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TAME PRO-2 GALOIS GROUPS

AND THE BASIC Z2-EXTENSION

YASUSHI MIZUSAWA

Abstract. For a number field, we consider the Galois group of the maximal
tamely ramified pro-2-extension with restricted ramification. Providing a gen-
eral criterion for the metacyclicity of such Galois groups in terms of 2-ranks
and 4-ranks of ray class groups, we classify all finite sets of odd prime num-
bers such that the maximal pro-2-extension unramified outside the set has
prometacyclic Galois group over the Z2-extension of the rationals. The list of
such sets yields new affirmative examples of Greenberg’s conjecture.

1. Introduction

Let p be a prime number. For an algebraic extension k of the rational number
field Q and a finite set S of primes of (a subfield of) k, we consider the Galois group
GS(k) = Gal(kS/k) of the maximal pro-p-extension kS of k unramified outside
(primes dividing an element of) S. When the degree [k : Q] is finite, the pro-p
group GS(k) is finitely presented by generators and relations. While arithmetical
symbols describe the relations approximately (cf. e.g. [14]), it is in general difficult
to know the structure explicitly. If kS contains a Zp-extension k∞ of k, where Zp

denotes (the additive group of) the ring of p-adic integers, then GS(k) and its closed
subgroup GS(k∞) are relatively well studied also in Iwasawa theory (cf. e.g. [18]).

On the other hand, we focus on the case where S contains no primes lying over
p. Then GS(k) is a ‘fab’ pro-p group with derived series corresponding to the ray
p-class field tower of k. Such Galois groups are also studied in nonabelian Iwasawa
theory [22] as the closed subgroup GS(k∞) � lim←−GS(kn) of the finitely presented

pro-p group Gal((k∞)S/k) for the cyclotomic Zp-extension k∞ = kQ{p} (cf. also
[4], [26], etc.), where the projective limit is taken on the restriction mappings and
the subfields k ⊂ kn ⊂ k∞. While there are several explicit examples of finitely
presented GS(k∞) ([27], etc.), it is not known whether GS(k∞) is always finitely
presented or not. Moreover, one of the difficulties is Greenberg’s conjecture [8]
which states the finiteness of the Galois group G∅(K∞)ab of the maximal unramified
abelian pro-p-extension over the cyclotomic Zp-extensionK∞ of an arbitrary totally
real number field K. Then it is a supplemental strategy to consider G∅(K∞)ab as
a subquotient of GS(k∞) for a p-extension K∞/k∞ unramified outside S. We
consider these subjects in the case where p = 2 and k = Q. The main theorem
(Theorem 1.1) below gives a classification of all S with prometacyclic GS(Q∞) and
new examples of finite G∅(K∞)ab as a subquotient of GS(Q∞).
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A prometacyclic (resp. procyclic) pro-p group is a projective limit of metacyclic
(resp. cyclic) p-groups. A pro-p group is prometacyclic if and only if it has a
procyclic closed normal subgroup with procyclic quotient (cf. [5, Exercise 3.10]),
and hence a prometacyclic pro-p group is finitely presented.

In this paper, � and q denote prime numbers such that � ≡ −q ≡ 1 (mod 4),
and ∞ as an element of S denotes the archimedean prime of Q. Also

( ·
·
)
denotes

the quadratic residue symbol, and
( ·
·
)
4
denotes the biquadratic residue symbol

defined as follows:
(
z
�

)
4
= ±1 ≡ z

�−1
4 (mod �) for z ∈ Z� such that

(
z
�

)
= 1, and(

a
2

)
4
= (−1)

a−1
8 for an integer a ≡ 1 (mod 8).

Theorem 1.1. Let S be a finite set of primes of Q not containing 2, and let Q∞
be the Z2-extension of Q. The Galois group GS(Q∞) = Gal((Q∞)S/Q∞) of the
maximal pro-2-extension (Q∞)S of Q∞ unramified outside S is prometacyclic if
and only if S satisfies one of the following:

(1) S ⊂ {∞} or S = {q} and q ≡ 3 (mod 4). Then GS(Q∞) is trivial.
(2) S = {�}, � ≡ 5 (mod 8) or � ≡ 1 (mod 8) and

(
2
�

)
4

(
�
2

)
4
= −1. Then

GS(Q∞) is procyclic.
(3) S = {q, r}, q ≡ 3 (mod 4) and

(
2
r

)
= −1. Then GS(Q∞) is procyclic.

(4) S = {r,∞} and
(
2
r

)
= −1. Then GS(Q∞) is procyclic.

(5) S = {�}, � ≡ 9 (mod 16),
(
2
�

)
4
= −1 and

(
1+

√
2

�

)
4
= (−1)1+

1
2h� for the

class number h� of Q(
√
2 +

√
2,
√
�). Then GS(Q∞) is not procyclic.

(6) S = {r1, r2} and one of the following is satisfied:
· r1 ≡ 5 (mod 8), r2 ≡ 5 (mod 8),

(
r1
r2

)
=

(
r1
r2

)
4

(
r2
r1

)
4
= 1.

· r1 ≡ 5 (mod 8), r2 ≡ 5 (mod 8),
(
r1
r2

)
=

(
2r1
r2

)
4

(
2r2
r1

)
4

(
r1r2
2

)
4
= −1.

· r1 ≡ 1 (mod 8), r2 ≡ 5 (mod 8),
(
r1
r2

)
=

(
2
r1

)
4

(
r1
2

)
4
= −1.

· r1 ≡ 1 (mod 8), r2 ≡ 3 (mod 4),
(
r2
r1

)
=

(
r1
2

)
4
= −

(
2
r1

)
4
= −

(
2
r2

)
.

· r1 ≡ 7 (mod 16), r2 ≡ 15 (mod 16).
Then GS(Q∞) is not procyclic.

(7) S = {q1, q2, r}, q1 ≡ 3 (mod 8) and one of the following is satisfied:
· q2 ≡ 7 (mod 8), r ≡ 5 (mod 8),

(
q2
r

)
= −1.

· q2 ≡ 3 (mod 8), r ≡ 5 (mod 8),
(
q1q2
r

)
= −1.

· q2 ≡ 3 (mod 8), r ≡ 7 (mod 8),
(
q1q2
r

)
= −1.

Then GS(Q∞) is not procyclic.
(8) S = {q,∞} and q ≡ 7 (mod 16). Then GS(Q∞) is not procyclic.

Moreover, if ∞ 	∈ S and GS(Q∞) is prometacyclic, and if K/Q is a finite extension
contained in (Q∞)S, then the cyclotomic Z2-extension K∞ of K has no infinite
unramified abelian pro-2-extension (i.e., G∅(K∞)ab is finite).

Remark 1.2. If � ≡ 9 (mod 16) and
(
2
�

)
4
= −1, then h� is even (cf. e.g. [20]). More-

over, one can see that
(
1+

√
2

�

)
= 1 from the decomposition of � in Q( 4

√
2,
√
1 +

√
2).

Since (1+
√
2)(1−

√
2) = −1 and

(−1
�

)
4
= 1, the symbol

(
1+

√
2

�

)
4
does not depend

on the choice of an embedding Z[
√
2] ↪→ Z�.

In the proof of Theorem 1.1, we see that GS(Q∞) is infinite procyclic if and
only if S satisfies the condition 3 and q ≡ r (mod 8). By [9, Theorem 1.1], one
can also see that (the maximal abelian pro-2 quotient of) GS(Q∞) is infinite if S
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satisfies the condition (6) and r2 	≡ 7 (mod 8) or the condition (7) and q2 ≡ 3
(mod 8). The finiteness of G∅(K∞)ab in Theorem 1.1 for abelian K/Q is already
known essentially (cf. [20], [23], [28], etc.) and is used in the proof of Theorem 1.1.
Theorem 1.1 yields new examples of finite G∅(K∞)ab when K/Q is nonabelian.
Similar statements for p 	= 2 (and for a special case of p = 2) have been obtained in
[10] and [19], while the influences of G∅(K∞)ab on the prometacyclicity of GS(Q∞)
are different according to the parity of p (cf. assumptions of [19, Theorems 1 and
2]). As a clarification of this difference and as a key tool for the proof of Theorem
1.1, we provide a general criterion (Theorem 3.1 in Section 3) for the metacyclicity
of tame pro-2 Galois groups GS(k) in terms of 2-ranks and 4-ranks of ray class
groups. After recalling some basic facts on pro-p groups and ray class groups and
cyclotomic Z2-extensions (in Sections 2 and 4), we prove the first half of Theorem
1.1, dividing the statements according to (r mod 4)r∈S (from Sections 5 to 9). Also,
we see the structure of GS(Q∞) more explicitly in some special cases. The proof
of Theorem 1.1 will be completed in the final section (Section 10).

