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HOMOGENEOUS SOLUTIONS TO THE 3D EULER SYSTEM

ROMAN SHVYDKOY

Abstract. We study stationary homogeneous solutions to the 3D Euler equa-
tion. The problem is motivated by recent exclusions of self-similar blowup for
Euler and its relation to the Onsager conjecture and intermittency. We re-
veal several new classes of solutions and prove rigidity properties in specific
categories of genuinely 3D solutions. In particular, irrotational solutions are
characterized by vanishing of the Bernoulli function, and tangential flows are
necessarily 2D axisymmetric pure rotations. In several cases solutions are ex-
cluded altogether. The arguments reveal geodesic features of the Euler flow on
the sphere. We further show that in the case when homogeneity corresponds
to the Onsager-critical state, the anomalous energy flux at the singularity van-
ishes, which is suggestive of absence of extreme 0-dimensional intermittencies
in dissipative flows.

1. Introduction

We study the classification problem of stationary homogeneous solutions to the
Euler system given by

V · ∇V +∇P = 0,

div V = 0.
(1)

This is a classical system that describes time independent motion of an incompress-
ible ideal fluid in R3, where V is the velocity field and P is the pressure. Scaling
symmetries of the system, namely V → aV (bx), P → a2P (bx), allows for the
possible existence of invariants which are homogenous solutions of the form

V (x) =
v + f�n

|x|α , P (x) =
p

|x|2α .(2)

Here v is the tangent component of V on the sphere S2, f is normal (�n denotes
the outward unit normal), and p is the spherical pressure. We are only concerned
with C1-solutions (at least) for which v, f, p ∈ C1(S2) and the system (1) can be
understood classically in R3\{0}.

Our motivation for studying homogeneous solutions, apart from a purely aca-
demic standpoint, comes from three different sources. First, recent studies of self-
similar blowup for the full dynamical Euler equation demonstrated that under a
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mild growth restriction on the profile V , V necessarily behaves like 1
|x|α at infinity;

see [3,4]. This suggests that homogeneous solutions are the only ones that exist in
the class of self-similar solutions. Second, in the case α = 2

3 (or α = 1
3 in 2D), the

field (2) gains the so-called Onsager critical regularity B
1/3
3,∞ near the origin. Such

regularity allows for the energy balance law to break, and it is relevant in newly
emerged descriptions of turbulent flow (see [5–7,12,14]). The distinctive feature of
being singular only at one point makes a homogeneous solution a viable candidate
for a dissipative flow with extreme 0-dimensional intermittency, [5]. Third, in the
context of viscous flows, where α = 1 is the only relevant scaling, Landau revealed
in 1944 a class of homogeneous solutions with axial symmetry, [2, 9]. They appear
naturally in studying jet flows emanating from a point source. Recently, V. Šverák
demonstrated in [15] that Landau solutions are the only ones in the class of all
homogeneous solutions. This motivates us to look for similar rigidity properties
in the inviscid case, which turn out to be abundant. The question of vanishing
viscosity limit also comes into focus and we address it in Section 5.1.

In recent work [10] we studied homogeneous solutions in R2 and provided their
full classification. If embedded in R

3 the solutions are C1-smooth on the sphere
only for α ≤ −1. In this range we can provide a complete description, which we
summarize in Section 2.2. In this present paper we focus on the genuinely 3D
case. It appears that 3D solutions come in classes with manifestly rigid character,
in contrast to the 2D case. The main reason is the fact that S

2 has trivial first
de Rham group, while in S1 existence of harmonic fields results in the class of 2D
circular rotational solutions and overall allows more topological freedom for other
elliptic solutions to exist. As a consequence, we show that there are no C1-smooth
solutions for α = 1, Proposition 2.1.1 Furthermore, we exclude axisymmetric solu-
tions in the wider range 0 < α < 2 in Proposition 5.1. In the way of our analysis
we draw a connection with the Landau solutions. We show that they necessarily
have to lose regularity for positive values of ν > 0 in the process as they converge
to Euler solutions. Several new examples of genuinely 3D solutions are exhibited.
Those are 21

2 -dimensional solutions obtained from 2D ones by attaching a passive
third component (see Section 2.3); geodesic solutions with straight particle tra-
jectories, in particular, parallel shear (10), radial (12), and axisymmetric conical
solutions with or without swirl (13). The latter is a new class of explicit examples
of stationary axisymmetric flow. In addition, we discover an important class of irro-
tational solutions obtained by setting f = Y m

l , one of spherical harmonics, and v =
(1 − α)−1∇f . Here α ∈ Z\{1}. This class is a direct analogue of the classical
point vortices in 2D. These are also the only smooth solutions we discovered that
include positive values of α. We then establish a number of rigidity results that
give a simple characterization of the above constructed solutions. Namely, we show
that the Bernoulli function H = |v|2 + f2 + 2p, which plays a crucial role in all
our analysis, vanishes for all irrotational flows, and for α ≤ 2 any solution with
H = 0 is necessarily irrotational (see [1] for classical applications of H in fluids and
Section 3 for its geometric interpretation in the homogeneous case). Recall that
a general steady state H being constant, or 0 since the pressure is defined up to
a constant, gives a characterization of all Beltrami flows, which is a rich class of

1During the preparation of the paper the author was informed that this particular result also
appeared independently in [11]. See Section 2 for a discussion.
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solutions. So, in the present settings we observe exclusively the effect of homogene-
ity. Next, axisymmetric solutions with constant spherical pressure p are necessarily
geodesic and are all described by the class (13) and (12); see Proposition 5.3. We
found two first integrals for the 4 × 4-system of ODE describing such solutions,
which leads to a complete resolution in this particular case. Lastly, we establish
rigidity of all tangential solutions: if f = 0 throughout, then there is an axis of
rotation around which the solution is the 2D purely rotational state given by (31).
This once again stresses the difference between 2D and 3D cases and reveals the
inherently geodesic nature of the Euler flow on the sphere.

