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TAME PRO-2 GALOIS GROUPS
AND THE BASIC Z,-EXTENSION

YASUSHI MIZUSAWA

ABSTRACT. For a number field, we consider the Galois group of the maximal
tamely ramified pro-2-extension with restricted ramification. Providing a gen-
eral criterion for the metacyclicity of such Galois groups in terms of 2-ranks
and 4-ranks of ray class groups, we classify all finite sets of odd prime num-
bers such that the maximal pro-2-extension unramified outside the set has
prometacyclic Galois group over the Zs-extension of the rationals. The list of
such sets yields new affirmative examples of Greenberg’s conjecture.

1. INTRODUCTION

Let p be a prime number. For an algebraic extension k of the rational number
field Q and a finite set S of primes of (a subfield of) k, we consider the Galois group
Gs(k) = Gal(kg/k) of the maximal pro-p-extension kg of k unramified outside
(primes dividing an element of) S. When the degree [k : Q] is finite, the pro-p
group Gg(k) is finitely presented by generators and relations. While arithmetical
symbols describe the relations approximately (cf. e.g. [I4]), it is in general difficult
to know the structure explicitly. If ks contains a Z,-extension k., of k, where Z,
denotes (the additive group of) the ring of p-adic integers, then Gs(k) and its closed
subgroup Gg (ko) are relatively well studied also in Iwasawa theory (cf. e.g. [18]).

On the other hand, we focus on the case where S contains no primes lying over
p. Then Gg(k) is a ‘fab’ pro-p group with derived series corresponding to the ray
p-class field tower of k. Such Galois groups are also studied in nonabelian Iwasawa
theory [22] as the closed subgroup Gg(keo) ~ @Gg(kn) of the finitely presented
pro-p group Gal((kso)s/k) for the cyclotomic Z,-extension ko = kQqpy (cf. also
[], [26], etc.), where the projective limit is taken on the restriction mappings and
the subfields & C k, C ko. While there are several explicit examples of finitely
presented Gg(koo) ([27], etc.), it is not known whether Gg(ks) is always finitely
presented or not. Moreover, one of the difficulties is Greenberg’s conjecture [§]
which states the finiteness of the Galois group G (K )" of the maximal unramified
abelian pro-p-extension over the cyclotomic Z,-extension K, of an arbitrary totally
real number field K. Then it is a supplemental strategy to consider Gy(Ko )" as
a subquotient of Gg(ks) for a p-extension Ko /koo unramified outside S. We
consider these subjects in the case where p = 2 and £k = Q. The main theorem
(Theorem [[T]) below gives a classification of all S with prometacyclic Gg(Qo) and
new examples of finite Gy(K )" as a subquotient of Gg(Qx)-
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A prometacyclic (resp. procyclic) pro-p group is a projective limit of metacyclic
(resp. cyclic) p-groups. A pro-p group is prometacyclic if and only if it has a
procyclic closed normal subgroup with procyclic quotient (cf. [5, Exercise 3.10]),
and hence a prometacyclic pro-p group is finitely presented.

In this paper, ¢ and ¢ denote prime numbers such that £ = —¢ = 1 (mod 4),
and oo as an element of S denotes the archimedean prime of Q. Also (—) denotes
the quadratic residue symbol, and (—) , denotes the biquadratic residue symbol

defined as follows: (%)4 =+l =T (mod ¢) for z € Zy such that (%) = 1, and

(%), = (=1)“% for an integer a =1 (mod 8).

Theorem 1.1. Let S be a finite set of primes of Q not containing 2, and let Qo
be the Zo-extension of Q. The Galois group Gs(Qs) = Gal((Qw)s/Q) of the
mazimal pro-2-extension (Quo)s of Qoo unramified outside S is prometacyclic if
and only if S satisfies one of the following:

(1) S C{oo} or S={q} and ¢ =3 (mod 4). Then Gs(Q) is trivial.

(2) S={}, £ =5 (mod8) or { =1 (mod 8) and (%)4(%)4 = —1. Then

Gs5(Qx) is procyclic.

(3) S={q,7}, ¢=3 (mod 4) and (%) = —1. Then Gs(Qx) is procyclic.

(4) S ={r,o0} and (2) = —1. Then Gs(Qx) is procyclic.

(5) S ={€}, £ =9 (mod 16), (%), = —1 and (%)4 = (=1)'*2" for the

class number hy of Q(v/2 +v/2,V1). Then Gs(Qs) is not procyclic.

(6) S ={ri,ra} and one of the following is satisfied:

- r; =5 (mod 8), 75 =5 (mod 8), (:—;) = (T—l) (T—
(mod 8), ro =5 (mod 8), (T—l
(mod 8), 72 =5 (mod 8), (%
(mod 8), ro =3 (mod 4), (
T (mod 16), ro =15 (mod 16).
Then G35(Qu) is not procyclic.
(M) S ={q1,92,7}, ¢1 =3 (mod 8) and one of the following is satisfied:
- g2 =7 (mod 8), r =5 (mod 8), (&) =-1.
- g2 =3 (mod 8), r =5 (mod 8), (qlqz) =—1.
- g2 =3 (mod 8), r =7 (mod 8), (L%) = —1.
Then Gs(Qoo) is not procyclic.

(8) S={g,0} and ¢ =7 (mod 16). Then Gs(Qu) is not procyclic.
Moreover, if co € S and Gs(Qso) is prometacyclic, and if K/Q is a finite extension
contained in (Qu)s, then the cyclotomic Zs-extension Ko, of K has no infinite
unramified abelian pro-2-extension (i.e., Gy(Koo)? is finite).

Remark 1.2. If ¢ =9 (mod 16) and (%)4 = —1, then hy is even (cf. e.g. [20]). More-
over, one can see that (%) = 1 from the decomposition of £ in Q(+v/2, V1 ++/2).

Since (1+v2)(1—-+v/2) = —1 and (5}), = 1, the symbol (1?/5)4 does not depend
on the choice of an embedding Z[v/2] < Zj.

In the proof of Theorem [T} we see that Gs(Q) is infinite procyclic if and
only if S satisfies the condition Bl and ¢ = r (mod 8). By [9, Theorem 1.1], one
can also see that (the maximal abelian pro-2 quotient of) Gg(Qx) is infinite if S
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satisfies the condition (@) and 7, # 7 (mod 8) or the condition () and ¢ = 3
(mod 8). The finiteness of Gy(K )P in Theorem [LT] for abelian K/Q is already
known essentially (cf. [20], [23], [28], etc.) and is used in the proof of Theorem 1]
Theorem [[1] yields new examples of finite Gy(Koo)*® when K/Q is nonabelian.
Similar statements for p # 2 (and for a special case of p = 2) have been obtained in
[10] and [19], while the influences of G(K )2 on the prometacyclicity of Gs(Qx)
are different according to the parity of p (cf. assumptions of [19, Theorems 1 and
2]). As a clarification of this difference and as a key tool for the proof of Theorem
[Tl we provide a general criterion (Theorem [BIlin Section 3) for the metacyclicity
of tame pro-2 Galois groups Gg(k) in terms of 2-ranks and 4-ranks of ray class
groups. After recalling some basic facts on pro-p groups and ray class groups and
cyclotomic Zg-extensions (in Sections 2 and 4), we prove the first half of Theorem
[Tl dividing the statements according to (r mod 4),cg (from Sections 5 to 9). Also,
we see the structure of Gs(Qs) more explicitly in some special cases. The proof
of Theorem [[I] will be completed in the final section (Section 10).

Example 1.3. Since (25—9)4 = (%)4 = —1, the set S = {5, 29} satisfies the condi-
tion ([B). Then K = Qg is a nonabelian metacyclic 2-extension of Q (cf. Remark
below). Moreover, Gg(Qs) is a pro-2 group with two generators a, b and two
relations a'%, a=3b~1ab (cf. [I9, Example 2]). Put ¢ = 137 or £ = 409. Then £ =9
(mod 16) and (2), = —1. Since 317 = 2 (mod 137) and 97% = 2 (mod 409), we
have (15‘?)4 = (%)4 = —1 and (%0?)4 = (%)4 = 1. Moreover, hiz; = 0
(mod 4) and hggg = 2 (mod 4) by [24]. Hence S = {¢} satisfies the condition (&l).

2. PRELIMINARIES

2.1. Pro-p groups. We denote by |S| the cardinality of a set S and by Fpn the
finite field of cardinality p™. An abelian pro-p group A is often regarded as a Z,-
module. For an integer e > 1, we put A/p® = A/AP" and denote by rpe(A) =
dimp, (Apﬁfl/Ape) the p®-rank. In particular, ro(A) and r4(A) denote the 2-rank
and the 4-rank of an abelian pro-2 group A respectively.

Let G be a pro-p group (not necessarily finitely generated) and H a closed
subgroup of G. Then [G, H] (resp. HP) denotes the minimal closed subgroup of G
containing all of [g,h] = g 'h~lgh (resp. h?) (g € G,h € H). If H is a normal
subgroup of G, the left action of G on H is defined as 9h = ghg™!. Let {G;}; be
the lower central series of G, which is defined as G; = G and G; = [G, G;_1] for
i > 2 recursively. In particular, Ga = [G, G] is the closed commutator subgroup of
G, and G® = G/Gy is the maximal abelian pro-p quotient of G. Burnside’s basis
theorem yields that G is finitely generated if and only if r,(G?P) is finite. Then
r,(G?") is the (minimal) number of generators of G. In particular, G is nontrivial
procyeclic (resp. trivial) if and only if 1,(G#) = 1 (resp. 0). If G is a prometacyclic
pro-p group, then its pro-p quotients and H are also prometacyclic, in particular
r,(H*) < 2. A finite p-group G is metacyclic if and only if G/(G2)PG3 is metacyclic
(cf. [3, Theorem 2.3]).

A group-theoretical part of the proof of Theorem [[I]is based on the following
proposition, which does not depend on the parity of p.

Proposition 2.1. Let G be a pro-p group such that 1,(G*) = 2. If G has a
mazimal subgroup H such that v,(H/G2) = 1,(H®"), then G is a prometacyclic

pro-p group.
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Proof. First, we prove the statement for a finite p-group G with 1,(G**) = 2. If
G is abelian, G is metacyclic. Also, if 1,(H*) = 1, then G is metacyclic. Assume
that G is nonabelian and r,(H/G2) = r,(H*") = 2. There are generators a, b
of G such that (aGs) N (bG3) = {1}. Then H is either {(a,b”)G2, (a?,b)G2 or
(ab®,bP) Gy = (ab’, aP)G with 1 < i < p. Replacing

(bya) if H={aP,b)Ga,
(a,b) by { (ab',a) if H = (ab’,b?)G4 and |(aG3) (bG2)|,
(ab®,b) if H = (ab’,bP)Go and |(aGa) (bG2)|,

we may assume that H = (a,b?)G2 and (aG2) N (bG3) = {1}. (For example, if
(ab'G2)* € (aGa), we have b*®Gq € (aGa) N (bGa) = {1}, i.e., z =0 (mod |(bG2)]).
Then (ab'Gq)* = 1 if [{(aGg)| < [(bG2)|.) Note that Go/Gs = {[a,b]G3) 2
1. Since [a,b?] = [a,b]P (mod G3), there is a surjective homomorphism H2" —
H/(G2)PG3 = (a(G2)PG3,bP(G2)PG3, [a,b](G2)PG3). Since r,(H*P) = 2, we have
a®(bP)¥[a,b]* = 1 (mod (G2)PG3) for some (x,y,z) £ (0,0,0) (mod p). In par-
ticular, a®(b?)¥ = 1 (mod G3). Then z = p™z’ and y = p" 1y’ with some
«', y € Z, where p™ = [(aG2)| and p" = |[(bG2)|. Since r,(H/G2) = 2, we
have n > 2, and hence z = y = 0 (mod p). Therefore z € Z);. Note that

a?” = [a,b]"* (mod G3) and v = [a,b]” (mod G3) with some u,v € Z. Then
[a,b] 7% = a®b?Y = [a,b]"" T (mod (G2)PG3). This implies that (u,v) # (0,0)
(mod p). Put N = (a)G3 or N = (b)G2 according to u € Z, or v € Z,;. Then both
N/(G2)PG3 and G/N are cyclic, and hence G/(G2)?G3 is metacyclic. Therefore G
is metacyclic by [3, Theorem 2.3].

Suppose that G is not necessarily finite. Let {U;}; be the lower p-central series
of G, which is defined as Uy = G and U; = U |[G,U;_4] for i > 2 recursively.
We put G = G/U; and H = H/U; for arbitrary i > 2. Since {U;}; forms a

fundamental system of open neighbourhoods of 1, rp(aab) = 2 and 1,(H/G2) =

| <|
| > |

rp(ﬁab) if 4 is sufficiently large. Then G is metacyclic. Therefore G ~ @G JU; is
prometacyclic. |

For a nonabelian pro-2 group G, it is well known that G* ~ [2,2] if and only
if G is either (pro)dihedral, quaternion, generalized quaternion or semidihedral (cf.
e.g. [13]). Such pro-2 groups G are prometacyclic.

Remark 2.2. Shafarevich’s formula (cf. e.g. [I4], (11.12)]) yields that the tame pro-p
Galois group G = Gg(Q) has deficiency zero; i.e., the cohomology with Z/pZ-
coefficients satisfies r,(H'(G)) = r,(H*(GQ)) (cf. 21} (10.7.15)]). Since any finite
noncyclic abelian p-group has nontrivial Schur multiplier, Gs(Q) (and Gs(Q))
cannot be abelian if p ¢ S and Gg(Q) is not cyclic. We often use this fact.

2.2. Ray class groups. Let k/Q be an algebraic extension and S a finite set of
integral divisors of (a subfield of) k which are prime to 2. Let Sy be the set of all
primes of k dividing [[ . a. We denote by kg (resp. k2, kZ°™) the maximal (resp.
maximal abelian, maximal elementary abelian) pro-2-extension of k unramified
outside Si, and put G = Gg(k) = Gal(ks/k). Suppose that [k : Q] is finite
and Si = {l1,lz,- -+, [, }. Let k¥’ be a subfield of k (possibly k = k') such that k/k’
is a 2-extension and Gal(k/k’) acts on Sy. Then Gal(k/k’) acts on G2" via the left
action of Gal(k2"/k’) on Gal(k2"/k). We denote by Ag(k) the Sylow 2-subgroup
of the ray class group of k modulo [, ;. Then Ag(k) ~ Gal(k%/k) ~ G*P
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and Ag(k)/2 ~ Gal(k§*™/k) ~ G/G*G2 as Gal(k/k')-modules via the Artin map.
Suppose that Sy contains no archimedean prime. The definition of the ray class
groups induces an exact sequence

E(k) 25 (0 /T )% ® Zo — As(k) — Ag(k) — 0

of Gal(k/k')-modules, where Oy, is the ring of integers in k, E(k) = O is the unit
group of k. For each 1 < i < m, we choose a primitive element ¢;, € Oy of the
finite field Oy /l;. Let 2° be the order of the cyclic 2-group (O /l;)* ® Z3. Then
/257 ~ (O /1;)* @ Zy : amod 2% + (gf mod [;) ® 1. Depending on the choice
of g, (1 <1i < n), the above sequence induces the exact sequence

E(k) 25 (201,22, ,2(7] = As(k) — Ap(k) = 0,
w
€ — (al;a2a"' 70/71)’

where the second term denotes an abelian group [2¢1,2%2, ..., 2¢n] = @ | (Z/2%Z),
and a; is the abbreviation of a; mod 2% satisfying € = g? mod [;. Let {¢;}1<j<a C
E(k) be a system (not necessarily minimum) such that {¢x s(¢;)}1<j<a generates
vi,s(E(k)) as a Zg-module. Then we put a column vector

SOk,S(El) @11 Qa1 '+ QAnpl
Vr,s(€2) a2 @ - Gp2

ks = : = . . | = (aghigi<dacizn.
sﬁk,S(Ed) aid Q24 -+ Qpd

For any A € GL4(Z3), the components of a vector Avy g also generate Im ¢, 5. By
finding suitable A such that Avy g has a simple form, one can calculate Coker ¢y, s.
For a set ¥ of ideals of k such that Xy = {l;;,l,, -, 0, } C Sk, we choose the
same gi, (1 < p<m). Then we have the exact sequence

B(k) 2% [27, 272 - 2] = Ag(k) — Ag(k) = 0

i
with a vector
vy = (@k,5(€)))1<i<d = (@i, 5)1<i<d, 1<p<m-

If Avk75 = (bij)1<j<d 1<i<n for A S GLd(ZQ), then Avhz = (biuj)lgjgd,lgugm-

=)@, L0

Hence one can also calculate Coker ¢y, s simultaneously.

