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ASYMPTOTIC SYZYGIES OF STANLEY-REISNER RINGS

OF ITERATED SUBDIVISIONS

ALDO CONCA, MARTINA JUHNKE-KUBITZKE, AND VOLKMAR WELKER

Abstract. Inspired by recent results of Ein, Lazarsfeld, Erman and Zhou on
the non-vanishing of Betti numbers of high Veronese subrings, we describe the

behavior of the Betti numbers of Stanley-Reisner rings associated with iterated
barycentric or edgewise subdivisions of a given simplicial complex. Our results
show that for a simplicial complex Δ of dimension d− 1 and for 1 ≤ j ≤ d− 1
the number of 0’s in the jth linear strand of the minimal free resolution of the
rth barycentric or edgewise subdivision is bounded above only in terms of d
and j (and independently of r).

1. Introduction

In recent work, Ein, Lazarsfeld and Erman [17, 18] and Zhou [28] study the
asymptotic behavior of syzygies of algebraic varieties under high Veronese embed-
dings. In particular, they treat the case of the syzygies of rth Veronese embeddings
vr(P

n) of projective space Pn. Roughly speaking, they prove that for large r the
syzygies of vr(P

n) are non-zero for most of the homological positions and internal
degrees that are allowed by the restrictions imposed by the projective dimension
and by the Castelnuovo-Mumford regularity. Similar results, but with less precise
bounds, are obtained for arithmetically Cohen-Macaulay varieties and are conjec-
tured in general.

The goal of this paper is to prove that a similar behavior occurs also for the
syzygies of Stanley-Reisner rings of iterated barycentric subdivisions and edge-
wise subdivisions. These two combinatorial operations on simplical complexes have
some formal similarity (but also some important dissimilarity) to the formation
of Veronese subalgebras. Moreover, as we explain later on, the edgewise subdivi-
sion of a simplicial complex is closely related, via Gröbner deformations, with the
formation of Veronese subalgebras of the associated Stanley-Reisner ring.

Let K be a field and let S = K[x1, . . . , xn] be the polynomial ring. Let I be a
homogeneous ideal of S such that I ⊂ (x1, . . . , xn)

2. Let A = S/I =
⊕

i≥0 Ai be a

standard graded K-algebra. Denote by βi,j(A) the graded Betti number of A, i.e.,

βi,j(A) = dimK TorSi (A,K)j = dimK Hi(mA, A)j .

Here Hi(mA, A) denotes the ith Koszul homology of the maximal homogeneous
ideal mA =

⊕
i≥1 Ai of A, and the index j on the right always denotes the selection

of the jth homogeneous component.
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The rth Veronese algebra of A is by definition

A(r) =
⊕
i≥0

Air.

One of the main results of Ein and Lazarsfeld [17, Theorem B] asserts that for
every integer j in the interval [1, n−1] the graded Betti numbers βi,i+j(S

(r)) of the
rth Veronese subalgebra of the polynomial ring S are asymptotically (i.e., for large
r) non-zero for every integer i in an interval [aj , bj ] with specified endpoints aj , bj
that depend on j. Note that the Castelnuovo-Mumford regularity of S(r) is always
≤ n−1 with equality for large r. Hence it is clear that βi,i+j(S

(r)) = 0 for j outside

the interval [1, n − 1] with the exception of β0,0(S
(r)) = 1. Comparing the size of

the intervals [aj , bj ] with the projective dimension of S(r) (i.e., the length of the

minimal free resolution) one deduces that for large r the Betti number βi,i+j(S
(r)) is

non-zero for most of the values of i, j, which are allowed by the restrictions imposed
by the value of the projective dimension and the Castelnuovo-Mumford regularity.

In [18] a similar result, but with a less precise description of the intervals, is
proved for the Betti numbers βi,i+j(A

(r)) of the Veronese subalgebras of an ar-
bitrary Cohen-Macaulay algebra A. In particular, it follows that for every j =
1, . . . , dimA− 1 one has

(1.1) lim
r→∞

#{i : βi,i+j(A
(r)) �= 0}

pdim(A(r))
= 1.

Furthermore, the authors conjecture that the same behavior holds for an arbitrary
standard graded K-algebra. Note also that, at least when the variety associated to
A is smooth, for j = dim(A) the limit in (1.1) is 0 since the number of non-zero
syzygies in that strand is bounded independently of d; see [17, Cor. 5.2].

Let Δ be a simplicial complex and denote by K[Δ] the corresponding Stanley-
Reisner ring. We consider two combinatorial operations on simplicial complexes:
the iterated barycentric subdivision and edgewise subdivisions. We will denote by
sdr(Δ) the rth iterated barycentric subdivision of Δ and by Δ〈r〉 the rth edgewise
subdivision of Δ, whose definition is recalled in Section 1.1.

We study the asymptotic behavior of βi,i+j(K[sdr(Δ)]) and βi,i+j(K[Δ〈r〉]). The
main results we prove are Theorem 3.14, Proposition 3.19, Theorem 4.10 and
Proposition 4.14, whose central content is the following:

Theorem 1.1. Let Δ be an arbitrary simplicial complex of dimension d−1 > 0. Let
Δ(r) be either the iterated barycentric subdivision sdr(Δ) or the edgewise subdivision
Δ〈r〉 of Δ. Then for large r the Castelnuovo-Mumford regularity of K[Δ(r)] is given
by

reg(K[Δ(r)]) =

{
d− 1, if H̃d−1(Δ;K) = 0,

d, if H̃d−1(Δ;K) �= 0.

Furthermore:

(1) For every j = 1, . . . , d − 1 one has that #{i : βi,i+j(K[Δ(r)]) = 0} is
bounded above in terms of d, j (and independently of r). In particular,

lim
r→∞

#{i : βi,i+j(K[Δ(r)]) �= 0}
pdim(K[Δ(r)])

= 1.
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(2) If H̃d−1(Δ;K) �= 0, then

lim
r→∞

#{i : βi,i+d(K[Δ(r)]) �= 0}
pdim(K[Δ(r)])

is a rational number in the interval [0, 1) that can be described in terms of
the minimal (d− 1)-cycles of Δ.

The limit in (2) does not depend on whether one takes iterated barycentric sub-
division or edgewise subdivision. Moreover, for any rational number in the interval
[0, 1) and any d, we construct a (d− 1)-dimensional Cohen-Macaulay complex that
realizes the specified limit. This limit measures the proportion of the number of
facets contained in a minimal (d − 1)-cycle of Δ compared to the total number of
facets of Δ. In particular, the limit equals 0 if Δ is a manifold without boundary.

Brun and Römer prove in [9, Corollary 6.5] that for every simplicial complex Δ
there is a term order ≺ such that the Veronese subalgebra K[Δ](r) of K[Δ] has a
Gröbner deformation to K[Δ〈r〉]. Betti numbers can only increase under a Gröbner
deformation, and hence one has

βi,i+j(K[Δ](r)) ≤ βi,i+j(K[Δ〈r〉])(1.2)

for every r, i, j. In particular, the assertion about the limit in Theorem 1.1(1) for
Δ〈r〉 when Δ is Cohen-Macaulay can be deduced from the results of Ein, Erman
and Lazarsfeld in [18].

Note, however, the conclusion from Theorem 1.1(1) that the cardinality of
{i : βi,i+j(K[Δ(r)]) = 0} is bounded only in terms of j, d is simply not true for iter-
ated Veronese. The latter assertion can be deduced from the results in [16, Theorem
1]. Another important difference between our results and the ones from [17,18] lies
in the limit of the relative size of the dth strand. In our context the limit behavior
yields a number in [0, 1) and any number is possible. In the Veronese case, at least
for the coordinate rings of smooth varieties in characteristic 0, the length on the dth

strand is constant. Hence the corresponding limit is 0; see [17, Eq. (1.3), p. 607].
One may ask if replacing the Stanley-Reisner ideal of the edgewise subdivision

Δ〈r〉 on the right-hand side of (1.2) by a different initial ideal of the ideal from the
left-hand side can lead to equality in (1.2). Already for Δ = Δd−1 and K[Δ] = S,
the polynomial ring on n = d variables, this is not, in general, the case. The
ideal defining S〈r〉 is well known to be generated by quadrics for all r. Hence any
initial ideal achieving equality in (1.2) must be generated by quadrics as well. For
monomial ideals generated by quadrics Theorem 4.1 from [13] provides an upper
bound on the regularity which depends on the number of steps the resolution is
linear. The number of steps for which the resolution of S〈r〉 is linear has been
studied intensively under the name Np property; see for example [8]. In particular

it is known that, in arbitrary characteristic, the resolution of S〈r〉 is linear for
r steps. Evaluating the inequality from [13, Theorem 4.1] at the known bounds
shows no initial ideal whose resolution is linear for the same number of steps that
can achieve regularity d − 1 at least for certain combinations of values of d and r
as, for example, those given in [1, 7.5].

Our methods are mostly geometric and combinatorial and are based on Hoch-
ster’s formula expressing the Betti numbers in terms of homologies of induced sub-
complexes. The case when Δ = Δd−1 is the full (d − 1)-simplex turns out to be
crucial. A key observation for this analysis is (see Proposition 4.2) that links of
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faces of Δ
〈r〉
d−1, whose interior lies in the interior of Δd−1, are barycentric subdivi-

sions of boundaries of full simplices. This essentially reduces the analysis of the
Betti numbers of K[Δ〈r〉] and of K[sdr(Δ)] to the analysis of the Betti numbers of
K[sd(Δd−1)]. One of the referees pointed out that this argument is similar, in spirit,
to the one used by Ein, Erman and Lazarsfeld in [18]. This analysis is performed
in Section 3 and appears to be of independent interest.

We remark that many of the arguments that we present go through for arbitrary
subdivision operations that satisfy mild assumptions. The actual formulation of the
assumption is technical and does not give too much insight, but the requirement is
twofold. First, starting with a subdivision of the (d − 1)-simplex (see [26] for the
definition) this subdivision has to induce a well-defined subdivision operation on
any pure (d− 1)-dimensional simplicial complex. In particular, the subdivision can
be applied iteratively. The second technical requirement roughly says that when
iteratively subdividing a simplex “sufficiently many” new vertices are created in
the interior of the simplex. The conclusion will be that for a simplicial complex
Δ of dimension d− 1 and a suitable subdivision operation Sub, if for some j < d,
1 ≤ k and r ≥ 0 we have βk,k+j(K[Subr(Δ)]) �= 0, then

lim
r→∞

#{i : βi,i+j(K[Subr(Δ)]) �= 0}
pdim(K[Subr(Δ)])

= 1.

Examples of suitable subdivision operations can be found in various articles;
see for example [12, p. 414] and [27, Section 4]. Note that there are suitable
subdivision operations that fail to produce non-zero βi,i+j(Sub(K[Δ])) for every
1 ≤ j ≤ d − 1 and for some i. Consider for example the subdivision of (d − 1)-
dimensional simplicial complexes where we subdivide by coning the boundary of
each (d− 1)-simplex over a point in the interior of the simplex. Already for the 3-
simplex, none of the induced subcomplexes obtained by iterating this construction
will have non-trivial homology in dimension 1.

1.1. Notation and background. Let Δ be a simplicial complex on ground set
Ω. We call an element F ∈ Δ a face of Δ with dimension dimF := #F − 1.
The dimension dimΔ of Δ is then the maximal dimension of one of its faces. If
dimΔ = d − 1, then we write fΔ = (fΔ

−1, . . . , f
Δ
d−1) for the f -vector of Δ, where

fΔ
i counts the number of i-dimensional faces in Δ.
Sometimes we are interested in subsets of Δ that are not necessarily simplicial

complexes themselves. Let Γ ⊆ Δ be such a subset. Then we consider Γ as a
partially ordered set ordered by inclusion and write Δ(Γ) for its order complex
that is the set of all subsets of Γ that are linearly ordered. If Γ = Δ \ {∅}, then
sd(Δ) := Δ(Γ) is the barycentric subdivision of Δ. The other subdivision operation
that is important for this paper is the edgewise subdivision. Assume Δ is (d− 1)-
dimensional with vertex set [n] := {1, . . . , n} and let r ≥ 1 be a positive integer.
Set Ωr,n := {(i1, . . . , in) ∈ Nn : i1+ · · ·+ in = r}. Denote by ei the i

th unit vector
of Rn. By the obvious identification, we can consider Δ as a simplicial complex
over the vertex set Ω1,n = {e1, . . . , en}. For i ∈ [n] set ui := ei + · · · + en and for
a = (a1, . . . , an) ∈ Zn let i(a) :=

∑n
l=1 al · ul. The rth edgewise subdivision of Δ is

the simplicial complex Δ〈r〉 on ground set Ωr,n such that F ⊆ Ωr,n is a simplex in

Δ〈r〉 if and only if

(i)
⋃

a∈F supp(a) ∈ Δ, and
(ii) for all a, ã ∈ F either i(a− ã) ∈ {0, 1}n or i(ã− a) ∈ {0, 1}n.
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If we denote by |Δ| the geometric realization of Δ, then we can choose realizations
such that |Δ| = |sd(Δ)| = |Δ〈r〉|. If F is a face of Δ, we sometimes write |F | to
denote the geometric realization of the subcomplex 2F of Δ. By ∂|Δ| we denote
the boundary of |Δ|.

