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ORBIT FULL GROUPS FOR LOCALLY COMPACT GROUPS

A. CARDERI AND F. LE MAÎTRE

Abstract. We show that the topological rank of an orbit full group generated
by an ergodic, probability measure-preserving free action of a non-discrete
unimodular locally compact Polish group is two. For this, we use the existence
of a cross section and show that for a locally compact Polish group, the full
group generated by any dense subgroup is dense in the orbit full group of the
action of the group.

We prove that the orbit full group of a free action of a locally compact Polish
group is extremely amenable if and only if the acting group is amenable, using
the fact that the full group generates the von Neumann algebra of the action.
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Introduction

The full group of a measure-preserving action of a countable group on a stan-
dard probability space (X,μ) is the group of measure-preserving transformations
which preserve every orbit. It is a (complete) invariant of orbit equivalence for the
action and has a natural Polish topology induced by the uniform metric du(S, T ) :=
μ({x ∈ X : S(x) �= T (x)}). This group topology encodes many interesting proper-
ties of the action. For example Giordano and Pestov proved in [GP07] that if the
group acts freely, then the full group is extremely amenable if and only if the acting
group is amenable. Another example was provided by the second-named author in
[LM14]: the cost of the action is very closely related to the topological rank of the
full group, that is, the minimum number of generators needed to generate a dense
subgroup.
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Now let G be a Polish group and consider a measure-preserving G-action on a
standard probability space (X,μ). In [CM16], we initiated the study of a Polish
group topology on the associated orbit full group

[RG] = {T ∈ Aut(X,μ) : ∀x ∈ X,T (x) ∈ G · x}
which coincides with the uniform topology when G is a countable discrete group. In
this work, we want to analyze orbit full groups associated to free actions of second
countable locally compact groups, which most of the time we will suppose to be
unimodular.

This study is motivated by the fact that for actions of locally compact groups, or-
bit full groups are still complete invariants of orbit equivalence [CM16, Thm. 3.26],
so their topological properties should reflect properties of the associated equiva-
lence relation. Moreover, these orbit full groups are better behaved since they arise
naturally as unitary groups (see Section 4) and “preserve density” as follows.

Theorem A (see Theorem 2.1). For every measure-preserving action of a locally
compact Polish group G on a probability space (X,μ) and for every dense subgroup
H ⊂ G, the orbit full group [RH ] is dense in [RG].

The above theorem is false for general actions of Polish groups: an example of
Kolmogorov gives a measure-preserving action of the bijection group of the integers
S∞ such that whenever H � S∞ is a dense countable group, the full group [RH ]
is not dense in [RS∞ ] (see [CM16, Ex. 3.14]).

We will actually prove that Theorem A holds for every suitable action of a
Polish group (see Definition 2.2 and Theorem 2.3)). This notion was introduced by
Becker in [Bec13], where he proved that any measure-preserving action of a locally
compact Polish group is suitable. On the other hand, general Polish groups can
have actions which are suitable and actions which are not. As an example, the
standard Bernoulli shift of S∞ on [0, 1]N is suitable (see Example 2.4).

Using Theorem A, we can then show that orbit full groups associated to actions
of locally compact non-compact and non-discrete Polish groups contain a dense
2-generated subgroup. This is in sharp contrast with the discrete case where the
topological rank reflects the cost of the equivalence relation and thus can be equal
to any integer n � 2. Our result also shows that cost cannot provide a rich invariant
of orbit equivalence for actions of non-discrete locally compact groups (see Remark
1.21).

Theorem B (see Theorem 3.1). Let G be a locally compact unimodular non-discrete
non-compact Polish group. For every measure-preserving, essentially free and er-
godic action of G, there is a dense Gδ of couples (T, U) in [RG]

2 which generate
a dense free subgroup of [RG] acting freely. In particular, the topological rank of
[RG] is 2.

A key tool in the proof of Theorem B is a well-known result of Forrest, namely
the existence of a cross section for actions of locally compact groups [For74]. This
will roughly provide a countable group Γ such that the cost 1 group Z × Γ is a
“measurable dense subgroup” of G. We can then use the results of [LM14] along
with Theorem A to find a dense 2-generated subgroup.

Remark. Theorem B is also true in the case G is compact acting ergodically on
(X,μ). Indeed in this case the action is essentially transitive and [RG] = Aut(X,μ)
which has a dense Gδ of couples of topological generators inducing a free action of
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the free group on two generators by results of Prasad [Pra81, Pra83]. We do not
know whether Theorem B holds for non-discrete Polish groups in general, even in
the case of suitable actions.

In this work, we also extend a result of Giordano and Pestov, Theorem 5.7 of
[GP07], that says that a full group of a free, ergodic action of a countable group is
extremely amenable if and only if the acting countable group is amenable.

Before stating the theorem, let us recall that a group is extremely amenable if
every action of the group on a compact space admits a fixed point. The first exam-
ple of an extremely amenable group was given by Christensen and Herer [CH75].
Since then several examples of extremely amenable groups have been found such
as the unitary group of a separable Hilbert space [GM83] or the group of measure-
preserving bijections of a standard probability space [GP02].

Theorem C. Let G be a locally compact second countable unimodular group acting
freely and ergodically on (X,μ). Then the full group of G is extremely amenable if
and only if G is amenable.

The proof of the direct implication in the theorem is an easy adaptation of
Giordano and Pestov’s arguments to the locally compact case, using cross sections.

For the other direction, we follow a different path and use von Neumann algebras.
We first prove that the von Neumann algebra of the action G � (X,μ) is generated
by the full group [RG]; see Proposition 4.3. We use this to show that if [RG] is
extremely amenable, then the von Neumann algebra of the action is amenable and
therefore the acting group is amenable.

1. Orbit equivalence in the locally compact case

1.1. Measure-preserving actions. Whenever a group G acts on a set X and
x ∈ X, we denote by Gx � G the stabilizer of x. The free part of an action
G � X is the G-invariant set of all x ∈ X such that Gx = {e}.

A standard probability space is a probability space (X,B, μ) such that (X,B) is
a standard Borel space and μ is a Borel non-atomic probability measure. All such
probability spaces are isomorphic; see [Kec95, Thm. 17.41]. A subset A of X is a
Borel set if it belongs to the σ-algebra B. It is called a (Lebesgue-) measurable
set if it belongs to the μ-completion of B. From now on, we will drop the B and
fix a standard probability space (X,μ).

Whenever G is a Polish group, a Borel G-action is a Borel action map α :
G × X → X. As usual, we will often drop the letter α and let g · x := α(g, x)
for every g ∈ G and x ∈ X. The following lemma is well known; for a proof see
[MRV13, Lem. 10].

Lemma 1.1. Let G be a locally compact Polish1 group, and consider a Borel G-
action on a standard Borel space X. Then the free part of the G-action is a Borel
subset of X.

We denote by Aut(X,μ) the group of all measure-preserving Borel bijections of
(X,μ), where we identify two such bijections if they coincide on a full measure subset
of X. It is equipped with the weak topology, defined to be the coarsest group

1Recall that a locally compact group is Polish if and only if it is second countable (see [Kec95,
Theorem 5.3]).
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topology which makes the maps T ∈ Aut(X,μ) �→ μ(T (A)�A) continuous for every
Borel set A. This turns Aut(X,μ) into a Polish group (see e.g. [Kec10, I.1.(B)]).

A measure-preserving G-action on (X,μ) is a Borel G-action on X such that
for every g ∈ G and every Borel A ⊆ X, one has μ(gA) = μ(A). If G is a group,
a near-G-action on (X,μ) is a homomorphism G → Aut(X,μ). Every measure-
preserving action induces a near-action, and a near-action is the same as an action
by μ-preserving automorphisms on the measure algebra of (X,μ).

The following lemma is well known when G is locally compact (see for instance
[OW87, Lem. II.1.1]). We include a simple proof which works for all Polish groups.

Lemma 1.2. Every measure-preserving action α of a Polish group G on (X,μ)
induces a continuous near-action ρα : G → Aut(X,μ).

Proof. By Pettis’ Lemma (see [BK96, Thm. 1.2.6]), we only need to check that ρα
is a Borel map. By definition of the weak topology on Aut(X,μ) it is enough to
show that for every Borel subset A of X and every ε > 0, the set

B := {g ∈ G : μ(g(A)�A) < ε}
is Borel. For this, observe that since the action is Borel, the subset Γ := {(g, x) ∈
X × G : x ∈ g(A)} is Borel and hence ΓA := Γ � (A × G) is also Borel. This
implies that the map

M : g �→ μ ({x ∈ X : x ∈ A� g(A)})
is also Borel. So we can conclude observing that B = M−1([0, ε[). �

For locally compact Polish groups, measure-preserving actions and continuous
near-actions are in one-to-one correspondence.

Theorem 1.3 (Mackey, [Mac62]). Let G be a locally compact Polish group and let
(X,μ) be a standard probability space. Then for every continuous homomorphism
ρ : G → Aut(X,μ) there exists a measure-preserving action α of G on (X,μ) such
that the induced homomorphism ρα : G → Aut(X,μ) is equal to ρ.

Moreover if α and β are two measure-preserving actions of G such that the
induced homomorphisms ρα and ρβ are equal, then there is a Borel G-invariant
subset A ⊂ X of full measure such that α

∣∣
A
= β

∣∣
A
.

Remark 1.4. The above result is in sharp contrast with the following situation which
was uncovered by Glasner, Tsirelson and Weiss: if G is a Levy Polish group, every
measure-preserving G-action is trivial but G can still have interesting continuous
near-actions. Examples include Aut(X,μ) itself or the orthogonal group of an
infinite-dimensional Hilbert space; see [GTW05].

IfG is locally compact and Polish, then we will call the measure-preserving action
associated to a near-action ρ : G → Aut(X,μ) a realization of the near-action. Let
us recall two important definitions.

