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THE CLASSIFICATION PROBLEM FOR OPERATOR

ALGEBRAIC VARIETIES AND THEIR MULTIPLIER ALGEBRAS

MICHAEL HARTZ AND MARTINO LUPINI

Abstract. We study from the perspective of Borel complexity theory the clas-
sification problem for multiplier algebras associated with operator algebraic

varieties. These algebras are precisely the multiplier algebras of irreducible
complete Nevanlinna-Pick spaces. We prove that these algebras are not clas-
sifiable up to algebraic isomorphism using countable structures as invariants.
In order to prove such a result, we develop the theory of turbulence for Pol-
ish groupoids, which generalizes Hjorth’s turbulence theory for Polish group
actions. We also prove that the classification problem for multiplier algebras
associated with varieties in a finite-dimensional ball up to isometric isomor-
phism has maximum complexity among the essentially countable classification
problems. In particular, this shows that Blaschke sequences are not smoothly
classifiable up to conformal equivalence via automorphisms of the disc.

1. Introduction

Let d ∈ N be a natural number and let Bd denote the open unit ball in Cd. The
Drury-Arveson space H2

d is the completion of the space of complex polynomials
C [z1, . . . , zd] in the variables z1, . . . , zd with respect to the inner product defined
on monomials by〈

zα1
1 · · · zαd

d , zβ1

1 · · · zβd

d

〉
=

{ α1!···αd!
(α1+···+αd)!

if αi = βi for 1 ≤ i ≤ d;

0 otherwise.

This space has been the focus of intensive study for over a decade. If d = 1, then the
Drury-Arveson space is the classical Hardy space on the unit disc, which plays an
important role in the theory of operators on Hilbert space. From the point of view of
operator theory, H2

d appears to be the correct generalization of the classical Hardy
space to several variables. For a comprehensive treatment of the Drury-Arveson
space, the reader is referred to [5] and to the survey article [29].

One can identify H2
d with a Hilbert space of analytic functions on Bd (see, for

example, [29, Section 3]). An operator algebraic variety is the set of common zeros
in Bd of some subset of H2

d . Observe that any algebraic variety is an operator
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algebraic variety. In turn, an operator algebraic variety is in particular an analytic
variety.

A similar construction can be performed when d = ∞. In this case C∞ should be
regarded as the infinite-dimensional separable Hilbert space, and B∞ as the norm
open unit ball of C∞. The Drury-Arveson space H2

∞ is defined as above as the
completion of the algebra of complex polynomials C [z] in the sequence of variables
zn for n ∈ N. In this context a complex-valued function defined on an open subset
of B∞ is analytic if it admits a uniformly convergent power series representation.

The multiplier algebra of H2
d is defined by

Mult(H2
d) = {ϕ : Bd → C : ϕ · f ∈ H2

d for all f ∈ H2
d}.

Every element ϕ ∈ Mult(H2
d) induces a bounded multiplication operator Mϕ on

H2
d . The identification of ϕ with Mϕ allows one to regard Mult(H2

d) as an algebra
of bounded linear operators on the Hilbert space H2

d .
For an operator algebraic variety V ⊂ Bd, we consider the algebra

MV = {f |V : f ∈ Mult(H2
d)}.

Then MV is an algebra of functions on V , and, in fact, can be regarded as the
multiplier algebra of a Hilbert space of functions on V . Observe also that MV can
be identified with a quotient of Mult(H2

d). These algebras are of particular interest
because of a theorem of Agler and McCarthy [1], according to which every multiplier
algebra of an irreducible complete Nevanlinna-Pick space can be identified with such
an algebra.

The problem of classifying the multiplier algebrasMV has attracted considerable
attention in the last few years [3, 4, 8–10, 14, 15, 20, 22]. In particular, we refer the
reader to the survey article [28]. It is proved in [8]—see also [28, Section 4]—that
for d ∈ N and operator algebraic varieties V,W in Bd, the corresponding multiplier
algebras MV and MW are (completely) isometrically isomorphic if and only if
V and W are Aut(Bd)-conformally equivalent. This means that there exists an
automorphism F ∈ Aut(Bd) mapping V onto W . Here, Aut(Bd) denotes the group
of biholomorphic maps of Bd onto itself. Similar conclusions hold for d = ∞ as long
as V and W have the same affine codimension [28, Subsection 4.1].

The situation for algebraic isomorphism is far less clear. (It should be noted that
MV and MW , being commutative and semisimple, are algebraically isomorphic if
and only if they are isomorphic as Banach algebras.) Under some mild assumption
on the varieties and for d < ∞, it was shown in [8] that if MV and MW are
algebraically isomorphic, then V and W are biholomorphically equivalent. The
converse fails in multiple ways; see [9]. On the other hand, the results of [10, 14]
show that if V,W are homogeneous algebraic varieties in Bd for d finite, then MV

and MW are algebraically isomorphic if and only if there exists an invertible linear
map of Cd mapping V onto W . Recently, this result was extended in [15] by
studying the algebras MV from a different point of view.

In this paper, we investigate the classification problem for multiplier algebras
MV from the perspective of Borel complexity theory. Our main result is that the
classification problem for multiplier algebras MV up to algebraic isomorphism is
intractable in the sense of Borel complexity theory.

Theorem 1.1. The multiplier algebras MV , where V is an operator algebraic vari-
ety in B∞, are not classifiable by countable structures up to algebraic isomorphism.
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This means that there is no explicit way to classify the multiplier algebras MV

using countable structures as complete invariants. In particular this rules out clas-
sification by K-theoretic data, modulo the routine check that the assignment of its
K-theory to a Banach algebra is given by a Borel map; see [6, Chapters 5, 8, 9].
A more precise version of the statement of Theorem 1.1 will be given in Section
2. The proof of Theorem 1.1 is presented in Sections 3 and 5. In order to prove
Theorem 1.1 we develop in Section 4 the theory of turbulence for Polish groupoids.
This is a generalization of Hjorth’s theory of turbulence for Polish group actions
from [16]; see also [12, Chapter 10].

We also study the (completely) isometric classification problem for multiplier al-
gebras MV associated with operator algebraic varieties in Bd with d finite. In view
of the results mentioned above, this amounts to classifying operator algebraic vari-
eties in Bd up to Aut(Bd)-conformal equivalence. We are able to exactly determine
the complexity of such a task.

Theorem 1.2. For any d ∈ N, the relation of Aut(Bd)-conformal equivalence
of operator algebraic varieties in Bd is essentially countable and has maximum
complexity among essentially countable equivalence relations.

In particular, Theorem 1.2 shows that the Aut(Bd)-conformal equivalence classes
of operator algebraic varieties in Bd cannot be explicitly parametrized by the points
of a Polish space. In other words the relation of Aut(Bd)-conformal equivalence of
operator algebraic varieties in Bd is not smooth. In fact, any class of complete
invariants would have to be as complex as conceivable. We will explain in more
detail the content of Theorem 1.2 in Section 2.

The rest of this article is organized as follows. In Section 2 we will recall the basic
notions and results from Borel complexity theory that we will refer to. Section 3
gives a short introduction to reproducing kernel Hilbert spaces and their multiplier
algebras. Here Theorem 1.1 is reduced to establishing a nonclassification result for
sequences in (0, 1] up to �∞-equivalence. This is established in Section 5 by means
of turbulence theory for Polish groupoids, developed in Section 4. We conclude in
Section 6 with the proof of Theorem 1.2.