For a simplical complex Δ on ground set Ω its Stanley-Reisner ideal IΔ is the
ideal in S = K[xω : ω ∈ Ω] generated by monomials

∏
ω∈N xω for N �∈ Δ.

K[Δ] := S/IΔ is called the Stanley-Reisner ring of Δ. For background on the
algebraic invariants of K[Δ] studied in this paper we refer to [10, 19].

2. Basic algebraic invariants under Veronese, barycentric

and edgewise subdivision

In this section we recall how some basic invariants of standard graded K-algebras
and Stanley-Reisner rings behave under the Veronese operation on the algebra and
barycentric/edgewise subdivision on the simplicial complex.

In the following A =
⊕∞

i=0 Ai will denote a standard graded K-algebra of Krull

dimension d > 0 and Hi
mA

(A) will denote the ith local cohomology module with

respect to the maximal homogeneous ideal mA =
⊕∞

i=1 Ai of A. Furthermore, Δ
will denote a simplicial complex of dimension d − 1 ≥ 0. We denote by t1(A) the
largest degree of a minimal generator of the defining ideal of A as a quotient of the
polynomial ring in dimA1 variables. Hence t1(K[Δ]) is the largest cardinality of a
minimal non-face of Δ and t1(K[Δ]) = 2 if and only if Δ is a flag complex. Set
ad(A) = max{j : Hd

mA
(A)j �= 0} and

w(Δ,K) =

{
d− 1, if H̃d−1(Δ;K) = 0,

d, if H̃d−1(Δ;K) �= 0.

We have:

Table 1

(1) (2) (3) (4)

A(r) K[Δ](r) K[Δ〈r〉] K[sdr(Δ)]

dim dimA dimK[Δ] dimK[Δ] dimK[Δ]

depth ≥ depth A depth K[Δ] depth K[Δ] depth K[Δ]

t1 2 ∗ 2 ∗ Lemma 4.1 2

reg
d− 1, if ad(A) < 0
d, if ad(A) ≥ 0

∗ w(Δ,K) ∗ w(Δ,K) ∗ w(Δ,K)

An asterik ∗ in Table 1 signals that the formula holds for large values of r. For
these formulas estimates holding for all r may also exist; for example, t1(A

(r)) ≤
max{2, 
t1(A)/r�} holds for every r.

The data in column (1) are obtained by applying the formula that relates the
local cohomology before and after applying the Veronese functor (see [21, Thm.
3.1.1]) and the assertion that Hd

mA
(A)j �= 0 for every j ≤ ad(A) (see [11, Prop.

2.2]). It might happen that depth A(r) > depth A for every r > 1. Take, for
example, A = K[x, y]/(x2, xy) or, if one wants a domain, A = K[x4, x3y, xy3, y4].

The data in column (2) are obtained using [21, Thm. 3.1.1] and Hochster’s
formula for local cohomology modules of Stanley-Reisner rings [10, Thm. 5.3.8].
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Next we turn to the data in column (3). The row on dimension is clear by
construction. The invariance of depth under edgewise subdivision follows from
Munkres’ result [25, Thm. 3.1] since |Δ| = |Δ〈r〉|. In Lemma 4.1 we prove that if Δ
is not a simplex, one has either t1(K[Δ〈r〉]) = t1(K[Δ])−1 or t1(K[Δ〈r〉]) = t1(K[Δ])
depending on certain features of Δ that we describe. If Δ is a simplex, then one
has t1(K[Δ〈r〉]) = 2 for every r > 1.

The formula for the regularity will be proved in Corollary 4.5.
Finally, for the data in column (4), the dimension and the value of t1 are clear

by construction. The formula for regularity follows from [22, Prop. 2.6]. Again
Munkres’ result [25, Thm. 3.1] and |Δ| = |sd(Δ)| show the invariance of depth.
This also follows through a more direct argument from [22, Cor. 2.5].

3. Barycentric subdivision

In this section we provide the analysis of the Betti numbers βi,i+j(K[sd(Δ)])
of the Stanley-Reisner ring of the barycentric subdivision of a simplicial complex
Δ. Besides its combinatorial appeal it is crucial for the proof of our main result
Theorem 4.9.

We have recorded already in Table 1 how basic algebraic invariants behave under
barycentric subdivision. As the depth is preserved, it follows from the Auslander-
Buchsbaum formula that the projective dimension of the barycentric subdivision is
given by

pdim(K[sd(Δ)]) = pdim(K[Δ]) +
∑
i≥1

fΔ
i .

Recall Hochster’s formula for the graded Betti numbers of Stanley-Reisner rings
[10, Thm. 5.5.1]:

(3.1) βi,i+j(K[Δ]) =
∑

W⊆[n]
#W=i+j

dimK H̃j−1(ΔW ;K),

where ΔW = {F ∈ Δ : F ⊆ W}. In particular, if Δ is a simplicial complex on
vertex set Ω,

βi,i+j(K[Δ]) �= 0 ⇔ ∃W ⊆ Ω, #W = i+ j such that H̃j−1(ΔW ;K) �= 0.

We are interested in the range of the different strands in the minimal resolution
of K[sd(Δ)]. More precisely, for all 1 ≤ j ≤ reg(K[sd(Δ)]), we would like to identify
the set of the i’s such that βi,i+j(K[sd(Δ)]) �= 0 in terms of invariants of Δ.

3.1. Betti numbers for barycentric subdivisions of simplices. We start our
analysis with the study of the Betti numbers of the barycentric subdivision of the
(d− 1)-dimensional simplex Δd−1. Note that in this case one has

pdim(K[sd(Δd−1])) = 2d − d− 1.

We start with a definition.

Definition 3.1. Given integers d and j such that d ≥ 1 and 1 ≤ j ≤ d− 1 we set

mj(d) =

⎧⎨⎩
j, if j ≤ d/2,
2a+2(c+ d− j)− 2d+ j, if j ≥ d/2 where (2j − d) = a(d− j) + c

with a, c ∈ N and 0 ≤ c < d− j.
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When d is clear from the context, we will suppress it from the notation and simply
use mj for mj(d).

These numbers play an important role in the following results, and, as we will
see in the proofs, they arise by considerations related to the search of (j−1)-spheres
as subcomplexes of sd(Δd−1) induced by as few vertices as possible.

Theorem 3.2. Let d ≥ 1. Let Δd−1 be the (d− 1)-simplex and let sd(Δd−1) be its
barycentric subdivision. Then:

(i) If 1 ≤ j ≤ d
2 , then

βi,i+j(K[sd(Δd−1)])

⎧⎪⎨⎪⎩
= 0 for 0 ≤ i ≤ j − 1,

�= 0 for j ≤ i ≤ 2d − d− 1−md−j−1,

= 0 for 2d − 2d+ j < i ≤ 2d − d− 1.

(ii) If d
2 < j ≤ d− 2, then

βi,i+j(K[sd(Δd−1)])

⎧⎪⎨⎪⎩
= 0 for 0 ≤ i ≤ j − 1,

�= 0 for mj ≤ i ≤ 2d − 2d+ j,

= 0 for 2d − 2d+ j < i ≤ 2d − d− 1.

(iii) βi,i+d−1(K[sd(Δd−1)]) �= 0 if and only if i = 2d − d− 1.

The theorem identifies whether βi,i+j(K[sd(Δd−1)]) is zero or not, except for the
cases

• 1 ≤ j ≤ d
2 and 2d − d−md−j−1 ≤ i ≤ 2d − 2d+ j, and

• d
2 < j ≤ d− 2 and j ≤ i ≤ mj − 1.

For these values of j and i we do not know whether the corresponding Betti numbers
vanish.

We now formulate some crucial lemmas and propositions, which will lead to a
proof of Theorem 3.2. First, we introduce some notation that will be frequently
used throughout this section. For 1 ≤ j ≤ d− 1 we set

lj(d− 1) = min{i : βi,i+j(K[sd(Δd−1)]) �= 0}
and

uj(d− 1) = max{i : βi,i+j(K[sd(Δd−1)]) �= 0}.
We determine bounds for lj(d− 1) and uj(d− 1) by constructing (j− 1)-spheres as
subcomplexes of sd(Δd−1) induced by as few vertices as possible.

In general we can construct induced (j− 1)-spheres of sd(Δd−1) in the following
way. Let (i1, . . . , ir) ∈ Nr such that

i1 + · · ·+ ir + (r − 1) = j − 1,(3.2)

i1 + · · ·+ ir + 2r ≤ d.(3.3)

Let Sn denote the n-dimensional sphere. Note that (3.2) implies

Sj−1 ∼= Si1 ∗ · · · ∗ Sir ,
where ∗ denotes the join operator. We set Wi1 := {A : ∅ �= A � [i1 + 2]} and for
2 ≤ � ≤ r we let

(3.4) Wi� := {A ∪ [i1 + · · ·+ i�−1 + 2(�− 1)] :

∅ �= A � [i1 + · · ·+ i� + 2�] \ [i1 + · · ·+ i�−1 + 2(�− 1)]}.
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As an abstract simplicial complex, the restriction sd(Δd−1)Wi�
is isomorphic to the

barycentric subdivision of the boundary of an (i�+1)-simplex. Hence, geometrically,
sd(Δd−1)Wi�

is an i�-sphere. Moreover,

sd(Δd−1)⋃r
�=1 Wi�

=
r∗

�=1
sd(Δd−1)Wi�

∼= r∗
�=1

Si� = Sj−1.(3.5)

Note that

#
( r⋃
�=1

Wi�

)
=

r∑
�=1

(2i�+2 − 2).

We observe the following.

Lemma 3.3. The numbers mj defined in Definition 3.1 satisfy the following equal-
ity:

(3.6) mj + j = min
{ r∑

�=1

(2i�+2 − 2) :
(i1, . . . , ir) ∈ Nr,
i1 + · · ·+ ir + (r − 1) = j − 1,
i1 + · · ·+ ir + 2r ≤ d

}
.

The proof of Lemma 3.3 will be given in Section 5. Hence we obtain:

Corollary 3.4. The number mj + j is an upper bound for the minimal cardinality

of a subset W of the set of vertices of sd(Δd−1) such that H̃j−1(sd(Δd−1)W ;K) �= 0.
In particular, mj is an upper bound for lj(d− 1) for every j = 1, . . . , d− 1.

Our next aim is to improve the bounds for lj(d− 1) and to provide bounds for
uj(d− 1). To this end we need two lemmas. As we have already observed in Table
1 the barycentric subdivision of any simplicial complex is a flag complex; i.e., all
its minimal non-faces are of size 2. In particular:

Lemma 3.5. Let Δ be a (d − 1)-dimensional simplicial complex on vertex set [n]
and let W ⊆ Δ \ {∅} be a subset of the vertex set of sd(Δ). Then sd(Δ)W is a flag
complex or a full simplex.

We prove the next lemma by adapting arguments used for the proof of [20, Lem.
2.1.14].

Lemma 3.6. Let z be a j-cycle in a (d − 1)-dimensional flag simplicial complex
Δ, which is not a boundary. Then the simplices in the support of z contain at least
2(j + 1) vertices.

Proof. We proceed by induction on j. If z is 0-cycle, then there are at least 2
simplices in its support. If j = 1, then there exist at least 3 vertices in the simplices
in the support of z. If z contains exactly 3 vertices in its support, Δ cannot be flag.
Let j ≥ 2. Assume that z is a j-cycle which is not a boundary, and assume that the
set of vertices in the simplices in the support of z is minimal. Then in the simplices
in the support of z, there exist two vertices v and w that are not connected by an
edge in Δ. Otherwise, the vertices in the simplices from the support of z form a
simplex, and hence z is a boundary. Let z =

∑
σ∈Δaσσ. We write z = vz1 + z2,

where
z1 =

∑
v∈σ∈Δ
aσ 
=0

aσ(σ \ {v}) and z2 =
∑

v/∈σ∈Δ
aσ 
=0

aσσ.
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It follows that z1 has to be a (j − 1)-cycle since otherwise ∂z �= 0. Moreover, z1
cannot be a boundary since otherwise the set of vertices in the simplices in the
support of z is not minimal. Indeed, if z1 = ∂z3, then z3 + z2 is a j-cycle, which
is not a boundary. In particular, this contradicts the minimality of z. We conclude
by induction that the simplices in the support of z1 contain at least 2j vertices.
Since the simplices in the support of z contain the two additional vertices v and w,
there are at least 2(j + 1) vertices in the simplices in the support of z. �

Now using Hochster’s formula (3.1), Corollary 3.4, Lemma 3.5 and Lemma 3.6,
we obtain the following bounds on lj(d− 1) and uj(d− 1).