Example 1.3. Since
(
29
5

)
4
=

(
5
29

)
4
= −1, the set S = {5, 29} satisfies the condi-

tion (6). Then K = QS is a nonabelian metacyclic 2-extension of Q (cf. Remark
2.2 below). Moreover, GS(Q∞) is a pro-2 group with two generators a, b and two
relations a16, a−3b−1ab (cf. [19, Example 2]). Put � = 137 or � = 409. Then � ≡ 9
(mod 16) and

(
2
�

)
4
= −1. Since 312 ≡ 2 (mod 137) and 972 ≡ 2 (mod 409), we

have
(
1+

√
2

137

)
4
=

(
32
137

)
4
= −1 and

(
1+

√
2

409

)
4
=

(
98
409

)
4
= 1. Moreover, h137 ≡ 0

(mod 4) and h409 ≡ 2 (mod 4) by [24]. Hence S = {�} satisfies the condition (5).

2. Preliminaries

2.1. Pro-p groups. We denote by |S| the cardinality of a set S and by Fpn the
finite field of cardinality pn. An abelian pro-p group A is often regarded as a Zp-

module. For an integer e ≥ 1, we put A/pe = A/Ape

and denote by rpe(A) =

dimFp
(Ape−1

/Ape

) the pe-rank. In particular, r2(A) and r4(A) denote the 2-rank
and the 4-rank of an abelian pro-2 group A respectively.

Let G be a pro-p group (not necessarily finitely generated) and H a closed
subgroup of G. Then [G,H] (resp. Hp) denotes the minimal closed subgroup of G
containing all of [g, h] = g−1h−1gh (resp. hp) (g ∈ G, h ∈ H). If H is a normal
subgroup of G, the left action of G on H is defined as gh = ghg−1. Let {Gi}i be
the lower central series of G, which is defined as G1 = G and Gi = [G,Gi−1] for
i ≥ 2 recursively. In particular, G2 = [G,G] is the closed commutator subgroup of
G, and Gab = G/G2 is the maximal abelian pro-p quotient of G. Burnside’s basis
theorem yields that G is finitely generated if and only if rp(G

ab) is finite. Then
rp(G

ab) is the (minimal) number of generators of G. In particular, G is nontrivial
procyclic (resp. trivial) if and only if rp(G

ab) = 1 (resp. 0). If G is a prometacyclic
pro-p group, then its pro-p quotients and H are also prometacyclic, in particular
rp(H

ab) ≤ 2. A finite p-groupG is metacyclic if and only ifG/(G2)
pG3 is metacyclic

(cf. [3, Theorem 2.3]).
A group-theoretical part of the proof of Theorem 1.1 is based on the following

proposition, which does not depend on the parity of p.

Proposition 2.1. Let G be a pro-p group such that rp(G
ab) = 2. If G has a

maximal subgroup H such that rp(H/G2) = rp(H
ab), then G is a prometacyclic

pro-p group.
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Proof. First, we prove the statement for a finite p-group G with rp(G
ab) = 2. If

G is abelian, G is metacyclic. Also, if rp(H
ab) = 1, then G is metacyclic. Assume

that G is nonabelian and rp(H/G2) = rp(H
ab) = 2. There are generators a, b

of G such that 〈aG2〉 ∩ 〈bG2〉 = {1}. Then H is either 〈a, bp〉G2, 〈ap, b〉G2 or
〈abi, bp〉G2 = 〈abi, ap〉G2 with 1 ≤ i < p. Replacing

(a, b) by

⎧⎨⎩
(b, a) if H = 〈ap, b〉G2,
(abi, a) if H = 〈abi, bp〉G2 and |〈aG2〉| ≤ |〈bG2〉|,
(abi, b) if H = 〈abi, bp〉G2 and |〈aG2〉| > |〈bG2〉|,

we may assume that H = 〈a, bp〉G2 and 〈aG2〉 ∩ 〈bG2〉 = {1}. (For example, if
(abiG2)

x ∈ 〈aG2〉, we have bixG2 ∈ 〈aG2〉 ∩ 〈bG2〉 = {1}, i.e., x ≡ 0 (mod |〈bG2〉|).
Then (abiG2)

x = 1 if |〈aG2〉| ≤ |〈bG2〉|.) Note that G2/G3 = 〈[a, b]G3〉 	�
1. Since [a, bp] ≡ [a, b]p (mod G3), there is a surjective homomorphism Hab →
H/(G2)

pG3 = 〈a(G2)
pG3, b

p(G2)
pG3, [a, b](G2)

pG3〉. Since rp(H
ab) = 2, we have

ax(bp)y[a, b]z ≡ 1 (mod (G2)
pG3) for some (x, y, z) 	≡ (0, 0, 0) (mod p). In par-

ticular, ax(bp)y ≡ 1 (mod G2). Then x = pmx′ and y = pn−1y′ with some
x′, y′ ∈ Z, where pm = |〈aG2〉| and pn = |〈bG2〉|. Since rp(H/G2) = 2, we
have n ≥ 2, and hence x ≡ y ≡ 0 (mod p). Therefore z ∈ Z×

p . Note that

ap
m ≡ [a, b]u (mod G3) and bp

n ≡ [a, b]v (mod G3) with some u, v ∈ Z. Then

[a, b]−z ≡ axbpy ≡ [a, b]ux
′+vy′

(mod (G2)
pG3). This implies that (u, v) 	≡ (0, 0)

(mod p). Put N = 〈a〉G2 or N = 〈b〉G2 according to u ∈ Z×
p or v ∈ Z×

p . Then both
N/(G2)

pG3 and G/N are cyclic, and hence G/(G2)
pG3 is metacyclic. Therefore G

is metacyclic by [3, Theorem 2.3].
Suppose that G is not necessarily finite. Let {Ui}i be the lower p-central series

of G, which is defined as U1 = G and Ui = Up
i−1[G,Ui−1] for i ≥ 2 recursively.

We put G = G/Ui and H = H/Ui for arbitrary i ≥ 2. Since {Ui}i forms a

fundamental system of open neighbourhoods of 1, rp(G
ab
) = 2 and rp(H/G2) =

rp(H
ab
) if i is sufficiently large. Then G is metacyclic. Therefore G � lim←−G/Ui is

prometacyclic. �

For a nonabelian pro-2 group G, it is well known that Gab � [2, 2] if and only
if G is either (pro)dihedral, quaternion, generalized quaternion or semidihedral (cf.
e.g. [13]). Such pro-2 groups G are prometacyclic.

Remark 2.2. Shafarevich’s formula (cf. e.g. [14, (11.12)]) yields that the tame pro-p
Galois group G = GS(Q) has deficiency zero; i.e., the cohomology with Z/pZ-
coefficients satisfies rp(H

1(G)) = rp(H
2(G)) (cf. [21, (10.7.15)]). Since any finite

noncyclic abelian p-group has nontrivial Schur multiplier, GS(Q) (and GS(Q∞))
cannot be abelian if p 	∈ S and GS(Q) is not cyclic. We often use this fact.