2.3. Class number formulas. We denote by Ng/;, (a map induced from) the
norm mapping of a 2-extension K/k. For a cyclic 2-extension K/k with Galois
group Gal(K/k) = (o), we have a genus formula

(2.1) {[2A] € Ap(K) [2A7 = A} = K Iiﬁ%?/ig/g[\ff/%(lf)l’

which is well known as Chevalley’s ambiguous class number formula (cf. also [17]
Proposition 1], [31, Proof of Lemma 4], etc.), where t varies among all primes of k
and e(t) is the ramification index of v in K /k. In particular for a quadratic extension
K /k, we note that an ideal 2 of K satisfies 217 = 2 if and only if A = B(aOk) for
some ideal a of k and a product 9B of primes of K ramified in K/k.
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On the other hand, we suppose that K /k is a [2, 2]-extension with three quadratic
subextensions F, F’, F”'. Then we have Kuroda’s formula (cf. [16])

2d717v
 |E(k)/E(k)?]
where Q(K/k) = |E(K)/E(F)E(F")E(F")|, d is the number of archimedean primes

of k ramifying in K/k, and v = 1 or 0 according to whether K = k(y/¢, V) with
some €, € € E(k) or not. In particular, if k = Q and K is real, then

(2.3) | 4g(K)| = 471 Q(K/Q)| Ao (F)[| Ao (F")|| Ao (F")]

(2.2)  [A(K)] QK/k)| Ag(F)|| Ag(F")|| Ag (F")[| Ag (k)=

and Q(K/Q) € {1,2,4} (cf. [I5]). Let ¢, €', ¢” be the fundamental units of the real
quadratic fields F', F’, F"' respectively. Then Np/qg(¢) = 1if \/e € E(K). Moreover,

Nrjg(e) = Npijg(e') = 1if Vee’ € E(K), and Npjg(e) = N jg(e') = Npvjg(e”)
if Vee'e" € E(K).

3. CRITERIA

If As(k) ~[2,2], then Gg(k) is metacyclic. When Ag(k) # [2,2] and Ag(k) ~0
(and S contains no archimedean primes), we obtain the following criterion for the
metacyclicity of Gg(k).

Theorem 3.1. Let k be a finite extension of Q with odd class number. Assume
that a triple (K/k, S, %) is given, where S is a finite set of prime ideals of k none of
which lies over 2, ¥ is a subset of S such that As,(k) ~ 0, and K/k is a quadratic
extension unramified outside S and ramified at all L € S\ X. Then we have

(3.1) ra(As(k)) = 1 + ro(As (K)).

Moreover, if ra(Ag(k)) = 2 (i.e., r2(Ax(K)) = 1), then the following four state-
ments hold true:

(1) For any L€ S\ X, we have ro(As\(1y(k)) = 1; i.e., kglf?}}/k is a quadratic
extension. Then, moreover, Ag(kglf?;}) ~ 0.

(2) Assume that there is| € S\X such that kesl\e‘{‘}} is contained in a cyclic quartic
extension of k unramified outside S, i.e., ra(Ag(k)) = 2 or ra(As(k)) =
r2(Gal(k3"/K)) = 1. Then Gs(k) is metacyclic if and only if |As,(K)| = 2.

(3) If ra(As(k)) = 1, r2(Gal(k2/K)) = 2 and |As(K)| > 4, then Gg(k) is
metacyclic.

(4) Ifra(As(k)) =1, r2(Gal(k3*/K)) = 2, |As(K)| = 2 and the following three
conditions are satisfied, then Gg(k) is not metacyclic.

(a) Gg(k) is nonabelian.
(b) |Ox/Y £ 1 (mod |As(k)|) for any L€ S\ X.

(c) There exists lo € S\ X such that no L € S\ X is inert in k;glff}o}/k;

Proof. Since Ax (k) ~ 0, i.e., k¥’ = k, the existence of K/k implies that S # ¥. Let

norm lift

o be a generator of Gal(K/k) ~ Z/2Z. Since 1 + 0 : Ax(K) — Ax(k) = As(K)
is zero mapping, (Ax(K)/2)1t7 ~ 0; i.e., o acts on Ax(K)/2 trivially. Hence
Kgem C k2P, and the ramification index of any [ € S\ ¥ in Kg°m/k is 2. If
ry(Gal(Kgem /k)) > 1, K& contains a cyclic quartic extension of k. Then, since
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As (k) ~ 0, the cyclic quartic extension is totally ramified at some [ € S\ X; i.e.,
the ramification index of such I in K&™/k is at least 4. This is a contradiction.
Therefore Kge™ C kg°™ and hence 1 + r2(As(K)) < r2(As(k)). On the other
hand, since all [ € S\ ¥ ramify in K, k§°™/K is unramified outside . Therefore
ra(As(k)) — 1 = ra(Gal(kg*™/K)) < r3(As(K)), and hence we obtain the equality
@). In particular, we have K& = kgem,

In the following, we assume that ro(Ag(k)) = 2. Let K’ be the inertia field of
[ € S\ X in the [2,2]-extension kg™ /k. Since k C K C kg°™ and [ ramifies in
K/k, K' is a quadratic extension of k unramified outside S\ {[}. In particular, we
have r2(Ag\(13(k)) = 1. Moreover, since K’ ¢ k& = k, we have S\ {I} # %, i.e.,
|S\ £| > 2. On the other hand, since k§°™ /k is not unramified outside S\ {I}, we
have ro(Ag\fi3 (k) < r2(As(k)) = 2, ie., 12(Ag\{i3(k)) = 1. Hence K’ = k;glfl{’}}
Moreover, kg\ 11 /k is cyclic. By the assumption that As(k) ~ 0, kg\(1/k is totally
ramified at some I' € S\ (X U{[}). Since k C K’ C (K')¥ C kg\{1, we have
K' = (K", ie., Ag(K') ~ 0. Hence statement (I holds.

We show statement (). Let F'/k be a cyclic quartic extension unramified outside
S, which contains K’ = kglf?}} for some [ € S\ X. Let ¥ C S\ X be the set of
all primes in S\ ¥ which ramify in K’. Since Ax(k) ~ 0, we have X’ # (. Then
[¢ YUY and K/ = k998, Put a sequence S\X' =%qC % C--- C X, =S such
that X, \X;-1 = {;} (1 <i<mn). Then ¥’ = {l3,---,1,}. Since K/k and K'/k are
ramified at any [; € ¥’, all [; have the common inertia field K" = k‘gl\e?}} = k%l;’m
in the [2,2]-extension kg™ /k. Moreover, we have kg™ C (K')$e™. Since the
inertia group I, C G, (K')?" of the unique prime of K’ lying over I; is cyclic and
Gy, (K" /I, ~ As, ,(K'), we have ra(As, (K")) < 2 if ro(Ayx, _, (K')) = 1.

K — k%lem .................... (K/)%l?m
/
K//

/

k K’ F

Now we assume that [As(K)| = 2. Since kg™ /K’ is ramified at any prime ly-
ing over a prime in %o\ 3, (K’ )%{‘jm /kge™ is unramified outside ¥. Recall that
kgem = Kgem. The assumption |Ax(K)| = 2 implies that kg™ = Ky, i.e.,
As(kge™) ~ 0. Hence kg™ = (K')§™ and ry(Ax,(K’)) = 1. We can show
that ro(Ax,(K’)) = 1 if r2(As,_,(K’)) = 1 and i < n as follows. Suppose that
ra(As, , (K')) = 1 and ry(Ax,(K')) = 2 for i < n. Then (K')§™/k is a Ga-
lois extension of degree 8, and kg®™ = (K')$°™. Since (K')g™ # (K')gm,
(K')g™ /K" is totally ramified at a prime lying over [;. Then (K')$"/K" is a
cyclic quartic extension. However, kg°™ /K" is ramified at any prime lying over
[, € %o, and (K’)%lfm/kglem is unramified at any prime lying over [, ¢ ¥;. This
is a contradiction. Therefore ro(Ayx, (K’)) = 1 if ro(Ax,_,(K')) = 1 and i < n.
Since ro(Asx,(K’)) = 1, we have ra(Ax, ,(K’)) = 1 by induction, and hence
ra(Ag(K’)) < 2. Put G = Gg(k) and H = Gg(K'). Since FK/K' is a [2,2]-
extension and FK C k%, we have ro(H/G2) = 12(H?®) = 15(As(K’)) = 2. Then
G is metacyclic by Proposition 21l Thus we obtain the if-part of statement (2.
Conversely, we assume that |Ax(K)| > 4. Then there exists a unique cyclic
quartic extension L/K unramified outside ¥. Then kg™ = K™ C L, and L/k is
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a Galois extension of degree 8. Since k&°™ /K’ is ramified at the primes lying over
[, L/K' is not cyclic.

K——kJ™ —— L

k K’ F
Since K'/k is ramified at [; € ¥/, kg™ /K’ is unramified at any prime lying over ;.
Hence L/K' is a [2,2]-extension unramified outside S\ {l1}. Since F/k is totally
ramified at [;, F/K’ is a quadratic extension ramified at the prime lying over [;.
Therefore FL/K' is a [2,2, 2]-extension unramified outside S. Then Gg(k) is not
metacyclic. Thus we obtain statement (2I).

We show statement (B)). Assume that r4(As(k)) = 1, r2(Gal(k%*/K)) = 2 and
|As(K)| > 4. Take [ € S\ ¥ arbitrarily. Since Ax(k) ~ 0, the quadratic extension
kglf}:}}/k is r.amiﬁed z.lt some.[’ e S\ . Then lk'glem = lkgl\e‘{’}} kg}f?},} and keslf?/}/k
is a quadratic extension ramified at [. Since kgf‘{‘}} N kgf?}/} = k, we have kg.\{[} N

kgti{[,} = k. Note that both kgli{[} and kgti{[,} are cyclic extensions of k. Since
kgti{[}kgti{[,} C k2P, the assumption r4(Ag(k)) = 1 implies that either kgli{[}/k' or
kgti vy /k is a quadratic extension. Replacing [ and [’ if necessary, we may assume
that |A5\{[}(1€)| = 2, i.e., kS\{I} = kgti{[} = kglfl{?} Put r = I‘Q(As\{[}(K)) >
ro(As(K)) = 1. We can also show that r = 1 as follows. Suppose that r >

2. Note that kgem = Kgem C Kglf?}}. Then Kglff;} /k is a Galois extension

of degree 2”71, and hence Kglff{‘}} / kgl‘\ef{‘i} is a Galois extension of degree 2". Let

M = (kgem)2P N Kge™, be the maximal abelian extension of kglf‘{’}} contained

_ s\{g S\ _
in Kglff{“{‘} (cf. zlx dlagbram bejlow). Smce1 |Ga1(K§lf?E}/kTSl\e‘{‘}}.)\ =27 75 2, we hz.ive
\Gal(Kgf?[‘}/kgf?;})a | > 2,ie, M # k3. Then M/kgf‘{’}} is an abelian extension

of degree at least 4. On the other hand, since ra(Ax(K)) = 1 and |Ax(K)| > 4,
there exists a unique cyclic quartic extension L/K unramified outside ¥. Then
L/E is a Galois extension of degree 8, and hence L/ k‘g}f?}} is also an abelian quartic
extension. Since M/K is an elementary abelian 2-extension, we have LNM = kg°m.
Therefore LM/ k;glf?}} is an abelian extension of degree at least 8.

L — LM
kg}sﬁ} - kgjcm SR M i Kgl\c?[l}
k K

Let I be the subgroup of Gal(LM/ kgl\efﬁ}) generated by the inertia groups of the

prime 1deals (6) ying over L. dince 1s unramified outside 5
ime ideals £ of kT, lyi L. Since LM/kgem i ified outside S\ {I

the ramification indices of £ in LM/ k’g}‘\“{‘}} are at most 2. Since the number of £

is at most 2, we have |I| < 4. Then |Gal(LM/k§1‘\3f{‘§})/I| > 8/4 = 2, and hence
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the fixed field of I is a nontrivial abelian 2-extension of kg\ (1} = kg.lfr{’}} unramified
outside S\ {I}. This is a contradiction. Therefore ra(Ag\(1}(K)) = r = 1. Put
G = Gg(k) and H = Gg(K). Since the inertia group I; C H?" of the unique prime
of K lying over [ is cyclic and H*/I; ~ Ag\(;;(K), we have ro(H*?) < 2. The
assumption ro(H/G2) = 12(Gal(k%°/K)) = 2 yields that ro(H*") = 2. Then G is
metacyclic by Proposition 211 Thus we obtain statement (3]).

We show statement (). Put K’ = kglfﬁo}, and put G = Gg(k), H = Gg(K)
and H' = Gg(K'). Since G* ~ Ag(k) ~ [2,2™] with some m > 2, G has two
generators a, b such that a> = " = 1 (mod G3). Since H/G2 ~ Gal(k%/K)
and 12(Gal(k%’/K)) = 2, we have ro(Ag(K)) > 2 and H'/Gy ~ Z/2™Z. Re-
placing b by ab if necessary, we may assume that H = (b,G3). Then H =
(a,b%,Ga) = {a,b? [a,b],(G2)?G3), and H/(G2)>G3 is abelian (cf. the proof of
Proposition 21]). The condition [al) yields that [a,b] & (G2)?G3. Suppose that
ro(As(K)) = 2. Then, since there are surjective homomorphisms Ag(K) —
H/(G2)?G3 — H/Ga, we have ro(H/(G2)2G3) = 2. Since (a,b?"  Ga) /Gy ~ [2,2]
and G2 /(G2)2Gs = ([a, b](G2)2Gs) ~ Z/27, we have (a, 0> Gs)/(G2)?G3 ~ [2,4].
Hence a? ¢ (G2)2G3 or b2 ¢ (G2)?Gs. Note that Ax(K’) ~ Ap(K’) ~ 0 by state-
ment ([IJ). By the snake lemma for the commutative diagram

s,
E(K")® Zy — (Ok [ [ees,, £ ® Zn — Ag(K') —— 0

| Lo l

0—— Im@K/7E E— (OK//HQEEK/ Q)X ® ZQ —_— AZ(K/)

with exact rows, we obtain a surjective homomorphism (Ox'/[[ges, \5,., £)* ®
Zs ~Ker¥W — Ag(K'). The condition {d) yields that Ok /£ ~ Oy /! for any £ €
Sk \Xk and [ = £NK’ € S\X. Hence the condition (@) implies that the exponent
of Ag(K') ~ (H')? is at most 2. In particular, b*" € (H'),. Since H'/(G2)*G3 =
(b(G2)%G3, [a,b](G2)2G3) is also abelian, i.e., (H')y C (G2)?Gs, we have b>" €
(G2)%G3. Therefore a? ¢ (G2)?G3, and hence a? = [a,b] (mod (G2)%G3). Since

a 'v?a = b*[b?,a] = b*[b,a)* = b*  (mod (G2)*G3),

the fixed field kY of N = (b?,(G2)?G3) is a Galois extension of k. Note that
bszl € G2 D (G2)2G3. Since

[kN . k} _ |G/G2||G2/(G2)2G3| _ 2m+1 -2 —3
5 [N/(G2)2C] gm—1

we have Gal(kY /K’) ~ H'/N = (bN,[a,b]N) ~ [2,2] and Gal(k) /K) ~ H/N =
(aN) ~ Z/AZ. Put H" = (ab,Gy), and let K" = kX" be the fixed field of H".
Since

(ab)? = abab = abab = a*[a,b] = [a,b]* =1 (mod N),

we have Gal(kY /K") ~ H" /N =~ (abN, [a,b|N) ~ [2,2]. (In fact, k% /k is a dihedral
extension of degree 8.)
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k)g}’(G2)2G3> _ ké\l kgG2)2GB
K’ k%lcm kgb
/
K"
k K lo-c2)

For any I € S\ X, the inertia field of [ in the [2,2]-extension kg°™/k is either
K’ or K"; i.e., either k¥°™ /K’ or k¥°m /K" is ramified at any prime lying over
[. Since kY /K’ and kY /K" are [2,2]-extensions, kY /kg°™ is unramified outside
3. Since kglem = K%lem, kJSV /K is a cyclic quartic extension unramified outside X.
However, |Ax(K)| = 2 by the assumption of statement (). This is a contradiction.
Therefore we have ry(Ag(K)) > 3, and hence Gg(k) is not metacyclic. Thus the
proof of Theorem [3.1] is completed. |

We see various examples of Theorem [B.] in the proof of Theorem [l (from
Sections 5 to 8).

4. CYCLOTOMIC Zso-EXTENSIONS

We recall some basic facts on cyclotomic Zs-extensions. Put (on+2 = exp 2’2274;1 €

C and Q, = Q(cos 5277) C Q({an+2) for each n > 0. The Galois group I" =
Gal(Qoo/Q) of the basic Zy-extension Qoo = |J,>oQn = Qg2 is isomorphic to
the additive group of Zy (i.e., an infinite procyclic pro-2 group). For a finite ex-
tension k/Q, we put k, = kQ,. Then the field koo = k¥Qx = U, kn is the
cyclotomic Zs-extension of k with the Galois group Gal(ks /k) =~ Zo. In particular,
Q(¢o=) = U,;50 Q((an+2) is the cyclotomic Zs-extension of Q(v/—1). The following
proposition provides a description of the cases with trivial G'g(Qso).

Proposition 4.1. Let k/Q be a finite extension and S a finite set of primes of k
none of which lies over 2. If the prime of k lying over 2 is unique and G 5(k)*® ~ 0,
then Gs(koo) is trivial for the cyclotomic Za-extension koo k.

Proof. Since Gg(k)* ~ 0, we have Ay(k) ~ 0, and hence ko, /k is totally ramified at
the unique prime p of k lying over 2. Suppose that Gg (ko) is nontrivial. Since koo /k
is totally ramified at p and (koo)3”/koo is a nontrivial pro-2-extension unramified
at the prime lying over p, G = Gal((kso)2’/k) is not procyclic. Hence the fixed
field L of G5 is a nontrivial pro-2-extension of k., unramified outside S. Since the
abelian pro-2-extension L/k is not totally ramified at p, the inertia field of p is a
nontrivial abelian 2-extension of k unramified outside S. Then Gg(k)2® 2 0. This
is a contradiction. Therefore Gg(koo) is trivial. Thus the proof of Proposition [4.1]
is completed. ([l

The following corollary for S = 0 is a theorem of Weber.

