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CONVERGENCE ALMOST EVERYWHERE

OF MULTIPLE FOURIER SERIES OVER CUBES

MIECZYS�LAW MASTY�LO AND LUIS RODRÍGUEZ-PIAZZA

Abstract. We study convergence almost everywhere of multiple trigonomet-
ric Fourier series over cubes defined on the d-dimensional torus Td. We provide
a new approach which allows us to prove the novel interpolation estimates for
the Carleson maximal operators generated by the partial sums of the mul-
tiple Fourier series and all its conjugate series. Combining these estimates
we show that these operators are bounded from a variant of the Arias-de-
Reyna space QAd to the weak L1-space on Td. This implies that the multiple
Fourier series of every function f ∈ QAd and all its conjugate series con-
verge over cubes almost everywhere. By a close analysis of the space QAd we
prove that it contains a Lorentz space that strictly contains the Orlicz space

L(log L)d log log log L(Td). This yields a significant improvement of a deep
theorem proved by Antonov which was the best known result on the conver-
gence of multiple Fourier series over cubes.

1. Introduction

The theory of Fourier series in the one-dimensional case has a rich history and
is sufficiently well developed. There are many monographs related to this case;
we mention here only the fundamental monograph of Zygmund [20]. The central
problem in this theory is devoted to almost everywhere convergence of the Fourier
series, and a large number of articles have been published. The general study of this
problem was initiated in the pioneering work by Carleson [5] published in 1965, in
which the answer to the famous Luzin’s conjecture is given that the Fourier series
of square summable functions converges almost everywhere. We refer to the book
Arias-de-Reyna [3], which is an excellent source of information about the theory of
Fourier series, in which the author gives the proof of the Carleson-Hunt theorem,
following Carlson more than Hunt [10]. We point out that a new influential proof
of Carleson’s result was given by Fefferman in [9].

In the recent past the theory of multiple Fourier series was studied intensively.
The aim of this paper is to prove novel theorems on almost everywhere convergence
of multiple trigonometric Fourier series over cubes and all its conjugate series which
cover the best known results. Before we formulate our results we begin with some
definitions and notation.
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Throughout the paper, T will denote the torus. As usual we will identify T with
R/2πZ or more concretely with the interval (−π, π], and then the functions defined
on T can be interpreted as 2π-periodic functions defined on R. But T can also
be viewed as the unit circle T = {z ∈ C; |z| = 1} = {eit; t ∈ (−π, π]}. The Haar
probability measure on T will be denoted by m; that is, dm(eit) = dt/2π. For every
f ∈ L1(T), we denote the Fourier coefficients of f by

f̂(k) =
1

2π

∫ π

−π

f(t) e−itk dt =

∫
T

f(z)z−k dm , k ∈ Z.

Let Td be the d-dimensional torus and md its Haar probability measure. Define
for every f ∈ L1(Td) its Fourier coefficients by

f̂(k) =

∫
Td

f(x) exp(−i〈k,x〉) dmd ,

where k = (k1, k2, . . . , kd) ∈ Zd, x = (x1, x2, . . . , xd) ∈ Td, 〈k,x〉 = k1x1 + k2x2 +
· · ·+ kdxd .

Given f ∈ L1(Td) and n ∈ N, the multiple trigonometric Fourier series of f is
given by ∑

k∈Zd

f̂(k) exp(i〈k,x〉),(1)

and its Nth cubic partial sum, SNf(x) at x ∈ Td, is given by

SNf(x) =
∑

‖k‖∞≤N

f̂(k) exp(i〈k,x〉),

where ‖k‖∞ = max{|k1|, . . . , |kd|} for each k = (k1, . . . , kd) ∈ Zd.

Let L̃0(Td) be the cone of md-measurable functions whose values lie in [0,∞].

The Carleson maximal operator S : L1(Td) → L̃0(Td) is defined by

Sf(x) = sup
N≥1

|SNf(x)| , f ∈ L1(Td) , x ∈ Td .

Let B = {r1, . . . , rl} be a non-empty subset of the set {1, . . . , d}. The multiple
series of f given by∑

k∈Zd

l∏
j=1

(−i sgn krj )f̂(k) exp(i〈k,x〉), x ∈ Td ,(2)

is called the conjugate of the series (1) with respect to the variables whose subscripts
belong to B, or the B-conjugate, and the Nth cubic partial sum SN,B f(x) of (2)
is defined in analogy with the Nth cubic partial sum of (1).

We note that the series (1) has 2d− 1 conjugates and if B is empty, then (1) can
be regarded as the B-conjugate (∅-conjugate) of itself. In the case when d = 1, the
above definitions coincide with the usual definitions of a trigonometric series and
its conjugate series of an integrable 2π-periodic function.

With the B-conjugate series of a function f ∈ L1(Td) we associate the B-

conjugate function f̃B defined as follows. For ε(B) = (εr1 , . . . , εrl), we let

T
|B|
ε(B) =

l∏
j=1

(
T \ [−εrj , εrj ]

)
.
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For t = (t1, . . . , td) we let t(B) := (t1(B), . . . , td(B)), where tν(B) := trj for ν = rj ,

1 ≤ j ≤ l and tν(B) := 0 for ν 
= rj . We define for every x ∈ Td

(3) f̃B(x)=
(
− 1

2π

)l

lim
ε(B)→0+

∫
T

|B|
ε(B)

f(x+ t(B))

( l∏
j=1

cot
( trj

2

))
dtr1 . . . dtrl .

The limit in (3) is taken as the components of ε(B) tend to 0 independently. If

B = ∅, then we put f̃B := f .

Let DN be the Dirichlet kernel and D̃N the corresponding conjugate kernel,

DN (t) =
sin

(
N + 1

2

)
t

2 sin
(
t
2

) , D̃N (t) =
cos

(
t
2

)
− cos

(
N + 1

2

)
t

2 sin
(
t
2

) .

Note that the Nth cubic sum of the conjugate series (2) can be written

SN,Bf(x) =
1

πd

∫
Td

∏
j∈B

(
− D̃N (tj)

) ∏
j∈{1,...,d}\B

DN (tj)f(x+ t) dt, x ∈ Td ,(4)

where the set B may be empty, with the convention that the empty product is
equal to unity.

Throughout the paper for every f ∈ L1(Td) and each B ⊂ {1, . . . , d} and N ∈ N,

S̃N,B f(x) := max
1≤k≤N

|Sk,Bf(x)|, S̃Bf(x) := max
N∈N

|S̃N,Bf(x)|, x ∈ Td .

Now we sketch the historical background for motivation of our study. In 1923
Kolmogorov [12] constructed a function f ∈ L1(T), whose Fourier series diverges
almost everywhere, and in [20, 8.4] he showed that the Fourier series can di-
verge everywhere. The divergence of Fourier series on T has been investigated
by many authors. The best known result in this direction is due to Konyagin [13].
It states that for an arbitrary non-decreasing function ϕ : [0,∞) → [0,∞) with

ϕ(t) = o
(
t
√

log t
log log t

)
as t → ∞, there is a function f integrable on T such that

ϕ(|f |) ∈ L1(T) whose Fourier series is unboundedly divergent everywhere on T.
In 1966 Carleson [5] justified Luzin’s hypothesis and proved that the Fourier

series of the functions in L2(T) converge almost everywhere; Hunt [10] proved that
Carleson’s result is also valid for functions in Lp(T) for 1 < p < 2. A more or
less direct consequence of Carleson’s and Hunt’s results is the convergence a.e. of
the cubic partial sums of the multiple Fourier series of functions in Lp(Td) for any
d ≥ 2 and p > 1. Sjölin [17] extended this result to functions in the Orlicz space
L(log L)d log log L(Td). The next advance was made by Fefferman [8], who proved
for functions in Lp(T2), p > 1, the a.e. convergence of double Fourier series summed
up over dilated of a fixed polygon in the plane. Tevzadze [19], proved the same if
we consider partial sums over a nested increasing sequence of rectangles (with sides
parallel to axes). On the one hand, Fefferman [7] showed that the result for the
family of all those rectangles was not true even for continuous functions on T2.

The best known result on the divergence of multiple Fourier series over cubes on
a set of positive measure was proved by Konyagin [13]; it states that for an arbitrary
non-decreasing function ϕ : [0,∞) → [0,∞) with ϕ(t) = o

(
t(log t)d−1 log log t

)
as

t → ∞, there exists a function f integrable on Td with ϕ(|f |) ∈ L1(Td) and with
everywhere divergent Fourier series over cubes.

Antonov [2] proved a theorem extending his results from [1] on the convergence
almost everywhere of ordinary Fourier series of functions belonging to certain classes
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to multiple Fourier series in the case of convergence over cubes. His deep result
states that the multiple Fourier series of every function f in the Lorentz-Orlicz
space L(log L)d log log log L(Td) and all its conjugates converge over cubes almost
everywhere.

Our main result in this paper on almost everywhere convergence extends the best
known results at present. Our methods hinge on a d-dimensional interpolation esti-
mate of the Carleson maximal operators, which states that for each B ⊂ {1, . . . , d}
with d ∈ N there exists an absolute constant Cd > 0 such that the Carleson maximal

operator S̃B generated by conjugate Fourier series satisfies the following interpola-
tion estimates:

(5) ‖S̃Bf‖L1,∞(Td) ≤ C ‖f‖L1(Td)

[
log

(
e‖f‖L2(Td)

‖f‖L1(Td)

)]d

, f ∈ L2(Td),

where L1,∞(Td) is the weak L1-space on the d-dimensional torus Td. The mentioned
estimates in higher dimensions allow us to prove that the Carleson maximal operator

S̃B is bounded from a variant of the d-dimensional Arias-de-Reyna space QAd to
L1,∞(Td); i.e., there exists a constant C > 0 such that for every f ∈ QAd,

md

({
x ∈ Td; S̃Bf(x) > λ

})
≤ C

λ
‖f‖QAd , λ > 0.

As a consequence we obtain that the multiple Fourier series of every function f ∈
QAd and all its conjugates converge over cubes almost everywhere. By a close
analysis of the space QAd defined in the paper, we prove that it contains a Lorentz
space that strictly contains the Orlicz space L(log L)d log log log L(Td). This yields
an improvement of the mentioned Antonov’s result.

Throughout the paper we will use the following notation: given two quasi-Banach
spaces X and Y , we write X ↪→ Y if X ⊂ Y and the natural inclusion map of X in
Y is continuous. If X ↪→ Y and Y ↪→ X, we write X = Y . If f and g are real valued
functions defined on a set A, then the symbol f 
 g means that c1 g ≤ f ≤ c2 g on
A for some positive constants c1 and c2.

2. Interpolation estimates for the Carleson maximal operators

in one dimension

The main aim in this section is to prove the key results for the whole paper on

interpolation type estimates for the Carleson maximal operators S and S̃. Before
we state the main results we need some more definitions and notation.

