[ ∫ T

t

δRs
(∣∣Xt,x,π,α

s −Xt,xm,πm,α
s

∣∣) ds+ δRT
(∣∣Xt,x,π,α

T −Xt,xm,πm,α
T

∣∣)]

+ sup
α∈A

(∫ T

t

δRs
(
W2

(
PXt,ξ,α

s
,PXt,ξm,α

s

))
ds+ δRT

(
W2

(
PXt,ξ,α

T
,PXt,ξm,α

T

)))

+ C(1 + |x|p + |xm|p) sup
α∈A

P(Ec
α),

(2.10)

for some positive constant C, depending only on R̄, T , the constants L, p in
Assumption (A1)(ii), and the maximum max0≤r≤R̄ h(r), where the function h
was introduced in Assumption (A1)(ii). Recalling that W2(PXt,ξ,α

s
,PXt,ξm,α

s
) ≤

E[|Xt,ξ,α
s −Xt,ξm,α

s |2] and δRs is nondecreasing, we find that

(2.11) δRs
(
W2

(
PXt,ξ,α

s
,PXt,ξm,α

s

))
≤ δRs

(
E
[∣∣Xt,ξ,α

s −Xt,ξm,α
s

∣∣2]1/2).
Now, recall the standard estimate

(2.12) sup
α∈A

E
[∣∣Xt,ξ,α

s −Xt,ξm,α
s

∣∣2]1/2 ≤ ĉE
[
|ξ − ξm|2

]1/2
,

for some positive constant ĉ, depending only on T and L. Therefore, from (2.11)
we obtain

(2.13) δRs
(
W2

(
PXt,ξ,α

s
,PXt,ξm,α

s

))
≤ δRs

(
ĉE
[
|ξ − ξm|2

]1/2)
.

On the other hand, from the concavity of δRs , we get

(2.14) E
[
δRs
(∣∣Xt,x,π,α

s −Xt,xm,πm,α
s

∣∣)] ≤ δRs
(
E
[∣∣Xt,x,π,α

s −Xt,xm,πm,α
s

∣∣]).
By standard arguments, we have

sup
α∈A

E

[
sup

s∈[t,T ]

∣∣Xt,x,π,α
s −Xt,xm,πm,α

s

∣∣]

≤ c
(
|x− xm|+ sup

α∈A
sup

s∈[t,T ]

W2

(
PXt,ξ,α

s
,PXt,ξm,α

s

))
,

where c is a positive constant, depending only on T and L. Therefore, by (2.12),
we obtain

(2.15) sup
α∈A

E

[
sup

s∈[t,T ]

∣∣Xt,x,π,α
s −Xt,xm,πm,α

s

∣∣] ≤ c
(
|x− xm|+ ĉE

[
|ξ − ξm|2

]1/2)
.
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Since δRs is nondecreasing, from (2.14) and (2.15), we find that

(2.16) sup
α∈A

E
[
δRs
(∣∣Xt,x,π,α

s −Xt,xm,πm,α
s

∣∣)] ≤ δRs

(
c |x−xm|+c ĉE

[
|ξ−ξm|2

]1/2)
.

Concerning P(Ec
α), we have

P(Ec
α) ≤ P

(
sup

s∈[t,T ]

|Xt,x,π,α
s | > R

)
+ P

(
sup

s∈[t,T ]

|Xt,xm,πm,α
s | > R

)

≤ 1

R2
E

[
sup

s∈[t,T ]

|Xt,x,π,α
s |2

]
+

1

R2
E

[
sup

s∈[t,T ]

|Xt,xm,πm,α
s |2

]

≤ c0
R2

(
1 + |x|2 + |xm|2

)
,

(2.17)

for some positive constant c0, depending only on T , L, R̄. In conclusion, plugging
(2.13)-(2.16)-(2.17) into (2.10), we get

|V (t, x, π)− V (t, xm, πm)|

≤
∫ T

t

δRs

(
c |x− xm|+c ĉE

[
|ξ−ξm|2

]1/2)
ds+δRT

(
c |x−xm|+c ĉE

[
|ξ−ξm|2

]1/2)

+

∫ T

t

δRs

(
ĉE
[
|ξ − ξm|2

]1/2)
ds+ δRT

(
ĉE
[
|ξ − ξm|2

]1/2)

+
c0C

R2

(
1 + |x|2 + |xm|2

)(
1 + |x|p + |xm|p

)
.

(2.18)

Taking the lim supm→∞ in the above inequality, we find that

lim sup
m→∞

|V (t, x, π)− V (t, xm, πm)| ≤ c0C

R2

(
1 + 2|x|2

)(
1 + 2|x|p

)
.

Letting R → ∞, we deduce that lim supn→∞ |V (t, x, π)− V (t, xm, πm)| = 0; there-
fore (2.9) holds.

We end this section showing that the value function V : [0, T ] × Rn × P2(R
n)

→ R given by (2.7) is the disintegration of the value function VMKV : [0, T ] ×
L2(Ω,G,P;Rn) → R given by

(2.19) VMKV(t, ξ) = sup
α∈Aξ

E

[ ∫ T

t

f
(
s,Xt,ξ,α

s ,Pξ

Xt,ξ,α
s

, αs

)
ds+ g

(
Xt,ξ,α

T ,Pξ

X
t,ξ,α
T

)]
,

for every (t, ξ) ∈ [0, T ] × L2(Ω,G,P;Rn), where Aξ denotes the set of A-valued
(FB

s ∨ σ(ξ))-progressive processes, (Xt,ξ,α
s )s∈[t,T ] is the solution to the following

equation:

dXt,ξ,α
s = b

(
s,Xt,ξ,α

s ,Pξ

Xt,ξ,α
s

, αs

)
ds+ σ

(
s,Xt,ξ,α

s ,Pξ

Xt,ξ,α
s

, αs

)
dBs, Xt,ξ,α

t = ξ,

for all s ∈ [t, T ], with α ∈ Aξ, and P
ξ

Xt,ξ,α
s

denotes the regular conditional distribu-

tion of the random variable Xt,ξ,α
s : Ω → Rn with respect to σ(ξ), whose existence

is guaranteed for instance by Theorem 6.3 in [19].
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Proposition 2.2. Under Assumptions (A1) and (A2), for every (t, ξ) ∈ [0, T ]×
L2(Ω,G,P;Rn), with π = Pξ under P, we have

VMKV(t, ξ) = E
[
V (t, ξ, π)

]
or, equivalently,

VMKV(t, ξ) =

∫
Rn

V (t, x, π) π(dx).

Proof. Fix t ∈ [0, T ]. Recall from Proposition 2.1 that the map (x, π) �→ V (t, x, π)
is continuous on Rn × P2(R

n). Proceeding as in the proof of Proposition 2.1, we
can also prove that the map ξ �→ VMKV(t, ξ) is continuous on L2(Ω,G,P;Rn). As
a consequence, it is enough to prove the proposition for ξ ∈ L2(Ω,G,P;Rn) taking
only a finite number of values, the general result being proved by approximation.
In other words, we suppose that

ξ =
K∑

k=0

xk 1Ek
,

for some K ∈ N, xk ∈ Rn, Ek ∈ σ(ξ), with (Ek)k=1,...,K being a partition of Ω.
Notice that α ∈ Aξ if and only if

(2.20) α =

K∑
k=0

αk 1Ek
,

for some αk ∈ A. We also observe that

Xt,ξ,α
s =

K∑
k=0

Xt,xk,αk
s 1Ek

, P
ξ

Xt,ξ,α
s

=

K∑
k=0

P
X

t,xk,αk
s

1Ek
.

Then, the stochastic processes (Xt,ξ,α
s )s∈[t,T ] and

(X
t,x1,δx1

,α1
s 1E1

+ · · ·+X
t,xK ,δxK

,αK

s 1EK
)s∈[t,T ]

are indistinguishable, since they solve the same equation. Therefore

VMKV(t, ξ) = sup
α∈Aξ

E

[ ∫ T

t

f
(
s,Xt,ξ,α

s ,Pξ

Xt,ξ,α
s

, αs

)
ds+ g

(
Xt,ξ,α

T ,Pξ

X
t,ξ,α
T

)]

= sup
α∈Aξ

E

[ K∑
k=0

(∫ T

t

f
(
s,X

t,xk,δxk
,αk

s ,P
X

t,xk,αk
s

, (αk)s
)
ds

+ g
(
X

t,xk,δxk
,αk

T ,P
X

t,xk,αk
T

))
1Ek

]
.

(2.21)

Since ξ is independent of Xt,xk,δxK
,αk and of αk, we can write the last quantity in

(2.21) as

(2.22) VMKV(t, ξ) = sup
α∈Aξ

E

[ K∑
k=0

E

[ ∫ T

t

f
(
s,X

t,xk,δxk
,αk

s ,P
X

t,xk,αk
s

, (αk)s
)
ds

+ g
(
X

t,xk,δxk
,αk

T ,P
X

t,xk,αk
T

)]
1Ek

]
.
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From (2.20), we conclude that

VMKV(t, ξ) = E

[ K∑
k=0

sup
αk∈A

E

[ ∫ T

t

f
(
s,X

t,xk,δxk
,αk

s ,P
X

t,xk,αk
s

, (αk)s
)
ds

+ g
(
X

t,xk,δxk
,αk

T ,P
X

t,xk,αk
T

)]
1Ek

]

= E

[ K∑
k=0

V (t, xk, δxk
) 1Ek

]
= E
[
V (t, ξ, π)

]
.

3. The randomized McKean-Vlasov control problem

Following Definition 3.2.3 in [22], we define on A the metric ρ̃ given by

(3.1) ρ̃(α, β) := E

[ ∫ T

0

ρ(αt, βt) dt

]
,

where we recall that ρ is a metric on A satisfying ρ < 1. Notice that convergence
with respect to ρ̃ is equivalent to convergence in dP dt-measure. We also observe
that (A, ρ̃) is a metric space (identifying processes α and β which are equal dP dt-
a.e. on Ω × [0, T ]). Moreover, since A is a Polish space, it turns out that (A, ρ̃)
is also a Polish space (separability follows from Lemma 3.2.6 in [22]; completeness
follows from the completeness of A and the fact that a ρ̃-limit of FB-progressive
processes is still FB-progressive). We denote by B(A) the family of Borel subsets
of A.

Following [22], we introduce the following subset of admissible control processes.

Definition 3.1. For every t ∈ [0, T ], let (Et
�)�≥1 ∈ F be a countable class of subsets

of Ω which generates σ(Bs, s ∈ [0, t]). Fix a countable dense subset (am)m≥1 of A.
Fix also, for every integer k ≥ 1, a subdivision Ik := {0 =: t0 < t1 < . . . < tk := T}
of the interval [0, T ], with the diameter maxi=1,...,k(ti − ti−1) of the subdivision Ik
going to zero as k → ∞. Then, we denote

Astep :=
{
α ∈ A : there exist k ≥ 1, M ≥ 1, L ≥ 1, such that, for every i = 0, . . . ,

k − 1, αti : Ω → (am)m=1,...,M , with αti constant on the sets of

the partition generated by Eti
1 , . . . , Eti

L , and, for every t∈ [0, T ],

αt = αt0 1[t0,t1)(t) + · · ·+ αtk−1
1[tk−1,tk)(t) + αtk 1{tk}(t)

}
.

Remark 3.1. Notice that Astep depends (even if we omit writing explicitly this
dependence) on the two sequences (am)m≥1 and (Ik)k≥1, which are supposed to
be fixed throughout the paper. The set Astep, with αti being σ(Bs, s ∈ [0, ti])-
measurable, is introduced in the proof of Lemma 3.2.6 in [22], where it is proved
that it is dense in A with respect to the metric ρ̃ defined in (3.1). It can be
shown (proceeding as in the proof of Lemma C.1) that the map α �→ J(t, x, π, α)
is continuous with respect to ρ̃, so that we could define V (t, x, π) in the following
equivalent way:

(3.2) V (t, x, π) = sup
α∈Astep

J(t, x, π, α).
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Finally, we observe that Astep is a countable set, so that it is a Borel subset of A,
namely Astep ∈ B(A).

Now, in order to implement the randomization method, it is better to reformulate
the original McKean-Vlasov control problem as follows. Let Astep be the following
set:

Astep :=
{
α : [0, T ] → Astep : α is Borel-measurable, càdlàg,

and piecewise constant
}
.

It is easy to see that, for every α ∈ Astep, the stochastic process ((αs)s)s∈[0,T ] is an
element of A. Vice versa, for every element α̂ ∈ Astep, there exists α̂ ∈ Astep such
that ((α̂s)s)s∈[0,T ] coincides with α̂ (take α̂s = α̂, for every s ∈ [0, T ]). Hence, by
(3.2),

V (t, x, π) = sup
α∈Astep

J
(
t, x, π, ((αs)s)s∈[0,T ]

)
.

On the right-hand side of the above identity we have an optimization problem with
class of admissible control processes given by {((αs)s)s∈[0,T ] : α ∈ Astep}. We now
randomize this latter control problem.

Consider another complete probability space (Ω1,F1,P1). We denote by E1 the
P1-expected value. We suppose that a Poisson random measure μ on R+ × A is
defined on (Ω1,F1,P1). The random measure μ has compensator λ(dα) dt, for some
finite positive measure λ on A, with full topological support given by Astep. We
denote by μ̃(dt dα) := μ(dt dα) − λ(dα) dt the compensated martingale measure
associated to μ. We introduce Fμ = (Fμ

t )t≥0, which is the P1-completion of the
filtration generated by μ, given by

Fμ
t = σ

(
μ((0, s]×A′) : s ∈ [0, t], A′ ⊂ Astep

)
∨ N 1,

for all t ≥ 0, where N 1 is the class of P1-null sets of F1. We also denote by P(Fμ)
the predictable σ-algebra on Ω1 × R+ corresponding to Fμ.

We recall that μ is associated to a marked point process (Tn,An)n≥1 on R+×A by
the formula μ =

∑
n≥1 δ(Tn,An), where δ(Tn,An) is the Dirac measure concentrated

at the random point (Tn,An). We recall that every Tn is an Fμ-stopping time and
every An is Fμ

Tn
-measurable.

Let Ω̄ = Ω×Ω1, let F̄ be the P⊗P1-completion of F⊗F1, and let P̄ the extension
of P ⊗ P1 to F̄ . We denote by Ḡ, B̄, μ̄ the canonical extensions of G, B, μ, to Ω̄,
given by Ḡ := {G× Ω1 : G ∈ G}, B̄(ω, ω1) := B(ω), μ̄(ω, ω1; dt dα) := μ(ω1; dt dα).
Let F̄B = (F̄B

t )t≥0 (resp. F̄μ = (F̄μ
t )t≥0) denote the P̄-completion of the filtration

generated by B̄ (resp. μ̄). Notice that F̄B
∞ and F̄μ

∞ are independent.

Let F̄B,μ = (F̄B,μ
t )t≥0 denote the P̄-completion of the filtration generated by B̄

and μ̄. Notice that B̄ is a Brownian motion with respect to F̄B,μ and the F̄B,μ-
compensator of μ̄ is given by λ(dα) dt. We define the A-valued piecewise constant
process Ī = (Īt)t≥0 on (Ω̄, F̄ , P̄) as follows:

(3.3) Īt(ω, ω
1) =

∑
n≥0

(An(ω
1))t∧T (ω) 1[Tn(ω1),Tn+1(ω1))(t), for all t ≥ 0,

where T0 := 0 and A0 := ᾱ, for some deterministic and arbitrary control process
ᾱ ∈ Astep, which will remain fixed throughout the paper. Notice that Ī is F̄B,μ-
adapted.
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Randomizing the control in (2.3)-(2.4), we are led to consider the following equa-
tions on (Ω̄, F̄ , P̄), for every (t, x, ξ̄) ∈ [0, T ] × Rn × L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ̄

under P̄:

dX̄t,ξ̄
s = b

(
s, X̄t,ξ̄

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)
ds+ σ

(
s, X̄t,ξ̄

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)
dB̄s, X̄t,ξ̄

t = ξ̄,

(3.4)

dX̄t,x,π
s = b

(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)
ds+ σ

(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)
dB̄s, X̄t,x,π

t = x,

(3.5)

for all s ∈ [t, T ], where P
F̄μ

s

X̄t,ξ̄
s

denotes the regular conditional distribution of the

random variable X̄t,ξ̄
s : Ω̄ → Rn with respect to F̄μ

s , whose existence is guaranteed

for instance by Theorem 6.3 in [19]. Notice that P
F̄μ

s

X̄t,ξ̄
s

depends on ξ only through

its law π, so that equation (3.5) depends only on π. Under Assumption (A1), it
follows by standard arguments that there exists a unique (up to indistinguishability)
pair (X̄t,ξ

s , X̄t,x,π
s )s∈[t,T ] of continuous (F̄B,μ

s ∨ Ḡ)s-adapted processes solution to
equations (3.4)-(3.5), satisfying

(3.6) Ē

[
sup

s∈[t,T ]

(∣∣X̄t,ξ̄
s

∣∣2 + ∣∣X̄t,x,π
s

∣∣q)] < ∞,

for all q ≥ 1, where Ē denotes the P̄-expected value. Moreover, (X̄t,x,π
s )s∈[t,T ] is

F̄B,μ-adapted.

We now prove two technical results concerning the process (P
F̄μ

s

X̄t,ξ̄
s

)s∈[t,T ]. In par-

ticular, the first result (Lemma 3.1) concerns a particular version of (P
F̄μ

s

X̄t,ξ̄
s

)s∈[t,T ],

which will be used in the proof of Lemma 3.2. This latter proves the existence of

another version of (P
F̄μ

s

X̄t,ξ̄
s

)s∈[t,T ], which will be used throughout the paper.