2.2. Ray class groups. Let k/Q be an algebraic extension and S a finite set of
integral divisors of (a subfield of) k which are prime to 2. Let Sk be the set of all
primes of k dividing

∏
a∈S a. We denote by kS (resp. kabS , kelemS ) the maximal (resp.

maximal abelian, maximal elementary abelian) pro-2-extension of k unramified
outside Sk, and put G = GS(k) = Gal(kS/k). Suppose that [k : Q] is finite
and Sk = {l1, l2, · · · , ln}. Let k′ be a subfield of k (possibly k = k′) such that k/k′

is a 2-extension and Gal(k/k′) acts on Sk. Then Gal(k/k′) acts on Gab via the left
action of Gal(kabS /k′) on Gal(kabS /k). We denote by AS(k) the Sylow 2-subgroup
of the ray class group of k modulo

∏n
i=1 li. Then AS(k) � Gal(kabS /k) � Gab
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and AS(k)/2 � Gal(kelemS /k) � G/G2G2 as Gal(k/k′)-modules via the Artin map.
Suppose that Sk contains no archimedean prime. The definition of the ray class
groups induces an exact sequence

E(k)
Φk,S−→ (Ok/

∏n
i=1li)

× ⊗ Z2 → AS(k) → A∅(k) → 0

of Gal(k/k′)-modules, where Ok is the ring of integers in k, E(k) = O×
k is the unit

group of k. For each 1 ≤ i ≤ n, we choose a primitive element gli ∈ Ok of the
finite field Ok/li. Let 2ei be the order of the cyclic 2-group (Ok/li)

× ⊗ Z2. Then
Z/2eiZ � (Ok/li)

× ⊗ Z2 : a mod 2ei �→ (gali mod li) ⊗ 1. Depending on the choice
of gli (1 ≤ i ≤ n), the above sequence induces the exact sequence

E(k)
ϕk,S−→ [2e1

l1
, 2e2

l2
, · · · , 2en

ln
] → AS(k) → A∅(k) → 0,

∈ ∈

ε �−→ (a1, a2, · · · , an),

where the second term denotes an abelian group [2e1 , 2e2 , · · · , 2en ] =
⊕n

i=1(Z/2
eiZ),

and ai is the abbreviation of ai mod 2ei satisfying ε ≡ gai

li
mod li. Let {εj}1≤j≤d ⊂

E(k) be a system (not necessarily minimum) such that {ϕk,S(εj)}1≤j≤d generates
ϕk,S(E(k)) as a Z2-module. Then we put a column vector

vk,S =

⎛⎜⎜⎜⎝
ϕk,S(ε1)
ϕk,S(ε2)

...
ϕk,S(εd)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
a11 a21 · · · an1
a12 a22 · · · an2
...

...
...

a1d a2d · · · and

⎞⎟⎟⎟⎠ = (aij)1≤j≤d, 1≤i≤n.

For any A ∈ GLd(Z2), the components of a vector Avk,S also generate Imϕk,S . By
finding suitable A such that Avk,S has a simple form, one can calculate Cokerϕk,S .
For a set Σ of ideals of k such that Σk = {li1 , li2 , · · · , lim} ⊂ Sk, we choose the
same gliμ (1 ≤ μ ≤ m). Then we have the exact sequence

E(k)
ϕk,Σ−→ [2

ei1
li1

, 2
ei2
li2

, · · · , 2eim
lim

] → AΣ(k) → A∅(k) → 0

with a vector

vk,Σ = (ϕk,Σ(εj))1≤j≤d = (aiμj)1≤j≤d, 1≤μ≤m.

If Avk,S = (bij)1≤j≤d, 1≤i≤n for A ∈ GLd(Z2), then Avk,Σ = (biμj)1≤j≤d, 1≤μ≤m.
Hence one can also calculate Cokerϕk,Σ simultaneously.

2.3. Class number formulas. We denote by NK/k (a map induced from) the
norm mapping of a 2-extension K/k. For a cyclic 2-extension K/k with Galois
group Gal(K/k) = 〈σ〉, we have a genus formula

|{[A] ∈ A∅(K) |Aσ = A}| = |A∅(k)|
∏

r
e(r)

[K : k] |E(k)/NK/kE(K)| ,(2.1)

which is well known as Chevalley’s ambiguous class number formula (cf. also [17,
Proposition 1], [31, Proof of Lemma 4], etc.), where r varies among all primes of k
and e(r) is the ramification index of r inK/k. In particular for a quadratic extension
K/k, we note that an ideal A of K satisfies Aσ = A if and only if A = B(aOK) for
some ideal a of k and a product B of primes of K ramified in K/k.
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On the other hand, we suppose thatK/k is a [2, 2]-extension with three quadratic
subextensions F , F ′, F ′′. Then we have Kuroda’s formula (cf. [16])

|A∅(K)| = 2d−1−v

|E(k)/E(k)2|Q(K/k)|A∅(F )||A∅(F
′)||A∅(F

′′)||A∅(k)|−2(2.2)

whereQ(K/k) = |E(K)/E(F )E(F ′)E(F ′′)|, d is the number of archimedean primes

of k ramifying in K/k, and v = 1 or 0 according to whether K = k(
√
ε,
√
ε′) with

some ε, ε′ ∈ E(k) or not. In particular, if k = Q and K is real, then

|A∅(K)| = 4−1Q(K/Q)|A∅(F )||A∅(F
′)||A∅(F

′′)|(2.3)

and Q(K/Q) ∈ {1, 2, 4} (cf. [15]). Let ε, ε′, ε′′ be the fundamental units of the real
quadratic fields F , F ′, F ′′ respectively. ThenNF/Q(ε) = 1 if

√
ε ∈ E(K). Moreover,

NF/Q(ε) = NF ′/Q(ε
′) = 1 if

√
εε′ ∈ E(K), and NF/Q(ε) = NF ′/Q(ε

′) = NF ′′/Q(ε
′′)

if
√
εε′ε′′ ∈ E(K).

3. Criteria

If AS(k) � [2, 2], then GS(k) is metacyclic. When AS(k) 	� [2, 2] and A∅(k) � 0
(and S contains no archimedean primes), we obtain the following criterion for the
metacyclicity of GS(k).

Theorem 3.1. Let k be a finite extension of Q with odd class number. Assume
that a triple (K/k, S,Σ) is given, where S is a finite set of prime ideals of k none of
which lies over 2, Σ is a subset of S such that AΣ(k) � 0, and K/k is a quadratic
extension unramified outside S and ramified at all l ∈ S \ Σ. Then we have

r2(AS(k)) = 1 + r2(AΣ(K)).(3.1)

Moreover, if r2(AS(k)) = 2 (i.e., r2(AΣ(K)) = 1), then the following four state-
ments hold true:

(1) For any l ∈ S \ Σ, we have r2(AS\{l}(k)) = 1; i.e., kelemS\{l}/k is a quadratic

extension. Then, moreover, AΣ(k
elem
S\{l}) � 0.

(2) Assume that there is l ∈ S\Σ such that kelemS\{l} is contained in a cyclic quartic

extension of k unramified outside S, i.e., r4(AS(k)) = 2 or r4(AS(k)) =
r2(Gal(kabS /K)) = 1. Then GS(k) is metacyclic if and only if |AΣ(K)| = 2.

(3) If r4(AS(k)) = 1, r2(Gal(kabS /K)) = 2 and |AΣ(K)| ≥ 4, then GS(k) is
metacyclic.

(4) If r4(AS(k)) = 1, r2(Gal(kabS /K)) = 2, |AΣ(K)| = 2 and the following three
conditions are satisfied, then GS(k) is not metacyclic.
(a) GS(k) is nonabelian.
(b) |Ok/l| 	≡ 1 (mod |AS(k)|) for any l ∈ S \ Σ.
(c) There exists l0 ∈ S \ Σ such that no l ∈ S \ Σ is inert in kelemS\{l0}/k.

Proof. Since AΣ(k) � 0, i.e., kabΣ = k, the existence of K/k implies that S 	= Σ. Let

σ be a generator of Gal(K/k) � Z/2Z. Since 1 + σ : AΣ(K)
norm−→ AΣ(k)

lift→ AΣ(K)
is zero mapping, (AΣ(K)/2)1+σ � 0; i.e., σ acts on AΣ(K)/2 trivially. Hence
Kelem

Σ ⊂ kabS , and the ramification index of any l ∈ S \ Σ in Kelem
Σ /k is 2. If

r4(Gal(Kelem
Σ /k)) ≥ 1, Kelem

Σ contains a cyclic quartic extension of k. Then, since
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AΣ(k) � 0, the cyclic quartic extension is totally ramified at some l ∈ S \ Σ; i.e.,
the ramification index of such l in Kelem

Σ /k is at least 4. This is a contradiction.
Therefore Kelem

Σ ⊂ kelemS , and hence 1 + r2(AΣ(K)) ≤ r2(AS(k)). On the other
hand, since all l ∈ S \ Σ ramify in K, kelemS /K is unramified outside Σ. Therefore
r2(AS(k))− 1 = r2(Gal(kelemS /K)) ≤ r2(AΣ(K)), and hence we obtain the equality
(3.1). In particular, we have Kelem

Σ = kelemS .
In the following, we assume that r2(AS(k)) = 2. Let K ′ be the inertia field of

l ∈ S \ Σ in the [2, 2]-extension kelemS /k. Since k ⊂ K ⊂ kelemS and l ramifies in
K/k, K ′ is a quadratic extension of k unramified outside S \ {l}. In particular, we
have r2(AS\{l}(k)) ≥ 1. Moreover, since K ′ 	⊂ kabΣ = k, we have S \ {l} 	= Σ, i.e.,

|S \Σ| ≥ 2. On the other hand, since kelemS /k is not unramified outside S \ {l}, we
have r2(AS\{l}(k)) < r2(AS(k)) = 2, i.e., r2(AS\{l}(k)) = 1. Hence K ′ = kelemS\{l}.