Proposition 3.7.

(i) For 1 ≤ j ≤ d
2 one has lj(d− 1) = j.

(ii) For d
2 < j ≤ d− 2 one has j ≤ lj(d− 1) ≤ mj .

(iii) For 1 ≤ j ≤ d
2 one has 2d − d− 1−md−j−1 ≤ uj(d− 1) ≤ 2d − 2d+ j.

(iv) For d
2 < j ≤ d− 2 one has uj(d− 1) = 2d − 2d+ j.

(v) ld−1(d− 1) = ud−1(d− 1) = 2d − d− 1.

Proof. Since sd(Δd−1) is a cone over the barycentric subdivision of the boundary of
Δd−1, which is a triangulation of a sphere, it follows that sd(Δd−1) is Gorenstein.
From graded Poincaré duality on the Koszul homology of Gorenstein rings (see
[10, Thm. 3.4.5]) we deduce that

(3.7) βi,i+j(K[sd(Δd−1)]) = β2d−d−1−i,2d−2−i−j(K[sd(Δd−1)]).

Hence assertions (i) and (iv) are equivalent, and similarly assertions (ii) and (iii)
are equivalent. We will now show (i) and (ii).

By Corollary 3.4 we know that lj(d−1) ≤ mj and hence in particular lj(d−1) ≤
j if 1 ≤ j ≤ d

2 . To show equality in (i) note that by Lemma 3.5 all induced
subcomplexes of sd(Δd−1) are flag. Hence we can infer from Lemma 3.6 that a
(j − 1)-cycle of sd(Δd−1) is supported on at least 2j vertices, which implies by
Hochster’s formula (3.1) that βi,i+j(K[sd(Δd−1)]) = 0 for 1 ≤ i ≤ j − 1 and
equality in (i) follows. The same argument also shows the lower bound for lj(d−1)
in (ii).

Finally (v) follows immediately from (3.7) since βi,i(K[sd(Δd−1)]) = 0 for every
i > 0 and β0,0(K[sd(Δd−1)]) = 1. �

After establishing the bounds on lj(d − 1) and uj(d − 1) we next turn to a
sequence of lemmas showing that there are no internal 0s in the intervals we have
identified.

Lemma 3.8. Let 1 ≤ j ≤ d− 2. Then we have βi,i+j(K[sd(Δd−1)]) �= 0 for

2j+1 − 2− j ≤ i ≤ 2d − 2d−j − 1− j.

Proof. Let G be a j-dimensional face of Δd−1 and consider the set V<G of ver-
tices of sd(Δd−1) that correspond to faces of Δd−1 properly contained in G. Then
sd(Δd−1)V<G

is the barycentric subdivision of the boundary of G and hence trian-

gulates a (j − 1)-sphere and H̃j−1(sd(Δd−1)V<G
;K) �= 0. Let F be an arbitrary

face of G of dimension j − 1. Then F is contained in the support of the homology
(j−1)-cycle z of the boundary of G. Let VF be the set of vertices in sd(Δd−1) that
correspond to faces of Δd−1 that are neither subsets nor supersets of F . For any
subset W of VF the restriction of sd(Δd−1) to V<G ∪W has non-vanishing (j− 1)st
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reduced homology group. For this consider the image sd(z) of z in the chain com-
plex of sd(Δd−1)V<G∪W . Then sd(z) contains any (j − 1)-simplex of sd(2F ) in its
support. Each of these simplices contains the vertex F . But, if sd(z) were a bound-
ary, then it could only be the boundary of a chain that contained a j-simplex with
F as a vertex. Since F is (j − 1)-dimensional, this simplex must also contain a
vertex corresponding to a proper superset of F , but such a simplex does not exist
in sd(Δd−1)V<G∪W .

This and elementary counting shows that βi,i+j(K[sd(Δd−1)]) �= 0 for

2j+1 − 2− j = #V<G − j ≤ i ≤ #(V<G ∪ VF )− j = 2d − 2d−j − 1− j.

�

Proposition 3.9. Let 1 ≤ j ≤ d
2 . Then we have βi,i+j(K[sd(Δd−1)]) �= 0 for

j ≤ i ≤ 22j−3 + j.

Proposition 3.9 follows from Lemma 3.10 applied to the sequence (i1, . . . , ij) =

(0, . . . , 0) for 1 ≤ j ≤ d
2 .

Lemma 3.10. Let r ≥ 2 and 1 ≤ j ≤ d− 2. Let (i1, . . . , ir) ∈ Nr such that

(i) i1 + · · ·+ ir + (r − 1) = j − 1.
(ii) i1 + · · ·+ ir + 2r ≤ d.

Then βi,i+j(K[sd(Δd−1)]) �= 0 for all

r∑
�=1

(2i�+2 − 2)− j ≤ i ≤
r∑

�=1

(2i�+2 − 2) + (2ir+2 − 2)2i2+···+ir−1+2r−4 − j.

Proof. We recall the definition of the sets Wi� from (3.4). We set Wi1 := {A : ∅ �=
A � [i1 + 2]} and for 2 ≤ � ≤ r we let

Wi� := {A ∪ [i1 + · · ·+ i�−1 + 2(�− 1)] :

∅ �= A � [i1 + · · ·+ i� + 2�] \ [i1 + · · ·+ i�−1 + 2(�− 1)]}.

We further define

C(i1, . . . , ir) =
{
A ∪B : ∅
=A�[i1+···+ir+2r]\[i1+···+ir−1+2(r−1)]

B⊆[i1+···+ir−1+2(r−1)]\[i1+2]

}
.

First observe, that for 1 ≤ j ≤ r− 1, A ∈ Wij and B ∈ C(i1, . . . , ir) the set {A,B}
is a non-face of sd(Δd−1). Indeed, since A ∩ ([i1 + · · ·+ ir + 2r] \ [i1 + · · ·+ ir−1 +
2(r− 1)]) = ∅ but B ∩ ([i1+ · · ·+ ir +2r] \ [i1+ · · ·+ ir−1+2(r− 1)]) �= ∅, we could
only have A ⊆ B. In this case, we arrive at a contradiction, since we know that
A∩ [i1+2] �= ∅, but B∩ [i1+2] = ∅. Hence, it follows that for any D ⊆ C(i1, . . . , ir)
it holds that

sd(Δd−1)⋃r
�=1 Wi�

∪D = sd(Δd−1)⋃r
�=1 Wi�

∪ sd(Δd−1)Wir∪D.

Moreover,

sd(Δd−1)⋃r
�=1 Wi�

∩ sd(Δd−1)Wir∪D = sd(Δd−1)Wir
.

We claim that

(3.8) H̃�(sd(Δd−1)Wir∪D;K) = H̃�(sd(Δd−1)Wir
;K)
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for any � ∈ N. If we have shown (3.8), we can deduce from (3.5) and the Mayer-
Vietoris sequence in reduced homology for the above decomposition that

H̃�(sd(Δd−1)⋃r
�=1 Wi�

∪D;K) =

{
K, if � = i1 + · · ·+ ir + (r − 1),

0, otherwise,

for all D ⊆ C(i1, . . . , ir). This then in particular shows the assertion of the

proposition since #C(i1, . . . , ir) = (2ir+2−2)2i2+···+ir−1+2r−4 and #
(⋃r

�=1Wi�

)
=∑r

�=1(2
i�+2 − 2).

We now show claim (3.8). The key idea is to interpret sd(Δd−1)Wir∪D as the
order complex of a poset. We distinguish two cases.

Case 1: D = C(i1, . . . , ir). First, note that Wir ∪ C(i1, . . . , ir) can be written in
the following form:

Wir ∪C(i1, . . . , ir)=
{
A∪B : ∅
=A�[i1+···+ir+2r]\[i1+···+ir−1+2(r−1)]

B⊆[i1+···+ir−1+2(r−1)]\[i1+2] or B=[i1+···+ir−1+2(r−1)]

}
.

To simplify notation, we set

P1 = 2[i1+···+ir+2r]\[i1+···+ir−1+2(r−1)]

− {∅, [i1 + · · ·+ ir + 2r] \ [i1 + · · ·+ ir−1 + 2(r − 1)]}

and

P2 = 2[i1+···+ir−1+2(r−1)]\[i1+2] ∪ {[i1 + · · ·+ ir−1 + 2(r − 1)]}.

Since ([i1+ · · ·+ ir +2r]\ [i1+ · · ·+ ir−1+2(r−1)])∩ [i1+ · · ·+ ir−1+2(r−1)] = ∅
any set E ∈ Wir ∪ C(i1, . . . , ir) has a unique decomposition E = E1 ∪ E2, where
E1 ∈ P1 and E2 ∈ P2. In the following we consider Wir ∪ C(i1, . . . , ir), P1 and P2

as partially ordered sets with order relation given by set inclusion. By the above
arguments the map

Φ :

{
Wir ∪ C(i1, . . . , ir) → P1 × P2

A ∪B �→ (A,B)

is well-defined. Here, for the two posets P1 and P2, we write P1×P2 for the partially
ordered set on the Cartesian product with (p1, p2) ≤ (p′1, p

′
2) if and only if ps ≤ p′s in

Ps for s ∈ {1, 2}. It is now straightforward to verify that Φ defines an isomorphism
of partially ordered sets. Moreover, the poset P1×P2 is easily seen to be isomorphic
to P ′

1×P ′
2, where P

′
1 = 2[ir+2]−{∅, [ir+2]}, P ′

2 = 2[i2+···+ir−1+2r−4]∪{1̂} with order

relation being inclusion and 1̂ being an artificial maximal element of P ′
2. It then

follows that the order complexes of Wir ∪C(i1, . . . , ir) and P ′
1 ×P ′

2 are isomorphic.
Note that the order complex of Wir ∪ C(i1, . . . , ir) is sd(Δd−1)Wir∪C(i1,...,ir). We
now look at the following map:

f :

{
P ′
1 × P ′

2 → P ′
1 × P ′

2

(A,B) �→ (A, 1̂).

Then f is a poset map and satisfies f2((A,B)) = f((A,B)) ≥ (A,B). Hence f is
a closure operator. Thus by [3, Cor. 10.12] the order complexes of P ′

1 × P ′
2 and

f(P ′
1×P ′

2) are homotopy equivalent. Since the projection on the first coordinate is
an isomorphism of f(P ′

1×P ′
2) and P ′

1 it follows that the order complexes of P ′
1×P ′

2

and P ′
1 are homotopy equivalent.
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In particular, their homology groups are equal. Finally, since the order complex
of P ′

1 is the barycentric subdivision of the boundary complex of an (ir+1)-simplex,
we obtain

H̃�(sd(Δd−1)Wir∪C(i1,...,ir);K) =

{
K, if � = ir,

0, otherwise.

Since by the discussion preceding (3.5) we have sd(Δd−1)Wir
∼= Sir , this concludes

Case 1.

Case 2: ∅ �= D � C(i1, . . . , ir). Using the map Φ defined in Case 1, and by
an analogous argument as in this case, one sees that Wir ∪ D is isomorphic to a
subposet PD of P1 × P2 that contains P1 × {[i1 + · · ·+ ir−1 + 2(r − 1)]}. For this
note that B ∪ [i1 + · · ·+ ir−1 + 2(r− 1)] ∈ Wir for all ∅ �= B �= [i1 + · · ·+ ir + 2r] \
[i1 + · · · + ir−1 + 2(r − 1)]. The identification of P1 × P2 and P ′

1 × P ′
2 provides a

copy P ′
D of PD inside P ′

1 × P ′
2 such that P ′

1 × {1̂} ⊆ P ′
D. Now the restriction f |P ′

D

of f to P ′
D is a closure operator on P ′

D. By P ′
1 × {1̂} ⊆ P ′

D the projection on the
first coordinate gives an isomorphism of the image of f ′

PD
and P ′

1. As in Case 1 we
conclude that

H̃�(sd(Δ)Wir∪D;K) =

{
K, if � = ir,

0, otherwise.