Definition 1.5. Ameasure-preserving action of a Polish groupG on the probability
measure space (X,μ) is

• essentially free if the free part of the action has full measure, that is, if
there is a measurable subset of full measure A ⊂ X such that for every
x ∈ A and every g ∈ G, we have that gx �= x;

• ergodic if every Borel subset A ⊂ X which is almost G-invariant (i.e.
for all g ∈ G we have μ(A� g(A)) = 0) has measure 0 or 1.
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Remark 1.6.

• In the definition of essential freeness, one can actually asssume that A is
G-invariant and Borel by Lemma 1.1.

• There are actions of compact groups such that for every g ∈ G, the set
{x ∈ X : gx = x} has measure 0 but which are not essentially free.

• Mackey’s Theorem implies that if G is locally compact and Polish, then if
a realization of an action is essentially free, then all Borel realizations are
essentially free.

• Another easy consequence of Mackey’s Theorem 1.3 is that a measurable
action of a locally compact Polish group is ergodic if and only if every Borel
subset A ⊂ X which is G-invariant (i.e. for all g ∈ G, we have g(A) = A)
has measure 0 or 1 (see [Mac62, Theorem 3]). This is not true for Polish
groups in general, as witnessed by Kolmogorov’s example [Dan00, Example
9].

Every locally compact Polish group admits an essentially free measure-preserving
action (see e.g. Proposition 1.2 in [AEG94]). We will now give two concrete exam-
ples of measure-preserving actions.

Example 1.7. Suppose that G is totally disconnected and non-compact. By van
Dantzig’s Theorem, there exists a chain (Kn)n∈N of compact open subgroups of G
such that

⋂
n Kn = {1G}. We now let G act by permutations on the countable

set
⊔

n G/Kn. The associated Bernoulli shift on [0, 1]
⊔

n G/Kn is essentially free
since the G-action on

⊔
n G/Kn is faithful, and ergodic because every G-orbit on⊔

n G/Kn is infinite.

Example 1.8. Suppose that G has a lattice Γ < G, let λ be a Haar measure
on G and let D be a fundamental domain of the right Γ-action on G. Then any
probability measure-preserving action of Γ on (X,μ) induces a measure-preserving
action of G on (X ×D,μ× λ|D); see Definition 4.2.21 in [Zim84].

We will see in Section 1.3 that all actions of any locally compact Polish group
can be decomposed as a product equivalence relation analogous to the previous
example.

1.2. Orbit full groups. Let us start by recalling Dye’s definition of full groups
[Dye59]. A subgroup G � Aut(X,μ) is full if whenever (An) is a partition of
a full measure subset of (X,μ) and (Tn)n∈N is a sequence of elements of G such
that (Tn(An))n∈N is a partition of a full measure subset of X, the new element
T ∈ Aut(X,μ) defined by

T (x) = Tn(x) for all x ∈ An

actually belongs to G. A full group is ergodic if every almost G-invariant Borel
subset of X has measure 0 or 1. Given a group G � Aut(X,μ), there is a smallest
full group containing G, denoted by [G]. If the corresponding G-almost action is
ergodic, then [G] is ergodic. The following proposition is well known in the case
of full groups of ergodic measure-preserving equivalence relations. Its proof in the
general case can be found in [Dye59, Lem. 3.2].

Proposition 1.9. Let G � Aut(X,μ) be an ergodic full group. Then for any
A,B ⊆ X of same measure, there is T ∈ G such that T (A) = B up to measure
zero.
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For a measure-preserving action of a Polish group G on X, we will denote by
RG the orbit equivalence relation

RG := {(x, y) ∈ X ×X : there exists g ∈ G such that g · x = y} .

We recall now the definition of orbit full groups and their Polish topology (see
[CM16] for more details and proofs).

Definition 1.10. Let G be a Polish group. The orbit full group of a probability
measure-preserving action of G on (X,μ) is the group

[RG] := {T ∈ Aut(X,μ) : T (x) ∈ G · x for almost every x ∈ X}.

Let dG be a compatible, right-invariant and bounded metric on G. We denote
by L0(X,μ,G) the space of measurable functions from X to G which we equip with
the metric

d̃G(f, g) :=

∫
X

dG(f(x), g(x))dμ(x).

The topology induced by this metric only depends on the topology of G. It is a
Polish topology called the topology of convergence in measure.

For a probability measure-preserving action of G on (X,μ), for every measurable
subset A ⊂ X and measurable function f : A → G, we define

Φ(f) : A → X, by Φ(f)(x) = f(x)x,

and we put [̃RG] := Φ−1([RG]).

The Polish space [̃RG] equipped with the product f · g(x) = f(g(x)x)g(x) be-
comes a Polish group for the topology of convergence in measure. Moreover the

map Φ : [̃RG] → [RG] is a group homomorphism with respect to this product.
The topology of convergence in measure on [RG] is the quotient topology

induced by Φ and we proved in Theorem 1 of [CM16] that it is a Polish group
topology.

Remark 1.11. If the action of G is essentially free, then the map Φ is a bijection,
so the convergence in measure on [RG] is given by the metric d̃G.

We also recall that full groups of locally compact Polish groups are complete
invariants of orbit equivalence.

Definition 1.12. A probability measure-preserving action of the group G on (X,μ)
is orbit equivalent to a probability measure-preserving action of the group H on
(Y, ν) if there exists a subset of full measure A ⊂ X and a measure-preserving Borel
injection ϕ : A → Y such that

ϕ× ϕ(RG ∩ (A×A)) = RH ∩ (ϕ(A)× ϕ(A)).

We will also say that the equivalence relations RG and RH are isomorphic up
to measure zero. We recall the following theorem.

Theorem 1.13 ([CM16, Thm. 3.26]). Let G and H be locally compact Polish
groups acting on the probability space (X,μ) preserving the measure. Then the
actions are orbit equivalent if and only if the associated orbit full groups are iso-
morphic.
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1.3. Cross sections and product decomposition. We now present the most
important property of measure-preserving actions of locally compact Polish groups:
the existence of a cross section.

Definition 1.14. Consider an essentially free, measure-preserving action of a lo-
cally compact Polish group G on a standard probability space (X,μ). A Borel
subset Y ⊂ X is a cross section of the action if there exists a neighborhood of
the identity U ⊂ G such that the map θ : U × Y → X defined by θ(u, y) := uy is
injective and such that μ(X \GY ) = 0.

The existence of cross sections was proved by Forrest in [For74, Proposition
2.10] in the more general context of non-singular actions. For a more recent proof,
we invite the reader to read Theorem 4.2 of [KPV15]. The following theorem
is essentially a version of [For74, Proposition 2.13] in the context of a measure-
preserving action of a unimodular locally compact group.

Theorem 1.15. Let G be a unimodular locally compact non-compact and non-
discrete Polish group, denote by λ a Haar measure on G. Consider a measure-
preserving, essentially free and ergodic action of G on the standard probability space
(X,μ).

(i) There exists a standard probability space (Y, ν) and a countable group Γ
acting on (Y, ν) by measure-preserving transformations such that the action
of G is orbit equivalent to the product action of S1 × Γ on (S1 × Y, L× μ),
where S1 is the circle group2 acting on itself by translation and L is its
normalized Lebesgue measure.

(ii) Identifying G×X with RG via the map (g, x) �→ (g, g · x), one can choose
an orbit equivalence map Θ : (S1×Y, L×ν) → (X,μ) such that the induced
map between equivalence relations

Θ×Θ :(RS1 ×RΓ, L× L× ν̃) → (RG,Λ× μ)

is measure-preserving, where ν̃ is the σ-finite measure induced by ν on RΓ

via integration of the counting measure of the fibers.
(iii) The group G is amenable if and only if the orbit equivalence relation induced

by Γ on (Y, ν) is amenable.

Proof. In this proof we will use the notation and conventions of Proposition 4.3 of
[KPV15]. Let Y ⊂ X be a cross section and let U ⊂ G be a neighborhood of the
identity as in Definition 1.14. We consider the restriction of RG to Y ,

R := {(y, y′) ∈ Y × Y : ∃g ∈ G, y′ = gy}.
By [KPV15, Proposition 4.3.1], R is a Borel, countable equivalence relation on

Y . Define Ψ : G×X → RG by Ψ(g, x) = (gx, x) and observe that since the action
is free, Ψ is a bijection. Denote by ΨY the restriction of Ψ to G × Y and put
Z = ΨY (G × Y ). Observe that the projection π : Z → X on the first coordinate
is countable-to-one hence we can define a measure η on Z by integrating with
respect to μ the counting measure over the projection π. By definition we have
μ(UY ) = η(ΨY (U × Y )). Put covol(Y ) := λ(U)/μ(UY ). As explained in the proof
of [KPV15, Proposition 4.3.2], the unicity of the Haar measure on G implies the
existence of a probability measure ν on Y such that Ψ∗(λ× (ν/covol(Y ))) = η.

2Actually, any infinite compact metrizable group will do; the point is that the orbit equivalence
relation associated to S1 � S1 is transitive.
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Moreover by [KPV15, Proposition 4.3], we know that

(1) the probability measure ν is R-invariant,
(2) (R, ν) is ergodic if and only if the action of G is ergodic,
(3) (R, ν) has infinite orbits almost everywhere if and only if G is non-compact,
(4) (R, ν) is amenable if and only if G is.

By property (3) above, we deduce that (Y, ν) is diffuse. Moreover since R is
countable and measure-preserving, Feldman and Moore’s result ([FM77, Theorem
1]) gives us a measure-preserving action of a countable group Γ on (Y, ν) which
induces the equivalence relation R.