Corollary 4.2. Let S be a finite set of primes of Q not containing 2. Then Gs(Qu)
is trivial if and only if S C {oo} or S = {q} and ¢ =3 (mod 4). In particular, we
have Ay (Q,) ~ 0 for allm >0 if ¢ =3 (mod 4).
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Proof. By Proposition B1l Gs(Qs) is trivial if and only if Gg(Q)*” ~ 0. Hence
we obtain the claim. (Il

Depending on the choice of a topological generator v of Gal(ke/k) ~ Zs, a
module over the complete group ring Zs[[Gal(kso/k)]] is regarded as a module over
the ring A = Zy[[T]] of formal power series via the isomorphism Zs[[Gal(ks/k)]] ~
Ay~ 14T. Let S be a finite set of primes of k none of which lies over 2. For fixed
v € Gal((kso)s/k) such that ¥|g., = 7, the left action of I" on Gg (k) is defined by
79 =797 (9 € Gs(kso)). Recall that Gg(kso) =~ @Gs(kn). Then we obtain an
isomorphism G5(kso)®” ~ lim Ag(k,) as A-modules, where the projective limit is
taken on Ny, /. . Suppose that k. /k is totally ramified at any prime lying over 2.
For any n > m, since ky, N (km)s = km, the restriction mapping Gg(k,) = Gs(km)
is surjective. Hence Ny /i, @ As(kn) — As(kn) is also surjective. The following
theorem (Fukuda’s theorem [7] for p = 2) is frequently used in the following sections.
We give a proof for convenience.

Theorem 4.3 (Fukuda). Let ko, be the cyclotomic Za-extension of a finite ex-
tension k of Q and S a finite set of prime ideals of k none of which lies over 2.
Assume that koo [k is totally ramified at any prime lying over 2. Then the following
two statements hold true for m > 0:

(1) If |As(kms1)| = |As(km)|, then Ag(k,) ~ Ag(ky) for all n > m.
(2) Suppose that e > 1. If |Ag(km+1)/2%] = |As(km)/2¢|, then Ag(ky)/2¢ ~
Ag(km)/2¢ for all n > m.

Proof. Since ko is also the cyclotomic Za-extension of k,, and Ag(k,) = As, (kn)
for all n > m, it suffices to prove the statements for m = 0. Put X = Gg(kso)?® =~
l'&lAs(k’n). By the same argument as in [29, §13.3], X is a finitely generated A-
module, and Ag(k,) ~ X/v,Y for all n > 0, where Y = Gal((koo)%/koo k) and
Vp = (14+T)%" —1)/T. Note that vy = 1 and vy = 24T € (2,T), where (2, T) is the
maximal ideal of A. If |Ag(k1)| = |As(k)|, we have | X /11 Y| = | X/Y|, which implies
that Y = 11Y C (2,7)Y. Then Nakayama’s lemma for Y yields that Y ~ 0, i.e.,
As(kn) ~ X ~ Ag(k) for all n > 0. Suppose that |Ag(k1)/2° = |As(k)/2¢|. Then
| X/(1nY +2¢X)| = |X/(Y +2°X)|, and hence Y +2°X = 1Y +2°X C (2,T)Y +
2¢X. Nakayama’s lemma for (Y 4 2°X)/2°X yields that Y C 2°X. In particular,
v, Y C 2¢X for all n > 0. Therefore Ag(ky)/2° ~ X/(v,,Y +2°X) ~ X/2¢ for all
n > 0. Thus the proof of Theorem 3] is completed. |

As an example of the usage of Theorem [£.3] we obtain the following.

Corollary 4.4. Under the same assumptions of Theorem 3] the following hold
true:

(1) If Ag(k) ~ 0 and |As(kz)| = 2, then |Ag(kn)| = 2 for alln > 1.
(2) If ra(As(ke)) = 1 + 12(Ag(k)), then ro(Ag(ky)) = 1+ ra(Ag(k)) for all
n>1.

Proof. Put A, = Ag(ky,) or A, = As(kyn)/2 according to the statements. If |A;| =
|Ap|, then |A, | = |Ap]| for all n > 0 by Theorem[L3lfor m = 0. Therefore |A;| # |Ao|
if |Ag| # |Ao|. If |Az| = 2| Agl, the surjectivity of Ny, /i, vields that 2|Ao| = |Az| >
|A1] > |Aol, i.e., |A2| = |A1]. Then |A,| = |A1| = 2|Ay| for all n > 1 by Theorem
for m = 1. Thus we obtain the statements. 0
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For the basic Zs-extension Q. /Q, we choose a canonical generator v = 7|qg_, of
I' with a generator ¥ of I = Gal(Q((a~)/Q((4)) = Zy such that F(Can+2) = (Jurs
for all n > 0. Moreover, we can choose 7 such that ¥ € Gal((Qw)s/Qs). Fukuda’s
theorem (Theorem [A3]) above and Theorem [B] imply that it suffices to consider
mainly the metacyclicity of Gg(Q2) (or Gs(Q1)) in the proof of Theorem [Tl Then
we often use the cyclotomic unit

— Gle
—Ci6

to calculate Ag(Q2). Since Cfg = ({5 = —Ci6, we have Ng,/q,(§) = g’
(2 - CS = g9, where €5 = 14++/2 € E(Qy) is the fundamental unit of Q; = Q(+/2).

1—C
Note that the class number of Qo = Q(v/2+/2) is 1. Since Ay(Q,) ~ 0 for all
n > 0 (by Corollary E2)), the genus formula 1)) for Q,/Q yields that Ng, o =
Zflal vt B(Q,) — E(Q) is surjective. Hence E(Q,) ® Zs is a cyclic A-module
for all n > 0, and E(Q2) = <§,€7,§72,§73> (cf. [29] Theorem 8.2, Proposition 8.11
and Remark]). In the following sections, we denote by &4 the fundamental unit of
the real quadratic field Q(v/d). For z € Z, va(2) denotes the normalized additive
2-adic valuation, i.e., |Zy/2Z| = 2V2(*),

£€=C( € E(Q)

5. THE CASE S = {{}

This section treats the case where S = {{} consists of one prime ¢ =1 (mod 4).
First, we determine the sets S with procyclic Gg(Qoo).

Proposition 5.1. Put S = {{} with a prime number £ = 1 (mod 4). Then the
following four conditions are equivalent:

(1) Gs(Qu) s procyclic.

(2) Gs(Qs) is finite cyclic.

(3) Gp(Quo(VY)) is trivial.

(4) ¢ satisfies £ =5 (mod 8) or £ =1 (mod 8) and (%), (g) =1,

Moreover, we have Gs(Qux) ~Z/2Z if £ =5 (mod 8).

Proof. Since Gg(Qo)?" is finite by [0, Theorem 3.1], the conditions () and (&)
are equivalent. Put k = Q(v/¥). By @) for the triple (k,/Qn,Sg, ,0), we have
12(Gs(Q,)2) = 14+12(Gy(k,)?P) for all n > 0, and hence the conditions () and (B
are equivalent. The conditions [@]) and (@) are also equivalent by [20, Corollary 3.4]
(and [23]). Suppose that £ =5 (mod 8). Then k = Qg. Since 2 is inert in k and
Ag(k) ~ 0, Gs(koo) is trivial by Proposition Ll This implies that ke = (Quo)s,
and hence Gg(Qo) ~ Z/2Z. O

We prove the following theorem which characterizes S = {¢} such that Gs(Quo)
is nonprocyclic prometacyclic.

Theorem 5.2. Put S = {¢} with a prime number £ =1 (mod 4). Then Gs(Q) is
nonprocyclic prometacyclic if and only if one of the following two conditions holds:
(1) £=9 (mod 16), (2), = -1, (%), =1, and |A3(Q2(V1))| = 2.
(2) £=9 (mod 16), (), =—1, (), # 1, and |Ag(Q(vV))| > 4.
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Proof. By Proposition 5] it suffices to consider the case where £ =1 (mod 8) and
(%)4 = (—1)%. Put k = Q(v/¥) and k' = Q(v/2¢). Let [ be a prime ideal of Q,
lying over £. In the following, z;, € Z denotes a primitive element modulo ¢.

Lemma 5.3. If { =1 (mod 16), (%)4 =1 and r3(As(Q2)) = 2, then |Ag(ke)| > 4
and 14(As(Q2)) = 2.

Proof. Proposition (1] and Theorem [3] imply that Ag(ki) %2 0. Since k' C
ki C (K);" and ra(Ag(K')) = 1 (cf. e.g. [30]), we have (K')5> = (k1)5" and hence
ro(Ag(k1)) = 1. Then [B.I]) for the triple (k1/Qq, {[, "}, 0) yields that r2(As(Q1)) =

2. Moreover, (Ql)?{lﬁm /Q1 is a quadratic extension by Theorem BIJ[I). Note that
Ay (@Q1)/2 ~ Gal((Ql)?ﬁm/Ql) via the Artin map. Since Oq, /I ~ Z/{Z, \/2 = 2F
(mod I) with some z € Z. Then 2 = 27* (mod ¢). The assumption (%)4 =1

e 1
yields that z is even. Therefore [(v277 )] = [(2/7)]" € 2A(;;(Q) as the ideal
classes, where m = vy(¢ — 1) > 4. This implies that the prime (v/2) of Q; splits in
(Ql)?llc}m. Then the prime of Q,, lying over 2 splits completely in the [2, 2]-extension
(Ql)?llc}mkn /Q.,, and hence a prime p,, of k,, lying over 2 also splits in the unramified

quadratic extension (Q)%<™k,, /k, for all n > 1. Suppose that |Ay(k2)| = 2. Then
{1 U

Ag(ky) ~ Z/2Z for all n > 1 by Theorem I3} and Ag(k,) = Ag(k,)! = ([pﬁ"/z])
by [8, Theorem 2|, where h,, is the class number of k,. This implies that p,, is inert
in (kn)g> = (Ql)?lﬁmkn. This is a contradiction. Therefore |Ay(k2)| > 4.

Let £ be a prime ideal of Qq lying over [. By the assumption ¢ = 1 (mod 16),
¢ splits completely in @y, and hence Oq,/L"" =~ Oq,/I"" =~ Z/tZ. We choose
Javi = 9pyi = #z for any i. Recall that m = va(¢ — 1) > 4. Then we obtain the
commutative diagram

B(Qa) “2% 20,28, 215, 27 y] —— As(Qa) —— 0
Tu T

$Qq,
s 217, 201] ———— As(Q) —— 0

EQ) ——

1 . 2
with exact rows, where ¥ (zo, 1) = (29,21, o, 1). Moreover, since g5 = 1777, we
have

90@275(5) ayg a1 a as

v _ w@ms(ﬁz) _ as3 ag a1 a

Ga ©Q,,5(&7) az az ap @
3

©Q,,5(§7) a; az asz ap

and

—1 2m—1 2m—1
vQ,.5 = ©g,,5(—1) _
%q,,s(e2) ap+ax a+ag
£—1

with some a; (0 < j < 3), where we note that —1 =z, (mod ¢) and 5% =2m~!

(mod 2™). By the assumption that ro(Ag(Q2)) = 2, at least one of a; is odd.
Since §1+7+72+73 = —1, we have ap + a; + az + az = 2™~ (mod 2™). Since
r2(As(Q1)) = 2, we have Im g, s C 2[2™,2™], i.e., ap+a2 = a1 +a3z =0 (mod 2).
Then, in particular, ag + az = a1 + a3 (mod 4). If ag + a2 = a1 + a3 =0 (mod 4),
we have Im g, s C 4[2™,2™] and hence r4(Ag(Q2)) = r4(As(Q1)) = 2. Suppose

1>9,UXT >

(mod 2), which implies that Ag(Q2)/2 ~ Coker(pq, s mod 2) ~ [2,2,2]. Hence,
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by the assumption that ro(As(Q2)) = 2, at least one of a; is even. Then a;, =0
(mod 4) for some jo. Recall that there are also odd a;. Replacing the pair (I, £)
by ("', £7°) if jo # 0, we may assume that (ag,ay,az,a3) = (0,1,2,1) (mod 4).
Since

0 1 0 O 1 01 2

1 00 0 o121

~1 2 10 |"S=|l 000 0 (mod 4),

1 1 11 0 0 0 O
we have Ag(Qs2)/4 ~ Coker(pg, s mod 4) ~ [4,4]. Thus the proof of Lemma 5.3 is
completed. ([l

Lemma 5.4. Assume that £ =9 (mod 16) and (%)4 = —1. Then

Ags(Qq) ~ Ag(Q2) ~ [4,4] if (%),=1
As(Qq) ~ [8,2] and As(Q2) ~ [16,2] if (572)4 # 1.

Proof. Since £ = 9 (mod 16), Og,/l ~ Og,/I” ~ Fs2 on which 72 acts as the
Frobenius automorphism z + 2¢ (z € F,2). We choose g;om and z; such that
20 = g[lgi (mod I). Put gro,, = 970@2‘ Then z, = ngOm (mod [7), and we
obtain the commutative diagram

B(Qq) 225 [16[%2 161704,] — As(Q2) —— 0

Tu T
vy,
E(Qy) —= 5 [8,817] ——— Ag(Q;) —— 0
with exact rows, where ¥ (zg,z1) = (({ + 1)zo, (¢ + 1)z1) = (10z0, 10z1). In par-
ticular, r2(A5(Q1)) < r3(As(Q2)) < 2. Since r2(As(Q)) = 1 and Gs(Q) is not
cyclic by Proposmon BTl we have rg(As(Qn)) = 2 for all n > 1 by Theorem
M3 Since —1 = Zz‘ (mod £) and 51 =4 (mod 8), we have g, s(—1) = (4,4).
Since r2(As(Q1)) =2, Im g, s C 2[8,8] and hence ¢g, s(e2) = (ag, a1) with some
ag,a1 € 27Z. Then ¢g, s(¢7) = (a1,a0). Since eyt = —1, we have ag + a; = 4
(mod 8). Note that ap = a; =0 (mod 4) if and only if (?)4 = 1. Then

[ {(4,0),(0,4)) if (22), =1,
Im“’@hs—{ ((2.2)) it (2)) 21

Thus we obtain the claim for Ag(Qy). Since ra(As(Q2)) =2 and 2¢ = 2 (mod 16),
we have

©Q,,5(§) bo b1 by by
v _ ¥Q2,S (f’);) _ b1l bo _ b1 by
028 @Qz,S(f’ys) bol b1l bo b1
©Q,,5(§7) bil? byl by bo
with some bg,by € 27Z. Since €5 = §1+72 and @Q2,5|E(@1 = Y o pg, s, we

have (2bg,2b1) = (10ag,10a1) = (2ag,2a1) € [16,16], i.e., (by,b1) = (ag,a1)
(mod 8[16,16]). Recall that ay = 0 (mod 4) if and only if (52)4 = 1. Since
bo + b1 = ag + a1 = 4 (mod 16), we have

((4,0),(0,4)) if (7
Im ¢q,.s = ((bo, b1), (4,4)) = { ((2,2)) or ((2,10)) if E%h # 1.

S S
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This implies the claim for Ag(Q2). Thus the proof of Lemma [5.4lis completed. O

Lemma 5.5. If{ =9 (mod 16), (%)4 =1, (572)4 # 1, then Gg(Qy) is nonabelian
metacyclic.

Proof. Since £ = 9 (mod 16) and (%)4 —1, we have Ay(k') ~ Z/AZ and
Ny jg(e2e) = —1 by [30, Proposition 3.4(b)]. Then Ay(k1) ~ Z/2Z. Applying
Kuroda’s formula [23) for k;/Q, we have

2 = [Ag(k1)| = 471 Q(k1/ Q) Ap(Qu) [ Ao (K| Ag (k)] = Q(k1/Q),

e., |E(k1)/{—1,e2,e0,62¢)| = 2. Let £ be the prime ideal of k; lying over L.
Choosing gg¢-i = g»i = 9,/50, = 9enk’ = Z¢, we obtain the commutative diagram

E(Q1) =22, (8, 8] — Ag(Q1) ——— 0
o
E(kl) —) [82,827 —_— As(kl) Z/2Z 0
v Tu ol \w
B(k) —22 5 7/87 ) ———0
E(k) 25 787 Ag(k) 7,/4Z 0
with exact rows, where ¢(x) = (z,z). In the proof of Lemma B4 we have

seen that ¢, s(E(Q1)) = Impg, s = ((2,2)) when (5—2) # 1. Since Ag(Q) ~
Gal(Q¥/Q) ~ Z/4AZ, we have Ag(k) ~ Z/2Z and hence ¢y, s(E(k)) = ¢y (Im ¢r )
= (2Z/8Z) = ((2,2)). Since k' C (Q¥); C (kK')2> and (Q%)1/k’ is not unrami-
fied, we have Ag(k’) % Ay(k'); ie., vir s is not surjective. Hence ¢y, s(E(K')) C
¥(2Z/8Z) = ((2,2)). Then ¢y, s induces the surjective homomorphism

Z)2Z ~ E(k1)/(~1,e2,e0,62¢) = Impy, 5/((2,2)).