2. Borel complexity theory

Borel complexity theory studies the relative complexity of classification problems
in mathematics and offers tools to detect and prove obstructions to classification.
In this framework, a classification problem is regarded as an equivalence relation
on a standard Borel space. Perhaps after a suitable parametrization, this covers
most of classification problems in mathematics. For example, operator algebraic
varieties in Bd for d ∈ N∪{∞} are a collection Vd of nonempty closed subsets of Bd.
We will verify in the appendix that Vd is a Borel subset of the space of nonempty
closed subsets of Bd endowed with the Effros Borel structure [19, Section 12.C]. This
shows that operator algebraic varieties form a standard Borel space when endowed
with the induced Borel structure [19, Proposition 12.1]. The relation of Aut(Bd)-
conformal equivalence of varieties in Bd can then be regarded as an equivalence
relation on this standard Borel space. Similarly, the multiplier algebras MV are
naturally parametrized by the varieties themselves, and one can regard algebraic
isomorphisms of the algebras MV as an equivalence relation on the standard Borel
space of varieties described above.
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Borel complexity theory aims to compare the complexity of different classification
problems. The fundamental notion of comparison is Borel reducibility. If E and F
are equivalence relations on standard Borel spaces X and Y respectively, then a
Borel reduction from E to F is a Borel function f : X → Y with the property that

f(x)Ff(x′) if and only if xEx′

for every x, x′ ∈ X. The relation E is Borel reducible to F—in formulas E ≤B F—
if there exists a Borel reduction from E to F . This amounts to saying that one can
assign to the elements of X complete invariants up to E that are F -equivalence
classes, and moreover such an assignment is constructive in the sense that it is
given by a Borel map at the level of the spaces. We say that E and F are Borel
bireducible and write E ∼B F if E ≤B F and F ≤B E. The notion of Borel
reducibility was first introduced in [11, Definition 2]. A complete survey on Borel
complexity theory can be found in [12].

Some distinguished equivalence relations are used as benchmarks of complexity
to draw a hierarchy of classification problems is mathematics. The first natural
benchmark is provided by the relation =R of equality of real numbers. An equiv-
alence relation is smooth if it is Borel reducible to =R. (One can replace R with
any other standard Borel space [19, Theorem 15.6].) For example, the relation of
isomorphism of locally finite rooted trees is smooth [12, Theorem 13.2.3].

Smooth equivalence relations represent the lowest level complexity. A more am-
ple class is given by considering Borel equivalence relations that are countable or
essentially countable. An equivalence relation E on a standard Borel space X is
Borel if it is a Borel subset of the product X × X. A Borel equivalence relation
E is countable if its classes are countable and essentially countable if it is Borel
reducible to a countable one. Clearly, a smooth equivalence relation is, in partic-
ular, essentially countable. The relation E0 of tail equivalence of binary sequences
is countable but not smooth [12, Subsection 6.1]. More generally the orbit equiva-
lence relation of a Borel action of a countable group on a standard Borel space is
countable. There exists a countable Borel equivalence relation E∞ that has max-
imum complexity among (essentially) countable Borel equivalence relations. One
can describe E∞ as the relation of isomorphism of locally finite trees or graphs
[12, Theorem 13.2.4]. In the proof of Theorem 1.2, we will use the following equiv-

alent description of E∞. Let F2 be the free group on two generators and {0, 1}F2

the space of subsets of F2 endowed with the product topology. The group F2 natu-

rally acts on {0, 1}F2 by translation. The corresponding orbit equivalence relation
E(F2, 2) is Borel bireducible with E∞ [12, Theorem 7.3.8].

A more generous notion of classifiability for equivalence relations is being clas-
sifiable by countable structures. An equivalence relation is classifiable by countable
structures if it is Borel reducible to the relation of isomorphism within some Borel
class of structures in some first order language. Equivalently an equivalence relation
is classifiable by countable structures if it is Borel reducible to the orbit equiva-
lence relation of a continuous action of S∞ on a Polish space [12, Section 3.6]. The
Polish group S∞ is the group of permutations of N with the topology of point-
wise convergence [12, Section 2.4]. Any (essentially) countable equivalence relation
is in particular classifiable by countable structures [17, Lemma 2.4, Lemma 2.5].
Again, there exists an equivalence relation of maximum complexity among those
that are classifiable by countable structures. Such an equivalence relation can be
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described, for instance, as the relation of isomorphism of countable trees or graphs
[11, Theorem 1].

3. Kernels and multiplier algebras

A reproducing kernel Hilbert space is a Hilbert spaceH which consists of functions
on a set X such that for every w ∈ X, the functional

f 	→ f(w)

on H is bounded. Thus, there exists Kw ∈ H such that

f(w) = 〈f,Kw〉H
for all f ∈ H. The function K : X ×X → C defined by K(z, w) = Kw(z) is called
the reproducing kernel of H, and it is easy to check that K is positive semi-definite
in the sense that for any n ∈ N and any collection of points x1, . . . , xn ∈ X, the
n× n-matrix (

K(xi, xj)
)n
i,j=1

is positive semi-definite. Conversely, if K is a kernel on X, that is, K : X×X → C

is positive semi-definite, then there exists a unique reproducing kernel Hilbert space
H(K) of functions on X such that K is the reproducing kernel of H(K); see for
example [2, Section 2.2]. If K is a kernel on X and Y ⊂ X, then we denote by K|Y
the kernel on Y given by the restriction of K to Y × Y . A kernel is irreducible if
for any z, w ∈ X one has that K (z, w) �= 0, and furthermore if z �= w, then Kz and
Kw are linearly independent.

The multiplier algebra of the reproducing kernel Hilbert space H is defined by

Mult(H) = {ϕ : X → C : ϕ · f ∈ H for all f ∈ H}.

It is a standard consequence of the closed graph theorem that for ϕ ∈ Mult(H), the
operator Mϕ on H defined by Mϕf = ϕ ·f is bounded. We will always assume that
1 ∈ H, so that we may identify an element ϕ of Mult(H) with its multiplication
operator Mϕ. This identification endows Mult(H) with the structure of a non-
selfadjoint algebra of operators on H. A good reference for reproducing kernel
Hilbert spaces and their multiplier algebras is the book [2].

We will be interested in kernels with the complete Nevanlinna-Pick (NP) prop-
erty. A kernel K on a set X is said to have the Nevanlinna-Pick property if, given
points z1, . . . , zn ∈ X and complex numbers λ1, . . . , λn ∈ C, the existence of a
multiplier ϕ on H with ||Mϕ|| ≤ 1 and

ϕ(zi) = λi (i = 1, . . . , n)

is equivalent to positive semi-definiteness of the matrix(
K(zi, zj)(1− λiλj)

)n
i,j=1

.

The kernel is said to have the complete Nevanlinna-Pick property if the same result
holds for matrix-valued interpolation of arbitrary matrix size. More information
on the complete Nevanlinna-Pick property can be found in [2, Section 5]. If K
satisfies the complete Nevanlinna-Pick property, then H(K) is said to be a complete
Nevanlinna-Pick space. We say that H(K) is irreducible if K is irreducible.
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Perhaps the most important example of a complete Nevanlinna-Pick space is the
Drury-Arveson space. For d ∈ N ∪ {∞}, we denote the Drury-Arveson kernel on
Bd by

Ad (z, w) =
1

1− 〈z, w〉 .