Up to taking an open subset of U , we may assume that μ(U · Y ) = 1
K for some

integer K ∈ N. Set A = U · Y . By ergodicity of G, we can find T ∈ [RG] of order
K such that {A, T (A), . . . , TK−1(A)} is a partition of a full measure subset of X.
Let us denote by c the counting measure on Z/KZ and consider the equivalence
relation S ′ on (Z/KZ× U × Y, c× λU × ν) defined by

(k, u, y)S(k′, u′, y′) if yRy′.

The measure-preserving map

Θ′ : (Z/KZ× U × Y, c× λU × ν) → (X,μ)

Θ′(k, u, y) := T k(u · y),
defines an orbit equivalence between S ′ and RG. Denote by L the normalized
Lebesgue measure on the circle S1 and fix a measure-preserving isomorphism

α : (S1, L) → (Z/KZ× U, c× λU ).

Let S be the equivalence relation induced by the action of Γ×S1 on Y ×S1 where
Γ acts on Γ and S1 acts on itself by translation. Observe that α induces an orbit
equivalence between S ′ and S, which combined with Θ′ gives an orbit equivalence
Θ between S and RG and hence (i) is proved.

Now (ii) can be deduced by an easy computation; it is also a direct application
of the uniqueness of the Haar measure on RG (see Theorem A.13). Condition (iii)
follows from property (4). �

1.4. Weak orbit equivalence versus orbit equivalence. Let R be a Borel
equivalent relation on X and A ⊆ X be a Borel subset with positive measure. The
restriction of R to A is the equivalence relation R ∩ (A × A) on the standard
probability space (A, μA) where the measure μA is defined by: for all Borel B ⊆ A,

μA(B) = μ(B)
μ(A) . Let us recall two important definitions.

Definition 1.16. Let Γ and Λ be two countable groups.

• The groups Γ and Λ are measure equivalent if there exists a standard
σ-finite measured space (Ω,m) and commuting measure-preserving actions
of Γ and Λ on (Ω,m) which are essentially free and admit a fundamental
domain with finite measure.

• The groups Γ and Λ are weakly orbit equivalent if Γ and Λ admit
measure-preserving essentially free ergodic actions on probability spaces
(X,μ) and (Y, ν) such that there exist measurable subsets A ⊂ X and
B ⊂ Y such that RΓ restricted to A is orbit equivalent to RΛ restricted
to B. The quantity μ(A)/ν(B) is called the coupling constant of the weak
orbit equivalence.
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Remark 1.17. An application of the ergodic decomposition theorem yields that one
can drop the ergodicity assumption in the definition of weak orbit equivalence.

Furman proved in [Fur99b] that two countable groups are measure equivalent if
and only if they are weakly orbit equivalent. Let us now study these notions for
non-discrete locally compact groups.

Definition 1.18. Let G and H be two Polish locally compact groups.

• The groups G and H are orbit equivalent if they admit ergodic measure-
preserving essentially free actions which are orbit equivalent.

• The groups G and H are weakly orbit equivalent if they admit ergodic
measure-preserving essentially free actions on (X,μ) such that there exist
positive measurable subsets A ⊂ X and B ⊂ X such that RG restricted to
A is orbit equivalent to RG restricted to B.

Note that a non-discrete locally compact group is never weakly orbit equivalent
to a discrete one.

Lemma 1.19. Let G be a non-discrete locally compact Polish group acting essen-
tially freely ergodically in a measure-preserving manner on (X,μ). Then for every
Borel subset A ⊆ X of positive measure, RG is orbit equivalent to its restriction to
A.

Proof. By Theorem 1.15, we can find a standard probability space (Y, ν) and a
countable group Γ acting on (Y, ν) by measure-preserving transformations such that
the action S1 × Γ on (S1 × Y, L × μ) is orbit equivalent to RG. It thus suffices to
show that for every measurable A ⊆ S1×Y of positive measure, RS1×Γ = RS1 ×RΓ

is orbit equivalent to its restriction to (A, μA).

So let A be a subset of S1 × Y of positive measure. Let Ã be a Borel subset
of S1 with measure μ(A). Then since RS1 is transitive it is orbit equivalent to

its restriction to Ã, which in turn yields that RS1 × RΓ is orbit equivalent to its
restriction to Ã× Y .

Since the G-action is ergodic, there exists ϕ ∈ [RS1×Γ] which maps a full measure

subset of Ã × Y to a full measure subset of A (see Proposition 1.9), so that the

restrictions of RS1×Γ to A and Ã × Y are orbit equivalent. We conclude that
RS1×Γ is orbit equivalent to its restriction to A, hence the same conclusion holds
for RG. �
Theorem 1.20. Let G and H be two non-discrete locally compact Polish groups.
Then G and H are orbit equivalent if and only if they are weakly orbit equivalent.

Proof. The direct implication is by definition and the converse is a straightforward
application of the previous lemma. �
Remark 1.21. Any reasonable definition of cost for equivalence relations coming
from measure-preserving actions of non-discrete locally compact groups would have
to satisfy an induction formula for restrictions to subsets. So by the previous
theorem it could not be invariant under orbit equivalence, but only under Haar-
measure-preserving orbit equivalence (see Appendix A for a precise definition of
the Haar measure in our setup).

Cost for locally compact groups would nevertheless provide three distinct orbit
equivalence classes as it does for countable groups up to weak orbit equivalence:
cost 1, finite cost greater than 1, and infinite cost.
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This is in complete analogy with the recent theory of L2 Betti numbers for locally
compact groups; see [Pet13] and [KPV15]. In order to define the L2 Betti numbers,
one has to fix a Haar measure and then depend on it linearly. However when there
are at least two L2 Betti numbers finite and non-zero, the ratios do not depend on
the choice of the Haar measure.

The following proposition is surely well known to experts, but we were not able
to find it in the literature. It guarantees that orbit equivalence for locally compact
non-discrete groups is at least as complicated as measure equivalence for countable
groups.

Proposition 1.22. Two countable groups Γ and Λ are measure equivalent if and
only if the locally compact groups Γ× S1 and Λ× S1 are orbit equivalent.

Proof. Suppose that Γ×S1 admits an action on the probability space (X,μ) which
is orbit equivalent to an action of Λ× S1. Then we can let Γ act on RΓ×S1 on the
left and we can let Λ act on the right via the orbit equivalence. These two actions
commute and in both cases a fundamental domain is given by X × S1 which has
finite measure.

Suppose now that the groups Γ and Λ are measure equivalent; then by [Fur99a,
Lem. 2.2.2] and [Fur99b, Lem. 3.2] they are weakly orbit equivalent. Then Γ× S1

and Λ×S1 are weakly orbit equivalent, hence orbit equivalent by Theorem 1.20. �
Note that the groups Γ×S1 and Λ×S1 are unimodular, so Theorem A.13 applies.

Therefore any orbit equivalence between them sends the Lebesgue measure of the
circle group to a multiple of the Lebesgue measure of the other circle. This constant
is the coupling constant of the induced measure equivalence between Γ and Λ.

Corollary 1.23. There are uncountably many non-discrete locally compact groups
up to orbit equivalence.

Proof. This follows from the fact that there are uncountably many countable groups
up to measure equivalence (see the paragraph preceding PME15

∗ in [Gab05]). �

2. Dense subgroups in orbit full groups

The aim of this section is to prove the following theorem.

Theorem 2.1. Let G be a locally compact Polish group. For every measure-
preserving action of G on the probability space (X,μ) and for every dense subgroup
H ⊂ G, we have that [RH ] is dense in [RG].

Theorem 2.1 will be a crucial tool to compute the topological rank3 of an orbit
full group (see the next section).

2.1. Suitable actions. We will prove Theorem 2.1 under a weaker hypothesis in
the context of Polish group actions. Recall however that Kolmogorov’s example
([Dan00, Example 9]) shows that Theorem 2.1 does not generalize to arbitrary
measure-preserving actions of Polish groups. Indeed there is a Borel probability
measure on {0, 1}N such that the full group generated by the finitely supported
permutations is not dense in the orbit full group of the Polish group of all permu-
tations of N acting by shift on {0, 1}N. The fact is that this action is not suitable.

3Recall that the topological rank of a topological group is the minimum of the rank of a
countable dense subgroup.
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Definition 2.2 (Becker, [Bec13, Definition 1.2.7]). Let G be a Polish group. A
Borel measure-preserving action of G on the probability space (X,μ) is suitable
if for all Borel subsets A,B ⊂ X of positive measure, one of the following two
conditions holds:

(1) for any open neighborhood of the identity O ⊂ G, there is g ∈ O such that
μ(A ∩ gB) > 0;

(2) there are Borel subsets A′ ⊂ A and B′ ⊂ B of full measure in A and B and
an open neighborhood O of the identity in G such that (OA′) ∩B′ = ∅.

We will prove the following.

Theorem 2.3. Let G be a Polish group. For every Borel, measure-preserving,
suitable action of G on the probability space (X,μ) and for every dense subgroup
H ⊂ G, the orbit full group [RH ] is dense in [RG].

Becker proved in Theorem 1.2.9 of [Bec13], that all measure-preserving actions
of locally compact Polish groups are suitable, so Theorem 2.3 implies Theorem 2.1.
We end this section by giving a different example to which our results apply.

Example 2.4. The standard Bernoulli shift S∞ � ([0, 1]N, λ⊗N) is a suitable
action, where λ is the Lebesgue measure.

Proof. Set X := [0, 1]N and μ := λ⊗N and let A,B ⊆ X be Borel subsets of positive
measure. Suppose that (1) does not hold, and let O be a neighborhood of the
identity such that

for all g ∈ O, μ(A ∩ gB) = 0.

By shrinking O if necessary, we may assume that there exists N ∈ N such that O
is the subgroup of S∞ consisting of all the permutations which fix pointwise the
set {0, . . . , N − 1}. We endow Y := [0, 1]{0,...,N−1} with the measure η := λ⊗N

and Z := [0, 1]N\{0,...,N−1} with the measure ν := λN\{0,...,N−1}. Observe that
(X,μ) = (Y, η)× (Z, ν).