This implies that |Im gy, s| < 8, i.e., |Coker gy, 5| > 8. Since Ag(Q1) ~ [8,2]
by Lemma [5.4], we have |Ag(k1)| = 2|Coker ¢, g| > 16 = |Ag(Q1)|. This implies
that Gg(Q1) is nonabelian. Put G = Gg(Qq) and H = Gg(K), where K =
(Q1)g3- Since Im g, ;3 = 2Z/8Z, we have [Ag;(Q1)] = 2 and hence K/Q is
a quadratic extension such that A;y(K) ~ 0. Recall that Ag(k') ~ Z/4Z and
Nk//Q(E?zZ) = —1. Then 1 # [Qﬂ k/] S A@(k/) ~ A{Oo}(k’) and [Sﬂ /C/]Q =

Hence 1 # [£7] € Ay(k1); i.e., £ is inert in (k1)gp = k1 K. This implies that [7 is
inert in K/Q;. Since Agy(K) ~ 0, K& /K is totally ramified at ["Og. Therefore
ro(H®P) = r(As(K)) = 1; i.e., G has a cyclic maximal subgroup H. Hence G is
metacyclic. Thus the proof of Lemma is completed. O

Now we complete the proof of Theorem If =9 (mod 16) and (%)4 = —1,
we have Sg, = {lOq,,"Oq,} and r2(As(Q,)) = 2 for any n > 1 by Lemma [5.4]

and Theorem 3l Then, since (Qn)‘ille}m /Q,, is a quadratic extension by Theorem

BI@) for (k,/Qn,Sg,,0), %b(Qn)?lﬁm/kn is a [2, 2]-extension. This implies that

r2(Gal((Q,,)%/ky)) = 2 for any n > 1. Now we assume one of the two conditions
of Theorem Suppose n > 2. Then
As(Qn) ~ [4,4] and [Ag(kn)| =2 if (), =1 and |Ag(ky)| = 2,
A5(@u)/4 ~ [2.4] and |Ag(ky)] > 4 if (), # 1 and [A(ky)] > 4
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by Lemma [5.4] and Theorem .3l Hence Gg(Q,,) is metacyclic by Theorem BII[2]),
@) for (k,/Qp, Sg,,0). Therefore Gg(Qoo) =~ @GS(QH) is prometacyclic. Thus
the if-part is completed.

Conversely, we assume that Gg(Q) is nonprocyclic prometacyclic. Then ¢ =1
(mod 8), (%), = (—1)/'7?71 and Gy(koo)* 2 0 by Proposition Il Theorem 3]
implies that |Ap(k,)| > 2 and r2(As(Q,)) = 2 for all n > 1. We apply Theorem
B for (k2/Q2, Sg,,0). Then ro(Ag(k2)) =1 by [BI). Since Gg(Q2) is metacyclic,
r4(As(Q2)) = 1 or |Ap(k2)| = 2 by Theorem BII2). Hence £ = 9 (mod 16) and

(%)4 = —1 by Lemma 53 Then we have seen that ro(Gal((Q2)3"/k2)) = 2.
Since (Qg)‘zl{“}m/(@l is a [2,2]-extension and [7 is inert in Q2/Qy, ["Og, splits in

(Qg)?[e}m/(@g; i.e., the condition (fd) of Theorem [BIlis satisfied. Note that |Og, /| =
|0g, /"] = £2 # 1 (mod 32). If r4(As(Q2)) = 1, we have Ag(Q2) ~ [2,16] and
(572)4 # 1 by Lemma B4l and Gg(Q2) is nonabelian by Lemma Then the
conditions (Zal) and (4D)) are also satisfied. Moreover if |Ag(k2)| = 2 is also satisfied,
Gs(Q2) is not metacyclic by Theorem B.II@). This is a contradiction. Therefore
r4(As(Q2)) = 1 and |Ag(k2)| = 2 do not occur simultaneously; i.e., we have either
r4(As(Q2)) = 1 and |Ag(ks)| > 4 or 14(As(Q2)) = 2 and |Ap(k2)] = 2. Then
Lemma [5.4] completes the only-if part. Thus the proof of Theorem [£.2]is completed.

O

Remark 5.6. Assume that ¢ = 9 (mod 16), (%)4 = —1 and (572)4 # 1. Then
As(Qq) ~ [2,8] by Lemma [54] and 12(Gal((Q1)%P/k1)) = 2. Moreover, |Ay(k1)| =
2 (cf. the proof of Lemma [B5]). Since |Og, /I = |Og,/I"| = ¢ # 1 (mod 16) and
Gs(Qy) is nonabelian metacyclic by Lemma [5.5] the triple (k1/Q1, Sq,,0) satisfies
the assumptions of Theorem Bl except (Hd).

6. THE CASE S = {/,q}

This section treats the case where S = {{,¢} consists of two primes ¢ = 1
(mod 4) and ¢ = 3 (mod 4). First, we prepare the following lemma.
Lemma 6.1. Put S = {{,q} with prime numbers £ = 1 (mod 4) and ¢ = 3
(mod 4). Assume that (%)4(@4 = —14f¢ =1 (mod8). Putv = () >0

and w = vo (L) > 0. Then 12(As(Q,)) = min{2?,2% + 1} for all n > max{v, w}.

Proof. The decomposition field of ¢ (resp. ¢) in Qn/Q is Q, (resp. Q). By
Proposition 5.1} A (Qy) is cyclic for all n. Suppose that n > max{v,w}. Since
(Og, /0)* ®Zsy and (Og, /q) ™ ®Z2 are cyclic A-modules, we have (Oq, /{)* QZ/2Z ~
Fo[[T]]/T? and (Oq, /q)* ®Z/2Z ~ F[[T]]/T?" as Fo[[T]]-modules. Hence we ob-
tain the commutative diagram

BE(Qn) ® Z/22 ———— Fo[[T]}/T* ——— A((Qn)/2 ——0
|| T(a,b)»—)a
E(Qn) ® /22 —— F[[T])/T?" & Fy[[T]]/T?" —— As(Qn)/2 —0
|| \L(a,b)eb
E(Qn) ® 2/22 ————— Fo[[T])/T*" ————— A(3(Qn)/2 —— 0
of F5[[T]]-modules with exact rows. Since E(Q,)®Zs is a cyclic A-module, Im ¢ =

Fo[[T]](f mod T?", g mod T?") with some f,g € Fo[[T]]. Since Fo[[T]]/(f, T?") ~
Ay (Qn)/2 ~ Z/27 and Fo[[T]]/ (9, T?") ~ Aq3(Qn)/2 ~ 0 (cf. Corollary E2)), we
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have f = T (mod T?) and g = 1 (mod T). Hence Im¢p ~ ]FQH )]/ Tmax{2" 1,2}
as Fo[[T]]-modules. Therefore Ag(Q,)/2 ~ Coker ¢ ~ Ime{Q " as Fa-vector
spaces. Thus the proof of Lemma [6.1]is completed. (Il

The following proposition determines the case where Gy 41(Qso) is procyclic.

Proposition 6.2. Put S = {{,q} with prime numbers £ = 1 (mod 4) and ¢ = 3
(mod 4). Then the following three conditions are equivalent:

(1) Gs(Quo) s procyclic.

(2) Gs(Qoo) = Z/AL.

(3) £=5 (mod 8).

Proof. Suppose that G5(Qs) is procyclic. Then G4 (Qu) is also procyclic, and
hence £ = 5 (mod 8) or £ = 1 (mod 8) and (%)4(94 = —1 by Proposition Gl
Since r2(As(Qy)) > 2 in the latter case by Lemma [6.I] we have £ = 5 (mod 8).
Therefore (I)) implies (B). Suppose that £ =5 (mod 8). Then k = Q¥ is a cyclic
quartic extension of Q, and Q(\/Z) C k. Since 2 is inert in £ = Qg and Ag(k) ~0,
Gs(kso) is trivial by Proposition LTl This implies that koo = (Quo)s, and hence
Gs5(Qu) >~ Z/47Z. Thus the proof of Proposition is completed. |

We prove the following theorem which determines the case where G/ 3(Qoc) is
nonprocyclic prometacyclic.

Theorem 6.3. Put S = {{,q} with prime numbers £ = 1 (mod 8) and ¢ = 3
(mod 4). Then Gs(Qu) is (nonprocyclic) prometacyclic if and only if one of the
following two conditions holds:

(1) £=9 (mod 16), (2), =1, ¢=7 (mod 8) and (%) = -1
(2) £=1 (mod 16), (3),=—1, ¢=3 (mod 8) a d(%)—l

Proof. Put k = Q¥°™ = Q(v/¥) and k' = Q(v20). Let [ be a prime of Q; lying
over £. In the following, z; (resp. z,) denotes a primitive element modulo ¢ (resp.
q). First, we consider the case where £ =9 (mod 16) and (%)4 =—1.

Lemma 6.4. If (=9 (mod 16) and (3), = —1, thenr2(As(Qn)) = r4(As(Qn)) =
2 for allmn > 1, and |Agqy (k)| > 4.

Proof. Suppose that n > 1. We have r2(As(Qn)) > r2(Ag3(Q1)) = 2 by Lemma
B4l Let Iy (resp. Iyv) be the inertia group of the prime [Og, (resp. ["Ogq,) of Q,
in Gg(Qn)*. Since Iy and Iy are cyclic and Gg(Qn)*/Iily ~ Agy(Qn) ~ 0

(cf. Corollary [2]), we have r4(As(Q,)) < r2(As(Q,)) = 2. Since r4(As(Qy)) >
r4(Agey(Q1)), Lemma B4 yields that ry(Ag(Qn)) = 2 if (%), = 1. Suppose that

(572)4 # 1. We choose g; = g = 2. If ¢ = 3 (mod 8), then Sg, = {I,17,¢0q, },
and we fix g,0, . If ¢ = 7 (mod 8), then Sp, = {[,",q,q"}, and we choose gq =
gqv = Zq, Where q is a prime of Q; lying over g. Then we have an exact sequence

B(Qy) 2 5 [81, 817, 8400,] = As(Q1) = 0 ifg=3 (mod 8),

EQ) — g 81,81+,2q,2¢7] = A5(Q1) = 0 if ¢g=7 (mod 8).
Since ¢q, {73 (e2) = (2,2) or (6, 6) € [8, 8] (cf. the proof of Lemma [54)), we have

v oo [ Pos(El) N (444 441 ]
Gns @Ql,s(€2il) 2 2 a 2 2 ag ay
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with some a,ag,a; € Z according to ¢ = 3 or 7 (mod 8). Since A;;1(Qq) =~
©Q,.{q} is surjective. Hence a is odd when ¢ = 3 (mod 8), and (ag,a1) = (1, 0)
(0,1) when ¢ = 7 (mod 8). By an easy calculation, we have Ag(Q1) ~ [8,4].
Then ry(As(Qn)) > ra(As(Q1)) = 2, and hence r4(Ag(Q,)) = 2. Therefore
r2(As(Qn)) = 14(As(Qy)) =2 for all n > 1.

Put ¥ = {¢q}. We prove the inequality |Ax(k2)| > 4. By Proposition [5.1] and
Theorem 3] Ag(ky,) #£ 0 for all n > 1. If |Ag(k2)| > 4, then |As(k2)| > |Ag(k2)| >
4. In the following, we assume that Ag(ks) ~ Z/2Z. Then Ag(k,) ~ Z/2Z and
hence Agy(k,) ~ Z/27Z for all n > 1 by Theorem 3] Let M be a cyclic quartic
extension of QQ contained in ko different from Q., and let £ be the unique prime
of ko lying over [. Then M/Q; is a quadratic extension ramified at [ and (7, and
£N M and £Y N M are inert in the unramified quadratic extension ko/M. By
[20, Proposition 3.6], we have Ag(M) ~ [2,2]. Then Mj"> = (k)i is a [2,2]-
extension of M, and hence both £ and £7 split in (k2)5"/ko; ie., [£] = [€] =1 in
Ag(ke). Moreover, Kuroda’s formula (2.2))

2 = |Ag(k2)| = 27°Q(k2/Q1) [ Ap(Qa) || Ag(M)]| Ag (k1) ]| Ag(Q1)| > = Q(K2/Q1)
for ko/Q; yields that
E(k2)/E(Q2)E(M)E(k1) = (nE(Q2) E(M)E(k1)) ~ Z/2Z

with some n € E(kz2). Let o be a generator of Gal(ke/Q2) ~ Z/27Z. We regard ~ as
a generator of Gal(ky/k) ~ Z/4Z. Note that e57" = —1 and e, 77 = —1. Moreover,
we have [Ayg(K')| = 4 and e)" = el}? = —1 by [30, Proposition 3.4 (b)]. Then
Kuroda’s formula (23]

2= [Ag(k1)| = 471 Q(k1/Q)| Ap(Q)[| Ag(F)|| Ag (K")| = Q(k1/Q)
for k1/Q yields that E(k1) = (—1,e2,€¢, \/E26¢€2¢). Since (e28482¢)1 17 = €2 and
e, 77 = —1, we have E(k;)'* = E(Q;). By the genus formula (2I])
| A4g(Q2)[22
2|E(Q2)/E(k2)' 7|
for ko /Qa, we have E(Qs)/E(ko)'*o ~ Z/27. Since

E(Q2)/E(Q2)’E(Q1) = (€E(Q2)*E(Q1),£7E(Q2)*E(Q1)) ~ [2,2],

we obtain the exact sequence

0 — E(k2)/E(Q2)E(M)E(k1) =2 E(Qs)/E(Q2)2E(Q1) — Z/2Z — 0

of Galois modules. Note that (E(Q2)/E(Q2)2E(Qy))! = (¢ME(Q2)2E(Q
Z/)27Z. Since 17 = n (mod E(Q2)E(M)E(k1)), we have (n't9)Y =
(mod E(Q2)?E(Qy)). Hence

(6.1) ' = mod E(Qy)%E(Qy).

Let 9 be a prime of k3 lying over q.
Suppose that ¢ = 3 (mod 8). Then Oq,/q ~ Fg4, and the prime ¢Ogq, splits
in k1/Q1. We choose 9q0q, = g = ga- and geo,, = gank, = ga-nk, such that

9;552 9q0,, (mod g). Since Onr/q =~ Oy, /Q =~ Oy, /Q7, we can choose gq0,,

such that g,0,, = ga (mod Q). Since oy acts on Opr/q as the generator of

1= [{[&], [£7])] =

) =
n1+o'
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Gal(Fs /Fy2), 970, = g(‘fOM (mod ¢) and hence g,0,, = g,q;a (mod Q7). Then we
obtain the commutative diagram

BE(M) —222 5 7,)167 —— Ag (M) —— Ag(M) —— 0

n Ym
$Qz,> \

B(Qy) ———7Z/16Z —————0

lﬂ Pk ld)% /
B(ky) —2" [169, 169+ ] —— As(ko) —— Z/27 ——— 0

TU Pkqy,5 kal

E(k1) —= [8ank,,8asnk, | — As (k1) —— Z/2Z ——0

with exact rows, where 9g,(z) = (z,z) € ((1,1)), ¥x, (z0,21) = (zo(1 + ¢?),
z1(1 + ¢%)) € 2[16,16] and ¥ (y) = (y,¢%y) € ((2,0),(1,1)). Since g, » is sur-
jective, ¢q, »(§) = (u) with some odd u. Since v acts on Og, /q as a generator of
Gal(F 4 /F,), we have &Y = £ (mod ¢) where i € {1,3}. Since g3 = €147 we have
gy, 5(e2) = (u(l+¢*)) € 2Z/16Z. In particular, i, x(E(Q2)E(Q1)) C ((2,2)).

Put (ag,a1) = @k, =(n). Then ¢k, »(n7) = (a1,a0). The congruence (G.I)) yields
that

(ao + a1, a0+ a1) = ¢, x(n'77) = s%,z(ﬁ“”) (u(1+¢"),u(1+q"))
= (0,0) d ((2,2)).

Hence ag = a; (mod 2), ie., (ag,a1) € ((2,0),(1,1)). Since E(kz2) is generated
by n and E(Qq)E(M)E(k1), we have Im ¢y, s C ((2,0),(1,1)); i.e., gk, n is not
surjective. Therefore |Ayx;(k2)| > 4 if ¢ =3 (mod 8).

Suppose that ¢ = 7 (mod 8), and assume that ¢ # 15 (mod 16) or (5) = -1
Then ¢ splits in Q1, and none of the primes lying over ¢ splits completely in ks /Q;.
Let F be the decomposition field of ¢ in ko/Q, and let F’, F” be the quadratic
extensions of Q; contained in ks and different from F. ({F, F', F""} = {Q2, M, k1}
as a set.) Then Op//(QNF') ~ O, /Q ~ Opr/(QN F") ~ Fpe. Let 7 be the
generator of Gal(ke/F’). We choose ganp = ga = ga- and z, such that z, =

ggﬁ%, (mod Q7). Then gonp = gar = gar = ghnm satisfies z, = gg;%F,
(mod Q'V(HT)). On the other hand, we choose ganp» such that gonrpr = ga
(mod Q). Then ghnp = ga- (mod Q7). Moreover, gavnp = ghqp satisfies
garnFr = gav (mod Q7). Since QN F” = Q"N F”, 7 acts on Opv/(Q N F")
as the Frobenius automorphism. Then g&~p, = 93}0 o (mod Q7)) and hence

2
ganr" = ganpr = ganps = g (mod Q7). Then gainpr = gh,. (mod Q7).
Choosing z; as the primitive elements of the residue fields F, of O, we obtain the
commutative diagram

PR,
E(F//) F/75 [280F”’2SWQF”] —>AZ(F//) A@(F”) 0

N ’ PF/,5 m \1/}2 ’ /
E(F) —————— 28 5,20 o] ———————— A (F') —— Ap(F') = 0
I, L
ko,
E(ky) 2 [2m2m 2m om ] ——— Asi(ks) —— Z/2Z — 0
Tu Teo

©F,
E(F) "% [2anr, 20-0F, 2070F, 2077 nF] — As(F) —— Ay(F) = 0
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with exact rows, where m = vy (¢* — 1) > 4,
Yo(wo, w1, 2, w3) = (2™ Two, 2™ Ty, 27 g, 27 ),

Ui (zo, 1) = (20, 20,21, 21) and Yo (9, 21) = (20, g0, 21,921). Then 7 Tm
is generated by 2m~1[2™, 2™ 2™ 2™] and (1,1,0,0),(0,0,1,1),(1,¢,0,0),(0,0,1,q).
Hence [2”‘,2”‘,2’”,2’”]/2?:0 Ime; ~ [2,2]. Since g, n(E(Q2)E(M)E (k1)) C
Z?:o Im; and E(ks)/E(Q2)E(M)E (k1) ~ Z/2Z, ¢y, x is not surjective. There-
fore |As(ka)| > 4 if ¢ # 15 (mod 16) or (s) =—1.