In the Onsager-critical case of α = 2
3 we prove that the solution, properly tapered

at infinity, regains finite global energy ‖V ‖2 < ∞, which introduces a physically
reasonable force F in the system (1), namely F ∈ C∞

loc and |∇kF (x)| � 1
|x|3+k . The

classical Onsager conjecture inquires whether such solutions may have anomalous
energy flux, which in the steady case amounts to nonvanishing work of force, Π =∫
V ·Fdx. We show via an approximation argument that in fact Π = 0. As argued in

[5,14] such solutions present an extreme case of intermittent state where energy flux
concentrates on a 0-dimensional set, namely the origin. In 2D, we observed in [10]
that the Hamiltonian structure of the reduced equations on the sphere S

1 produces
extra symmetry in solutions that ultimately causes vanishing of the flux. In the 3D
case such a constructive explanation remains to be found, despite the fact that we
can formally prove vanishing of the flux in this case also. Our overall message with
regard to the Onsager case is that the Euler system may not support extremely
intermittent dissipative solutions due to hidden symmetries. In comparison, all
“wild” solutions constructed with the use of the new convex integration technique
(see [6, 7]) have no intermittency, with dimension of singularity set being 3, the
entire domain.

Based on the constructed examples in this paper, their rigidity, and the flavor
of some of our arguments we conjecture that there are no C1-smooth solutions in
the range α > −1, except the irrotational ones at α ∈ Z\{1}. We also state that
the maximal smoothness of solutions behaves like C−α for α < 0.

2. Equations on the sphere and examples

The Euler system of equations (1) for homogenous solutions reduces to the fol-
lowing system on S2 (see the Appendix):

(2− α)f + div v = 0,(3a)

v∇f = |v|2 + αf2 + 2αp,(3b)

(1− α)fv + v∇v = −∇p.(3c)

We study solutions for which the system (3) can be understood classically, i.e.,
when all ingredients v, f, p belong to Ck(S2) for some k ≥ 1. We call these cumu-
latively Ck-solutions. The system (3) can be written in a fixed spherical system of
coordinates

x = sinφ cos θ, y = sinφ sin θ, z = cosφ,

v = a�eφ + b�eθ,
(4)
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where �eφ, �eθ are the vectors of the standard orthonormal frame associated with
(φ, θ), as follows:

(2− α)f + aφ + a cotφ + bθ(sinφ)
−1 = 0,

afφ + bfθ(sinφ)
−1 = a2 + b2 + αf2 + 2αp,

(1− α)fa sinφ+ aaφ sinφ+ baθ − b2 cosφ = −pφ sinφ,

(1− α)fb sinφ+ abφ sinφ+ bbθ + ab cosφ = −pθ,

(5)

where subindices stand for partial derivatives. This somewhat obscure form of the
system will be useful in obtaining and classifying various special classes of solutions.

Let us introduce an important geometric quantity that will play a crucial role in
what follows. The restriction of the classical Bernoulli function 2P + |V |2 on the
sphere takes the form H = |v|2 + f2 + 2p : S2 → R. Multiplying (3c) with v and
using (3b) we obtain the following transport equation for H:

(6) v∇H = 2αfH.

As a consequence of (3) and (6) we will obtain an exclusion of smooth solutions in
the case α = 1. Note that this appears to be in complete contrast to the Navier-
Stokes system, where α = 1 is the only possible scaling for homogenous solutions
to exist. Before we prove the result let us rewrite the momentum equation (3c) in
terms ofH. First, let us consider the vorticity of v, ω = curl v or, formally, ω = �dv�

(we use standard notation for operations on a manifold; see the Appendix). One can
easily verify using normal coordinates that v∇v − 1

2∇|v|2 = ωv⊥. Here, ⊥ means
rotation of v counterclockwise by 90◦ relative to the outward oriented normal or,
formally, v⊥ = (�v�)�. We will drop superindicies 	, 
 in the future for brevity. So
(3c) becomes

(7) (1− α)fv + ωv⊥ = −∇(p+
1

2
|v|2)

and, in terms of H,

(8) f((1− α)v −∇f) + ωv⊥ = −1

2
∇H.

Proposition 2.1. There are no C1-solutions to the system (3) for α = 1.

Proof. In the case α = 1, (3a), (3b), and (6) read

(9) f + div v = 0, v∇f = H, v∇H = 2fH.

Let us test the last one with f and integrate by parts:∫
fv∇Hdσ =

∫
f2Hdσ −

∫
Hv∇fdσ = 2

∫
f2Hdσ.

So, using the second equation in (9),∫
f2Hdσ = −

∫
Hv∇fdσ = −

∫
H2dσ.

Again, from the second equation in (9),∫
f2Hdσ =

∫
f2v∇fdσ =

1

3

∫
v∇f3dσ =

1

3

∫
f4dσ.

We have obtained −
∫
H2dσ = 1

3

∫
f4dσ. So, H = f = 0. From (8), we obtain

ωv = 0. This implies that dv = 0 on the set where v 
= 0, and hence dv = 0 on
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the closure {v 
= 0} (we refer to the Appendix for a short glossary of Riemannian
terms we use). But on the complement of the closure, v = 0 trivially. Consequently,
dv = 0 throughout, and also δv = 0. We conclude that v is harmonic as a form,
and hence 0. �

As we noted in the introduction this result also appeared independently in [11].
The argument of [11] is based on calculus manipulations from the bulk of the fluid
domain R

3, as opposed to the sphere. However, in both cases the conclusion is
based upon finding that v is harmonic.

2.1. Geodesic solutions. Many explicit examples of homogeneous solutions have
flow trajectories that are straight lines (or rays) in space. We call these geodesic
solutions. The geodesic property can be expressed concisely by V · ∇V × V = 0.
If the pressure P is constant, then clearly V is geodesic. Constant P implies p = 0
for α 
= 0, and p = const for α = 0. In any case, p disappears from the system (3).
Then (3c) implies that the orbits of v on the sphere are geodesic too. One simple
example is given by the parallel shear flow

(10) V = 〈0, 0, z(θ)
rα

〉,

where r =
√
x2 + y2 and z ∈ C1(T). This is a C1-smooth solution for α ≤ −1.

It will be crucial to catalogue solutions in terms of their spherical quantities, even
if it may not always be most illuminating. It will help compare them with other
solutions obtained solely in terms of f, v, etc. Thus, we have

f = z(θ)
cosφ

sinα φ
, b = 0, a = −z(θ) sin1−α φ,

p = 0, H =
z2(θ)

sin2α φ
.