Let τ ∈ O be a bijection whose set of fixed points is {0, . . . , N − 1}, and which
has only one non-trivial orbit. Then its Bernoulli shift on (Z, ν) is ergodic since it
is conjugate to the Z-shift on ([0, 1]Z, λ⊗Z). Moreover the ergodic decomposition of
its Bernoulli shift on (X,μ) is given by (μy)y∈Y where μy is the probability measure
on X defined by μy := δy ⊗ ν.

Since μ(A ∩ τkB) = 0 for all k ∈ Z and every μy is τ -ergodic, there is a full
measure Borel subset Y ′ of Y such that for all y ∈ Y ′ we have that μy(A) = 0
whenever μy(B) > 0. Let Y0 be the Borel set of y ∈ Y ′ such that μy(B) > 0, and
put Y1 := Y ′ \Y0. The sets A

′ := (Y1×Z)∩A and B′ := (Y0×Z)∩B witness that
(2) holds. �

Remark 2.5. In the above example, since the countable group S(∞) of finitely sup-
ported permutations is amenable, the full group it generates is extremely amenable
for the uniform topology by [GP07, Thm. 5.7]. Since the uniform topology refines
the topology of convergence in measure and S(∞) is dense in S∞, Theorem 2.3
yields that [RS∞ ] is extremely amenable. It would be interesting to understand for
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which non-locally compact closed subgroups G � S∞ the orbit full group associated
to the standard Bernoulli shift is extremely amenable.

2.2. An equivalent statement. From now on, we will use the notation of Section
1.2. For every Borel, measure-preserving action ofG on the probability space (X,μ),

we denote by [̃G]D ⊂ [̃RG] the subset of functions with countable (essential) image

and we put [G]D := Φ([̃G]D). Note that [G]D is the smallest full group containing
the image of G inside Aut(X,μ).

Theorem 2.3 follows from the following weaker theorem, which is also important
in its own right.

Theorem 2.6. Let G be a Polish group. For every Borel, measure-preserving,

suitable action of G on the probability space (X,μ), we have that [̃G]D ⊂ [̃RG] is a
dense subgroup.

Before deducing Theorem 2.3 from the above result, we need the following lemma
which will be used several times.

Lemma 2.7. Let A ⊆ X and let f : A → G be a function with countable image.
If the map Φ(f) : A → X defined by Φ(f)(x) = f(x)x is injective, then there exists

f ′ ∈ [̃G]D which extends f .

Proof. Let Γ be the group generated by the range of the function f . Since Φ(f) is
injective, the map Φ(f) is an element of the pseudo-full group4 of Γ. The elements
of the pseudo-full group of Γ preserve the RΓ-conditional measure and any two sets
having the same RΓ-conditional measure can be sent to one another by an element
of the pseudo-full group of Γ(see [LM15, Sec. 2.1] for details). Therefore there is

an element T ∈ [G]D which extends Φ(f). By lifting such a T to [̃G]D where f was

not defined, we obtain f ′ ∈ [̃G]D which extends f . �

Proof of Theorem 2.3. Let G be a Polish group and let H be a dense subgroup.
Consider a Borel, measure-preserving suitable action of G on the probability space

(X,μ). By Theorem 2.6, we only need to prove that [̃H]D ⊂ [̃G]D is dense.
Fix a compatible, right-invariant metric dG onG bounded by 1, fix ε > 0 and take

f ∈ [̃RG]D. There are k ∈ N, a finite subset {g1, . . . , gk} ⊂ G and a finite partition
{A0, . . . , Ak} ofX such that μ(A0) � ε/2 and for every i � 1, we have f(Ai) = {gi}.
By density and weak-continuity of the action, there exists {h1, . . . , hk} ⊂ H such
that for every i ∈ {1, . . . , k}, we have that dG(gi, hi) � ε and μ(gi(Ai)Δhi(Ai)) �
ε/2k. Put

Bi := h−1
i (gi(Ai) ∩ hi(Ai)) ⊂ Ai, B :=

k⋃
i=1

Bi,

and observe that μ(B) � 1−ε. Consider the map f ′ : B → H defined by f ′(x) = hi

whenever x ∈ Bi. Then f has finite range, and since the subsets hiBi are disjoint,

Φ(f) is injective. Lemma 2.7 allows us to extend f ′ to f ′′ ∈ [̃G]D. We clearly have

d̃G(f, f
′′) � 2ε, which ends the proof. �

4The pseudo-full group of the countable group Γ acting on (X,μ) is defined to be the set of
Borel partial maps whose graph is a subset of RΓ.
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2.3. Proof of Theorem 2.6.

Definition 2.8. Fix f ∈ [̃RG] and a neighborhood of the identity N ⊂ G. We say
that a couple (A, g) is (N -)good if

(1) A ⊂ X is a measurable subset of positive measure and g : A → G is a
measurable function with countable image,

(2) for every x ∈ A, we have f(x)g(x)−1 ∈ N ,
(3) the map Φ(g) : A → X defined by Φ(g)(x) = g(x)x is injective.

We note that for a fixed f ∈ [̃RG] the existence of a good couple is not a trivial
fact. Indeed, we will use the hypothesis that the action is suitable only to show the
existence of such couples.

The proof of the theorem will be a measurable version of the Hall’s Marriage
Theorem and it will follow the same strategy as Hudson’s in [Hud93]. For a fixed
f as in Definition 2.8, using Zorn’s Lemma, we will construct for every ε > 0 and
neighborhood of the identity N ⊂ G a good couple such that μ(A) > 1− ε in three
steps.

Step 1. In the first step (and only in this one), we will use the hypothesis that the
action is suitable.

Proposition 2.9. Let f ∈ [̃RG] and let N ⊂ G be a neighborhood of the identity.
For every B ⊂ X of positive measure, there is a good couple (A, g) such that A ⊂ B
has positive measure and Φ(g)(A) ⊂ Φ(f)(B).

Proof. Consider a neighborhood of the identity O ⊂ G such that O = O−1 and
O2 ⊂ N . Let f(x0) be an element of the support of the pushforward measure
f∗μ

∣∣
B
and put AO := B ∩ f−1(Of(x0)). For every neighborhood of the identity O′

in G, set CO′ := B ∩ f−1(O′f(x0)). Note that CO′ ⊂ AO, whenever O′ ⊂ O. By
definition of the support of f∗μ

∣∣
B

the Borel set CO′ has positive measure.
Let us show that condition (2) of Definition 2.2 is not satisfied for the two Borel

sets Φ(f)(AO) and f(x0)AO. Indeed, Φ(f)
−1 and f(x0)

−1 are measure-preserving
so if condition (2) holds, then there is a full measure subset A′ ⊆ AO such that
Φ(f)(A′) and O′f(x0)A

′ are disjoint. This is a contradiction because Φ(f)(A′) and
O′f(x0)A

′ contain Φ(f)(A′ ∩ CO′) which has positive measure.
Since the action is suitable, (1) of Definition 2.2 has to hold. So there is h ∈ O

such that

μ(Φ(f)(AO) ∩ hf(x0)AO) > 0.

Set A := AO ∩ f(x0)
−1h−1Φ(f)(AO) and for every x ∈ A put g(x) := hf(x0). The

couple (A, g) is good, because for every x ∈ A we have that f(x)f(x0)
−1 ∈ O and

f(x)g(x)−1 = f(x)f(x0)
−1h ∈ O2 ⊂ N. �

Step 2. For a neighborhood N of the identity in G and ε > 0, we now define the

order on the family of N -good couples associated to a function f ∈ [̃RG].

Definition 2.10. Let (A1, g1) and (A2, g2) be two good couples. We say that
(A1, g1) ≺ (A2, g2) if A2 ⊇ A1 almost everywhere and if

μ({x ∈ A1 : g1(x) �= g2(x)}) �
1

ε
(μ(A2)− μ(A1)).
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The factor ε−1 is the scaling constant which appears in the end of the proof of
Proposition 2.12. We identify two good couples (A1, g1) and (A2, g2) if μ(A1�A2) =
0 and for almost all x ∈ A1 ∩ A2, g1(x) = g2(x). This makes the relation ≺
antisymmetric. It is moreover clearly reflexive.

Lemma 2.11. The relation ≺ is an order relation on the set of good couples.

Proof. The only fact left to prove is that ≺ is transitive. For this suppose that

(A1, g1) ≺ (A2, g2) ≺ (A3, g3);

then

{x ∈ A1 : g1(x) �= g3(x)} ⊂ {x ∈ A1 : g1(x) �= g2(x)} ∪ {x ∈ A2 : g2(x) �= g3(x)},
so we get

μ({x ∈ A1 : g1(x) �= g3(x)})
�μ({x ∈ A1 : g1(x) �= g2(x)}) + μ({x ∈ A2 : g2(x) �= g3(x)})

�1

ε
(μ(A2)− μ(A1)) +

1

ε
(μ(A3)− μ(A2))

=
1

ε
(μ(A3)− μ(A1)). �

The following proposition is the core of the proof of Theorem 2.6.

Proposition 2.12. For every good couple (A, g) with μ(A) < 1− ε, there exists a
good couple (A′, g′) such that (A, g) ≺ (A′, g′) and μ(A′ \A) > 0.

We would like to say that for every good couple (A, g) there is B ⊂ X \ A
such that Φ(f)(B) ∩ Φ(g)(A) = ∅. When this is the case, we can conclude using
Proposition 2.9. The problem is that this is not always possible, but it is possible
in a finite number of steps.