This finishes the proof. �

The following technical lemmas show that the preceding constructions are suffi-
cient to deduce βi,i+j(K[sd(Δd−1)]) �= 0 for every i in the intervals we have identi-
fied.

Lemma 3.11. Let d ≥ 3, d
2 < j ≤ d− 1 be integers and let 0 ≤ i1 ≤ i2 ≤ · · · ≤ ir

be a sequence of integers such that

(i) i1 = 0,
(ii) i1 + · · ·+ ir + (r − 1) = j − 1,
(iii) i1 + · · ·+ ir + 2r ≤ d.

Then

(2ir+2 − 2)2i2+···+ir−1+2r−4 +

r∑
�=1

(2i�+2 − 2) ≥ 2j+1 − 2.

Lemma 3.12. Let d ≥ 3, d
2 < j ≤ d − 1, r ≥ 2 be integers and let 0 ≤ i1 ≤ i2 ≤

· · · ≤ ir be a sequence of integers such that

(i) i1 ≥ 1,
(ii) i1 + · · ·+ ir + (r − 1) = j − 1,
(iii) i1 + · · ·+ ir + 2r ≤ d.

Set j1 = i1 − 1, j2 = i2 + 1 and j� = i� for 3 ≤ � ≤ r. Then

(2ir+2 − 2)2i2+···+ir−1+2r−4 +

r∑
�=1

(2i�+2 − 2) ≥
r∑

�=1

(2j�+2 − 2).

The proofs of Lemma 3.11 and Lemma 3.12 are given in Section 5.
If we combine Lemma 3.10, Lemma 3.11 and Lemma 3.12 we obtain the follow-

ing.
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Lemma 3.13. Let d ≥ 1 and let d
2 < j ≤ d− 2. Then βi,i+j(K[sd(Δd−1)]) �= 0 for

all
mj ≤ i ≤ 2j+1 − 2− j.

Proof. Let 0 ≤ i1 ≤ i2 ≤ · · · ≤ ir be a sequence of integers such that

(i) i1 + · · ·+ ir + (r − 1) = j − 1,
(ii) i1 + · · ·+ ir + 2r ≤ d, and
(iii) mj =

∑r
�=1(2

i�+2 − 2)− j.

If r = 1, then we have mj = 2j+1 − 2− j, and it suffices to show that

βmj ,mj+j(K[sd(Δd−1)]) �= 0.

But this is true by Proposition 3.7(ii).
Assume r ≥ 2. It follows from Lemma 3.10 that βi,i+j(K[sd(Δd−1)]) �= 0 for all

(3.9) mj ≤ i ≤
r∑

�=1

(2i�+2 − 2) + (2ir+2 − 2)2i2+···+ir−1+2r−4 − j.

If i1 = 0, then Lemma 3.11 directly yields the claim. If i1 ≥ 1, then we infer from
(3.9) and Lemma 3.12 that βi,i+j(K[sd(Δd−1)]) �= 0 for all

mj ≤ i ≤
r∑

�=1

(2j�+2 − 2)− j,

where j1 = i1 − 1, j2 = i2 + 1 and j� = i� for 3 ≤ � ≤ r. If we apply
Lemma 3.10 to the ordered sequence given by {j1, . . . , jr}, then we can conclude
that βi,i+j(K[sd(Δd−1)]) �= 0 for all

mj ≤ i ≤
r∑

�=1

(2j�+2 − 2) + (2jr+2 − 2)2j2+···+jr−1+2r−4 − j.

If j1 = 0, the claim follows again from Lemma 3.11. If j1 > 0, then we go on
perturbing the sequence; i.e., we subtract 1 from its minimum element and add
1 to its second smallest element until the smallest element equals 0. Applying
Lemma 3.10 and Lemma 3.12 in each step of this process and using Lemma 3.11 in
the last step, the claim follows. �

We finally provide the proof of Theorem 3.2.

Proof of Theorem 3.2. By the same arguments as in the proof of Proposition 3.7
assertions (i) and (ii) are equivalent. We provide the proof of (i).

Using
βi,i+j(K[sd(Δd−1)]) = β2d−d−1−i,2d−i−j−2(K[sd(Δd−1)]

(see (3.7)) it follows from Lemma 3.13 that βi,i+j(K[sd(Δd−1)]) �= 0 for

2d − d− 1− (2d−1−j+1 − 2− (d− 1− j)) ≤ i ≤ 2d − d− 1−md−1−j ,

i.e., for

(3.10) 2d − 2d−j − j ≤ i ≤ 2d − d− 1−md−1−j .

In addition, we know from Proposition 3.9 and Lemma 3.8 that βi,i+j(K[sd(Δd−1)])
�= 0 for j ≤ i ≤ 22j−3 + j and for 2j+1 − 2 − j ≤ i ≤ 2d − 2d−j − 1 − j. Since
2d − 2d−j − 1 − j ≥ 22j−3 + j ≥ 2j+1 − 2 − j ≥ j for d ≥ 3 and j ≥ 1, we
obtain βi,i+j(K[sd(Δd−1)]) �= 0 for j ≤ i ≤ 2d − 2d−j − 1− j. Combining this with
(3.10) shows the first part of the claim. The second part, concerning the vanishing
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of certain Betti numbers, follows from Proposition 3.7(i) and (ii) combined with
(3.7).

(iii) follows from Proposition 3.7(v). �

3.2. Asymptotic behavior of Betti numbers for barycentric subdivisions.
In this section, we do not restrict our attention to barycentric subdivisions of sim-
plices anymore but consider iterated barycentric subdivisions of arbitrary simplicial
complexes. More precisely, let Δ be a (d − 1)-simplicial complex and, for r ∈ N,

let sdr(Δ) be its rth iterated barycentric subdivision, defined by sd0(Δ) := Δ,
sd1(Δ) := sd(Δ) and sdr(Δ) := sd(sdr−1(Δ)). Given a non-negative integer
0 ≤ j ≤ reg(K[sd(Δ)]) = reg(K[sdr(Δ)]) we are interested in the relative pro-
portion of non-zero Betti numbers βi,i+j(K[sdr(Δ)]) compared to the projective
dimension if r tends to infinity. That is, given j, we want to study the quantity

#{i : βi,i+j(K[sdr(Δ)]) �= 0}
pdim(K[sdr(Δ)])

if r goes to infinity. Our main result in this section is the following.

Theorem 3.14. Let d−1 ≥ 1 and let Δ be a (d−1)-dimensional simplicial complex.
Let N(d) be the number of vertices of sd3(Δd−1) \ ∂(sd3(Δd−1)). Then, for r ≥ 3
we have βi,i+j(K[sdr(Δ)]) �= 0 in the following cases:

(i) 1 ≤ j ≤ d
2 and j ≤ i ≤ pdim(K[sdr(Δ)]) + depth(K[Δ])−N(d) + 2d − d−

1−md−j−1,

(ii) d
2 < j ≤ d−2 and mj ≤ i ≤ pdim(K[sdr(Δ)])+depth(K[Δ])−N(d)+2d−
2d+ j,

(iii) j = d− 1 and 2d − d− 1 ≤ j ≤ pdim(K[sdr(Δ)]) + depth(K[Δ])−N(d) +
2d − d− 1.

Proof. Since Δ is a (d − 1)-dimensional simplicial complex, there exists a

(d − 1)-dimensional face H ∈ Δ. Let F ∈ sdr−3(2H) be a (d − 1)-dimensional
face of sdr−3(2H). Choose a (d − 1)-dimensional face G of sd2(2F ) ⊆ sdr−1(Δ)
that lies completely in the interior of sd2(2F ). After an additional subdivision
it is guaranteed that none of the vertices of sd(2G) are connected by an edge
to any of the vertices on the boundary of sd3(2F ). Moreover, by construction,
sd(2G) = sdr(Δ){A : ∅
=A⊆G}; i.e., sd(2

G) is an induced subcomplex of sdr(Δ). For

simplicity, we use VG to denote the vertex set of sd(2G) and VF to denote the ver-

tices in sd3(2F ) \ ∂(sd3(2F )). Observe that we have VG � VF . Moreover, let VΔ be
the vertex set of sdr(Δ) and set V := VΔ \VF . Since in sd3(Δ) there is no edge con-
necting sd(2G) and ∂(sd3(2F )), there cannot exist an edge passing from VG to V .
Hence, for any A ⊆ V and B ⊆ VG, it follows that sd

r(Δ)A∪B = sdr(Δ)A∪sdr(Δ)B,
and, using that V ∩VG = ∅, we infer that sdr(Δ)A∪B is disconnected with connected
components sdr(Δ)A and sdr(Δ)B. This, in particular, implies that

H̃j(sd
r(Δ)A∪B;K) = H̃j(sd

r(Δ)A;K)⊕ H̃j(sd
r(Δ)B;K).

Using that H̃j(sd
r(Δ)B;K) = H̃j(sd(2

G)B;K) we conclude that if B ⊆ VG is such

that H̃j−1(sd(2
G)B;K) �= 0, then H̃j−1(sd

r(Δ)A∪B;K) �= 0 for any A ⊆ V . Now
Hochster’s formula (3.1) implies that βi,i+j(K[sdr(Δ)]) �= 0 for lG(j) ≤ i ≤ uG(j)+
#V , where lG(j) and uG(j) denote the beginning and the end of the jth strand in
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the resolution of K[sd(〈G〉)]. If 1 ≤ j ≤ d
2 , it now follows from Theorem 3.2(i) that

βi,i+j(K[sdr(Δ)]) �= 0 for

j ≤ i ≤ 2d − d− 1−md−j−1 +#V

= #VΔ −#VF + 2d − d− 1−md−j−1

= pdim(K[sdr(Δ)]) + depth(K[sdr(Δ)])−#VF + 2d − d− 1−md−j−1.

Since the depth is invariant under taking barycentric subdivisions [22, Cor. 2.5]
and since #VF = N(d), this shows (i).

The claims in (ii) and (iii) can be seen by the same arguments using parts (ii)
and (iii) of Theorem 3.2, respectively. �

As an immediate consequence of Theorem 3.14 and the fact that

lim
r→∞

pdim(K[sdr(Δ)]) = ∞

we obtain:

Corollary 3.15. Let d − 1 ≥ 1 and let Δ be a (d − 1)-dimensional simplicial
complex. For 1 ≤ j ≤ d− 1 one has that #{i : βi,i+j(K[sdr(Δ)]) = 0} is bounded
above in terms of j and d (and independent of r). In particular,

lim
r→∞

#{i : βi,i+j(K[sdr(Δ)]) �= 0}
pdim(K[sdr(Δ)])

= 1

for every j = 1, . . . , d− 1.

From the properties of barycentric subdivisions listed in Table 1 we know that
for r ≥ 1 one has

reg(K[sdr(Δ)]) =

{
d− 1, if H̃d−1(Δ;K) = 0,

d, if H̃d−1(Δ;K) �= 0.

In case H̃d−1(Δ;K) = 0, Theorem 3.14 covers all strands of the minimal free reso-
lution of K[sdr(Δ)]. However, in the second case, Theorem 3.14 does not provide a
statement for the last strand of the resolution. Indeed, we will see that in this case
the situation becomes more involved and the behavior depends on the geometry of
the original simplicial complex Δ. Before we can state the precise result, we need to
introduce some notation and recall some work from [14]. For a (d− 1)-dimensional
simplicial complex with f -vector (fΔ

−1, . . . , f
Δ
d−1) the polynomial

fΔ(t) =

d∑
j=0

fΔ
j−1t

d−j

is called the f -polynomial of Δ. In [6], Brenti and Welker study the behavior
of the f -polynomial of sdr(Δ) and show that, as r → ∞, all but one root of
f sdr(Δ)(t) converge to negative real numbers, depending only on the dimension
of Δ, and the last root goes to infinity (see [6, Thm. 3]. This statement was
then made more explicit in [14], where “limit polynomials” for the normalized f -
polynomials were provided. We recall the construction of those polynomials. Let
Λd := (λi,j)−1≤i,j≤d−1 be the (d + 1) × (d + 1) matrix, where λ−1,−1 = 1 and
λi,−1 = 0 if i �= −1, and λi,j counts the number of j-dimensional faces in the
interior of the first barycentric subdivision of an i-dimensional simplex otherwise.
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It is shown in [14, Lem. 3.4] that Λd has eigenvalues 0!, 1!, 2!, 3!, . . . , d!. Let Dd

be the diagonal matrix of these eigenvalues (in the stated order) and let Pd be the
corresponding matrix of eigenvectors that diagonalizes Λd, i.e., Dd = P−1

d ΛdPd. We
define Md,d as the (d+1)× (d+1) matrix, whose only non-zero entry is a 1 in the
lower right corner. Finally, let t := (td, td−1, . . . , t1, t0)T . It is proven in [14, Sect.
3] that for a (d− 1)-dimensional simplicial complex Δ the sequence of normalized

f -polynomials
(

1
(d!)r f

sdr(Δ)(t)
)
r≥1

converges coefficientwise to the polynomial

pΔ∞(t) := (fΔPd)Md,d(Pd)
−1t.