(11)

Another simple example is the radial flow

(12) α = 2, f = const, v = 0, p = −1

2
f2.

This solution is unique in several different categories. It is the only one for which
the tangential ingredient of H, 2p+ |v|2, is constant (see Corollary 4.3), is the only
axisymmetric solution in the scaling α = 2 (see Section 5), and is the only solution
in the general radial class. For the latter, if v = 0, then from (3a) we have α = 2,
for otherwise f = 0 and the solution is trivial. Momentum equation (3c) implies
p = const, and hence from (3b) so is f . Note that this is an example of a geodesic
solution for which the global pressure P is not constant.

A class of axisymmetric solutions with or without swirl can be constructed as
follows. Let a0, b0 with a20 + b20 = 1 represent local spherical coordinates of the
tangent field v on the equator, v0 = a0�eφ + b0�eθ (see the Appendix). Then V =
〈V x, V y, V z〉 is given by

V x = b20
xz

x2 + y2
K−α

2 + b0
y

x2 + y2
K1−α

2 ,

V y = b20
yz

x2 + y2
K−α

2 − b0
x

x2 + y2
K1−α

2 ,

V z = a20K
−α

2 ,

αp = 0,

(13)
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where

(14) K =

{
a20(x

2 + y2)− b20z
2, b20z

2 ≤ a20(x
2 + y2),

0, b20z
2 > a20(x

2 + y2).

So, in this case the swirl b0 determines the aperture of the cone where V vanishes.
Clearly, the solution with a swirl is C1 only in the range α ≤ −2, and in the
range α ≤ −1 without swirl. In both cases, this also implies p = 0. As shown in
Proposition 5.3 these are unique solutions in the class of axisymmetric solutions
with constant spherical pressure p.

2.2. 2D homogeneous solutions. A large class of solutions can be obtained by
lifting the 2D homogeneous solutions into space. The 2D case has been classified in
[10]. Let us give a brief recitation of the obtained results as it would provide some
valuable insight into existing possibilities. In a fixed coordinate system (x, y, z) the
2D homogenous solutions are given by

V (r, θ) =
uθ(θ)�eθ + ur(θ)�er

rα
, P (r, θ) =

p(θ)

r2α
,

where �eθ and �er are unit basis vectors associated with the polar system. Such
solutions gain C1-regularity only for α ≤ −1 because of singular behavior at the
poles. One can associate a stream-function to the field V = ∇⊥Ψ given by Ψ =
r1−αψ(θ), uθ = (1− α)ψ, ur = −ψ′. In our spherical system, we have

f = −ψ′(θ) sin1−α φ, a = −ψ′(θ)
cosφ

sinα φ
, b = (1− α)

ψ(θ)

sinα φ
,

H =
2p+ (1− α)2ψ2 + (ψ′)2

sin2α φ
.

(15)

A complete classification of solutions in the range α ≤ −1 is given in [10]. We
will summarize the results as they would provide some valuable insight into existing
possibilities. The Euler system forces p to be constant and satisfy

−2αp = α(ψ′)2 + (1− α)2ψ2 + (1− α)ψ′′ψ,

ψ(0) = ψ(2π).
(16)

The ODE has a conserved quantity (coming from conservation of the Bernoulli
function along particle lines),

(17) B = (2p+ (1− α)2ψ2 + (ψ′)2)ψ
2α

1−α .

With this law, system (16) becomes a Hamiltonian system in phase variables
(x, y) = (ψ, ψ′) given by

(18)

⎧⎨
⎩

x′ = y,

y′ = −(1− α)2x+
α

α− 1
Bx

α+1
α−1 ,

with the pressure p = −y2

2 − (1−α)2

2 x2 + B
2 x

2α
α−1 being the Hamiltonian. Thus,

the question reduces to finding 2π-periodic solutions. Explicit formulas for those
solutions are not always available; however we can classify and count all types of
solutions that exist. Solutions with ψ > 0 have elliptic-type streamlines, therefore
called elliptic; solutions with vanishing ψ at two or more points have hyperbolic
streamlines. Parabolic solutions don’t exist in our range α ≤ −1. Elliptic ones
correspond to p > 0, B > 0, while hyperbolic ones correspond to p < 0 and arbitrary
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B. Hyperbolic solutions always hit zero at the same slope up to a sign, namely,
ψ′ = ±

√
−2p. Pieces of ψ over sign-definite intervals can be separated, flipped,

and glued together to form new solutions as long as they correspond to the same
pressure p. Thus, hyperbolic pieces of ψ must alternate signs in order to produce
C1-solutions. So, classification in the hyperbolic case reduces to finding time-span
function T = T (p,B) that measures the length of intervals of sign-definiteness of ψ.
Rescaling ψ by a constant allows us to reduce the question to a fixed p = −1, 0, 1
or B = −1, 0, 1.

In the elliptic case we have the following description. Since p ≥ 0, then B > 0.
Rescale B to B = 1. Then for p = 0 all solutions are parallel shear flows. For

p = pmax = 1
2(1−α)

(
α

(α−1)3

)−α

the solution is pure rotation, ψ = const. For

0 < p < pmax in the range − 7
2 ≤ α < −1 there are no elliptic solutions. In the

range α < − 7
2 there are exactly #{(2,

√
2(1− α))∩N} nontrivial elliptic solutions.

For α = −1, the exceptional case, all solutions for 0 < p < pmax are 2π-periodic
and given explicitly by ψ = γ1 + γ2 cos(2θ), p = 2(γ2

1 − γ2
2), and Ψ = (γ1 + γ2)x

2 +
(γ1 − γ2)y

2. Thus all streamlines are perfect ellipses in this case.
In the hyperbolic case, we rescale p = −1 so that all pieces can be stitched to form

a C1-solution. Then for B > 0 we have π
1−α < T < π and T changes monotonely;

B = ∞ corresponds to already accounted for parallel shear flow with T = π; for
B = 0, we have T = π

1−α ; and for B < 0, we have 0 < T < π
λ . Clearly, there are

infinitely many possibilities for T ’s to add up to a full 2π-period. Conversely, all
hyperbolic solutions are obtained this way.