Φ(f) Φ(f) Φ(f)
Φ(g) Φ(g)

AD1 D2 D3

E1 E2 E3Φ(g)(A)

Figure 1. In the figure Φ(f) acts vertically and Φ(g) acts diag-
onally. Since Φ(f)(X \ A) ⊂ Φ(g)(A), we cannot use Proposition
2.9 directly.
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Proof. We first show that there exists k ∈ N with k � 1/ε and there are two
sequences {Di}i�k and {Ei}i�k of measurable subsets of X of positive measure
such that (see Figure 1)

(1) the {Di}i�k are pairwise disjoint as are the {Ei}i�k,
(2) D1 ⊂ X \A and Di ⊂ A for i > 1,
(3) Ek ⊂ X \ Φ(g)(A) and Ei ⊂ Φ(g)(A) for i < k,
(4) Φ(f)(Di) = Ei and Ei−1 = Φ(g)(Di) for all i ∈ {2, . . . , k}.
Set B1 := X \A and C1 := Φ(f)(B1). For i � 2 define recursively

Bi := Φ(g)−1(Ci−1 ∩ Φ(g)(A)) and Ci := Φ(f)(Bi).

Observe that {Bi}i are pairwise disjoint as are the {Ci}i. Suppose now that
for l � 1, we have that Ci ⊂ Φ(g)(A) for all i � l. Since Φ(g) and Φ(f) preserve
the measure, we have that μ(Ci) = μ(B1) for all i � l and hence we have that
lμ(B1) � 1 − μ(B1). By hypothesis μ(B1) � ε, so l � 1/ε − 1. Therefore there
exists k � 1/ε, such that Ck is not contained in Φ(g)(A) and Ci ⊂ Φ(g)(A) for
every i < k. Put Ek := Ck \ Φ(g)(A) and set Dk := Φ(f)−1(Ek). Observe that
Dk ⊂ Bk and define recursively Ei := Φ(g)(Di+1) and Di := Φ(f)−1(Ei).

Now we will use Proposition 2.9 to extend g to a subset B1 of D1. If k > 1,
then E1 = Φ(f)(D1) ⊂ Φ(g)(A) and so we cannot directly apply Proposition 2.9.
Instead, we will modify g in a subset Bi of each Di (with values in Ei) for i > 1 to
obtain a larger good couple (A′, g′) with A′ = A∪B1 and Φ(g)(A′ \Bk) = Φ(g)(A)
and Φ(g′)(Bk) ⊂ Ek ⊂ X \ Φ(g)(A).

By Proposition 2.9, there exists a good couple (A1, g1) such that A1 ⊂ D1 and
Φ(g1)(A1) ⊂ Φ(f)(A1) ⊂ E1. For i ∈ {2, . . . , k}, whenever Ai−1 is defined, we set

A′
i := Φ(g)−1(Φ(gi−1)(Ai−1)) ⊂ Φ(g)−1(Ei−1) = Di.

For every i such that A′
i is defined, Proposition 2.9 implies that there is a good cou-

ple (Ai, gi) such that Ai ⊂ A′
i is non-negligible and Φ(gi)(Ai) ⊂ Φ(f)(A′

i) ⊂ Ei. Put
Bk := Ak. For i ∈ {1, . . . , k− 1}, we define recursively Bi := Φ(gi)

−1(Φ(g)(Bi+1)).
Set A′ := A ∪B1 and define

g′(x) :=

{
g(x) if x ∈ A \

⋃
i�2 Bi,

gi(x) if x ∈ Bi.

By construction, Φ(g′) : A′ → X is injective and preserves the measure. More-
over (A′, g′) is obtained by cutting and pasting N -good couples, so it is an N -good
couple. Let us finally check that (A, g) ≺ (A′, g′). Clearly we have A′ ⊃ A and
μ(A′ \A) = μ(B1) > 0. Moreover

μ({x ∈ A : g(x) �= g′(x)}) � μ

⎛⎝⋃
i�2

Bi

⎞⎠ � kμ(B1) �
1

ε
(μ(A′)− μ(A)). �

Step 3. We verify now that we can apply Zorn’s Lemma to the set of good couples.

Proposition 2.13. Every chain for ≺ has an upper bound.

Proof. Let us assume for the moment that {(An, gn)}n is a countable chain of good
couples. For every n ∈ N set

Bn := {x ∈ An : gn(x) = gn+1(x)}, Cn :=
⋂
k�n

Bn, and A :=
⋃
n

Cn.
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Clearly A ⊂
⋃

n An and we now check that the two measurable subsets have the
same measure. In fact, since {An}n and {Cn}n are increasing sequences, for every
η > 0, there is K ∈ N such that

μ

(⋃
n

An

)
− μ(AK) < η and μ

(⋃
n

Cn

)
− μ(CK) < η,

hence we have

μ

(⋃
n

An

)
− μ(A) �2η + μ(AK)− μ(CK) = 2η + μ(AK \ CK)

=2η + μ(AK ∩ (
⋃
k�K

X \Bk)) = 2η + μ

⎛⎝ ⋃
k�K

AK \Bk

⎞⎠
�2η +

∑
k�K

μ(Ak \Bk) � 2η +
1

ε

∑
k�K

μ(Ak+1 \Ak)

�2η +
1

ε
μ

⎛⎝ ⋃
k�K+1

Ak \AK

⎞⎠ � 2η +
η

ε
.

As η is arbitrarily small, we get that A =
⋃

n An almost everywhere. For x ∈ Cn,
observe that gn(x) = gn+j(x) for every j � 0. We define

g(x) := gn(x) if x ∈ Cn.

The couple (A, g) is obtained by cutting and pasting N -good couples so the couple
is N -good. Moreover A ⊇

⋃
n An almost everywhere and for every n ∈ N, we have

μ(x ∈ An : gn(x) �= g(x)) � μ(An \Cn) �
1

ε

∑
k�n

μ(Ak+1−Ak) =
1

ε
(μ(A)−μ(An)).

Therefore the couple (A, g) is an upper bound for the countable chain. Consider
now an arbitrary chain {(Ac, gc)}c∈C and set λ = supc∈C μ(Ac). If there is a good
couple (Ac, gc) such that μ(Ac) = λ, then this couple is an upper bound of the
chain and there is nothing to prove. Suppose that this is not the case and consider
a subsequence {(An, gn)}n∈N of the chain such that limn μ(An) = λ. Let (A, g) be
an upper bound for this sequence. Given any element of the chain (Ac, gc) there
exists n such that μ(Ac) � μ(An) and hence (Ac, gc) ≺ (An, gn) ≺ (A,ϕ). �

End of the proof of Theorem 2.6. Let f ∈ [̃RG]. By definition of the topology of
convergence in measure, a base of neighborhoods of f is given by the open sets

Uε,N :=
{
g ∈ [̃RG] : μ ({x ∈ X : g(x) ∈ Nf(x)}) > 1− ε

}
,

where ε > 0 and N ⊂ G is a neighborhood of the identity. For every neighborhood
of the identity N ⊂ G, Proposition 2.9 implies that the set of good couples for f is
not empty. For ε > 0, Proposition 2.13 tells us that there is a maximal good couple
(A, g). The maximality of the couple and Proposition 2.12 imply that μ(A) � 1−ε.

So by Lemma 2.7 there is g′ ∈ [̃RG]D such that g′ ∈ Uε,N .
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3. Topological rank of orbit full groups

We now use Theorem 2.1 to show that the topological rank of orbit full groups
associated to free measure-preserving actions of unimodular locally compact groups
is equal to two.

Theorem 3.1. Let G be a locally compact unimodular non-discrete and non-
compact Polish group. For every measure-preserving, essentially free and ergodic
action of G, there is a dense Gδ of couples (T, U) in [RG]

2 which generate a dense
free subgroup of [RG] acting freely. In particular, the topological rank of [RG] is 2.

Proof. Let G be a locally compact unimodular non-discrete and non-compact Pol-
ish group. Suppose that G acts on the probability space (X,μ) preserving the
measure, essentially freely and ergodically. Let us denote by F2 the free group on
two generators. Since [RG] is a Polish group, a standard argument shows that the
set {

(T, U) ∈ [RG]
2 : 〈T, U〉 = [RG] and 〈T, U〉 ∼= F2

}
is Gδ (see e.g. [Pra81,Pra83]) so we have only to prove that it is dense.

By Theorem 1.15, there exists a (not necessarily free) action of a countable group
Γ on a measure space (Y, ν) such that RG is orbit equivalent to the product action
of S1×Γ on S1×Y . Fix a copy of Z in S1 generated by an irrational rotation; then
Z× Γ is dense in S1 × Γ. By Theorem 2.1, we have that [RZ×Γ] is dense in [RG].

The equivalence relation RZ×Γ has cost 1, by Proposition VI.23 of [Gab00] (note
that the proof only uses that Γ1 acts freely). So we can apply Theorem 1.7 in [LM15]
to get the existence of an aperiodic T ∈ [RZ×Γ] such that{

U ∈ [RZ×Γ] : 〈T, U〉du
= [RZ×Γ] and 〈T, U〉 ∼= F2

}
⊂ [RZ×Γ]

is a dense subset of [RZ×Γ] with respect to the uniform topology. This concludes
the proof since by Theorem 4.4 of [CM16], the conjugacy class of T is dense in [RG]
for the topology of convergence in measure. �

4. The orbit full group as a unitary group

In this section, we study the relationship between orbit full groups arising from
measure-preserving free actions of locally compact groups and the associated
von Neumann algebra. Throughout this section, G will be a locally compact second
countable unimodular group which we equip with a left and right invariant Haar
measure m.

Let us recall the crossed product construction. See the first chapter of [vD78]
for more about this. Note however that our left von Neumann algebra is the right
von Neumann algebra in Van Daele’s book.