By definition of Pd its last column is the eigenvector of the matrix Λd to the
eigenvalue d!. Since Λd is a lower triangular matrix with λd−1,d−1 = d!, we have

Λded+1 = d!ed+1 and we can hence choose ed+1 as the last column of Pd. Let p
−1
d−1,2

denote the entry of P−1
d in the last row and second column. Having set up this

additional notation, the above discussion directly yields the following.

Corollary 3.16. Let Δ be a (d− 1)-dimensional simplicial complex. Then

lim
r→∞

1

(d!)r
f
sdr(Δ)
0 = p−1

d−1,2f
Δ
d−1.

The following simple lemma is needed for the main result of this section and
follows immediately from the fact that in a (d− 1)-dimensional simplicial complex
there are no boundaries in dimension d− 1.

Lemma 3.17. Let Δ,Δ′ be (d − 1)-dimensional simplicial complexes such that
there are geometric realizations for which every (d − 1)-simplex of Δ is the union
of some (d− 1)-simplices of Δ′. Let σ1, . . . , σ� be a basis of the cycle space of Δ in
dimension d − 1 and σ̃1, . . . , σ̃� their images in the cycle space of Δ′. Then every
(d− 1)-cycle of Δ′ is a unique linear combination of σ̃1, . . . , σ̃�.

The following is a simple consequence of the transformation of f -vectors under
barycentric subdivision (see, e.g., [6, Lem. 1]).

Lemma 3.18. Let Δ,Δ′ be two (d−1)-dimensional simplicial complexes such that

for some 0 ≤ i ≤ d− 1 we have fΔ
i > fΔ′

i and fΔ
j = fΔ′

j for i < j ≤ d− 1. Then
there exists R such that for r ≥ R we have

f
sdr(Δ)
j > f

sdr(Δ′)
j for 0 ≤ j ≤ i and

f
sdr(Δ)
j = f

sdr(Δ′)
j for i < j ≤ d− 1.

The preceding lemma motivates the following minimality concept for �-cycles of
a simplical complex Δ. We say that the �-cycle σ �= 0 is minimal among the �-cycles

of Δ if there is no �-cycle σ′ �= 0 such that for the simplicial complexes σ̃ and σ̃′

induced by the support of the cycles there is an index i satisfying f σ̃
i > f σ̃′

i and

f σ̃
j = f σ̃′

j for i < j ≤ d − 1. We can now formulate our result concerning the last
strand of the resolution of K[sdr(Δ)], assuming that Δ has non-trivial homology in
top-dimension.
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Proposition 3.19. Let d − 1 ≥ 1 and let Δ be a (d − 1)-dimensional simplicial

complex such that H̃d−1(Δ;K) �= 0. Further let σ be a minimal homology (d − 1)-
cycle of Δ and let

σ̃ = {F ∈ Δ : F ⊆ G for some G in the support of σ}

be the corresponding induced subcomplex of Δ. Then

(i) for r ≥ 1, βi,i+d(K[sdr(Δ)]) �= 0 for #V σ
r − d ≤ i ≤ pdim(K[sdr(Δ)]),

where V σ
r denotes the vertex set of σ̃〈r〉. If r is large, then in addition

βi,i+d(K[sdr(Δ)]) = 0 for 0 ≤ i < #V σ
r − d.

(ii)

lim
r→∞

#{i : βi,i+d(K[sdr(Δ)]) �= 0}
pdim(K[sdr(Δ)])

= 1−
f σ̃
d−1

fΔ
d−1

.

Proof. One observes that sdr(Δ)V σ
r
= sdr(σ̃). Since σ is a homology (d− 1)-cycle

of Δ, the rth barycentric subdivision sdr(σ̃) of its induced complex σ̃ gives rise to

a homology (d − 1)-cycle σr of sdr(Δ), and we conclude that H̃d−1(sd
r(Δ)V σ

r
;K)

�= 0. It follows from Hochster’s formula (3.1) that for i = #V σ
r − d we have

βi,i+d(K[sdr(Δ)]) �= 0. Moreover, if we consider induced subcomplexes sdr(Δ)A of
sdr(Δ) with V σ

r ⊆ A, then σr will remain a homology (d−1)-cycle in sdr(Δ)A. This
in particular implies that βi,i+d(K[sdr(Δ)]) �= 0 for #V σ

r −d ≤ i ≤ pdim(K[sdr(Δ)]),
and hence the part of (i) concerning the non-vanishing Betti numbers follows. For
the vanishing part, let τ be a (d − 1)-cycle of sdr(Δ). By Lemma 3.17 it follows
that τ̃ is the union of some sdr(σ̃′) for (d − 1)-cycles σ′ of Δ. Thus for r large
enough by Lemma 3.18 it follows that the vertex set of τ̃ is of larger cardinality
than the vertex set of sdr(σ̃) for the minimal (d− 1)-cycle σ of Δ. Now Hochster’s
formula (3.1) shows the vanishing.

It remains to show (ii). Let V Δ
r be the vertex set of sdr(Δ). We know from (i)

that

1

pdim(K[sdr(Δ)])
#{i : βi,i+d(K[sdr(Δ)]) �= 0}

=
1

pdim(K[sdr(Δ)])
(pdim(K[sdr(Δ)])− (#V σ

r − d− 1))

= 1− #V σ
r − d− 1

#V Δ
r − depth(K[sdr(Δ)])

= 1−
1

(d!)r (#V σ
r − d− 1)

1
(d!)r (#V Δ

r − depth(K[Δ]))
.

We infer from Corollary 3.16 that numerator and denominator of this fraction con-
verge to p−1

d−1,2f
σ̃
d−1 and p−1

d−1,2f
Δ
d−1, respectively. Thus, we can finally conclude

that

lim
r→∞

1

pdim(K[sdr(Δ)]
)#{i : βi,i+d(K[sdr(Δ)]) �= 0}

= 1−
p−1
d−1,2f

σ̃
d−1

p−1
d−1,2f

Δ
d−1pd+1

= 1−
f σ̃
d−1

fΔ
d−1

.

�
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We now provide an example that shows that for any d indeed any rational number
in the half-open interval [0, 1) can occur as a limit in (ii) of the above proposition.

Example 3.20. Let p
q ∈ [0, 1) ∩Q.

Case 1: p
q = 0. Let Δ be the boundary of a (d− 1)-simplex. In this case, the only

minimal (d−1)-homology cycle of Δ is Δ itself, and it follows from Proposition 3.19
that

lim
r→∞

#{i : βi,i+d(K[sdr(Δ)]) �= 0}
pdim(K[sdr(Δ)])

= 0.

Indeed, for any r, we have βi,i+d(K[sdr(Δ)]) �= 0 if and only if i = pdim(K[sdr(Δ)]).

Case 2: p > 0. Our construction relies on a result of Lee [23, Cor. 4.4.15] and
Björner and Linusson [5, Thm. 1, Thm. 7]. They showed that for any d, there
exists N(d) ∈ N such that for all even numbers n ≥ N(d) there exists a simple
d-polytope with n vertices or, by taking the dual, a simplicial d-polytope with n
facets, i.e., a simplicial polytopal (d− 1)-sphere with n facets.

By this result there exists a simplicial (d−1)-sphere Δ1 with 2N(d)(q−p) facets.
Let Δ be the Cohen-Macaulay complex obtained from Δ1 by stacking 2N(d)p copies
of the (d−1)-simplex over a specified (d−2)-face of Δ1. In this case Δ1 is the only
minimal (d− 1)-homology cycle of Δ and Proposition 3.19 yields

lim
r→∞

#{i : βi,i+d(K[sdr(Δ)]) �= 0}
pdim(K[sdr(Δ)])

= 1− 2N(d)(q − p)

2N(d)q
= 1− q − p

q
=

p

q
.

4. Edgewise subdivisions

4.1. Algebraic invariants. We have listed in Table 1 how the basic invariants be-
have under the rth edgewise subdivision of a (d−1)-dimensional simplicial complex
Δ. It remains to provide a precise statement concerning the largest degree t1(Δ

〈r〉)
of a minimal generator of IΔ〈r〉 .

Lemma 4.1. Let Δ be a (d− 1)-dimensional simplicial complex. Let N(Δ) be the
set of minimal non-faces of Δ of cardinality t1(K[Δ]). Then:

(i) If Δ is flag or Δ = Δd−1, then t1(Δ
〈r〉) = 2.

(ii) If Δ is neither flag nor a (d−1)-simplex, the following two cases can occur.
If there exists F ∈ N(Δ) and a vertex v ∈ Δ such that ∂(F ) ∗ {v} ⊆ Δ,
then, for any r ≥ 2, t1(K[Δ〈r〉]) = t1(K[Δ]). Otherwise, t1(K[Δ〈r〉]) =
t1(K[Δ])− 1.

Proof. Since flag-ness is preserved under edgewise subdivisions, we have t1(Δ
〈r〉) =

2 if Δ is flag. If Δ is a (d−1)-simplex, then Δ〈r〉 is flag by the definition of edgewise
subdivision, which shows t1(Δ

〈r〉) = 2.
To show (ii), first we prove that t1(Δ

〈r〉) ≤ t1(Δ). For this aim, let G =
{v1, . . . , vm} be a minimal non-face of Δ〈r〉. Then at least one of the two con-
ditions in the definition of edgewise subdivisions fails. If the second one fails, we
have |G| = 2, and hence G gives rise to a minimal generator of IΔ〈r〉 of degree
2 < t1(Δ). So assume only the first condition fails, i.e., H :=

⋃
a∈G supp(a) /∈ Δ.

There exists F ∈ N(Δ) such that F ⊆ H. Since G is minimal, for any 1 ≤ j ≤ m,
there exists ij ∈ F such that ij ∈ supp(vj) and ij /∈ supp(v�) for 1 ≤ � ≤ m and

� �= j. This implies that #G = m ≤ s, which finally shows t1(Δ
〈r〉) ≤ t1(Δ).
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Next, we show t1(Δ
〈r〉) ≥ t1(Δ)− 1. Let F ∈ N(Δ). Without loss of generality

let F = [s], where s = t1(Δ). For 1 ≤ i ≤ s − 1 set vi = ei + (r − 1)es and let
G = {v1, . . . , vs−1}. Then, H ∈ Δ〈r〉 for any H � G but G /∈ Δ〈r〉; i.e., G is a
minimal non-face of Δ〈r〉. This implies the claimed inequality.

Now assume that there exists F ∈ N(Δ) and a vertex v ∈ Δ such that ∂(F ) ∗
{v} ⊆ Δ. Without loss of generality assume F = [s] and v = s + 1. We set
wi = ei + (r − 1)es+1 for 1 ≤ i ≤ s and G = {w1, . . . , ws}. By minimality of F
we have H ∈ Δ〈r〉 for any H � G. Since F is a non-face, we further know that
G /∈ Δ〈r〉. Hence, G is a minimal non-face of Δ〈r〉 of cardinality t1(Δ), which
implies that t1(Δ

〈r〉) ≥ t1(Δ) and hence t1(Δ
〈r〉) = t1(Δ) in this case.

Finally assume that for all F ∈ N(Δ) and all vertices v ∈ Δ we have ∂(F )∗{v} �⊆
Δ. Let G = {v1, . . . , vm} be a minimal non-face of Δ〈r〉 such that F

⋃m
i=1 supp(vi),

where F is a minimal non-face of Δ. Without loss of generality assume F = [s].
It follows from the second paragraph of this proof that #G ≤ #F . If #G < #F ,
then G corresponds to a minimal generator of IΔ〈r〉 of degree < t1(Δ). So assume
#G = #F . From the second paragraph of this proof it follows that for any 1 ≤ j ≤ s
there exists a unique 1 ≤ ij ≤ s = m, such that j ∈ supp(vij ). Since {v�, vk} ∈ Δ〈r〉

for any 1 ≤ � < k ≤ s, it must hold that (vij )j = 1 for 1 ≤ j ≤ s. Hence, any vertex

vj ∈ G is of the form vj = eij + zj , where zj ∈ Δ〈r−1〉 and supp(zi)∩ [s] = ∅. Since
G is a minimal non-face of Δ〈r〉, the boundary of G is a subcomplex of Δ〈r〉, and
hence ∂(F ) ∗

⋃s
i=1 supp(zi) is a subcomplex of Δ. Since

⋃s
i=1 supp(zi) �= ∅ (r ≥ 2),

we arrive at a contradiction and the claim follows. �

In the following we will analyze the Betti numbers of the rth edgewise subdivision

of the (d− 1)-dimensional simplex Δd−1. We start by showing that, locally, Δ
〈r〉
d−1

behaves as a barycentric subdivision of the boundary of a (d− 1)-simplex.