Suppose that ¢ = 15 (mod 16) and (5) = 1. Then ¢ splits completely in k.
Choosing z; as the primitive elements of the residue fields F,, we obtain a commu-
tative diagram

E(k2) M) [2Q7 2Q'77 2Q-y2 ’ 2Qw3 ’ 2}3” ’ 253'“’7 2Qw20 ’ 2Q730] —_— AE(kQ) - Z/2Z

Tu Tor

%2508 >]

E(F) _— [QQQF, 20vnF, 29 AF, 2mep] _— AE(F) —» A@(F)
with exact rows, where
(zo,21,%0, X1, T2, T3, T2, x3) and T =0 if F' =k,
@[}F(.I(),l‘l,IQ,Ig) = (xo,l'l,xg,xg,.’[o,xl,1’2,253) and7:72 lfF:QQ,
(z0, 21, T2, T3, T2, T3, T, ¥1) and 7 =~*  if F = M.
An easy calculation shows that [2,2,2,2,2,2,2,2]/21,6{@271\/17,“}Imd)p ~ [2,2].
This implies that |Ax(k2)| > 4. Thus the proof of Lemma is completed. O

As we will see later, Lemma implies that Gs(Qs) is not prometacyclic if
(%)4 = (—1)%. In the following, we consider the case where (%)4 # (—1)%. If
Gs(Qs) is prometacyclic, then ro(Ag(Q,,)) < 2 for all n. Hence, by Lemma [6.1]
it suffices to consider the case where v =1 or w =0, i.e., f =9 (mod 16) or ¢ = 3
(mod 8).

Lemma 6.5. Assume that £ =1 (mod 8) and (%)4 # (—1)%. If g =3 (mod 8),
then r4(As(Q1)) = 2 and

|A{q}(k2)‘ =2 if¢=1 (mod 16)

|Agy(k2)| >4 if £=9 (mod 16) or (
If £ =9 (mod 16) and ¢ =7 (mod 8), then Ag(Qs2) ~ [2,16] and

Ay k)l =2 if (3) =1,

[Aggy (k)] >4 if () = -1.
Proof. First, we prepare some properties of units. By the assumption, Ay(k,) ~ 0
for all n > 0 (cf. Proposition BI)). Let o be a generator of Gal(ke/Qz2). We
regard v as a generator of Gal(ky/k). Recall that eJ™! = 91 = —1. Since ky /K’
is unramified and Ag(k1) ~ 0, we have ky = (K');> and Ay(k') ~ Z/2Z. Since
| Afooy (K')] > 4 (cf. [30]), we have e, = 1. Kuroda’s formula (Z3)

1= [Ag(k1)| = 47 Q (k1 /Q) |49 (Q1)||Ag (F)[| Ag (k)| = 27 Q(k1/Q)
for k1/Q yields that E(k1) = (—1,e2,&¢,1/€2¢). An easy calculation shows that

\/Eo = ;E\/i—i—y\/z € Oy, with some z, y € Q. Then 222 — fy* = Ve T = 41 1f
222 — fy? = 1, then 2|z| 4 |y|v/2{ € Oy is totally positive and (2|z| + |y|v/20)Op is
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the prime lying over 2. If 222 —fy? = —1, then £|y|+ |z|v/2¢ € Oy is totally positive
and (£|y| + |z|v/20)Oy is the prime lying over £. By [30, Proposition 3.4(a)], we
have

(6.2) —VEr' = e = (-1)F
where we note that \/ea,’° = —,/e2¢. Let M be a cyclic quartic extension of Q

contained in ko different from Q,. Then ko = Mgb. Kuroda’s formula (2:2))
1= [Ag(ka)| = 27°Q(k2/Q1)|Ap(Q2)||Ag (M)]| Ag(k1)|| Ap(Q1)| 2 = 272Q(k2/ Q1)
for ko/Q; yields that |E(ks)/E(Q2)E(M)E(k1)| = 4. The genus formula (2.1])

o Ay
= 2[B(k)/E(ks) 7]

1=Ap(k2)
for ko/ky yields the existence of an exact sequence

E(ke)/E(Q2)E(M)E(ky) ) E(k1)/E(Q)E(k1)* = Z/27 — 0.
Note that E(Q1)E(k1)% = (—1,e9,2,e50) = (E(Q2)E(M)E(k1))**" and
E(k1)/E(Q1)E(k1)? = (e E(Q1)E(k1)?, Ve E(Qu) E(k1)?) ~ [2,2].
The genus formula (2.1])

| Ag ()47

1=|Ag(k2)| >
Ao(kz)| = 4| E(k) /B (k) 7 04|

for ko/k yields that E(ky)(T7)0+7) = (1 &4). Since e 7" = &2 and (,/Eare,) '
= +e7, we have ¢, \/2061 & E(k‘g)“‘*z, and hence \/z5; € E(ks)'*". Therefore

E(k2) = (m,n2) E(Q2) E(M) E (k1)
with some 7y, 72 € FE(k2) such that

(6.3) n = Ve, mt =1 (mod E(Q)E(k)?).

Put ¥ = {¢}, and put e = va(¢+ 1) > 2. Let Q be a prime of ks lying over ¢q. If
¢=9 (mod 16) or ¢ = 3 (mod 8), we have r2(As(Q,)) = 2 for all n > 1 by Lemma
Then ro(Ax(k,)) =1 for all n > 1 by @B.1) for the triple (k,/Qy, So, , Xq,)-
Since Q%"/Q is a cyclic extension totally ramified at £, we have Ax (k) ~ 0, and
hence v acts on Ax (k1) as —1. Since Ax(Qq) ~ 0, o also acts on Ax(k;) as
—1. Therefore o acts on Ax(k;) trivially. This implies that (k')% = (k;)%. In
particular, |As (k)| = 2|Ax(k1)| > 4. Recall the exact sequence

E(K') 25 (O /q)* ® Ty — Ax(K') = Z/2Z — 0.

Since @/ x(—1) is nontrivial, $ps 5 is not zero mapping. If (%) = 1, then
(Orr/q)* ® Zay ~ [2,2], and hence |Ax(k’)] = 4. This implies that Im @y » =
(Prr w(—1)) if (27[) =1.1f (%e) = —1, we choose g40,, Which is also a primitive ele-
ment of O, /(QNky) ~ O /q = Fp2. Then (O /q)* @ Ly = (gq0,, ®1) ~ Z/2°T'Z
and /ea = gflok/ (mod 9Q N k) with some ¢ € Z. If (%) = —1 and (%) =1, then

g(1+q)t = e 7 (mod QNky = QY Nky). If (%) =1 and (%) = —1, then

qu/ -



2444 YASUSHI MIZUSAWA

gégj)t Ny (mod QNk; =097 Nk;p). By ([€2), the parity of ¢ is determined
as

(6.4) (1 = (3)(-)'F".
Since eqp = gggk, (mod ¢) and |Ax;(k1)| = |Coker @y 5|, we have

As(ky)| =2 if (2) =1or (-1)F # (2),

q

As(k)| >4 if (%) = —land (-1)5 = (2).

(6.5)

Suppose that ¢ = 3 (mod 8). For 9q0q, and gy = giv = z¢, we obtain the exact
sequence

E(Qu) 225 (217,22, 840,] = As(Q1) = 0

_( eaus(=1) \ _(2mt o2t
YQ:,s = < ©q,,s(e2) ) N < ag a b )’
with some ag,a;,b € Z, where m = v2(€ — 1) > 3. Since G}(Qu) is cyclic by
Proposition [B.1] (Ql)?;}m = k1, and hence Ag;(Q1) ~ Ag+3(Q1) ~ 0. Recall that
As(Qq) ~ 0 (cf. Corollary B2). These imply that vq, 11y, ¥, {1} and ¢g, = are
surjective; i.e., ag, a; and b are odd. An easy calculation shows that Ag(Qq) ~
[2™,4]. In particular, r4(As(Q1)) =2. If () =1 and £ =9 (mod 16), we have the
claim |Ayx(k2)| > |As(k1)| > 4 by (G5). Suppose that (4) = —1or £ =1 (mod 16).
Then |Ax (k)| = 2 by (€3). Note that Og,/q ~ F,1 ~ O /q and that ¢Oq, splits
in k1/Q1. We choose 9q04, = gank, = 97k, and 9q04, = 9o = ga- such that

9400, = gqgg (mod ¢). We also choose g40,, such that g,0,, = ga (mod Q).

Since 977" = Q7 and 2 acts on Ok, /9Q° as a generator of Gal(F,4/F;2), we have

= g,‘?z = gg‘(, (mod 7). Then we obtain the commutative diagram

and

BE(M)—22 7167 —— Ag(M) —— 7,/2Z —— 0

N M
E(Q2) 4> Z/16Z \—> 0

In j}/’@z /

B(ks) —225 [16q, 169-] —— Ag(ks) —— 0

TU kal

E(k1) RAELN Bank,» 897k, ] 7./27. 0
Tu oo s Tw

E(K) —= (Ow/9)* @ Ly
with exact rows, where ¥y, (zo,71) = ((1 + ¢*)zo, (1 + q) 1) = (10x0,10z1),
Yo, () = (z,2) and Yu(y) = (y,¢%y) € ((1,1),(4,0). If (zo,21) = ¥k, 5(e)
with some ¢ € E(k1), then (z1,20) = ¢k, »(¢7). This implies that Im ¢y, 5 =
((1,1),(2,0)), i.e., v, n(E(k1)) = ((2,2), (4,0)). Therefore
(6.6) Phy o (E(Q2) E(M)E(k1)) = ((1,1), (4,0)).
If (1) = —1, we have gy, n(e20) € Yy, W(ImPprx)) = ¥i, (T((Prr2(-1)))) =

((8,8)). On the other hand, if (%) = 1, gs0,, = g4, (mod QNk;) with some odd
u € Z. Then, since Q7Y Nk; = Q7 Nk;y and v acts on Oy, /(Q7 Nky) as the Frobenius
automorphism, we have g,0,, = ggﬁﬁ = ggf,mkl (mod Q7 Nky). Since gy = gqok/
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(mod g), we have @, (e20) = Vi, (Pry,5(€20)) = Y, ((2tu, 2tuq)) = (4tu, —4tu) if
(% = 1. Therefore

(6.7) %,E(@)E{ (0,0) (mod ((4,4),(8,0))) if (4) = —1,

%
(2tu, —2tu) (mod 8[16,16]) if (%) = 1.

Recall that (E(Q)E(M)E(ky))+" = BE(Q)E(k)2 If (yo,51) = @r,5(c) with
some ¢ € E(ky), then (¢%yo,q%y1) = @ran(e?’). Hence op, v(E(Q1)E(k)?) =
((2,2),(8,0)) D 8[16, 16] by ([6.6]). Put (co,c1) = @r,,=(m) and (do, d1) = i, = (12).
Since (10co,10c1) = @) = ¢rx(y/F2r) (mod ((2,2),(8,0))) and
(10do, 10d1) = @py = (m577) € ((2,2), (8,0)) by [B3), we have

(0,0) (mod ((1,1),(4,0))) if (£) =—1,

q
— ¢
(5co, 5e1) = { (tu, —tu) (mod ((1,1),(4,0))) if (£) =1
and (5do,5d1) € ((1,1),(4,0)) by 7). Then Im gy, »» = ((5co, 5e1), (1,1), (4, 0)).
If (4) = —1, we have |Ax(kz)| =4. If (4) =1 and £ =1 (mod 16), then ¢ is odd
by (64), and hence |Ax(k2)| = 2. Thus we obtain the statement for the case where
¢ =3 (mod 8).

Suppose that £ =9 (mod 16). Recall that ro(Ax(ky)) =1 for all n > 1. Then
(ko)gem = (k1)g™k; is a [2, 2]-extension of k;. Let £ be a prime of ks lying over [.
Since £ ky is inert in ko /k1, £ splits in (k2)$™ /ke. Since £N M is also inert in
ka/M, the quartic extension (k2)9°™/M is a [2,2]-extension unramified outside ¥.
Since My, = (k2)%, r4(As(M)) < 1 and 12(Ax(M)) = 2. Let M’ and M" be the
distinct quadratic extensions of M contained in (kg)S°™ different from ko. Since
(kg)Eem /Q is not abelian, M’/Q is not a Galois extension, and M" is the conjugate
of M’. Then Gx(M)* ~ Ag(M) has a cyclic maximal subgroup Gal(M&P/ks),
and two other maximal subgroups Gal(M&° /M), Gal(M&>/M") are isomorphic to
each other. This implies that r4(As(M)) =0, i.e., Ax(M) ~ [2,2].

Suppose that £ = 9 (mod 16) and ¢ = 7 (mod 16). Then Og,/l ~ Fyp and
Oq,/(QNQ2) = Fp2. We choose giog, ; gang,, and put gno,, = 9?0@2’ 997 N0, =
gngz. If ¢ = 9%0@2 (mod [") and ¢ = gngQ (mod Q7 N Q3) for some ¢ €
E(Q) and a, b € Z, then &7 = 9702;2 = g‘%@z (mod [) and €7 = gg?% = gfqu%

(mod 9 N Q2). Hence we obtain the exact sequence

E(Qs) 25 [16104,, 16104, » 1600, 160-10,] — As(Q2) — 0

and
@Qz,s(f) ao aq bo bl ag ai bO bl
" _ @Qz,S(f’Q | flar ap gbi  bo | 9a1 ao by b
G 00,,5) | | lao flar gby gby | | 9a0 9ar Tby Tby
£0,,5(67) Pay lag q*b qbo a 9ap by Th

Since pg,, 5(ETTH ) = ©Q,,s(—1) = (8,8,8,8), we have ag + a1 = 4 (mod 8)
and bgp+b; =1 (mod 2). In particular, ap+a; = £4 (mod 16). Replacing Q by Q7
if necessary, we may assume that by € Z5 . Since A0y (Q2) is cyclic by Proposition
B Im g, (¢ & 2[16,16], i.e., ap = a1 =1 (mod 2). Then af = 8 + aj (mod 16).
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Since
—9 9—7b bo—1 b1—bg—b?
I -1 aoZGoal 0 2b00 0 gbo 0 00 1 bg 1
9a;—1 b 7b b2 +b2
0 1 55 0 e I T i
0 —2 =2a 7 0 —-1 0 o bi+b}
@o bo—4 bo+4 0 0 0 =27
0 O 4 1 bo—4 1 botd 0
bo bo 0 0 O 8

one can see that Ag(Qsz) ~ [2,16]. Since Ogq,/(Q N Q2) ~ O, /Q ~ Oy, /Q°%, we
can put gq = ga- := gang, and ga+ = gaov = gang,- Put (£, F’) = (ki, M) or
(M, k1) according to () =1 or —1. Then F is the decomposition field of ¢ in k2/Q,
and QNF' = Q7NF’. We choose z, satisfying g}13+q = 2z, (mod ) as the primitive
elements of residue fields F,, and ganps such that gonr = gq (mod Q). Since
o acts on Op//(Q N F') as the Frobenius automorphism, gonr = g&np = 94
(mod Q7), and gavnpr = ghnp satisfies gavnr = gov (mod Q7) and ggvnr =
980+ (mod Q7). Then we obtain the commutative diagram

E(F) — " [16gnm, 169+nm] —— Asy(F') —— Ay(F') = 0
w/
$Qsy,
" E(QZ) = [16530@27 16QWOQ2] ——0
lﬂ ’ %Z’@gl
ko,X
B(ky) —2"—[16g, 164+, 169+, 16gq0+] ——— Ax (k) ———— 0
TU 2§28 ) d)T LT

E(F) —— [2anF,2q7nF; 207nF, 2007nF| — Ag(F) —— Ag(F) = 0

with exact rows, where ¥q, (2o, z1) = (zo, %o, 21, 1), ¥ (Y0,y1) = (o, qYo, Y1, qY1)
and ¥(zg, 1, 2,23) = (820, 8%1, 822, 8x3). Recall that A (M) ~ [2,2], Ag(M) ~
7/27 and Ag(ki) ~ 0. By ([63H), we have Ax (k1) ~ Z/2Z. These yield that
|Coker pp 5| = |Coker g 5| = 2. Note that gl p = gng, = g&np OF ganF
(mod 9 N F’) according to (%) = 1 or —1. If pp x(c) = (1,0) (resp. (0,1)) for
some ¢, then @pr 5(e7) = (0,1) (resp. (¢,0) or (1,0)). Since ¢ 5 is not surjective,
{(1,0),(0,1)} NIm ppx; = 0, and hence Im g 5 = ((1,1),(2,0)). Then

¢k2,E(E(Q2)E(F/)) = <(1a 1; 0’0)3 (0,07 1a 1)’ (1 q, 1 Q) (2 2% 0a0)>

=((1,1,0,0),(0,0,1,1),(0,2,0,2), (0,4,0,0))

and ¢y, »(E(F)) C Im1y = 8[16,16,16, 16] C ¢i, »(E(Q2)E(F")). In particular,
Yy 2 (E(Q2)E(M)E(k1)) = ((1,1,0,0),(0,0,1,1),(0,2,0,2), (0,4,0,0)).