Definition 4.1. LetG be a locally compact Polish group. For a measure-preserving
free action of G on the probability space (X,μ), the crossed product L∞(X,μ)�G
is the von Neumann algebra on L2(G×X,m× μ) generated by

• the set of unitary operators {λh × κh}h∈G where h �→ κh is the Koopman
representation of G on L2(X,μ) and h �→ λh is the left regular representa-
tion,

• the abelian algebra L∞(X,μ) which acts on functions ξ ∈ L2(G×X,μ) by
multiplication: for all f ∈ L∞(X,μ), we let fξ(g, x) = f(x)ξ(g, x).
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We will show that this von Neumann algebra is generated by the orbit full group
[RG], which can be seen as a unitary group as follows. Recall that since we assume
that the action of G is essentially free, the full group [RG] is isomorphic as a Polish

group to [̃RG], as explained in Section 1.2.

Definition 4.2. Consider the near-action of the full group [̃RG] on (G×X,m×μ)
given by

g · (h, x) = (g(x)h, g(x)x) for all g ∈ [̃RG], h ∈ G, x ∈ X

and denote by π the associated Koopman representation on L2(G × X). That is,

for every f ∈ L2(G×X) and g ∈ [̃RG], we have

π(g) · f(h, x) = f(g(x)−1h, g(x)−1x).

Proposition 4.3. Let G be a unimodular non-compact locally compact Polish group
acting freely on (X,μ).

(1) The map π is a continuous embedding of [RG] into U(M).
(2) The full group of RG consists of the intersection of Aut(G × X,m × μ)

with U(G� L∞(X)), seeing both as subgroups of U(L2(G×X,m× μ)). In
particular, it is a closed subgroup of U(L2(G×X,m× μ)).

(3) The full group generates the von Neumann algebra, that is, π([RG])
′′ =

L∞(X,μ)
�G.

Proof. (1) First, observe that the action of [̃RG] on G×X is measure-preserving,
so that π is a unitary representation.

Let us now see why π(G) ⊆ U(M). For this, note that the commutant of

M = L∞(X)�G is generated by the operators f̃ for f ∈ L∞(X)′ = L∞(X) (acting

by (f̃ ξ)(h, x) = f(h−1x)ξ(h, x))) and the operators 1 × ρg where ρg is the right
regular representation; see [vD78, Thm. 3.12]. For g ∈ [RG], we have

π(g)f̃ξ(h, x) = (f̃ ξ)(g(x)−1h, g(x)−1x)

= f(h−1x)ξ(g(x)−1h, g(x)−1x)

= f̃π(g)ξ(h, x)

and we also have for h′ ∈ G

π(g)ρh′ξ(h, x) = (ρh′ξ)(g(x)−1h, g(x)−1x)

= ξ(g(x)−1hh′, g(x)−1x)

= ρh′π(g)ξ(h, x),

which concludes the proof.
(2) We will prove that every T ∈ Aut(G×X,m× μ) which commutes with the

operators f̃ and ρh is in the image of the full group [RG].
Fix such a T and define maps t1, t2 by the equation T (g, x) = (t1(g, x)g, t2(g, x)).

Since T commutes with ρh, we obtain that for almost all (g, x) ∈ G×X,

(t1(gh, x)gh, t2(gh, x)) = (t1(g, x)gh, t2(g, x)).

In particular by Fubini’s Theorem for almost all x ∈ X and almost all (g, h) ∈ G2

we have t1(gh, x) = t1(g, x) so that t1(·, x) is equal to a constant g(x) up to a set
of measure zero.
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The above equation also yields t2(gh, x) = t2(g, x) for almost all (g, x) ∈ G×X
so again by Fubini’s Theorem t2(·, x) is equal to a constant t(x) up to a set of
measure zero.

So for almost all g ∈ G and x ∈ X, one has T (g, x) = (g(x)g, t(x)). Now we
observe that since T preserves the measure, t : X → X also does: if A is a Borel
subset of G such that m(A) = 1 and B ⊆ X is any Borel set, then

μ(B) = m× μ(A×B)

= m× μ(T−1(A×B))

= m× μ({(h, x) : g(x)h ∈ A and t(x) ∈ B)

= m× μ({(h, x) : h ∈ g(x)−1A and x ∈ t−1(B))

=

∫
X

m(g(x)−1A)χt−1(B)(x)dμ(x)

= m(A)

∫
X

χt−1(B)(x)dμ(x)

= μ(t−1(B)).

Finally, we exploit the hypothesis that T commutes with the operators f̃ for all
f ∈ L∞(X) which means

f(h−1g(x)−1t(x))ξ(g(x)h, t(x))) = f(h−1x)ξ(g(x)h, t(x))

for almost all (h, x) ∈ G ×X. Since this is true for every f and ξ, we must have
that g(x)x = t(x) almost surely and hence T is in the image of the full group [RG].

(3) Since λ× κ(G) is already a subgroup of π([RG]), by definition of the crossed
product it suffices to show that π([RG])

′′ contains L∞(X) . For this, it is enough
to show that for every A ⊂ X the multiplication operator χ̃A belongs to π([RG])

′′.
By Theorem 1.15, we may assume that X = S1 × Y , and that RG = RS1×Γ,

where S1 × Γ acts via a product action. Since G is non-compact, Γ has infinite
orbits, but recall that the action is not necessarily free.

LetRΓ be the equivalence relation of the action of Γ on Y and R̃Γ the equivalence
relation of the action of Γ on S1 × Y obtained by making Γ act trivially on S1.
Observe that R̃Γ = RΓ ×S1 as measure spaces and by Theorem 1.15(ii), we have
a measure-preserving isomorphism between (G×X,m× μ) and (RΓ ×S1 × S1, ν̃ ×
L× L).

By a well-known result of Dye (see e.g. [Kec10, Thm. 3.5]), we can choose an

aperiodic element T ∈ [R̃Γ] ⊂ [RΓ×S1 ]. Now let TX\A be the first return map

induced by T on X \A, which belongs to [R̃Γ].

Claim. The sequence (Tn
X\A)n∈N tends to χ̃A weakly as operators on the Hilbert

space L2(R̃Γ).

Proof of Claim. We denote by [[R̃Γ]] the pseudo-full group of the action of Γ, that
is, the pseudo-group of partial measure-preserving isomorphisms of X whose graph
is contained in R̃Γ. For ϕ ∈ [[R̃Γ]], we denote by dom(ϕ) ⊂ X the domain of ϕ,

that is, the Borel subset of X on which ϕ is defined. Given ϕ ∈ [[R̃Γ]], we let χϕ ∈
L2(R̃Γ) be the characteristic function of the graph of ϕ. Note that χ̃Aχϕ = χϕ|A
where ϕ|A is the restriction of ϕ to A ∩ dom(ϕ).
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Since the Hilbert space L2(R̃Γ) is spanned by the functions χϕ where ϕ ∈ [[R̃Γ]],

we need to show that if ϕ, ψ ∈ [[R̃Γ]], then〈
Tn
X\Aχϕ, χψ

〉
→ 〈χ̃Aχϕ, χψ〉 .

By definition, this is equivalent to

μ({x ∈ D : Tn
X\Aϕ(x) = ψ(x)}) → μ({x ∈ D ∩ A : ϕ(x) = ψ(x)}),

where D := dom(ϕ) ∩ dom(ψ).

So take ϕ, ψ in [[R̃Γ]]. Since the restriction of TX\A to X \A is aperiodic, for all
x ∈ D ∩X \A there is at most one n ∈ N such that Tn

X\Aϕ(x) = ψ(x). So the sets

Bn := {x ∈ D ∩X \A : Tn
X\Aϕ(x) = ψ(x)}

are all disjoint, hence their measure tends to 0. Moreover since TX\A(x) = x for
all x ∈ A, we have

{x ∈ D ∩ A : Tn
X\Aϕ(x) = ψ(x)} = {x ∈ D ∩ A : ϕ(x) = ψ(x)}.

We conclude that

μ({x ∈ D : Tn
X\Aϕ(x) = ψ(x)}) → μ({x ∈ D ∩ A : ϕ(x) = ψ(x)})

as desired. �

Since RΓ×S1 = RΓ ×S1×S1 and R̃Γ = RΓ ×S1, we deduce that (Tn
X\A)n∈N tends

to χ̃A weakly as operators on the Hilbert space L2(RΓ×S1) ∼= L2(RG). Therefore
the sequence (π(Tn

X\A))n∈N tends to χ̃A weakly in π([RG])
′′. �

5. Extreme amenability of orbit full groups

Let us recall that a Polish group is extremely amenable if whenever it acts
continuously on a compact space, the action has a fixed point. It is amenable if
whenever it acts continuously by affine transformations on a compact subset of a
locally convex topological vector space, then the action has a fixed point.

The aim of this section is to extend Theorem 5.7 of Giordano and Pestov [GP07]
to the locally compact setting.

Theorem 5.1. Let G be a locally compact non-compact unimodular Polish group.
Suppose that G acts freely on the probability space (X,μ) preserving the probability
measure. Then the following are equivalent:

(i) G is amenable.
(ii) [RG] is amenable.
(iii) [RG] is extremely amenable.

Before we prove the theorem, let us recall the following useful well-known result
which follows from Remark 5.3.29(2) and Corollary 6.2.12 of [ADR00].

Theorem 5.2. Let G be a locally compact non-compact unimodular Polish group.
Suppose that G acts freely on the probability space (X,μ) preserving the probability
measure. Then G is amenable if and only if the crossed product L∞(X,μ) � G is
injective.

We will also need the following lemma, which provides basic extremely amenable
orbit full groups.
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Lemma 5.3. Let G be a compact metrizable group acting freely on a standard
probability space (X,μ). Then the associated orbit full group is extremely amenable.

Proof. As a consequence of [Var63, Thm. 3.2], we may view X as a Borel G-
invariant subspace of a compact continuous G-space K. By [Gao09, Prop. 3.4.6],
there is a Borel transversal5 for the G-action on K, in particular there is a Borel
transversal Y for the G-action on X.

