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KNOTS AND LINKS OF COMPLEX TANGENTS

NAOHIKO KASUYA AND MASAMICHI TAKASE

Abstract. It is shown that every knot or link is the set of complex tangents of
a 3-sphere smoothly embedded in the 3-dimensional complex space. We show
in fact that a 1-dimensional submanifold of a closed orientable 3-manifold can
be realised as the set of complex tangents of a smooth embedding of the 3-
manifold into the 3-dimensional complex space if and only if it represents the
trivial integral homology class in the 3-manifold. The proof involves a new
application of singularity theory of differentiable maps.

1. Introduction

An immersion f of a C∞-smooth manifold M into the complex space C
n is said

to be totally real if dfx(TxM) ∩ J(dfx(TxM)) = {0} for each point x ∈ M and the
complex structure J . If, on the contrary, dfx(TxM) contains a complex line, such
a point x is said to be a complex tangent. Totally real immersions and embeddings
have long been important topics in differential geometry (see e.g. [1, 3, 12, 14]).
The behaviour of complex tangents is also apparently interesting and has been
extensively studied (see e.g. [4, 6, 7, 9, 13, 17, 29]).

In this paper we show that a 1-dimensional submanifold L of a closed orientable
3-manifold M3 can be realised as the set of complex tangents of a C∞-smooth
embedding M3 into C3 if and only if the homology class [L] vanishes in H1(M

3;Z).
Ali M. Elgindi has obtained, in his pioneering paper [7], a similar result mainly for a
knot in the 3-sphere S3, namely, in the case where L is a single circle and M3 = S3,
in which, however, the embedding of S3 into C3 ought to have a degenerate point
and cannot be taken to be C∞-smooth (see also [9]). In his argument, Akbulut
and King’s result [2] has played a crucial role to relate the two seemingly unrelated
objects — geometry of complex tangents and topology of knots. Our approach is
quite different; we employ instead Saeki’s theorem on singularities of stable maps
in the spirit of differential topology. This enables us to avoid dealing with the
degeneracy and to study knots and links in a general orientable 3-manifold.

A stable map between manifolds, which we will define later in terms of the con-
ditions of local forms, is a C∞-smooth map which differs from neighbouring maps
in the mapping space only by diffeomorphisms of the source and target manifolds.
The notion of a stable map can be naturally regarded as a high-dimensional variant
of a Morse function and has attracted attention as a tool to analyse the topology
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of a manifold. We especially focus on liftable stable maps from 3-manifolds to the
plane, that is, those stable maps which can factor through immersions into R4, and
reveal that stable maps are useful to study the geometry of a real submanifold in a
complex space.

Our proof is not complicated; it contains two main ideas: a refinement of Saeki’s
theorem claiming that any integrally null-homologous link is the singular set of a
liftable stable map to the plane (Theorem 7.1) and a gimmick to lift the stable map
into an immersion in C3 whose complex tangents form the given link (Theorem 6.3).
At the final step, with the aid of a totally real version of Whitney’s trick (Gromov
[14] and Forstnerič [12]), we eliminate double points of the immersion so as to obtain
the main theorem (Theorem 8.1).

Our argument focusing on the liftability goes back to an interesting corollary on
stable maps (Corollary 6.5). Namely, we show that the singular set of a liftable
stable map from a closed orientable 3-manifold M3 to the plane represents the
trivial integral homology class in H1(M

3;Z). This can be regarded as a refined
version of the well-known Thom polynomial [28] stating that the singular set of a
stable map from a closed orientable 3-manifold to the plane represents the trivial
Z/2Z-coefficient homology class.

In what follows, the term “C∞-smooth” will be referred to simply as “smooth”.
All manifolds and maps between manifolds shall be supposed to be smooth, unless
otherwise stated.