Lemma 3.1. Under Assumption (A1), for every (t, π) ∈ [0, T ] × P2(R
n), there

exists a P2(R
n)-valued Fμ-predictable stochastic process (P̂t,π

s )s∈[t,T ] which is a

version of (P
F̄μ

s

X̄t,ξ̄
s

)s∈[t,T ], with ξ̄ ∈ L2(Ω̄, Ḡ, P̄;Rn) such that π = Pξ̄ under P̄. For

all s ∈ [t, T ], P̂t,π
s is given by

(3.7) P̂t,π
s (ω1)[ϕ] = E

[
ϕ
(
X̄t,ξ̄

s (·, ω1)
)]
,

for every ω1 ∈ Ω1 and ϕ ∈ B2(R
n).

Proof. See Appendix B.

Lemma 3.2. Under Assumption (A1), for every t ∈ [0, T ], there exists a measur-
able map

Pt,·
· : (Ω1 × [t, T ]× P2(R

n),F1 ⊗ B([t, T ])⊗ B(P2(R
n))) → (P2(R

n),B(P2(R
n)))

such that
Pt,π
s = P

F̄μ
s

X̄t,ξ̄
s

,

P1-a.s., for every s ∈ [t, T ], π ∈ P2(R
n), where ξ̄ ∈ L2(Ω̄, Ḡ, P̄;Rn) has law π

under P̄. In other words, for every s ∈ [t, T ] and π ∈ P2(R
n), (Pt,π

s )s∈[t,T ] is a

version of (P
F̄μ

s

X̄t,ξ̄
s

)s∈[t,T ].

Proof. See Appendix B.
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From now on, we will always suppose that (P
F̄μ

s

X̄t,ξ̄
s

)s∈[t,T ] stands for the stochastic

process (Pt,π
s )s∈[t,T ] introduced in Lemma 3.2.

Let us now formulate the randomized McKean-Vlasov control problem. An ad-
missible control is a P(Fμ)⊗B(A)-measurable map ν : Ω1×R+×A → (0,∞), which
is both bounded away from zero and bounded from above: 0 < infΩ1×R+×A ν ≤
supΩ1×R+×A ν < ∞. We denote by V the set of admissible controls. Given ν ∈ V ,
we define Pν on (Ω1,F1) as dPν = κν

T dP1, where κν = (κν
t )t∈[0,T ] is the Doléans

exponential process on (Ω1,F1,P1) defined as

κν
t = Et

(∫ ·

0

∫
A
(νs(α)− 1) μ̃(ds dα)

)

= exp

(∫ t

0

∫
A
ln νs(α)μ(ds dα)−

∫ t

0

∫
A
(νs(α)− 1)λ(dα) ds

)
,

for all t ∈ [0, T ].

Notice that κν is an Fμ-martingale under P1, so that Pν is a probability measure on
(Ω1,F1). We denote by Eν the Pν-expected value. Observe that, by the Girsanov
theorem, the Fμ-compensator of μ under Pν is given by νt(α)λ(dα) dt. Let P̄ν

denote the extension of P ⊗ Pν to (Ω̄, F̄). Then dP̄ν = κ̄ν
TdP̄, where κ̄ν

t (ω, ω
1) :=

κν
t (ω

1), for all t ∈ [0, T ]. Using again the Girsanov theorem, we see that the F̄B,μ-
compensator of μ̄ under P̄ν is ν̄t(α)λ(dα) dt, where ν̄t(ω, ω

1, α) := νt(ω
1, α) is the

canonical extension of ν to Ω̄× R+ ×A.
Notice that a Ḡ-measurable ξ̄ : Ω̄ → Rn has law π under P̄ if and only if it

has the same law under P̄ν . In particular, ξ̄ ∈ L2(Ω̄, Ḡ, P̄;Rn) if and only if ξ̄ ∈
L2(Ω̄, Ḡ, P̄ν ;Rn). As a consequence, the following generalization of estimate (3.6)
holds (Ēν denotes the P̄ν-expected value):

sup
ν∈V

Ēν
[

sup
s∈[t,T ]

(∣∣X̄t,ξ̄
s

∣∣2 + ∣∣X̄t,x,π
s

∣∣q)] < ∞,

for all q ≥ 1, for every (t, x, ξ̄) ∈ [0, T ] × Rn × L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ̄ under
P̄ (or, equivalently, under P̄ν).

Let (t, x, ξ̄) ∈ [0, T ] × Rn × L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ under P̄ and ν ∈ V .
Then the gain functional for the randomized McKean-Vlasov control problem is
given by

JR(t, x, π, ν) = Ēν

[ ∫ T

t

f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)
ds+ g

(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)]
.

As for the functional (2.5), the quantity JR(t, x, π, ν) is defined for every (t, x, π, ν)
∈ [0, T ]×Rn×P2(R

n)×V , since by assumption P2(R
n)={Pξ : ξ∈L2(Ω̄, Ḡ, P̄;Rn)}.

Then, we can define the value function of the randomized McKean-Vlasov control
problem as

(3.8) V R(t, x, π) = sup
ν∈V

JR(t, x, π, ν),

for all (t, x, π) ∈ [0, T ]× Rn × P2(R
n).

Remark 3.2. Let V̂ be the set of P(Fμ)⊗B(A)-measurable maps ν̂ : Ω1×R+×A →
(0,∞), which are bounded from above supΩ1×R+×A ν̂ < ∞, but not necessarily
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bounded away from zero. For every (t, x, π) ∈ [0, T ]× Rn × P2(R
n), we define

V̂ R(t, x, π) = sup
ν̂∈V̂

JR(t, x, π, ν̂).

In [4] the randomized control problem is formulated over V̂. Here we considered V
because this set is more convenient for the proof of Theorem 3.1. However, notice
that

(3.9) V R(t, x, π) = V̂ R(t, x, π).

Indeed, clearly we have V ⊂ V̂, so that V R(t, x, π) ≤ V̂ R(t, x, π). On the other

hand, let ν̂ ∈ V̂ and define νε = ν̂ ∨ ε, for every ε ∈ (0, 1). Observe that νε ∈ V
and κ̄νε

T converges pointwise P̄-a.s. to κ̄ν̂
T . Then, it is easy to see that

JR(t, x, π, νε) = Ē

[
κ̄νε

T

(∫ T

t

f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)
ds+ g

(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

))]

ε→0+−→ JR(t, x, π, ν̂).

This implies that JR(t, x, π, ν̂) ≤ supν∈V JR(t, x, π, ν), from which we get the other

inequality V̂ R(t, x, π) ≤ V R(t, x, π), and identity (3.9) follows.

We can now prove one of the main results of the paper, namely, the equivalence
of the two value functions V and V R.

Theorem 3.1. Under Assumption (A1), the value function V in (2.7) of the
McKean-Vlasov control problem coincides with the value function V R in (3.8) of
the randomized problem

V (t, x, π) = V R(t, x, π),

for all (t, x, π) ∈ [0, T ]× Rn × P2(R
n).

Remark 3.3. As an immediate consequence of Theorem 3.1, we see that V R does
not depend on a0 and λ, since V does not depend on them.

Proof of Theorem 3.1. Fix (t, x, ξ) ∈ [0, T ] × Rn × L2(Ω,G,P;Rn), with π = Pξ

under P. Set ξ̄(ω, ω1) := ξ(ω); then ξ̄ ∈ L2(Ω̄, Ḡ, P̄;Rn) and π = Pξ̄ under P̄. We
split the proof of the equality V (t, x, π) = V R(t, x, π) into three steps, which we
now summarize:

I) In Step I we prove that the value of the randomized problem does not
change if we formulate the randomized McKean-Vlasov control problem on
a new probability space.

II) Step II is devoted to the proof of the first inequality V (t, x, π) ≥ V R(t, x, π).
1) In order to prove it, we construct in Substep 1 a new probability space

(Ω̌, F̌ , P̌) for the randomized problem, which is a product space of
(Ω,F ,P) and a canonical space supporting the Poisson random mea-
sure. Step I guarantees that the value of the new randomized problem
is still given by V R(t, x, π).

2) In Substep 2 we prove that the value of the original McKean-Vlasov
control problem is still equal to V (t, x, π) if we enlarge the class of
admissible controls, taking all α̌ : Ω̌ × [0, T ] → A which are progres-
sive with respect to the filtration F̌B,μ∞ . The new class of admissible
controls is denoted ǍB,μ∞ .
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3) In Substep 3 we conclude the proof of the inequality V (t, x, π) ≥
V R(t, x, π), proving that for every ν̌ ∈ V̌ there exists α̌ν̌ ∈ ǍB,μ∞

such that J̌R(t, x, π, ν̌) = J̌(t, x, π, α̌ν̌). From Substep 2, we immedi-
ately deduce that V (t, x, π) ≥ V R(t, x, π).

III) Step III is devoted to the proof of the other inequality V (t, x, π) ≤
V R(t, x, π). In a few words, we prove that the set {α̌ν̌ : ν̌ ∈ V̌} is dense
in ǍB,μ∞ with respect to the distance ρ̃ in (3.1). Then, the claim follows
from the stability Lemma C.1.

Step I (Value of the randomized McKean-Vlasov control problem). Consider an-
other probabilistic setting for the randomized problem, defined starting from
(Ω,F ,P), along the same lines as in Section 3, where the objects (Ω1,F1,P1),

(Ω̄, F̄ , P̄), Ḡ, B̄, μ̄, Tn, An, Ī, X̄
t,ξ̄, X̄t,x,π, V , JR(t, x, π, ν), V R(t, x, π) are re-

placed respectively by (Ω̌1, F̌1, P̌1), (Ω̌, F̌ , P̌), Ǧ, B̌, μ̌, Ťn, Ǎn, Ǐ, X̌
t,ξ̌, X̌t,x,π, V̌,

J̌R(t, x, π, ν̌), V̌ R(t, x, π), with ξ̌(ω, ω̌1) := ξ(ω), so that ξ̌ ∈ L2(Ω̌, Ǧ, P̌;Rn) and
π = Pξ̌ under P̌.

We claim that V R(t, x, π) = V̌ R(t, x, π). Let us prove V R(t, x, π) ≤ V̌ R(t, x, π);
the other inequality can be proved in a similar way. We begin by noting that
V R(t, x, π) ≤ V̌ R(t, x, π) follows if we prove that for every ν ∈ V there exists ν̌ ∈ V̌
such that JR(t, x, π, ν) = J̌R(t, x, π, ν̌). Observe that

JR(t, x, π, ν) = Ē

[
κ̄ν
T

(∫ T

t

f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)
ds+ g

(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

))]
.

The quantity JR(t, x, π, ν) depends only on the joint law of κ̄ν
T , X̄

t,x,π
· , P

F̄μ
·

X̄
t,ξ̄
·
, Ī·

under P̄, which in turn depends on the joint law of B̄, μ̄, ν̄ under P̄.
Recall that ν̄t(ω, ω

1, α) := νt(ω
1, α) and ν is P(Fμ) ⊗ B(A)-measurable. Then,

we can suppose, using a monotone class argument, that ν is given by

νs(α) = k(α)1(Tn,Tn+1](s)Ψ(s, T1, . . . , Tn,A1, . . . ,An),

for some bounded and positive Borel-measurable maps k and Ψ. We then see that
ν̌ defined by

ν̌s(α) := k(α)1(Ťn,Ťn+1]
(s)Ψ(s, Ť1, . . . , Ťn, Ǎ1, . . . , Ǎn)

is such that JR(t, x, π, ν) = J̌R(t, x, π, ν̌).

Step II (Proof of the inequality V (t, x, π) ≥ V R(t, x, π)). We shall exploit Propo-
sition 4.1 in [4], for which we need to introduce a specific probabilistic setting for
the randomized problem.

Substep 1 (Canonical probabilistic setting for the randomized McKean-Vlasov con-
trol problem). Recall that the Polish space A can be countable or uncountable, and
in this latter case it is Borel-isomorphic to R (see Corollary 7.16.1 in [7]). Then,
in both cases, it can be proved (see the beginning of Section 4.1 in [4]) that there
exist a surjective measurable map ι : R → A and a finite positive measure λ′ on
(R,B(R)) with full topological support, such that λ = λ′ ◦ ι−1 and λ′ is diffuse,
namely λ′({r}) = 0 for every r ∈ R.

Now, consider the canonical probability space (Ω′,F ′,P′) of a marked point pro-
cess on R+×R associated to a Poisson random measure with compensator λ′(dr) dt.
In other words, ω′ ∈ Ω′ is a double sequence ω′ = (tn, rn)n≥1 ⊂ (0,∞) × R, with
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tn < tn+1 ↗ ∞. We denote by (T ′
n, R

′
n)n≥1 the canonical marked point process

defined as (T ′
n(ω

′), R′
n(ω

′)) = (tn, rn), and by ζ ′ =
∑

n≥1 δ(T ′
n,R

′
n)

the canonical

random measure. F ′ is the σ-algebra generated by the sequence (T ′
n, R

′
n)n≥1. P

′ is
the unique probability on F ′ under which ζ ′ has compensator λ′(dr) ds. Finally, we
complete (Ω′,F ′,P′) and, to simplify the notation, we still denote its completion
by (Ω′,F ′,P′).

Set A′
n = ι(R′

n) and μ′ =
∑

n≥1 δ(T ′
n,A′

n)
. Then μ′ is a Poisson random measure

on (Ω′,F ′,P′) with compensator λ(dα) ds. Proceeding along the same lines as in
Section 3, we define, starting from (Ω,F ,P) and (Ω′,F ′,P′), a new setting for
the randomized problem where the objects (Ω1,F1,P1), (Ω̄, F̄ , P̄), Ḡ, B̄, μ̄, F̄B =

(F̄B
s )s≥0, F

μ = (Fμ
s )s≥0, F̄

B,μ = (F̄B,μ
s )s≥0, (Tn,An)n≥1, Ī, X̄

t,ξ̄, X̄t,x,π, V , Pν ,

P̄ν , JR(t, x, π, ν), V R(t, x, π) are replaced respectively by (Ω′,F ′,P′), (Ω̌, F̌ , P̌),

Ǧ, B̌, μ̌, F̌B = (F̌B
s )s≥0, Fμ′

= (Fμ′

s )s≥0, F̌B,μ = (F̌B,μ
s )s≥0, (Ťn, Ǎn)n≥1, Ǐ,

X̌t,ξ̌, X̌t,x,π, V̌, Pν̌ , P̌ν̌ , J̌R(t, x, π, ν̌), V̌ R(t, x, π), with ξ̌(ω, ω′) := ξ(ω), so that
ξ̌ ∈ L2(Ω̌, Ǧ, P̌;Rn) and π = Pξ̌ under P̌.

Substep 2 (Value of the original McKean-Vlasov control problem). Let F̌B,μ∞ =
(F̌B,μ∞

s )s≥0 be the P̌-completion of the filtration (FB
s ⊗ F ′)s≥0, and let F̌ ′

be the canonical extension of F ′ to Ω̌. We define the set ǍB,μ∞ of all F̌B,μ∞ -
progressive processes α̌ : Ω̌ × [0, T ] → A. For every α̌ ∈ ǍB,μ∞ , we denote by

(X̌t,ξ̌,α̌
s , X̌t,x,π,α̌

s )s∈[t,T ] the unique continuous (F̌B,μ∞
s ∨ Ǧ)s-adapted solution to

the following system of equations:

dX̌t,ξ̌,α̌
s = b

(
s, X̌t,ξ̌,α̌

s ,P
F̌μ

s

X̌t,ξ̌,α̌
s

, α̌s

)
ds+ σ

(
s, X̌t,ξ̌,α̌

s ,P
F̌μ

s

X̌t,ξ̌,α̌
s

, α̌s

)
dB̌s,

X̌t,ξ̌,α̌
t = ξ̌,(3.10)

dX̌t,x,π,α̌
s = b

(
s, X̌t,x,π,α̌

s ,P
F̌μ

s

X̌t,ξ̌,α̌
s

, α̌s

)
ds+σ

(
s, X̌t,x,π,α̌

s ,P
F̌μ

s

X̌t,ξ̌,α̌
s

, α̌s

)
dB̌s,

X̌t,x,π,α̌
t = x,(3.11)

for all s ∈ [t, T ], where P
F̌μ

s

X̌t,ξ̌,α̌
s

denotes the regular conditional distribution of the

random variable X̌t,ξ̌,α̌
s : Ω̌ → Rn with respect to F̌μ

s . We also define (Ě denotes
the P̌-expected value)

J̌(t, x, π, α̌) = Ě

[ ∫ T

t

f
(
s, X̌t,x,π,α̌

s ,P
F̌μ

s

X̌t,ξ̌,α̌
s

, α̌s

)
ds+ g

(
X̌t,x,π,α̌

T ,P
F̌μ

T

X̌
t,ξ̌,α̌
T

)]

and

V̌ (t, x, π) = sup
α̌∈ǍB,μ∞

J̌(t, x, π, α̌).

Let us prove that V (t, x, π) = V̌ (t, x, π).