Moreover, kS\{l}/k is cyclic. By the assumption that AΣ(k) � 0, kS\{l}/k is totally

ramified at some l′ ∈ S \ (Σ ∪ {l}). Since k ⊂ K ′ ⊂ (K ′)abΣ ⊂ kS\{l}, we have

K ′ = (K ′)abΣ , i.e., AΣ(K
′) � 0. Hence statement (1) holds.

We show statement (2). Let F/k be a cyclic quartic extension unramified outside
S, which contains K ′ = kelemS\{l} for some l ∈ S \ Σ. Let Σ′ ⊂ S \ Σ be the set of

all primes in S \ Σ which ramify in K ′. Since AΣ(k) � 0, we have Σ′ 	= ∅. Then
l 	∈ Σ′ ∪Σ and K ′ = kelemΣ∪Σ′ . Put a sequence S \Σ′ = Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σn = S such
that Σi \Σi−1 = {li} (1 ≤ i ≤ n). Then Σ′ = {l1, · · · , ln}. Since K/k and K ′/k are
ramified at any li ∈ Σ′, all li have the common inertia field K ′′ = kelemS\{li} = kelemΣ0

in the [2, 2]-extension kelemS /k. Moreover, we have kelemS ⊂ (K ′)elemΣ0
. Since the

inertia group Ili ⊂ GΣi
(K ′)ab of the unique prime of K ′ lying over li is cyclic and

GΣi
(K ′)ab/Ili � AΣi−1

(K ′), we have r2(AΣi
(K ′)) ≤ 2 if r2(AΣi−1

(K ′)) = 1.

K kelemS (K ′)elemΣi

K ′′
���

k

����
K ′ F

Now we assume that |AΣ(K)| = 2. Since kelemS /K ′ is ramified at any prime ly-
ing over a prime in Σ0 \ Σ, (K ′)elemΣ0

/kelemS is unramified outside Σ. Recall that

kelemS = Kelem
Σ . The assumption |AΣ(K)| = 2 implies that kelemS = KΣ, i.e.,

AΣ(k
elem
S ) � 0. Hence kelemS = (K ′)elemΣ0

and r2(AΣ0
(K ′)) = 1. We can show

that r2(AΣi
(K ′)) = 1 if r2(AΣi−1

(K ′)) = 1 and i < n as follows. Suppose that

r2(AΣi−1
(K ′)) = 1 and r2(AΣi

(K ′)) = 2 for i < n. Then (K ′)elemΣi
/k is a Ga-

lois extension of degree 8, and kelemS = (K ′)elemΣi−1
. Since (K ′)elemΣi

	= (K ′)elemΣi−1
,

(K ′)elemΣi
/K ′′ is totally ramified at a prime lying over li. Then (K ′)elemΣi

/K ′′ is a

cyclic quartic extension. However, kelemS /K ′′ is ramified at any prime lying over
ln 	∈ Σ0, and (K ′)elemΣi

/kelemS is unramified at any prime lying over ln 	∈ Σi. This
is a contradiction. Therefore r2(AΣi

(K ′)) = 1 if r2(AΣi−1
(K ′)) = 1 and i < n.

Since r2(AΣ0
(K ′)) = 1, we have r2(AΣn−1

(K ′)) = 1 by induction, and hence
r2(AS(K

′)) ≤ 2. Put G = GS(k) and H = GS(K
′). Since FK/K ′ is a [2, 2]-

extension and FK ⊂ kabS , we have r2(H/G2) = r2(H
ab) = r2(AS(K

′)) = 2. Then
G is metacyclic by Proposition 2.1. Thus we obtain the if-part of statement (2).

Conversely, we assume that |AΣ(K)| ≥ 4. Then there exists a unique cyclic
quartic extension L/K unramified outside Σ. Then kelemS = Kelem

Σ ⊂ L, and L/k is
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a Galois extension of degree 8. Since kelemS /K ′ is ramified at the primes lying over
l, L/K ′ is not cyclic.

K kelemS L

k K ′ F

Since K ′/k is ramified at l1 ∈ Σ′, kelemS /K ′ is unramified at any prime lying over l1.
Hence L/K ′ is a [2, 2]-extension unramified outside S \ {l1}. Since F/k is totally
ramified at l1, F/K

′ is a quadratic extension ramified at the prime lying over l1.
Therefore FL/K ′ is a [2, 2, 2]-extension unramified outside S. Then GS(k) is not
metacyclic. Thus we obtain statement (2).

We show statement (3). Assume that r4(AS(k)) = 1, r2(Gal(kabS /K)) = 2 and
|AΣ(K)| ≥ 4. Take l ∈ S \ Σ arbitrarily. Since AΣ(k) � 0, the quadratic extension
kelemS\{l}/k is ramified at some l′ ∈ S \ Σ. Then kelemS = kelemS\{l}k

elem
S\{l′} and kelemS\{l′}/k

is a quadratic extension ramified at l. Since kelemS\{l} ∩ kelemS\{l′} = k, we have kabS\{l} ∩
kabS\{l′} = k. Note that both kabS\{l} and kabS\{l′} are cyclic extensions of k. Since

kabS\{l}k
ab
S\{l′} ⊂ kabS , the assumption r4(AS(k)) = 1 implies that either kabS\{l}/k or

kabS\{l′}/k is a quadratic extension. Replacing l and l′ if necessary, we may assume

that |AS\{l}(k)| = 2, i.e., kS\{l} = kabS\{l} = kelemS\{l}. Put r = r2(AS\{l}(K)) ≥
r2(AΣ(K)) = 1. We can also show that r = 1 as follows. Suppose that r ≥
2. Note that kelemS = Kelem

Σ ⊂ Kelem
S\{l}. Then Kelem

S\{l}/k is a Galois extension

of degree 2r+1, and hence Kelem
S\{l}/k

elem
S\{l} is a Galois extension of degree 2r. Let

M = (kelemS\{l})
ab
S ∩ Kelem

S\{l} be the maximal abelian extension of kelemS\{l} contained

in Kelem
S\{l} (cf. a diagram below). Since |Gal(Kelem

S\{l}/k
elem
S\{l})| = 2r 	= 2, we have

|Gal(Kelem
S\{l}/k

elem
S\{l})

ab| > 2, i.e., M 	= kelemS . Then M/kelemS\{l} is an abelian extension

of degree at least 4. On the other hand, since r2(AΣ(K)) = 1 and |AΣ(K)| ≥ 4,
there exists a unique cyclic quartic extension L/K unramified outside Σ. Then
L/k is a Galois extension of degree 8, and hence L/kelemS\{l} is also an abelian quartic

extension. SinceM/K is an elementary abelian 2-extension, we have L∩M = kelemS .
Therefore LM/kelemS\{l} is an abelian extension of degree at least 8.

L LM

kelemS\{l} kelemS M Kelem
S\{l}

k K

Let I be the subgroup of Gal(LM/kelemS\{l}) generated by the inertia groups of the

prime ideals L of kelemS\{l} lying over l. Since LM/kelemS is unramified outside S \ {l},
the ramification indices of L in LM/kelemS\{l} are at most 2. Since the number of L

is at most 2, we have |I| ≤ 4. Then |Gal(LM/kelemS\{l})/I| ≥ 8/4 = 2, and hence
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the fixed field of I is a nontrivial abelian 2-extension of kS\{l} = kelemS\{l} unramified

outside S \ {l}. This is a contradiction. Therefore r2(AS\{l}(K)) = r = 1. Put

G = GS(k) and H = GS(K). Since the inertia group Il ⊂ Hab of the unique prime
of K lying over l is cyclic and Hab/Il � AS\{l}(K), we have r2(H

ab) ≤ 2. The

assumption r2(H/G2) = r2(Gal(kabS /K)) = 2 yields that r2(H
ab) = 2. Then G is

metacyclic by Proposition 2.1. Thus we obtain statement (3).
We show statement (4). Put K ′ = kelemS\{l0}, and put G = GS(k), H = GS(K)

and H ′ = GS(K
′). Since Gab � AS(k) � [2, 2m] with some m ≥ 2, G has two

generators a, b such that a2 ≡ b2
m ≡ 1 (mod G2). Since H/G2 � Gal(kabS /K)

and r2(Gal(kabS /K)) = 2, we have r2(AS(K)) ≥ 2 and H ′/G2 � Z/2mZ. Re-
placing b by ab if necessary, we may assume that H ′ = 〈b,G2〉. Then H =
〈a, b2, G2〉 = 〈a, b2, [a, b], (G2)

2G3〉, and H/(G2)
2G3 is abelian (cf. the proof of

Proposition 2.1). The condition (4a) yields that [a, b] 	∈ (G2)
2G3. Suppose that

r2(AS(K)) = 2. Then, since there are surjective homomorphisms AS(K) →
H/(G2)

2G3 → H/G2, we have r2(H/(G2)
2G3) = 2. Since 〈a, b2m−1

G2〉/G2 � [2, 2]

andG2/(G2)
2G3 = 〈[a, b](G2)

2G3〉 � Z/2Z, we have 〈a, b2m−1

G2〉/(G2)
2G3 � [2, 4].