2. Complex tangents

Let f : Mk → C
n be a smooth immersion. As mentioned in §1, a point x ∈ Mk

is said to be a complex tangent if dfx(TxM
k) contains a complex line, that is,

dfx(TxM
k) ∩ J(dfx(TxM

k)) �= {0}

holds. If f has no complex tangents it is said to be totally real.
We deal mainly with embeddings of closed orientable 3-manifolds into C

3. Ac-
cording to Lai [17, Theorem 2.3] (see also [29, Proposition (2.1)] and [7, Proposi-
tion 3]), for a smooth generic immersion of M3 into C3, the set of complex tangents
is empty or forms a codimension two submanifold of M3.

On the other hand, based on the h-principle due to Gromov [14], it has been
shown [3, 12] that any compact orientable 3-manifold admits a totally real embed-
ding in C3. More precisely, any immersion f : M3 → C3 of a compact orientable
3-manifold M3 is regularly homotopic to a totally real immersion, and moreover,
if f is regularly homotopic to an embedding, then it is regularly homotopic to a
totally real embedding. This implies, in a sense, that the existence of complex
tangents is not an obstruction to total reality. Therefore, our interest is rather in
their global behaviours.

Elgindi has initiated the study of topology of complex tangents of embeddings of
the 3-sphere in a series of papers [7–9]. In addition to the result mentioned in §1, he
has shown in [9] that for any given knot K, an embedded circle in S3, there exists
a smooth embedding of S3 into C3 with complex tangents forming a knot isotopic
to K or a 2-component link isotopic to two unlinked copies of K. The latter case,
however, cannot be excluded, and after all it seems that the argument is facing
a difficult trade-off. The problems of resolving this and dealing with knots and
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links in a general 3-manifold are posed at the end of [9]. We will offer satisfactory
solutions to these problems in §8.

Regarding the set of complex tangents, our first observation is the following.

Theorem 2.1. For a smooth generic immersion of a closed orientable 3-manifold
M3 into C3, the integral homology class represented by the set of complex tangents
vanishes in H1(M

3;Z).

Proof. Denote by G6,3 the Grassmann manifold of 3-planes in R6 = C3. Let GTR
6,3 be

the open subset of G6,3 consisting of totally real 3-planes and put W := G6,3�GTR
6,3 ,

which turns out to be a codimension two closed orientable submanifold of G6,3 (see
[8, §2 and Theorem 3]).

To a smooth immersion f : M3 → C3, we associate the Gauss map Γf : M3 →
G6,3 defined by Γf (p) = df(TpM

3). For a generic f , the Gauss map Γf becomes a
continuous map transverse to W , and the set of complex tangents of f is just the
codimension two closed orientable submanifold Γ−1

f (W ) of M3.

As mentioned above, f is regularly homotopic to a totally real immersion [3,12].
This implies that there exists a homotopy from Γf to a map M3 → G6,3 with image
inside GTR

6,3 . Such a homotopy determines the map

˜Γf : M3 × [0, 1] → G6,3

such that ˜Γf restricted to M3 ×{0} coincides with Γf and ˜Γf (M
3 ×{1})∩W = ∅.

By a small perturbation (fixed on M3×{0}) if necessary, we can make ˜Γf transverse

to W . Then, the inverse image ˜Γ−1
f (W ) gives an orientable submanifold bounded

by Γ−1
f (W ) in M3, which implies that the set of complex tangents of f is null-

homologous in M3. �
Remark 2.2. A similar statement in the case of homology with coefficients in R has
been proved in [6, 17].

3. Knots and links in 3-manifolds

The coherent band surgery for links in R3, which is equivalent to the move
called nullification or a sort of rational tangle surgery, has been extensively studied
particularly in relation with the study of enzyme actions on DNA (see [11] for
example). We consider here the notion of coherent band surgery for links in a
general 3-manifold M3, that is, copies of circles embedded in M3.