The inequality V (t, x, π) ≤ V̌ (t, x, π) is obvious. Indeed, every α ∈ A admits an
obvious extension α̌(ω, ω′) := α(ω) to Ω̌. Notice that α̌ ∈ ǍB,μ∞ . We also observe

that X̌t,ξ̌,α̌
s (ω, ω′) = Xt,ξ,α

s (ω), for P̌-almost every (ω, ω′) ∈ Ω̌. Therefore P
F̌μ

s

X̌t,ξ̌,α̌
s

is equal P̌-a.s. to PXt,ξ,α
s

. Then, X̌t,x,π,α̌
s (ω, ω′) = Xt,x,π,α

s (ω), for P̌-almost every

(ω, ω′) ∈ Ω̌. As a consequence, we see that J(t, x, π, α) = J̌(t, x, π, α̌).
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To prove the other inequality, let α̃ ∈ ǍB,μ∞ . Then, there exists an A-valued
(FB

s ⊗F ′)s≥0-progressive process α̌ : Ω̌× [0, T ] → A satisfying α̌ = α̃, dP̌ ds-a.e., so

that J̌(t, x, π, α̌) = J̌(t, x, π, α̃). Moreover, for every ω′ ∈ Ω′ the process αω′
, given

by αω′

s (ω) := α̌s(ω, ω
′), is FB-progressive.

Now, for every ω′ ∈ Ω′, consider the solution (Xt,ξ,αω′

s , Xt,x,π,αω′

s )s∈[t,T ] to (2.3)-

(2.4) with α replaced by αω′
, namely,

dXt,ξ,αω′

s = b
(
s,Xt,ξ,αω′

s ,P
Xt,ξ,αω′

s

, αω′

s

)
ds+ σ

(
s,Xt,ξ,αω′

s ,P
Xt,ξ,αω′

s

, αω′

s

)
dBs,

dXt,x,π,αω′

s = b
(
s,Xt,x,π,αω′

s ,P
Xt,ξ,αω′

s

, αω′

s

)
ds+ σ

(
s,Xt,x,π,αω′

s ,P
Xt,ξ,αω′

s

, αω′

s

)
dBs.

On the other hand, since (X̌t,ξ̌,α̌
s , X̌t,x,π,α̌

s )s∈[t,T ] is the solution to (3.10)-(3.11), we
have, for P′-a.e. ω′ ∈ Ω′,

dX̌t,ξ̌,α̌
s (·, ω′) = b

(
s, X̌t,ξ̌,α̌

s (·, ω′),P
F̌μ

s

X̌t,ξ̌,α̌
s

(·, ω′), α̌s(·, ω′)
)
ds

+ σ
(
s, X̌t,ξ̌,α̌

s (·, ω′),P
F̌μ

s

X̌t,ξ̌,α̌
s

(·, ω′), α̌s(·, ω′)
)
dBs,

dX̌t,x,π,α̌
s (·, ω′) = b

(
s, X̌t,x,π,α̌

s (·, ω′),P
F̌μ

s

X̌t,ξ̌,α̌
s

(·, ω′), α̌s(·, ω′)
)
ds

+ σ
(
s, X̌t,x,π,α̌

s (·, ω′),P
F̌μ

s

X̌t,ξ̌,α̌
s

(·, ω′), α̌s(·, ω′)
)
dBs.

Notice that, for P′-a.e. ω′ ∈ Ω′ we have that P
F̌μ

s

X̌t,ξ̌,α̌
s

(·, ω′) is equal P-a.s. to

P
X̌t,ξ̌,α̌

s (·, ω′), the law under P of the random variable X̌t,ξ̌,α̌
s (·, ω′) : Ω → Rn.

Recalling the identity αω′

s = α̌s(·, ω′), we see that, for P′-a.e. ω′ ∈ Ω′, (Xt,ξ,αω′

s ,

Xt,x,π,αω′

s )s∈[t,T ] and (X̌t,ξ̌,α̌
s (·, ω′), X̌t,x,π,α̌

s (·, ω′))s∈[t,T ] solve the same system of

equations. Then, by pathwise uniqueness, for P′-a.e. ω′ ∈ Ω′, we haveXt,ξ,αω′

s (ω) =

X̌t,ξ̌,α̌
s (ω, ω′) and Xt,x,π,αω′

s (ω) = X̌t,x,π,α̌
s (ω, ω′), for all s ∈ [t, T ], P(dω)-almost

surely. Therefore, by Fubini’s theorem,

J̌(t, x, π, α̌) =

∫
Ω′

E

[ ∫ T

t

f
(
s,Xt,x,π,αω′

s ,P
Xt,ξ,αω′

s

, αω′

s

)
ds

+ g
(
Xt,x,π,αω′

T ,P
X

t,ξ,αω′

T

)]
P′(dω′)

=

∫
Ω′

J(t, x, π, αω′
)P′(dω′) ≤ V (t, x, π).

Recalling that J̌(t, x, π, α̃) = J̌(t, x, π, α̌), we deduce that J̌(t, x, π, α̃) ≤ V (t, x, π).
Taking the supremum over α̃ ∈ ǍB,μ∞ , we conclude that V̌ (t, x, π) ≤ V (t, x, π).

Substep 3 (Proof of the inequality V (t, x, π) ≥ V R(t, x, π)). Let ν̌ ∈ V̌ . By Lemma
4.3 in [4] there exists a sequence (Ť ν̌

n , Ǎν̌
n)n≥1 on (Ω′,F ′,P′) such that:

• (Ť ν̌
n , Ǎν̌

n) takes values in (0,∞)×A;
• Ť ν̌

n < Ť ν̌
n+1 ↗ ∞;

• Ť ν̌
n is an Fμ′

-stopping time and Ǎν̌
n is Fμ′

Ť ν̌
n

-measurable;

• the law of (Ť ν̌
n , Ǎν̌

n)n≥1 under P
′ coincides with the law of (Ťn, Ǎn)n≥1 under

Pν̌ .
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Let α̌ν̌ : Ω̌× [0, T ] → A be given by (ᾱ was introduced in (3.3))

α̌ν̌
s (ω, ω

′) = ᾱs(ω) 1[0,Ť ν̌
1 (ω′))(s) +

∑
n≥1

(Ǎν̌
n(ω

′))s∧T (ω) 1[Ť ν̌
n (ω′),Ť ν̌

n+1(ω
′))(s).

Notice that α̌ν̌ ∈ ǍB,μ∞ . For every n ≥ 1, set α̌n,s(ω, ω
′) := (Ǎn(ω

′))s(ω) and

α̌ν̌
n,s(ω, ω

′) := (Ǎν̌
n(ω

′))s(ω), for all s ∈ [0, T ]. Notice that the law of (α̌n,s)s∈[0,T ]

under P̌ν̌ coincides with the law of (α̌ν̌
n,s)s∈[0,T ] under P̌ (to see this, we can suppose,

by an approximation argument, that the A-valued random variables Ǎn and Ǎν̌
n

take only a finite number of values). It follows that the law of Ǐ under P̌ν̌ coincides
with the law of α̌ν̌ under P̌.

More generally, for every n ≥ 1, the law of (ξ̌, B̌, α̌n,·) under P̌ν̌ is equal to

the law of (ξ̌, B̌, α̌ν̌
n,·) under P̌. Therefore, the law of (ξ̌, B̌, Ǐ) under P̌ν̌ coincides

with the law of (ξ̌, B̌, α̌ν̌) under P̌. This implies that the law of (X̌t,ξ̌, X̌t,x,π, Ǐ)

under P̌ν̌ is equal to the law of (X̌t,ξ̌,α̌ν̌

, X̌t,x,π,α̌ν̌

, α̌ν̌) under P̌. It follows that
J̌R(t, x, π, ν̌) = J̌(t, x, π, α̌ν̌). In particular, we have

sup
ν̌∈V̌

J̌R(t, x, π, ν̌) = sup
α̌ν̌

ν̌∈V̌

J̌(t, x, π, α̌ν̌).

Since the left-hand side is equal to V̌ R(t, x, π), while the right-hand side is clearly
less than or equal to V̌ (t, x, π), we get V̌ R(t, x, π) ≤ V̌ (t, x, π). Recalling from Step
I that V R(t, x, π) = V̌ R(t, x, π) and from Substep 2 that V̌ (t, x, π) = V (t, x, π), we
conclude that V R(t, x, π) ≤ V (t, x, π).

Step III (Proof of the inequality V (t, x, π) ≤ V R(t, x, π)). The proof of this step
is based on Proposition A.1 in [4] (notice, however, that we will need to use some
results from the proof of this proposition, not only from its statement). More
precisely, the set Ω appearing in Proposition A.1 of [4] is the empty set Ω = ∅ in our

context, so that the product probability space (Ω̃, F̃ ,Q) coincides with (Ω′,F ′,P′),
which is some suitably defined probability space (see Appendix A in [4] for the
definition of (Ω′,F ′,P′); here, we do not need to know the structure of (Ω′,F ′,P′)).
Fix α̂ ∈ A and denote by α : [0, T ] → A the map αs = α̂, for every s ∈ [0, T ].
By Proposition A.1 in [4] we have that, for every � ∈ N\{0}, there exists a marked
point process (T �

n,A�
n)n≥1 on (Ω′,F ′,P′) such that (ᾱ was introduced in (3.3))

T �
0 = 0, A�

0 = ᾱ, I�
s(ω

′) =
∑
n≥0

A�
n(ω

′) 1[T �
n(ω

′),T �
n+1(ω

′))(s), for all s ≥ 0,

and

(3.12) E′
[ ∫ T

0

ρ̃(I�
s,αs) ds

]
<

1

�
,

where E′ denotes the P′-expected value. Set μ� =
∑

n≥1 δ(T �
n,A�

n)
as the random

measure associated to (T �
n,A�

n)n≥1, and denote by Fμ� = (Fμ�
s )s≥0 the filtration

generated by μ�. Then, by Proposition A.1 of [4] we have that the Fμ� -compensator
of μ� under P

′ is given by ν�s(α)λ(dα) ds for some P(Fμ�)⊗B(A)-measurable map
ν� : Ω′ × R+ ×A → R+ satisfying

(3.13) 0 < inf
Ω′×[0,T ]×A

ν� ≤ sup
Ω′×[0,T ]×A

ν� < ∞.
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Noting that the definition of ν� on Ω′ × (T,∞) × A is not relevant in order to
guarantee (3.12), we can assume that ν� ≡ 1 on Ω′ × (T,∞)×A.

Observe that

E′
[ ∫ T

0

ρ̃(I�
s,αs) ds

]
=
∑
n≥0

E′
[
1{T �

n<T}

∫ T �
n+1∧T

T �
n

E

[ ∫ T

0

ρ((A�
n)r, α̂r) dr

]
ds

]
<

1

�
.

On the other hand, let

Ĩ�s(ω, ω
′) =

∑
n≥0

(A�
n(ω

′))s∧T (ω) 1[T �
n(ω

′),T �
n+1(ω

′))(s), for all s ≥ 0.

Our aim is to prove that

ρ̃Q(Ĩ�, α̂) := E′
[
E

[ ∫ T

0

ρ(Ĩ�r , α̂r) dr

]]
�→∞−→ 0.(3.14)

Digression (Estimate for the series
∑

n≥0 P
′(T �

n < T )). We recall from the proof of

Proposition A.1 in [4] that the sequence (T �
n)n≥0 is the disjoint union of (Rm

n )n≥1

and (T k
n )n≥0 (we refer to the proof of Proposition A.1 in [4] for all unexplained

notation), namely,

(3.15)
∑
n≥0

P′(T �
n < T

)
=
∑
n≥1

P′(Rm
n < T

)
+
∑
n≥0

P′(T k
n < T

)
.

We also recall that T k
n − T k

n−1 has an exponential distribution with parameter
k−1λ(A). Then, it is easy to prove by induction on n the estimate

(3.16) P′(T k
n < T

)
≤
(
1− e−k−1λ(A)T

)n
.

On the other hand, concerning the sequence (Rm
n )n≥1, we begin by noting that

since α is constant and identically equal to α̂, the sequence of deterministic times
(tn)n≥0 appearing in the proof of Proposition A.1 in [4] can be taken as follows:
t0 = 0, t1 ∈ (0, 1

3� ∧ T ), and tn = T + n− 2 for every n ≥ 2. Therefore Rm
n ≥ T for

all n ≥ 2, while Rm
1 = t1 + V m

1 , where V m
1 is an exponential random variable with

parameter λ1m > m. In particular, we have

(3.17) P′(Rm
1 < T

)
= P′(V m

1 < T − t1
)

= 1− e−λ1m(T−t1) ≤ 1.

Plugging (3.16) and (3.17) into (3.15), we obtain

(3.18)
∑
n≥0

P′(T �
n < T

)
≤ 1+

∑
n≥0

(
1−e−k−1λ(A)T

)n ≤ 1+ek
−1λ(A)T ≤ 1+eλ(A)T .
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Continuation of the proof of Step III. We can now prove (3.14). In particular,
we have, using (3.18),

ρ̃Q(Ĩ�, α̂) = E′
[
E

[ ∫ T

0

ρ(Ĩ�r , α̂r) dr

]]

=
∑
n≥0

E′
[
1{T �

n<T}E

[ ∫ T �
n+1∧T

T �
n

ρ((A�
n)r, α̂r) dr

]]

=
∑
n≥0

E′
[
1{T �

n<T}
1

T �
n+1 ∧ T − T �

n

∫ T �
n+1∧T

T �
n

E

[ ∫ T �
n+1∧T

T �
n

ρ((A�
n)r, α̂r) dr

]
ds

]

=
∑
n≥0

E′
[
1{T �

n+1∧T−T �
n≥1/

√
�}1{T �

n<T}
1

T �
n+1 ∧ T − T �

n

∫ T �
n+1∧T

T �
n

× E

[ ∫ T �
n+1∧T

T �
n

ρ((A�
n)r, α̂r) dr

]
ds

]

+
∑
n≥0

E′
[
1{T �

n+1∧T−T �
n<1/

√
�}1{T �

n<T}
1

T �
n+1 ∧ T − T �

n

∫ T �
n+1∧T

T �
n

× E

[ ∫ T �
n+1∧T

T �
n

ρ((A�
n)r, α̂r) dr

]
ds

]

≤
√
�
∑
n≥0

E′
[
1{T �

n<T}

∫ T �
n+1∧T

T �
n

E

[ ∫ T

0

ρ((A�
n)r, α̂r) dr

]
ds

]
+

1√
�

∑
n≥0

P′(T �
n < T

)

=
√
�E′
[ ∫ T

0

ρ̃(I�
s,αs) ds

]
+

1√
�

∑
n≥0

P′(T �
n < T

)

≤
√
�E′
[ ∫ T

0

ρ̃(I�
s,αs) ds

]
+

1 + eλ(A)T

√
�

≤ 2 + eλ(A)T

√
�

,

which yields (3.14).
We consider now the product probability space (Ω× Ω′,F ⊗ F ′,P ⊗ P′), which

we still denote (Ω̃, F̃ ,Q) (by an abuse of notation, since according to Proposi-

tion A.1 in [4], (Ω̃, F̃ ,Q) coincides with (Ω′,F ′,P′)). We complete the proba-

bility space (Ω̃, F̃ ,Q) and, to simplify the notation, we still denote by (Ω̃, F̃ ,Q)

its completion. Let ξ̃, B̃, ν̃� be the canonical extensions of ξ, B, ν� to Ω̃. On
the other hand, we still denote by μ� the extension of μ� to Ω̃. We denote by
μ̃�(ds dα) = μ�(ds dα) − ν̃�s(α)λ(dα)ds the compensated martingale measure as-

sociated to μ�. We also denote by F̃B,μ� = (F̃B,μ�
s )s≥0 (resp. F̃μ� = (F̃μ�

s )s≥0)

the Q-completion of the filtration generated by B̃ and μ� (resp. μ�). For every
� ∈ N\{0}, we define the Doléans exponential

κ̃�
s = Es

(∫ ·

0

∫
A

(ν̃�r(α)
−1 − 1) μ̃�(dr dα)

)
, for all s ∈ [0, T ].
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By (3.13) we see that (κ̃�
s)s∈[0,T ] is an F̃B,μ� -martingale under Q, so that we can

define on (Ω̃, F̃) a probability P̃� equivalent to Q by dP̃� = κ̃�
T dQ. By the Gir-

sanov theorem, μ� has F̃B,μ� -compensator given by λ(dα) ds under P̃�. Moreover,

B̃ remains a Brownian motion under P̃�, and π = Pξ̃ under P̃�.

Let G̃ be the canonical extension of G to Ω̃ and denote by (X̃t,ξ̃,�
s , X̃t,x,π,�

s )s∈[t,T ]

the unique continuous (F̃B,μ�
s ∨ G̃)-adapted solution to equations (3.4)-(3.5) on

(Ω̃, F̃ , P̃�) with ξ̄, B̄, Ī, F̄μ
s replaced by ξ̃, B̃, Ĩ�, F̃μ�

s . Finally, we define in an

obvious way the following objects: Ṽ�, P̃
ν̃
� , Ẽ

ν̃
� , J̃

R
� (t, x, π, ν̃), Ṽ R

� (t, x, π).
For every � we have constructed a new probabilistic setting for the randomized

problem, where the objects (Ω1,F1,P1), (Ω,F ,P), Ḡ, B̄, μ̄, Ī, X̄t,ξ̄, X̄t,x,π, V ,
JR(t, x, π, ν), V R(t, x, π) are replaced respectively by (Ω′,F ′,P′), (Ω̃, F̃ , P̃�), G̃, B̃,

μ�, Ĩ�, X̃t,ξ̃,�, X̃t,x,π,�, Ṽ�, J̃
R
� (t, x, π, ν̃), Ṽ R

� (t, x, π).

Now, let us prove that J̃R
� (t, x, π, ν̃�) → J(t, x, π, α̂) as � → ∞. To this end,

notice that P̃ν̃�

� ≡ Q. Therefore J̃R
� (t, x, π, ν̃�) can be written in terms of EQ as

follows:

J̃R
� (t, x, π, ν̃�) = EQ

[ ∫ T

t

f
(
s, X̃t,x,π,�

s ,PF̃μ�
s

X̃t,ξ̃,�
s

, Ĩ�s
)
ds+ g

(
X̃t,x,π,�

T ,P
F̃μ�

T

X̃
t,ξ̃,�
T

)]
.