This kernel has the complete NP property, and H2
d is the reproducing kernel Hilbert

space associated with the space H(Ad) (see [2, Section 8.1]). If V ⊂ Bd, then the
restriction Ad|V of the Drury-Arveson kernel is a kernel on V . The associated
complete NP space H2

d |V is the closed linear span of functions on V of the form
z 	→ 1

1−〈z,w〉 for w ∈ V . It is a consequence of the Nevanlinna-Pick property

that every multiplier of H2
d |V is the restriction of a multiplier of H2

d to V ; thus
the multiplier algebra Mult(H2

d |V ) coincides with the algebra MV defined in the
introduction. In particular, this endows MV with the structure of a non-selfadjoint
operator algebra. According to a theorem of Agler and McCarthy, H2

∞ is universal
in the sense that every separable irreducible complete Nevanlinna-Pick space can be
identified with H2

∞|V for some operator algebraic variety V ⊂ B∞; see [2, Section
8]. The article [29] offers a comprehensive survey on the Drury-Arveson space and
its properties.

We will observe in the appendix that the collection V∞ of operator algebraic
varieties V ⊂ B∞ is a Borel subset of the space of nonempty closed subspaces of
B∞ endowed with the Effros Borel structure [19, Section 12.C]. Therefore we can
state more precisely Theorem 1.1 as follows.

Theorem 3.1. The equivalence relation on the space V∞ of operator algebraic
varieties in 	B∞ defined by V ∼ W if and only if MV and MW are algebraically
isomorphic is not classifiable by countable structures.

An important class of irreducible complete NP kernels are the unitarily invariant
complete NP kernels on Bd. By definition, these kernels admit a power series
representation

K(d)
a (z, w) =

∞∑
n=0

an〈z, w〉n

for z, w ∈ Bd, where a = (an) is a sequence of positive numbers such that a0 = 1,
the power series

∑∞
n=0 ant

n has radius of convergence 1,
∑∞

n=0 an = ∞, and there
exists a sequence b = (bn) of nonnegative numbers such that

(1)

∞∑
n=0

ant
n =

1

1−
∑∞

n=1 bnt
n
;

see [15, Section 7]. We let A ⊂ (0,∞)N denote the set of such sequences. It is not
difficult to see that the set B of pairs (a, b) of sequences satisfying (1) is a Borel

subset of (0,∞)N × [0,∞)N. From this and the fact that every section of B has
cardinality at most 1, it follows that A is the range of an injective Borel map and
hence Borel by [19, Corollary 15.2].

It follows from the universality result of Agler and McCarthy mentioned above
that for every a ∈ A, there exists a variety Va ⊂ B∞ such that MVa

is completely

isometrically isomorphic to Mult(H(K
(d)
a )). Furthermore the variety Va can be

taken as the image of Bd under an embedding ja : Bd → B∞. The discussion
preceding Proposition 11.8 in [15] shows that the embedding ja can be explicitly
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defined in terms of a. One can use this to show that there exists a Borel map
a 	→ Va from A to V∞ such that MVa

is completely isometrically isomorphic to

Mult(H(K
(d)
a )). Therefore, in order to establish Theorem 3.1, it is enough to prove

the following result.

Theorem 3.2. Let d ∈ N. The relation ∼d on the space A defined by a ∼d a′ if

and only if Mult(H(K
(d)
a )) and Mult(H(K

(d)
a′ )) are algebraically isomorphic is not

classifiable by countable structures.

To prove this result, we will consider a special class of unitarily invariant complete
NP kernels. We say that a (necessarily nonincreasing) sequence a = (an) in (0, 1]N

is admissible log-convex if a0 = 1, ( an

an+1
)n is nonincreasing and converges to 1, and∑∞

n=0 an = ∞. LetA0 ⊂ (0, 1]N be the Borel set of admissible log-convex sequences.
Log-convexity of a implies that there exists a sequence (bn) of nonnegative numbers
as in equation (1); see [2, Lemma 7.38]. Therefore, A0 ⊂ A.

We consider on A0 the relation EA0
defined by aEA0

a′ if and only if a and a′

have the same growth or, using Landau’s notation, a = Θ(a′). This means that
there are constants c, C > 0 such that c ≤ a′n/an ≤ C for every n ∈ N. The
equivalence of (ii) and (iii) in [15, Corollary 11.7] shows that the relations ∼d and
EA0

coincide on A0. Therefore, it only remains to show that the relation EA0
is

not classifiable by countable structures. This will be proved in Section 5.
We mention here that the same proof also shows that the algebras A(K) for K

a unitarily invariant complete NP kernel on Bd are not classifiable by countable
structures up to algebraic isomorphism. Here A(K) denotes the closure of the
polynomials in Mult(H(K)); see [15, Section 6]. One can also observe that, for
d ∈ N, the collection K of unitarily invariant complete NP kernels is Borel. It
follows from Theorem 3.2 that the relation on K defined by K ∼ K ′ if and only
if Mult(H(K)) and Mult(H(K ′)) are algebraically isomorphic is not classifiable by
countable structures.

4. Turbulence for Polish groupoids

The main goal of this section is to introduce the notion of turbulence for Polish
groupoids and to generalize to this setting Hjorth’s turbulence theorem. A groupoid
can be seen as a tuple (G,G0, s, r, ·, i, ( )−1) where G0 and G are sets, s, r are
functions G → G0, i is a function G0 → G, · is a function from the set G2 :=
{(γ, ρ) ∈ G×G : s(γ) = r(ρ)} to G, and γ 	→ γ−1 is a function from G to G. These
functions are assumed to satisfy the following relations:

• s (i(x)) = r (i(x)) = x for every x ∈ G0;
• γ · i(s(γ)) = γ = i (r(γ)) · γ for every γ ∈ G;
• s (γ · ρ) = s(ρ) and r (γ · ρ) = r(γ) for every γ, ρ ∈ G;
• (γ · ρ) · τ = γ · (ρ · τ ) for every γ, ρ, τ ∈ G such that (γ, ρ) ∈ G2 and
(ρ, τ ) ∈ G2;

• γ−1 · γ = s(γ) and γ · γ−1 = r(γ) for every γ ∈ G.

The elements of G0 are called the objects of the groupoid, while the elements
of G are called the arrows. Given an arrow γ the objects s(γ) and r(γ) are called
the source and range of γ, respectively, while γ−1 is called the inverse arrow of
γ. The arrow i(x) associated with x is called the identity arrow of X. The maps
s, r : G → G0 are called source and range maps, respectively, while the partially
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defined binary operation · is called composition of arrows. As is customary, in the
following we identify every object with the corresponding identity arrow, and we
denote the composition of arrows γ ·ρ simply by γρ. A groupoid can be equivalently
defined as a small category where every morphism is an isomorphism. In this case,
the arrows of the groupoid are just the morphisms of the category.

A Polish groupoid is a groupoid endowed with a topology that

(1) has a countable basis of Polish open sets,
(2) makes composition and inversion of arrows continuous and open,
(3) makes for every x ∈ G0 the set Gx of arrows of G with source x a Polish

subspace of G, and
(4) makes the set of objects G0 a Polish subspace of G.