Definition 3.1. Let L be a 1-dimensional submanifold of n-manifold M and b : I×
I → Mn an embedding such that b(I×I)∩L = b(I×∂I), where n ≥ 3 and I = [0, 1].
Then,

L′ = (L� b(I × ∂I)) ∪ b(∂I × I)

is said to be the link L obtained by the band surgery along the band b. If L is an
oriented link and L′ has the orientation compatible with L� b(I × ∂I), the link L′

is said to be obtained by the coherent band surgery (see Figure 1).

The following proposition has been implicitly proved in [23, Lemma 3.9].

Proposition 3.2. Let L and L′ be closed oriented 1-dimensional submanifolds of
a closed n-dimensional manifold M where n ≥ 3. Then, the homology class [L] is
equal to [L′] in H1(M ;Z) if and only if L′ is isotopic to a 1-dimensional oriented
submanifold obtained from L by a finite iteration of coherent band surgeries.
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Figure 1. The coherent band surgery

Figure 2. The commutator through coherent band surgeries

Proof. The proof is done essentially as in the proof of [23, Lemma 3.9].
Since the coherent band surgery clearly does not change the homology class

represented by the submanifold, the necessity is obvious.
Now suppose that L and L′ are integrally homologous inM . By suitable coherent

band surgeries, we may assume they are both connected. Then the proof requires
just the third and fourth paragraphs of the proof of [23, Lemma 3.9]. Namely, we
first need to show that the action of a commutator αβα−1β−1, for α, β ∈ π1(M

3, x)
and a point x ∈ L, can be realised by an iteration of coherent band surgeries (see
Figure 2). Thus, in view of the fact that H1(M ;Z) can be identified with the
abelianisation of π1(M

3, x), we may assume that L and L′ represent the same
class in π1(M

3, x); hence we then need to show that the unknotting operation (the
“crossing change” up to isotopy) can be realised by an iteration of coherent band
surgeries (see Figure 3). See [23, pages 1150–1151] for details. �

4. Stable maps from 3-manifolds to the plane

We introduce stable maps from 3-manifolds to the plane. Although the notion
of a stable map can be defined for more general source and target manifolds, those
from 3-manifolds to the plane, in particular, have been extensively studied (see
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Figure 3. The unknotting operation through coherent band surgeries

[16, 18, 24] and [31] for example). Thus we adopt here a common definition in the
dimensions (see e.g. [16] or [18, p. 6]).

For a smooth map f : M → N between smooth manifolds, we denote by S(f)
the set of singular points; that is, we put

S(f) = {p ∈ M rank dfp ≤ min(dimM, dimN)}
and call it the singular set of f .

Definition 4.1. A smooth map f : M3 → R2 is called a stable map if it satisfies
the following conditions.

I. Local conditions:
For each point p ∈ M3, there exist local coordinates (x, y, z) centred at p
and (X,Y ) centred at f(p) with which f has one of the following forms:

(L1) (X ◦ f, Y ◦ f) = (x, y) (p is called a regular point),
(L2) (X ◦ f, Y ◦ f) = (x, y2 + z2) (p is called a definite fold point),
(L3) (X ◦ f, Y ◦ f) = (x, y2 − z2) (p is called an indefinite fold point),
(L4) (X ◦ f, Y ◦ f) = (x, xy + y3 + z2) (p is called a cusp point).

II. Global conditions:
(G1) For each cusp point p ∈ M3, we have f−1 (f(p)) ∩ S(f) = {p}.
(G2) f restricted to (S(f) � {cusp points}) is an immersion with normal

crossings.

Remark 4.2. The set of all stable maps M3 → R2 from a compact 3-manifold M3

to the plane is open and dense in the mapping space C∞(M3,R2), the set of all
smooth maps M3 → R2 endowed with the Whitney C∞-topology [20]. Hence,
every smooth map M3 → R2 can be approximated by a stable map.
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Figure 4. Local images of singular points

Remark 4.3. For a stable map f : M3 → R
2 from a compact 3-manifold M3 to

the plane, its singular set S(f) forms a compact smooth 1-dimensional submanifold
of M3. It consists of smooth arcs of definite folds or indefinite folds and isolated
cusp points, where definite and indefinite fold arcs meet. Figure 4 depicts the local
image of the singular points.