The Hilbert transform H and the Riesz projection R are defined on L2(T), via
the Fourier transform, by

Ĥf(m) =

⎧⎪⎨⎪⎩
−if̂(m) if m > 0,

0 if m = 0,

if̂(m) if m < 0,

R̂f(m) =

{
f̂(m) if m ≥ 0,

0 if m < 0.

Hf is the conjugate function of f . Observe that we have

(6) f + iHf = 2Rf − f̂(0) .
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We will need to consider some other partial sums and the maximal type opera-
tors. Let f ∈ L1(T) and x ∈ T. Recall that

SNf(x) =

N∑
k=−N

f̂(k)eikx and Sf(x) = sup
N∈N

|SNf(x)| .

The Fejér sums σNf and the maximal Fejér operator are defined by

σNf =
1

N + 1

(
S0f + S1f + · · ·+ SNf

)
, Σf(x) = sup

N∈N

|σNf(x)| .

We also define

S+
Nf(x) = R(SNf)(x) =

N∑
k=0

f̂(k)eikx , S+f(x) = sup
N∈N

|S+
Nf(x)| ,

and
S̃Nf = H(SNf) , S̃f(x) = sup

N∈N

|S̃Nf(x)| .

Finally the Hardy-Littlewood maximal function Mf is defined by

Mf(x) = sup
I�x

1

m(I)

∫
I

|f | dm ,

where the sup is taken over all intervals I containing the point x.
We will use some function spaces. We recall that a quasi-Banach lattice on

a complete σ-finite measure space (Ω, μ) := (Ω,Σ, μ) is defined to be a quasi-
Banach space X which is a subspace of L0(μ) (the topological linear space of all
real measurable functions equipped with the topology of convergence in measure)
such that there exists u ∈ X with u > 0 a.e., and if |f | ≤ |g| a.e., where g ∈ X and
f ∈ L0(μ), then f ∈ X and ‖f‖X ≤ ‖g‖X . By a complex quasi-Banach lattice X
we mean a complexification of X.

Given f ∈ L0(μ), its distribution function is defined by μf (λ) = μ({x ∈ Ω; |f(ω)|
> λ}), and its decreasing rearrangement by f∗(t) = f∗

μ(t) = inf{λ ≥ 0; μf (λ) ≤ t}
for t ≥ 0. A (quasi-)Banach lattice (X, ‖ · ‖X) is called a rearrangement invariant
(r.i. for short) (quasi-)Banach space provided μf = μg, f ∈ X implies g ∈ X, and
‖f‖X = ‖g‖X .

In the paper we will consider r.i. spaces on a finite atomless measure space (Ω, μ).
In this case the function ϕX(t) := ‖χA‖X , where μ(A) = t, 0 ≤ t < μ(Ω), is called
the fundamental function of X.

In the theory of pointwise convergence of Fourier series an important role is
played by the weak L1-space, Orlicz spaces and Lorentz spaces. We recall that if
(Ω, μ) is a measure space and 0 < p < ∞, then the weak Lp-space Lp,∞(Ω) (Lp,∞
for short) consists of all f ∈ L0(μ) such that

‖f‖p,∞ := sup
λ>0

λμf (λ)
1/p < ∞ .

It is well-known that Lp,∞ is an r.i. quasi-Banach space when it is equipped with
the quasi-norm ‖ · ‖p,∞.

Given an Orlicz function Φ (i.e., Φ: [0,∞) → [0,∞) is an increasing, continuous
function such that Φ(0) = 0), we denote by LΦ(Ω) (LΦ for short) the Orlicz space
of all f ∈ L0(μ) such that for some λ > 0,∫

Ω

Φ(λ|f |) dμ < ∞.
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It is easy to check that if there exists C > 0 such that Φ(t/C) ≤ Φ(t)/2 for all
t > 0, then LΦ is an r.i. quasi-Banach lattice with the quasi-norm ‖ · ‖ satisfying

‖f + g‖Φ ≤ C
(
‖f‖Φ + ‖g‖Φ

)
, f, g ∈ LΦ,

where

‖f‖Φ := inf
{
λ > 0;

∫
Ω

Φ
(
|f |/λ

)
dμ ≤ 1

}
.

It is well-known that LΦ is an r.i. Banach space provided Φ is a convex function.
An important example of r.i. spaces is Lorentz spaces. Let ϕ : [0, μ(Ω)) → [0,∞)

be a non-decreasing concave function, with ϕ(0) = 0. The Lorentz space Λϕ(Ω)
(Λϕ for short) consists of all f ∈ L0(μ) such that

‖f‖Λϕ
:=

∫ μ(Ω)

0

f∗(s) dϕ(s) < ∞.

A special role is played by an Orlicz space denoted by L logL log log log L(Ω), which
is generated by an Orlicz function Φ(t) = t (log t) (log log log t), where log t :=
1 + log t for every t ≥ 1, and log t := t, for 0 ≤ t ≤ 1. Note that the case of an
atomless probability measure space (Ω, μ) can be identified up to equivalence of
norms with the Lorentz space (see, e.g., [4]) Λϕ(Ω) with ϕ : [0, 1] → [0, 1] given by
ϕ(0) = 0:

ϕ(t) 
 t log
(1

t

)
log log log

(1

t

)
, t ∈ (0, 1].

If ψ denotes the concave function ψ : [0, 1] → [0, 1] defined by ψ(0) = 0 and

ψ(t) = t log
(e

t

)
, 0 < t ≤ 1 ,

then the Lorentz space Λψ on (Ω, μ) is denoted by L logL(Ω) (L log L for short).
Note that

‖f‖L log L =

∫ 1

0

f∗(t) log
1

t
dt, f ∈ L log L,

and L log L(T) coincides up to equivalence of norms with the Orlicz space LΦ

generated by the function Φ(t) = t log(1 + t) for all t ≥ 0.
We will denote by QA(T) the quasi-Banach space introduced by Arias-de-Reyna

in [4]; it is defined to be the space of all f ∈ L0(T) such that there exists a sequence
(fn)

∞
n=1, fn ∈ L∞(T), such that

f =
∞∑

n=1

fn, m-a.e.

and
∞∑

n=1

(1 + log n)‖fn‖1 log
(
e‖fn‖∞
‖fn‖1

)
< ∞ .

QA is a quasi-Banach lattice on T equipped with the quasi-norm

‖f‖QA = inf
∞∑

n=1

(1 + log n)‖fn‖1 log
(
e‖fn‖∞
‖fn‖1

)
,

where the infimum is taken over all representations f =
∑∞

n=1 fn of f as above.
We will use the following results. See [4, Theorem 9] for the first result and

[6, Proposition 2.2] for the second one.
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Theorem 2.1. There exists a constant C > 0 such that, for every f ∈ QA(T), we
have

‖Sf‖1,∞ ≤ C‖f‖QA .

Proposition 2.2. We have QA(T) ⊂ L logL(T) with

‖f‖L log L ≤ ‖f‖QA, f ∈ QA(T) .

Now we can state and prove the main results of this section. We point out
that Theorem 2.3 and Theorem 2.4 below follow from a result in D. Lie’s paper
[15, Theorem 1.1 d)], however proved by a different method.

Theorem 2.3. For every p ∈ (1,∞) there exists a constant Cp > 0 such that

‖Sf‖1,∞ ≤ Cp‖f‖1 log
(
e‖f‖p
‖f‖1

)
, f ∈ Lp(T) .

Theorem 2.4. For every p ∈ (1,∞) there exists a constant Cp > 0 such that

‖S̃f‖1,∞ ≤ Cp‖f‖1 log
(
e‖f‖p
‖f‖1

)
, f ∈ Lp(T) .

Let us remark that usually the proofs of Carleson’s theorem obtain bounds for a

maximal operator that at the same time controls S and S̃. For instance in Arias-de-
Reyna’s book [3] this maximal operator is defined in page 45. The same operator
appears in Fefferman [9] and in Lie [15]. So applying this and similar arguments
to the case of S, one can provide a proof of a result analogous to Theorem 2.1 for

S̃. From this result Theorem 2.3 could be derived in the same way we are going to
prove Theorem 2.4 from Theorem 2.1. However we are going to derive Theorem 2.4
from Theorem 2.3 by applying an estimate presented in Proposition 2.6, whose
proof uses classical arguments. We find it interesting to include this different way
that could be used in some cases where we only know the estimate for S and not
for the bigger maximal operator.

In our study of multiple Fourier series we will use these results only for p = 2.
It should be pointed out that the presence of the L2-norm instead of the L∞-norm
which appears in Arias-de-Reyna’s paper [4] is important. This difference allows us
to perform an inductive passage to multiple dimensions, because Hilbert transform
and Riesz projection are bounded on L2 but not on L∞.

Theorem 2.3 is a direct consequence of the following proposition and Theo-
rem 2.1. As a byproduct the next proposition yields the proof of the following fact:
if, in the definition of Arias-de-Reyna space QA(T), we change the L∞-norm by
the Lp-norm, p > 1, we obtain the same space; we do not enlarge it as could be
expected. See the Comment in [15, page 1242].

Proposition 2.5. For every p ∈ (1,∞) there exists a constant Cp > 0 such that

‖f‖QA ≤ Cp‖f‖1 log
(
e‖f‖p
‖f‖1

)
, f ∈ Lp(T) .

Proof. Take f ∈ Lp(T). By homogeneity we can assume ‖f‖1 = 1. Let b = ‖f‖p ≥
1. We need to check ‖f‖QA ≤ Cp log(eb). Let β = eb. Define the sequence (Ak) of
pairwise disjoint measurable sets by

A1 = {|f | ≤ β} , Ak = {βk−1 < |f | ≤ βk} , k ≥ 2.
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Define fk = fχAk
and ak = ‖fk‖1 =

∫
Ak

|f | dm, for k ∈ N. For k ≥ 2 we have (by

β > 1)

βp ≥ bp ≥
∫
Ak

|f |p dm ≥
∫
Ak

|f |β(p−1)(k−1) dm = akβ
(p−1)(k−1)

and whence ak ≤ β2p−1−(p−1)k.
As we have f =

∑
k≥1 fk, we obtain the following bound for ‖f‖QA:

‖f‖QA ≤
∑
k≥1

(1 + log k)‖fk‖1 log
(
e‖fk‖∞
‖fk‖1

)
≤

∑
k≥1

(1 + log k)ak log
(eβk

ak

)
.

Now observe that the function x �→ x log(ea/x) is increasing on the interval (0, a]
for every a > 0. Combining with β ≥ e and ak ≤ β2p−1−(p−1)k < βk for each k ≥ 2
yields

ak log

(
eβk

ak

)
≤ β2p−1−(p−1)k log

(
eβk

β2p−1−(p−1)k

)
≤ β2p−1−(p−1)k log

(
βpk−2p+2

)
= (pk − 2p+ 2)β2p−1−(p−1)k log β, k ≥ 2.