On the other hand, let F̃B = (F̃B
s )s≥0 be the Q-completion of the filtration gener-

ated by B̃, and let α̃ be the canonical extension of α̂ to Ω̃. Then, we

denote by (X̃t,ξ̃,α̃
s , X̃t,x,π,α̃

s )s∈[t,T ] the unique continuous (F̃B
s ∨ G̃)-adapted solu-

tion to equations (2.3)-(2.4) on (Ω̃, F̃ ,Q) with ξ, B, α replaced by ξ̃, B̃, α̃. Notice

that (X̃t,ξ̃,α̃
s , X̃t,x,π,α̃

s )s∈[t,T ] coincides with the obvious extension of

(Xt,ξ,α̂
s , Xt,x,π,α̂

s )s∈[t,T ] to Ω̃. Hence, we have

J(t, x, π, α̂) = EQ

[ ∫ T

t

f
(
s, X̃t,x,π,α̃

s ,PF̃μ�
s

X̃t,ξ̃,α̃
s

, α̃s

)
ds+ g

(
X̃t,x,π,α̃

T ,P
F̃μ�

T

X̃
t,ξ̃,α̃
T

)]
.

Then, it follows that J̃R
� (t, x, π, ν̃�) → J(t, x, π, α̂) as � → ∞. Indeed, this is a direct

consequence of Lemma C.1, with F̃μ0 := ({∅, Ω̃})s≥0 being the trivial filtration,

F̃� := (F̃B,μ�
s ∨ G̃)s≥0 for every � ≥ 1, F̃0 := (F̃B

s ∨ G̃)s≥0, Ĩ
0 := α̃, X̃t,ξ̃,0 := X̃t,ξ̃,α̃,

and X̃t,x,π,0 := X̃t,x,π,α̃.
We conclude that for every ε > 0 there exists some Lε ∈ N such that, for every

� > Lε, we have

J(t, x, π, α̂)− ε ≤ J̃R
� (t, x, π, ν̃�) ≤ sup

ν̃∈Ṽ�

J̃R
� (t, x, π, ν̃) =: Ṽ R

� (t, x, π)

Step I

↓
= V R(t, x, π).

From the arbitrariness of ε, we see that J(t, x, π, α̂) ≤ V R(t, x, π). The claim
follows taking the supremum over α̂ ∈ A.

Remark 3.4. Let V1,t ⊂ V be the set of ν ∈ V such that ν ≡ 1 on Ω × [0, t) × A.
Then

(3.19) V (t, x, π) = sup
ν∈V1,t

JR(t, x, π, ν),
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for all (t, x, π) ∈ [0, T ] × Rn × P2(R
n). Indeed, by Step II of the proof of Theo-

rem 3.1, we have V (t, x, π) ≥ V R(t, x, π) ≥ supν∈V1,t
JR(t, x, π, ν). Let us prove

the other inequality. We begin by noting that in Lemma C.1, the convergence

EQ[
∫ T
t
ρ̃(Ĩ�s , Ĩ

0
s ) ds] → 0 as � → ∞ is needed rather than EQ[

∫ T
0
ρ̃(Ĩ�s , Ĩ

0
s ) ds] → 0.

In other words, the behavior of (Ĩ�s)s∈[0,T ] on the interval [0, t) is not relevant.
Therefore, proceeding as in Step III of the proof of Theorem 3.1, we see that
we can take ν̃� ≡ 1 on Ω̃ × [0, t) × A in order to guarantee the convergence

EQ[
∫ T
t
ρ̃(Ĩ�s, α̂s) ds] → 0 as � → ∞. Then, from the same proof of Lemma C.1,

we conclude that J̃R(t, x, π, ν̃�) → J(t, x, π, α̂) as � → ∞. This implies the validity
of the other inequality V (t, x, π) ≤ supν∈V1,t

JR(t, x, π) and proves (3.19).

4. Feynman-Kac representation: Randomized equation

In the present section we introduce, for every (t, x, ξ̄)∈ [0, T ]×Rn×L2(Ω̄, Ḡ, P̄;Rn),
a forward-backward stochastic differential system of equations, which provides a
probabilistic representation for the value V (t, x, π), with π = Pξ under P̄. In other
words, we derive a nonlinear Feynman-Kac formula for the value function V in (2.7)
of the McKean-Vlasov control problem.

We firstly introduce the following spaces, for every t ∈ [0, T ].

• S2(t, T ), the set of real-valued càdlàg Fμ-adapted processes Y = (Ys)s∈[t,T ],

with Y : Ω1× [t, T ] → R, satisfying ‖Y ‖2S2(t,T ) := E1
[
supt≤s≤T |Ys|2

]
< ∞.

• L2
μ̃(t, T ), the set of real-valued P(Fμ) ⊗ B(A)-measurable maps U =

(Us(α))s∈[t,T ], α∈A, with U : Ω1 × [t, T ] × A → R, satisfying ‖U‖2
L2

μ̃(t,T )
:=

E1
[ ∫ T

t

∫
A |Us(α)|2λ(dα) ds

]
< ∞.

• K2(t, T ), the set of nondecreasing Fμ-predictable processes K = (Ks)s∈[t,T ],

with K : Ω1 × [t, T ] → R+, satisfying K ∈ S2(t, T ) and Kt = 0.

Given (t, x, ξ̄) ∈ [0, T ]× Rn × L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ under P̄, consider on
(Ω1,F1,Fμ,P1) the following backward stochastic differential equation with con-
strained jumps over [t, T ]:

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ys = E
[
g(X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)
]
+

∫ T

s

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr +KT −Ks

−
∫ T

s

∫
A

Ur(α)μ(dr dα), s ∈ [t, T ],

Us(α) ≤ 0, dP1 ds λ(dα)-a.e. on Ω1 × [t, T ]×A.

Notice that E
[
g(X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)
]
, as well as E

[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
, is a random

variable on (Ω1,F1,P1).
Equations (3.3)-(3.4)-(3.5)-(4.1) constitute a forward-backward stochastic dif-

ferential system of equations. We also observe that equation (4.1) depends on ξ
only through its law π = Pξ. We now prove that there exists a unique solution
(Y t,x,π , U t,x,π ,Kt,x,π) ∈ S2(t, T )×L2

μ̃(t, T )×K2(t, T ) to (4.1), which is minimal in

the following sense: if (Ȳ , Ū , K̄) ∈ S2(t, T )×L2
μ̃(t, T )×K2(t, T ) is another solution

to (4.1), then the inequality Y t,x,π ≤ Ȳ holds on Ω1 × [t, T ], up to a P1-evanescent
set.
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Theorem 4.1. Under Assumption (A1), for every (t, x, ξ̄) ∈ [0, T ] × Rn×
L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ under P̄, there exists a unique minimal solution

(Y t,x,π , U t,x,π ,Kt,x,π) ∈ S2(t, T ) × L2
μ̃(t, T ) × K2(t, T ) to (4.1), with Y t,x,π

t equal

P1-a.s. to a constant. In addition, V admits the Feynman-Kac representation

(4.2) V (t, x, π) = Y t,x,π
t

P1-a.s., for all (t, x, π) ∈ [0, T ]× Rn × P2(R
n). Moreover, we have

Y t,x,π
t = sup

ν∈V
Eν

[ ∫ s

t

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + Y t,x,π

s

]
(4.3)

= sup
ν∈V

Ēν

[ ∫ s

t

f(r, X̄t,x,π
r ,P

F̄μ
r

X̄t,ξ̄
r

, Īr) dr + Y t,x,π
s

]
,

P1-a.s., for all s ∈ [t, T ].

Proof (Existence and uniqueness of the minimal solution to (4.1)). Fix (t, x, ξ̄) ∈
[0, T ]× Rn × L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ under P̄. Consider, for every n ∈ N, the
following unconstrained backward stochastic differential equation on [t, T ]:

Ys = E
[
g(X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)
]
+

∫ T

s

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr

+ n

∫ T

s

∫
A
(Ur(α))+ λ(dα) dr

−
∫ T

s

∫
A
Ur(α)μ(dr dα).(4.4)

By Lemma 2.4 in [30], there exists a unique solution (Y n,t,x,π , Un,t,x,π) ∈ S2(t, T )×
L2
μ̃(t, T ) to the above equation.

For every n ∈ N, let V̂n denote the set of P(Fμ)⊗B(A)-measurable maps ν̂ : Ω1×
R+ ×A → (0, n], which are not necessarily bounded away from zero. Then, let us
prove the following formula:

(4.5) Y n,t,x,π
t̄ = ess sup

ν̂∈V̂n

Eν̂

[ ∫ s

t̄

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + Y n,t,x,π

s

∣∣∣∣Fμ
t̄

]
,

for all t̄, s ∈ [t, T ], with t̄ ≤ s. Let ν̂ ∈ V̂ (see Remark 3.2 for the definition of V̂).
Then, considering (4.4) between t̄ and s and taking the Pν̂-conditional expectation
with respect to Fμ

t̄ , we obtain

Y n,t,x,π
t̄ = Eν̂

[ ∫ s

t̄

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + Y n,t,x,π

s(4.6)

+

∫ s

t̄

∫
A

[
n(Ur(α)

n,t,x,π)+ − Un,t,x,π
r (α)ν̂r(α)

]
λ(dα) dr

∣∣∣∣Fμ
t̄

]
.

Since ν̂r(α) ∈ (0, n], the last term inside the expectation is nonnegative. Therefore

(4.7) Y n,t,x,π
t̄ ≥ ess sup

ν̂∈V̂n

Eν̂

[ ∫ s

t̄

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + Y n,t,x,π

s

∣∣∣∣Fμ
t̄

]
.

To prove the other inequality, define, for every ε ∈ (0, n], the map ν̂n,ε as

ν̂n,εr (α) = n 1{Un,t,x,π
r (α)≥0}+ε 1{−1≤Un,t,x,π

r (α)<0}+
ε

|Un,t,x,π
r (α)|

1{Un,t,x,π
r (α)<−1},
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on Ω1 × [t, T ] × A, and ν̂n,ε ≡ 1 on Ω1 × ([0, t) ∪ (T,∞)) × A. Notice that ν̂n,ε

belongs to V̂n, and it is not necessarily bounded away from zero. Taking ν̂ equal
to ν̂n,ε in (4.6), we obtain

Y n,t,x,π
t̄ ≤ Eν̂n,ε

[ ∫ s

t̄

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + Y n,t,x,π

s

∣∣∣∣Fμ
t̄

]
+ ε(T − t)λ(A)

(4.8)

≤ ess sup
ν̂∈V̂n

[ ∫ s

t̄

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + Y n,t,x,π

s

∣∣∣∣Fμ
t̄

]
+ε(T − t)λ(A).

From the arbitrariness of ε we get the reverse inequality of (4.7), from which we
deduce the validity of (4.5). In particular, when s = T in (4.5), we obtain
(4.9)

Y n,t,x,π
t̄ = ess sup

ν̂∈V̂n

Eν̂

[ ∫ T

t̄

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + E

[
g(X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)
]∣∣∣∣Fμ

t̄

]
,

for all t̄ ∈ [t, T ]. Then, it is easy to see that the following estimate holds:

(4.10) sup
n

Y n,t,x,π
t̄ < ∞, for all t̄ ∈ [t, T ].

Hence, the existence and uniqueness of the minimal solution to equation (4.1) fol-

lows from Theorem 2.1 in [21] (apart from the fact that Kt,x,π
t = 0, as required in

the definition of K2(t, T ), which will be proved later). Indeed, (4.1) can be seen as

an equation on the entire interval [0, T ], with terminal condition E
[
g(X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)
]

and generator E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
1[t,T ](r). Assumption (H0) in [21] holds un-

der Assumption (A1). Moreover, Assumption (H1) in [21] is imposed only to
guarantee the validity of (4.10), which in our case follows directly from formula
(4.9), since f does not depend on Y n,t,x,π , Un,t,x,π . It only remains to prove that

Kt,x,π
t = 0. This is clearly true if we show that Y t,x,π

t is equal P1-a.s. to a constant

(as a matter of fact, if Y t,x,π
t is equal P1-a.s. to a constant, then, by uniqueness,

Y t,x,π
s = Y t,x,π

t on [0, t], so that Kt,x,π
s is also constant on [0, t] and, in particu-

lar, equal to Kt,x,π
0 = 0). This latter property is proved below. Finally, for later

use, we notice that, according to Theorem 2.1 in [21], the sequence (Y n,t,x,π
t̄ )n≥0 is

nondecreasing (this is a direct consequence of formula (4.9), since V̂n ⊂ V̂n+1) and

converges pointwise P1-a.s. to Y t,x,π
t̄ , for all t̄ ∈ [t, T ].

Proof of (4.2), in particular Y t,x,π
t is equal P1-a.s. to a constant. Notice that

Y t,x,π
t is Fμ

t -measurable; therefore it is not a priori clear that it is P1-a.s. a constant.
For every n ∈ N, consider (4.5) with t̄ = t and s = T :

Y n,t,x,π
t = ess sup

ν̂∈V̂n

Eν̂

[ ∫ T

t

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + E

[
g(X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)
]∣∣∣∣Fμ

t

]
.

Letting n → ∞, recalling that Y n,t,x,π
t ↗ Y t,x,π

t , P1-a.s., and noting that V̂n ⊂
V̂n+1 ⊂

⋃
n V̂n = V̂ , we obtain

(4.11)

Y t,x,π
t = ess sup

ν̂∈V̂
Eν̂

[ ∫ T

t

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + E

[
g(X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)
]∣∣∣∣Fμ

t

]
.



2140 ERHAN BAYRAKTAR, ANDREA COSSO, AND HUYÊN PHAM

Reasoning as in Remark 3.2, we can show that the right-hand side of (4.11) does not
change if we take the supremum over V . In other words, (4.11) can be equivalently
written as follows:
(4.12)

Y t,x,π
t = ess sup

ν∈V
Eν

[ ∫ T

t

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + E

[
g(X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)
]∣∣∣∣Fμ

t

]
.

From Corollary D.1 it follows that the right-hand side of (4.12) is equal P1-a.s. to

V (t, x, π), which yields Y t,x,π
t = V (t, x, π), P1-a.s.

Proof of formula (4.3). Let ν ∈ V . Consider (4.1) between t and s, and take the
expectation with respect to Eν . Then (recalling that Kt,x,π is nondecreasing and
U t,x,π is nonpositive)

Y t,x,π
t ≥ Eν

[ ∫ s

t

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + Y t,x,π

s

]
.(4.13)

From the arbitrariness of ν ∈ V , we get the first inequality. To prove the reverse
inequality, considering (4.8) with t̄ = t and taking the expectation Eν̂n,ε

, we obtain

Eν̂n,ε[
Y n,t,x,π
t

]
≤ Eν̂n,ε

[ ∫ s

t

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + Y n,t,x,π

s

]
+ε(T − t)λ(A)

≤ sup
ν̂∈V̂

Eν̂

[ ∫ s

t

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + Y t,x,π

s

]
+ε(T − t)λ(A)

= sup
ν∈V

Eν

[ ∫ s

t

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + Y t,x,π

s

]
+ε(T − t)λ(A),

where the last equality can be proved arguing as in Remark 3.2. From the definition
of ν̂n,ε, we see that κν̂n,ε

t = 1; therefore Eν̂n,ε

[Y n,t,x,π
t ] = E1[Y n,t,x,π

t ]. Hence

E1
[
Y n,t,x,π
t

]
≤ sup

ν∈V
Eν

[ ∫ s

t

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + Y t,x,π

s

]
+ ε(T − t)λ(A).

Recall that the sequence (Y n,t,x,π
t )n≥0 is nondecreasing and converges pointwise

P1-a.s. to Y t,x,π
t . In particular, Y 0,t,x,π

t ≤ Y n,t,x,π
t ≤ Y t,x,π

t , for every n ∈ N.
Therefore, letting n → ∞ and using Lebesgue’s dominated convergence theorem,
we obtain

Y t,x,π
t = E1

[
Y t,x,π
t

]

≤ sup
ν∈V

Eν

[ ∫ s

t

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + Y t,x,π

s

]
+ ε(T − t)λ(A).

Sending ε → 0, we get

Y t,x,π
t ≤ sup

ν∈V
Eν

[ ∫ s

t

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + Y t,x,π

s

]
,

which, together with (4.13), gives formula (4.3) and concludes the proof.
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5. Randomized dynamic programming principle

The present section is devoted to the proof of the dynamic programming principle
for V in the randomized framework. Firstly, we prove the flow properties of X̄t,ξ̄

and X̄t,x,π. These in turn imply the identification E
[
V (s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

)
]
= Y t,x,π

s ,

P1-a.s., for all s ∈ [t, T ]. Then, (4.3) allows us to derive the randomized dynamic
programming principle for V .