The 2-dimensional regions divided by the lines consist of the images of regular
points. The regular fibre, the inverse image of a regular point, consists of several
copies of circles. Therefore, if we describe such regular fibres and how they degen-
erate in crossing the singular lines, we can recover the given map f locally. This is
successfully done in the fundamental paper [31] due to Minoru Yamamoto, who has
studied in detail stable maps from 3-manifolds to the plane and their deformations
with lots of clear figures. We will often refer to the figures of his paper [31].

A generic homotopy ft : M3 → R2 (t ∈ [−1, 1]) between two stable maps f0 and
f1 has been studied in [5,26]. The germ of such a generic homotopy ft, in suitable
local coordinates (x, y, z) of M3 and (X,Y ) of R2, is given by one of the following:

(i) (X ◦ ft, Y ◦ ft) = (x, y3 + yx2 + z2 + yt) (Lips),
(ii) (X ◦ ft, Y ◦ ft) = (x, y3 − yx2 + z2 + yt) (Beaks),
(iii) (X ◦ ft, Y ◦ ft) = (x, y4 + yx± z2 + y2t) (Swallowtail);

in addition,

(iv) an intersection of a fold and a cusp,
(v) a non-transversal intersection of two folds,
(vi) an intersection of three folds

may occur as codimension one multigerms (see Figure 5). Each of the above ho-
motopies passes through a non-stable map at t = 0, a bifurcation point. Note that
only in (i), (ii), and (iii) do the types of singularities change through the bifurcation
point. Note further that the case (iii) does not change the set of singular points.

5. Saeki’s theorem

A striking result that every knot or link in S3 is the singular set of a stable
map from S3 to the plane is a consequence of the following theorem due to Saeki
[23, Theorem 2.2].

Theorem 5.1 (Saeki [23, Corollary 6.3]). Let M3 be a closed orientable 3-manifold
and let L be a closed 1-dimensional submanifold of M3. Then there exists a stable
map f : M3 → R2 with S(f) = L if and only if the Z/2Z-coefficient homology class
[L]2 vanishes in H1(M

3;Z/2Z).

We review the outline of Saeki’s proof.
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Figure 5. Generic homotopies

His first observation is that any two 1-dimensional submanifolds (links) L1 and
L2 in M3 can be connected by a finite iteration of (not necessarily coherent) band
surgeries if and only if [L1]2 = [L2]2 in H1(M

3;Z/2Z) ([23, Lemma 3.9]; compare
it with Proposition 3.2).

The second point is that the Beaks, one of the seven generic homotopies intro-
duced in §4, affect the singular set just as the band surgery. More precisely, we
can deform a given stable map f : M3 → R

2, so that an arbitrary band surgery is
performed on the singular set S(f) by suitably iterating the following four types of
generic homotopies (see [23, Remark 4.2]):

(H0) Lips from left to right in Figure 5,
(H1) Beaks from right to left in Figure 5,
(H2) Swallowtail from left to right in Figure 5, and
(H3) Intersection of a fold and a cusp from left to right in Figure 5.

Specifically, these homotopies are used as follows. First, if the stable map has the
empty singular set, by using (H0) we can make it non-empty (note that we do not
need this since a stable map to the plane necessarily has the non-empty singular
set). Then, if we need to perform a band surgery in some place on the singular set,
we use (H2) to yield cusps in the correct locations, which serve as “footholds” for
the necessary “band”, and then extend the band from one foot toward the other
by a series of (H3). The Beaks (H1) in the final stretch complete the desired band
surgery on the singular set.