Let Ap = (2p − 1)/(p − 1) ∈ (2,+∞). If k > Ap, we have 2p − 1 − (p − 1)k < 0,
and then

ak log

(
eβk

ak

)
≤ (pk − 2p+ 2)e2p−1−(p−1)k log β , k > Ap .

For k ≤ Ap, since 1 = ‖f‖1 ≥ ak and β ≥ e,

ak log

(
eβk

ak

)
≤ log(eβk) ≤ (k + 1) log β ≤ (Ap + 1) log β , k ≤ Ap .

In consequence we obtain

‖f‖QA ≤ (1 + logAp)(Ap + 1)Ap log β

+
∑
k>Ap

(1 + log k)(pk − 2p+ 2)e2p−1−(p−1)k log β

= Cp log β,

and this proves the result. �

We will use the following proposition, inspired by [20, Theorem XIII.5.1], in
the proof of Theorem 2.4. Before proving it we will provide first the proof of
Theorem 2.4.

Proposition 2.6. There exists a constant C > 0 such that, for every f ∈ L2(T)
and every x ∈ T, we have

S̃f(x) ≤ C
([

M(|Sf |1/2)(x)
]2
+Σ(Hf)(x)

)
.

Proof of Theorem 2.4. Applying Proposition 2.5 it is enough to prove

(7) ‖S̃f‖1,∞ ≤ C‖f‖QA .

In order to prove (7) we use Proposition 2.6. We need to estimate ‖[M(|Sf |1/2)]2‖1,∞
and ‖Σ(Hf)‖1,∞.
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By Zygmund’s result (see, e.g., [20, Theorem VII.2.8]) the Hilbert transform H
sends L logL(T) into L1(T). This fact and Proposition 2.2 provide the existence of
a constant C > 0 such that

‖Hf‖1 ≤ C‖f‖QA, f ∈ QA(T).

It is known (see, e.g., [3, pp. 23–24], that Mg controls pointwise Σg; that is,
Σg(x) ≤ CMg(x), for every x ∈ T and every g ∈ L1(T). So, by Hardy-Littlewood’s
inequality,

(8) ‖Σ(Hf)‖1,∞ ≤ C‖M(Hf)‖1,∞ ≤ C ′‖Hf‖1 ≤ C ′′‖f‖QA .

By Proposition 2.1, Sf ∈ L1,∞(T) for every f ∈ QA(T). Therefore |Sf |1/2
belongs to L2,∞(T), for every f ∈ QA(T) and

(9) ‖|Sf |1/2‖2,∞ = ‖Sf‖1/21,∞ ≤ C‖f‖1/2QA .

The Hardy-Littlewood maximal operator M sends L∞ into L∞ and L1 into L1,∞.
By interpolation M sends L2,∞ into itself. Consequently, by (9), we have

(10) ‖[M(|Sf |1/2)]2‖1,∞ = ‖M(|Sf |1/2)‖22,∞ ≤ C‖|Sf |1/2‖22,∞ ≤ C ′‖f‖QA .

Putting together the inequalities (8) and (10), using Proposition 2.6 and the
fact that ‖ · ‖1,∞ is a quasi-norm, we deduce (7), and as we explained the theorem
follows by Proposition 2.5. �

We need several lemmas for the proof of Proposition 2.6.

Lemma 2.7. For α > 0 and k ∈ N we denote bk(α) = sin(kα)− sin((k+1)α). Let
f ∈ L2(T), n ∈ N and x ∈ T. We have

(11) 2 sin(nα)S̃nf(x) = Snf(x− α)− Snf(x+ α) + 2
n−1∑
k=1

S̃kf(x)bk(α) .

Proof. Let f ∈ L2(T). We have, for x ∈ T and α > 0,

1

2

(
Snf(x− α)−Snf(x+ α)

)
=

n∑
k=−n

if̂(k)eikx
(e−ikα − eikα

2i

)
=

n∑
k=−n

−if̂(k)eikx sin(kα)

=
n∑

k=−n

Ĥf(k)eikx sin(|k|α) =
n∑

k=1

[
S̃kf(x)− S̃k−1f(x)

]
sin(kα) ,

and by an Abel’s summation, using that S̃0f(x) = 0,

= sin(nα)S̃nf(x) +

n−1∑
k=1

S̃kf(x)
[
sin(kα)− sin((k + 1)α)

]
.

Now it is easy to deduce (11). �

Lemma 2.8. Let bk(α) be as in Lemma 2.7. Suppose n ∈ N and α ∈ [π/6n, 5π/6n].
Then

(12) 2n|bn−1(α)|+ 2
n−2∑
k=1

(k + 1)|bk(α)− bk+1(α)| ≤ 4π2.
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Proof. We have bk(α) = −
∫ (k+1)α

kα
cos t dt . Therefore |bk(α)| ≤ α ≤ π/n, and

|bk(α)− bk+1(α)| =
∣∣∣∫ (k+1)α

kα

[cos t− cos(t+ α)] dt
∣∣∣ ≤ α2 ≤ π2

n2
.

The lemma follows easily since we have

2n|bn−1(α)|+ 2
n−2∑
k=1

(k + 1)|bk(α)− bk+1(α)| ≤ 2n
π

n
+ 2

n−1∑
k=1

n
π2

n2
≤ 4π2.

�

Proof of Proposition 2.6. Let n∈N, x∈T and f ∈L2(T). Taking α∈ [π/6n, 5π/6n]
and applying Lemma 2.7, we get

(13) 2 sin(nα)S̃nf(x) = Snf(x− α)− Snf(x+ α) + 2

n−1∑
k=1

S̃kf(x)bk(α) .

Using that S̃kf = Sk(Hf) = (k + 1)σk(Hf) − kσk−1(Hf), for all k ≥ 1, we have
(by a new Abel’s summation):

n−1∑
k=1

S̃kf(x)bk(α) =

n−1∑
k=1

[(k + 1)σk(Hf)(x)− kσk−1(Hf)(x)]bk(α)

= nbn−1(α)σn−1(Hf)(x) +
n−2∑
k=1

(k + 1)σk(Hf)(x)[bk(α)− bk+1(α)] .

By Lemma 2.8, since |σk(Hf)(x)| ≤ Σ(Hf)(x), for every k, we deduce from (13)
that

2| sin(nα)S̃nf(x)| ≤ |Snf(x− α)|+ |Snf(x+ α)|+ 4π2Σ(Hf)(x)

≤ Sf(x− α) + Sf(x+ α) + 4π2Σ(Hf)(x) .

Since | sin(nα)| ≥ 1/2 for any α ∈ [π/6n, 5π/6n], we have

(14) |S̃nf(x)| ≤
(

inf
α∈[π/6n,5π/6n]

Sf(x− α)1/2 + Sf(x+ α)1/2
)2

+ 4π2Σ(Hf)(x) .

The infimum can be bounded by the average over [π/6n, 5π/6n]:

inf
α∈[π/6n,5π/6n]

Sf(x− α)1/2 + Sf(x+ α)1/2

≤ 3n

2π

∫ 5π/6n

π/6n

(
Sf(x− α)1/2 + Sf(x+ α)1/2

)
dα

≤ 3n

2π

∫ 5π/6n

−5π/6n

Sf(x+ t)1/2 dt ≤ 5

2
M(|Sf |1/2)(x).

Putting this estimate into (14), we get

|S̃nf(x)| ≤
25

4

[
M(|Sf |1/2)(x)

]2
+ 4π2Σ(Hf)(x).

Taking the supremum in n the proposition follows. �
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3. Interpolation estimates of the Carleson maximal operators

in higher dimensions

The results of the previous section are one-dimensional, and it is natural to ask
what happens in higher dimensions. Here we shall prove interpolation estimates
for the Carleson maximal operators on the d-dimensional torus Td. In particular
we prove the following result:

Theorem 3.1. For each d ∈ N there exists Cd > 0 such that

mTd

(
{x ∈ Td; Sf(x) > λ}

)
≤ Cd

λ
‖f‖1

[
log

(
e‖f‖2
‖f‖1

)]d

,

for every f ∈ L2(Td) and every λ > 0.

We provide two methods which are based on the one-dimensional case. The first
one is based on some ideas from Antonov’s paper [2]. The second one is also inspired
in Antonov’s paper, however with a different presentation using multipliers. This
approach seems easier to handle and more flexible to be used in other contexts. We
provide it with complete details.

3.1. The standard approach. In what follows, for a given 1 ≤ α < ∞, we will
denote by ψα the function defined on [0,∞) by ψα(0) = 0, and

ψα(t) =

{
1
αα t logα

(
eα

t

)
if t ∈ (0, 1],

1 if t ∈ (1,∞).

In the case when α = 1 we write ψ instead of ψ1. It is easy to verify that ψα is
a concave function on [0,∞) which is increasing on [0, 1].

We will need the following simple estimate which states that for every Lorentz
space Λϕ on an atomless probability space (Ω, μ) with ϕ(0+) = 0,

(15) ‖f‖Λϕ
≤ ‖f‖∞ ϕ

(
‖f‖1
‖f‖∞

)
, f ∈ L∞(Ω).

To see this it is enough to use the formula (see [14, formula (5.4)])

‖f‖Λϕ
=

∫ ∞

0

ϕ(μf (λ)) dλ, f ∈ Λϕ .

It is enough to show the estimate for f ∈ L∞(Ω) with ‖f‖∞ ≤ 1.
Since μf (λ) = 0 for all λ ≥ 1, it follows by the above formula that

‖f‖Λϕ
=

∫ 1

0

ϕ(μf (λ)) dλ .

Since ϕ is concave, the required estimate follows:

‖f‖Λϕ
≤ ϕ

( ∫ 1

0

μf (λ) dλ
)
= ϕ(‖f‖1) .

We now state and prove a lemma which we will need later. In the proof we will
use the well-known fact that the Hilbert transform is bounded from L logL(T) to
L1(T); i.e., there exists a constant C > 0 such that

‖f̃‖L1(T) ≤ C ‖f‖L logL(T), f ∈ L logL(T).
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Lemma 3.2. Let g be a multiple trigonometric polynomial on Td with ‖g‖L∞(Td) ≤
1, and let μ, ν ∈ {−1, 0, 1} with μ2 + ν2 
= 0. Then there exists a constant C > 0
such that the function hμ,ν given by

hμ,ν(x1, . . . , xd)

= − 1

2π

∫
T

g(x1 + μt, x2 + νt, x3, . . . , xd) cot
( t

2

)
dt, (x1, . . . , xd) ∈ Td,

where the integral is understood in the sense of the principal value, is also a trigono-
metric polynomial and the inequality holds:

∫
Td−1

( ∫
T

|hμ,ν(x1, . . . , xd)| dx1

)
dx2 . . . dxd

≤ C ψ

( ∫
Td−1

( ∫
T

|g(x1, x2, . . . , xd)| dx1

)
dx2 . . . dxd

)
.