5.1. Flow properties. We begin by considering the solution to system (3.4)-(3.5)
with more general initial conditions. More precisely, concerning equation (3.4), for

every (t, η̄) ∈ [0, T ]× L2(Ω̄, F̄B,μ
t ∨ Ḡ, P̄;Rn), consider the following equation:

(5.1) dX̄t,η̄
s = b

(
s, X̄t,η̄

s ,P
F̄μ

s

X̄t,η̄
s

, Īs
)
ds+ σ

(
s, X̄t,η̄

s ,P
F̄μ

s

X̄t,η̄
s

, Īs
)
dB̄s, X̄t,η̄

t = η̄,

for all s ∈ [t, T ]. Concerning equation (3.5), we begin by recalling that (P
F̄μ

s

X̄t,η̄
s

)s∈[t,T ]

stands for the stochastic process (Pt,π
s )s∈[t,T ] introduced in Lemma 3.2, with π = Pη̄

under P̄. In the sequel, when considering equation (3.5), it is more convenient to

adopt the notation Pt,π
s instead of P

F̄μ
s

X̄t,η̄
s

. For every (t, η̄) ∈ [0, T ] × L2(Ω̄, F̄B,μ
t ∨

Ḡ, P̄;Rn) and Π̄ : Ω̄ → P2(R
n), with Π̄ measurable with respect to F̄μ

t and such
that Ē[‖Π̄‖22]<∞, consider the following equation:
(5.2)

dX̄t,η̄,Π̄
s = b

(
s, X̄t,η̄,Π̄

s ,Pt,Π̄
s , Īs

)
ds+ σ

(
s, X̄t,η̄,Π̄

s ,Pt,Π̄
s , Īs

)
dB̄s, X̄t,η̄,Π̄

t = η̄,

for all s ∈ [t, T ], where

(5.3) Pt,Π̄
s (ω̄) := Pt,Π̄(ω̄)

s (ω1), for all (ω̄, s) = (ω, ω1, s) ∈ Ω̄× [t, T ].

Notice that, thanks to Lemma 3.2, the stochastic process (Pt,Π̄
s )s∈[t,T ] is well-

defined. In particular, for every s ∈ [t, T ], Pt,Π̄
s is F̄μ

s -measurable. Under As-
sumption (A1), we have the following result, whose standard proof is not reported.

Lemma 5.1. Under Assumption (A1), for every (t, η̄) ∈ [0, T ] × L2(Ω̄, F̄B,μ
t ∨

Ḡ, P̄;Rn) and Π̄ : Ω̄ → P2(R
n), with Π̄ measurable with respect to F̄μ

t and such
that Ē[‖Π̄‖22] < ∞, there exists a unique (up to indistinguishability) pair

(X̄t,η̄
s , X̄t,η̄,Π̄

s )s∈[t,T ] of continuous (F̄B,μ,t
s ∨ Ḡ ∨ σ(η̄, Π̄))s-adapted processes solu-

tion to equations (5.1)-(5.2), satisfying

Ē

[
sup

s∈[t,T ]

(∣∣X̄t,η̄
s

∣∣2 + ∣∣X̄t,η̄,Π̄
s

∣∣2)] < ∞.

Moreover, there exists a positive constant C such that

(5.4) Ē

[
sup

s∈[t,T ]

∣∣X̄t,η̄,Π̄
s − X̄t,η̄′,Π̄′

s

∣∣2] ≤ C
(
Ē[|η̄ − η̄′|2] + Ē[W2(Π̄, Π̄

′)2]
)
,

for every t ∈ [0, T ], η̄, η̄′ ∈ L2(Ω̄, F̄B,μ
t ∨ Ḡ, P̄;Rn), and any Π̄, Π̄′ : Ω̄ → P2(R

n),
with Π̄, Π̄′ measurable with respect to F̄μ

t and such that Ē[‖Π̄‖22 ], Ē[‖Π̄′‖22 ] < ∞.

Proof. The proof of the existence and uniqueness of (X̄t,η̄
s , X̄t,η̄,Π̄

s )s∈[t,T ] is standard
under Assumption (A1) and can be done as usual by a fixed point argument.
Concerning estimate (5.4), the proof can be done proceeding as in Lemma 3.1 in
[9].
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Remark 5.1. When in equation (5.2) the random variables η̄ and Π̄ are equal P̄-a.s.

to some x ∈ Rn and π ∈ P2(R
n), respectively, then (X̄t,η̄,Π̄

s )s∈[t,T ] coincides (up

to indistinguishability) with the stochastic process (X̄t,x,π
s )s∈[t,T ] defined in Section

3. Indeed, (X̄t,η̄,Π̄
s )s∈[t,T ] and (X̄t,x,π

s )s∈[t,T ] solve the same equation; therefore the
claim follows from the uniqueness of the solution.

Remark 5.2. Suppose that η̄ and Π̄ in Lemma 5.1 take only a finite number of
values, namely,

η̄ =

K∑
k=0

xk 1Ek
, Π̄ =

K∑
k=0

πk 1Ek
,

for some K ∈ N, xk ∈ Rn, πk ∈ P2(R
n), Ek ∈ F̄B,μ

t ∨ Ḡ, with (Ek)k=1,...,K

being a partition of Ω̄. Then, by definition of Pt,Π̄
s (formula (5.3)), we have Pt,Π̄

s =
Pt,π0
s 1E0

+ · · ·+Pt,πK
s 1EK

. Therefore, the stochastic processes (X̄t,x0,π0
s 1E0

+ · · ·+
X̄t,xK ,πK

s 1EK
)s∈[t,T ] and (X̄t,η̄,Π̄

s )s∈[t,T ] are indistinguishable, since they solve the
same stochastic differential equation.

Lemma 5.2. Under Assumption (A1), for every (t, s, x, ξ̄) ∈ [0, T ]× [0, T ]×Rn×
L2(Ω̄, Ḡ, P̄;Rn), with t ≤ s and π = Pξ̄ under P̄, we have the flow properties

X̄
s,X̄t,ξ̄

s
r = X̄t,ξ̄

r ,(5.5)

X̄
s,X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

r = X̄t,x,π
r ,(5.6)

for all r ∈ [s, T ], P̄-almost surely.

Flow property (5.5). Consider the process (X̄
s,X̄t,ξ̄

s
r )r∈[s,T ] solution to equation (5.1)

with initial conditions t = s and η̄ = X̄t,ξ̄
s . Since (X̄t,ξ̄

r )r∈[s,T ] solves the same

equation, by pathwise uniqueness we deduce that (X̄
s,X̄t,ξ̄

s
r )r∈[s,T ] and (X̄t,ξ̄

r )r∈[s,T ]

are indistinguishable; namely (5.5) holds.

Flow property (5.6). Recall that (P
F̄μ

s

X̄t,ξ̄
s

)s∈[t,T ] stands for the stochastic process

(Pt,π
s )s∈[t,T ] introduced in Lemma 3.2. In the present proof it is more convenient

to adopt the notation Pt,π
s instead of P

F̄μ
s

X̄t,ξ̄
s

. Notice that, by (5.5), we have Pt,π
r =

P
s,Pt,π

s
r , for all r ∈ [s, T ], P̄-almost surely. Therefore

X̄t,x,π
r = X̄t,x,π

s +

∫ r

s

b
(
u, X̄t,x,π

u ,Pt,π
u , Īu

)
du+

∫ r

s

σ
(
u, X̄t,x,π

u ,Pt,π
u , Īu

)
dB̄u

= X̄t,x,π
s +

∫ r

s

b
(
u, X̄t,x,π

u ,P
s,Pt,π

s
u , Īu

)
du+

∫ r

s

σ
(
u, X̄t,x,π

u ,P
s,Pt,π

s
u , Īu

)
dB̄u,

for all r ∈ [s, T ], P̄-a.s. On the other hand, consider the process (X̄
s,X̄t,x,π

s ,Pt,π
s

r )r∈[s,T ]

solution to equation (5.2) with initial conditions t = s, η̄ = X̄t,x,π
s , Π̄ = Pt,π

s . Then,

we see that (X̄
s,X̄t,x,π

s ,Pt,π
s

r )r∈[s,T ] and (X̄t,x,π
r )r∈[s,T ] solve the same equation. It

follows that they are indistinguishable; namely (5.6) holds.

5.2. Randomized dynamic programming principle. We begin proving the
following identification result between V and Y t,x,π.
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Lemma 5.3. Under Assumptions (A1) and (A2), for every (t, x, ξ̄) ∈ [0, T ] ×
Rn × L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ̄ under P̄, we have

E
[
V (s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

)
]

= Y t,x,π
s ,

P1-a.s., for all s ∈ [t, T ].

Proof. Fix (t, s, x, ξ̄) ∈ [0, T ]× [0, T ]×Rn ×L2(Ω̄, Ḡ, P̄;Rn), with t ≤ s and π = Pξ̄

under P̄. Using the same notation as in the proof of Theorem 4.1, let us consider,
for every n ∈ N, formula (4.5) with t̄ and s replaced respectively by s and T :

Y n,t,x,π
s = ess sup

ν̂∈V̂n

Eν̂

[ ∫ T

s

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + E

[
g(X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)
]∣∣∣∣Fμ

s

]
.

Letting n → ∞, we obtain

Y t,x,π
s = ess sup

ν̂∈V̂
Eν̂

[ ∫ T

s

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + E

[
g(X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)
]∣∣∣∣Fμ

s

]
.

Reasoning as in Remark 3.2, we can show that the right-hand side of (4.11) does not
change if we take the supremum over V . In other words, (4.11) can be equivalently
written as follows:

Y t,x,π
s = ess sup

ν∈V
Eν

[ ∫ T

s

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + E

[
g(X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)
]∣∣∣∣Fμ

s

]
.

Then, we see that the claim follows if we prove the following equality: P1-a.s.

E
[
V (s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

)
]

(5.7)

= ess sup
ν∈V

Eν

[∫ T

s

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + E

[
g(X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)
]∣∣∣∣Fμ

s

]
.

As in the proof of Lemma 5.2, it is more convenient to adopt the notation Pt,π
s in-

stead of P
F̄μ

s

X̄t,ξ̄
s

(recall that (P
F̄μ

s

X̄t,ξ̄
s

)s∈[t,T ] stands for the stochastic process (P
t,π
s )s∈[t,T ]

introduced in Lemma 3.2). Then, from the flow properties (5.5) and (5.6), we have

(5.8) Y t,x,π
s = ess sup

ν∈V
Eν

[∫ T

s

E
[
f(r, X̄

s,X̄t,x,π
s ,Pt,π

s
r ,P

s,Pt,π
s

r , Īr)
]
dr

+ E
[
g(X̄

s,X̄t,x,π
s ,Pt,π

s

T ,P
s,Pt,π

s

T )
]∣∣∣∣Fμ

s

]
.

Now, notice that X̄t,x,π
s ∈ L2(Ω̄, F̄B,μ

s , P̄;Rn), so that it is the L2-limit (and
also pointwise P̄-a.s.) of a sequence (X̄m)m≥0 ⊂ L2(Ω̄, F̄B,μ

s , P̄;Rn), where each
X̄m takes only a finite number of values. Similarly, Pt,π

s is a random variable
Pt,π
s : Ω̄ → P2(R

n) such that Ē[‖Pt,π
s ‖22] < ∞. Therefore, by Lemma A.3 there

exists a sequence (Pm)m≥0 of F̄B,μ
s -measurable maps Pm : Ω̄ → P2(R

n), with
Ē[‖Pm‖22 ] < ∞ and each Pm taking only a finite number of values, such that
Ē[W2(Pm,Pt,π

s )2] → 0 as m goes to infinity (and also W2(Pm,Pt,π
s ) → 0 point-

wise P̄-a.s.). In particular, for every m ≥ 0, we have

X̄m =

Km∑
k=0

xm,k 1Em,k
, Pm =

Km∑
k=0

πm,k 1Em,k
,
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for some Km ∈ N, xm,k ∈ Rn, πm,k ∈ P2(R
n), Em,k ∈ F̄B,μ

s , with (Em,k)k
being a partition of Ω̄. For every m ≥ 0, consider the process (X̄s,X̄m,Pm

r )r∈[s,T ]

solution to equation (5.2) with initial conditions t = s, η̄ = X̄m, Π̄ = Pm. Recall

from Remark 5.2 that we have that the stochastic processes (X̄s,X̄m,Pm
r )r∈[s,T ] and

(
∑Km

k=0 X̄
s,xm,k,πm,k
r 1Em,k

)r∈[s,T ] are indistinguishable.

Notice that, for every ν ∈ V , we have, from Corollary D.1, P1-a.s.,

E
[
V (s, X̄m,Pm)

]
=

Km∑
k=0

E
[
V (s, xm,k, πm,k) 1Em,k

]
(5.9)

=

Km∑
k=0

E

[
1Em,k

ess sup
ν∈V

Eν

[ ∫ T

s

E
[
f
(
r, X̄

s,xm,k,πm,k
r ,P

s,πm,k
r , Īr

)]
dr

+ E
[
g
(
X̄

s,xm,k,πm,k

T ,P
s,πm,k

T

)]∣∣∣∣Fμ
s

]]

= ess sup
ν∈V

Eν

[ ∫ T

s

E
[
f
(
r, X̄s,X̄m,Pm

r ,Ps,Pm
r , Īr

)]
dr + E

[
g
(
X̄s,X̄m,Pm

T ,Ps,Pm

T

)]∣∣∣∣Fμ
s

]
.

From the continuity of the map (y, γ) �→ V (s, y, γ) stated in Proposition 2.1 and
the growth condition (2.8), we see that

(5.10) E
[
V (s, X̄m,Pm)

] m→∞−→
P1-a.s.

E
[
V (s, X̄t,x,π

s ,Pt,π
s )
]
.

On the other hand, using estimate (5.4) and proceeding as in the proof of inequality
(2.18) in Proposition 2.1, we can prove the following convergence:

ess sup
ν∈V

Eν

[ ∫ T

s

E
[
f
(
r, X̄s,X̄m,Pm

r ,Ps,Pm
r , Īr

)]
dr + E

[
g
(
X̄s,X̄m,Pm

T ,Ps,Pm

T

)]∣∣∣∣Fμ
s

](5.11)

m→∞−→
P1-a.s.

ess sup
ν∈V

Eν

[ ∫ T

s

E
[
f
(
r, X̄

s,X̄t,x,π
s ,Pt,π

s
r ,P

s,Pt,π
s

r , Īr
)]

dr

+ E
[
g
(
X̄

s,X̄t,x,π
s ,Pt,π

s

T ,P
s,Pt,π

s

T

)]∣∣∣∣Fμ
s

]
.

Hence, by (5.10) and (5.11), together with equalities (5.8) and (5.9), we see that
(5.7) holds; therefore the claim follows.

We can now state the main result of this section.

Theorem 5.1. Suppose that Assumptions (A1) and (A2) hold. Then, for every
(t, s, x, ξ̄) ∈ [0, T ] × [0, T ] × Rn × L2(Ω̄, Ḡ, P̄;Rn), with t ≤ s and π = Pξ̄ under P̄,
we have

V (t, x, π) = sup
ν∈V

Eν

[ ∫ s

t

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + E

[
V (s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

)
]]
.

Proof. Fix (t, s, x, ξ̄) ∈ [0, T ]× [0, T ]×Rn ×L2(Ω̄, Ḡ, P̄;Rn), with t ≤ s and π = Pξ̄

under P̄. Recall that by (4.3) we have, P1-a.s.,

Y t,x,π
t = sup

ν∈V
Eν

[ ∫ s

t

E
[
f(r, X̄t,x,π

r ,P
F̄μ

r

X̄t,ξ̄
r

, Īr)
]
dr + Y t,x,π

s

]
.
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Then, the claim follows from Lemma 5.3.

Remark 5.3 (Hamilton-Jacobi-Bellman equation for V and VMKV). Let us derive, in
a formal way, the dynamic programming equation for the value function V . We pro-
ceed as usual, starting from the dynamic programming principle of Theorem 5.1 and

applying Itô’s formula (see the Appendix in [12]) to the process V (s, X̄t,x,π
s ,P

F̄μ
s

X̄t,ξ̄
s

),

supposing that V is smooth enough. Then, it is easy to see that the Hamilton-
Jacobi-Bellman equation for V takes the following form (see Section 6 of [10] for
the definition of ∂π):

∂tV (t, x, π)

+ sup
a∈A

{
f(t, x, π, a) + b(t, x, π, a).

[
∂xV (t, x, π) +

∫
Rn

∂πV (t, x′, π)(x)π(dx′)
]

+
1

2
tr(σσᵀ(t, x, π, a)

[
∂2
xV (t, x, π) +

∫
Rn

∂x∂πV (t, x′, π)(x)π(dx′)
]}

= 0,

for all (t, x, π) ∈ [0, T )× Rn × P2(R
n), with terminal condition

V (T, x, π) = g(x, π), for all (x, π) ∈ Rn × P2(R
n).

We can also derive the Hamilton-Jacobi-Bellman equation for the value function
VMKV defined by (2.19). From Proposition 2.2, we have

VMKV(t, ξ) = E[V (t, ξ, π)] =

∫
Rn

V (t, x, π) π(dx),

for all (t, ξ) ∈ [0, T ] × L2(Ω,G,P;Rn), with π = Pξ under P. From the above
formula we see that VMKV depends on ξ only through its law π. In other words,
VMKV(t, ξ) = VMKV(t, ξ

′) whenever ξ and ξ′ have the same law π. Then, by an abuse
of notation, we suppose that VMKV is defined on [0, T ] × P2(R

n) with VMKV(t, π)
given by VMKV(t, ξ), for some ξ such that π = Pξ. Now, recalling the definition of
the derivative ∂π, we obtain

∂tVMKV(t, π) = E[∂tV (t, ξ, π)],

∂πVMKV(t, π)(x) = ∂xV (t, x, π) + E[∂πV (t, ξ, π)(x)],

∂x∂πVMKV(t, π)(x) = ∂2
xV (t, x, π) + E[∂x∂πV (t, ξ, π)(x)].