The case B = 0 is exceptional because in this case the vorticity

ω = r−1−α((1− α)2ψ + ψ′′)

vanishes. The flow in the corresponding sector is irrotational. We will see that
irrotational solutions are indeed unique in the class of solutions with vanishing
Bernoulli function in the range α ≤ 2.

2.3. 2 1
2D homogeneous solutions. The classical way to construct a 3D solution

out of a 2D solution U = 〈u1, u2, 0〉 is to attach a third component Z which is

transported along U . To satisfy homogeneity we set Z = z(θ)
rα . The transport

requires that U · ∇Z = 0. In terms of the stream-function this condition takes the
form

αψ′z + (1− α)z′ψ = 0,

and hence

(19) |ψ|α|z|1−α = const.

The constructed solutions have the same constant spherical pressure as the under-
lying 2D solution. The other spherical quantities are superpositions of the previous
two examples. In particular,

(20) H =
2p+ (1− α)2ψ2 + (ψ′)2 +A|z| 2α

α−1

sin2α φ
,

where A > 0 is a constant.
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3. Irrotational solutions

Let us first discuss the structure of vorticity. Let Ω = ∇ × V be the classical
vorticity in R3\{0}. Denote u = (1 − α)v⊥ − ∇⊥f . Here we use ⊥ to denote
rotation by 90 degrees counterclockwise as observed from the tip of the outward
normal vector. Formally, v⊥ = (�v�)� (see the Appendix). We have the following
expression for Ω:

(21) Ω =
1

|x|α+1
(u+ ω �n).

Since Ω is divergence-free, we obtain the relationship

(22) (1− α)ω + div u = 0.

In terms of Ω, the Euler system takes the form

(23) Ω× V = −1

2
∇(|x|−2αH).

Reading off the normal and tangential parts of this identity we obtain the system

u× v = αH�n,(24a)

fu− ωv = −1

2
∇⊥H.(24b)

Here, equation (24b) is clearly equivalent to (8), while equation (24a) is in fact (3b)
in disguise. It can be obtained from (3b) by using the identities v⊥ × v = −|v|2�n,
and ∇⊥f × v = −v∇f�n. At least when α 
= 0 equation (24a) reveals the obvious
geometric interpretation of the Bernoulli function. It also implies that H should
vanish at some point, unless α = 0.

Proposition 3.1. Suppose v, f, p ∈ C1(S2), and Ω = 0. Then α ∈ Z\{1}, and the
solution is given by

(25) (1− α)v = ∇f, p = −1

2
f2 − 1

2(1− α)2
|∇f |2,

where f is a constant multiple of one of the spherical harmonics Y m
l , 1 − α = l,

−l ≤ m ≤ l. Moreover, in this case H = 0.

Proof. Vanishing of Ω immediately implies u = 0, which implies (25). By taking
the divergence of (25) and combining with (3a) we obtain the classical eigenvalue
problem for the Laplace-Beltrami operator

(26) Δf = −(2− α)(1− α)f = −(l + 1)lf.

The description of f follows automatically. The pressure is recovered directly from
(3b). �

Note that when α = 2 the only irrotational flow is the radial one (12).
Let us take the curl of (23) in R3\{0}. We obtain the classical vorticity equation

(27) [Ω, V ] = 0.

On the sphere it takes the form

u∇v − v∇u = (1 + α)ωv − (2 + α)fu,(28a)

v∇ω − u∇f = fω.(28b)
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Here (28a) represents the tangential, and (28b) represents the normal components
of (27). The latter is not independent; it can also be obtained by taking the
divergence of (28a).

Proposition 3.2. For α ≤ 2, α 
= 1, irrotational solutions are unique in the class
of all C2-smooth solutions with H = 0. For α = 0 irrotational solutions are unique
in the class of all C2-smooth solutions with H = const.

Proof. The case 1 < α ≤ 2 is actually straightforward. We have from (3b),

(29) v∇f = (1− α)|v|2.

Let us integrate over S2 and integrate by parts on the left. Using (3a) we obtain

(30) (2− α)

∫
f2dσ = (1− α)

∫
|v|2dσ.

This implies f, v = 0 unless α = 2, in which case we obtain the radial irrotational
solution v = 0, f = const.

Let us turn to the case α < 1 (α = 1 having been excluded). From (24b) we
obtain fu = ωv for any constant H. Also, (29) holds for zero H or constant H
with α = 0. Using (28b) in addition, we have for all n ∈ N the identity

div(fωnv) = (n+ α− 2)f2ωn + (1− α)(n+ 1)|v|2ωn.

When α < 1 we can choose a large even n for which the right hand side is pointwise
nonnegative. Integrating over the sphere we see that it must vanish pointwise. This
implies that if ω 
= 0, then f = v = 0 at the same point. In either case, ωv = fu = 0
throughout. Thus, on the set {f 
= 0}, we have u = 0, i.e., ∇f = (1− α)v. Taking
the divergence we obtain the Laplace equation (26). By continuity, (26) holds on
the closure of the set {f 
= 0}. But on the complement of the closure, (26) holds
trivially as both sides vanish. So, unless f vanishes identically, in which case we
have v = 0 from (29), f satisfies (26) throughout. Hence f = Y m

l , and we know
that harmonics do not vanish on a dense set. This in turn implies u = 0 everywhere,
and hence, Ω = 0. �

4. Rotational solutions

The opposite extreme to radial flow, and in a sense to irrotational flows alto-
gether, are tangential flows, i.e., ones with the orbits of V living on concentric
spheres around the origin. This is only possible when f = 0 throughout, and hence
div v = 0 (so, as a form v is co-exact as opposed to irrotational exact forms). One
obvious example is given from the class of 2D flows as discussed above. Namely, in
a fixed Cartesian system, we have

(31) V =
A

rα+1
〈−y, x, 0〉 , P = − A2

2αr2α
, r =

√
x2 + y2.

Note that it gains C1-smoothness only for values α ≤ −1. We now show that these
are the only examples of C1 tangential solutions.

Proposition 4.1. Suppose f = 0 and v, p ∈ C1(S2). Then up to a rotation the
solution (V, P ) to the Euler system (1) is given by (31), and α ≤ −1. There are no
C1-solutions with f = 0 for α > −1.
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Proof. In the case α = 0 the statement is trivial from (3b). We assume that α 
= 0.
According to (6), H remains constant along the orbits of v. Furthermore, from
(3b),

(32) H =
α− 1

α
|v|2 = 2(1− α)p.