Proof. We assume without loss of generality that μ 
= 0. Now observe that intro-
ducing the new variables s1 = x1, s2 = x2 − (ν/μ)s1, s3 = x3, . . . , sd = xd, we
obtain

h(x1, . . . , xd) = − 1

2π

∫
T

g
(
s1 + μt, s2 +

ν

μ
s1 + νt, s3, . . . , sd

)
cot

( t

2

)
dt

= − 1

2π

∫
T

g
(
s1 + μt, s2 +

ν

μ
(s1 + μt), s3, . . . , sd

)
cot

( t

2

)
dt .

For fixed values s2, . . . , sd the right-hand side of the last formula regarded as a func-
tion of s1 is within a sign the conjugate function of s1 �→g(s1, s2+(ν/μ)s1, s3, . . . , sd),
and therefore combining the boundedness of the maximal conjugate function from
L logL(T) to L1(T) with the estimate (15) for the Lorentz space Λψ = L log L(T),

‖f‖L logL(T) ≤ ‖f‖L∞(T)ψ

( ‖f‖L1(T)

‖f‖L∞(T)

)
, f ∈ L∞(T),

we conclude that there exists a constant C > 0 such that

∫
T

∣∣∣ 1

2π

∫
T

g
(
s1 + μt, s2+

ν

μ
(s1 + μt), s3, . . . , sd

)
cot

( t

2

)
dt

∣∣∣) ds1

≤ C
∥∥∥g(·, s2 + ν

μ
(·), s3, . . . , sd

)∥∥∥
Λψ(T)

≤ C ψ
(∥∥∥g(·, s2 + ν

μ
(·), s3, . . . , sd

)∥∥∥
L1(T)

)
.
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Combining this with the fact that the Jacobian of the transformation from
(s1, . . . , sd) to (x1, . . . , xd) is equal to 1, we obtain∫

Td−1

( ∫
T

|hμ,ν(x1, . . . , xd)| dx1

)
dx2 . . . dxd

≤ C

∫
Td−1

ψ
(∥∥∥g(·, s2 + ν

μ
(·), s3, . . . , sd

)∥∥∥
L1(T)

)
ds2 . . . dsd

≤ C ψ

( ∫
Td−1

( ∫
T

∣∣∣g(s1, s2 + ν

μ
s1, s3, . . . , sd

)∣∣∣ ds1) ds2 . . . dsd

)
= C ψ

( ∫
Td

∣∣∣g(s1, s2 + ν

μ
s1, s3, . . . , sd

)∣∣∣ ds1 . . . dsd)
= C ψ

( ∫
Td

|g(x1, x2, . . . , xd)| dx1 . . . dxd

)
,

and this completes the proof. �

We will need a variant of the Jensen inequality, which states that if (Ω, μ) is
a probability space and φ : [0,∞) → [0,∞) with φ(0) = 0 is a concave function,
then for every f, g ∈ L1(Ω), we have∫

Ω

ϕ(|f |, |g|) dμ ≤ ϕ
(∫

Ω

|f | dμ,
∫
Ω

|g| dμ
)
,

where ϕ(s, t) := tφ(s/t) for all s ≥ 0, t > 0 and ϕ(0, 0) := 0.
We are now ready to prove the theorem concerning interpolation estimates in-

volving the maximal Carleson operator. The proof is based on some ideas from
Antonov’s paper [2].

Theorem 3.3. Let B ⊂ {1, . . . , d} and d ∈ N. There exists a constant Cd > 0
such that, for every g ∈ L2(Td), we have∥∥S̃Bg

∥∥
L1,∞(Td)

≤ Cd ‖g‖L2(Td)ψd

(‖g‖L1(Td)

‖g‖L2(Td)

)
.(16)

Proof. It is enough to prove the theorem for any multiple trigonometric polynomial
g on Td. Without loss of generality we may assume that ‖g‖2 = 1. We use induction
with respect to d. We have already proved that the result is true with d = 1, B = ∅
and with d = 1, B = {1}.

Let d ≥ 2 and assume that the inequality (16) holds for d − 1. Let g be an
arbitrary polynomial. For a given B ⊂ Nd = {1, . . . , d}, we put B := Nd \ B.
Following the proof of Theorem 2.1 in [2] we consider three cases:

Case (i). 1 ∈ B and 2 ∈ B. Then

S̃N,Bg(x) =
1

πd

∫
Td

DN (t1)DN (t2)ΠN (t3, . . . , td)g(x+ t) dt, x ∈ Td ,(17)

where for any (t1, . . . , td) ∈ Td,

ΠN (t3, . . . , td) =
∏
j∈B

(
− D̃N (tj)

) ∏
j∈B\{1,2}

DN (tj).

Combining trigonometric formulas

DN (t1)DN (t2) = D1
N +D2

N +
1

4
,
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where

D1
N :=

1

2

[
D̃N (t2 + t1)− D̃N (t2 − t1)

]1
2
cot

( t1
2

)
,

D2
N :=

1

2

[
D̃N (t1 + t2)− D̃N (t1 − t2)

]1
2
cot

( t2
2

)
,

yields (see [2, proof of Theorem 2.1])

2S̃Bg(x) ≤ max
N∈N

∣∣∣ 1

πd−1

∫
Td−1

D̃N (u2)ΠN (u3, . . . , ud)

× h1,−1(x1, x2 + u2, x3 + u3, . . . , xd + ud) du2 . . . dud

∣∣∣
+max

N∈N

∣∣∣ 1

πd−1

∫
Td−1

D̃N (u2)ΠN (u3, . . . , ud)

× h1,1(x1, x2 + u2, x3 + u3, . . . , xd + ud) du2 . . . dud

∣∣∣
+max

N∈N

∣∣∣ 1

πd−1

∫
Td−1

D̃N (u1)ΠN (u3, . . . , ud)

× h−1,1(x1 + u1, x2, x3 + u3, . . . , xd + ud) du2 . . . dud

∣∣∣
+max

N∈N

∣∣∣ 1

πd−1

∫
Td−1

D̃N (u2)ΠN (u3, . . . , ud)

× h1,1(x1, x2 + u2, x3 + u3, . . . , xd + ud) du2 . . . dud

∣∣∣
+max

N∈N

∣∣∣ 1

2πd

∫
Td

ΠN (u3, . . . , ud)g(x1 + t1, . . . , xd + td) dt1 . . . dtd

∣∣∣
= S̃B

1
g(x) + S̃B

2
g(x) + S̃B

3
g(x) + S̃B

4
g(x) + S̃B

5
g(x).

We claim that there exist universal constants Cj such that for each 1 ≤ j ≤ 5,∥∥S̃B

j
g‖L1,∞(Td) ≤ Cj ψd

(
‖g‖L1(Td)

)
.(18)

For simplicity of presentation for each d ∈ N, we put ϕd(s, t) := tψd(s/t) for all
s, t > 0 and ϕd(0, 0) := 0.

Fix x1 ∈ T. By application of the induction hypothesis, it follows that for polyno-
mial h1,−1

x1
given by h1,−1

x1
(x2, . . . , xd) = h1,−1(x1, x2, . . . , xd) for (x2, . . . , xd) ∈ Td−1

and B′ = B \ {1} ⊂ {2, 3, . . . , d}, we have

λmd−1

{
(x2, . . . , xd) ∈ Td−1; max

N∈N

∣∣∣ ∫
Td−1

D̃N (u2)ΠN (u3, . . . , ud)

× h1,−1(x1, x2 + u2, . . . , xd + ud) du2 . . . dud

∣∣∣ > λ
}

= md−1

{
(x2, . . . , xd) ∈ Td−1; max

N∈N

|SN,B′h1,−1
x1

(x2, . . . , xd)| > λ
}

≤ Cd−1ϕd−1

(
‖h1,−1

x1
‖L1(Td−1), ‖h1,−1

x1
‖L2(Td−1)

)
.

Thus, using the identity

md

{
(x1, . . . , xd) ∈ Td; S̃B

1
g(x) > λ

}
=

∫
T

md−1

{
(x2, . . . , xd) ∈ Td−1; max

N∈N

∣∣∣ ∫
Td−1

D̃N (u2)ΠN (u3, . . . , ud)

× h1,−1(x1, x2 + u2, . . . , xd + ud) du2 . . . dud

∣∣∣ > λ
}
dx1
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yields

λmd

{
(x1, . . . , xd) ∈ Td; S̃1

Bg(x) > λ
}

≤ Cd−1

∫
T

ϕd−1

(
‖h1,−1

x1
‖L1(Td−1), ‖h1,−1

x1
‖L2(Td−1)

)
dx1 .

Combining with Lemma 3.2 and the Jensen inequality, we get

λmd

{
(x1, . . . , xd) ∈ Td; S̃B

1
g(x) > λ

}
≤ Cd−1 ϕd−1

( ∫
T

‖h1,−1
x1

‖L1(Td−1) dx1,

∫
T

‖h1,−1
x1

‖L2(Td−1) dx1

)
≤ Cd−1 ϕd−1

( ∫
Td−1

(∫
T

|h1,−1(x1, . . . , xd) dx1

)
dx2 . . . dxd, ‖h1,−1‖L2(Td)

)
≤ C̃1 ϕd−1

( ∫
Td−1

ψ

( ∫
T

|g(x1, . . . , xd)| dx1

)
dx2 . . . dxd , ‖g‖L2(Td)

)
= C̃1 ψd−1

( ∫
Td−1

ψ

( ∫
T

|g(x1, . . . , xd)| dx1

)
dx2 . . . dxd

)
≤ C̃2 ψd−1

(
ψ

(
‖g‖L1(Td)

))
.

Since ψd−1(ψ(t)) ≤ cdψd(t) with cd = dd/(d − 1)d−1 for every 0 < t ≤ 1 and
‖g‖L1(Td) ≤ 1 (by ‖g‖L2(Td) = 1), we finally conclude that there exists a constant
C1 = C1(d) such that

md

{
(x1, . . . , xd) ∈ Td; S̃B

1
g(x) > λ

}
≤ C1

λ
ψd

(
‖g‖L1(Td)

)
.

We can similarly verify that S̃jg satisfies (18) with some constants Cj for each

1 ≤ j ≤ 4. It remains to show the estimate of S̃B

5
g. In the case when d = 2, we

have ΠN ≡ 1, and so

S̃B

5
g(x) ≤ 1

2πd

∫
Td

|g(t)| dt, x ∈ Td,

yields ∥∥S̃B

5
g
∥∥
L1,∞(T2)

≤ 22‖g‖L1(T2) ≤ 4‖g‖L2(T2)ψ2

(‖g‖L1(T2)

‖g‖L2(T2)

)
.