Polish groupoids have been introduced and studied in [24, 25]. In [21] several
fundamental results about Polish group actions are generalized to Polish groupoids.
We assume in the following that G is a Polish groupoid. The orbit equivalence
relation of G is the equivalence relation EG on G0 defined by xEGy if and only if
there exists γ ∈ G such that s(γ) = x and r(γ) = y. If A,B ⊂ G we let AB be
the set of all compositions γρ for γ ∈ A and ρ ∈ B such that r(ρ) = s(γ). We
write Aγ for A {γ} when A ⊂ G and γ ∈ G. In particular if x ∈ G0, then Ax is
the set of elements of A with source x. If X is a Gδ subset of G0, denote by G|X
the Polish groupoid XGX = {γ ∈ G : s(γ), r(γ) ∈ X} endowed with the subspace
topology. This is called the restriction of G to X. If x is an object of G and V is
a neighborhood of x in G, then the local orbit O (x, V ) is the set of all points that
can be reached from x by applying elements of V . In formulas

O (x, V ) =
⋃
n∈N

r [V nx] .

Definition 4.1. An object x of G is turbulent if for every neighborhood V of x the
local orbit O (x, V ) is somewhere dense. The groupoid G is generically preturbulent
if the set of turbulent objects with dense orbit is a comeager subset of G0. If
moreover every orbit is meager, then G is generically turbulent.

In the rest of this section we will often tacitly use the following version of the
classical Kuratowski–Ulam theorem; see [21, Lemma 2.9.1].

Fact 4.2. Suppose that X is a second countable topological space, Y is a Polish
space, and f : X → Y is open and continuous. If A ⊂ X is analytic, then A is
comeager if and only if f−1 {y} ∩ A is comeager in f−1 {y} for comeager many
y ∈ Y .

For example, it follows from Fact 4.2 that if X is a dense Gδ subspace of G0 and
G is generically (pre)turbulent, then G|X is generically (pre)turbulent.

Suppose that H is a Polish group and Y is a Polish H-space, i.e. a Polish space
endowed with a continuous action of H. Let G be the Polish action groupoid asso-
ciated with the Polish H-space Y as in [21, Subsection 2.7]. Observe that the orbit
equivalence relation EG coincides with the orbit equivalence relation EY

H . Further-
more it is not difficult to verify that G is a generically (pre)turbulent groupoid as in
Definition 4.1 if and only if Y is a generically (pre)turbulent H-space in the sense
of [12, Definition 10.3.3].

Recall the following terminology from Borel complexity of equivalence relations.
If E and F are equivalence relations on standard Borel spaces X and Y , then
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an (E,F )-homomorphism is a function f : X → Y that maps E-classes into F -
classes. A generic (E,F )-homomorphism is a function f : X → Y that is an (E,F )-
homomorphism when restricted to some comeager subset of X. An equivalence
relation E on a standard Borel space X is generically S∞-ergodic if for every Polish
S∞-space Y and every Baire-measurable generic (E,EY

S∞
)-homomorphism, there

exists a comeager subset of X that is mapped by f into a single S∞-orbit. It is
well known that an equivalence relation is classifiable by countable structures if and
only if it is Borel reducible to the orbit equivalence relation of a Polish S∞-space;
see [12, Theorem 11.3.8].

The following is the main consequence of turbulence for Polish groupoids.

Theorem 4.3. Suppose that G is a generically preturbulent Polish groupoid. Then
the associated orbit equivalence relation EG is generically S∞-ergodic.

Corollary 4.4. If G is a generically turbulent Polish groupoid, then the orbit equiv-
alence relation EG is not classifiable by countable structures.

Theorem 4.3 generalizes the original result of Hjorth [16, Section 3] from Polish
group actions to Polish groupoids. Polish groupoids provide a natural setting to
present the proof of Hjorth’s turbulence theorem even in the case of Polish group
actions. Indeed in the course of the proof one looks at the action “restricted” to a
(not necessarily invariant) Gδ subspace; see for example [12, Theorem 10.4.2]. Such
a restriction is not a Polish group action in general, even when one starts with a
Polish group action. It is nonetheless a Polish groupoid.

The following lemma is the groupoid analog of [16, Lemma 3.17]. In the following,
if V is an open subset of G, we write ∀∗γ ∈ V to mean “for a comeager set of γ ∈ V ”.

Lemma 4.5. Suppose that G is a Polish groupoid, H is a Polish group, and Y
is a Polish H-space. If f : G0 → Y is a Baire-measurable generic

(
EG, E

Y
H

)
-

homomorphism, then there exists a comeager subset C of G0 such that for every
x ∈ C and every open neighborhood W of 1H in H there exists a neighborhood V
of x such that for every x′ ∈ s[V ] ∩ C and for a comeager set of γ ∈ V x′,

f(r(γ)) ∈ Wf(x′).

Proof. After replacing G with the restriction of G to a dense Gδ subset of G0, we
can assume that f is a continuous

(
EG, E

Y
H

)
-homomorphism [12, Exercise 2.3.2].

Furthermore it is enough to prove that for every open neighborhood W of 1H there
is a comeager subset C of X such that for every x ∈ C there exists a neighborhood
V of x in G such that ∀x′ ∈ s[V ] ∩ C, ∀∗γ ∈ V x′, f(r(γ)) ∈ Wf(x′). Fix an open
neighborhood W of 1H and an open neighborhood W0 of 1H such that W−1

0 = W0

and W 2
0 ⊂ W . Fix a sequence (hn) in H such that⋃

n∈N

W0hn = H.

For every n ∈ N, the set

Bn = {(z, y) ∈ Y × Y | z ∈ W0hny}
is analytic. Therefore the set

An = {γ ∈ G : f(r(γ)) ∈ W0hnf(s(γ))}
is analytic by [19, Proposition 22.1]. By [19, Proposition 8.22] there exists an open
subset On of G such that On � An is meager. Set Dn = An ∩ On, and observe
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that DnD
−1
n is a comeager subset of OnO

−1
n . Since G is the union of An for n ∈ N,

the union O of On for n ∈ N is an open dense subset of G. In particular r [O] is

an open subset of G0. Define now, for n ∈ N, Õn to be the set of γ ∈ On such

that r(γ) does not belong to the closure of the union of r [Oi] for i < n. Let Õ

be the union of Õn for n ∈ N, and observe that r[Õ] is an open dense subset of

G0. For every n ∈ N set D̃n = Dn ∩ Õn and observe that D̃n is a comeager subset

of Õn. Therefore there exists a comeager subset Cn of r[Õn] = s[ÕnÕ
−1
n ] such

that for every x ∈ Cn, D̃nD̃
−1
n x is a comeager subset of ÕnÕ

−1
n x. Define C to be

the union of Cn for n ∈ N, and observe that C is a comeager subset of G0. We
claim that C satisfies the desired conclusions. Fix x ∈ C and n ∈ N such that
x ∈ Cn. We have that ÕnÕ

−1
n is an open neighborhood of x. Furthermore for every

x′ ∈ Cn = C ∩ s[ÕnÕ
−1
n ], D̃nD̃

−1
n x′ is comeager in ÕnÕ

−1
n x′. If ρ, γ ∈ D̃n, then

f(r(γ)) ∈ W0hnf(s(γ)) and f(r(ρ)) ∈ W0hnf(s(ρ)).