Hence, |v|2 and p are transported as well. Let x0 be a point where |v| attains its
maximum, and let x(t) be the v-orbit through x0. Since |v| is transported, it will
preserve its extreme status, and hence ∇|v|2 = ∇p = 0 on the orbit. Returning to
(3c) we see that x(t) is a complete geodesic. Let us denote it E.

From the momentum equations (3c) and (32) we obtain

v∇v = − 1

2(1− α)
∇H.

Taking the ⊥ and using (24b) we obtain

v∇(v⊥) = − 1

(1− α)
ωv.

Consequently, v∇u = −ωv. Plugging this into (28a) we obtain u∇v = αωv. And
finally, taking ⊥ again, u∇u = αωu. Reparametrizing the field u along its own tra-

jectories by exp{−α
∫ t

0
ω(s)ds}u we see that the trajectories are geodesics provided

initial u is not zero. On the equator E all vectors of u will point either due north or
due south. This in turn implies that at least in a neighborhood Σ of the equator E
where u 
= 0 the field u points along the meridians. Let us fix spherical coordinates
so that E = {φ = π/2}. Then the field v has zero ∂φ-component, and the orbits of
v are latitudes. Moreover, since |v| is preserved along v-orbits, v is independent of
θ. According to our conclusions, we have f = a = 0 and b, p ∈ C1 depend only on
φ. In this case, the system (5) reduces to

b2 + 2αp = 0,

b2 cotφ = pφ.
(33)

For α = 0 there are only trivial zero solutions. Otherwise, the solutions are given
by

(34) b =
A

sinα φ
, p = − A2

2α sin2α φ
, A ∈ R.

In Cartesian coordinates this is nothing other than (31). It also shows that Σ covers
the entire sphere except poles, and the proposition is proved. �

Another characteristic feature of rotational flows is that |v|2 + 2αp = 0. It can
be shown to be their exclusive property.

Corollary 4.2. If |v|2 + 2αp = 0, then the flow is rotational.

Proof. Indeed, from (3b) we have the Riccati equation f ′ = αf2, where f ′ is the
derivative along the orbits of v. So, unless α = 0, f = 0 identically, which implies
the conclusion via Proposition 4.1. If α = 0, then v = 0 by assumption, and hence
f = 0 by the divergence equation (3a). �

Let us point out other corollaries of Proposition 4.1.

Corollary 4.3. If |v|2 + 2p = const, then α = 2, f = const, v = 0.
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Proof. From (7) we immediately obtain (1−α)fv+ωv⊥ = 0. We can assume that
α 
= 1, in which case the above shows that

v(x) 
= 0 =⇒ f(x) = ω(x) = 0.

Unless α = 2, by continuity and (3a) this implies that f = 0 throughout. By
Proposition 4.1 this describes the solution as rotational, which is a contradiction,
since for such solutions 2p + |v|2 
= const unless v = p = 0. If α = 2, then
by continuity ω = 0 throughout, and in addition v is divergence-free. So, v is
harmonic as a form, hence v = 0. Then p is a constant, and from (3b) we conclude
that f = const, which identifies the solution as described. �

Corollary 4.4. Suppose p ≥ 0 and α > 0. Then the solution in trivial, v = f =
p = 0.

Proof. From (3b) we have the Riccati inequality f ′ ≥ αf2. Unless the initial
condition is 0 the solution will blow up either forward or backward along the orbit.
This immediately implies f = 0 throughout. Proposition 4.1 finishes the proof. �

In the range 0 < α < 1 we can establish a much stronger statement exploiting
the dynamical nature of the system (3b), (6). Let us rewrite it as a system over
the trajectories of v:

ft = αH + (1− α)|v|2,(35)

Ht = 2αfH.(36)

Lemma 4.5. In the range 0 < α < 1, we have H ≤ 0, and hence p ≤ 0, throughout.

Proof. Let us fix x0 ∈ S2, and assume that H0 = H(x0) 
= 0. From (36) we readily
obtain

H(t) = H0 exp{2α
∫ t

0

f(s)ds},

H(−t) = H0 exp{−2α

∫ t

0

f(−s)ds}.

Suppose 0 < α < 1. Since H is bounded, this implies that∫ t

0

f(s)ds < M,

∫ t

0

f(−s)ds > −M

for some M and all t > 0. So,

lim sup
t→∞

f(t) ≤ 0, lim inf
t→−∞

f(t) ≥ 0.

This implies that at some point of time t∗, ft(t
∗) ≤ 0. Hence, from (35), H(t∗) ≤ 0.

Since the sign ofH remains constant along the trajectory, we obtainH(x0) ≤ 0. �

We note that sign-definiteness of the Bernoulli function H has been instrumen-
tal in establishing Liouville theorems for the axisymmetric solutions to the Navier-
Stokes and Euler equations in [8] and ruling out higher than 4-dimensional ho-
mogeneous Landau-type solutions for the Navier-Stokes system, [15]. In our case
the geometric implication of Lemma 4.5 and (24a) states that the form v ∧ u is
co-oriented with the canonical volume form at any given point on S2.
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5. Axisymmetric solutions

In this section we study axisymmetric solutions with or without swirl. We refer to
(4) for the notation used in this section. We assume that α 
= 1 as this case has been
ruled out by Proposition 2.1 as having no smooth solutions. In order for a solution
to remain smooth at the pole we necessarily have a(0) = a(π) = b(0) = b(π) = 0.
The system (5) in our case reduces to

(2− α)f + a′ + a cotφ = 0,(37a)

af ′ = a2 + b2 + αf2 + 2αp,(37b)

(1− α)fa+ aa′ − b2 cotφ = −p′,(37c)

(1− α)fb+ ab′ + ab cotφ = 0.(37d)

System (37) has two conserved quantities. First, when α 
= 2 we can express f
in terms of a from (37a), plug into (37d), divide by ab, provided ab 
= 0, and obtain
the law

(38) |b|2−α|a|α−1 sinφ = A.

The second conserved quantity can be obtained from (6). That equation in the
axisymmetric case takes the form

(39) aH ′ = 2αfH.