In the case when d > 2 we have

md

{
(x1, . . . , xd) ∈ Td; S̃B

5
g(x) > λ

}
=

∫
T2

md−2

{
(x3, . . . , xd) ∈ Td−2; max

N∈N

∣∣∣ 1

2πd

∫
Td−2

ΠN (u3, . . . , ud)( ∫
T2

g(x1 + t1, x2 + t2, . . . , xd + td) dt1 dt2

)
dt3 . . . dtd

∣∣∣ > λ
}
dx1 dx2 .

We can easily verify that the required estimate (18) for j = 5 follows by the induc-
tive hypothesis applied for the polynomial

hx1,x2
(t3, . . . , td) =

1

2π2

∫
T2

g(x1 + t1, x2 + t2, t3, . . . , td) dt1 dt2

in the case of dimension d− 2.
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Case (ii). Let 1 ∈ B and 2 ∈ B (the case when 1 ∈ B and 2 ∈ B can be treated
the same way). In this case we have

S̃N,Bg(x) = − 1

πd

∫
Td

D̃N (t1)DN (t2)ΠN (t3, . . . , td) g(x+ t) dt .

Again following the calculus shown in [2, proof of Theorem 2.1], we obtain

2S̃Bg(x) ≤ max
N∈N

∣∣∣ 1

πd−1

∫
Td−1

D̃N (u2)ΠN (u3, . . . , ud)

× h1,−1(x1, x2 + u2, x3 + u3, . . . , xd + ud) du2 . . . dud

∣∣∣
+max

N∈N

∣∣∣ 1

πd−1

∫
Td−1

D̃N (u2)ΠN (u3, . . . , ud)

× h1,1(x1, x2 + u2, x3 + u3, . . . , xd + ud) du2 . . . dud

∣∣∣
+max

N∈N

∣∣∣ 1

πd−1

∫
Td−1

D̃N (u1)ΠN (u3, . . . , ud)

× h1,0(x1, x2 + u2, x3 + u3, . . . , xd + ud) du2 . . . dud

∣∣∣
+max

N∈N

∣∣∣ 1

πd−1

∫
Td−1

D̃N (u1)ΠN (u3, . . . , ud)

× h−1,1(x1 + u1, x2, x3 + u3, . . . , xd + ud) du2 . . . dud

∣∣∣
+max

N∈N

∣∣∣ 1

2πd

∫
Td−1

D̃N (u1)ΠN (u3, . . . , ud)

× h1,1h(x1 + u1, x2, x3 + u3, . . . , xd + ud) du1 . . . dud

∣∣∣ .
Case (iii). Let 1 ∈ B and 2 ∈ B. Then via the trigonometric equalities

D̃N (t1)D̃N (t2) = D5
N +D6

N ,

where

D5
N :=

1

2

[
D̃N (t2 + t1) + D̃N (t2 − t1)− 2D̃N (t2)

]1
2
cot

( t1
2

)
,

D6
N :=

1

2

[
D̃N (t1 + t2) + D̃N (t2 − t1)− 2D̃N (t2)

]1
2
cot

( t2
2

)
,

we can prove in a similar way as in the previous two cases that the required estimate
holds. �
3.2. Approach via multipliers. Here we prove interpolation estimates for the
Carleson maximal operators in higher dimensions by using multipliers. This ap-
proach seems to be more flexible and easy to handle. In fact, it can be used to
prove, for a large class of functions, the almost everywhere convergence of multiple
Fourier series summed up over the dilation of polytopes. To be more concrete, if P
is a convex polytope in Rd with 0 in its interior and f ∈ QAd(Td) (see the definition
of QAd in Section 4), then we have

f(x) = lim
λ→+∞

∑
k∈(λP )∩Zd

f̂(k) exp(i〈k,x〉), for a.e. x ∈ Td.

This extends the main result of Fefferman in [8], where the above property was
proved for P a polygon in the plane R2 and f ∈ Lp(T2), p > 1. Details will appear
in a forthcoming paper.
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Let us describe the notation that we shall use. A multiplier on L2(Td) is a
bounded operator T : L2(Td) → L2(Td) such that there exists a bounded family
{am}m∈Zd such that for every f ∈ L2(Td),

T̂ f(m) = amf̂(m), m ∈ Zd .

We will denote then am = T̂ (m), for all m ∈ Zd. Every translation operator
f �→ fx is a multiplier, where fx(y) = f(x+y) and x, y ∈ Td. In fact multipliers are
the only bounded operators on L2(Td) commuting with all translation operators.

Notice that in the case when d = 1, the Hilbert transform H and the Riesz
projection R are multipliers and

Ĥ(m) = −i sgn(m) , R̂(m) = χ[0,+∞)(m) , m ∈ Z ,

where, for x ∈ R, we put sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and sgn(0) = 0.
The partial sums (over cubes) of the Fourier series SN are also multipliers, and we
have

ŜN (m) = χ[−N,N ]d(m), N ∈ N, m ∈ Zd.

For every B ⊂ {1, 2, . . . , d}, the operator sending f to its B-conjugate function
is a multiplier too. Denoting this operator by HB, it is easy to see that

ĤB(m) =
∏
j∈B

Ĥ(mj) =
∏
j∈B

(−i sgn(mj)) , m ∈ Zd.

As we have S̃N,Bf = SN

(
HBf

)
, the operator S̃N,B is also a multiplier.

Given a sequence (TN )N≥1 of multipliers we will define its maximal operator
M(TN ) by

M(TN )f(x) = sup
N≥1

|TNf(x)| , x ∈ Td .

We will say that (TN )N≥1 is an admissible sequence of multipliers in Td if there
exists a constant C > 0 such that∥∥M(TN )f

∥∥
1,∞ ≤ C‖f‖1

[
log

(
e‖f‖2
‖f‖1

)]d

, f ∈ L2(Td).(19)

Observe that for the sequence (SN ) of partial sums we have S = M(SN ). Therefore
in this language the statement of Theorem 3.1 is equivalent to saying that (SN )

is an admissible sequence of multipliers in Td. In the same way we have S̃B =

M(S̃N,B), and the statement of Theorem 3.3 is equivalent to the fact that, for all

B ⊂ {1, 2 . . . , d}, the sequence (S̃N,B) is admissible.
In the following two lemmas we collect some properties of admissible sequences

of multipliers. The proof of the first one is obvious and so we omit it.

Lemma 3.4. For each integer 1 ≤ j ≤ J , let (T j
N )N≥1 be an admissible sequence

of multipliers in Td. If αj ∈ C, for each 1 ≤ j ≤ J , we define

TN =
J∑

j=1

αjT
j
N , N ∈ N .

Then (TN )N≥1 is an admissible sequence of multipliers in Td.
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Lemma 3.5. Let (TN )N≥1 be an admissible sequence of multipliers in Td, and let
Φ: Zd → Zd be an automorphism of the group Zd. Define, for each N ≥ 1, the
multiplier UN by the formula

ÛN (m) = T̂N

(
Φ(m)

)
, m ∈ Zd .

Then (UN )N≥1 is also an admissible sequence of multipliers in Td.

Proof. There exists a continuous isomorphism ϕ : Td → Td such that

exp(i〈m, ϕ(x)〉) = exp(i〈Φ(m),x〉), (m,x) ∈ Zd × Td .(20)

Indeed there exists a d × d matrix (aj,k) with integer entries and determinant ±1
such that

Φ(m) =
( d∑
k=1

a1,kmk,

d∑
k=1

a2,kmk , . . . ,

d∑
k=1

ad,kmk

)
, m = (m1,m2, . . . ,md) ∈ Zd.

To see this it is enough, considering equivalence classes in R/2πZ, to define ϕ by

ϕ(x1, x2, . . . , xm)

=
( d∑
j=1

aj,1xj ,

d∑
j=1

aj,2xj , . . . ,

d∑
j=1

aj,dxj

)
, x = (x1, x2, . . . , xd) ∈ Td .

This isomorphism ϕ preserves the measure md, and it follows by (20) that for
every f ∈ L1(Td), m ∈ Zd,

f̂ ◦ ϕ
(
Φ(m)

)
= f̂(m) , m ∈ Zd .(21)

This yields UNf = [TN (f ◦ ϕ)] ◦ ϕ−1, for all f ∈ L2(Td) by

ÛNf(m) = ÛN (m)f̂(m) = T̂N

(
Φ(m)

)
f̂ ◦ ϕ

(
Φ(m)

)
= ̂TN (f ◦ ϕ)

(
Φ(m)

)
,

and (21) implies ĝ
(
Φ(m)

)
= ̂g ◦ ϕ−1(m), for all g ∈ L1(Td).

Let T = M(TN ) and U = M(UN ) be the corresponding maximal operators. We
have

Uf = [T (f ◦ ϕ)] ◦ ϕ−1 , f ∈ L2(Td).

But, since ϕ and ϕ−1 preserve the measure mTd and (TN ) is admissible, we have

‖Uf‖1,∞ = ‖T (f ◦ ϕ)‖1,∞ ≤ C‖f ◦ ϕ‖1
[
log

(e‖f ◦ ϕ‖2
‖f ◦ ϕ‖1

)]d

= C‖f‖1
[
log

(e‖f‖2
‖f‖1

)]d

,

for all f ∈ L2(Td), and the sequence (UN ) is admissible. �

Define now, for every σ ∈ {0, 1}d and every N ≥ 1, the following subsets of Zd:

(22) Δ(σ,N) =
( d∏
j=1

[σj , N ]
)
∩ Zd ; C(σ,N) =

(
[σ1, N ]×

d∏
j=2

[σj ,+∞)
)
∩ Zd .

Define also the multipliers Dσ
N and P σ

N by

D̂σ
N = χΔ(σ,N) and P̂ σ

N = χC(σ,N) .
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As we have said, in order to prove Theorem 3.1 we just have to check that (SN )
is an admissible sequence in Td. Observing that [−N,N ]d ∩ Zd = ([−N,−1] ∪
[0, N ])d ∩ Zd, it is easy to see that

ŜN (m) = χ[−N,N ]d(m) =
∑

σ∈{0,1}d

χΔ(σ,N)

(
Eσ(m)

)
=

∑
σ∈{0,1}d

D̂σ
N

(
Eσ(m)

)
, for all m ∈ Zd;

where Eσ(m1,m2, . . . ,md) =
(
(−1)σ1m1, (−1)σ2m2, . . . , (−1)σdmd

)
. As every Eσ

is an automorphism of Zd, applying Lemma 3.4 and Lemma 3.5, the proof of The-
orem 3.1 will be done as soon as we prove the following.

Theorem 3.6. For every σ ∈ {0, 1}d, the sequence (Dσ
N )N≥1 is an admissible

sequence of multipliers in Td.

Theorem 3.6 is a direct consequence, via Lemma 3.4 and Lemma 3.5, of the
following propositions to be proved in the following subsections.