Thus, recalling that among the above four generic homotopies only the Lips and
the Beaks may possibly change the isotopy class (link type) of S(f) ⊂ M3 (and
the Lips are not used in our case), the proof is outlined as follows. The “only
if” part is nothing but the Thom polynomial: for any stable map f : M3 → R2

the homology class [S(f)]2 represents the dual of the second Stiefel–Whitney class
w2(M

3) and hence always vanishes in H1(M
3;Z/2Z) (Thom [28]). For the “if”

part, beginning with an arbitrary stable map finit. : M3 → R
2 we can modify it into

f ′ : M3 → R2 through a finite iteration of (H1), (H2) and (H3) so that the singular
set S(f ′) is isotopic to any given L, as long as [L]2 = 0 ∈ H1(M

3;Z/2Z). Finally,
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by composing a suitable homeomorphism (derived from an ambient isotopy) of M3

with f ′ we obtain the desired map f : M3 → R2 with S(f) = L (see [23, p. 1155]).

Remark 5.2. From now on, we will call the above stable map finit. : M3 → R2 the
initial stable map in Saeki’s construction.

6. Liftable stable maps and complex tangents

Given a stable map the problem whether it can be lifted to an immersion (or
an embedding) has been studied by many authors (the references in [25] might
be convenient), including Haefliger [15] and Harold Levine [18]. Haefliger [15] has
studied the lifting problem of a stable map from a surface to R2 and obtained a nec-
essary and sufficient condition for being lifted to an immersion into R

3. H. Levine
[19] has studied the analogous problem of the existence (and classification [18]) of
immersions into R4 over stable maps from 3-manifolds to R2.

Definition 6.1. Let f : M3 → R2 be a stable map from an orientable 3-manifold

to R2. We shall say that f is liftable or has an immersion lift ˜f in R4 if there exists

an immersion ˜f : M3 → R4 such that π ◦ ˜f = f for the projection π : R4 → R2.

Remark 6.2. Note that any closed orientable 3-manifold M3 admits a liftable stable
map to R2. To obtain such a stable map, we only need to compose any generic
immersion M3 → R4 with a generic projection R4 → R2 [21].

The following seems the first indication of a relation between liftable stable maps
and complex tangents.

Theorem 6.3. Let g1 = (f1, f2) : M3 → R2 be a stable map of a closed orientable
3-manifold which has an immersion lift g̃1 = (f1, f2, f3, f4). Then, the map

G = (f1, f2, f3, f4, f1,−f2) : M3 −→ R
6 = C

3

defines a smooth immersion of M3 into C3 the set of whose complex tangents co-
incides with the singular set S(g1) of g1.

Proof. Put g2 := (f3, f4) and g3 := (f1,−f2), so that we have

G = (g1, g2, g3) : M3 −→ C
3.

First, we show that the immersion G is totally real on M3 � S(g1). Take any
regular point p of g1 and consider the differential map

dGp : TpM
3 −→ TG(p)C

3 = C
3 = C1 ⊕ C2 ⊕ C3

at p. Then, the image dGp(TpM
3) contains no complex line for the following reason.

Suppose that dGp(TpM
3) contains a complex line lp. Then, via the projections

TG(p)C
3 → Ci for i = 1, 2, and 3, the line lp should be mapped holomorphically

onto or zero to each Ci. Since dimR ker (dg1)p = 1, we see that lp should be
mapped holomorphically onto both C1 and C3. But this is impossible since, by the
definition of G, if lp is mapped holomorphically onto one, then it should be mapped
anti-holomorphically onto the other. Thus, G is totally real on M3 � S(g1).

Next, we show that for any singular point p ∈ S(g1), the image dGp(TpM
3) con-

tains a complex line. Since g1 is a stable map, along the smooth link L := S(g1),
ker dg1 L is a real 2-dimensional vector bundle. Furthermore, since g̃1 = (g1, g2) is
an immersion, (dg2)p, for p ∈ L, gives a linear isomorphism between ker (dg1)p
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and C2. Since ker (dg1)p = ker (dg3)p, the image dGp(ker (dg1)p) is equal to

(dg2)p(ker (dg1)p), which is nothing but the complex line Tg2(p)C = C2 in TG(p)C
3.