Let us suppose that aH 
= 0 on some interval φ ∈ I. Then the above implies
d
dφ ln |H| = 2α f

a . From (37a) we also obtain d
dφ ln |a sinφ| = (α − 2) fa . We thus

recover a closed differential which implies

(40) |H|2−α|a sinφ|2α = B.

We now obtain several results with the use of the found conservation laws.

Proposition 5.1. There are no C2 axisymmetric solutions in the range 0 < α < 2.

Proof. If aH 
= 0 on some interval I, then we immediately obtain from (40) that
I = (0, π), and since sinφ vanishes at 0 and π, H becomes unbounded, which is
a contradiction. We conclude that aH = 0 everywhere. Suppose H 
= 0 on some
interval I. Then a = 0, and from (39), f = 0. The entire system reduces to (33)
with explicit solutions (34). These imply that I = (0, π) since H stays bounded
away from zero. Hence H blows up, which is a contradiction. We have proved that
H = 0 on the entire sphere. By Proposition 3.2 such solutions are irrotational and
α is an integer, which excludes solutions in the given range. �

Proposition 5.2. The only axisymmetric solution available for α = 2 is the radial
one given by (12). The only solutions available in the case α = 0 are the irrotational
ones in (25).

Proof. For the first part, from (37a) we obtain

a(φ) = a(φ0)
sinφ0

sinφ
.

So, unless a = 0 everywhere, we obtain a singular solution. If however a = 0
everywhere, then (37d) implies fb = 0. Suppose f(φ0) 
= 0, and hence by continuity
b = 0 in a neighborhood of φ0. In that neighborhood p′ = 0 as implied by (37c),
so p = p0, a constant. Then f = const too. This implies that the condition f 
= 0
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spreads to the entire sphere. Hence the solution is radial. The opposite case f = 0
is excluded by Proposition 4.1.

If α = 0, then (40) implies that unless H = 0 throughout, H must be constant.
The description follows from Proposition 3.2. �

We now will give a complete description of solutions with constant spherical
pressure p. It is not immediate that solutions are geodesic because the global
pressure P is not constant for α 
= 0 unless p = 0. However, the pressure does
disappear from (37c), which makes the classification possible. The general case
remains open.

Proposition 5.3. Axisymmetric C1-solutions with p = const are geodesic and are
given by one of the solutions in the family (13) (in which case α ≤ −2 with swirl,
and α ≤ −1 without) or by the radial solution (12) in the case α = 2.

Proof. Since the case α = 2 has been handled by Proposition 5.2 we can assume
α 
= 2. Since we don’t know a priori if a or b vanishes somewhere, let us look into
those cases separately.

Let us denote

R(φ, φ0) =
sinφ

sinφ0
.

Let us assume that at some 0 < φ0 < π, b(φ0) = 0, no swirl. Then the orbit of v
through that point is a part of the corresponding meridian, and thus b = 0 on that
orbit. Solving (37) we obtain explicitly

(41) a(φ) = a(φ0)R
1−α(φ, φ0), f = −a(φ0) cotφR

1−α(φ, φ0), αp0 = 0.

This identifies the solution as a parallel shear flow (10)–(11) with constant z, which
is a part of the (13) family.

Claim 5.4. If a(φ0) = 0, then v(φ0) = 0.

Indeed, unless, φ0 = π/2, we have b(φ0) = 0 straight from (37c). If φ0 = π/2
and if b(φ0) 
= 0, then the equator is the orbit. Pick a φn = π/2 + 1

n . For large n
by continuity v(φn) 
= 0, so the orbit through φn is a nontrivial part of a geodesic.
Clearly one end of this geodesic orbit must land at a latitude closer to the equator
than the original φn (the geodesics cannot cross by uniqueness). At that point
π/2 < φ′

n < π/2 + 1
n , b(φ

′
n) = 0. Taking the limit we have b(π/2) = 0, which is a

contradiction. Thus, in either case a(φ0) = 0 implies v(φ0) = 0.
Now let us assume that v0 = v(φ0) 
= 0, and b0 
= 0. In this case the entire

system (37) can be solved explicitly with help of (38). The computation is routine.
We use (38) to express a in terms of b and write (37c) solely in terms of a. The
equation becomes an ODE on a. The final result is

a(φ) =
sign(a(φ0))

|a(φ0)|1−αR(φ, φ0)

[
|v(φ0)|2R2(φ, φ0)− b2(φ0)

] 2−α
2 ,

b(φ) =
b(φ0)

|a(φ0)|1−αR(φ, φ0)

[
|v(φ0)|2R2(φ, φ0)− b2(φ0)

] 1−α
2 ,

(42)

and plugging it into (37a) we find that

(43) f(φ) = − sign(a(φ0))|v(φ0)|2R(φ, φ0)

|a(φ0)|1−α
cotφ

[
|v(φ0)|2R2(φ, φ0)− b2(φ0)

]−α
2 .
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From (37b) we finally find that

(44) αp0 = 0.

The solution is valid as long as |v(φ0)|2R2(φ, φ0)−b2(φ0) > 0. This region in terms
of φ is symmetric with respect to φ = π

2 . First, this means that there is only one
band of geodesics in which v 
= 0. Second, resetting φ0 to π

2 , rescaling v(π/2) =
a0�eφ + b0�eθ to magnitude 1, and rewriting (42) – (43) in Cartesian coordinates we
arrive precisely at (13). Inside the cone the solution must vanish. This describes
the solution completely. �

Remark 5.5. Finally, we remark that with the help of the first laws (38) and (40)
the system (37) reduces to a system of two ODEs, for example, on (f, a). One can
rewrite it as a Hamiltonian nonautonomous system. It could be possible to exclude
solutions that are not already described in this section. For instance, solutions
without swirl satisfy

x′ = (α− 2)f,

f ′ = αB|x| 4
α−2x+ (1− α)

x

1− t2
,

(45)

where x = a sinφ, and t = − cosφ, −1 < t < 1. The Hamiltonian is given by

H(t, x, f) = (a − 2)f2 + (1 − α) x2

1−t2 + (2 − α)B|x| 2α
α−2 . It is a Lyapunov function

for the system on intervals (−1, 0] and [0, 1). Numerical computations show that
unless α is an integral and the solution is irrotational corresponding to the central
harmonic f = Y 0

1−α, generically x 
= 0 at t = ±1, which implies that a → ∞, hence
excluded as nonsmooth. We will perform more close analysis of this case in the
near future.