Therefore

f(r(ργ−1)) = f(r(ρ)) ∈ W0hnf(s(ρ)) ⊂ W0W
−1
0 f(s(ργ−1)) ⊂ Wf(s(ργ−1)).

This concludes the proof. �
We now explain how one can deduce Theorem 4.3 from Lemma 4.5.

Proof of Theorem 4.3. Fix an enumeration (Vk)k∈N
of a basis of Polish open subsets

of G and a compatible complete metric dY on Y bounded by 1. Suppose that d is
the metric in S∞ defined by

log2 d(σ, ρ) = −min {n ∈ N : σ (n) �= ρ (n)}
for σ, ρ ∈ S∞. We also consider the complete metric

D(σ, ρ) = d(σ, ρ) + d(σ−1, ρ−1)

on S∞. Define e to be the identity of S∞, and

Nk =
{
σ ∈ S∞ : d(σ, e) < 2−k

}
for k ∈ N. As in the proof of Hjorth’s turbulence theorem for Polish group actions
[12, Theorem 10.4.2], one can deduce from Lemma 4.5 that there exists a dense Gδ

subset C0 of G0 with the following properties:

• f |C0
is a continuous (EG, E

Y
S∞

)-homomorphism;
• every element of C0 has dense orbit;
• for every m ∈ N and x ∈ Vm ∩ C0 the local orbit O (x, Vm) is somewhere
dense;

• for every x ∈ C0 and k ∈ N there exists m ∈ N such that x ∈ Vm and
∀x′ ∈ s [Vm], ∀∗γ ∈ Vmx′, f(r(γ)) ∈ Nkf(x

′).

Let C be the set of x ∈ C0 such that ∀∗γ ∈ Gx, r(γ) ∈ C0, and observe that C is
a dense Gδ subset of G0 [21, Lemma 2.10.6]. After replacing G with the restriction
G|C of G to C and Vk with Vk ∩G|C , we can assume that C = G0.

Fix x0, y0 ∈ G0. We claim that f(x)EY
S∞

f(y). We will define by recursion

on i ≥ 0 elements xi, yi of G0, gi, hi of S∞, and nx(i), ny(i) of N, such that the
following conditions hold:

• g0 = h0 = e;
• x0 ∈ Vnx(0) and y0 ∈ Vny(0);
• gif(x) = f(xi) and hif(y) = f(yi);
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• xi+1 ∈ Vnx(i) ∩ O
(
xi, Vnx(i)

)
and yi+1 ∈ Vny(i) ∩ O

(
yi, Vny(i)

)
;

• the dY -diameter of f
[
G0 ∩ Vnx(i)

]
is at most 2−i;

• O
(
xi, Vnx(i)

)
is dense in Vny(i)∩G0, and O

(
yi, Vny(i)

)
is dense in Vnx(i+1)∩

G0;
• d(gi, gi+1) ≤ 2−i and d(hi, hi+1) ≤ 2−i;
• if i > 0 and kx(i) = max

{
gi(λ), g

−1
i (λ) | λ ≤ i

}
, then ∀z ∈ s

[
Vnx(i)

]
,

∀∗γ ∈ Vnx(i)z, f(r(γ)) ∈ Nkx(i)f(z);

• if i ≥ 0 and ky(i) = max
{
hi(λ), h

−1
i (λ) | λ ≤ i

}
, then ∀z ∈ s

[
Vny(i)

]
,

∀∗γ ∈ Vny(i)z, f(r(γ)) ∈ Nky(i)f(z).

Granted the construction, the sequences (gi) , (hi) in S∞ areD-Cauchy and hence
converge to elements g, h ∈ S∞. Furthermore dY (gif(x), hif(y)) → 0 and hence
gf(x) = hf(y). This concludes the proof that f(x)EY

S∞
f(y).

We assume recursively that we have defined xi, yi, gi, hi, nx(i), ny(i) and explain
how to define xi+1, gi+1, nx(i+1). The definition of yi+1, hi+1, ny(i+1) is similar.
We have that the local orbit O

(
yi, Vny(i)

)
is somewhere dense. Pick a nonempty

open subset W of Vny(i) that is contained in the closure of O
(
yi, Vny(i)

)
. By

recursive hypothesis we have that O
(
xi, Vnx(i)

)
is dense in W . Let γ0, . . . , γ�−1 ∈

Vnx(i) such that, setting zj = s (γj) for j < � and z� = r (γ�−1), one has that z0 = xi,
z� ∈ W , and zj+1 = r (γj) for j < �. Since by inductive assumption we have that
∀z ∈ s

[
Vnx(i)

]
, ∀∗γ ∈ Vnx(i)z, f(r(γ)) ∈ Nkx(i)f(z), after modifying the sequence

(γ0, . . . , γ�−1) we can assume that, for every j < �, f (zj+1) = pjf (zj) for some
pj ∈ Nkx(i). Therefore f(z�) = pf(z) where p = p�−1p�−2 · · · p0 ∈ Nkx(i). We may

then let xi+1 = z�, gi+1 = pgi, kx(i + 1) = max
{
gi+1(λ), g

−1
i+1(λ) : λ ≤ i+ 1

}
, and

nx(i + 1) ∈ N such that xi+1 ∈ Vnx(i+1) and ∀x′ ∈ s
[
Vnx(i+1)

]
, ∀∗γ ∈ Vnx(i+1)x

′,
f(r(γ)) ∈ Nkx(i+1)f(x

′). This concludes the definition of xi+1, gi+1, nx(i+ 1). �

5. Admissible log-convex sequences

Recall from Section 3 that a sequence a in (0, 1]N is admissible log-convex if
a0 = 1, ( an

an+1
)n is nonincreasing and converges to 1, and

∑
n an = ∞. The set

A0 ⊂ (0, 1]N of admissible log-convex sequences is Borel. We say that two admissible
log-convex sequences a and a′ are growth equivalent if there exist c, C > 0 such that

c ≤ a′
n

an
≤ C ′ for every n ∈ N. We denote by EA0

the corresponding equivalence
relation on A0. The main goal of this section is to prove the following result:

Proposition 5.1. Admissible log-convex sequences considered up to growth equiv-
alence are not classifiable by countable structures.

However, it is not difficult to verify that admissible log-convex sequences are
classifiable by the orbits of a Polish group action up to growth equivalence. This
means that there exists a continuous Polish group action G � X such that EA0

is
Borel reducible to the orbit equivalence relation EX

G . The crucial point is that if

B = {(− log(an)) : (an) ∈ A} ⊂ (0,∞)N,

then
H = {z ∈ �∞ : there exist x, y ∈ B with x− y = z}

is a subgroup of �∞ which is separable in the �∞-metric, and two sequences (an), (a
′
n)

in A have the same growth if and only if (− log(an)) and (− log(a′n)) belong to the
same H-orbit under translation.
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The rest of this section is dedicated to the proof of Proposition 5.1. Consider

the equivalence relation F on (0, 1)
N
defined by

sFs′ if and only if sup
n

∣∣∣∣∣∣
∑
k<n

⎛
⎝∏

i≤k

si −
∏
i≤k

s′i

⎞
⎠
∣∣∣∣∣∣ < ∞.