Proposition 4.2. Let r ≥ d be positive integers. Then for any face F of Δ
〈r〉
d−1

satisfying

∂|F | = |F | ∩ ∂|Δ〈r〉
d−1|,(4.1)

the link lk
Δ

〈r〉
d−1

(F ) is abstractly isomorphic to the barycentric subdivision of the

boundary of a (d−#F )-simplex.

Proof. To prove the statement we will first list two facts that allow us to simplify
the situation.

• If F and G are two faces of equal dimension in Δ
〈r〉
d−1 satisfying (4.1), then

it is straightforward to show that their links are isomorphic as simplicial
complexes.

• Let F1 be a face of Δ
〈r〉
d−1 and F2 a face of Δ

〈s〉
d−1 both satisfying (4.1) in

their respective complexes. If #F1 = #F2 = t and r, s ≥ d − t + 1, then
it is easy to show that lk

Δ
〈r〉
d−1

(F1) and lk
Δ

〈s〉
d−1

(F2) are also isomorphic as

simplicial complexes.

Combining those two reductions, we will now show the claim for a specific face
F in the (d −#F + 1)st edgewise subdivision of Δd−1. More precisely, let s be a
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fixed positive integer. Let

wi = (1, . . . , 1︸ ︷︷ ︸
d−s

, 0, . . . , 0︸ ︷︷ ︸
i−1

, 1︸︷︷︸
position d+i−s

, 0, . . . , 0︸ ︷︷ ︸
s−i

)

=

d−s∑
j=1

ej + ed−s+i,

for 1 ≤ i ≤ s. Let F be the abstract simplex whose geometric realization has
vertex set {w1, . . . , ws}. Then all vertices of F lie on the boundary and so does
the convex hull of any s − 1 subset of the vertices. But F itself does not lie on
the boundary of the simplex. Hence F satisfies (4.1). It now suffices to show
that lk

Δ
〈d−s+1〉
d−1

(F ) is isomorphic to the barycentric subdivision of the boundary

of a (d − s)-simplex. Let V be the vertex set of lk
Δ

〈d−s+1〉
d−1

(F ). We define a map

Φ : V → {A : ∅ �= A � [d− s] ∪ {d}} by

v �→

⎧⎨⎩
supp(i(v − w1)) ∩ [d− s], if i(v − w1) ∈ {0, 1}d,

[d− s] \ supp(i(v − w1)) ∪ {d}, if i(v − w1) ∈ {−1, 0}d.

We claim that Φ is a bijection and moreover that it induces an isomorphism be-
tween lk

Δ
〈d−s+1〉
d−1

(F ) and sd(∂Δd−s) as simplicial complexes, where for the purpose

of this proof Δd−s denotes the (d− s)-simplex on vertex set [d− s] ∪ {d}.
Injectivity: Let u, v ∈ lk

Δ
〈d−s+1〉
d−1

(F ) and u �= v. If i(u − w1) ∈ {0, 1}d and

i(v − w1) ∈ {−1, 0}d (or vice versa), then d ∈ Φ(v) but d /∈ Φ(u). Hence, Φ(u) �=
Φ(v) in this case. Now, let i(u−w1) ∈ {0, 1}d and i(v−w1) ∈ {0, 1}d. Assume, by
contradiction, that Φ(u) = Φ(v), i.e.,

supp(i(u− w1)) ∩ [d− s] = supp(i(v − w1)) ∩ [d− s]

and hence the first d − s components of i(u − w1) and i(v − w1) are equal. This
implies that the first d − s components of u and v coincide. If i(u − w1)d−s =
i(v − w1)d−s = 1, it must hold that ud−s+1 = · · · = ud = 0 and vd−s+1 = · · · =
vd = 0 since

∑d
j=1 uj =

∑d
j=1 vj = d − s + 1. This in particular implies that

u = v. If i(u − w1)d−s = i(v − w1)d−s = 0, we can infer from (w1)d−s+1 = 1 and
i(u−w1) ∈ {0, 1}d that ud−s+1 = vd−s+1 = 1. As in the previous case, we conclude
that ud−s+2 = · · · = ud = 0 and vd−s+2 = · · · = vd = 0. Hence, again, u = v.
Finally let i(u− w1) ∈ {−1, 0}d and i(v − w1) ∈ {−1, 0}d. Similar arguments as in
the previous case show that we must have Φ(u) �= Φ(v).

Surjectivity: Let ∅ �= G � [d − s] ∪ {d}. First assume that d /∈ G. We define a
vector v ∈ Zd by setting v1 = 1 if 1 /∈ G and v1 = 2 if 1 ∈ G and successively, for
2 ≤ j ≤ d− s,

vj =

{
−
∑j−1

�=1 v� + j, if j /∈ G,

−
∑j−1

�=1 v� + j + 1, if j ∈ G.

Moreover, vd−s+1 = 0 if d− s ∈ G and vd−s+1 = 1 if d− s /∈ G. For d− s+ 2 ≤
j ≤ d, we set vj = 0. It is straightforward to verify that v ∈ lk

Δ
〈d−s+1〉
d−1

(F ) and

Φ(v) = G. Now, suppose d ∈ G. In this case, we define a vector v ∈ Zd by setting
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v1 = 1 if 1 ∈ G and v1 = 0 if 1 /∈ G. For 2 ≤ j ≤ d− s we successively set

vj =

{
−
∑j−1

�=1 v� + j, if j /∈ G,

−
∑j−1

�=1 v� + j − 1, if j ∈ G.

For d− s+ 2 ≤ j ≤ d− 1 we set vj = 0. In addition, we let vd−s+1 = 1 and vd = 0
if d − s /∈ G and vd−s+1 = 0 and vd = 1 if d − s ∈ G. One can easily check that
indeed v ∈ lk

Δ
〈d−s+1〉
d−1

(F ) and Φ(v) = G, which completes the proof of surjectivity

of Φ.
We can extend the map Φ to lk

Δ
〈d−s+1〉
d−1 )

(F ) by mapping a face A = {a1, . . . , at}
of lk

Δ
〈d−s+1〉
d−1

(F ) to {Φ(a1), . . . ,Φ(at)}. We need to show that lk
Δ

〈d−s+1〉
d−1

(F ) and

sd(∂Δd−s) are isomorphic as simplicial complexes. Since both complexes are flag,
it suffices to show that Φ induces an isomorphism between their 1-skeleta. Let
{v, w} ∈ lk

Δ
〈d−s+1〉
d−1

(F ). Then, we have either i(v − w) ∈ {0, 1}d or i(v − w) ∈
{−1, 0}d. Without loss of generality we can assume that i(w − v) ∈ {0, 1}d. More-
over, since v ∈ lk

Δ
〈d−s+1〉
d−1

(F ), we know that i(v − w1) ∈ {0, 1}d or i(v − w1) ∈
{−1, 0}d.
Case 1: i(v − w1) ∈ {0, 1}d. Let 1 ≤ � ≤ d− s such that i(v − w1)� = 1. It follows
that

i(w − w1)� = i(w − v)� + i(v − w1)�

≥ i(v − w1)� = 1,

since i(w − v) ∈ {0, 1}d. Since w ∈ lk
Δ

〈d−s+1〉
d−1

(F ), we conclude that i(w − w1)� = 1

and i(w − w1) ∈ {0, 1}d. We can deduce that supp(i(v − w1)) � supp(i(w − w1)),
and hence Φ(v) � Φ(w), i.e., {Φ(v),Φ(w)} ∈ sd(∂Δd−s).

Case 2: i(v − w1) ∈ {−1, 0}d. We consider the two subcases, that i(w − w1) ∈
{−1, 0}d and i(w−w1) ∈ {0, 1}d. Suppose that we are in the first case. If we have
i(w − w1)� = −1 for some 1 ≤ � ≤ d − s, then it follows from i(v − w) ∈ {−1, 0}d
that

i(v − w1)� = i(v − w)� + i(w − w1)�

≤ i(w − w1)� = −1.

This implies that supp(i(w − w1)) � supp(i(v − w1)) and hence

Φ(v) = [d− s] \ supp(i(v − w1)) ∪ {d} � [d− s] \ supp(i(w − w1)) ∪ {d} = Φ(w).

In particular, {Φ(v),Φ(w)} is an edge of sd(∂(Δd−s)). It remains to consider the
case i(w − w1) ∈ {0, 1}d. Let 1 ≤ � ≤ d− s with i(w − w1)� = 1. We have

i(v − w1)� = i(v − w)� + i(w − w1)�

= i(v − w)� + 1.

Since i(v−w) ∈ {−1, 0}d and i(v−w1) ∈ {−1, 0}d, it must hold that i(v−w)� = −1
and i(v−w1)� = 0. Using that d ∈ Φ(v) but d /∈ Φ(w), we can finally conclude that

Φ(w) = supp(i(w − w1)) ∩ [d− s] � [d− s] \ supp(i(v − w1)) ∪ {d} = Φ(v)

and thus {Φ(v),Φ(w)} ∈ sd(∂Δd−s). This finishes the proof of containment of the
1-skeleton of lk

Δ
〈d−s+1〉
d−1

(F ) in the 1-skeleton of sd(∂Δd−s). We omit the proof of

the other inclusion since it follows from a similar reasoning. �
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The following corollary is a special case of Proposition 4.2.

Corollary 4.3. Let r ≥ d be positive integers. Then for any vertex v = (i1, . . . , in)

in the interior of Δ
〈r〉
d−1 the link lk

Δ
〈r〉
d−1

(v) is abstractly isomorphic to the barycentric

subdivision of the boundary of a (d− 1)-simplex.

Note that necessarily r ≥ d if there is an interior vertex of Δ
〈r〉
d−1. This will also be

crucial for Corollary 4.5. Using Corollary 4.3 and Theorem 3.2 we get the following
bounds for the non-vanishing of Betti numbers in the edgewise subdivision. We use
the constant mj defined by (3.6).

Corollary 4.4. Let r ≥ d. Then

(i) For 1 ≤ j ≤ d
2 we have βi,i+j(K[Δ

〈r〉
d−1]) �= 0 for j ≤ i ≤ 2d−d−1−md−1−j.

(ii) For d
2 < j ≤ d− 2 we have βi,i+j(K[Δ

〈r〉
d−1]) �= 0 for mj ≤ i ≤ 2d − 2d+ j.

(iii) For j = d− 1, we have β2d−1−d,2d−1−d+j(K[Δ
〈r〉
d−1]) �= 0.

The next corollary shows that Corollary 4.4 covers all but possibly the last strand

in the minimal free resolution of K[Δ
〈r〉
d−1].

Corollary 4.5. Let Δ be a (d− 1)-dimensional simplicial complex. Then

reg(K[Δ〈r〉]) =

{
d− 1, if H̃d−1(Δ;K) = 0 and r ≥ d,

d, if H̃d−1(Δ;K) �= 0.

Moreover, for 1 ≤ r ≤ d− 1 one has reg(K[Δ〈r〉]) ≥ max(reg(K[Δ]), r − 1).

Proof. Let r ≥ d and let v be an interior vertex of the rth edgewise subdivision
of a (d − 1)-simplex F ∈ Δ. Then lkΔ〈r〉(v) = lk(2F )〈r〉(v), and it follows from

Corollary 4.3 that lkΔ〈r〉(v) is abstractly isomorphic to the barycentric subdivision
of the boundary of a (d − 1)-simplex. Let V be the vertex set of lkΔ〈r〉(v). Then
lkΔ〈r〉(v)=(Δ〈r〉)V . Using Hochster’s formula (3.1) we conclude that reg(K[Δ〈r〉])≥
d − 1. If H̃d−1(Δ;K) = 0, then we also have H̃d−1(Δ

〈r〉;K) = 0 and, moreover,

H̃d−1((Δ
〈r〉)W ;K) = 0 for any subset W of the vertices of Δ〈r〉. Hence, Hochster’s

formula (3.1) implies that reg(K[Δ〈r〉]) ≤ d− 1, which shows the first part.

If H̃d−1(Δ;K) �= 0, then we also have H̃d−1(Δ
〈r〉;K) �= 0 and by an application

of Hochster’s formula (3.1) we infer that reg(K[Δ〈r〉]) ≥ d. On the other hand, the
regularity of K[Γ] of any (d− 1)-dimensional simplicial complex Γ cannot exceed d
and the claim follows.