Integrating with respect to π in the Hamilton-Jacobi-Bellman equation of V , we
obtain the following dynamic programming equation for VMKV:

∂tVMKV(t, π) +

∫
Rn

sup
a∈A

[
f(t, x, π, a) + b(t, x, π, a).∂πVMKV(t, π)(x)(5.12)

+
1

2
tr
(
σσᵀ(t, x, π, a)∂x∂πVMKV(t, π)(x)

)]
π(dx) = 0,

for all (t, π) ∈ [0, T ]× P2(R
n), with terminal condition

VMKV(T, π) =

∫
Rn

g(x, π) π(dx), for all π ∈ P2(R
n).

Notice that if the supremum inside the integral in (5.12) is attained at some â(x),
for some map â : Rn → A Lipschitz continuous in x, then the above equation can
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be written as (we denote by L(Rn;A) the set of Lipschitz continuous maps from
Rn into A)

∂tVMKV(t, π) + sup
α̃∈L(Rn;A)

∫
Rn

[
f(t, x, π, α̃(x)) + b(t, x, π, α̃(x)).∂πVMKV(t, π)(x)

+
1

2
tr
(
σσᵀ(t, x, π, α̃(x))∂x∂πVMKV(t, π)(x)

)]
π(dx) = 0.

This latter is the Hamilton-Jacobi-Bellman equation obtained in [26] under the as-
sumption that the optimization in the McKean-Vlasov control problem is performed
only over the class of Lipschitz continuous closed-loop controls.

Appendix

A. Some convergence results with respect to the 2-Wasserstein metric
W2.

Lemma A.1 (Skorohod’s representation theorem for W2-convergence). Let (πm)m
be a sequence in P2(R

n) such that W2(πm, π) → 0, for some π ∈ P2(R
n). Then,

there exists a sequence of random variables (ξm)m ⊂ L2(Ω,G,P;Rn), with Pξm =
πm, converging pointwise P-a.s. and in L2(Ω,G,P;Rn) to some ξ ∈ L2(Ω,G,P;Rn),
with Pξ = π.

Proof. By Theorem 6.9 and point (i) of Definition 6.8 in [31], we have thatW2(πm, π)
→ 0 is equivalent to

(A.1) πm
m→∞−→
weakly

π and

∫
Rn

|x|2 πm(dx)
m→∞−→

∫
Rn

|x|2 π(dx).

Then, by the classical Skorohod representation theorem for weak convergence, there
exist random variables ξm, ξ ∈ L2(Ω,G,P;Rn), with Pξm = πm and Pξ = π, such
that ξm converges pointwise P-a.s. to ξ. It remains to prove the convergence in
L2(Ω,G,P;Rn). To this end, we notice that (A.1) implies E[|ξm|2] → E[|ξ|2]. There-
fore, by Theorem II.6.5 in [28], the sequence (|ξm|2)m is uniformly integrable. Then,
it follows that ξm → ξ in L2(Ω,G,P;Rn).

Lemma A.2. There exists a countable convergence determining class (ϕk)k≥1 ⊂
C2(R

n) for the W2-convergence. In other words, given π1, π2, . . . , π ∈ P2(R
n), we

have

W2(πm, π)
m→∞−→ 0 if and only if

∫
Rn

ϕk(x) πm(dx)
m→∞−→

∫
Rn

ϕk(x) π(dx),

for all k.

Proof. Let π1, π2, . . . , π ∈ P2(R
n). We recall from Theorem 6.9 and point (i) of

Definition 6.8 in [31] that

W2(πm, π)
m→∞−→ 0 if and only if πm

m→∞−→
weakly

π

and

∫
Rn

|x|2 πm(dx)
m→∞−→

∫
Rn

|x|2 π(dx).

Now, it is well-known that there exists a countable convergence determining class
(ψh)h≥1 ⊂ Cb(R

n) (the set of real-valued continuous and bounded functions) for
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the weak convergence (see, for instance, Theorem 2.18 in [3]). In other words, we
have

πm
m→∞−→
weakly

π if and only if

∫
Rn

ψh(x) πm(dx)
m→∞−→

∫
Rn

ψh(x) π(dx), for all h.

Then, the claim follows taking ϕ1(x) := |x|2, for every x ∈ Rn, and ϕk := ψk−1,
for every k ≥ 2.

Lemma A.3. Let (Ω̃, F̃ , P̃) be a probability space and let Π: Ω̃ → P2(R
n) be a

measurable map. Suppose that (Ẽ denotes the P̃-expected value)

(A.2) Ẽ
[
‖Π‖22
]

< +∞.

Then, there exists a sequence (Πm)m≥1 of measurable maps Πm : Ω̃ → P2(R
n) such

that

W2(Πm(ω̃),Π(ω̃))
m→∞−→ 0, P̃(dω̃)-a.s., and Ẽ

[
W2(Πm,Π)2

] m→∞−→ 0,

where, for every m ≥ 1,

Πm(ω̃) =

Km∑
k=1

πm,k 1Em,k
(ω̃), for every ω̃ ∈ Ω̃,

for some finite integer Km ≥ 1, πm,k ∈ P2(R
n), Em,k ∈ F̃ , with (Em,k)k=1,...,Km

being a partition of Ω̃.

Proof. Recall from Theorem 6.18 in [31] that (P2(R
n),W2) is a complete separable

metric space. Then, there exists a sequence (πh)h≥1 dense in P2(R
n). Now, for

every �, h ≥ 1, define the measurable set B̄�,h ∈ F̃ by

B̄�,h :=
{
ω̃ ∈ Ω̃ : W2(Π(ω̃), πh) ≤ 1/�

}
.

We also define the disjoint measurable sets: B�,1 := B̄�,1 and B�,h := B̄�,h\(B̄�,1 ∪
· · · ∪ B̄�,h−1), for any h ≥ 2. Notice that Ω̃ =

⋃
h≥1 B�,h. In particular, for every

� ≥ 1, there exists K� ≥ 1 such that P̃(
⋃

h≥K�+1 B�,h) ≤ 1/�2. Finally, we set

Π̄�(ω̃) :=

K�∑
h=1

πh 1B�,h∩A�
(ω̃)+δ0

(
1(

⋃
h≥K�+1 B�,h)∩A�

(ω̃)+1Ac
�
(ω̃)
)
, for every ω̃∈ Ω̃,

where

A� :=
{
ω̃ ∈ Ω̃ : ‖Π(ω̃)‖22 ≤ �

}
.

Then, we see that (recall from (2.2) that W2(δ0,Π(ω̃)) = ‖Π(ω̃)‖2)

W2(Π̄�(ω̃),Π(ω̃)) ≤ 1

�
1
(
⋃K�

h=1 B�,h)∩A�
(ω̃)+‖Π(ω̃)‖2

(
1(

⋃
h≥K�+1 B�,h)∩A�

(ω̃)+1Ac
�
(ω̃)
)
,

for all ω̃ ∈ Ω̃. Therefore (recalling that P̃(
⋃

h≥K�+1 B�,h) ≤ 1/�2)

Ẽ[W2(Π̄�,Π)2] ≤ 1

�2
+ Ẽ
[
‖Π(ω̃)‖22 1(⋃h≥K�+1 B�,h)∩A�

]
+ Ẽ
[
‖Π(ω̃)‖22 1Ac

�

]

≤ 1

�2
+ � P̃
(
(
⋃

h≥K�+1

B�,h) ∩A�

)
+ Ẽ
[
‖Π(ω̃)‖22 1Ac

�

]

≤ 1

�2
+ �

1

�2
+ Ẽ
[
‖Π(ω̃)‖22 1Ac

�

] �→∞−→ 0,
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where the convergence Ẽ
[
‖Π(ω̃)‖22 1Ac

�

]
→ 0 follows from the Lebesgue dominated

convergence theorem, using (A.2) and noting that 1Ac
�
converges pointwise P̃-a.s.

to zero.
Let Y� : Ω̃→ [0,∞) be the nonnegative random variable given by Y� :=W2(Π̄�,Π).

We know that Y� → 0, as � → ∞, in L2(Ω̃, F̃ , P̃). Then, it is well-known that this
implies the existence of a subsequence (Y�m)m≥1 such that Y�m = W2(Π̄�m ,Π) → 0,

as m → ∞, pointwise P̃-a.s. and in L2(Ω̃, F̃ , P̃). Then, (Πm)m≥1, with Πm := Π̄�m ,
is the desired sequence.

B. Proofs of Lemma 3.1 and Lemma 3.2.

Proof of Lemma 3.1. Recall that, by construction, the map X̄t,ξ̄ : ([t, T ] × Ω ×
Ω1,B([t, T ])⊗F̄) → (Rn,B(Rn)) is measurable. Therefore, up to indistinguishabil-

ity, we can suppose that X̄t,ξ̄ : ([t, T ]× Ω× Ω1,B([t, T ])⊗F ⊗F1) → (Rn,B(Rn))

is measurable. Since (X̄t,ξ̄
s )s∈[t,T ] is also (F̄B,μ

s ∨ Ḡ)s-adapted, we deduce that, for

every s ∈ [t, T ], the map X̄t,ξ̄
s : (Ω × Ω1, (G ∨ FB

s ) ⊗ Fμ
s ) → (Rn,B(Rn)) is mea-

surable. Therefore, by estimate (3.6) and Fubini’s theorem, we see that, for every
ϕ ∈ B2(R

n), the map

ω1 �−→ E
[
ϕ
(
X̄t,ξ̄

s (·, ω1)
)]
,

from Ω1 into R, is Fμ
s -measurable. In particular, when ϕ ∈ C2(R

N ), the continuous

process (E[ϕ(X̄t,ξ̄
s )])s∈[t,T ] is Fμ-predictable. Then, by Remark 2.1 it follows that

the process (P̂t,π
s )s∈[t,T ] is F

μ-predictable.
Finally, we observe that

P̂t,π
s (ω1)[ϕ] = E

[
ϕ
(
X̄t,ξ̄

s (·, ω1)
)]

= Ē
[
ϕ
(
X̄t,ξ̄

s

)∣∣F̄μ
s

]
(ω1) = P

F̄μ
s

X̄t,ξ̄
s

(ω1)[ϕ],

P1(dω1)-a.s., for every ϕ ∈ B2(R
n). Let (ϕk)k ⊂ B2(R

n) be a countable separating
class of continuous functions whose existence is guaranteed for instance by Theorem
2.18 in [3] (ϕk can be taken even bounded). Then, there exists a unique P1-null set
N1 ∈ F1 such that

P̂t,π
s (ω1)[ϕk] = P

F̄μ
s

X̄t,ξ̄
s

(ω1)[ϕk], for every k,

whenever ω1 /∈ N1. Since (ϕk)k is separating, we conclude that P̂t,π
s coincides with

P
F̄μ

s

X̄1,t,ξ̄
s

on Ω1\N1. In other words, (P̂t,π
s )s∈[t,T ] is a version of (P

F̄μ
s

X̄t,ξ̄
s

)s∈[t,T ].

Proof of Lemma 3.2. Fix t ∈ [0, T ] and consider a generic π ∈ P2(R
n). Let ξ̄ ∈

L2(Ω̄, Ḡ, P̄;Rn) be such that π = Pξ̄ under P̄. We construct X̄t,ξ̄ using Picard’s
iterations. More precisely, we define recursively a sequence of Rn-valued processes
(X̄m,t,ξ̄)m on Ω̄× [t, T ] as follows.

Recursive construction of the sequence (X̄m,t,ξ̄)m. Definition of X̄0,t,ξ̄. We

set X̄0,t,ξ̄ ≡ 0. Defining P̂0,t,ξ̄ by formula (3.7) with X̄0,t,ξ̄ in place of X̄t,ξ̄, we see

that P̂0,t,π
s ≡ δ0, the Dirac delta at zero, for all s ∈ [t, T ]. In other words, up to a

version, (P
F̄μ

s

X̄0,t,ξ̄
s

)s∈[t,T ] is identically equal to δ0.

Definition of X̄1,t,ξ̄. The process X̄1,t,ξ̄ is given by

X̄1,t,ξ̄
s = ξ̄ +

∫ s

t

b
(
r, 0, δ0, Īr

)
dr +

∫ s

t

σ
(
r, 0, δ0, Īr

)
dB̄r,
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for all s ∈ [t, T ]. Notice that, by construction, the map X̄1,t,ξ̄ : ([t, T ] × Ω ×
Ω1,B([t, T ]) ⊗ F̄) → (Rn,B(Rn)) is measurable. Up to indistinguishability, we

can suppose that X̄1,t,ξ̄ : ([t, T ] × Ω × Ω1,B([t, T ]) ⊗ F ⊗ F1) → (Rn,B(Rn)) is
measurable. As a consequence, by Fubini’s theorem, we can define the P2(R

n)-

valued Fμ-predictable stochastic process (P̂1,t,π
s )s∈[t,T ] by formula (3.7) with X̄1,t,ξ̄

in place of X̄t,ξ̄. Notice that (P̂1,t,π
s )s∈[t,T ] is a version of (P

F̄μ
s

X̄1,t,ξ̄
s

)s∈[t,T ]. Moreover,

from (3.7), we see that (using the definition of X̄1,t,ξ̄
s and the independence of Ḡ

and F̄B
∞)

P̂1,t,π
s (ω1)[ϕ] = E

[
ϕ
(
X̄1,t,ξ̄

s (·, ω1)
)]

=

∫
Rn

Φ1,ϕ(ω
1, s, x) π(dx),

for every ω1 ∈ Ω1 and ϕ ∈ B2(R
n), where Φ1,ϕ : Ω

1× [t, T ]×Rn → R is measurable,
with at most quadratic growth in x uniformly with respect to (ω1, s), and it is given
by

Φ1,ϕ(ω
1, s, x) := E

[
ϕ

(
x+

∫ s

t

b
(
r, 0, δ0, Īr(·, ω1)

)
dr+

∫ s

t

σ
(
r, 0, δ0, Īr(·, ω1)

)
dBr

)]
.

Then, we see that the map P̂
1,t,·
· [ϕ] : Ω1 × [t, T ] × P2(R

n) → R is measurable.
Indeed, when Φ1,ϕ(ω

1, s, x) = �(ω1, s)h(x), for some measurable functions � and h,
with � bounded and h with at most quadratic growth (namely h ∈ B2(R

n)), the
result follows from Remark 2.1. The general case can be proved by a monotone
class argument.

Using again Remark 2.1, we conclude that the map P̂
1,t,·
· : Ω1×[t, T ]×P2(R

n) →
P2(R

n) is measurable.

Definition of X̄m+1,t,ξ̄, for every integer m ≥ 1. We define X̄m+1,t,ξ̄ recursively,
assuming that X̄m,t,ξ̄ has already been defined. We also assume that the map
X̄m,t,ξ̄ : ([t, T ] × Ω × Ω1,B([t, T ]) ⊗ F ⊗ F1) → (Rn,B(Rn)) is measurable and

that (P̂m,t,π
s )s∈[t,T ] is the P2(R

n)-valued Fμ-predictable stochastic process given

by formula (3.7) with X̄m,t,ξ̄ in place of X̄t,ξ̄. Moreover, we suppose that the map

P̂
m,t,·
· : Ω1 × [t, T ] × P2(R

n) → P2(R
n) is measurable. Notice that (P̂m,t,π

s )s∈[t,T ]

is a version of (P
F̄μ

s

X̄m,t,ξ̄
s

)s∈[t,T ].

Then, we define X̄m+1,t,ξ̄ as follows:

X̄m+1,t,ξ̄
s = ξ̄ +

∫ s

t

b
(
r, X̄m,t,ξ̄

r , P̂m,t,π
r , Īr

)
dr +

∫ s

t

σ
(
r, X̄m,t,ξ̄

r , P̂m,t,π
r , Īr

)
dB̄r,

for all s ∈ [t, T ]. Notice that, by construction, the map X̄m+1,t,ξ̄ : ([t, T ] × Ω ×
Ω1,B([t, T ])⊗F̄) → (Rn,B(Rn)) is measurable. Therefore, up to indistinguishabil-

ity, we can suppose that X̄m+1,t,ξ̄ : ([t, T ]×Ω×Ω1,B([t, T ])⊗F⊗F1) → (Rn,B(Rn))
is measurable. Then, by Fubini’s theorem, we can define the P2(R

n)-valued Fμ-

predictable stochastic process (P̂m+1,t,π
s )s∈[t,T ] by formula (3.7) with X̄m+1,t,ξ̄ in

place of X̄t,ξ̄, namely,

P̂m+1,t,π
s (ω1)[ϕ] = E

[
ϕ
(
X̄m+1,t,ξ̄

s (·, ω1)
)]
,
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for every ω1 ∈ Ω1, ϕ ∈ B2(R
n), s ∈ [t, T ]. In particular, we have

P̂m+1,t,π
s (ω1)[ϕ] = E

[
ϕ

(
ξ̄ +

∫ s

t

b
(
r, ξ̄ + · · ·+, P̂m,t,π

r (ω1), Īr(·, ω1)
)
dr

+

∫ s

t

σ
(
r, ξ̄ + · · ·+, P̂m,t,π

r (ω1), Īr(·, ω1)
)
dB̄r

)]

=

∫
Rn

Φm+1,ϕ(ω
1, s, x, π) π(dx),

for some measurable Φm+1,ϕ : Ω
1×[t, T ]×Rn×P2(R

n) → R, with at most quadratic
growth in (x, π) uniformly with respect to (ω1, s) (the dependence of Φm+1,ϕ on

π is due to the presence of P̂m,t,π
r ). Then, we see that the map P̂

m+1,t,·
· [ϕ] : Ω1 ×

[t, T ] × P2(R
n) → R is measurable, as it can be deduced using a monotone class

argument, first taking Φm+1,ϕ of the form Φm+1,ϕ(ω
1, s, x, π) = �(ω1, s, π)h(x), for

some h ∈ B2(R
n), and some measurable function � with at most quadratic growth

in π uniformly with respect to (ω1, s). Then, by Remark 2.1, we see that the map

P̂
m+1,t,·
· : Ω1 × [t, T ]× P2(R

n) → P2(R
n) is measurable.