Define furthermore the Borel function

(0, 1)N → (0, 1]N

s 	→ f (s) = exp

⎛
⎝−

∑
k<n

∏
i≤k

si

⎞
⎠

n∈N

where the empty sum is 0. Observe that for s ∈ (0, 1)N, we have that f(s)0 = 1,

f(s) is log-convex and f(s)n/f(s)n+1 ≥ 1 for all n ∈ N. Let X ⊂ (0, 1)N be the

set of s ∈ (0, 1)
N
such that f (s) ∈ A0. Using the fact that f(s) ∈ A0 if and only

if f(s) is not summable, it is not difficult to verify that X is a dense Gδ subset of

(0, 1)
N
. The restriction f |X of f to X is a Borel reduction from F |X to EA0

. It is
thus enough to show that F |X is not classifiable by countable structures.

Lemma 5.2. F has meager classes.

Proof. Fix s ∈ (0, 1). We want to show that the F -class of s is meager. We can
assume without loss of generality that

∏
i≤k si → 0 for k → ∞, as the set of such

s is a comeager subset of (0, 1)N. Fix m ∈ N and let Km be the (closed) set of
t ∈ (0, 1)N such that, for every n ∈ N,∣∣∣∣∣∣

∑
k<n

⎛
⎝∏

i≤k

si −
∏
i≤k

ti

⎞
⎠
∣∣∣∣∣∣ ≤ m.

Observe that if t0 ∈ K and n0 ∈ N, then the element t of (0, 1]N defined by

ti =

{
t0i for i ≤ n0,
1− 2−i otherwise

does not belong to Km. Therefore Km is nowhere dense. Finally observe that the
F -class of s is

⋃
m Km. �

Now let Γ be the subgroup of RN
+ containing those sequences g such that

∑
n

∣∣∣∣∣∣
∏
k≤n

gk − 1

∣∣∣∣∣∣ < ∞.

Observe that Γ is indeed a subgroup of RN
+. In fact suppose that g,h ∈ Γ. Fix

n0 ∈ N such that ∣∣∣∣∣∣
∏
k≤n

gk − 1

∣∣∣∣∣∣ ≤
1

2

for every n ≥ n0. Then

∑
n∈N

∣∣∣∣∣∣
∏
k≤n

g−1
k − 1

∣∣∣∣∣∣ ≤
∑
n<n0

∣∣∣∣∣∣
∏
k≤n

g−1
k − 1

∣∣∣∣∣∣+ 2
∑
n∈N

∣∣∣∣∣∣
∏
k≤n

gk − 1

∣∣∣∣∣∣ < ∞
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and hence g−1 ∈ Γ. Furthermore

∑
n∈N

∣∣∣∣∣∣
∏
k≤n

gkhk − 1

∣∣∣∣∣∣ ≤
∑
n<n0

∣∣∣∣∣∣
∏
k≤n

gkhk − 1

∣∣∣∣∣∣+
3

2

∑
n∈N

∣∣∣∣∣∣
∏
k≤n

hk − 1

∣∣∣∣∣∣+
∑
n

∣∣∣∣∣∣
∏
k≤n

gk − 1

∣∣∣∣∣∣ < ∞

and hence gh ∈ Γ. Consider the coordinate-wise multiplication action Γ � RN
+.

Let E be the restriction to (0, 1)
N
of the orbit equivalence relation of the action

Γ � RN
+. Since F has meager classes, X ⊂ (0, 1)N is comeager, and E ⊂ F , in

order to prove that F |X is not classifiable by countable structures it is enough to
show that E is generically S∞-ergodic.

Define the bi-invariant metric dΓ on Γ by setting

dΓ (g,h) =
∑
n∈N

∣∣∣∣∣∣
∏
k≤n

gk −
∏
k≤n

hk

∣∣∣∣∣∣ .
We claim that dΓ induces a Polish topology on Γ. To this end, consider the injective
map Φ : RN

+ → RN defined by

a 	→

⎛
⎝
⎛
⎝∏

k≤n

ak

⎞
⎠− 1

⎞
⎠

n

.

Observe that the restriction of Φ to Γ is an isometry from (Γ, dΓ) to �1 endowed
with the �1-metric. Furthermore the image of Γ under Φ is a Gδ subset of �1, since
b ∈ Φ [Γ] if and only if bn > −1 for every n ∈ N. Since a Gδ subspace of a Polish
space is Polish [19, Theorem 3.11], this concludes the proof that dΓ induces a Polish
topology on Γ.

If g ∈ Γ and s ∈ (0, 1)N, define gs ∈ R
N
+ by

(gs)n = gnsn.

Consider now the groupoid

G =
{
(g, s) ∈ Γ× (0, 1)N : gs ∈ (0, 1)N

}
.

Composition and inversion of arrows in G are defined by

(g, s) (h, t) = (gh, t)

whenever ht = s, and

(g, s)−1 =
(
g−1, gs

)
.

Being a closed subset of Γ× (0, 1)N, G is Polish with the induced topology. Clearly
composition and inversion of arrows are continuous. Furthermore the map (1, s) 	→
s allows one to identify the set of objects of G with (0, 1)N. It remains to show
that composition of arrows is open. To this purpose it is enough to show that the
source map

G → (0, 1)N

(g, s) 	→ s

is open; see [26, Exercise I.1.8]. Suppose that (g, s) ∈ G and U is an open neigh-
borhood of (g, s). Thus there exist ε > 0 and N ∈ N such that U contains all the
pairs (h, t) ∈ G such that dΓ (g,h) < ε and |sn − tn| < ε for n ≤ N . Suppose that
ε > η > 0 is such that gn (sn + η) < 1 for every n ≤ N . Consider the neighborhood
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W of s consisting of those t ∈ (0, 1)N such that |sn − tn| < η for every n ≤ N . We
claim that s [U ] ⊃ W . In fact if t ∈ W we have that for n ≤ N ,

gntn ≤ gn (sn + η) < 1

and therefore (g, t) ∈ U .
In the following lemma we establish that G is a turbulent Polish groupoid. To-

gether with Theorem 4.3, this implies that its associated orbit equivalence relation
E is generically S∞-ergodic, concluding the proof of Proposition 5.1.

Lemma 5.3. Any element s of (0, 1)N is a turbulent object with dense orbit for the
Polish groupoid G.

Proof. It is easy to see that the orbit of s is dense. It remains to show that for any
neighborhood V of (1, s) in G the local orbit O (s, V ) is somewhere dense. Without
loss of generality we can assume that there exist ε > 0 and n0 ∈ N such that if

U =

{
t ∈ (0, 1)N : ∀n ≤ n0,

∣∣∣∣ tnsn − 1

∣∣∣∣ < ε

}
and

W = {g ∈ Γ : dΓ (g,1) < ε} ,
then V = (W × U) ∩G. We claim that the local orbit O (s, V ) is dense in U . Fix
t ∈ U and n1 ≥ n0. Let N ∈ N, to be determined later. Set

gk =

⎧⎨
⎩

N
√
tk/sk for k ≤ n1,∏

j≤n1

N
√
sj/tj for k = n1 + 1,

1 otherwise.