For the last part, we first show reg(K[Δ〈r〉]) ≥ reg(K[Δ]). Let reg(K[Δ]) = s.
By Hochster’s formula (3.1) there exists a subset W of the vertex set of Δ such

that H̃s−1(ΔW ;K) �= 0. This implies that H̃s−1((ΔW )〈r〉;K) �= 0. Let Wr be
the vertex set of (ΔW )〈r〉. Since (Δ〈r〉)Wr

is a deformation retract of (ΔW )〈r〉, it

follows that H̃s−1((Δ
〈r〉)Wr

;K) �= 0, and by Hochster’s formula (3.1) we conclude
that reg(K[Δ〈r〉]) ≥ reg(K[Δ]). To see the other inequality, consider an (r − 1)-
dimensional face F of Δ. Let VF be the vertex set of (∂(2F ))〈r〉. Since (2F )〈r〉 has

an interior vertex, we infer (Δ〈r〉)VF
= (∂(F ))〈r〉 and hence H̃r−2((Δ

〈r〉)VF
;K) �= 0.

The claim follows from Hochster’s formula (3.1). �

The above corollary in particular shows that the regularity can only increase
under arbitrary edgewise subdivision.
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The upper bounds for the non-vanishing of the Betti numbers in Corollary 4.4
can be improved further. Indeed, it can be shown that the strands in the Betti

diagram of the rth edgewise subdivision of Δ
〈r〉
d−1 run up to the projective dimension.

To provide these results we need to better understand the topology of edgewise
subdivisions.

Lemma 4.6. Let Δ be a simplicial complex on ground set Ω such that |Δ| is a
regular triangulation of a (d − 1)-ball and let F ∈ Δ. If ∂|F | = |F | ∩ ∂|Δ|, then
there are deformation retractions from |Δ| \ |F | to |ΔΩ\F | to |lkΔ(F )|.

Proof. By [4, Lem. 4.7.27] or [24, Lem. 70.1] |ΔΩ\F | is a deformation retract of
|Δ| \ |F |. Since |Δ| is a regular triangulation, we know that |starΔ(F )| is convex.
Let p be an interior point of |F |. Consider the map that sends a point q ∈ |ΔΩ\F |
to the intersection of ∂|starΔ(F )| and the line segment through p and q. Note that
this intersection is well-defined since |starΔ(F )| is convex. The image of this map
is |starΔ(F )| \ |F |. Thus, the map defines a deformation retract between |ΔΩ\F |
and ∂|starΔ(F )| \ |F |. Let Γ be the simplicial complex whose geometric realization
is ∂|starΔ(F )|. Another application of [4, Lem. 4.7.27] or [24, Lem. 70.1] shows
that |ΓΩ\F | = |lkΔ(F )| is a deformation retract of |Γ| \ |F |. �

Note that by definition ∂|F | = ∅ if F is a 0-dimensional face.

Lemma 4.7. Let Δ be a simplicial complex on ground set Ω such that |Δ| is a
regular triangulation of a (d − 1)-ball and let F ∈ Δ such that ∂|F | ⊆ ∂|Δ|. Let

B ⊆ Ω \ F with lkΔ(F ) ⊆ 2B. Then H̃d−1−#F (|ΔB |;K) �= 0.

Proof. Let A be the vertex set of lkΔ(F ). Since Δ is a regular triangulation of a
ball, |starΔ(F )| is convex and hence the points from A are in convex position. For
a face G of ΔA we have G ∈ starΔ(F ) = 2F ∗ lkΔ(F ). Hence G ∈ lkΔ(F ) and ΔA =
lkΔ(F ). Thus in this case the assertion follows from the fact that the assumptions

imply that H̃d−1−#F (lkΔ(F );K) = K. We know from Lemma 4.6 that |ΔA| =
|lkΔ(F )| is a deformation retract of |ΔΩ\F |. Thus the inclusion lkΔ(F ) ↪→ ΔΩ\F
induces a map in homology that sends the generator of H̃d−1−#F (lkΔ(F );K) = K

identically to the generator of H̃d−1−#F (ΔΩ\F ;K) = K. In particular, if we choose

a (d− 1−#F )-cycle σ representing the homology class H̃d−1−#F (lkΔ(F );K) = K,

then σ also represents the homology class H̃d−1−#F (ΔΩ\F ;K) = K. In particular,
σ is not a boundary in ΔΩ\F . Let A ⊆ B ⊆ Ω\F . Then B supports σ and by ΔB ⊆
ΔΩ\F it cannot be a boundary in ΔB . In particular, we have H̃d−1−#F (|ΔB|;K) �=
0. �

We can now use the previous two lemmas to derive the main result of this section.

In order to apply these lemmas we need to construct faces F ∈ Δ
〈r〉
d−1 satisfying the

property that ∂|F | = |F | ∩ ∂|Δ|.

Lemma 4.8. Let r ≥ d. For 0 ≤ j ≤ d − 2, let v(j) ∈ Ωr−1,d−j−1 such that all
coordinates are greater than 0. Let

Fj := {(1, 0, . . . , 0︸ ︷︷ ︸
j−1

, v(j)), (0, 1, 0, . . . , 0︸ ︷︷ ︸
j−1

, v(j)), . . . , (0, . . . , 0, 1︸ ︷︷ ︸
j−1

, v(j))}.

Then Fj ∈ Δ
〈r〉
d−1 and ∂|Fj | = |Fj | ∩ ∂|Δ〈r〉

d−1|.
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Proof. Since v(j) ∈ Ωr−1,d−j−1 it follows that Fj ∈ Δ
〈r〉
d−1. Moreover, for any j-tuple

of vertices there exists 1 ≤ k ≤ d − j − 1 such that their kth coordinates all equal

0. Hence they lie on the hyperplane xk = 0 and therefore on a facet of Δ
〈r〉
d−1. This

shows ∂|Fj | ⊆ ∂|Δ|. Moreover any point in the interior of |Fj | lies in the interior

of |Δ(r)
d−1| since v(j) has only non-zero coordinates. �

Now we state the main result of the section, which improves the bounds provided
in Corollary 4.4.

Theorem 4.9. Let r ≥ d. Then:

(i) If 1 ≤ j ≤ d
2 , then

βi,i+j(K[Δ
〈r〉
d−1])

{
= 0 for 0 ≤ i ≤ j − 1,

�= 0 for j ≤ i ≤ pdim(K[Δ
〈r〉
d−1]).

(ii) If d
2 < j ≤ d− 2, then

βi,i+j(K[Δ
〈r〉
d−1])

{
= 0 for 0 ≤ i ≤ j − 1,

�= 0 for mj ≤ j ≤ pdim(K[Δ
〈r〉
d−1]).

(iii) For j = d− 1 we have

βi,i+j(K[Δ
〈r〉
d−1]) �= 0 for 2d − 1− d ≤ i ≤ pdim(K[Δ

〈r〉
d−1]).

Proof. The statements concerning the vanishing of Betti numbers in (i) and (ii)
follow from the same arguments as the corresponding statements in the proof of

Proposition 3.7 since Δ
〈r〉
d−1 is a flag complex.

(i) By Corollary 4.4 it suffices to show that βi,i+j(K[Δ
〈r〉
d−1]) �= 0 for 2d − d− 1−

md−1−j < i ≤ pdim(K[Δ
〈r〉
d−1]) = #Ωr,d − d. Let Fj be as in Lemma 4.8 and let Aj

be the vertex set of lkΔd−1(r)(Fj). It follows from Lemma 4.7 that

H̃d−1−j−1(Δ
〈r〉
d−1)Bj

;K) �= 0

for Aj ⊆ Bj ⊆ Ωr,d \ Fj . By Hochster’s formula (3.1) we conclude that

βi,i+d−j−1(K[Δ
〈r〉
d−1]) �= 0

for #Aj − (d − j − 1) ≤ i ≤ #Ωr,d − (j + 1) − (d − j − 1) = pdim(K[Δ
〈r〉
d−1]). By

Proposition 4.2 we know that lkΔd−1(r)(Fj) is abstractly isomorphic to the bound-

ary of the barycentric subdivision of a (d−1−j)-simplex. Hence #Aj = 2d−j−2. It
remains to show that 2d−j+j ≤ 2d−md−1−j or equivalentlymd−1−j ≤ 2d−2d−j−j.

From (3.10) we can infer that md−1−j ≤ 2d−j + j − d− 1 if 1 ≤ j ≤ d
2 . Since it can

be easily verified that 2d−j + j − d − 1 ≤ 2d − 2d−j − j for 1 ≤ j ≤ d
2 , the claim

follows. The proofs of (ii) and (iii) use similar reasoning. �

4.2. Asymptotic behavior of Betti numbers for edgewise subdivisions.
The focus in this section lies on the study of Betti numbers of edgewise subdivisions
of arbitrary simplicial complexes; i.e., we do not restrict our attention to simplices
anymore. Similarly as we did for iterated barycentric subdivisions, as r grows, we
want to determine the relative amount of non-zero Betti numbers βi,i+j(K[Δ〈r〉]),
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for j fixed, compared to the projective dimension of K[Δ〈r〉]. More precisely, given
1 ≤ j ≤ d− 1, we study the quantity

#{i : βi,i+j(K[Δ〈r〉]) �= 0}
pdim(K[Δ〈r〉])

.

Our main result in this section, paralleling Theorem 3.14, is the following:

Theorem 4.10. Let d − 1 ≥ 1 and let Δ be a (d − 1)-dimensional simplicial
complex and let r ≥ 2d be a positive integer. Then, βi,i+j(K[Δ〈r〉]) �= 0 in the
following cases:

(i) 1 ≤ j ≤ d
2 and j ≤ i ≤

(
2d−1
d−1

)
− d+pdim(K[Δ〈r〉]) + depth(K[Δ])−

(
3d−1
d−1

)
.

(ii) d
2 ≤ j ≤ d− 2 and mj ≤ i ≤

(
2d−1
d−1

)
− d+ pdim(K[Δ〈r〉]) + depth(K[Δ])−(

3d−1
d−1

)
.

(iii) j = d− 1 and 2d− d− 1 ≤ i ≤
(
2d−1
d−1

)
− d+pdim(K[Δ〈r〉])+depth(K[Δ])−(

3d−1
d−1

)
.

The proof of this theorem follows a similar strategy as the proof of Theorem 3.14.
The main idea is to isolate a subcomplex Γ that is isomorphic to the dth edgewise
subdivision of a (d− 1)-simplex from the rest of the complex Δ〈r〉. Then we apply
Theorem 4.9 to Γ. Eventually, one uses that any homologically non-trivial induced
subcomplex of Γ〈r〉 gives rise to homologically non-trivial induced subcomplexes of
Δ〈r〉 when adding vertices not connected to Γ〈r〉. We make this more precise in the
following proof.

Proof. Since Δ is of dimension d − 1, we can choose a (d − 1)-dimensional face
F of Δ. If r ≥ 2d, there exist subcomplexes of (2F )〈r〉 that are isomorphic to

Δ
〈2d〉
d−1. Let Δ̃ be one of those subcomplexes. Note that there exists more than

one such subcomplex as soon as r > 2d. In Δ̃ there is another subcomplex Γ

that is isomorphic to Δ
〈d〉
d−1 and that completely lies in the interior of Δ̃. Just peel

off the “outer” layers of Δ̃. In particular, there does not exist any edge in Δ〈r〉

that connects some vertex in Γ to some vertex in Δ〈r〉 \ Δ̃. Let VΓ, VΔ̃ and VΔ

denote the vertex sets of Γ, Δ̃ and Δ〈r〉, respectively. By construction, we have
Γ = (Δ〈r〉)VΓ

and thus Γ is an induced subcomplex of Δ〈r〉. Arguing as in the proof
of Theorem 3.14 one shows that

H̃j(Δ
〈r〉
A∪B ;K) �= 0

for any A ⊆ VΓ with H̃j(ΓA;K) �= 0 and any B ⊆ VΔ \ VΔ̃. Let lΓ(j) and uΓ(j)

denote the beginning and the end of the jth strand of the resolution of K[Γ]. Using
Hochster’s formula (3.1) we conclude that βi,i+j(K[Δ〈r〉]) �= 0 for lΓ(j) ≤ i ≤
uΓ(j) + #VΔ − #VΔ̃. Let 1 ≤ j ≤ d

2 . In this case, Theorem 3.14(i) implies that

βi,i+j(K[Δ〈r〉]) �= 0 if

j ≤ i ≤ pdim(K[Δ
〈d〉
d−1]) + pdim(K[Δ〈r〉]) + depth(K[Δ〈r〉])−#VΔ̃

=

(
2d− 1

d− 1

)
− d+ pdim(K[Δ〈r〉]) + depth(K[Δ])−

(
3d− 1

d− 1

)
,

where we use that Δ
〈r〉
d−1 has

(
d+r−1
d−1

)
many vertices and that the depth is invariant

under taking edgewise subdivisions (see Table 1). This shows (i). We omit the
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proofs of (ii) and (iii) since they follow from similar reasoning, using parts (ii) and
(iii) of Corollary 4.4. �

As an immediate consequence of Theorem 4.10 and of the fact that
limr→∞ pdim(K[Δ〈r〉]) = ∞ we obtain:

Corollary 4.11. Let d − 1 ≥ 1 and let Δ be a (d − 1)-dimensional simplicial
complex. For 1 ≤ j ≤ d − 1 one has that #{i : βi,i+j(K[Δ〈r〉]) = 0} is bounded
above in terms of j and d. In particular

lim
r→∞

#{i : βi,i+j(K[Δ〈r〉]) �= 0}
pdim(K[Δ〈r〉])

= 1

for every j = 1, . . . , d− 1.