Since Ax(Qz) ~ 0, o acts on Ax(k) as —1. If (4) = 1, the inclusion Im¢ C
Im @y, s implies that ¢ : Ax(k1) — Ax(k2) is zero mapping; i.e., 72 also acts on
Asi(kg) as —1. Then, since ov? acts on Ax(ke) trivially, (ko) /M is abelian,
ie., (k2)® = Mg, Therefore [Ax (k)| = 3|As(M)| = 2 if () = 1. Sup-
pose that (%) = —1. Then (F,F’) = (M,k1) and Q7 = Q7. Recall that
(E(Q2)E(M)E(ky)"*" = E(Q)E(k1)2. I (yo,y1,2,Y3) = Pk, n(c) with some
e € E(ks), then (qy1,qy0, qy3, ay2) = Pk, 5(€7"). Hence

‘ka,E(E(Ql)E(kl)z) = <(_27 2,-2, 2)7 (_47 4,0, O)>
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Put (do, d1,dz2,ds) = @k, n(n2). By ([63), we have
(do + qdv,dv + qdo, da + qds, d3 + gdo) € ((—2,2,-2,2),(—4,4,0,0)).
In particular, dy — dy = dz — d3 (mod 4) and dy — d3 =0 (mod 2). Then

<Pk2,2(772)
= do(1,1,0,0) + d5(0,0,1,1) — %2590, 2,0,2) + {de=da)—{do=di) (4 0, 0)
€ Vky 2 (E(Qo)E(M)E(F1)).

Hence |Im ¢k, 51/ 0k, s (E(Q2) E(M)E(k1))| < 2. Since
[16,16,16,16]/¢k, »(E(Q2) E(M)E (k1)) ~ [2,4],
we have |Ax(ko)| > 4if (%) = —1.
Suppose that £ =9 (mod 16) and ¢ = 15 (mod 16). We choose gio,, and put

9rn0g, = g;YOQZ . Choosing z, as the primitive elements of residue fields F,, we obtain
the exact sequence

$Qa,
E(QQ) Q_2>S [16[0(32 3 16[70Q2 3 2Qﬁ@2 5 25:2“’2(7@2 ) 2)3'”‘1@27 2Qw3 m@2] — AS (QQ) — 0

and
©Q,.5(§) ap a1 by b by b3
’U _ QOQQ,S(gA;) _ 9a1 a9 by by by be
028 ©Qs,,5 (gvg) 9ag 9a1 by by bz by
$Q,.5(§7) ar 9ap by b3 by bo

Since 1777 = —1. we have ag+a; = +4 (mod 16) and S bi =1 (mod 2).
Replacing 9 by Q7" if necessary, we may assume that bg = 1, bo =0 (mod 2). Then
b1 = bz (mod 2). Since A3 (Qo) is cyclic by Proposition 5.1l Im ¢g, (¢, ¢ 2[16, 16],
ie,, ag =a; =1 (mod 2). Then

1 0 0 b 1 0 00 a a 1 0 0 O
01 b bu 8 — Z—é 100 . 0 0 1 0 10
0 01 O —9 0 1 0 |"ST 0 0 11 00
0 0 0 1 10 3 2 1 0 0 0 0 11

Hence we have Ag(Q2) ~ [2,16]. Recall that ra(As(kz)) = 1. If (£) = 1, ¢ splits
completely in ko /Q. Then the exact sequence

E(k‘g) <p2>z [QQ, 2}34{2 , 207, 2}34{3 , 200, QQO.,YQ , 2007, QDUWS] — Az(k‘g) —0

yields that |Ax(k2)| = 2. Suppose that (%) = —1. We choose g40, = Iavink, =

ga~i commonly for all i. Then z, = gggkﬂ) (mod ¢) with some odd u. We
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2
choose gana such that gony = g0, (mod Q). Then gany = ghhy = ggok
(mod 53'72), and gavny = ggﬂM satisfies gavnm = gq0, (mod Q7) and gavnm =
a0, (mod Q“’s). Then we obtain a commutative diagram

$Qs,2
E(Q2) —2> [QQQQW 25372 NnQy? 29“’0@2 s 21]73 ﬂ@z} —0

lm Lo,

Phsy,
E(ky) — 22 251, 2000, 288 26 L) ————— As(ky) ——— 0
U P
T Ph1,2 e+1 T eill \
Blk) —— 25 o5l ] A (k) ——— 0
U Yo
M,z e e
E(M) —————— [25h 255 ] ———— As (M) — Ay(M)

with exact rows, where e = wva(q + 1) > 4, ¢y, (zo,21) = (x0,T0,71,%1),

Y (2o, 21) = (%0, g0, 71, gx1) and ¥g, (Yo, Y2, Y1, Y3) = (2°v0, 2°y2, 2°Y1, 2°y3). By
©3), As (k1) ~ Z/2Z. Recall that As(M) ~ [2,2] and Ag(M) ~ Z/27Z. Note

that ¢k, »(7) = (x1,x0) if Yk, n(€) = (zo,x1) and that g n(e?) = (gz1,x0) if
emx(e) = (zo,z1). Therefore Imypy, » = ((1,1),(2,0)) and Impyys =
((1,1),(2,0)). Then
Py 2 (E(M)E(k1)) = ((1,1,1,1),(2,2,0,0), (1,4, 1,9), (2,24,0,0))
and ¢y, 5(E(Qg)) = 2¢[2¢11, 2041, 2¢H1 2¢81] C oy, (E(M)E(k1)). Thus we have
Oy = (E(Q2)E(M)E(k1)) = ((1,1,1,1),(2,2,0,0), (2,0,2,0), (4,0,0,0)).
Since [Im g, 5/, 2 (E(Q2) E(M)E(k1))| < 4 and
2671, 207 20 25 Jop, (E(Q2) E(M)E(ky)) = [2,2,4],
we have |As(ko)| > 4. Thus the proof of Lemma [6.5] is completed. O

Lemma 6.6. If { = 9 (mod 16), (%)4 =1, ¢ =7 (mod8) and (%) = 1, then
Gs(Q1) is nonabelian.

Proof. Recall that E(k1) = (—1,e2,€4,/22¢) (cf. the proof of Lemma [B5). Let o
(resp. ) be a generator of Gal(ki/Qy) (resp. Gal(ky/k)). Let £ (resp. Q) be a
prime of k; lying over I (resp. ¢). We choose z; (resp. z4) as the primitive elements
of residue fields F, (resp. F,). Then we obtain the commutative diagram

Ph,s

E(k) ———— [8 /70, » 200k: 2070k] Ag(k) 0

In L
E(ky) =% 84,80+, 20, 207, 20+, 200+1] —— Ag(ky) — 0

Tu Tva

¥Qq,S
E(Q) 81, 8175 20nQ; » QQWQJ — As(Q) ——0

with exact rows, where wk (1'7 Yo, yl) = (xa x, Yo, Y1, Y0, yl) and 'l/}Q1 (an Z1,Y0, yl) -
(z0,1,Y0,Y0,Y1,¥1)- Recall that 5;+W = —land A4 (Q1) = 0. Since ra(Ag(Q1))
= 1 by Proposition (.1l we have

_(pus(=D)\_(4 4 1 1
UQ“S< vo,.s(e2) ) \w 4—u b b+1
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with some v = 1 (mod 2) and b € {0,1}. Then one can easily see that Ag(Q;) ~
2,8]. Since ;77 = —1, we have i s(c¢) = (a,d,d + 1) with some a = 2
(mod 4) and d € {0,1}. Since e3¢ € FE(k1)? and €7 = 1, we have ¢y, s(ea0) =
(¢,¢,0,0,0,0) with some ¢ =0 (mod 4). Put

Prr,s(—1) 4 4 1 1 1 1
B Yk, s(€2) u 4—u b b b+1 b+1
Wk1,5 = (pkl,s(eg) o a a d d+1 d d+1
<Pk1,S(52£) c c 0 0 0 0
Then
-1 0 2 0 001111
-b 2 0 1t 30011
~d 0 2424 0 |57 2 2 01 0 1
0o 0 £ 1 000000

This yields that [8,8,2,2,2,2]/¢k, .s((—1,€2,¢0,€2¢)) =~ [8,2,2]. Hence |Ag(k1)| =
|Coker @i, 5| > 21[8,2,2]| = |As(Q1)|- This implies that Gs(Q1) is nonabelian.
Thus the proof of Lemma is completed. a

Now we complete the proof of Theorem Put ¥ = {q}. Since £ =1 (mod 8)
and ¢ = 3 (mod 4), Q%/Q is a cyclic extension of degree at least 8, which is
totally ramified at £. Hence r4(As(Q,)) > 1 for all n > 0. Moreover, G5(Qx)
is not procyclic by Proposition [6:2] and hence ry(As(Qy)) > 2 for all n > 1 by
Theorem @3] If r2(As(Qy)) = 2, Theorem BN for (k,/Qn, Sg, , X0, ) yields that
(@n)‘g}&“\{s} # Q, for £ € Sg, \ Xg,- Then Q%b((@n)gl;:l\{ﬂ}/kn is a noncyclic
abelian extension. Therefore ro(Gal((Q,,)2/ky)) = 2 if ra(As(Qy)) = 2.

First, we prove the if-part. Assume one of the two conditions, and suppose
n > 1. Then (%)4 4 (=1)F". Since £ =9 (mod 16) or ¢ = 3 (mod 8), we have
r2(As(Q,)) = 2 by Lemma 6.1} and hence 12(Gal((Q,,)%/k,)) = 2. Recall that
r4(As(Qq)) > 1. For any n > 2,

r4(As(Qn)) =1 and |As(kn)| >4 if £=9 (mod 16), ¢ =7 (mod 8), (%) = —1,
r4(As(Qp)) =2 and |As(k,)| =2 if £=1 (mod 16), ¢ = 3 (mod 8), (%) =1

by Lemma and Theorem 43l Hence Gs(Q,,) is metacyclic for all n > 2 by
Theorem BII2), @) for (k,/Qu, Sg,,Xq, ). Therefore Gs(Qo) is prometacyclic.

Conversely, we assume that Gs(Qos) is prometacyclic. Then Gy} (Qoo) is also
£—1

prometacyclic. Suppose that (%), = (=1)"s . Then, since £ = 9 (mod 16) and
(2), = —1 by Theorem 5.2, we have r4(As(Qn)) = 2 and [Ag(k,)| > 4 for all
n > 2 by Lemma [64 Theorem BIIR) for (k,/Qn, Sg,,Xg, ) implies that Gs(Qy,)

is not metacyclic if n > 2. This is a contradiction. Therefore (2) A F (—1)%.
Since G(Q) is nonprocyclic prometacyclic, we have ra(Ag(Q,)) =2 foralln > 1
by Theorem[£3] In particular, ro(Ag(Q2)) = 2, and hence r2(Gal((Q2)%/k2)) = 2.
Also, £ =9 (mod 16) or ¢ = 3 (mod 8) by Lemma [6.I] We apply Theorem B.T] for
(k2/Q2, Sg,; Xq,)- Since Gg(Q2) is metacyclic, r4(Ag(Q1)) =1 or |As(k2)| =2 by

Theorem[B.II[2). Hence, if ¢ = 3 (mod 8), we have £ = 1 (mod 16) (i.e., (%)4 =-1)

and (%) = 1 by Lemma This is one of the two conditions. On the other
hand, we assume that £ = 9 (mod 16) (i.e., (%)4 = 1). Then ¢ = 7 (mod 8),
and Sg, \ Xg, = {l0g,,"0g,}. Lemma yields that Ag(Qz) ~ [2,16]. In

particular, 14(Ag(Q2)) = 1 and |Og,/I| = [Og,/"| = £ # 1 (mod |As(Q2)]).
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Since (Qg)?[egi/(@l is a [2, 2]-extension and [7 is inert in Q2/Qy, I"Oq, splits in the

quadratic extension (Qg)?lf(‘ﬁ /Q2 ramified at [Og,. Hence the conditions (L), (4d)

of Theorem Bl are satisfied. If (£) = 1, we have |Ag(k2)| = 2 by Lemma 6.5 and
Gs(Q2) is nonabelian (i.e., {a) is also satisfied) by Lemma Then Theorem
BIE) yields that Gs(Qs2) is not metacyclic. This is a contradiction. Therefore,
q¢=7 (mod 8) and (%) = —1if =9 (mod 16) (i.e., (3), = 1). Thus the proof of
Theorem [6.3] is completed. ]

7. THE CASE OF OTHER S = {ry,rs}

This section treats the cases where S = {ry,r2} and 1 = 72 (mod 4). First,
we consider the case S = {{1,¢>}. The following theorem is a partial refinement of
[19, Theorem 2].

Theorem 7.1. Put S = {{1,{2} with two distinct prime numbers £, =1 (mod 4)
and l3 = 1 (mod 4). Then Gg(Qu) is prometacyclic if and only if one of the
following two conditions holds:
(1) 44 =03 =5 (mod 8) and |Ag(Q1(v/1142))| > 4.
(2) ;=1 (mod 8), (%)4(%)4 =—-1and ¢; =5 (mod 8) for (i,5) = (1,2) or
(2, 1), and |A@(Q1(\/€1€2))| = 2.

Proof. Since r2(As(Q)) = 2, Gs(Qy,) is not cyclic for all n > 0. Put k = Q(1/{143).
Then 2 < r3(As(Qy)) = 1+ ra(Ag(ky)) for all n > 0 by @I) for (k,/Qn, So,,?).
Theorem 3] implies that G(ks)?P is procyclic (i.e., ra(Ag(k,)) = 1 for all n > 0)
if and only if ra(Ag(k1)) = 1. Since r2(As(Q1)) = 2 if Gs(Q) is prometacyclic,
it suffices to consider only the case where r2(Ag(k1)) = 1. If {1 =43 =1 (mod 8),
then Gy (koo )P is not procyclic (cf. e.g. [20, Theorem 3.8]). Hence, replacing (1, ¢2)
by (€2, ¢1) if necessary, we may assume that £ = 5 (mod 8). Then ra(Ag(k1)) =
1 if and only if ¢4 = 5 (mod 8) or {; = 1 (mod 8) and (%)4(%)4 = —1 (ct.
[20, Theorem 3.8]).

Assume that ¢; = o = 5 (mod 8). Then Ag(Q) ~ [2,4]. Note that v acts
on Og, /{; =~ Fj2 as the Frobenius automorphism for each i. Choosing g¢,0,, and
9,04, » We obtain the exact sequence

E(Ql) «P&)s [8@10@1 s 8420@1] — As(Ql) — 0.

Since ra(As(Q1)) = 2, ¢g,,s(e2) = (a,b) with some a, b € 2Z. Since (4,4) =
©0,.5(—1) = vg,.5(e5t") = (€1 + 1)a, (b2 + 1)b), we have a = b = 2 (mod 4).
Then Ags(Q;) ~ [2,8], and hence Ag(Q,)/4 ~ [2,4] for all n > 0 by Theo-
rem @3 Moreover, |Og,/t1] = |Og,/l2] Z 1 (mod |As(Q1)]). Since Gg(Q) is
nonabelian (cf. Remark [22)), Gg(Q1) is also nonabelian. Moreover, £20q, splits
in Q1(vf) = (Ql)?;l‘? Hence the conditions (@al), (D) and @d) of Theorem
B for (k1/Qi,Sg,,0) are satisfied. Since Q%" /k is a [2,2]-extension, we have
r2(Gal((Q,)2P/ky)) = 2 for any n > 0. Hence, if [Ag(k1)| = 2, then Gg(Q1)
is not metacyclic by Theorem BIIE) for (k1/Qi,Sg,,?). On the other hand, if
|Ap(k1)| > 4, then |Ay(k,)| > 4 for all n > 1, and hence Gs(Q,,) is metacyclic for
all n > 1 by Theorem BIB) for (k,/Qu, Sg,,0). Therefore Gg(Qo) is prometa-
cyclic if and only if |Ag(k1)| > 4.