Observe that, for N large enough, we have that g ∈ Γ, d (g,1) < ε, and gis ∈ U for
every i ≤ N . Finally observe that gNk sk = tk for k ≤ n1. This concludes the proof
that the local orbit O (s, V ) is dense in U . Since this is true for every neighborhood
V of s in G, s is a turbulent point for G. �

6. Conformal equivalence of operator algebraic varieties

Fix d ∈ N and let Vd be the space of operator algebraic varieties in Bd. Denote
by Aut(Bd) the group of conformal automorphisms of Bd. The pseudo-hyperbolic
distance ρ on Bd is defined by

ρ (a, b) = ‖ϕa (b)‖ ,
where ‖·‖ is the usual Euclidean norm and ϕa is the conformal automorphism of Bd

which interchanges 0 and a defined in [27, Subsection 2.2.1]. Recall that ρ is a proper
metric (since its closed balls coincide with Euclidean closed balls) that induces the
usual topology in Bd. Furthermore, Aut(Bd) is a closed subgroup of the group of
isometries of (Bd, ρ), and hence a locally compact Polish group when endowed with
the compact-open topology. More information about conformal automorphisms
of Bd can be found in [27, Chapter 2]. Consider the Borel action of Aut(Bd) on

Vd defined by (α, V ) 	→ α [V ]. Observe that the relation EVd

Aut(Bd)
of Aut(Bd)-

conformal equivalence of operator algebraic varieties in Bd is the orbit equivalence
relation associated with this action. Therefore, it follows from [18, Theorem 1.1]

that EVd

Aut(Bd)
is essentially countable.

The rest of this section is devoted to proving Theorem 1.2, asserting that EVd

Aut(Bd)

has in fact maximum complexity among essentially countable equivalence relations.
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As explained in the introduction, the same conclusion will then apply to the relation
of (completely) isometric isomorphisms of multiplier algebras Mult(H2

∞|V ) for V ∈
Vd.

Observe that the canonical inclusion of Bd into Bd+1 induces an inclusion of
Vd into Vd+1. According to the following proposition, this inclusion is a Borel
reduction from the relation of Aut(Bd)-conformal equivalence on Vd to the relation
of Aut(Bd+1)-conformal equivalence on Vd+1. We mention that this result also
follows from [8, Theorem 4.4].

Proposition 6.1. Let X,Y ⊂ Bd be subsets. Then X and Y are conformally
equivalent via an element of Aut(Bd) if and only if they are conformally equivalent
via an element of Aut(Bd+1).

Proof. By [27, Section 2.2.8], every conformal automorphism of Bd extends to a
conformal automorphism of Bd+1. This establishes one direction.

Conversely, suppose that F ∈ Aut(Bd+1) mapsX onto Y , and letG ⊂ Aut(Bd+1)
denote the subgroup of all automorphisms which fix Bd. We wish to show that X
and Y are G-equivalent. Since Aut(Bd) acts transitively on Bd [27, Theorem 2.2.3],
and since every element of Aut(Bd) extends to an element of G, the subgroup G
acts transitively on Bd. We may therefore assume that 0 ∈ X and 0 ∈ Y . By
Proposition 2.4.2 in [27] and the discussion preceding it, F maps the affine span of
X onto the affine span of Y . Hence, F maps span(X)∩Bd onto span(Y )∩Bd, where
span denotes the linear span. Since span(X)∩Bd and span(Y )∩Bd are themselves
unitarily equivalent to complex balls of dimension e ≤ d, and since automorphisms
of Be extend to automorphisms of higher-dimensional balls, we conclude that there

exists a map F̃ ∈ G such that F |span(X)∩Bd
= F̃ |span(X)∩Bd

. This completes the
proof. �

Therefore to establish the desired lower bound on the complexity of EVd

Aut(Bd)

it suffices to consider the case d = 1. The 1-dimensional complex Euclidean ball
is usually called the disc and denoted by D. The elements of V1 \ {D} are called
Blaschke sequences. For background material on Blaschke sequences, the reader is
referred to [13, Chapter II, Section 2]. Recall from Section 2 that the orbit equiva-
lence relation E(F2, 2) associated with the left translation action of the free group
F2 on its subsets has maximum complexity among essentially countable equivalence
relation. We will now show that E(F2, 2) is Borel reducible to the relation EVd

Aut(Bd)

of Aut(D)-conformal equivalence of Blaschke sequences. To this end, we will adapt
the proof of [17, Theorem 4.1].

The lower bound in [17, Theorem 4.1] is achieved by encoding the action of F2

on {0, 1}F2 by translation. The crucial point in this proof is that Aut(D) contains a
copy of F2 such that the orbit of every point in D is discrete. We require something
stronger, namely that the orbit of every point is a Blaschke sequence.

Proposition 6.2. There exists a discrete group Γ ⊂ Aut(D) which is isomorphic
to F2 such that ∑

g∈Γ

(1− |g(z)|) < ∞

for every z ∈ D.

Proof. Let g1 and g2 be two conformal automorphisms of D which generate a Schot-
tky group (see Chapter II, Section 1 in [7]), and let Γ be the group generated by
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g1 and g2. Then Γ is isomorphic to F2 by [7, Chapter II, Proposition 1.6]. By
the same proposition, the closure of the Dirichlet domain D0(Γ) of Γ contains non-
trivial arcs in ∂D (see [7, Chapter I, Section 2.3] for the definition of the Dirichlet

domain). In particular, the Lebesgue measure of D0(Γ)∩ ∂D is strictly positive. In
this situation, [30, Theorem XI.4] applies to show that∑

g∈Γ

(1− |g(0)|) < ∞.

Finally, the argument preceding Theorem XI.3 in [30] shows that this sum is finite
if 0 is replaced with an arbitrary point z ∈ D. �

It seems worthwhile to give a concrete example of two conformal automorphisms
of D which generate a group Γ as in the statement of the proposition. Let H denote
the upper half-plane in C. Recall that D and H are conformally equivalent via the
Cayley map

H → D

z 	→ z − i

z + i
.

This map induces an isomorphism of topological groups between Aut(D) and
Aut(H). Moreover, Aut(H) is isomorphic to PSL2(R) via the map that assigns
to the matrix

(
a b
c d

)
∈ PSL2(R) the corresponding Möbius transformation

z 	→ az + b

cz + d
.

Let Φ : PSL2(R) → Aut(D) denote the isomorphism obtained by composing the
two isomorphisms above. The group Λ considered in the proof of [17, Theorem 4.1]
is generated by the images of(

1 2
0 1

)
and

(
1 0
2 1

)
under Φ. The group Λ is isomorphic to F2, but the orbit of 0 under Λ is not a
Blaschke sequence. This follows from the following facts:

• Λ has finite index in PSL(2,Z), and
• the orbit of 0 under Φ [PSL2(Z)] is not a Blaschke sequence, as its conical
limit set on ∂D has positive Lebesgue measure; see [7, Chapter II, Section
3.1].

Moreover, Λ is not a Schottky group, but just a generalized Schottky group in
the sense of [7, Chapter II, Section 1.1]. However, if we let Γ ⊂ Aut(D) denote the
group generated by the images of(

1 3
0 1

)
and

(
1 0
3 1

)
,

then it is not hard to see that Γ is indeed a Schottky group and thus satisfies the
conclusion of the proposition.

In the proof of the next theorem, we require the following elementary observation.