Hence a2 	∈ (G2)
2G3 or b2

m 	∈ (G2)
2G3. Note that AΣ(K

′) � A∅(K
′) � 0 by state-

ment (1). By the snake lemma for the commutative diagram

E(K ′)⊗ Z2

��

ΦK′,S
�� (OK′/

∏
L∈SK′ L)

× ⊗ Z2
��

Ψ��

AS(K
′) ��

��

0

0 �� ImΦK′,Σ
�� (OK′/

∏
Q∈ΣK′ Q)× ⊗ Z2

�� AΣ(K
′)

with exact rows, we obtain a surjective homomorphism (OK′/
∏

L∈SK′\ΣK′ L)
× ⊗

Z2 � KerΨ → AS(K
′). The condition (4c) yields that OK′/L � Ok/l for any L ∈

SK′\ΣK′ and l = L∩K ′ ∈ S\Σ. Hence the condition (4b) implies that the exponent
of AS(K

′) � (H ′)ab is at most 2m. In particular, b2
m ∈ (H ′)2. SinceH

′/(G2)
2G3 =

〈b(G2)
2G3, [a, b](G2)

2G3〉 is also abelian, i.e., (H ′)2 ⊂ (G2)
2G3, we have b2

m ∈
(G2)

2G3. Therefore a2 	∈ (G2)
2G3, and hence a2 ≡ [a, b] (mod (G2)

2G3). Since

a−1b2a ≡ b2[b2, a] ≡ b2[b, a]2 ≡ b2 (mod (G2)
2G3),

the fixed field kNS of N = 〈b2, (G2)
2G3〉 is a Galois extension of k. Note that

b2
m−1 	∈ G2 ⊃ (G2)

2G3. Since

[kNS : k] =
|G/G2||G2/(G2)

2G3|
|N/(G2)2G3|

=
2m+1 · 2
2m−1

= 8,

we have Gal(kNS /K ′) � H ′/N = 〈bN, [a, b]N〉 � [2, 2] and Gal(kNS /K) � H/N =

〈aN〉 � Z/4Z. Put H ′′ = 〈ab,G2〉, and let K ′′ = kH
′′

S be the fixed field of H ′′.
Since

(ab)2 = abab ≡ ab−1ab = a2[a, b] ≡ [a, b]2 ≡ 1 (mod N),

we have Gal(kNS /K ′′) � H ′′/N � 〈abN, [a, b]N〉 � [2, 2]. (In fact, kNS /k is a dihedral
extension of degree 8.)
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k
〈b,(G2)

2G3〉
S kNS k

(G2)
2G3

S

K ′ kelemS kabS

K ′′
���

k

����
K k

〈a,G2〉
S

For any l ∈ S \ Σ, the inertia field of l in the [2, 2]-extension kelemS /k is either
K ′ or K ′′; i.e., either kelemS /K ′ or kelemS /K ′′ is ramified at any prime lying over
l. Since kNS /K ′ and kNS /K ′′ are [2, 2]-extensions, kNS /kelemS is unramified outside
Σ. Since kelemS = Kelem

Σ , kNS /K is a cyclic quartic extension unramified outside Σ.
However, |AΣ(K)| = 2 by the assumption of statement (4). This is a contradiction.
Therefore we have r2(AS(K)) ≥ 3, and hence GS(k) is not metacyclic. Thus the
proof of Theorem 3.1 is completed. �

We see various examples of Theorem 3.1 in the proof of Theorem 1.1 (from
Sections 5 to 8).

4. Cyclotomic Z2-extensions

We recall some basic facts on cyclotomic Z2-extensions. Put ζ2n+2 = exp 2π
√
−1

2n+2 ∈
C and Qn = Q(cos 2π

2n+2 ) ⊂ Q(ζ2n+2) for each n ≥ 0. The Galois group Γ =
Gal(Q∞/Q) of the basic Z2-extension Q∞ =

⋃
n≥0 Qn = Q{2} is isomorphic to

the additive group of Z2 (i.e., an infinite procyclic pro-2 group). For a finite ex-
tension k/Q, we put kn = kQn. Then the field k∞ = kQ∞ =

⋃
n≥0 kn is the

cyclotomic Z2-extension of k with the Galois group Gal(k∞/k) � Z2. In particular,
Q(ζ2∞) =

⋃
n≥0 Q(ζ2n+2) is the cyclotomic Z2-extension of Q(

√
−1). The following

proposition provides a description of the cases with trivial GS(Q∞).

Proposition 4.1. Let k/Q be a finite extension and S a finite set of primes of k
none of which lies over 2. If the prime of k lying over 2 is unique and GS(k)

ab � 0,
then GS(k∞) is trivial for the cyclotomic Z2-extension k∞/k.

Proof. Since GS(k)
ab � 0, we have A∅(k) � 0, and hence k∞/k is totally ramified at

the unique prime p of k lying over 2. Suppose thatGS(k∞) is nontrivial. Since k∞/k
is totally ramified at p and (k∞)abS /k∞ is a nontrivial pro-2-extension unramified
at the prime lying over p, G = Gal((k∞)abS /k) is not procyclic. Hence the fixed
field L of G2 is a nontrivial pro-2-extension of k∞ unramified outside S. Since the
abelian pro-2-extension L/k is not totally ramified at p, the inertia field of p is a
nontrivial abelian 2-extension of k unramified outside S. Then GS(k)

ab 	� 0. This
is a contradiction. Therefore GS(k∞) is trivial. Thus the proof of Proposition 4.1
is completed. �

The following corollary for S = ∅ is a theorem of Weber.

Corollary 4.2. Let S be a finite set of primes of Q not containing 2. Then GS(Q∞)
is trivial if and only if S ⊂ {∞} or S = {q} and q ≡ 3 (mod 4). In particular, we
have A{q}(Qn) � 0 for all n ≥ 0 if q ≡ 3 (mod 4).
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Proof. By Proposition 4.1, GS(Q∞) is trivial if and only if GS(Q)ab � 0. Hence
we obtain the claim. �

Depending on the choice of a topological generator γ of Gal(k∞/k) � Z2, a
module over the complete group ring Z2[[Gal(k∞/k)]] is regarded as a module over
the ring Λ = Z2[[T ]] of formal power series via the isomorphism Z2[[Gal(k∞/k)]] �
Λ : γ �→ 1+T . Let S be a finite set of primes of k none of which lies over 2. For fixed
γ̃ ∈ Gal((k∞)S/k) such that γ̃|Q∞ = γ, the left action of Γ on GS(k∞) is defined by
γg = γ̃gγ̃−1 (g ∈ GS(k∞)). Recall that GS(k∞) � lim←−GS(kn). Then we obtain an

isomorphism GS(k∞)ab � lim←−AS(kn) as Λ-modules, where the projective limit is

taken on Nkn/km
. Suppose that k∞/k is totally ramified at any prime lying over 2.

For any n ≥ m, since kn ∩ (km)S = km, the restriction mapping GS(kn) → GS(km)
is surjective. Hence Nkn/km

: AS(kn) → AS(km) is also surjective. The following
theorem (Fukuda’s theorem [7] for p = 2) is frequently used in the following sections.
We give a proof for convenience.