Proposition 3.7. For every σ ∈ {0, 1}d, there exist a finite sequence (Φj)
J
j=1 of

automorphism of Zd, a finite sequence (τ j)Jj=1 in {0, 1}d, and a finite sequence of

scalars (αj)
J
j=1 such that

D̂σ
N (m) = χΔ(σ,N)(m) =

J∑
j=1

αjP̂ τj

N

(
Φj(m)

)
, m ∈ Zd.

Proposition 3.8. For every σ ∈ {0, 1}d, the sequence (P σ
N )N≥1 is an admissible

sequence of multipliers in Td.

3.3. An inductive procedure of decomposition. The aim of this section is to
provide the proof of Proposition 3.7. The proof goes by induction on d.

Proof of Proposition 3.7. For d = 1 the result is trivial because Dσ
N = P σ

N when
d = 1. Let us see the case d = 2. We have four different σ ∈ {0, 1}2. We have to
decompose the characteristic functions of the intersection with Z2 of the following
sets:

[0, N ]× [0, N ], [1, N ]× [1, N ], [0, N ]× [1, N ], and [1, N ]× [0, N ].

We just need to consider the first three cases, because the fourth one is obtained
from the third one with a permutation of coordinates which is an automorphism of
Z2.

The reader can easily check that we have, for m = (m1,m2) ∈ Z2:

χ[0,N ]×[0,N ](m) = χ[0,N ](m1)χ[0,+∞)(m2) + χ[0,N ](m2)χ[0,+∞)(m1)

− χ[0,N ](m1)χ[0,+∞)(m2 −m1)− χ[0,N ](m2)χ[1,+∞)(m1 −m2) .

Therefore

̂
D

(0,0)
N (m) =

̂
P

(0,0)
N (m) +

̂
P

(0,0)
N

(
Φ1(m)

)
− ̂
P

(0,0)
N

(
Φ2(m)

)
− ̂
P

(0,1)
N

(
Φ3(m)

)
,

where Φ1, Φ2 and Φ3 are the automorphisms of Z2 defined by Φ1(m1,m2) =
(m2,m1), Φ2(m1,m2) = (m1,m2 −m1) and Φ3(m1,m2) = (m2,m1 −m2).
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Analogously, we have, with the same meaning of Φ1, Φ2 and Φ3:

̂
D

(1,1)
N (m) =

̂
P

(1,1)
N (m) +

̂
P

(1,1)
N

(
Φ1(m)

)
− ̂
P

(1,0)
N

(
Φ2(m)

)
− ̂
P

(1,1)
N

(
Φ3(m)

)
and

̂
D

(0,1)
N (m) =

̂
P

(0,1)
N (m) +

̂
P

(1,0)
N

(
Φ1(m)

)
− ̂
P

(0,1)
N

(
Φ2(m)

)
− ̂
P

(1,0)
N

(
Φ3(m)

)
.

The case d = 2 is complete.
Assume now that the statement of the theorem is true for d− 1 ≥ 2, and let us

prove it for d. Let σ ∈ {0, 1}d and write σ′ = (σ2, . . . , σd) ∈ {0, 1}d−1. Thus we
can put σ = (σ1, σ

′). By the induction hypothesis, we can write

χΔ(σ′,N)(m2, . . . ,md) =
∑
j

αjχC(τj ,N)

(
Ψj(m2, . . . ,md)

)
where τ j ∈ {0, 1}d−1, and Ψj is an automorphism on Zd−1. Consequently

D̂σ
N (m) = χ[σ1,N ](m1)χΔ(σ′,N)(m2, . . . ,md)

=
∑
j

αjχ[σ1,N ](m1)χC(τj ,N)

(
Ψj(m2, . . . ,md)

)
.

Therefore, we only need to see that we can decompose functions as

(23) χ[σ1,N ](m1)χC(τ,N)

(
Ψ(m2, . . . ,md)

)
,

where τ = (τ2, . . . , τd) ∈ {0, 1}d−1 and Ψ: Zd−1 → Zd−1 is an automorphism. We
can say that

Ψ(m2, . . . ,md) =
(
ψ2(m2, . . . ,md), . . . , ψd(m2, . . . ,md)

)
where ψj : Z

d−1 → Z are homomorphisms for j = 2, . . . , d. Then (23) can be
written as

χ[σ1,N ](m1)χ[τ2,N ](ψ2(m2, . . . ,md))
d∏

j=3

χ[τj ,+∞)(ψj(m2, . . . ,md)).

Now use the case d = 2 to decompose χ[σ1,N ](m1)χ[τ2,N ](ψ2) in order to obtain
that (23) can be written as

(24) P̂ σ1

N (Φ1(m)) + P̂ σ2

N (Φ2(m))− P̂ σ3

N (Φ3(m))− P̂ σ4

N (Φ4(m)) ,

where σk ∈ {0, 1}d, with σk
j = τj for j = 3, . . . , d and 1 ≤ k ≤ 4, and where

Φk : Z
d → Zd are the automorphisms defined by

Φ1(m) = (m1,Ψ(m2, . . . ,md)),

Φ2(m) = (ψ2(m2, . . . ,md),m1, ψ3(m2, . . . ,md), . . . , ψd(m2, . . . ,md)),

Φ3(m) = (m1, ψ2(m2, . . . ,md)−m1, ψ3(m2, . . . ,md), . . . , ψd(m2, . . . ,md)), and

Φ4(m) = (ψ2(m2, . . . ,md),m1 − ψ2(m2, . . . ,md), ψ3(m2, . . . ,md), . . . ,

ψd(m2, . . . ,md)).

Then (24) yields the required decomposition for expressions like (23), and from the

previous discussion D̂σ
N can be written as in the statement of Proposition 3.7 for

every σ ∈ {0, 1}d. �
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3.4. The basic admissible sequence of multipliers. In this section we prove
Proposition 3.8. First it will be convenient to introduce some more notation. For
each integer k ≥ 0 and every f ∈ L2(Td) we define

Ψk(f) = ‖f‖1
[
log

(
e‖f‖2
‖f‖1

)]k

.

Observe that Ψ0(f) = ‖f‖1. We will denote by PN the multiplier P σ
N for σ =

(0, 0, . . . , 0). That is, for f ∈ L2(Td),

P̂Nf(m) =

{
f̂(m) if m ∈ [0, N ]× [0,+∞)d−1,

0 otherwise.

The proof of Proposition 3.8 will be finished if we prove that (PN ) is an ad-
missible sequence of multipliers in Td. Indeed, if σ ∈ {0, 1}d and we define
eσ(x) = exp(i〈σ,x〉), x ∈ Td, we have, for every f ∈ L2(Td),

P σ
Nf = eσ · PN−σ1

(f · eσ),
and therefore, for the maximal operators,

M(P σ
N )f = M(PN )(f eσ) .

Since Ψd(f) = Ψd(f eσ), if (PN ) is admissible, then (P σ
N ) is admissible.

For each integer N ≥ 1 and 1 ≤ j ≤ d, we define S+
1,N and the jth Riesz

projection Rj as the multipliers given by

Ŝ+
1,N (m) =

{
1 if 0 ≤ m1 ≤ N ,

0 otherwise,
R̂j(m) =

{
1 if 0 ≤ mj ,

0 if 0 > mj .

It is not difficult to check that, for every f ∈ L2(Td),

(25) PNf = S+
1,N ◦ R2 ◦ R3 ◦ · · · ◦ Rdf.

The proof of Proposition 3.8 will be a consequence of the two following lemmas
and (25).

Lemma 3.9. For each integer 1 ≤ j ≤ d and each integer k ≥ 0, there exists
a constant C > 0 such that

Ψk(Rjf) ≤ CΨk+1(f) , f ∈ L2(Td).

Lemma 3.10. There exists a constant C > 0 such that, for every g ∈ L2(Td),∥∥M(S+
1,N )g

∥∥
1,∞ ≤ CΨ1(g) .

Proof of Proposition 3.8. Let f ∈ L2(Td) and define

g = R2 ◦ R3 ◦ · · · ◦ Rdf.

Applying d− 1 times the Lemma 3.9 we get

(26) Ψ1(g) ≤ CΨd(f).

Then, by (25), we have PNf = S+
1,Ng and therefore

M(PN )f = M(S+
1,N )g.

Applying Lemma 3.10 and (26) we deduce that∥∥M(PN )f
∥∥
1,∞ ≤ CΨd(f).
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We have proved that (PN ) is an admissible sequence of multipliers in Td and, as
explained before, we finish the proof of Proposition 3.8. �

Proof of Lemma 3.9. There is no loss of generality in assuming that j = 1. We will
prove first the case k = 0 and then we will use this case to prove the result for
k ≥ 1. For k = 0 and d = 1, we have R1 = R, and by the relationship between
the Hilbert transform and the Riesz projection (6), and Zygmund’s result invoked
in the proof of Theorem 2.4, there exists C > 0 such that

‖Rf‖1 ≤ C‖f‖L logL , f ∈ L logL(T).

Applying then Proposition 2.2 and Proposition 2.5, there exists C > 0 so that

‖Rf‖1 ≤ CΨ1(f) , f ∈ L2(T).

This finishes the proof for k = 0 and d = 1.
Assume now that d ≥ 2. Given x = (x1, x2, . . . , xd) we write x

′ = (x2, . . . , xd), so
that we have x = (x1,x

′). If f : Td → C, we denote by fx′ the function fx′ : T → C

defined by

fx′(t) = f(t,x′), t ∈ T.

It is not difficult to check that, for every f ∈ L2(Td) and every x = (x1,x
′) ∈ Td,

we have

R1f(x) = R1f(x1,x
′) = (Rfx′)(x1) .

Therefore, by the case d = 1, putting dx′ by dmd−1(x
′), we have

‖R1f‖1 =

∫
Td−1

‖Rfx′‖1 dx′ ≤ C

∫
Td−1

Ψ1(fx′) dx′ .

The proof of the case k = 0 will finish if we prove∫
Td−1

Ψ1(fx′) dx′ ≤ Ψ1(f) .(27)

In order to prove (27), by homogeneity, we can assume ‖f‖1 = 1. Then the
measure dν(x′) = ‖fx′‖1 dx′ is a probability on Td−1 and we can apply Jensen’s
inequality to the concave function t �→ log t on (0,∞). We then have∫
Td−1

Ψ1(fx′) dx′ =

∫
Td−1

‖fx′‖1 log
(e‖fx′‖2
‖fx′‖1

)
dx′ ≤ log

(∫
Td−1

‖fx′‖1
e‖fx′‖2
‖fx′‖1

dx′
)

= log
(∫

Td−1

e‖fx′‖2 dx′
)
≤ log

(
e
( ∫

Td−1

‖fx′‖22 dx′
)1/2)

= log(e‖f‖2) = Ψ1(f) ,

since ‖f‖1 = 1. We have proved (27) and the case k = 0 is over.
By the case k = 0, there exists a constant κ ≥ 1 such that

(28) ‖R1f‖1 ≤ κ‖f‖1 log
(e‖f‖2
‖f‖1

)
, f ∈ L2(Td).