Lemma 6.3. Let (X, d) be a metric space and let x(0), x(1), x(2) and y(0), y(1), y(2),
y(3) by points in X such that

d(x(i), x(j)) = d(y(i), y(j))
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for 0 ≤ i, j ≤ 2 and such that the distances d(y(i), y(j)) are all distinct for 0 ≤ i <
j ≤ 3. If θ : X → X is an isometry such that

θ({x(0), x(1), x(2)}) ⊂ {y(0), y(1), y(2), y(3)},
then θ(x(i)) = y(i) for 0 ≤ i ≤ 2.

Proof. The assumptions on the distances and the fact that θ is an isometry imply
that

θ({x(0), x(1)}) = {y(0), y(1)},
θ({x(0), x(2)}) = {y(0), y(2)}, and

θ({x(1), x(2)}) = {y(1), y(2)}.

This is only possible if θ(x(i)) = y(i) for 0 ≤ i ≤ 2. �
We are now ready to prove the main result of this section.

Theorem 6.4. The relation E(F2, 2) is Borel reducible to the relation of Aut(D)-
conformal equivalence of Blaschke sequences.

Proof. The proof is an adaptation of the proof of the lower bound in [17, Theorem
4.1]. The details are as follows.

Let Γ be a group as in Proposition 6.2. We will identify F2 with Γ. Moreover,
let ρ be the pseudohyperbolic metric on D, and for z ∈ D and ε > 0, let

Dε(z) = {y ∈ D : ρ(y, z) < ε}.
We will explicitly construct four Blaschke sequences

Bi = {x(i)
g : g ∈ F2}

for 0 ≤ i ≤ 3 and find ε > 0 with the following properties:

(1) gx
(i)
h = x

(i)
gh for g, h ∈ F2 and 0 ≤ i ≤ 3;

(2) x
(i)
g ∈ Dε/5(x

(0)
g ) for g ∈ F2 and 0 ≤ i ≤ 3;

(3) Dε/2(x
(0)
g ) ∩ (B0 ∪B1 ∪B2 ∪B3) = {x(i)

g : 0 ≤ i ≤ 3};
(4) the distances ρ(x

(i)
g , x

(j)
g ) do not depend on g ∈ F2 and are all distinct and

positive for 0 ≤ i < j ≤ 3.

The construction proceeds as follows. Let x
(0)
1 ∈ D be arbitrary and set x

(0)
g =

g(x
(0)
1 ) for g ∈ F2. Let B0 = {x(0)

g : g ∈ F2}. Then B0 is a Blaschke sequence. In
particular, there exists ε > 0 such that

Dε(x
(0)
1 ) ∩B0 = {x(0)

1 }.

Choose distinct points x
(i)
1 ∈ Dε/5(x

(0)
1 ) \ {x(0)

1 } for i ∈ {1, 2, 3} such that the

pseudohyperbolic distances ρ(x
(i)
1 , x

(j)
1 ) for i < j are all different from each other,

and define x
(i)
g = g(x

(i)
1 ) for i ∈ {1, 2, 3} and g ∈ F2. Moreover, set Bi = {x(i)

g :g ∈
F2}. Using the fact that every g ∈ F2 is an isometry with respect to ρ, properties
(1)–(4) are now easy to verify.

Given A ⊂ F2, let

VA = B0 ∪B1 ∪B2 ∪ {x(3)
g : g ∈ A}.

We will show that A = gB for some g ∈ F2 if and only if VA and VB are Aut(D)-
conformally equivalent. Clearly, if g ∈ F2 such that gA = B, then g[VA] = VB;
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hence VA and VB are Aut(D)-conformally equivalent. Conversely, assume that there
exists θ ∈ Aut(D) with θ[VA] = VB . We will show that there exists g ∈ F2 such

that θ = g. Since x
(0)
1 ∈ VA, there exists g ∈ F2 and i ∈ {0, 1, 2, 3} such that

θ(x
(0)
1 ) = x

(i)
g . Observe that for k ∈ {1, 2}, we have

ρ(θ(x
(k)
1 ), x(i)

g ) = ρ(θ(x
(k)
1 ), θ(x

(0)
1 )) = ρ(x

(k)
1 , x

(0)
1 ) < ε/5

by condition (2). By the same condition, ρ(x
(i)
g , x

(0)
g ) < ε/5, hence

θ(x
(k)
1 ) ∈ Dε/2(x

(0)
g ).

Therefore, condition (3) implies that

θ({x(0)
1 , x

(1)
1 , x

(2)
1 }) ⊂ {x(i)

g : 0 ≤ i ≤ 3}.

In light of condition (4), an application of Lemma 6.3 shows that θ(x
(i)
1 ) = x

(i)
g for

0 ≤ i ≤ 2. This means that θ and g are two Möbius transformations which agree on
three points. Consequently, θ = g; see for example [23, Theorem 10.10]. We finish

the proof by showing that gA = B. Note that if h ∈ A, then x
(3)
h ∈ VA. Therefore,

x
(3)
gh = g(x

(3)
h ) = θ(x

(3)
h ) ∈ VB , so gh ∈ B. This shows that gA ⊂ B. Similarly,

g−1B ⊂ A, so gA = B, as desired. �

Appendix

Recall that if X is a Polish space, then the space F (X) of nonempty closed
subsets ofX is a standard Borel space when endowed with the Effros Borel structure
[19, Section 12.C]. This is the Borel structure generated by the sets

{K ∈ F (X) : K ∩ U �= ∅}
where U ranges over the open subsets of X. The Kuratowski–Ryll-Nardzewski
theorem asserts that there exists a sequence (σn) of Borel maps from F (X) to X
such that (σn(A)) enumerates a dense subset of A for every nonempty closed subset
A of X [19, Theorem 12.13].

Fix d ∈ N ∪ {∞}, and let Vd ⊂ F (Bd) be the set of operator algebraic varieties
in Bd. For d ≤ d′ the canonical inclusion Bd ⊂ Bd′ induces a Borel injection from
Vd into Vd′ .

Proposition. The set Vd of operator algebraic varieties in Bd is a Borel subset of
F (Bd).

Proof. Let H2
d be the Drury-Arveson space. Observe that Vd is the image of F (H2

d)
under the Borel map that assigns to a closed subset S of H2

d the operator algebraic
variety VS of common zeros of elements of S. Therefore Vd is analytic. By [19,
Theorem 14.7] it remains to show that Vd is coanalytic. Fix a dense subset D in
the unit ball of H2

d and a sequence (σn) of Borel functions from F (Bd) to Bd such
that (σn(S)) enumerates a dense subset of S for every nonempty closed subset S
of Bd. We claim that a closed subset V of Bd is an operator algebraic variety if
and only if for every x ∈ Bd either x ∈ V or there exists a strictly positive rational
number ε such that for every n ∈ N there exists f ∈ D such that |f(x)| ≥ ε and
|f (σi(V ))| ≤ 2−n for every i ≤ n.

One implication is obvious. For the other implication it is enough to observe
that if x ∈ Bd and (fn) is a sequence in the unit ball of H2

d , then (fn) has an
accumulation point f in the unit ball of H2

d with respect to the weak topology. If
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furthermore |fn(x)| ≥ ε and |f (σi(V ))| ≤ 2−n for every i ≤ n, then f(x) �= 0 and
f vanishes on V . This shows that V is the set of common zeroes of all the elements
of H2

d that vanish on V , and hence it is an operator algebraic variety. �
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