We have thus shown that the set of complex tangents of the immersion G coin-
cides with the singular set S(g1) of the stable map g1. �

Remark 6.4. In Theorem 6.3, since the singular set L = S(g1) is a 1-dimensional
submanifold of M3 and the map g1 = (f1, f2) restricted to L, except at isolated
cusp points, is a self-transverse immersion to the plane, we may assume that the
immersion g̃1 = (f1, f2, f3, f4) restricted to L is an embedding, by slightly perturb-
ing f3 and f4 if necessary. Then, there is a tubular neighbourhood N of L such that
g̃1 N is an embedding. Thus we can choose the immersion G so that its restriction
to N is an embedding.

The following is an easy consequence of Theorems 2.1 and 6.3. As mentioned in
§1, it is intriguing to compare Corollary 6.5 with the usual Thom polynomial [28].

Corollary 6.5. Let f : M3 → R
2 be a liftable stable map from a closed orientable

3-manifold M3. Then, [S(f)] = 0 ∈ H1(M ;Z).

7. An orientation of the singular set of liftable stable maps

and an extension of Saeki’s theorem

As mentioned in §6, H. Levine [19] has studied the lifting problem of stable maps
from 3-manifolds to the plane and given an example of a non-liftable stable map
from an orientable 3-manifold ([19, Example 2, p. 288]). His example is based on
a certain necessary condition for the existence of an immersion lift in terms of the
rotation numbers of regular fibres and an appropriate orientation on the singular
set (see also [18, Theorem, p. 55 and Proposition, p. 59]). We recall it briefly here.

Let f : M3 → R2 be a stable map from an oriented 3-manifold with an immersion

lift ˜f = (f, h) : M3 → R4 = R2×R2, and let π : R4 → R2 be the projection onto the
first factor. Then, each component C of the regular fibre of f over a point x ∈ R2,
which can be compatibly oriented with respect to the orientations of M3 and R2,
is immersed by h into R

2 = π−1(x), so that we can consider the rotation number
r(C) of this immersion. Then, according to [19, p. 288], for such a liftable stable
map f we can take an orientation of the singular set S(f) such that the following
equations hold in Figure 6, which depicts the image of definite and indefinite fold
points up to regular circle components:

• r(C) = 1 (resp. = −1) if the arc of definite folds is oriented upward (resp.
downward), and

• r(C2) + r(C3) − r(C1) = 1 (resp. = −1) if the arc of indefinite folds is
oriented upward (resp. downward).

We shall call it a good orientation of S(f) in what follows. Note that the choice of
a good orientation is not unique.

The rest of this section is devoted to extending Saeki’s theorem slightly. Namely,
we show that in Theorem 5.1 the stable map f can be chosen to be liftable if the
integral homology class [L] represented by the given link L vanishes.

Theorem 7.1. Let M3 be a closed orientable 3-manifold and let L be a closed 1-
dimensional submanifold of M3. Then, there exists a liftable stable map f : M3 →
R2 with S(f) = L if and only if the Z-coefficient homology class [L] vanishes in
H1(M

3;Z).
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Figure 6. A good orientation of the singular set

Proof. The “only if” part is nothing but Corollary 6.5.
Suppose that [L] = 0 ∈ H1(M

3;Z) and consider any orientation on L. In Saeki’s
construction, we can choose the initial stable map finit : M3 → R2 (Remark 5.2)
so that it has an immersion lift in R4 (Remark 6.2). Take a good orientation on
the singular set S(finit) (see the beginning of this section). Then, [S(finit)] = 0 ∈
H1(M

3;Z) by Corollary 6.5, and hence S(finit) can be related to L through a finite
iteration of coherent band surgeries by Proposition 3.2. Therefore, we only have to
check that the coherent cases of (H1) in addition to (H2) and (H3) in §5 keep the
“liftability”.