Theorem 4.3 (Fukuda). Let k∞ be the cyclotomic Z2-extension of a finite ex-
tension k of Q and S a finite set of prime ideals of k none of which lies over 2.
Assume that k∞/k is totally ramified at any prime lying over 2. Then the following
two statements hold true for m ≥ 0:

(1) If |AS(km+1)| = |AS(km)|, then AS(kn) � AS(km) for all n ≥ m.
(2) Suppose that e ≥ 1. If |AS(km+1)/2

e| = |AS(km)/2e|, then AS(kn)/2
e �

AS(km)/2e for all n ≥ m.

Proof. Since k∞ is also the cyclotomic Z2-extension of km and AS(kn) = ASkm
(kn)

for all n ≥ m, it suffices to prove the statements for m = 0. Put X = GS(k∞)ab �
lim←−AS(kn). By the same argument as in [29, §13.3], X is a finitely generated Λ-

module, and AS(kn) � X/νnY for all n ≥ 0, where Y = Gal((k∞)abS /k∞kabS ) and

νn = ((1+T )2
n−1)/T . Note that ν0 = 1 and ν1 = 2+T ∈ (2, T ), where (2, T ) is the

maximal ideal of Λ. If |AS(k1)| = |AS(k)|, we have |X/ν1Y | = |X/Y |, which implies
that Y = ν1Y ⊂ (2, T )Y . Then Nakayama’s lemma for Y yields that Y � 0, i.e.,
AS(kn) � X � AS(k) for all n ≥ 0. Suppose that |AS(k1)/2

e| = |AS(k)/2
e|. Then

|X/(ν1Y + 2eX)| = |X/(Y + 2eX)|, and hence Y + 2eX = ν1Y + 2eX ⊂ (2, T )Y +
2eX. Nakayama’s lemma for (Y + 2eX)/2eX yields that Y ⊂ 2eX. In particular,
νnY ⊂ 2eX for all n ≥ 0. Therefore AS(kn)/2

e � X/(νnY + 2eX) � X/2e for all
n ≥ 0. Thus the proof of Theorem 4.3 is completed. �

As an example of the usage of Theorem 4.3, we obtain the following.

Corollary 4.4. Under the same assumptions of Theorem 4.3, the following hold
true:

(1) If AS(k) � 0 and |AS(k2)| = 2, then |AS(kn)| = 2 for all n ≥ 1.
(2) If r2(AS(k2)) = 1 + r2(AS(k)), then r2(AS(kn)) = 1 + r2(AS(k)) for all

n ≥ 1.

Proof. Put An = AS(kn) or An = AS(kn)/2 according to the statements. If |A1| =
|A0|, then |An| = |A0| for all n ≥ 0 by Theorem 4.3 form = 0. Therefore |A1| 	= |A0|
if |A2| 	= |A0|. If |A2| = 2|A0|, the surjectivity of Nkn/km

yields that 2|A0| = |A2| ≥
|A1| > |A0|, i.e., |A2| = |A1|. Then |An| = |A1| = 2|A0| for all n ≥ 1 by Theorem
4.3 for m = 1. Thus we obtain the statements. �
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For the basic Z2-extension Q∞/Q, we choose a canonical generator γ = γ|Q∞ of

Γ with a generator γ of Γ = Gal(Q(ζ2∞)/Q(ζ4)) � Z2 such that γ(ζ2n+2) = ζ52n+2

for all n ≥ 0. Moreover, we can choose γ̃ such that γ̃ ∈ Gal((Q∞)S/QS). Fukuda’s
theorem (Theorem 4.3) above and Theorem 3.1 imply that it suffices to consider
mainly the metacyclicity of GS(Q2) (or GS(Q1)) in the proof of Theorem 1.1. Then
we often use the cyclotomic unit

ξ = ζ−2
16

1− ζ516
1− ζ16

∈ E(Q2)

to calculate AS(Q2). Since ζγ
2

16 = ζ916 = −ζ16, we have NQ2/Q1
(ξ) = ξ1+γ2

=

ζ−2
8

1−ζ5
8

1−ζ8
= ε2, where ε2 = 1+

√
2 ∈ E(Q1) is the fundamental unit of Q1 = Q(

√
2).

Note that the class number of Q2 = Q(
√
2 +

√
2) is 1. Since A∅(Qn) � 0 for all

n ≥ 0 (by Corollary 4.2), the genus formula (2.1) for Qn/Q yields that NQn/Q =∑2n−1
i=0 γi : E(Qn) → E(Q) is surjective. Hence E(Qn) ⊗ Z2 is a cyclic Λ-module

for all n ≥ 0, and E(Q2) = 〈ξ, ξγ, ξγ2

, ξγ
3〉 (cf. [29, Theorem 8.2, Proposition 8.11

and Remark]). In the following sections, we denote by εd the fundamental unit of

the real quadratic field Q(
√
d). For z ∈ Z, v2(z) denotes the normalized additive

2-adic valuation, i.e., |Z2/zZ2| = 2v2(z).

5. The case S = {�}
This section treats the case where S = {�} consists of one prime � ≡ 1 (mod 4).

First, we determine the sets S with procyclic GS(Q∞).

Proposition 5.1. Put S = {�} with a prime number � ≡ 1 (mod 4). Then the
following four conditions are equivalent:

(1) GS(Q∞) is procyclic.
(2) GS(Q∞) is finite cyclic.

(3) G∅(Q∞(
√
�)) is trivial.

(4) � satisfies � ≡ 5 (mod 8) or � ≡ 1 (mod 8) and
(
2
�

)
4

(
�
2

)
4
= −1.

Moreover, we have GS(Q∞) � Z/2Z if � ≡ 5 (mod 8).

Proof. Since GS(Q∞)ab is finite by [9, Theorem 3.1], the conditions (1) and (2)

are equivalent. Put k = Q(
√
�). By (3.1) for the triple (kn/Qn, SQn

, ∅), we have
r2(GS(Qn)

ab) = 1+r2(G∅(kn)
ab) for all n ≥ 0, and hence the conditions (1) and (3)

are equivalent. The conditions (3) and (4) are also equivalent by [20, Corollary 3.4]
(and [23]). Suppose that � ≡ 5 (mod 8). Then k = QS . Since 2 is inert in k and
AS(k) � 0, GS(k∞) is trivial by Proposition 4.1. This implies that k∞ = (Q∞)S ,
and hence GS(Q∞) � Z/2Z. �

We prove the following theorem which characterizes S = {�} such that GS(Q∞)
is nonprocyclic prometacyclic.

Theorem 5.2. Put S = {�} with a prime number � ≡ 1 (mod 4). Then GS(Q∞) is
nonprocyclic prometacyclic if and only if one of the following two conditions holds:

(1) � ≡ 9 (mod 16),
(
2
�

)
4
= −1,

(
ε2
�

)
4
= 1, and |A∅(Q2(

√
�))| = 2.

(2) � ≡ 9 (mod 16),
(
2
�

)
4
= −1,

(
ε2
�

)
4
	= 1, and |A∅(Q2(

√
�))| ≥ 4.
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Proof. By Proposition 5.1, it suffices to consider the case where � ≡ 1 (mod 8) and(
2
�

)
4
= (−1)

�−1
8 . Put k = Q(

√
�) and k′ = Q(

√
2�). Let l be a prime ideal of Q1

lying over �. In the following, z� ∈ Z denotes a primitive element modulo �.

Lemma 5.3. If � ≡ 1 (mod 16),
(
2
�

)
4
= 1 and r2(AS(Q2)) = 2, then |A∅(k2)| ≥ 4

and r4(AS(Q2)) = 2.