End of the proof of Lemma 3.2. Now that we have constructed the sequence
(X̄m,t,ξ̄)m, we notice that it can be proved (proceeding for instance along the same
lines as in the proof of Theorem IX.2.1 in [27]) that

(B.1) sup
s∈[t,T ]

∣∣X̄m,t,ξ̄
s − X̄t,ξ̄

s

∣∣ P̄−→
m→∞

0,

where the convergence holds in probability. Fix s ∈ [t, T ] and let us prove that
(B.1) implies the following convergence in probability:

(B.2) W2

(
P̂m,t,π
s , P̂t,π

s

) P1

−→
m→∞

0.

In order to prove (B.2), it is enough to show that every subsequence (P̂m�,t,π
s )�

admits a subsubsequence (P̂
m�h

,t,π
s )h for which (B.2) holds. Let us fix a subsequence

(P̂m�,t,π
s )�. We begin noting that, by (B.1), we have, for every ϕ ∈ C2(R

n),

P̂m�,t,π
s [ϕ]

P1

−→
�→∞

P̂t,π
s [ϕ].

Let (ϕk)k ⊂ C2(R
n) be a countable convergence determining class for the W2-

convergence, whose existence follows from Lemma A.2. Then, there exists a unique

P1-null set N1 ∈ F1 and a subsubsequence (P̂
m�h

,t,π
s )h such that, for all ω1 ∈

Ω1\N1,

P̂
m�h

,t,π
s (ω1)[ϕk]

h→∞−→ P̂t,π
s (ω1)[ϕk], for every k.

By Theorem 6.9 in [31] it follows that, for all ω1 ∈ Ω1\N1,

W2

(
P̂
m�h

,t,π
s (ω1), P̂m,t,π

s (ω1)
) h→∞−→ 0.

In particular, the above convergence holds in probability. This concludes the proof
of (B.2).

Notice that convergence (B.2) holds for every s ∈ [t, T ] and π ∈ P2(R
n). More-

over, for every m ∈ N, P̂m,t,·
· is jointly measurable with respect to (ω1, s, π). Then,

we deduce (proceeding for instance as in the first item of Exercise IV.5.17 in [27]
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or as in Proposition 1 of [29]) that there exists a measurable map P
t,·
· : Ω1× [t, T ]×

P2(R
n) → P2(R

n) such that

W2

(
P̂m,t,π
s ,Pt,π

s

) P1

−→
m→∞

0,

for every s ∈ [t, T ] and π ∈ P2(R
n). This implies that Pt,π

s coincides P1-a.s. with

P̂t,π
s . By Lemma 3.1 we conclude that (Pt,π

s )s∈[t,T ] is a version of (P
F̄μ

s

X̄t,ξ̄
s

)s∈[t,T ].

C. Stability lemma. For the proof of Theorem 3.1, we need the following stability
result.

Lemma C.1. Suppose that Assumption (A1) holds.

• Let (Ω̃, F̃ ,Q) be a probability space on which a d-dimensional Brownian

motion B̃ = (B̃t)t≥0 is defined.

• For every � ∈ N, let F̃� = (F̃�
s)s≥0 be a filtration on (Ω̃, F̃ ,Q) such that B̃

is a Brownian motion with respect to F̃�.
• For every � ∈ N, let F̃μ� = (F̃μ�

s )s≥0, with F̃μ�
s ⊂ F̃�

s , be a filtration on

(Ω̃, F̃ ,Q) independent of B̃.

• Let (t, x, ξ̃) ∈ [0, T ] × Rn × L2(Ω̃, F̃ ,Q;Rn), where ξ̃ is F̃�
t -measurable for

every � ∈ N and π = Pξ̃ under Q.

For every � ∈ N, consider the system of equations:

dX̃t,ξ̃,�
s = b

(
s, X̃t,ξ̃,�

s ,PF̃μ�
s

X̃t,ξ̃,�
s

, Ĩ�s
)
ds+ σ

(
s, X̃t,ξ̃,�

s ,PF̃μ�
s

X̃t,ξ̃,�
s

, Ĩ�s
)
dB̃s,

X̃t,ξ̃,�
t = ξ̃,

dX̃t,x,π,�
s = b

(
s, X̃t,x,π,�

s ,PF̃μ�
s

X̃t,ξ̃,�
s

, Ĩ�s
)
ds+ σ

(
s, X̃t,x,π,�

s ,PF̃μ�
s

X̃t,ξ̃,�
s

, Ĩ�s
)
dB̃s,

X̃t,x,π,�
t = x,

for all s ∈ [t, T ], where (Ĩ�s)s∈[t,T ] is an A-valued F̃�-progressive process. Then

EQ

[ ∫ T

t

f
(
s, X̃t,x,π,�

s ,PF̃μ�
s

X̃t,ξ̃,�
s

, Ĩ�s
)
ds+ g

(
X̃t,x,π,�

T ,P
F̃μ�

T

X̃
t,ξ̃,�
T

)]

�→∞−→ EQ

[ ∫ T

t

f
(
s, X̃t,x,π,0

s ,PF̃μ0
s

X̃t,ξ̃,0
s

, Ĩ0s
)
ds+ g

(
X̃t,x,π,0

T ,P
F̃μ0

T

X̃
t,ξ̃,0
T

)]

whenever ρ̃Q(Ĩ�, Ĩ0) := EQ[
∫ T
0
ρ(Ĩ�s, Ĩ

0
s ) ds] → 0 as � → ∞

Proof. We begin by noting that, by standard arguments (based on the Burkholder-
Davis-Gundy and Gronwall inequalities), we have

(C.1) sup
�∈N

EQ
[

sup
s∈[t,T ]

(∣∣X̃t,ξ̃,�
s

∣∣2 + ∣∣X̃t,x,π,�
s

∣∣q)] < ∞,

for all q ≥ 1. We also have

EQ
[

sup
s∈[t,T ]

∣∣X̃t,ξ̃,�
s − X̃t,ξ̃,0

s

∣∣2](C.2)

≤ C EQ

[ ∫ T

t

(∣∣b(s, X̃t,ξ̃,0
s ,PF̃μ0

s

X̃t,ξ̃,0
s

, Ĩ�s
)
− b
(
s, X̃t,ξ̃,0

s ,PF̃μ0
s

X̃t,ξ̃,0
s

, Ĩ0s
)∣∣2

+
∣∣σ(s, X̃t,ξ̃,0

s ,PF̃μ0
s

X̃t,ξ̃,0
s

, Ĩ�s
)
− σ
(
s, X̃t,ξ̃,0

s ,PF̃μ0
s

X̃t,ξ̃,0
s

, Ĩ0s
)∣∣2) ds

]
,



2152 ERHAN BAYRAKTAR, ANDREA COSSO, AND HUYÊN PHAM

for some positive constant C, independent of �. Now, we notice that ρ̃Q(Ĩ�, Ĩ0) → 0

implies Ĩ� → Ĩ0 in dQ ds-measure, which in turn implies the convergence to zero
in dQ ds-measure of the integrand in the right-hand side of (C.2). By uniform
integrability (which follows from (C.1) and Assumption (A1)(ii)), we deduce that

W2

(
P

F̃μ�
s

X̃t,ξ̃,�
s

,PF̃μ0
s

X̃t,ξ̃,0
s

)2 ≤ EQ
[∣∣X̃t,ξ̃,�

s − X̃t,ξ̃,0
s

∣∣2∣∣∣ ∨
�∈N

F̃μ�
∞

]
�→∞−→ 0,

Q-a.s., for all s ∈ [t, T ]. Moreover

(C.3) sup
s∈[t,T ]

W2

(
P

F̃μ�
s

X̃t,ξ̃,�
s

,PF̃μ0
s

X̃t,ξ̃,0
s

)2 ≤ EQ
[

sup
s∈[t,T ]

∣∣X̃t,ξ̃,�
s −X̃t,ξ̃,0

s

∣∣2∣∣∣ ∨
�∈N

F̃μ�
∞

]
�→∞−→ 0.

Similarly, we have

EQ
[

sup
s∈[t,T ]

∣∣X̃t,x,π,�
s − X̃t,x,π,0

s

∣∣2]

≤ C EQ

[ ∫ T

t

(∣∣b(s, X̃t,x,π,0
s ,PF̃μ�

s

X̃t,ξ̃,�
s

, Ĩ�s
)
− |b
(
s, X̃t,x,π,0

s ,PF̃μ0
s

X̃t,ξ̃,0
s

, Ĩ0s
)∣∣2

+
∣∣σ(s, X̃t,x,π,0

s ,PF̃μ�
s

X̃t,ξ̃,�
s

, Ĩ�s
)
− σ
(
s, X̃t,x,π,0

s ,PF̃μ0
s

X̃t,ξ̃,0
s

, Ĩ0s
)∣∣2) ds

]
.

Then, by (C.3), the convergence Ĩ� → Ĩ0 in dQ ds-measure, estimate (C.1), and
Assumption (A1)(ii), we obtain

(C.4) EQ
[

sup
s∈[t,T ]

∣∣X̃t,x,π,�
s − X̃t,x,π,0

s

∣∣2] �→∞−→ 0.

Then, by (C.3) and (C.4), we see that

f(s, X̃t,x,π,�
s ,PF̃μ�

s

X̃t,ξ̃,�
s

, Ĩ�s) → f(s, X̃t,x,π,0
s ,PF̃μ0

s

X̃t,ξ̃,0
s

, Ĩ0s )

as � → ∞ in dQ ds-measure. Therefore, by uniform integrability (which follows
from estimate (C.1) and Assumption (A1)(ii)), we deduce that

EQ

[ ∫ T

t

f
(
s, X̃t,x,π,�

s ,PF̃μ�
s

X̃t,ξ̃,�
s

, Ĩ�s
)
ds

]
�→∞−→ EQ

[ ∫ T

t

f
(
s, X̃t,x,π,0

s ,PF̃μ0
s

X̃t,ξ̃,0
s

, Ĩ0s
)
ds

]
.

Using again (C.3) and (C.4), we obtain the Q-a.s. pointwise convergence

g(X̃t,x,π,�
T ,P

F̃μ�
T

X̃
t,ξ̃,�
T

) → g(X̃t,x,π,0
T ,P

F̃μ0
T

X̃
t,ξ̃,0
T

) as � → ∞. By estimate (2.6) together

with the polynomial growth condition of g in Assumption (A1)(ii), we can apply
Lebesgue’s dominated convergence theorem and obtain

EQ
[
g
(
X̃t,x,π,�

T ,P
F̃μ�

T

X̃
t,ξ̃,�
T

)] �→∞−→ EQ
[
g
(
X̃t,x,π,0

T ,PF̃μ0
s

X̃t,ξ̃,0
s

)]
,

which concludes the proof.

D. On a different randomization of the control. In the present appendix we
introduce, following [21], a different kind of randomization, which in our paper turns
out to be useful in the proof of Theorem 4.1. More precisely, for every t ∈ [0, T ],
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a0 ∈ A, consider the A-valued piecewise constant process Īt,a0 = (Īt,a0
s )s≥t on

(Ω̄, F̄ , P̄) given by

Īt,a0
s (ω, ω1)

(D.1)

=
∑

n≥0t<Tn+1(ω
1)

(
a01{Tn(ω1)<t} + (An(ω

1))s∧T (ω)1{t≤Tn(ω1)}
)
1[Tn(ω1),Tn+1(ω1))(s),

for all s ≥ t, where we recall that T0 = 0 and A0 = ᾱ. The process Ī = (Īs)s≥0

defined in (3.3) corresponds to Ī0,a0 = (Ī0,a0
s )s≥0, for any a0 ∈ A (when t = 0, a0

plays no role in (D.1)).
Let F̄B,t = (F̄B,t

s )s≥t (resp. F̄μ,t = (F̄μ,t
s )s≥t) be the P-completion of the fil-

tration generated by (B̄s − B̄t)s≥t (resp. μ̄ 1(t,∞)×A), and let F̄B,μ,t = (F̄B,μ,t
s )s≥t

denote the P-completion of the filtration generated by (B̄s− B̄t)s≥t and μ̄ 1(t,∞)×A.

If we randomize the control in (2.3)-(2.4) by means of the process Īt,a0 , we obtain,
for every (x, ξ̄) ∈ Rn × L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ under P̄:

dX̄t,ξ̄,a0
s = b

(
s, X̄t,ξ̄,a0

s ,P
F̄μ,t

s

X̄
t,ξ̄,a0
s

, Īt,a0
s

)
ds+ σ

(
s, X̄t,ξ̄,a0

s ,P
F̄μ,t

s

X̄
t,ξ̄,a0
s

, Īt,a0
s

)
dB̄s,

(D.2)

dX̄t,x,π,a0
s = b

(
s, X̄t,x,π,a0

s ,P
F̄μ,t

s

X̄
t,ξ̄,a0
s

, Īt,a0
s

)
ds+ σ

(
s, X̄t,x,π,a0

s ,P
F̄μ,t

s

X̄
t,ξ̄,a0
s

, Īt,a0
s

)
dB̄s,

(D.3)

for all s ∈ [t, T ], with X̄t,ξ̄,a0

t = ξ̄ and X̄t,x,π,a0

t = x. Under Assumption (A1),

there exists a unique (up to indistinguishability) pair (X̄t,ξ̄,a0
s , X̄t,x,π,a0

s )s∈[t,T ] of

continuous (F̄B,μ,t
s ∨ Ḡ)s-adapted processes solution to equations (D.2)-(D.3), sat-

isfying

Ē

[
sup

s∈[t,T ]

(∣∣X̄t,ξ̄,a0
s

∣∣2 + ∣∣X̄t,x,π,a0
s

∣∣q)] < ∞,

for all q ≥ 1.
Let Fμ,t = (Fμ,t

s )s≥t be the P1-completion of the filtration generated by
μ 1(t,∞)×Astep

, and denote by P(Fμ,t) the predictable σ-algebra on Ω1×[t,∞) corre-

sponding to Fμ,t. Then, we define Vt as the set of P(Fμ,t)⊗B(A)-measurable maps
ν : Ω1 × [t,∞) × A → (0,∞), with 0 < infΩ1×[t,∞)×A ν ≤ supΩ1×[t,∞)×A ν < ∞.
Given ν ∈ Vt, we define ν∗ ∈ V as ν∗ = 1Ω1×[0,t)×A + ν 1Ω1×[t,∞)×A. We denote by

Pν (resp. P̄ν) the probability Pν∗
(resp. P̄ν̄∗

), and by Eν (resp. Ēν) the expectation
Eν∗

(resp. Ēν̄∗
). Then, for every ν ∈ Vt, we define the gain functional (notice that

JR(t, x, π, a0, ν) does not depend on the value of ν∗ on Ω1 × [0, t)×A)

JR(t, x, π, a0, ν) = Ēν

[ ∫ T

t

f
(
s, X̄t,x,π,a0

s ,P
F̄μ,t

s

X̄
t,ξ̄,a0
s

, Īt,a0
s

)
ds+g

(
X̄t,x,π,a0

T ,P
F̄μ,t

T

X̄
t,ξ̄,a0
T

)]

and the value function

V R(t, x, π, a0) = sup
ν∈Vt

JR(t, x, π, a0, ν).

Finally, let FB,t = (FB,t
s )s≥t be the P-completion of the filtration generated by

(Bs−Bt)s≥t, and let At denote the set of F
B,t-progressive processes α : Ω× [t, T ] →

A. Given α ∈ At, we define α∗ ∈ A as α∗ = ā 1Ω×[0,t) + α 1Ω×[t,T ], for some
deterministic and fixed point ā ∈ A. Then, we denote J(t, x, π, α∗) simply by
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J(t, x, π, α) (notice that J(t, x, π, α∗) does not depend on the value of α∗ on Ω×[0, t),
namely on ā).

Theorem D.1. Under Assumption (A1), we have the following identities:

V (t, x, π) := sup
α∈A

J(t, x, π, α) = sup
α∈At

J(t, x, π, α) = sup
ν∈Vt

JR(t, x, π, a0, ν)

=: V R(t, x, π, a0) = sup
ν∈V

JR(t, x, π, ν) =: V R(t, x, π),(D.4)

for all (t, x, π, a0) ∈ [0, T ]× Rn × P2(R
n)×A.

Remark D.1. From Theorem 3.1 we conclude that the function V R(t, x, π, a0) does
not depend on a0 ∈ A and coincides with the function V R(t, x, π) defined in (3.8).

Proof. When t = 0, we see that, for every a0 ∈ A, we have Ī0,a0 = Ī, A0 = A,
and V0 = V . Therefore, V R(0, x, π, a0) coincides with V R(0, x, π), so the result
follows from Theorem 3.1. When t > 0, we proceed along the same lines as in
the proof of Theorem 3.1 for the case t = 0, with (B̄s)s≥0, F̄

B = (F̄B
s )s≥0, A, μ̄,

F̄B,μ = (F̄B,μ
s )s≥0, V replaced respectively by (B̄s − B̄t)s≥t, F̄

B,t = (F̄B,t
s )s≥t, At,

μ̄ 1(t,∞)×A, F̄
B,μ,t = (F̄B,μ,t

s )s≥t, Vt. Then, we obtain

sup
α∈At

J(t, x, π, α) = sup
ν∈Vt

JR(t, x, π, a0, ν).

This implies that V R(t, x, π, a0) does not depend on a0 ∈ A, since the left-hand
side of the above inequality does not depend on it.