As for iterated barycentric subdivision, the above theorem does not cover the
last strand of the resolution of the edgewise subdivision in case the regularity is d or
equivalently when the simplicial complex has homology in top-dimension. It turns
out that in this setting the asymptotic behavior of the last strand of the resolution
depends on the simplicial complex. We now recall a special case of Theorem 5.1
from [15].

Proposition 4.12. Let Δ be a (d − 1)-dimensional simplicial complex. Then, as
r → ∞,

fΔ〈r〉

0

rd−1
→

fΔ
d−1

(d− 1)!
.

A more simple fact paralleling Lemma 3.18 can be easily deduced from the f -
vector transformation in edgewise subdivisions (see [7, Prop. 4.2]).

Lemma 4.13. Let Δ,Δ′ be two (d−1)-dimensional simplicial complexes such that

for some 0 ≤ i ≤ d− 1 we have fΔ
i > fΔ′

i and fΔ
j = fΔ′

j for i < j ≤ d− 1. Then
there exists R such that for r ≥ R we have

fΔ〈r〉

j > fΔ′〈r〉

j for 0 ≤ j ≤ i,

fΔ〈r〉

j = fΔ′〈r〉

j for i < j ≤ d− 1.

These results are crucial for the next proposition, which treats the asymptotics
of the last strand of the resolution of K[Δ〈r〉] if the (d− 1)-dimensional simplicial
complex Δ has homology in top-dimension, i.e., if reg(K[Δ〈r〉]) = d.

Proposition 4.14. Let d − 1 ≥ 1 and let Δ be a (d − 1)-dimensional simplicial

complex such that H̃d−1(Δ;K) �= 0. Further let σ be a minimal homology (d − 1)-
cycle of Δ and let

σ̃ = {F ∈ Δ : F ⊆ G for some G in the support of σ}
be the corresponding induced subcomplex of Δ, whose vertex set is V σ

r . Then:

(i) For r ≥ 1, βi,i+d(K[Δ〈r〉]) �= 0 for #V σ
r − d ≤ i ≤ pdim(K[Δ〈r〉]). If r is

large, then in addition βi,i+d(K[Δ〈r〉]) = 0 for 0 ≤ i < #V σ
r − d.

(ii)

lim
r→∞

#{i : βi,i+d(K[Δ〈r〉]) �= 0}
pdimK[Δ〈r〉]

= 1−
f σ̃
d−1

fΔ
d−1

.
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Proof. Since (Δ〈r〉)V σ
r

= σ̃〈r〉, and since σ is a homology (d − 1)-cycle, it holds

that H̃d−1((Δ
〈r〉)V σ

r
;K) �= 0. Thus, using Hochster’s formula (3.1), we infer that

βi,i+d(K[Δ〈r〉]) �= 0 for i = #V σ
r − d. By the same reasoning as in the proof

of Proposition 3.19 we can further conclude that βi,i+d(K[Δ〈r〉]) �= 0 for #V σ
r −

d ≤ i ≤ pdim(K[Δ〈r〉]), which shows the non-vanishing in (i). For the vanishing
we use the minimality of σ and Lemma 4.13 in the same way as in the proof of
Proposition 3.19.

We now prove (ii). Let V Δ
r denote the vertex set of Δ〈r〉. It follows from (i) that

1

pdim(K[Δ〈r〉])
#{i : βi,i+d(K[Δ〈r〉]) �= 0}

=
1

pdim(K[Δ〈r〉])
(pdim(K[Δ〈r〉])− (#V σ

r − d− 1))

= 1− #V σ
r − d− 1

#V Δ
r − depth(K[Δ〈r〉])

= 1−
1

rd−1 (#V σ
r − d− 1)

1
rd−1 (#V Δ

r − depth(K[Δ]))

= 1−
1

rd−1 (f
σ̃〈r〉

0 − d− 1)
1

rd−1 (f
Δ〈r〉
0 − depth(K[Δ]))

.

As r goes to infinity, Proposition 4.12 implies that
#{i : βi,i+d(K[Δ〈r〉]) 
=0}

pdimK[Δ〈r〉]
approaches

f σ̃
d−1

fΔ
d−1

. �

Since the limits in Proposition 3.19 and Proposition 4.14 coincide, Example 3.20
shows that for any d any rational number in the half-open interval [0, 1) can occur
as a limit in Proposition 4.14.

5. Appendix

In this section we provide the proofs of the statements that require only manip-
ulations of simple numerical expressions.

Proof of Lemma 3.3. We set

(5.1) nj = min
{ r∑

�=1

(2i�+2 − 2) :
(i1, . . . , ir) ∈ Nr,
i1 + · · ·+ ir + (r − 1) = j − 1,
i1 + · · ·+ ir + 2r ≤ d

}
− j.

Our goal is to prove that nj = mj where the mj ’s are defined in Definition 3.1.
We may write the second condition in (5.1) as

(5.2) i1 + · · ·+ ir = j − r

and the third as

j + r ≤ d,

or, equivalently,

(5.3) r ≤ d− j.
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Note also that (5.2) implies that r ≤ j since (i1, . . . , ir) ∈ Nr. Therefore r ≤
min{j, d− j}. Summing up, we can rewrite the definition of nj as

(5.4) nj = min
r=1,...,min{j,d−j}

min
{( r∑

�=1

2i�+2
)
− 2r :

(i1, . . . , ir) ∈ Nr,
i1 + · · ·+ ir = j − r

}
− j.

Observe the following:

Claim 1. Assume that r < min{j, d−j}, i = (i1, . . . , ir) ∈ Nr and i1+· · ·+ir = j−r.
Note that j − r > 0 and hence one of the ik is positive, say i1 > 0. Then we set
u = (u1, . . . , ur+1) where u1 = i1 − 1, uk = ik for k = 2, . . . , r and ur+1 = 0. By
construction,

u1 + · · ·+ ur+1 = i1 + · · ·+ ir − 1 = j − (r + 1),

and hence u is a “valid” vector. We want to show that the “contribution” of u is
strictly smaller than that of the vector i. Hence we consider the difference of the
“contributions” of the vector i and the vector u:( r∑

l=1

2il+2
)
− 2r −

(( r+1∑
l=1

2ul+2
)
− 2(r + 1)

)
,

which is
2i1+2 − 2r − 2u1+2 − 2ur+1+2 + 2(r + 1),

that is,
2i1+2 − 2i1+1 − 22 + 2,

that is,
2i1+2 − 2i1+1 − 2,

which is clearly positive (since i1 > 0).

Claim 2. Now suppose that i1 + · · · + ir = j − r and that there are two of the
ik whose difference is > 1, say i2 − i1 > 1. Now we define u = (u1, . . . , ur) by
u1 = i1 + 1, u2 = i2 − 1 and uk = ik for k > 2. We want to show that the
contribution of u is smaller than the one of i. Hence we consider the difference of
the contributions and we have

2i1+2 + 2i2+2 − 2i1+3 − 2i2+1.

We want to show that it is positive. We may factor out 2i1+2 and we have to show
that

1 + 2i2−i1 − 2− 2i2−i1−1

is positive, that is,
2i2−i1 − 1− 2i2−i1−1

is positive. This is clearly true.

Taking Claim 1 and Claim 2 into consideration we have that the minimum in
the expression of (5.4) for nj is obtained when r = min{j, d− j} and for the vector
(i1, . . . , ir) such that i1 ≥ i2 ≥ · · · ≥ ir and i1 − ir ≤ 1. Now if j ≤ d − j, i.e.,
j ≤ d/2, then r = j and the corresponding vector is (i1, . . . , ij) = (0, . . . , 0). It
follows then that nj = j.

If instead d − j ≤ j, i.e., j ≥ d/2, then r = d − j and the corresponding vector
(i1, . . . , id−j) is obtained as follows. Since

i1 + · · ·+ id−j = j − (d− j) = 2j − d
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and i1 ≥ i2 ≥ · · · ≥ id−j and i1 − id−j ≤ 1 it must hold that

ik =

{
a+ 1 for k = 1, . . . , c,
a for k = c+ 1, . . . , d− j,

where a and c are non-negative integers such that

(2j − d) = a(d− j) + c

and 0 ≤ c < d− j. Hence we have

nj =
( d−j∑

�=1

2i�+2
)
− 2(d− j)− j = c2a+3 + (d− j − c)2a+2 − 2d+ j

= 2a+2(2c+ d− j − c)− 2d+ j = 2a+2(c+ d− j)− 2d+ j.

Hence we have shown that nj is equal to mj . �

Proof of Lemma 3.11. We have the following chain of inequalities:

(2ir+2 − 2)2i2+···+ir−1+2r−4 = 2ir+2

(
1− 1

2ir+1

)
2i2+···+ir−1+2r−4

≥ 2ir+2

(
1− 1

2

)
2i2+···+ir−1+2r−4

= 2ir+1+i2+···+ir−1+2r−4.

Since i1 = 0 by (i), it follows from (ii) that i2 + · · · + ir−1 + ir + (r − 1) = j − 1
and hence

(2ir+2 − 2)2i2+···+ir−1+2r−4 ≥ 2j+r−3.

For r ≥ 4 the claim follows. We need to treat the cases r ∈ {1, 2, 3} separately.

Case 1: r = 1. By (ii) it then follows that j = 1 and hence d < 2, which is a
contradiction to the assumptions.

Case 2: r = 2. It follows from (ii) that i2 = j − 2 and hence

(2ir+2 − 2)2i2+···+ir−1+2r−4 +

r∑
l=1

(2il+2 − 2)

= (2j − 2) + (20+2 − 2) + (2j − 2)

= 2 · 2j − 2 = 2j+1 − 2,

which shows the claim.

Case 3: r = 3. By (i) and (ii) it holds that i2 + i3 = j − 3. From this, we obtain

(2ir+2 − 2)2i2+···+ir−1+2r−4 +
r∑

l=1

(2il+2 − 2)

= (2i3+2 − 2)2i2+2 + (20+2 − 2) + (2i2+2 − 2) + (2i3+2 − 2)

= 2i2+i3+4 − 2i2+3 + 2i2+2 + 2i3+2 − 2

= 2j+1 − 2i2+2 + 2i3+2 − 2

≥ 2j+1 − 2,

where for the last inequality we use i2 ≤ i3. �



1690 A. CONCA, M. JUHNKE-KUBITZKE, AND V. WELKER

Proof of Lemma 3.12. Since
r∑

�=1

(2i�+2 − 2)−
r∑

�=1

(2j�+2 − 2) = 2i1+2 + 2i2+2 − 2j1+2 − 2j2+2

= 2i1+2 + 2i2+2 − 2i1+1 − 2i2+3 = 2i1+1 − 2i2+2,

we need to show that

(5.5) (2ir+2 − 2)2i2+···+ir−1+2r−4 + 2i1+1 − 2i2+2 ≥ 0.

We have

(2ir+2 − 2)2i2+···+ir−1+2r−4 = 2ir+2

(
1− 1

2ir+1

)
2i2+···+ir−1+2r−4

≥ 2ir+2

(
1− 1

2

)
2i2+···+ir−1+2r−4

= 2ir+12i2+···+ir−1+2r−4 = 2i2+···+ir−1+ir+2r−3.

For r ≥ 3 the last expression is ≥ 2i2+ir+6−3 ≥ 2i2+2, from which follows (5.5) in
this case. If r = 2, we obtain

(2ir+2 − 2)2i2+···+ir−1+2r−4 = 2i2+2 − 2.

Hence, (5.5) also holds in this case. �
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