Now assume k ≥ 1, and take f ∈ L2(Td). We consider two different cases:

(a) κ‖f‖1 log
(e‖f‖2
‖f‖1

)
≤ e1−k‖f‖2 , and

(b) κ‖f‖1 log
(e‖f‖2
‖f‖1

)
> e1−k‖f‖2 .
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In case (b), first observe that there exists Bk > 0 such that [log(et)]k ≤ Bkt,
for every t ≥ 1, and this yields Ψk(g) ≤ Bk‖g‖2, for every g ∈ L2(Td). Therefore,
since R1 is a contraction on L2 and log(e‖f‖2/‖f‖1) ≥ 1, we have

Ψk(R1f) ≤ Bk‖R1f‖2 ≤ Bk‖f‖2 ≤ Bkκe
k−1‖f‖1 log

(e‖f‖2
‖f‖1

)
≤ Bkκe

k−1‖f‖1
[
log

(e‖f‖2
‖f‖1

)]k+1

= Bkκe
k−1Ψk+1(f) .

In case (a), using (28), since the function t �→ t
[
log(e‖f‖2/t)

]k
is nondecreasing

in the interval (0, e1−k‖f‖2], we have (by κ log(e‖f‖2/‖f‖1) ≥ 1)

Ψk(R1f) = ‖R1f‖1
[
log

(e‖R1f‖2
‖R1f‖1

)]k

≤ ‖R1f‖1
[
log

( e‖f‖2
‖R1f‖1

)]k

≤ κ‖f‖1 log
(e‖f‖2
‖f‖1

)[
log

( e‖f‖2
κ‖f‖1 log(e‖f‖2/‖f‖1)

)]k

≤ κ‖f‖1 log
(e‖f‖2
‖f‖1

)[
log

(e‖f‖2
‖f‖1

)]k

= κΨk+1(f) .

�
Proof of Lemma 3.10. For d = 1, S+

1,N coincide with S+
N = R ◦ SN . By the re-

lationship between the Hilbert transform and the Riesz projection (6), we deduce
that

S+
Nf =

1

2

(
SNf + iS̃Nf

)
+

1

2
f̂(0) , f ∈ L2(T).

Taking maximal functions

M(S+
N )f = S+f ≤ Sf + S̃f , f ∈ L2(T).

Applying Theorem 2.3 and Theorem 2.4 we obtain
(29)∥∥S+f

∥∥
1,∞ =

∥∥M(S+
N )f

∥∥
1,∞ ≤ C‖f‖1 log

(e‖f‖2
‖f‖1

)
= CΨ1(f) , f ∈ L2(T),

which is the case d = 1 of Lemma 3.10.
For d ≥ 2, f ∈ L2(Td), and x′ ∈ Td−1 use, as before, the notation fx′(t) =

f(t,x′). As is easy to check, we have

S+
N,1f(x1,x

′) = (S+
Nfx′)(x1) , (x1,x

′) ∈ Td ,

and taking maximal functions,

M(S+
N,1)f(x1,x

′) = (S+fx′)(x1) .

Therefore, for all λ > 0, using Fubini, (29) and (27), we have

λmTd

(
{(x1,x

′) : M(S+
N,1)f(x1,x

′) > λ}
)

=

∫
Td−1

λm
({

x1 ∈ T; (S+fx′)(x1) > λ}
)
dx′

≤
∫
Td−1

∥∥S+fx′
∥∥
1,∞ dx′ ≤ C

∫
Td−1

Ψ1(fx′) dx′ ≤ CΨ1(f) .

Taking the supremum in λ > 0 we conclude that∥∥M(S+
1,N )f

∥∥
1,∞ ≤ CΨ1(f) , f ∈ L2(T). �
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We are now ready for the proof of Theorem 3.3 via use of multipliers; as we
have said the statement of Theorem 3.3 is equivalent to the fact that, for all B ⊂
{1, 2 . . . , d}, the sequence (S̃N,B) is an admissible sequence of multipliers in Td.
Denoting Bc = {1, 2, . . . , d} \B, for every m ∈ Zd, we have

̂̃
SN,B(m) =

∏
j∈B

(
iχ[−N,−1](mj)− iχ[1,N ](mj)

) ∏
j∈Bc

(
χ[−N,−1](mj) + χ[0,N ](mj)

)
.

If we develop this product as the sum of 2d summands, we discover that the sequence

(S̃N,B) is a linear combination of sequences of multipliers of the form (F σ,η
N ), σ,

η ∈ {0, 1}d, where

F̂ σ,η
N (m1, . . . ,md) = χΔ(σ,N)((−1)η1m1, . . . , (−1)ηdmd) ,

and Δ(σ,N) =
∏d

j=1([σj , N ] ∩ Z) as in (22).

Then by Theorem 3.6 and Lemma 3.5, the sequence (F σ,η
N ) is admissible for all σ

and all η ∈ {0, 1}d. An application of Lemma 3.4 allows us to see that (S̃N,B) is an
admissible sequence of multipliers in Td, and this concludes the proof of Theorem
3.3.

4. Arias-de-Reyna space on the d-dimensional torus

Based on some ideas from the paper [6], we give a self-contained treatment on a
variant of Arias-de-Reyna’s space QA(Ω) defined on a finite measure space (Ω, μ).
In fact, Arias-de-Reyna [4] defined the space QA(T) on the torus T; here we are
interested in the space defined on Td. The main aim is to show applications to
study convergence almost everywhere of multiple Fourier series over cubes.

Recall that a non-negative ϕ defined on [0, a) with 0 < a ≤ ∞ is called quasi-
concave if it is non-decreasing on [0, a) with ϕ(0) = 0 and t �→ ϕ(t)/t is non-
increasing on (0, a). Notice that ϕ̃(t) := infs∈(0,a)

(
1 + t

s

)
ϕ(s) for every t ∈ [0, a) is

a concave function ϕ̃ satisfying

ϕ(t) ≤ ϕ̃(t) ≤ 2ϕ(t), t ∈ [0, a).

Let (Ω, μ) be a finite measure space and let ϕ : [0, μ(Ω)] → [0,∞) be a quasi-
concave function. A measurable function f ∈ L0(μ) belongs to QAϕ(Ω) provided
there exists a sequence (fn)

∞
n=1 with fn ∈ L∞(Ω) such that

f =

∞∑
n=1

fn, μ-a.e.

and
∞∑

n=1

(1 + log n)‖fn‖∞ϕ

(
‖fn‖1
‖fn‖∞

)
< ∞,

where 0/0 := 0 by convention.
It is easy to check that QAϕ(Ω) is a quasi-Banach lattice on (Ω, μ) equipped with

the quasi-norm

‖f‖QAϕ
= inf

∞∑
n=1

(1 + log n)‖fn‖∞ϕ

(
‖fn‖1
‖fn‖∞

)
,

where the infimum is taken over all representations f =
∑∞

n=1 fn of f as shown
above.
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We will need some results concerning the space QAϕ. Since they can be proved
using methods described in [6] in the case of the space QA(T), we state them without
proofs here.

Before we state the first result we recall that if f , g are functions in L1(Ω), we
write g � f provided that∫ t

0

g∗(s)ds ≤
∫ t

0

f∗(s) ds, t > 0.

This defines the Hardy-Littlewood-Pólya ordering.

Lemma 4.1. QAϕ is a quasi-Banach lattice on (Ω, μ) satisfying the following prop-
erty: if f ∈ QAϕ and g ∈ L1 satisfy g � f , then g ∈ QAϕ and

‖g‖QAϕ
≤ ‖f‖QAϕ

.

Consequently, QAϕ is a quasi-Banach r.i. space.

We state the following results. For complete proofs in the case of QA(T), we
refer to [6]. Since the proofs are similar we omit it.

Proposition 4.2. Let (Ω, μ) be a probalilty measure space and let ϕ be a normalized
concave function on [0, 1] (i.e., ϕ(1) = 1). Then the following continuous inclusion
holds with norm less than or equal to 1:

QAϕ ↪→ Λϕ .

To state the next result we recall that if (X, ‖ · ‖) is a quasi-normed space whose
dual separates the points, then the Mackey norm ‖ · ‖c on X is defined by

‖x‖c = inf
{
λ > 0; x ∈ λ conv(BX)

}
, x ∈ X,

where conv(BX) is the convex hull of the unit ball BX = {x ∈ X; ‖x‖ ≤ 1}. The

completion of X equipped with the Mackey norm is denoted by X̂ and is usually
called the Banach envelope of X.

It was shown in [6] that the Banach envelope of QA is isometrically isomorphic
to L logL. A similar proof gives the following.

Proposition 4.3. Let (Ω, μ) be a probalilty measure space and let ϕ be a normalized
concave function. Then the Banach envelope of QAϕ is isometrically isomorphic to
Λϕ.

Given a concave function φ on [0, 1], following [6] we show how to construct on
an atomless probability measure space (Ω, μ) a family of Lorentz spaces contained
in QAφ.

Given a sequence s = (sn) ∈ (0, 1]N, we define Λ(s) = Λ(s)(Ω) to be the space of
all f ∈ L0(Ω) such that there exists a sequence (fn) with fn ∈ L∞(Ω) satisfying
f =

∑∞
n=1 fn (convergence in L1(Ω)) with

∞∑
n=1

max
{
‖fn‖1, sn‖fn‖∞

}φ(sn)
sn

(1 + log n) < ∞.

We equipped Λ(s) with the norm

‖f‖Λ(s) := inf

{ ∞∑
n=1

max
{
‖fn‖1, sn‖fn‖∞

}φ(sn)
sn

(1 + log n); f =

∞∑
n=1

fn

}
.
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Proposition 4.4. For every positive sequence s = (sn) ∈ (0, 1]N, Λ(s) is an r.i. Ba-
nach space on (Ω, μ) such that

(30) Λ(s) ↪→ QAφ

with norm less than or equal to 1.

Proof. The proof that Λ(s) is a Banach space is standard. It is easy to check that
Λ(s) is an exact interpolation space between L1(Ω) and L∞(Ω); in particular this
implies that Λ(s) is an r.i. space on Ω. To prove the required continuous inclusion,
we observe that if f ∈ L∞(Ω) with f 
= 0, then the concavity of φ gives

‖f‖∞φ

(
‖f‖1
‖f‖∞

)
≤ ‖f‖∞ max

{
1,

‖f‖1
sn‖f‖∞

}
φ(sn)

= max
{
‖f‖1, sn‖f‖∞

}φ(sn)

sn
.

Thus, if f ∈ Λ(s), for every ε > 0 there exists a sequence (fn) with fn ∈ L∞(Ω)
such that f =

∑∞
n=1 fn (convergence in L1(Ω)) and

∞∑
n=1

max
{
‖fn‖1, sn‖fn‖∞

}φ(sn)
sn

(1 + log n) ≤ (1 + ε)‖f‖Λ(s) .