To see this, we first list all the necessary local homotopies, including the infor-
mation on how regular fibres degenerate in crossing the image of the singular points
and how the singular fibres are deformed during the homotopies (up to regular cir-
cle components). This is carried out in Figures 7–16, based on the classification
given in [31, Theorem 4.7]. Our Figures 7–16 just correspond to the eleven figures
appearing in [31, Figure 8(a)] (the case IIIa(l) corresponding to Lips is excluded).

In Figures 7–16, we use the solid lines for definite folds and the dotted lines for
indefinite folds. Bigger circles represent the regular fibre over each point of the
region, and smaller circles drawn near the lines indicate how they are deformed and
degenerate there. An explanation about the circles with shade is given below.

What we want to show is that in each homotopy in Figures 7–16 if we have an
immersion lift in R

4 at the beginning (the left), then we can construct an immersion
lift in R4 at the end (the right) consistently. Actually we will prove more; that is,
each generic homotopy above can be covered by a regular homotopy in R4 if it has
an immersion lift in R4 at the beginning.

Now suppose that we have an immersion lift in R
4, in the left column of each

figure. Then, the regular fibre over each point of the 2-dimensional regions — the
disjoint union of copies of circles — is immersed into R2 (that is, a fibre of the
projection R4 → R2). At this point we see that some fibre components, vanishing
as they travel towards the definite folds, should be immersed into R

2 with rotation
number ±1. In Figures 7–16, we shade such circles. Particularly in Figure 7, the
goodness of the orientation on S(f) determines whether +1 or −1 should be chosen;
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Figure 7. Beaks with coherent orientations (see [31, Figure 6(a)
(2) and Figure 8(a) IIIa(b)])

Figure 8. D-swallowtail (see [31, Figure 6(a) (3) and Figure 8(a) IIIb])

Figure 9. I-swallowtail (see [31, Figure 6(a) (4) and Figure 8(a) IIIc])

the numbers in Figure 7 imply it (but what is important here is that the two shaded
circles of the left column have the same number in each of the two cases of Figure 7).
Note that we do not know how other circles (with no shade) are immersed into R2.
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Figure 10. I-swallowtail (see [31, Figure 6(a) (4) and Figure 8(a) IIId])

Figure 11. cusp-plus-D fold (type 1) (see [31, Figure 6(b) (5) and

Figure 8(a) III0,a1 ])

Figure 12. cusp-plus-D fold (type 2) (see [31, Figure 6(b) (6) and

Figure 8(a) III0,a2 ])

Thus, by focusing on those shaded circles, it turns out that we can construct
an immersion lift for the right column, so that circles with shade are immersed
trivially (with rotation number ±1) and the other circles are immsersed in the
inherited ways from the left column.

For example, in the right column of Figure 11, we need to determine how the
two circles of the (newly generated) central region are immersed into R

2: the figure
shows that we can do this by immersing the shaded circle trivially and the other
circle similarly to the circle of the rightmost region. The other figures can be
likewise understood. However, Figure 10 seems a little complicated. In the right
column of Figure 10, it is obvious that the two circles in the bottom region should
be immersed into R2 in a similar way as those of the left column. The shade of the
singular fibre at the intersection of the lines indicates that these immersed circles,
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Figure 13. cusp-plus-I fold (see [31, Figure 6(b) (7) and Fig-

ure 8(a) III1,a1 ])

Figure 14. cusp-plus-I fold (see [31, Figure 6(b) (7) and Fig-

ure 8(a) III1,a2 ]

Figure 15. cusp-plus-I fold (see [31, Figure 6(b) (7) and Fig-
ure 8(a) IIIe1]

nearing the intersection of the singular lines, osculate at two points in such a way
that we could span an immersed disk at the shaded portion. For the two circles of
the central region, one should be immersed similarly as the circle of the top region
and the other (with shade) should be immersed trivially. We can thus determine
a consistent immersion lift for the right column. (In Figure 10, all the shaded
portions in the right column shrink to a point at the bifurcation point, that is, in
the center column).