Let π be the Borel map which takes every x ∈ X to the only y ∈ Y such that
y ∈ G · x, and equip Y with the pushforward measure ν := π∗μ. Let λ be the
Haar probability measure on G. By uniqueness of the Haar measure, the Borel
G-equivariant bijection

Φ :(G× Y, λ× ν) → (X,μ)

(g, y) �→ g · y
is measure-preserving. Moreover, under the identification of X with G × Y , the
orbit full group becomes the group L0(Y, ν,Aut(G, λ)) equipped with the topology
of convergence in measure. We now have two cases to consider:

• G is discrete hence finite, in which case (Y, ν) has to be non-atomic
and Aut(G, λ) is a finite permutation group, in particular it is a compact
group. Then by a result of Glasner (see [Pes06, Thm. 4.2.2]), the group
L0(Y, ν,Aut(G, λ)) is extremely amenable.

• G is non-discrete, in which case Aut(G, λ) is extremely amenable by a
result of Giordano and Pestov (see [Pes06, Thm. 4.5.15]), which implies
that L0(Y, ν,Aut(G, λ)) also is.

In either case, we see that the orbit full group L0(Y, ν,Aut(G, λ)) is extremely
amenable as desired. �

Proof of Theorem 5.1. Clearly (iii) ⇒ (ii), so we will only have to show that (i) ⇒
(iii) and that (ii) ⇒ (i).

(i) ⇒ (iii): Suppose the group G is amenable. By Theorem 1.15, we can assume
that X decomposes as a product (Y ×S1, ν×λ), and that RG = R×(S1×S1) where
R is a measure-preserving countable aperiodic amenable equivalence relation. By
Connes-Feldman-Weiss’ Theorem [CFW81], we can actually assume that R = RΓ

where Γ :=
⊕

n∈N
Z/2Z is acting freeely on (Y, ν).

Let then H := Γ × S1; then we have a natural H-action on Y × S1 which
induces the same equivalence relation as G. We thus only have to show that [RH ]
is extremely amenable. The group H is naturally written as an increasing union of
compact groups Kn := (

⊕
k�n Z/2Z)× S1.

Note that the reunion
⋃

n
˜[Kn]D is dense in [̃H]D. In fact given for every f ∈

[̃H]D and every ε, there exists N > 0 such that

A := {x ∈ X : f(x) ∈ KN}
has measure larger than 1 − ε. Therefore by Lemma 2.7 we can extend fA, the

restriction of f to A, to an element of [̃KN ]D which is close to f .
By Theorem 2.6 the group [H]D is dense in [RH ], so the union

⋃
n[Kn] is dense in

[RH ]. Observe now that
⋃

n[Kn]D ⊆
⋃

n[RKn
] and hence

⋃
n[RKn

] is dense in [RH ].
Finally observe that the full groups [RKn

] are extremely amenable by Lemma 5.3.

5A Borel transversal is a Borel subset which intersects every G-orbit at exactly one point.
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So [RH ] contains an increasing sequence of extremely amenable subgroups, whose
union is dense, therefore [RH ] = [RG] is extremely amenable.

(ii) ⇒ (i): Suppose the full group [RG] is amenable. By Theorem 5.2, the
amenability ofG is equivalent to the injectivity of the crossed product L∞(X,μ)�G.
Moreover by the celebrated result of Connes [Con76, Thm. 6], the injectivity of a
von Neumann algebra M ⊆ B(H) is equivalent to Schwartz’s property (P), which
means that whenever x ∈ B(H), the closed convex hull of (uxu∗)u∈U(M) intersects
the commutant of M . It thus suffices to prove that L∞(X) � G has Schwartz’s
property (P).

To this end, let x∈B(H). Then the convex closed hullK of (uxu∗)u∈U(L∞(X,μ)�G)

is a weakly compact convex set on which [RG] acts continuously by conjugation.
Since [RG] is amenable and this action is the restriction of a linear hence affine
action, there exists x0 ∈ K which is fixed by the conjugation action. This means
that x0 ∈ π([RG])

′ = (π([RG])
′′)′ so x0 belongs to the commutant of L∞(X) � G

by item (3) of Proposition 4.3, which concludes the proof. �

The proof of (ii) ⇒ (i) actually shows that the von Neumann algebra generated
by an amenable unitary group is injective. Note that de la Harpe proved that
a von Neumann algebra is injective if and only if its unitary group is amenable
[dlH79]. Our proof of (ii) ⇒ (i) is essentially a reformulation of his.

Appendix A. Haar measures for equivalence relations

The content of this appendix is standard and can be carried out in a much more
general setting (see [ADR00]). However, extracting the statements we need can be
difficult, so we give complete proofs for which we claim no originality.

A.1. Invariant Haar systems. When G = Γ is a countable discrete group, the
first-coordinate projection π : RΓ → X has countable fibers, which allows us to
define a Haar measure M on RΓ by integrating the counting measure over the
fibers: for all Borel A ⊆ RΓ,

M(A) =

∫
X

∣∣π−1({x}) ∩ A
∣∣ dμ(x).

The definition of a Haar measure in a more general context of locally compact
groups is however more complicated.

Definition A.1. Let R be a Borel equivalence relation on (X,μ). An invariant
Haar system on R is a family (mx)x∈X of Borel measures on X which satisfy the
following properties:

(1) (invariance) There is a full measure subset X ′ of X such that for all (x, y) ∈
R ∩ (X ′ ×X ′), mx = my.

(2) For all x ∈ X, mx is non-trivial and supported on [x]R (i.e. mx(X \ [x]R) =
0 and mx([x]R) > 0).

(3) (measurability) For all Borel A ⊆ R, the map x �→ mx(Ax) is Borel, where
Ax := {y ∈ X : (x, y) ∈ A}.

(4) (σ-finiteness) There exists an exhausting increasing sequence of Borel sub-
sets (An) of R such that for all n ∈ N, one has

∫
X
mx((An)x)dμ(x) < +∞.

(5) For all full measure subsets X ′ of X, one has mx(X \X ′) = 0 for μ-almost
all x ∈ X.

The couple (R, (mx)x∈X) is then called a measured equivalence relation.
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Remark A.2. Note that condition (5) allows one to transport a Haar system on R
to a Haar system on R′ whenever R and R′ are orbit equivalent.

Example A.3. Suppose R is a Borel countable non-singular equivalence relation
on (X,μ). Then an invariant Haar system on R is given by letting mx be the
counting measure on [x]R.

Example A.4. Suppose G is a locally compact Polish group with right Haar
measure λ. Then given an essentially free measure-preserving G-action on (X,μ),
one can endow RG with an invariant Haar system (λx)x∈X given by the natural
identification g �→ g·x between (G, λ) and [x]R. In other words, given a Borel subset
A of G and x ∈ X, we set λx(A · x) := λ(A). Note that such an identification only
makes sense when x belongs to the free part of the action, so when x does not
belong to it we define λx to be the Dirac measure on x.

Let us check that the field of measure (λx)x∈X is an invariant Haar system. For
a Borel subset A of G, we have

λgx(A · x) = λgx(Ag−1g · x) = λ(Ag−1) = λ(A) = λx(A · x),
so condition (1) is satisfied. One can easily check that conditions (2), (3) and (4)
are satisfied, while (5) is a consequence of the Fubini Theorem and the fact that
the G-action preserves the measure: if X ′ has full measure in X, then for almost
all x ∈ X, for λ-almost g ∈ G one has g · x ∈ X ′.

Note that when G is discrete, this definition of the Haar measure coincides with
the previous one.

Remark A.5. Actually, as the expert reader knows, one can define a Haar measure
on RG regardless of the freeness of the G-action, whenever G is locally compact
Polish. But since the construction of the measure is significantly more complicated,
and since we will only deal with non-free actions when G is discrete, we chose not
to present this more general setting.

Example A.6. If (R1, (m
1
x)x∈X) and (R2, (m

2
y)y∈Y ) are measured equivalence re-

lations on (X,μ) and (Y, ν) respectively, then (R1 × R2, (m
1
x × m2

y)(x,y)∈X×Y ) is
a measured equivalence relation on (X × Y, μ × ν). A particular case of inter-
est to us is when R1 is the transitive equivalence relation and R2 is a countable
measure-preserving equivalence relation. Indeed by Theorem 1.15 every measured
equivalence relation arising from a free action of a non-discrete unimodular locally
compact group is of this form.

Remark A.7. There can be a lot of different invariant Haar systems on an equiv-
alence relation R, even in the ergodic case. For instance, if R is the transitive
equivalence relation on (X,μ), then any choice of Borel σ-finite measure ν on X
which is absolutely continuous with respect to μ yields an invariant Haar system
(mx)x∈X given by mx = ν. In the next section, we will add a condition which
yields uniqueness: unimodularity.

By Weil’s Theorem, a Polish group which admits a right-invariant measure is
locally compact. Similarly, the existence of an invariant Haar system on an equiv-
alence relation forces the acting group to be locally compact. Let a Polish group
G act freely on (X,μ), and suppose that there exists an invariant Haar system
(mx)x∈X on RG. Then we can define a natural right-invariant measure on G as

λ(A) :=

∫
X

mx(A · x)dμ(x) for A ⊂ G.
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This measure is not always σ-finite,6 but we now show how this can be circum-
vented.

Theorem A.8. Let G be a Polish group acting freely on (X,μ) in a measure-
preserving manner. If RG has an invariant Haar system, then G is locally compact.

Proof. We will show that there exists a non-trivial right-quasi -invariant Borel prob-
ability measure on G. This implies that G is locally compact by Mackey’s Theorem
[Mac57, Thm. 7.1].

Let (mx) be an invariant Haar system on RG, let (An) be a partition of RG

into Borel sets of finite measure. We define a new Haar system (ηx) of probability
measures on RG by putting, for every x ∈ X and Borel A ⊆ X,

ηx(A) :=

∞∑
n=0

1

2n+1

mx((A ∩An)x)

mx((An)x)
.