Proof. Proposition 5.1 and Theorem 4.3 imply that A∅(k1) 	� 0. Since k′ ⊂
k1 ⊂ (k′)ab∅ and r2(A∅(k

′)) = 1 (cf. e.g. [30]), we have (k′)ab∅ = (k1)
ab
∅ and hence

r2(A∅(k1)) = 1. Then (3.1) for the triple (k1/Q1, {l, lγ}, ∅) yields that r2(AS(Q1)) =
2. Moreover, (Q1)

elem
{l} /Q1 is a quadratic extension by Theorem 3.1(1). Note that

A{l}(Q1)/2 � Gal((Q1)
elem
{l} /Q1) via the Artin map. Since OQ1

/l � Z/�Z,
√
2 ≡ zx�

(mod l) with some x ∈ Z. Then 2 ≡ z2x� (mod �). The assumption
(
2
�

)
4
= 1

yields that x is even. Therefore [(
√
2

�−1
2m )] = [(z

�−1
2m

� )]x ∈ 2A{l}(Q1) as the ideal

classes, where m = v2(�− 1) ≥ 4. This implies that the prime (
√
2) of Q1 splits in

(Q1)
elem
{l} . Then the prime of Qn lying over 2 splits completely in the [2, 2]-extension

(Q1)
elem
{l} kn/Qn, and hence a prime pn of kn lying over 2 also splits in the unramified

quadratic extension (Q1)
elem
{l} kn/kn for all n ≥ 1. Suppose that |A∅(k2)| = 2. Then

A∅(kn) � Z/2Z for all n ≥ 1 by Theorem 4.3, and A∅(kn) = A∅(kn)
Γ = 〈[phn/2

n ]〉
by [8, Theorem 2], where hn is the class number of kn. This implies that pn is inert
in (kn)

ab
∅ = (Q1)

elem
{l} kn. This is a contradiction. Therefore |A∅(k2)| ≥ 4.

Let L be a prime ideal of Q2 lying over l. By the assumption � ≡ 1 (mod 16),

� splits completely in Q2, and hence OQ2
/Lγi � OQ1

/lγ
i � Z/�Z. We choose

g
Lγi = g

lγ
i = z� for any i. Recall that m = v2(� − 1) ≥ 4. Then we obtain the

commutative diagram

E(Q2)
ϕQ2,S

�� [2mL , 2mLγ , 2m
Lγ2 , 2m

Lγ3 ] �� AS(Q2) �� 0

E(Q1)
ϕQ1,S

��

⊂

��

[2ml , 2mlγ ]
��

ψ
��

AS(Q1) �� 0

with exact rows, where ψ(x0, x1) = (x0, x1, x0, x1). Moreover, since ε2 = ξ1+γ2

, we
have

vQ2,S =

⎛⎜⎜⎝
ϕQ2,S(ξ)
ϕQ2,S(ξ

γ)

ϕQ2,S(ξ
γ2

)

ϕQ2,S(ξ
γ3

)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
a0 a1 a2 a3
a3 a0 a1 a2
a2 a3 a0 a1
a1 a2 a3 a0

⎞⎟⎟⎠
and

vQ1,S =

(
ϕQ1,S(−1)
ϕQ1,S(ε2)

)
=

(
2m−1 2m−1

a0 + a2 a1 + a3

)
with some aj (0 ≤ j ≤ 3), where we note that −1 ≡ z

�−1
2

� (mod �) and �−1
2 ≡ 2m−1

(mod 2m). By the assumption that r2(AS(Q2)) = 2, at least one of aj is odd.

Since ξ1+γ+γ2+γ3

= −1, we have a0 + a1 + a2 + a3 ≡ 2m−1 (mod 2m). Since
r2(AS(Q1)) = 2, we have ImϕQ1,S ⊂ 2[2m, 2m], i.e., a0+a2 ≡ a1+a3 ≡ 0 (mod 2).
Then, in particular, a0 + a2 ≡ a1 + a3 (mod 4). If a0 + a2 ≡ a1 + a3 ≡ 0 (mod 4),
we have ImϕQ1,S ⊂ 4[2m, 2m] and hence r4(AS(Q2)) = r4(AS(Q1)) = 2. Suppose
that a0+a2 ≡ a1+a3 ≡ 2 (mod 4). If all of aj is odd, then vQ2,S ≡ (1)0≤i≤3,0≤j≤3

(mod 2), which implies that AS(Q2)/2 � Coker(ϕQ2,S mod 2) � [2, 2, 2]. Hence,



2436 YASUSHI MIZUSAWA

by the assumption that r2(AS(Q2)) = 2, at least one of aj is even. Then aj0 ≡ 0
(mod 4) for some j0. Recall that there are also odd aj . Replacing the pair (l,L)

by (lγ
j0
,Lγj0

) if j0 	= 0, we may assume that (a0, a1, a2, a3) ≡ (0, 1, 2, 1) (mod 4).
Since ⎛⎜⎜⎝

0 1 0 0
1 0 0 0
−1 2 1 0
1 1 1 1

⎞⎟⎟⎠ vQ2,S ≡

⎛⎜⎜⎝
1 0 1 2
0 1 2 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ (mod 4),

we have AS(Q2)/4 � Coker(ϕQ2,S mod 4) � [4, 4]. Thus the proof of Lemma 5.3 is
completed. �

Lemma 5.4. Assume that � ≡ 9 (mod 16) and
(
2
�

)
4
= −1. Then

AS(Q1) � AS(Q2) � [4, 4] if
(
ε2
�

)
4
= 1,

AS(Q1) � [8, 2] and AS(Q2) � [16, 2] if
(
ε2
�

)
4
	= 1.

Proof. Since � ≡ 9 (mod 16), OQ2
/l � OQ2

/lγ � F�2 on which γ2 acts as the
Frobenius automorphism x �→ x� (x ∈ F�2). We choose glOQ2

and z� such that

z� ≡ g1+�
lOQ2

(mod l). Put glγOQ2
= gγ

lOQ2
. Then z� ≡ g1+�

lγOQ2
(mod lγ), and we

obtain the commutative diagram

E(Q2)
ϕQ2,S

�� [16lOQ2
, 16lγOQ2

] �� AS(Q2) �� 0

E(Q1)
ϕQ1,S

��

⊂

��

[8l, 8lγ ] ��

ψ
��

AS(Q1) �� 0

with exact rows, where ψ(x0, x1) = ((� + 1)x0, (� + 1)x1) = (10x0, 10x1). In par-
ticular, r2(AS(Q1)) ≤ r2(AS(Q2)) ≤ 2. Since r2(AS(Q)) = 1 and GS(Q∞) is not
cyclic by Proposition 5.1, we have r2(AS(Qn)) = 2 for all n ≥ 1 by Theorem

4.3. Since −1 ≡ z
�−1
2

� (mod �) and �−1
2 ≡ 4 (mod 8), we have ϕQ1,S(−1) = (4, 4).

Since r2(AS(Q1)) = 2, ImϕQ1,S ⊂ 2[8, 8] and hence ϕQ1,S(ε2) = (a0, a1) with some

a0, a1 ∈ 2Z. Then ϕQ1,S(ε
γ
2 ) = (a1, a0). Since ε1+γ

2 = −1, we have a0 + a1 ≡ 4
(mod 8). Note that a0 ≡ a1 ≡ 0 (mod 4) if and only if

(
ε2
�

)
4
= 1. Then

ImϕQ1,S =

{
〈 (4, 0), (0, 4) 〉 if

(
ε2
�

)
4
= 1,

〈 (2, 2) 〉 if
(
ε2
�

)
4
	= 1.

Thus we obtain the claim for AS(Q1). Since r2(AS(Q2)) = 2 and 2� ≡ 2 (mod 16),
we have

vQ2,S =

⎛⎜⎜⎝
ϕQ2,S(ξ)
ϕQ2,S(ξ

γ)

ϕQ2,S(ξ
γ2

)

ϕQ2,S(ξ
γ3

)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
b0 b1
b1� b0
b0� b1�
b1�

2 b0�

⎞⎟⎟⎠ =

⎛⎜⎜⎝
b0 b1
b1 b0
b0 b1
b1 b0

⎞⎟⎟⎠
with some b0, b1 ∈ 2Z. Since ε2 = ξ1+γ2

and ϕQ2,S |E(Q1) = ψ ◦ ϕQ1,S , we
have (2b0, 2b1) = (10a0, 10a1) = (2a0, 2a1) ∈ [16, 16], i.e., (b0, b1) ≡ (a0, a1)
(mod 8[16, 16]). Recall that a0 ≡ 0 (mod 4) if and only if

(
ε2
�

)
4

= 1. Since

b0 + b1 ≡ a0 + a1 ≡ ±4 (mod 16), we have

ImϕQ2,S = 〈 (b0, b1), (4, 4) 〉 =
{

〈 (4, 0), (0, 4) 〉 if
(
ε2
�

)
4
= 1,

〈 (2, 2) 〉 or 〈 (2, 10) 〉 if
(
ε2
�

)
4
	= 1.
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This implies the claim for AS(Q2). Thus the proof of Lemma 5.4 is completed. �

Lemma 5.5. If � ≡ 9 (mod 16),
(
2
�

)
4
= −1,

(
ε2
�

)
4
	= 1, then GS(Q1) is nonabelian

metacyclic.