Assume that ¢ = 1 (mod 8), (%)4(5—1)4 =—1land o =5 (mod 8). Let [ be a

2
prime of Q lying over £;. Choosing g = gi» = z¢, and gs,0,, , We obtain the exact
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sequence
$Qq,
B(Q)) = [2{",2(%,80,04,] = As(Q1) = 0

B s0@1)5(_1) B 2m—1 2m—1 4 )
YQs = < ©Q,,s(€2) ) N < ag a b )’
where m = vy(f; — 1) > 3. Since 5™ = —1 and ry(As(Q1)) = 2, we have
ag = a; = 1 (mod 2) and b = 2 (mod 4). Then Ag(Q;) ~ [2™,4], and hence
r4(As(Qy)) = 2 for all n > 1. For any n > 1, Theorem BI2) for (k,/Q,, Sg,,?)
yields that Gg(Q,,) is metacyclic if and only if |Ay(k,)| = 2. Theorem 3] implies
that Gs(Q) is prometacyclic if and only if |Ag(k1)] = 2. Thus the proof of
Theorem [1] is completed. |

and

For a real quadratic field &, the 4-rank r4 (Ao} (k)) of the narrow class group of k
can be calculated by the theorem of Rédei and Reichardt [25] (cf. [II, Proposition 1]),
and whether Gy(k) is abelian or not can be decided by the theorems of Benjamin,
Lemmermeyer and Snyder [I]. Hence the two conditions of Theorem [Tl can be
written in the words of power residue symbols as follows.

Lemma 7.2. Let {1 and {5 be distinct prime numbers such that {1 = 1 (mod 4) and
ly =5 (mod 8). When {1 =5 (mod 8), we have |Ag(Q1(v?102))| > 4 if and only if
(%) = (%)4(%)4 =1 or (%) = (%)4(%)4(%)4 = —1. When ¢; =1 (mod 8)
and (%)4(%)4 = —1, we have |Ap(Q1(v/l102))| = 2 if and only if (ﬁ—;) =-1.

Proof. Put k = Q(/l1l3) and k' = Q(+/20103). Then ry(Ag(k')) = 2. Since
(K')gle™ = k1 (V1) C (k1)§°™, we have |Ag(k1)| = 2 if and only if Gy(K') ~ [2,2].

Suppose that £; = 5 (mod 8). Then, since A} (k') ~ Ag(k) =~ [2,2] by [25]
(cf. [Il Proposition 1]), |Ag(k1)| > 4 if and only if Gy(k’) is nonabelian. Hence
[1, Theorem 1] implies the claim for the case £; =5 (mod 8).

Suppose that £ = 1 (mod 8) and (%)4(%)4 = —1. If Gy(k') is abelian and
(g—;) =1, we have Ny q(€2¢,6,) = —1 by [I, Theorem 1]. Then Ay(k’) ~ Aoy (K'),
and hence r4(Ag(k")) > 1 by [25] (cf. [1I, Proposition 1]). Hence (5—;) = —1if
Go(K') ~ [2,2]. Conversely, if (%) = —1, then Gy(k') is abelian and r4(Ay(k')) =0
by [1, Theorem 1] and [25] (cf. [, Proposition 1]). Thus we obtain Lemmal[72 O

The next theorem treats the case S = {q1, ¢}

Theorem 7.3. Put S = {q1,q2} with two distinct prime numbers ¢ = 3 (mod 4)
and g2 = 3 (mod 4). Then the following two statements hold true:
(1) Gs(Qwx) is procyclic if and only if ¢ = 3 (mod 8) or g2 = 3 (mod 8).
Then
Rz ifg1=¢ =3 (mod 8),
Gs(Qoo) = { Z/27 if ¢1 £ g2 (mod 8).

(2) Gs(Qoo) is nonprocyclic prometacyclic if and only if (1 = g2 =7 (mod 8)
and q1 # ¢ (mod 16). Then G5(Qus0)* ~ [2,2].

Proof. Put k = Q(\/q1qz) = Q%. For each n > 0, r2(As(Qy)) = 1 + ra(Ag(kn))
by BI) for (kn/Qn,Sp,,0). Hence Gs(Qu) is procyclic (ie., Ag(k,) ~ 0 for all
n) if and only if g1 = 3 (mod 8) or ¢o = 3 (mod 8) by [20, Corollary 3.4] (and
23]). If ¢1 = g2 = 3 (mod 8), then Gs(Qu)?’ is infinite, i.e., G5(Qs) =~ Zy by
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[9, Theorem 1.1]. If ¢; # ¢2 (mod 8), 2 is inert in k¥ = Qg. Then, since Ag(k) ~ 0,
Gs(kso) is trivial by Proposition Il Therefore Gs(Qs) ~ Gs(Q) ~ Z/27.

On the other hand, 15(A5(Q,)) = 2 for all n > 1 (i.e., Gy(kso)* is nontrivial
procyclic) if and only if g1 = g2 = 7 (mod 8) and ¢; = 7 (mod 16) for 4 = 1 or 2
by [20, Theorem 3.8] and Theorem A3l If Gs(Qs) is nonprocyclic prometacyclic,
then ro(Ag(Q,)) = 2 for all n > 1 by Theorem 3] Hence, replacing (¢1,¢2) by
(g2, q1) if necessary, it suffices to consider only the case where ¢; = 7 (mod 16) and

¢2 =7 (mod 8) for the second statement.

Lemma 7.4. Assumeq; =7 (mod 16) and g2 =7 (mod 8). Then Ag(Q1) ~ [2,2].
Moreover, the primes of ki lying over 2 split in (Ql)‘glem if and only if g0 = 7
(mod 16).

Proof. We regard « as a generator of Gal(k1/k). Let 2; be a prime of k; lying over
¢;- Choosing z,, € Z as the primitive element of FFy,, we obtain the commutative
diagram

¥Qq,s
E(Q1) — [2a,n0:, 20700, 20.001» 20700, ] — > As(Q1) ————— 0

I || l
#Qq,S
Zl 51— [20,ne:: 20700: 29:0015 203n0, ] — As(Q1)/([V20q,]) —— 0

with exact rows, where f, s|E(Q,) = ¥o,,5 and @bhs(\/ﬁ) = (a1, b1, az, by) with a;,
b; € Z such that /2 = zg (mod £;) and V2= 20 (mod Q7). Since ¢g, s(—1) =
(1,1,1,1) and A3 (Q1) =~ 0 (ie., g, g Is surjective), we may assume that
©0,.s(e2) = (1,0,1,0), replacing Q; by Q) if necessary. In particular, we have
As(Q1) ~ [2,2]. Since 2§ = V2 = —zb (mod Q7), we have a; = 14 b; (mod 2),
ie., cp(’@lys(agx/ﬁ) = (b1, b1,b2,b2). Note that Q; N Q; is inert in Qo = Q( 52\/5)
(ie., Veav2 & Z,,) if and only if ¢; = 7 (mod 16). Hence b; = 1 (mod 2) if and
only if ¢; =7 (mod 16). Therefore by = 1 (mod 2), and

o (\/5) _ (0,1,0,1) e Impg, s if =7 (mod 16),
e (0,1,1,0) € Imgq,,s if g2 =15 (mod 16).

This implies that the prime \/50@1 splits completely in the [2,2]-extension

(Q1)g™/Qy (ie., ([V20g,]) =~ 0) if and only if go = 7 (mod 16). Since v20q,
splits in k1 /Qy, we obtain the claim. O

Assume that g1 =7 (mod 16) and g2 = 15 (mod 16). Since Ay, }(Q2) =~ 0, the
snake lemma for the commutative diagram

Bg,,
E(Q2) ® Zs 25, (Og,/q192)* ® Zg — As(Q2) —— 0

! I l

0 ——Im®g, 5} — (On,/q1)™ @ Lz ——— A(4,}(Q2)

with exact rows induces a surjective homomorphism [2,2,2,2] ~ (Oq,/q2)* ®Za —
Ag(Q2). Since r2(Ag(Q2)) = 2, this implies that Ag(Q2) ~ As(Q1) ~ [2,2]. Then
G5(Qu0)?? ~ [2,2] by Theorem A3] and hence Gs(Qx) is prometacyclic.

Assume that ¢; = g2 = 7 (mod 16). Let p; be a prime of k; lying over 2. By
Lemma [T4] p; splits in (Q1)%°™. On the other hand, we have G5(Qo)*® ~ Z3 by
[9, Theorem 1.1]. Hence G5(Qx) is abelian if Gg(Qoo) is prometacyclic. Recall that
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ro(Ag(kn)) = 1 for all n > 1. Since the generator of Gal(k,/Q,,) acts on Ag(ky)
as —1, Gal((ky)3"/Qp) is nonabelian if [Ag(k,)| > 4. Suppose that Gg(Qs) is
prometacyclic. Then |Agy(k,)| = 2 for all n > 1. In particular, Ay(k,) = Ag(k,)"
and (Q1)g°™ = (k1)3P. Since Ny, /i, : Ag(kn) — Ag(k1) is surjective, we have
Ap(ky) = ([pi”mb by [8, Theorem 2], where hy is the class number of k;. This
implies that p; is inert in (/ﬁ)%b = (Qq)¢°™. This is a contradiction. Therefore
Gs(Q) is not prometacyclic if ¢ = g2 =7 (mod 16). Thus the proof of Theorem
is completed. O

Lemma [7.4] above induces the following corollary which we need in the proof of
Theorem [[1]

Corollary 7.5. Put k = Q(\/q1q2) with prime numbers ¢ = 7 (mod 16) and
g2 =15 (mod 16). Then Gy(kso)? is finite cyclic.

Proof. By [20, Theorem 3.8] and Theorem 3] we have ro(Ag(k,)) = 1 for all
n > 1. Let pg be a prime of k lying over 2 and p,, the prime of k,, lying over py. Put
S ={q1,¢2}. By Lemmall4 Ag(Q;) ~ [2,2], and p; is inert in (Q;)%°™ = (kl)‘élcm.
Therefore, p, is also inert in (k,)§™; ie., Ag(kn) = <[p22‘]> for any n > 1, where
h!, is the maximal odd factor of the class number of k,. In particular, Ay(k,) =
Ag(kp)T for all n > 1. Since ko, is the unique Zg-extension of k, |Ag(k,)!| is
bounded as n — oo (cf. [8, Proposition 1]), and hence Gy (koo )P is finite cyclic. O

8. THE CASE S = {r1,r2,73}

If Gs(Q) is prometacyclic for S = {ry,rs,r3} (and {2,00} NS = ), then
r2(As(Q)) < 2, and hence S contains at least one prime ¢ = 3 (mod 4).

Proposition 8.1. If S = {{1,0s,q} with three distinct prime numbers {1 = 1
(mod 4), {3 =1 (mod 4) and ¢ = 3 (mod 4), then Gs(Qu) is not prometacyclic.

Proof. Note that r4(As(Q)) = r2(As(Q)) = 2. Suppose that Gg(Qu) is prometa-
cyclic. Then r4(As(Q1)) = 12(As(Q1)) = 2, and (Quo)¥°™/Q is a [2, 2]-extension.
For each i € {1,2}, since Quo(v7;) C (QOO)?ZT’ we have Qo)™ # (Qoo)esl\ef{rzi}v
and hence (Qoo)g\er{rzi}/Qoo is a quadratic extension; i.e., G\ (4,3 (Qoo) is procyclic.
Proposition yields that ¢ = ¢ =5 (mod 8). Put k = Q(v/¢142) and ¥ = {q}.
Since Gy, 4,1 (Qxo) is also prometacyclic, we have |Ax(k1)| > [Ag(k1)| > 4 by The-
orem[7 Il Then Gg(Q1) is not metacyclic by Theorem B2 for (k1/Q1, Sg,, Xg, )-
This is a contradiction. Thus we obtain the statement. ]

Theorem 8.2. Put S = {{, q1,q2} with three distinct prime numbers ¢ = 1 (mod 4),
¢1 =3 (mod 4) and g2 =3 (mod 4). Then Gs(Qu) is prometacyclic if and only if
one of the following two conditions holds true:

(1) £=5 (mod 8), g1 = g2 = 3 (mod 8), (&) = —1.

(2) ¢ =5 (mod 8), ¢; = 3 (mod 8), ¢; = 7 (mod 8), (%) = -1 for (i,j) =

(1,2) or (2,1).

Moreover, we have Gy(Qoo(v2q1q2)) = Z./27Z under each of these conditions.
Proof. Put k = Q(v/fq1q2). For each n > 0, 12(A45(Qy)) = 1 + 12(Ag(kn)) >

2
by @) for (k./Qn,Sg,,0). Then r(As(Qy)) = 2 for all n > 0 (i.e., Gg(koo)?®
is procyclic) if and only if £ = 5 (mod 8) and ¢; = 3 (mod 8) for ¢ = 1 or 2 by
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[20, Theorem 3.8]. Since r3(Ag(Qy)) = 2 for all n > 0 if Gg(Qs) is prometa-
cyclic, it suffices to consider only this case. Replacing (¢1,q2) by (¢2,q1) if nec-
essary, we may assume that £ = 5 (mod 8) and ¢; = 3 (mod 8). Then, since
r2(A5(Q,)) = 2, we have (Qn)eslgm\{i} = Qn(VY) for [ = ¢10g, by Theorem BII(T).
Since Q?qu}(@n /Qy, is a cyclic quartic extension which contains (@n(\/Z), The-
orem BI@) for (k,/Qn,Sg,,0) yields that Gs(Q,) is metacyclic if and only if
|Ap(kn)| = 2. Theorem A3 implies that Gs(Qs) is prometacyclic if and only if
|Ap(k1)| = 2. Put ¥ = Q(v20q1qz). Since (K/)§™ = ki (VE) C (kp)gem, we
have |Ag(k1)| = 2 if and only if Gy(k') ~ [2,2]. By the theorem of Rédei and
Reichardt [25] (or [2, Proposition 1]), Ag(k') ~ [2,2] if and only if at least one
of (q%), (%1), (qu) is 1. Then Gy(k') ~ [2,2] if and only if (q%) = (%) = -1

or (q%) = —(%) = 1 by [1, Theorem 2] (or [2 Theorem 2]). Thus the proof of

Theorem is completed. O

Theorem 8.3. Put S = {q1,q2,q3} with three distinct prime numbers ¢ = 3
(mod 4), g0 = 3 (mod 4) and g3 = 3 (mod 4). Then Gs(Qo) is prometacyclic if
and only if g1 = ¢2 =3 (mod 8), g3 = 7 (mod 8) and (%) = —1 after a suitable
permutation of the indices.

Proof. Since (Qoo)g'i{qi}ﬂ((@oo)g'i{qj} = Qo for any distincet i and j, Gg\ 14,3 (Qoo)?®
is procyclic for any ¢ if Gg(Q) is prometacyclic. Theorem [I3] implies that
GS\{qi}(Qm)ab is procyclic for any i if and only if at least two ¢ € S satisfy
g = 3 (mod 8). If all of ¢ € S satisfy ¢ = 3 (mod 8), Gs(Qs) has a quotient
Gs\{a1} Qo) X Gs\{g21(Qoo) ~ Z3 by Theorem [T3l Then, since Gs(Q) is non-
abelian (cf. Remark 22)), G5(Qu) is not prometacyclic. Hence, permuting the
indices if necessary, it suffices to consider only the case where ¢; = g2 =3 (mod 8)
and g3 = 7 (mod 8). Then, since the inertia group I,, C Gs(Q,)" of the prime
¢20q, is cyclic and Gg(Qp )™ /14, ~ Agy, 453(Qn) ~ Z/27 by Theorem[T.3] we have
r2(As(Qr)) =2 and r4(As(Qy)) <1 for all n > 0.

Put & = Q(\/q1q2) and k' = Q(v/2¢1q2). Then Ay(k,) ~ 0 for all n > 0 by
[23, Theorem]. We regard « as the generator of Gal(k;/k). Since —1 = &3 €
E(k1)'™7, the genus formula (1))

22
= AEE B
for ki /k yields that +e,, 4, & F(k1)' ™. Hence Kuroda’s formula (2:3)
1= [Ag(k1)| = 471 Q(k1/Q)|Ap(Q1)]| Ap (k)| Ap(K)| = 27 Q (k1 /Q)

implies that E(k1) = (—1,€2,€4140, \/C2q1q2)- Let Q; be a prime of k; lying over
gi- Then Q; N Qy = ¢;0q, for i € {1,2}. Choosing 94104, » Y4204, and ga,ng, =
99)nQ, = %g¢s € Z, we obtain the exact sequence

1= [Ag(k1)

$Q1,S
E(Ql) — [8(110@1 ’ 8q20Q1 ) 21}30@1 ) 2}3%(‘]@1} - AS(Ql) — 0.

Since Coker g, 14,3 =~ Afq;}(Q1) ~ 0 for all i € {1,2,3}, replacing Qs by Q3 if
necessary, we may assume that

_ le’s(—l) _ 4 4 1 1
YQu.s <(pQ1,s(€2) ay a 0 1
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with a1 = a2 =1 (mod 2). Hence an easy calculation shows that Ag(Q;) ~ [2, 8]
and Ay, 4,3(Qq) ~ Z/8Z. This implies that ro(Gal((Q,)% /ky)) = 2 for all n > 1.
Moreover, we have r4(Ag(Q,)) = 1 for all n > 1. Put ¥ = {g3}. Then @BI) for
(kn/Qn, Sg, , X, ) yields that ro(Ax(k,)) =1 for all n > 0.

Assume that (%) = —1. We choose ga, = ga7 = 9g;0, and gg,0,, such

that gg,0,, = ga, (mod Qz). Then gggzs)“ = z4, (mod g3) with some odd u.