Combining the above estimates, we conclude the result. �

Theorem 4.5. For every positive sequence s ∈ (0, 1]N ,

Λϕ̃s
↪→ QAφ

with norm less than or equal to 1, where ϕs is a quasi-concave function on [0, 1]
defined by ϕs(0) = 0 and

ϕs(t) = inf
n

max
{
1,

t

sn

}
φ(sn)(1 + log n), 0 < t ≤ 1.

Proof. Since ϕs(t) ≤ ϕ̃s(t) for all t ∈ I, it then follows from Proposition 4.4 that it
is enough to prove that the fundamental function of the r.i. space Λ(s) is ϕs.

Fix 0 < t < 1 and take any measurable set A with μ(A) = t. Clearly, for each
n ≥ 1, we have

‖χA‖Λ(s) ≤ max{t, sn}
φ(sn)

sn
(1 + log n)

= max
{
1,

t

sn

}
φ(sn) (1 + log n), 0 < t ≤ 1.

Thus taking the infimum over all n ≥ 1, we obtain that ‖χA‖Λ(s) ≤ ϕs(t).
To prove the converse, fix ε > 0 and let χA =

∑
n fn (convergence in L1(Ω))

with fn ∈ L∞(Ω), fn ≥ 0, and

∞∑
n=1

max
{
‖fn‖1, sn‖fn‖∞

}φ(sn)
sn

(1 + log n) ≤ (1 + ε)‖χA‖Λ(s) .
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Since ‖fn‖∞ ≥ ‖fn‖1

t , we obtain

(1 + ε)‖χA‖Λ(s) ≥
∞∑

n=1

max
{
‖fn‖1, sn ‖fn‖∞

}φ(sn)
sn

(1 + log n)

≥
∞∑

n=1

max
{
1,

sn
t

}φ(sn)

sn
(1 + log n) ‖fn‖1

=

∞∑
n=1

max
{ 1

sn
,
1

t

}
φ(sn) (1 + log n) ‖fn‖1

≥ 1

t
inf
n

max
{
1,

t

sn

}
φ(sn) (1 + log n)

∞∑
n=1

‖fn‖1

≥ 1

t
ϕs(t) ‖χA‖1 = ϕs(t),

and the result follows letting ε tend to 0. �

Now we fix the probability measure space (Td,md) and we consider the space
QAφ generated by φ := ψd. In what follows we write QAd for short instead of QAψd

or QAψd
(Td).

Taking a special sequence (sn), we obtain the following corollary (cf. [6]).

Corollary 4.6. If s = (sn) with sn = e−en for each n ≥ 1, then

Λϕ̃s
(Td) = L(log L)d log log logL(Td) ↪→ QAd ,

where ϕs(t) = infn max
{
sn, t

}ψd(sn)
sn

(1 + log n), 0 < t ≤ 1.

Proof. We observe that

1

dd
t logd

(ed

t

)
≤ t logd

(e

t

)
≤ t logd

(ed

t

)
, 0 < t ≤ 1 ,

yields ψd 
 φd on (0, 1], where φd(t) := t logd
(
ed

t

)
for every 0 < t ≤ 1. Thus for

every t ∈ [e−ek+1

, e−ek) with k ≥ d, we have

ϕs(t) 
 inf
n≥1

max
{
e−en , t

}
edn (1 + log n)

= min
{

inf
1≤n≤k

max
{
e−en , t

}
edn (1 + log n), inf

n>k
max

{
e−en , t

}
edn (1 + log n)

}
= min

{
inf
n≤k

e−enedn (1 + log n), t inf
n>k

edn (1 + log n)
}

= min
{
e−ekedk (1 + log k), ted(k+1) (1 + log (k + 1))

}

 tedk(1 + log k) 
 ψd(t).

Since Λψd
(Td) = L(log L)d log log logL(Td), the proof is complete by Theorem

4.5. �

5. Applications to almost everywhere convergence

We apply our results to prove novel results on almost everywhere convergence
of the multiple Fourier series over cubes. These results unify and extend the best
known results at present.
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Before presenting the results, we introduce some notation. Following Kalton
[11], a quasi-Banach space X is said to be logconvex provided there exists a contant
K > 0 such that

‖x1 + · · ·+ xn‖X ≤ K

n∑
k=1

(1 + log k)‖xk‖X

for every finite set {x1, . . . , xn} in X.
It follows from the result due to Stein and Weiss [18] (see also Kalton [11]) that

the weak L1-space on any finite measure space is logconvex.
We can state and prove the main theorem of this section.

Theorem 5.1. Let d ∈ N and B ⊂ {1, . . . , d}. Then the maximal operator S̃B : QAd

→ L1,∞(Td) is bounded; i.e., there exists a constant C > 0 such that for every
f ∈ QAd,

md

({
x ∈ Td; S̃Bf(x) > λ

})
≤ C

λ
‖f‖QAd , λ > 0.

Therefore the multiple Fourier series of every function f ∈ QAd and all its conju-
gates converge over cubes almost everywhere.

Proof. Given f ∈ QAd, there exists a sequence (fn) in L∞(Td) such f =
∑∞

n=1 fn
and

∞∑
n=1

‖fn‖∞ψd

(
‖fn‖1
‖fn‖∞

)
< ∞.(31)

Clearly (31) implies that
∑∞

n=1 ‖fn‖1 < ∞. Hence
∑∞

n=1 |fk| converges md-a.e.
and so

f̂(k) =
∞∑

n=1

f̂n(k), k ∈ Zd .

This implies that for any N ∈ N,

SN,Bf(x) =
∞∑

n=1

SN,Bfn(x), x ∈ Td .

In consequence

S̃Bf(x) ≤
∞∑

n=1

S̃Bfn(x), x ∈ Zd .

Hence by Theorem 3.3 and the logconvexity of the space L1,∞(Td) there exist
constants K > 0 and Cd > 0 such that

‖S̃Bf‖1,∞ ≤ C
∞∑

n=1

(1 + log n)‖S̃Bfn‖1,∞ ≤ KCd

∑
n=1

(1 + log n)‖fn‖2ψd

(
‖fn‖1
‖fn‖2

)
≤ KCd

∑
n=1

(1 + log n)‖fn‖∞ψd

(
‖fn‖1
‖fn‖∞

)
.

Since f ∈ QAd was arbitrary, we conclude that there exists C > 0 such that

‖S̃Bf‖1,∞ ≤ C ‖f‖QAd , f ∈ QAd,

and this yields the required estimate:

md

({
x ∈ Td; S̃Bf(x) > λ

})
≤ C

λ
‖f‖QAd , λ > 0.
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The second part is standard; we define the sublinear operator TB : QAd → L1,∞(Td)
by

TBf(x) = lim sup
N,M→∞

∣∣SN,Bf(x)− SM,Bf(x)
∣∣, f ∈ QAd, x ∈ Td .

Since TBg ≤ 2 S̃Bg for every g ∈ QAd, it follows by (31) that

md

({
x ∈ Td; TBg(x

)
> λ

})
≤ 2C

λ
‖g‖QAd , λ > 0 .

Clearly for every trigonometric polynomial P on Td we have TBP = 0 and TBf =
TB(f − P ). Applying the above estimate with g = f − P yields

md

({
x ∈ Td; TBf(x) > λ

})
≤ 2C

λ
‖f − P‖QAd , λ > 0 .

Since the set of all trigonometric polynomials on Td is a dense subspace in QAd (by
the density of L∞(Td) in QAd), it follows that

md

({
x ∈ Td; TBf(x) > λ

})
= 0, λ > 0 .

This completes the proof. �

As an application of Theorem 5.1 and Corollary 4.6 we obtain the following
important theorem of Antonov (see [2]).

Theorem 5.2. Let d ∈ N and B ⊂ {1, . . . , d}. Then the maximal Carleson

operator S̃B : LΦ(T
d) → L1,∞(Td) is bounded, where LΦ(T

d) is the Orlicz space
L(logL)d log log logL on (Td,md); i.e., there exists a constant C > 0 such that for
every f ∈ LΦ(T

d),

md

({
x ∈ Td; S̃Bf(x) > λ

})
≤ C

λ
‖f‖LΦ(Td), λ > 0.

Therefore the multiple Fourier series of every function f ∈ LΦ(T
d) and all its

conjugates converge over cubes almost everywhere.

We show an analog of the result in the one-dimensional case showing that there
exists a Lorentz space that strictly contains the Orlicz space L(log L)d log log log L
which is contained in QAd.

To state the next result we recall that a pair (A0, A1) of Banach spaces is called
an interpolation couple provided A0 and A1 are continuously embedded in some
Hausdorff topological vector space. For an interpolation couple, we define a Banach
space A0 +A1 equipped with the norm

‖a‖A0+A1
= inf

{
‖a0‖A0

+ ‖a1‖A1
; a = a0 + a1

}
.

Since for every Banach lattice E on a measure space (Ω, μ) we have E ↪→ L0(μ),
every pair (E0, E1) of Banach lattices is an interpolation pair. If E0 and E1 are r.i.
spaces on an atomless measure space (Ω, μ), then E0+E1 is also an r.i. space with
the fundamental function ϕE0+E1

= min{ϕE0
, ϕE1

}.
We conclude with the d-dimensional analog of the one-dimensional result from

[6, Theorem 2.3]. The proof is similar to the case d = 1; however we include a proof
for the reader’s convenience.

Theorem 5.3. There exists a Lorentz space Λϕ(T
d) that strictly contains the Orlicz

space L(logL)d log log logL(Td) and such that

Λϕ(T
d) ↪→ QAd .



1658 MIECZYS�LAW MASTY�LO AND LUIS RODRÍGUEZ-PIAZZA

Proof. We recall that Orlicz space L(logL)d log log log(Td) coincides up to equiv-
alence of norms with the Lorentz space Λφ(T

d), where the normalized concave
function φ satisfies

φ(t) 
 t logd
(e

t

)
log+ log+ log+

(1

t

)
, t ∈ (0, 1] .

Let sn = e−ee
n

for all n ∈ N. Define a concave function ϕ on [0, 1] by ϕ(0) = 0 and

ϕ(t) = min
{
φ(t), ϕ̃s(t)

}
, t ∈ (0, 1] .

Clearly, we have Λϕ ↪→ Λϕ̃s
+ Λφ and

Λφ ↪→ Λϕ ↪→ QAd .

Since φ(sn) 
 e−ee
n

ee
n

n and ϕs(sn) ≤ e−ee
n

ee
n

(1 + log n) for each n ≥ 1 and
ϕs 
 ϕ̃s, we have

lim
n→∞

ϕ(sn)

φ(sn)
= 0 .

This implies that Λφ 
= Λϕ, and so the proof is complete. �
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