Finally we see that the situations of the degenerations of fibres in the left and the
right columns can be continuously connected via the center column (the bifurcation
point). Therefore, we could obtain a covering regular homotopy in R4 of each
generic homotopy. �
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Figure 16. cusp-plus-I fold (see [31, Figure 6(b) (7) and Fig-
ure 8(a) IIIe2]

Remark 7.2. For an immersion of M3 in R4 the precomposition by a homeomor-
phism of M3 does not change the regular homotopy class of the immersion (see
[30] and [27, Remark 3.4]). Therefore, in view of the last paragraph of the proof of
Theorem 7.1, the immersion lift of the resultant stable map and that of the initial
stable map belong to the same regular homotopy class.

8. Knots and links of complex tangents

We are now ready to state the main theorem.

Theorem 8.1. Let M3 be a closed orientable 3-manifold and let L be a closed 1-
dimensional submanifold of M3. Then, there exists a smooth embedding F : M3 →
C

3 the set of whose complex tangents coincides with L if and only if [L] = 0 ∈
H1(M

3;Z).

Proof. The “only if” part follows from Theorem 2.1. Suppose that [L] = 0 ∈
H1(M

3;Z).
By Whitney’s theorem, we can embed M3 into R6 such that it has the trivial

normal bundle. Furthermore, by the Compression Theorem [22], such an embedding
G′ : M3 → R6 can be chosen so that its composition with the projection to R4

becomes an immersion, which we denote by ˜f ′ : M3 → R4. By further composing
˜f ′ with a generic projection R

4 → R
2, we obtain a stable map, denoted by f ′ =

(f ′
1, f

′
2) : M3 → R2.

We have thus obtained the liftable stable map f ′ = (f ′
1, f

′
2) : M3 → R2 with the

immersion lift ˜f ′ = (f ′
1, f

′
2, f

′
3, f

′
4) : M3 → R4, whose composition j ◦ ˜f ′ with the

inclusion j : R4 → R6 is regularly homotopic to the embedding G′ : M3 → R6.
Since [L] = 0, by using this stable map f ′ as the initial stable map (see Re-

mark 5.2) in the proof of Theorem 7.1, we obtain a stable map f which satisfies

S(f) = L and has an immersion lift ˜f = (f1, f2, f3, f4) : M3 → R
4. By Remark 7.2,

furthermore, we see that ˜f is regularly homotopic to ˜f ′.
By Theorem 6.3, we obtain the immersion G′′ = (f1, f2, f3, f4, f1,−f2) whose

complex tangents form S(f) = L. Then, it is clear that G′′ is regularly homotopic to
the embedding G′ : M3 → R6. By Remark 6.4, we may assume that the immersion
G′′ is already an embedding on a tubular neighbourhood N of L. Furthermore,
since the condition of total reality is an open condition, by slightly perturbing G′′

on M3�N , we obtain a new immersion G which has only transverse double points
away fromN and is still totally real onM3�N . Thus, the self-transverse immersion
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G has only isolated double points lying in M3�N , and the set of complex tangents
of G coincides with L.

Finally we apply to G M3�N the relative h-principle for totally real embeddings
(see Gromov [14], Eliashberg and Mishachev [10], and Forstnerič [12] for example).
Since the immersion G is regularly homotopic to an embedding, is totally real on
M3 � L, and is already an embedding on N , we can find a smooth embedding
F : M3 → C

3 such that F M3�L is totally real and F N = G N by using the
relative h-principle. Thus F : M3 → C3 is the desired embedding with complex
tangents forming L. �

Corollary 8.2. Every knot or link in S3 can be realised as the set of complex
tangents of a smooth embedding F : S3 → C

3.
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[13] Franc Forstnerič, Complex tangents of real surfaces in complex surfaces, Duke Math. J. 67
(1992), no. 2, 353–376, DOI 10.1215/S0012-7094-92-06713-5. MR1177310

[14] Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Gren-
zgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin,
1986. MR864505
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