: v — — v
Moreover, since g,. o , = ggo0,, (mod g3), we have gg,0,, = gQJ;, (mod £Q3). Then
we obtain the commutative diagram

(@1) [21330@1 ) 22”0@1] —0

In L,
BE(ky) —222 23,23 ] —— As (k1) ——— 0

TU Pk,x ka \

Ek) ————7Z)2"2 —F—  As(k) ——0

Py
U ,
B —22 sgjomg— 5 Ag(K) —— )27 —— 0
with exact rows, where m = va(q3 — 1) > 4, v¥g,(z0,71) = (2™ zg, 2™ 1ay),

Yr(x) = (z,7), and Yy (x) = (z,g32) = (2, (2™~ 1 —1)x). Since k(y/q1¢3) C k& and
k1(y/q1q3) C (K2, we have |Ax(k)| > 2 and |As(k')| > 4. Hence i x(g414,) =
(2a) and g % (€2¢,4,) = (2b) with some a, b € Z. Then

Ok, 2 (—1) 2m-1 2m-t
A Pk, 5 (2) _ 0 2m-1
o @khz(&h(h) 2a 2a
onl,E(\/E:quqQ) b+2m_160 —b+2m_161

with some eg, e; € {0,1}. Since ro(Ax (k1)) = 1, we have b =1 (mod 2). Then

10 0 2nt 1 0 0 0 0 0
010 0 0o 1 0 0 | o 2m-t
001 -2 0o o0 1 0 |"™=T10 4a |’
000 1 S 1 -1

and hence |As(k1)| > 4. By Theorem BIIB) for (k,/Qn,So,,Xq, ), Gs(Qy) is
metacyclic for any n > 1. Therefore Gg(Qo) is prometacyclic if (qlqz) =—1.
Assume that (qégz) = 1. Then g3 splits completely in k;/Q. Since there is
a surjective homomorphism [2q,,2ag,207,2957] = As(k1), we have [Ax (k)| =
2. We apply Theorem Bl for (k1/Q1, Sg,,Xq,). Since Gg(Q) is nonabelian (cf.
Remark 22), Gs(Q1) is also nonabelian. For each i € {1,2}, |Og,/q:| = ¢? # 1
(mod |As(Q1)|). By Theorem BI[), (Q )° Cm{[O} Q1(y/q1q3) for Iy = ¢20q, .
Since Q1(1/q1¢3)/Q is a [2, 2]-extension, the prime ¢2Oq, splits in Q1 (1/q1¢3). Hence
no prime in Sg, \ Xq, is inert in Q1 (,/q1¢3)/Q1. By Theorem B.IH), Gs(Q1) is not
metacyclic. Therefore Gg(Qo) is not prometacyclic if (ql‘“) = 1. Thus the proof

of Theorem R3] is completed. O
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9. THE CASE 0o € S

For a finite extension k/Q, the Iwasawa A-invariant A(k) is defined as the 2-rank
of the maximal free abelian pro-2 quotient of Gy(ks). Then there is a surjec-
tive homomorphism Gy(ks )P — Z;‘(k) with torsion kernel. First, we prepare the

following lemma.

Lemma 9.1. Let S be a finite set of primes of Q not containing 2 and K/Q a finite
extension such that Koo C (Qoo)s. If Gs(Qoo) is prometacyclic, then A\(K) < 1.

Proof. Assume that A(K) > 2. Then there are surjective homomorphisms Gg(K )
— Gy(Ks)®® — Z2Z. Suppose that G5(Qu) is prometacyclic. Then there exists
a procyclic extension M/Q. such that (Qu)s/M is also a procyclic extension.
Moreover, since Gs(Ko) is also prometacyclic, we have Gg(Ky) =~ Z3. Then

(QOO)S = (Koo)ab'

(QOO)S
K KoM
Quw —KNM— M

Hence KoM /K is an unramified Zs-extension. Since [Ko : Koo N M] < [K :
QJ, any prime has finite ramification index in Ko oM /(Ko N M). On the other
hand, since G{}(Qoo) =~ 1 (cf. Corollary B2) and M/(Ks N M) is also a Zy-
extension, M/Qu is a Zs-extension totally ramified at some v € Sgp_ . Then the
primes lying over v have infinite ramification indices in Koo M /(Ko N M). This is
a contradiction. Therefore Gg(Qo) is not prometacyclic if A(K) > 2. Thus the
proof is completed. O

We recall Kida’s formulas [12] for the A-invariants. Suppose that k/Q is an
imaginary abelian extension unramified at 2. Then k NQy, = Q, vV—1 & ko and
the p-invariant is zero (cf. [I2, Remarks (i)] or [29] §7.5]). By [12, Theorem 1], we
have

(9-1) A(k) = A(kET) +r2(Agooy (k) — 1+ s(kn/ky})

for all sufficiently large n, where k* = kN R, and s(k,/k;") denotes the number
of prime ideals of k, ramified over k. Moreover, Gg(koo)®P ~ Z;‘(k) if k is an
imaginary quadratic field with odd discriminant (cf. [6] or [I1, Theorem 1]). Let
K be a CM-field such that K/k is a finite 2-extension. Suppose that K., /Qs is

unramified at any prime lying over 2. Then -1 ¢ K, and we have
(9:2) AME) = MET) = [Koo : koo](A(R) = AET)) + 32, (e — 1) = 30,4 (€0 — 1)

by [12, Theorem 3], where K = K NR, v (resp. v*) runs over all nonarchimedean
primes of K, (resp. KI), and e, (resp. e,+) is the ramification index of v in
Koo /koo (vesp. v in K1 /kL). Using these formulas, we obtain the following
theorem.
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Theorem 9.2. Let ¥ be a finite set of odd prime numbers, and put S =3 U {co}.
Then the following two statements hold true:
(1) Gs(Qu) is nontrivial procyclic if and only if ¥ = {r} and (2) = —1. Then
GS(QOO) >~ Zg/(?“ - 1)22
(2) Gs(Q) is nonprocyclic prometacyclic if and only if ¥ = {q} and ¢ = 7
(mod 16). Then Gs(Qu) is isomorphic to a prodihedral pro-2 group Za x
(z)27).

Proof. If Gs(Qx) is nontrivial prometacyclic, then |X| = ro(Gs(Q)2) < 2. More-
over, ¥ # () by Corollary Hence it suffices to consider the case 1 < |X| < 2.

Assume that ¥ = {r} and (2) = —1. Then 2 does not split in k¥ = Q%. Since
k/Q is cyclic, we have k = Qg. Since G5(k)*® ~ 0, Gs(koo) is trivial by Proposition
A1l This implies that (Qs)s = koo Hence Gs(Qo) =~ G5(Q)2P ~ Zy/(r — 1)Zs.

Assume that ¥ = {{} and £ = 1 (mod 8). Put k = Q%. Then k/Q is a
cyclic extension totally ramified at ¢, and hence s(k;/k{) = |Zg,| = 2. Since
Aoy (QVED)| > 4 (cf. [B0]), we hiave [Apay ()| > [ Aoy (Q2(VD)| > 2. Then
k) > r2(Agooy (k7)) = 1+ s(ky/k) > 2 by (@), and hence Gs(Qu) is not
prometacyclic by Lemma

Assume that ¥ = {¢} and ¢ = 7 (mod 8). Put k = Q(y/—¢). Since Ax(Q,) ~ 0,
the commutative diagram

E(k ) (Ok:n/\/_) ® Zy — Ax(k )—>A@(kn)—>0
I =T
E(Q) %5 (0q, /)% © By —— A5(Qu) —— 0

with exact rows yields that Gg(k,)*® ~ As(k,) ~ Ag(k,) for all n > 0. Hence
G5 (ko)™ ~ lim Ag(ky) ~ Z3™"). T g =15 (mod 16), then A(k) > —1+4s(ka/Qs) =
3 by (@), and hence GS(QOO) is not prometacyclic by Lemma Suppose that
g =7 (mod 16). Then A(k) = 1 by ([@I) (or [0, Theorem 7]). Since Ay(Q,) ~ 0
for all n > 0, the generator of Gal(koo/Quo) acts on Gg(koo) =~ @A@(kn) ~ 7o as
—1. Therefore Gs(Qoo) is prodihedral if ¢ = 7 (mod 16).

Assume that ¥ = {1,405} and ¢; = ¢, = 1 (mod 4). If (%) =1lor (%) =1,
then we have seen that Gy, -} (Qc) is not prometacyclic. Put k& = Q(v/{12).
If {1 = ¢2 = 5 (mod 8) and |Ay(kz)| = 2, then Gx(Qo) is not prometacyclic by
Theorem [TIl Note that Q%" N k(v/)5> = k(v/f) = k§™. If {4 =l =5 (mod 8)
and |Ag(ks)| > 4, then Q¥ L/ka(v/01) is a [2,2,2]-extension unramified outside
S, where L is an unramified quartic extension of ks. Therefore Gg(Qo) is not
prometacyclic.

Assume that ¥ = {¢,q} and ¢ # ¢ = 3 (mod 4). Put k = Q(/—¢) and K = Q%.
Then Ko /koo and KT /Qo are cyclic extensions unramified outside ¢ and totally
ramified at any prime lying over ¢. Since any prime of Q. lying over ¢ splits in
koo, we have A(K) = 37 4 (ep+ —1) = 37 4,3 = 3 by ([@2). Hence Gs(Qu) is
not prometacyclic by Lemma

Assume that ¥ = {q1,¢2} and ¢1 = g2 = 3 (mod 4). Since (Quo){gy,00} N
(Qoc){gz,00} = Qoos Gig1,00}(Qoo) and Gy, 561 (Qoo) are procyclic if Gs(Quo) is
prometacyclic. We have seen that G, o} (Qoo) is not procyclic if ¢; = 7 (mod 8).
Hence Gs(Qs) is not prometacyclic if (q%) =1 or (q%) = 1. Suppose that
@1 = g2 = 3 (mod 8). Then ¢; and ¢y are primes in Q. Since Gx(Qun) =~ Zo



2458 YASUSHI MIZUSAWA

by Theorem [Z3] there is a 2-extension K*/Q such that Q(,/q1¢z) C KT and
K;Lo is the unique cyclic quartic extension of Q., unramified outside . Then
K1 /Q is totally ramified at ¢; and g2. Put k = Q(v/—¢2), ¥ = Q(/—q1) and
K = KTk = KTkK'. Note that g; (resp. q2) splits in ks /Qoo (resp. k., /Qu). Then
AME) 22 3+ e L — 2prexn 3 =2 by [@2) for K/k, and hence G5(Qx) is
not prometacyclic by Lemma [0.J1 Thus the proof of Theorem [0.2]is completed. [

10. PrROOF oF THEOREM [I.1]

By Corollary B2l Gs(Qs) is trivial if and only if S C {oo} or S = {¢} and
g = 3 (mod 4) (i.e.,, Gg(Q) is trivial). Then Gy(K) is trivial for such S and

C (Qw)s = Qoo. The statement for the case co € S has been obtained as
Theorem In the following, we assume that co € S and Gg(Qx) is nontrivial.
If Gs(Qx) is nontrivial prometacyclic, Gg(Q) is also nontrivial metacyclic. Then
1 <r3(As(Q)) < 2, and hence S = {¢}, {r1,r2} or {r1,72,q}, where { = —¢ =1
(mod 4). Thus we obtain the list of all S with prometacyclic Gg(Qo), combining
the following:

- Proposition 51l and Theorem for S = {¢}.

- Proposition and Theorem for S = {ry,ra} with r1 # r3 (mod 4).

- Theorem [Tl (with Lemma [[2) and Theorem [[3 for S = {ry,r2} with
ry = ro (mod 4).
- Proposition 8], Theorem B2 and Theorem B3 for S = {ry, 79, ¢}.

Put G = Gs(Qu). Recall that I' has a generator v = 7|g.,, where 7 is a
generator of I such that J(Cynt2) = C25n+2 for all n > 0. Put n, = U2(T2§1) > 0 for
r € S. Then the decomposition field of r in Q. /Q is Q. Let t be a prime of Q,,,
lying over r. Suppose that n > n,. Since Q((yn+2)/Qp, is not a cyclic extension

and v does not split in Q,,/Q,,., tOq, splits in Q((zn+2) = Q,(/—1). Let R be a
prime of Q((an-+3) lying over v. Then Ogq, /t >~ Z[(sn+2] /R =~ F, on—n.. Note that

vy (|F Jan—nr ) =va(r?" " — 1) = 272, Since
(Oq, /) @ La =~ (Z[Can+2]/R)* ® Zz = (((an+2 mod R) ® 1) = ((an+2)
_2nr+l o

as I’ -modules, v2"" " acts on (Og, /r)* ®Zy ~ @D, ((Og, /v)* ®ZLs) as 52
for any n > n,. Put v = max{n, + 1|r € S}. Then, since there is a surjective
A-homomorphism llm((OQn/H’rES ) @ Zs) — @AS(Qn) ~ G** 42" acts on

G?* as 5%, ie., v g=7% gy % Eg52u (mod Gs) for g € G.

Let K/Q be a finite extension such that K C (Qu)s. Then Qu C Ko C
(Kso)3? C (Quo)s. We show that Gy(Ks)® is finite if G is prometacyclic. If
G is finite, then Gy(K )P is also finite. In the following, we assume that G
is infinite prometacyclic. If Gg(K’ )*" is finite for some finite extension K'/K,
then Gy(K )2 is also finite. Hence we may assume that K/Q is a finite Galois
extension such that (Qoo)‘glem C K. Let N be a procyclic closed normal subgroup
of G such that G/N is also procyclic. If G is procyclic, we assume that N is
trivial. Put M = (Quo)¥ the fixed field of N. Since Gy(Qoo) is trivial, M/Quo
is totally ramified at some prime v of Q. If G is procyclic, then (Qux)s = M,
and hence Gy(K )" is trivial. Suppose that N is finite. Then the subquotient
Gal((Kx)2 /Koo M) of N is also finite. Since G is infinite, M/Q is a Zo-extension,
and hence K. M is the unique Zs-extension of K., unramified outside S. Since
M/Qs is totally ramified at v, Koo M /K is not unramified. This implies that
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Ko has no unramified Zs-extension. Therefore Gy(K )2 is finite if N is finite.
In the following, we assume that N is infinite and G is not procyclic. Let a, b be
the generators of G such that N = (a) ~ Zs and G/N = (bN). Since Gy C N, we
have [a,b] = a* with some z € 2Zy. Then Gy = ( ) and b~ tab = a'**. Since 72

acts on G2 as 527, 7" ¢ = a% +%* and 7" b= 07" a¥* with some z, y € Zo. Hence
1=7""1=7" (a_(Hz)b_lab) _ QO+ ) (42 1),
This implies that (1 + 2)5° =1,ie,z=00rz= -2 If z=0, then G is
abelian, and G/G2 ~ Fo[[T ]]/ or (]FQ[[ 1]/T)? as Fy[[T]]-modules. If z = —2, we
have b~tab = a~! and G5 = (a?). Then [a,b?] = 1. Let H be an abelian maximal
subgroup of G such that:
- H/G? =T(G/G?) if =0 and G/G? ~F,y[[T]]/T?,
- H = {a,b?) if z = —2.

(If z = 0 and G/G? ~ (F[[T]]/T)?, then H is an arbitrary maximal subgroup
of G.) If z = 0, then T(H/G?) ~ 0, i.e., Yh = h (mod G?) for any h € H, and
hence YH = H. If z = —2 and b® € N, then G is prodihedral, and H = N is the
unique procyclic maximal subgroup. If z = —2 and > ¢ N, then 1,(G/G3) = 1,
and H is the unique maximal subgroup such that ro(H/G3) = 2. Therefore, by
the uniqueness of such H, we have YH = H even if z = —2. This implies that the
fixed field (Quo)¥ of H is a Galois extension of Q. Since v acts on G/H trivially,
(Qw)Z/Q is abelian. Hence the inertia field k of 2 in (Qs)Z /Q is a real quadratic
field, and (Quo)¥ = koo. Recall that we are assuming koo C (Quo)&°™ C Koo. Since
H is abelian, (K )3P/kso is an abelian extension. Since any prime in the finite set
Sk.. has finite ramification index in (Ku)§"/koo, Gg(koo)? is infinite if Gp(Koo)™
is infinite. Hence it suffices to show the finiteness of nontrivial Gy(ke)®P. Since
(koo )§®™/Qs is an elementary abelian 2-extension, Gy(kso) is procyclic. By the
list of S with nonprocyclic prometacyclic G and [20, Corollary 3.4 and Theorem
3.8], the real quadratic field k C Qg with nontrivial procyclic Gy(ks )P satisfies
one of the following;:

-k = Q(V0), £ =9 (mod 16), (%), = —1. Then Gy(kso)*" is finite by
[20, Theorem 4.1].
- k=Q(/ri72), 11 =72 =5 (mod 8). Then Gy(koo)? is finite by [23].
-k =Q(/rir2), 1 = (mod8),r255 (mod 8), (T2)—  (E )4(T ).
—1. Then Gy(keo)®® ~ Z/27 by Theorem 3] and Lemma [T.2
-k = Q(y/rir2), 11 = 7 (mod 16), ro = 15 (mod 16). Then Gy(koo)? is
finite by Corollary
-k =Q(/q1¢2r), ¢ =3 (mod 8), g2 =7 (mod 8), r =5 (mod 8), (£) =
—1. Then Gy(ks)®® ~ Z/27 by Theorem B2 (cf. also [20, Theorem 4.4]).
-k =Q(/q1@2T), @1 = q2 =3 (mod 8), r =5 (mod 8), (%) = —1. Then
Gp(koo)®® ~ Z/27 by Theorem
The finiteness of Gy(koo)®? has been known in each case. Therefore Gy(K o) is
finite if Gg(Qo) is prometacyclic. Thus the proof of Theorem [[II]is completed.
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