Then our Haar system satisfies all the axioms of invariant Haar systems except of
course invariance (condition (1)) , which can be replaced by

(1’) (quasi-invariance) There is a full measure subset X ′ of X such that for all
(x, y) ∈ R ∩ (X ′ ×X ′), [ηx] = [ηy].

As before, we can integrate the Haar system to obtain a probability measure on G:

λ(A) :=

∫
X

ηx(A · x)dμ(x) for A ⊂ G.

To complete the proof, we will show that λ is quasi-invariant with respect to the
right multiplication. For this, suppose that λ(A) = 0; then by definition for almost
all x ∈ X one has ηx(A · x) = 0 which implies by (1′) that for every g ∈ G and
almost all x ∈ X, ηgx(A · x) = 0. Since moreover we have that g∗μ = μ, we can
conclude the proof:

λ(Ag) =

∫
X

ηx(Agx)dμ(x) =

∫
X

ηg−1x(Ax)dμ(x) = 0. �

A.2. Unimodularity. For a measured equivalence relation R on (X,μ), the pre-
orbit full group [R]B is the group of all Borel bijections T : X → X which
preserve μ, and such that for all x ∈ X, one has (x, T (x)) ∈ R. The pre-orbit full
group has two natural actions on R:

• the left action defined by lT (x, y) = (T (x), y) for all (x, y) ∈ R and
• the right action defined by rT (x, y) = (x, T (y)) for all (x, y) ∈ R.

These two actions are conjugated by the flip σ defined by σ(x, y) := (y, x).
For A ⊂ R, as in the last section, we put Ax = {y ∈ X : (x, y) ∈ A}. Every

invariant Haar system (mx)x∈X allows us to equip R with a natural measure M
defined as follows:

M(A) :=

∫
X

mx(Ax)dμ(x) for every A ⊆ R Borel.

Note that condition (4) on (mx) corresponds to the σ-finiteness of (R,M).

Lemma A.9. The left action of the pre-full group on R preserves M .

6Let Γ = Z/2Z act on [0, 1] via T : x �→ (1 − x) and take a T -invariant function f : [0, 1] →
[0,+∞[ which is not integrable; then mx = f(x)(δx + δT (x)) is an invariant Haar system but the

associated measure on Z/2Z is infinite.
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Proof. For all Borel A ⊆ X and all T ∈ [R]B, one has

M(lTA) =

∫
X

mx((lTA)x)dμ(x)

=

∫
X

mT−1(x)((lTA)x)dμ(x)

=

∫
X

mT−1(x)((A)T−1(x))dμ(x)

=

∫
X

mx(Ax)dμ(x) = M(A),

so the measure M is preserved by the left action of the pre-orbit full group. �

Denote by Aut(R,M) the group of measure-preserving Borel bijections of R, two
such bijections being identified up to measure zero. Then the left action defines
a morphism [R]B → Aut(R,M) which factors through the orbit full group [R].
So we have obtained a measure-preserving near-action of the orbit full group on
(R,M).

Definition A.10. An invariant Haar system (mx) on a Borel equivalence relation
R is called unimodular if the flip preserves M .

As the name suggests, free actions of unimodular locally compact groups give
rise to unimodular Haar systems.

Proposition A.11. Let G be a unimodular locally compact group acting essentially
freely on (X,μ) and let λ be a Haar measure on G. Then the associated invariant
Haar system (λx)x∈X on RG given by Example A.4 is unimodular.

Proof. By Lemma 1.1 we may assume thatG acts freely. Let Φ : X×G → RG be the
Borel identification given by Φ(x, g) := (x, g · x). By definition, the measure M on
RG obtained by M(A) =

∫
X
λx(Ax)dμ(x) is just the product measure, Φ∗(μ⊗λ) =

M . Therefore in order to show that (λx)x is unimodular, we need to show that the
map

Ψ :=Φ ◦ σ ◦ Φ−1 : (X ×G,μ⊗ λ) → (X ×G,μ⊗ λ)

is measure-preserving. Observe that Ψ(x, g) = (gx, g−1). For a set C, let χC denote
its characteristic function. Let A ⊆ X and B ⊆ G be Borel sets; then we have

Ψ∗(μ⊗ λ)(A×B) =

∫
X×G

χA×B(g · x, g−1)dμ⊗ λ(g, x)

=

∫
X×G

χA(g · x)χB(g
−1)dμ⊗ λ(g, x)

=

∫
G

χB(g
−1)

(∫
X

χA(g · x)dμ(x)
)
dλ(g)

=

∫
G

χB(g
−1)μ(A)dλ(g)

= λ(B)μ(A),

where the last three equalities are respectively consequences of Fubini’s Theorem,
the fact that G preserves the measure and the unimodularity of G. By uniqueness
of the product measure, we conclude that Ψ∗(μ× λ) = μ× λ as desired. �
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Remark A.12. Let G be a unimodular locally compact Polish group acting essen-
tially freely on (X,μ), let λ be a Haar measure on G and let (λx) be the associated
unimodular invariant Haar system on RG. Then by the above proposition the right
[RG]-action on (RG,M) gives an embedding [RG] ↪→ L0(X,μ,Aut(G, λ)) (in other
words, the full group acts on every RG-class in a measure-preserving manner).

Since embeddings of Polish groups have closed range (see [Gao09, Prop. 2.2.1]),
we can deduce that if (Y, ν) is a standard σ-finite space, then the group
L0(X,μ,Aut(Y, ν)) contains as a closed subgroup every orbit full group arising
from a measure-preserving free action of a non-discrete unimodular Polish locally
compact group. For a similar statement in the discrete case, see [KLM15, Prop.
13].

Theorem A.13. Let G be a Polish group acting freely on (X,μ). If there is a
unimodular invariant Haar system (mx)x∈X on RG, then G is locally compact
unimodular.

If the action is moreover ergodic, then there exists a constant c > 0 such that
for almost all x ∈ X, one has mx = cλx, where λx is the invariant Haar system
associated to a fixed Haar measure λ on G.

Proof. First note that by Theorem A.8, G has to be locally compact. We fix a
left Haar measure λ on G. For every x in the free part of the action, consider the
G-equivariant bijective Borel map φx : [x]R → G defined by φx(y) · x = y; then the
pushforward measure ηx := (φx)∗mx is a σ-finite measure on G.

Since the right action of the orbit full group [R] on (R,M) is conjugate to the left
action by the flip, unimodularity yields that the right action of [R] on R preserves
M . In particular, the right action of G on R preserves M , so for a fixed g ∈ G,
and any A ⊆ R we have∫

X

mx(Ax)dμ(x) =

∫
X

mx((r(g)A)x)dμ(x) =

∫
X

mx(gAx)dμ(x).

By the uniqueness of disintegration, this implies that for almost all x ∈ X, g∗mx =
mx. Then by Fubini’s Theorem, for almost all x ∈ X and λ-almost all g ∈ G,
g∗mx = mx. Since φx : [x]R → G is left G-equivariant, this implies that for almost
all x ∈ X, there is a full measure subgroup of G which preserves ηx when acting on
the left. But every full measure subgroup of G equates G (see e.g. [Zim84, Prop.
B.1]), so for almost all x ∈ X, one has that ηx is a Borel σ-finite left-invariant
measure on G. By uniqueness of the Haar measure, we conclude that for almost all
x ∈ X, the measure ηx is a multiple of λ. Let X0 be the full measure G-invariant
Borel set of x ∈ X such that ηx is a multiple of λ.

Fix a Borel subsetK of G such that λ(K) = 1. For all x ∈ X0, we let cx = ηx(K);
then x �→ cx is Borel and we have ηx = cxλ. Moreover for all (g, x) ∈ G×X0,

cgx = ηgx(K) = mgx(Kgx) = mx(Kgx) = ηx(Kg),

so that cgx = Δ(g)cx, where Δ is the modular function on G.
Let g ∈ G, let a > 0 be an essential value of the function x �→ cx and consider the

set of positive measure A := {x ∈ X : a/2 < cx < 3a/2}. By Poincaré’s Recurrence
Theorem for almost all x ∈ A there is an infinite subset Sx ⊂ N such that gkx ∈ A
for every k ∈ Sx. So for x ∈ A we have that

a/2 < Δ(gk)cx = Δ(g)kcx < 3a/2 for all k ∈ Sx,

which implies that Δ(g) = 1, and we conclude that G is unimodular.
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Therefore cgx = cx for all x ∈ X0: the function x �→ cx is G-invariant. So
whenever the G-action is ergodic, x �→ cx is a.s. constant, which yields the second
part of the theorem. �

Let us point out that when the acting group G is already known to be locally
compact, the freeness hypothesis above can be replaced by almost freeness, since
we know by Lemma 1.1 that the free part of the action is a Borel set and invariant
Haar systems restrict well to full measure Borel subsets. So unimodular locally
compact groups form a closed class under orbit equivalence among locally compact
groups.
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Cité, 75205 Paris cedex 13, France

E-mail address: francois.le-maitre@imj-prg.fr

http://www.ams.org/mathscinet-getitem?mr=3072156
http://www.ams.org/mathscinet-getitem?mr=624915
http://www.ams.org/mathscinet-getitem?mr=729543
http://www.ams.org/mathscinet-getitem?mr=0159923
http://www.ams.org/mathscinet-getitem?mr=500089
http://www.ams.org/mathscinet-getitem?mr=776417

	Introduction
	1. Orbit equivalence in the locally compact case
	2. Dense subgroups in orbit full groups
	3. Topological rank of orbit full groups
	4. The orbit full group as a unitary group
	5. Extreme amenability of orbit full groups
	Appendix A. Haar measures for equivalence relations
	Acknowledgments
	References