5.1. Relation to Landau solutions. Even though for α = 1 there are no smooth
solutions, for the Navier-Stokes equation the scaling of α = 1 is the only one
possible. Axisymmetric homogeneous solutions for Navier-Stokes were found by
Landau in his little known paper [9]; see also Batchelor’s text [2] with physical
insight into Landau solutions. They have been revisited recently in the work of
Sverak [15], who showed that any smooth homogeneous solutions for the Navier-
Stokes equation are Landau. The proof uses the maximum principle to find that v
is irrotational and the potential function ϕ, v = ∇ϕ, satisfies a constant curvature
equation for a conformally equivalent metric. The corresponding (anti)conformal
transformation of the sphere given by a conjugate to the simple scalar multiplication
via the stereographic projection yields the explicit solution of Landau. One might
consider the question of vanishing viscosity limit in which a possibility exists of
obtaining singular solutions to the Euler system from smooth solutions to Navier-
Stokes. Unfortunately this is not the case. Let us discuss it in more detail.

We consider axisymmetric solutions without swirl for α = 1. So, we let all
ingredients depend only on φ, and vθ = 0. Consider the Stokes stream-function
ψ(φ):

(46) f =
1

sinφ
ψ′, a = − 1

sinφ
ψ.

Then 2p+ (vφ)2 = const, and the system (3) integrates into

(47) ψ2 = Ax2 +Bx+ C,
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where x = cosφ, and A,B,C ∈ R. To ensure positivity of the right hand side of
(47), we have {

B2 ≤ 4AC,

C ≥ 0
or

{
|B| ≤ A+ C,

|B| ≥ 2A.

This gives a family of axisymmetric solutions, expectedly singular. More directly,
viewing ψ as a function of x, in order for (47) to give smooth functions we need
ψ(±1) = ψ′(±1) = 0, which yields A = B = C = 0. Let us recall that the Landau
solutions satisfy (see Bachelor [2], eq. (4.6.8))

(48) ψ2 − 2ν(1− x2)ψ′ − 4νxψ = Ax2 +Bx+ C,

where ν > 0 is viscosity and ψ′ is with respect to x. As argued in [2], unless
A = B = C = 0 the solutions are singular as well. So, the only way to restore
solutions to Euler via vanishing viscosity limit is through a sequence of singular
solutions. Otherwise, smooth Landau solutions converge to trivial 0 as ν → 0.

6. Relation to Onsager’s conjecture

We cannot rule out smooth solutions in many scalings, among which the case
α = 2

3 stands out. In this case the field V lends itself to the so-called Onsager-

critical homogenous Besov space Ḃ
1/3
3,∞. This field therefore provides a candidate

for an energy flux anomaly, whose existence is asserted in the classical Onsager’s
conjecture. The globally homogeneous field V , however, shows 1/3 critical smooth-
ness both at the small scales, namely at the origin, and at the large scales, namely
at infinity. Moreover it belongs to no Lp-space in R3. We will therefore modify the
field V in order to only create a solution with small scale singularity at the origin,
locally C∞ away from the origin, and with a compact support. This field, denoted
V̄ , along with the associated pressure P̄ will satisfy a forced Euler system with force
F ∈ C∞

loc(R
3) and F ∼ 1/|x|3 at infinity. The new field V̄ has globally finite energy;

we investigate a possibility for the energy flux anomaly. The anomaly occurs when
for such a solution we have a nonzero work of force (while being stationary),

(49) Π =

∫
R3

F · V̄ dx 
= 0.

We will show that in fact for our locally homogeneous solutions V̄ such an anomaly
does not occur.

Proposition 6.1. For any α ∈ R and smooth solution (2) the energy flux of the
truncated field V̄ is given by

(50) Π = −1

2

∫
S2

fHdσ.

Hence, it is independent of the way truncation is performed. Moreover, we have

(51)

∫
S2

fHndσ = 0

for all n ∈ N, and if α 
= 2 for n = 0 too. In particular, Π = 0.

We see that locally homogeneous Onsager-critical steady states survive the nat-
ural energy balance relation.
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The proof of Proposition 6.1 will be split into several steps starting from a
truncation procedure, which in turn applies to homogeneous solutions of any degree,
except α = 2.

6.1. Stream-field. In order to properly truncate the field V while preserving the
divergence-free condition we will make use of a stream-field, analogous to the clas-
sical stream-function in 2D. Despite the fact that V may be singular at the origin
we can perform such construction for any α 
= 2. The homogeneous stream-field Ψ
must satisfy

(52) V = curlΨ, Ψ =
1

|x|α−1
(ψ + h�n), divΨ = 0,

where ψ is the tangential and h is the vertical components. The system (52) is
equivalent to

v = (2− α)ψ⊥ −∇⊥h,(53a)

f = �dψ,(53b)

(3− α)h+ divψ = 0.(53c)

Let us focus on the first two equations first. Since (2 − α)f = − div v and α 
= 2
we see that

∫
fdσ = 0, which means that, as on any compact orientable manifold,

the form fdσ is exact. So, there is ψ so that fdσ = dψ. This satisfies (53b). Using
(3a) we have

δ(v − (2− α)ψ⊥) = −(2− α)f − (2− α) � d � �ψ = −(2− α)f + (2− α) � dψ = 0.

Hence, v−(2−α)ψ⊥ is co-exact as a form. This implies the existence of h to satisfy
(53a). Now that the first two equations in (53) are satisfied, let us notice that ψ
can be changed by an exact form, i.e., ψ+ dϕ will do as well, for any ϕ, and h can
be changed by a constant. Adjusting h by a constant to satisfy∫

((3− α)h+ divψ)dσ = 0,

we can guarantee that the Poisson equation

Δϕ = −(3− α)h− divψ

has a solution. With the new ψ = ψold+dϕ this implies (53c); i.e., Ψ is divergence-
free on R3\{0}.