By Theorem 3.1, equivalence (D.4) follows if we prove the following inequalities:

V (t, x, π) ≥ sup
α∈At

J(t, x, π, α), sup
ν∈Vt

JR(t, x, π, a0, ν) ≥ V R(t, x, π).

(D.5)

Since for every α ∈ At we have, by definition, J(t, x, π, α) = J(t, x, π, α∗), where
α∗ = ā 1Ω×[0,t) + α 1Ω×[t,T ], we see that supα∈At

J(t, x, π, α) ≤ supα∈A J(t, x, π, α)
= V (t, x, π). Therefore, the first inequality in (D.5) is proved.

In order to establish the second inequality in (D.5), we fix (t, x, ξ̄, π) ∈ [0, T ] ×
Rn × L2(Ω̄, Ḡ, P̄;Rn) × P2(R

n), with π = Pξ under P, and we take a particular
probabilistic setting for the randomized McKean-Vlasov control problem. More
precisely, we first consider another probabilistic framework for the randomized
problem, where the objects (Ω,F ,P), (Ω1,F1,P1), (Ω̄, F̄ , P̄), B̄, μ̄, (Tn,An), Ī
are replaced respectively by (Ω0,F0,P0), (Ω̌1, F̌1, P̌1), (Ω̌, F̌ , P̌), B̌, μ̌, (Ťn, Ǎn), Ǐ.

Let Ω̂ = Ω̌× Ω̄, let F̂ be the P̌⊗ P̄-completion of F̌ ⊗F̄ , let P̂ be the extension of
P̌⊗P̄ to F̂ , and let Ê be the P̂-expected value. Also let Ĝ be the canonical extension

of Ḡ to Ω̂. Define ξ̂(ω̌, ω̄) := ξ̄(ω̄) and

B̂s(ω̌, ω̄) := B̌s(ω̌) 1{s≤t} + (B̄s(ω̄)− B̄t(ω̄) + B̌t(ω̌)) 1{s>t},

μ̂(ω̌, ω̄; ds dα) := μ̌(ω̌; ds dα) 1{s≤t} + μ̄(ω̄; ds dα) 1{s>t}.

Notice that π = Pξ̂ under P̂, B̂ = (B̂s)s≥0 is a Brownian motion on (Ω̂, F̂ , P̂), and

μ̂ is a Poisson random measure with compensator λ(dα) ds under P̂, with respect
to its natural filtration. We also define as in (3.3) the A-valued piecewise constant
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process Î = (Îs)s≥0 associated to μ̂, which in the present case takes the following
form:

Îs(ω̌, ω̄) = Ǐs(ω̌) 1{s≤t} +
∑
n≥0

t<Tn+1(ω
1)

(
Ǐs(ω̌)1{Tn(ω1)<t}

+ (An(ω
1))s∧T (ω)1{t≤Tn(ω1)}

)
1[Tn(ω1),Tn+1(ω1))(s) 1{s>t}.

In particular, Ît = Ǐt. We define F̂B,μ = (F̂B,μ
s )s≥0 (resp. F̂μ = (F̂μ

s )s≥0) as

the P̂-completion of the filtration generated by B̂ and μ̂ (resp. μ̂). We denote by

(X̂t,ξ̂
s , X̂t,x,π

s )s∈[t,T ] the unique (up to indistinguishability) continuous (F̂B,μ
s ∨ Ĝ)s-

adapted solution to equations (3.4)-(3.5) on (Ω̂, F̂ , P̂) with ξ̄, B̄, Ī, F̄μ
· replaced

respectively by ξ̂, B̂, Î, F̂μ
· . For later use, we also consider, for every ω̌ ∈

Ω̌, the unique (up to indistinguishability) continuous (F̄B,μ,t
s ∨ Ḡ)s-adapted so-

lution (X̄
t,ξ̄,Ǐt(ω̌)
s , X̄

t,x,π,Ǐt(ω̌)
s )s∈[t,T ] to equations (D.2)-(D.3) with a0 replaced by

Ǐt(ω̌). Then, we see that, for P̌-a.e. ω̌ ∈ Ω̌, (X̂t,ξ̂
s (ω̌, ·), X̂t,x,π

s (ω̌, ·))s∈[t,T ] and

(X̄
t,ξ̄,Ǐt(ω̌)
s , X̄

t,x,π,Ǐt(ω̌)
s )s∈[t,T ] solve the same system of equations. Therefore, by

pathwise uniqueness, for P̌-a.e. ω̌ ∈ Ω̌, we have X̂t,ξ̂
s (ω̌, ω̄) = X̄

t,ξ̄,Ǐt(ω̌)
s (ω̄) and

X̂t,x,π
s (ω̌, ω̄) = X̄

t,x,π,Ǐt(ω̌)
s (ω̄), for all s ∈ [t, T ], P̄(dω̄)-almost surely.

Let P(F̂μ) be the predictable σ-algebra on Ω̂ × R+ corresponding to F̂μ. In

order to define the randomized McKean-Vlasov control problem on (Ω̂, F̂ , P̂), we

introduce the set V̂ of all P(F̂μ)⊗B(A)-measurable maps ν̂ : Ω̂×R+×A → (0,∞),
satisfying 0 < infΩ̂×R+×A ν̂ ≤ supΩ̂×R+×A ν̂ < ∞. Then, we define in an obvious

way κν̂ , P̂ν̂ , Êν̂ , ĴR(t, x, π, ν̂), and the corresponding value function V̂ R(t, x, π).

We recall from Step I of the proof of Theorem 3.1 that V̂ R(t, x, π) = V R(t, x, π).
We can now prove the second inequality in (D.5), namely,

(D.6) V R(t, x, π) = V̂ R(t, x, π) := sup
ν̂∈V̂

ĴR(t, x, π, ν̂) ≤ sup
ν∈Vt

JR(t, x, π, a0, ν).

Fix ν̂ ∈ V̂ . We begin by noting that, since ν̂ is P(F̂μ)⊗B(A)-measurable, up to a P̂-
null set, ν̂ depends only (ω̌1, ω1). Now, by a monotone class argument, we see that

there exists a P̌1-null set Ň1 ∈ F̌1 such that νω̌
1

= νω̌
1

s (ω1, α) : Ω1 × [t,∞)×A →
(0,∞), given by

νω̌
1

s (ω1, α) := ν̂s(ω̌
1, ω1, α), for all (ω̌1, ω1, s, α) ∈ Ω̌1 × Ω1 × [t,∞)×A,

is an element of Vt, for every ω̌1 /∈ Ň1. In other words, for every ω̌1 /∈ Ň1, νω̌
1

is a
P(Fμ,t)⊗ B(A)-measurable map satisfying

0 < inf
Ω1×[t,∞)×A

νω̌
1 ≤ sup

Ω1×[t,∞)×A
νω̌

1

< ∞.
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Therefore, by Fubini’s theorem,

ĴR(t, x, π, ν̂) = Ê

[
κν̂
T

(∫ T

t

f
(
s, X̂t,x,π

s ,P
F̂μ

s

X̂t,ξ̂
s

, Îs
)
ds+ g

(
X̂t,x,π

T ,P
F̂μ

T

X̂
t,ξ̂
T

))]

=

∫
Ω̌

Ē

[
κνω̌1

T

(∫ T

t

f
(
s, X̄t,x,π,Ǐt(ω̌)

s ,P
F̄μ

s

X̄
t,ξ̄,Ǐt(ω̌)
s

, Īt,Ǐt(ω̌)s

)
ds

+ g
(
X̄

t,x,π,Ǐt(ω̌)
T ,P

F̄μ
T

X̄
t,ξ̄,Ǐt(ω̌)
T

))]
P̌(dω̌)

=

∫
Ω̌

JR(t, x, π, Ǐt(ω̌), ν
ω̌1

) P̌(dω̌) ≤ sup
ν∈Vt

JR(t, x, π, a0, ν),

for any a0 ∈ A (recall that supν∈Vt
JR(t, x, π, a0, ν) does not depend on a0 ∈

A). From the arbitrariness of ν̂ ∈ V̂ , we deduce that supν̂∈V̂ ĴR(t, x, π, ν̂) ≤
supν∈Vt

JR(t, x, π, a0, ν), hence establishing (D.6) and consequently the second in-
equality in (D.5).

Corollary D.1. Under Assumption (A1), we have
(D.7)

V (t, x, π) = ess sup
ν∈V

Eν

[ ∫ T

t

E
[
f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)]

ds+E
[
g
(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)]∣∣∣∣Fμ
t

]
,

P1-a.s., for all (t, x, ξ̄) ∈ [0, T ]× Rn × L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ̄ under P̄.

Proof. Fix (t, x, ξ̄) ∈ [0, T ]× Rn × L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ under P̄. We have

E1

[
ess sup

ν∈V
Eν

[ ∫ T

t

E
[
f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)]

ds+ E
[
g
(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)]∣∣∣∣Fμ
t

]]

≥ E1

[
ess sup
ν∈V1,t

Eν

[ ∫ T

t

E
[
f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)]

ds+ E
[
g
(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)]∣∣∣∣Fμ
t

]]

≥ sup
ν∈V1,t

E1

[
Eν

[ ∫ T

t

E
[
f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)]

ds+ E
[
g
(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)]∣∣∣∣Fμ
t

]]
.

By the Bayes formula, and recalling that κν
t = 1 whenever ν ∈ V1,t, we obtain

sup
ν∈V1,t

E1

[
Eν

[ ∫ T

t

E
[
f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)]

ds+ E
[
g
(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)]∣∣∣∣Fμ
t

]]

= sup
ν∈V1,t

E1

[
E1

[
κν
T

(∫ T

t

E
[
f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)]

ds+ E
[
g
(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)])∣∣∣∣Fμ
t

]]

= sup
ν∈V1,t

Eν

[ ∫ T

t

E
[
f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)]

ds+ E
[
g
(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)]]
= V (t, x, π),

where the last equality follows from Remark 3.4. Then, we conclude that

E1

[
ess sup

ν∈V
Eν

[ ∫ T

t

E
[
f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)]

ds+ E
[
g
(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)]∣∣∣∣Fμ
t

]]
(D.8)

≥ V (t, x, π).
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Let us now prove the following inequality: for every ν ∈ V , P1-a.s.,
(D.9)

Eν

[ ∫ T

t

E
[
f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)]

ds+ E
[
g
(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)]∣∣∣∣Fμ
t

]
≤ V (t, x, π).

Suppose we have already proved (D.9). Hence, P1-a.s.,

ess sup
ν∈V

Eν

[ ∫ T

t

E
[
f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)]

ds+E
[
g
(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)]∣∣∣∣Fμ
t

]
≤ V (t, x, π).

From the above inequality and (D.8), it is then easy to see that equality (D.7)
holds. It remains to prove (D.9). To this end, we notice that (D.9) holds if and
only if the following inequality holds: for every ν ∈ V , P̄-a.s.,

(D.10) Ēν

[ ∫ T

t

f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)
ds+ g

(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)∣∣∣∣F̄μ
t

]
≤ V (t, x, π).

Now, consider the same probabilistic setting introduced in the proof of Theorem

D.1: (Ω̂, F̂ , P̂), Ĝ, B̂, μ̂, F̂B,μ = (F̂B,μ
s )s≥0, F̂

μ = (F̂μ
s )s≥0, Î, X̂

t,ξ̂, X̂t,x,π, V̂ , V̂1,t,

P̂ν̂ , Êν̂ , ĴR(t, x, π, ν̂), V̂ R(t, x, π). Observe that (D.10) holds if and only if the

following inequality holds: for every ν̂ ∈ V̂ , P̂-a.s.,

(D.11) Êν̂

[ ∫ T

t

f
(
s, X̂t,x,π

s ,P
F̂μ

s

X̂t,ξ̂
s

, Îs
)
ds+ g

(
X̂t,x,π

T ,P
F̂μ

T

X̂
t,ξ̂
T

)∣∣∣∣F̂μ
t

]
≤ V (t, x, π).

Indeed, let us prove that if (D.11) holds, then (D.10) holds as well (the other
implication has a similar proof). Fix ν ∈ V . Then, proceeding as in Step I of the

proof of Theorem 3.1, we see that there exists ν̂ ∈ V̂ such that

κ̄ν
T

κ̄ν
t

(∫ T

t

f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)
ds+ g

(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

))
, B̄, μ̄

and

κν̂
T

κν̂
t

(∫ T

t

f
(
s, X̂t,x,π

s ,P
F̂μ

s

X̂t,ξ̂
s

, Îs
)
ds+ g

(
X̂t,x,π

T ,P
F̂μ

T

X̂
t,ξ̂
T

))
, B̂, μ̂

have the same joint law. As a consequence,

Ēν

[ ∫ T

t

f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)
ds+ g

(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)∣∣∣∣F̄μ
t

]

and

Êν̂

[ ∫ T

t

f
(
s, X̂t,x,π

s ,P
F̂μ

s

X̂t,ξ̂
s

, Îs
)
ds+ g

(
X̂t,x,π

T ,P
F̂μ

T

X̂
t,ξ̂
T

)∣∣∣∣F̂μ
t

]

have the same law. In particular, we have

P̄

(
Ēν

[ ∫ T

t

f
(
s, X̄t,x,π

s ,P
F̄μ

s

X̄t,ξ̄
s

, Īs
)
ds+ g

(
X̄t,x,π

T ,P
F̄μ

T

X̄
t,ξ̄
T

)∣∣∣∣F̄μ
t

]
≤ V (t, x, π)

)

= P̂

(
Êν̂

[ ∫ T

t

f
(
s, X̂t,x,π

s ,P
F̂μ

s

X̂t,ξ̂
s

, Îs
)
ds+ g

(
X̂t,x,π

T ,P
F̂μ

T

X̂
t,ξ̂
T

)∣∣∣∣F̂μ
t

]
≤ V (t, x, π)

)
= 1,

where the last equality follows from the assumption that (D.11) holds. This implies
that (D.10) also holds for ν. Since ν was arbitrary, the claim follows.
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Let us now prove that (D.11) holds. For every ν̂ ∈ V̂ , by the Bayes formula and
proceeding as in the proof of Theorem D.1, we find that

Êν̂

[ ∫ T

t

f
(
s, X̂t,x,π

s ,P
F̂μ

s

X̂t,ξ̂
s

, Îs
)
ds+ g

(
X̂t,x,π

T ,P
F̂μ

T

X̂
t,ξ̂
T

)∣∣∣∣F̂μ
t

]

= Ê

[
κν̂
T

κν̂
t

(∫ T

t

f
(
s, X̂t,x,π

s ,P
F̂μ

s

X̂t,ξ̂
s

, Îs
)
ds+ g

(
X̂t,x,π

T ,P
F̂μ

T

X̂
t,ξ̂
T

))∣∣∣∣F̂μ
t

]

= Ê

[
κν·

T

κν·
t

(∫ T

t

f
(
s, X̄t,x,π,Ǐt

s ,P
F̄μ

s

X̄
t,ξ̄,Ǐt
s

, Īt,Ǐts

)
ds+ g

(
X̄t,x,π,Ǐt

T ,P
F̄μ

T

X̄
t,ξ̄,Ǐt
T

))∣∣∣∣F̂μ
t

]
.

Then, by the freezing lemma (see for instance Proposition 10.1.2 in [32]), we obtain

Ê

[
κν·

T

κν·
t

(∫ T

t

f
(
s, X̄t,x,π,Ǐt

s ,P
F̄μ

s

X̄
t,ξ̄,Ǐt
s

, Īt,Ǐts

)
ds+ g

(
X̄t,x,π,Ǐt

T ,P
F̄μ

T

X̄
t,ξ̄,Ǐt
T

))∣∣∣∣F̂μ
t

]

=E

[
κνω̌1

T

(∫ T

t

f
(
s, X̄t,x,π,Ǐt(ω̌)

s ,P
F̄μ

s

X̄
t,ξ̄,Ǐt(ω̌)
s

, Īt,Ǐt(ω̌)
s

)
ds+ g

(
X̄

t,x,π,Ǐt(ω̌)
T ,P

F̄μ
T

X̄
t,ξ̄,Ǐt(ω̌)
T

))]

= JR(t, x, π, Ǐt(ω̌), ν
ω̌1

) ≤ sup
ν∈Vt

JR(t, x, π, a0, ν),

P̂-a.s., for any a0 ∈ A (recall from Theorem D.1 that supν∈Vt
JR(t, x, π, a0, ν) does

not depend on a0 ∈ A). Then, since by Theorem D.1 we have that

sup
ν∈Vt

JR(t, x, π, a0, ν) = V (t, x, π),

we deduce that (D.11) holds, which concludes the proof.
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[16] Sébastien Choukroun and Andrea Cosso, Backward SDE representation for stochastic control
problems with nondominated controlled intensity, Ann. Appl. Probab. 26 (2016), no. 2, 1208–
1259, DOI 10.1214/15-AAP1115. MR3476636

[17] Marco Fuhrman and Huyên Pham, Randomized and backward SDE representation for opti-
mal control of non-Markovian SDEs, Ann. Appl. Probab. 25 (2015), no. 4, 2134–2167, DOI
10.1214/14-AAP1045. MR3349004

[18] Wilfrid Gangbo, Hwa Kil Kim, and Tommaso Pacini, Differential forms on Wasserstein space
and infinite-dimensional Hamiltonian systems, Mem. Amer. Math. Soc. 211 (2011), no. 993,
vi+77, DOI 10.1090/S0065-9266-2010-00610-0. MR2808856

[19] Olav Kallenberg, Foundations of modern probability, 2nd ed., Probability and its Applications
(New York), Springer-Verlag, New York, 2002. MR1876169
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