6.2. Tapering the field. Let V, P be given by (2), α 
= 2, and let Ψ be a stream-
field of V . Let ϕ(r) be given by 1

rα−1 for r < 1, ϕ = 0 for r > 2, and ϕ be radial

and smooth in the ring 1 ≤ r ≤ 2. Let Ψ̄ = ϕ(ψ + h�er) and V̄ = curl Ψ̄. Finally,

let P̃ = ϕP . Clearly, the pair (V̄ , P̃ ) is supported within r ≤ 2 and coincides with

(V, P ) in the unit ball. This implies in particular that (V̄ , P̃ ) satisfies the same Euler
system in the unit ball. We now find a global pressure P̄ which complements the
pair (V̄ , P̄ ) to a solution on the whole space but with additional smooth divergence-
free force F :

V̄ · ∇V̄ +∇P̄ = F,

div V̄ = 0.
(54)
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We will look for P̄ in the form P̄ = P̃ + P0, where P0 is a corrector pressure to be
found. Taking the divergence of (54) we read off the following Poisson equation for
P0:

(55) ΔP0 = Q =

⎧⎪⎨
⎪⎩

0, r < 1,

−ΔP̃ − div div V̄ ⊗ V̄ , 1 ≤ r ≤ 2,

0, r > 2.

Thus, a solution is given by the classical convolution with the Newton potential,
while the gradient satisfies

(56) ∇P0(x) = c

∫
R3

x− y

|x− y|3Q(y)dy.

Note that P0 is locally a C∞ function, as Q is. Moreover, Q is mean-zero,

(57)

∫
Q(y)dy =

∫
1≤|y|≤2

div(−∇P̃ − V̄ · ∇V̄ )dy =

∫
S2

(∇P̃ + V̄ · ∇V̄ ) · νdσ = 0,

the latter being trivial in view of (P̃ , V̄ ) satisfying the Euler equation pointwise on
the sphere. Therefore, for large x we have

∇P0(x) = c

∫
R3

(
x− y

|x− y|3 − x

|x|3

)
Q(y)dy ∼ 1

|x|3 .

Similarly, ∇kP0(x) ∼ 1
|x|2+k for all k ∈ N. We thus see that the pair (V̄ , P̄ ) satisfies

(54) with F being

(58) F =

⎧⎪⎨
⎪⎩

∇P0, r < 1,

V̄ · ∇V̄ +∇P̄ , 1 ≤ r ≤ 2,

∇P0, r > 2.

So, F ∈ C∞
loc(R

3) and in addition

(59) ∇kF (x) ∼ 1

|x|3+k
for all k = 0, 1, . . . , as x → ∞.

This lands the force in the natural Sobolev spaces W k,p for all p > 1.

6.3. Absence of flux anomaly. Let α = 2
3 . We have a solution to the Euler

system (54) with a smooth decaying force and point singularity at the origin and

V̄ ∈ B
1/3
3,∞(R3) with compact support. Let us find a formula for the flux (49). From

the formula for the force (58) via integration by parts we obtain

(60)

∫
F · V̄ dx =

∫
|x|<1

∇P0 · V dx+

∫
1≤|x|≤2

(
1

2
V̄ · ∇|V̄ |2 +∇(P0 + P̃ ) · V̄ )dx

=

∫
|x|=1

P0V · ν −
∫
|x|=1

(P0 + P )V · ν −
∫
|x|=1

1

2
|V |2V · ν = −1

2

∫
S2

fHdσ.

Thus,

(61) Π = −1

2

∫
S2

fHdσ.

Let us now prove the main proposition of this section. Incidentally, the case of
interest α = 2

3 , n = 1 appears to be critical in the proof. Clearly, if α = 2, the
radial solution is a counterexample for (51), n = 0.
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Proof of Proposition 6.1. Multiplying (36) with Hn−1, n ∈ N, and integrating over
the sphere we obtain

∫
fHndσ = 0, for all n ∈ N provided α is not of the form 2

1+2n0
,

for some n0 ∈ N. In this case the result is proved. If, however, α = 2
1+2n0

, for some
n0 ∈ N, then the identity still needs to be proved for n = n0. We argue as follows.
We have

∫
fHn0Hkdσ = 0, for all k = 1, 2, . . . . Consequently,

∫
fHn0G(H)dσ = 0,

for all real analytic functions G with G(0) = 0. Letting G(x) = 1 − e−x2/ε and
letting ε → 0 we obtain

∫
H 	=0

fHn0dσ = 0. However, on the set {H = 0} the

integral vanishes trivially.
When α 
= 2 we also have

∫
fdσ = 0 directly from (3a). The statement is

proved. �

Remark 6.2. Multiplying (8) with u we obtain

(62) u∇H = 2αωH.

Similarly to the argument above, we also have

(63)

∫
ωHndσ = 0,

for all n ∈ N, and since ωdσ = dv we have (63) for n = 0 by Stokes’ Theorem.

7. Appendix: Glossary of terms

All facts from differential geometry used in the text can be found, for instance, in
[13]. System (3) can be easily derived from (1) by applying the following formulas
(see also [15]). If u, v ∈ TS2 and f ∈ C1(S2) are 0-homogeneous on R

3\{0}, then

∇R3(f/|x|α) = 1

|x|α+1
(∇S2f − αf)�n,

u · ∇R3v =
1

r
(u∇S2v − (u · v)�n),

v · ∇R3(f�n) =
1

r
(vf + (v∇S2f)�n).

Recall the Riemannian metric tensor g = sin2 φ dθ2+ dφ2. Let us write v = vφ∂φ+
vθ∂θ in local spherical coordinates. The transformation formulas into the unit
coordinate frame v = a�eφ + b�eθ are

(64) a = vφ, b = sinφ vθ.

The dual form to v is given by v� = (sinφ)2vθdθ + vφdφ = b sinφ dθ + a dφ. The
2D “vorticity” discussed in the text is given by the scalar function ω = �dv�, where
� is the Hodge-star operation. Thus, dv� = ωdVol, where dVol = sinφ dφ ∧ dθ. So,
ω = bφ + b cotφ − aθ(sinφ)

−1. We adopt the 1D adjoint to d, δ = �d�, so that

δv� = div v. Finally, for a scalar function f on S2 we use negative definite Laplacian
Δf = δdf .
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