Proof. Since � ≡ 9 (mod 16) and
(
2
�

)
4

= −1, we have A∅(k
′) � Z/4Z and

Nk′/Q(ε2�) = −1 by [30, Proposition 3.4(b)]. Then A∅(k1) � Z/2Z. Applying
Kuroda’s formula (2.3) for k1/Q, we have

2 = |A∅(k1)| = 4−1Q(k1/Q)|A∅(Q1)||A∅(k
′)||A∅(k)| = Q(k1/Q),

i.e., |E(k1)/〈−1, ε2, ε�, ε2� 〉| = 2. Let L be the prime ideal of k1 lying over l.
Choosing g

Lγi = g
lγ

i = g√�Ok
= gL∩k′ = z�, we obtain the commutative diagram

E(Q1)
ϕQ1,S

��

⊃��

[8l, 8lγ ] �� AS(Q1) �� 0

E(k1)
ϕk1,S

�� [8L, 8Lγ ] �� AS(k1) �� Z/2Z �� 0

E(k)

⊂

��

ϕk,S
�� Z/8Z

ψ
��

�� AS(k) �� 0

E(k′)

⊂ ��

ϕk′,S
�� Z/8Z ��

ψ
��

AS(k
′) �� Z/4Z �� 0

with exact rows, where ψ(x) = (x, x). In the proof of Lemma 5.4, we have
seen that ϕk1,S(E(Q1)) = ImϕQ1,S = 〈 (2, 2) 〉 when

(
ε2
�

)
4
	= 1. Since AS(Q) �

Gal(Qab
S /Q) � Z/4Z, we have AS(k) � Z/2Z and hence ϕk1,S(E(k)) = ψ(Imϕk,S)

= ψ(2Z/8Z) = 〈(2, 2)〉. Since k′ ⊂ (Qab
S )1 ⊂ (k′)abS and (Qab

S )1/k
′ is not unrami-

fied, we have AS(k
′) 	� A∅(k

′); i.e., ϕk′,S is not surjective. Hence ϕk1,S(E(k′)) ⊂
ψ(2Z/8Z) = 〈(2, 2)〉. Then ϕk1,S induces the surjective homomorphism

Z/2Z � E(k1)/〈−1, ε2, ε�, ε2� 〉 → Imϕk1,S/〈(2, 2)〉.
This implies that |Imϕk1,S | ≤ 8, i.e., |Cokerϕk1,S | ≥ 8. Since AS(Q1) � [8, 2]
by Lemma 5.4, we have |AS(k1)| = 2|Cokerϕk1,S | ≥ 16 = |AS(Q1)|. This implies
that GS(Q1) is nonabelian. Put G = GS(Q1) and H = GS(K), where K =
(Q1){l}. Since ImϕQ1,{l} = 2Z/8Z, we have |A{l}(Q1)| = 2 and hence K/Q1 is
a quadratic extension such that A{l}(K) � 0. Recall that A∅(k

′) � Z/4Z and

Nk′/Q(ε2�) = −1. Then 1 	= [L ∩ k′] ∈ A∅(k
′) � A{∞}(k

′) and [L ∩ k′]2 = 1.
Hence 1 	= [Lγ ] ∈ A∅(k1); i.e., L

γ is inert in (k1)∅ = k1K. This implies that lγ is
inert in K/Q1. Since A{l}(K) � 0, Kab

S /K is totally ramified at lγOK . Therefore

r2(H
ab) = r2(AS(K)) = 1; i.e., G has a cyclic maximal subgroup H. Hence G is

metacyclic. Thus the proof of Lemma 5.5 is completed. �

Now we complete the proof of Theorem 5.2. If � ≡ 9 (mod 16) and
(
2
�

)
4
= −1,

we have SQn
= {lOQn

, lγOQn
} and r2(AS(Qn)) = 2 for any n ≥ 1 by Lemma 5.4

and Theorem 4.3. Then, since (Qn)
elem
{l} /Qn is a quadratic extension by Theorem

3.1(1) for (kn/Qn, SQn
, ∅), Qab

S (Qn)
elem
{l} /kn is a [2, 2]-extension. This implies that

r2(Gal((Qn)
ab
S /kn)) = 2 for any n ≥ 1. Now we assume one of the two conditions

of Theorem 5.2. Suppose n ≥ 2. Then

AS(Qn) � [4, 4] and |A∅(kn)| = 2 if
(
ε2
�

)
4
= 1 and |A∅(k2)| = 2,

AS(Qn)/4 � [2, 4] and |A∅(kn)| ≥ 4 if
(
ε2
�

)
4
	= 1 and |A∅(k2)| ≥ 4
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by Lemma 5.4 and Theorem 4.3. Hence GS(Qn) is metacyclic by Theorem 3.1(2),
(3) for (kn/Qn, SQn

, ∅). Therefore GS(Q∞) � lim←−GS(Qn) is prometacyclic. Thus
the if-part is completed.

Conversely, we assume that GS(Q∞) is nonprocyclic prometacyclic. Then � ≡ 1

(mod 8),
(
2
�

)
4
= (−1)

�−1
8 and G∅(k∞)ab 	� 0 by Proposition 5.1. Theorem 4.3

implies that |A∅(kn)| ≥ 2 and r2(AS(Qn)) = 2 for all n ≥ 1. We apply Theorem
3.1 for (k2/Q2, SQ2

, ∅). Then r2(A∅(k2)) = 1 by (3.1). Since GS(Q2) is metacyclic,
r4(AS(Q2)) = 1 or |A∅(k2)| = 2 by Theorem 3.1(2). Hence � ≡ 9 (mod 16) and(
2
�

)
4
= −1 by Lemma 5.3. Then we have seen that r2(Gal((Q2)

ab
S /k2)) = 2.

Since (Q2)
elem
{l} /Q1 is a [2, 2]-extension and lγ is inert in Q2/Q1, lγOQ2

splits in

(Q2)
elem
{l} /Q2; i.e., the condition (4c) of Theorem 3.1 is satisfied. Note that |OQ2

/l| =
|OQ2

/lγ | = �2 	≡ 1 (mod 32). If r4(AS(Q2)) = 1, we have AS(Q2) � [2, 16] and(
ε2
�

)
4
	= 1 by Lemma 5.4, and GS(Q2) is nonabelian by Lemma 5.5. Then the

conditions (4a) and (4b) are also satisfied. Moreover if |A∅(k2)| = 2 is also satisfied,
GS(Q2) is not metacyclic by Theorem 3.1(4). This is a contradiction. Therefore
r4(AS(Q2)) = 1 and |A∅(k2)| = 2 do not occur simultaneously; i.e., we have either
r4(AS(Q2)) = 1 and |A∅(k2)| ≥ 4 or r4(AS(Q2)) = 2 and |A∅(k2)| = 2. Then
Lemma 5.4 completes the only-if part. Thus the proof of Theorem 5.2 is completed.

�
Remark 5.6. Assume that � ≡ 9 (mod 16),

(
2
�

)
4
= −1 and

(
ε2
�

)
4
	= 1. Then

AS(Q1) � [2, 8] by Lemma 5.4, and r2(Gal((Q1)
ab
S /k1)) = 2. Moreover, |A∅(k1)| =

2 (cf. the proof of Lemma 5.5). Since |OQ1
/l| = |OQ1

/lγ | = � 	≡ 1 (mod 16) and
GS(Q1) is nonabelian metacyclic by Lemma 5.5, the triple (k1/Q1, SQ1

, ∅) satisfies
the assumptions of Theorem 3.1(4) except (4c).

6. The case S = {�, q}
This section treats the case where S = {�, q} consists of two primes � ≡ 1

(mod 4) and q ≡ 3 (mod 4). First, we prepare the following lemma.

Lemma 6.1. Put S = {�, q} with prime numbers � ≡ 1 (mod 4) and q ≡ 3
(mod 4). Assume that

(
2
�

)
4

(
�
2

)
4
= −1 if � ≡ 1 (mod 8). Put v = v2(

�−1
4 ) ≥ 0

and w = v2(
q+1
4 ) ≥ 0. Then r2(AS(Qn)) = min{2v, 2w + 1} for all n ≥ max{v, w}.

Proof. The decomposition field of � (resp. q) in Q∞/Q is Qv (resp. Qw). By
Proposition 5.1, A{�}(Qn) is cyclic for all n. Suppose that n ≥ max{v, w}. Since
(OQn

/�)×⊗Z2 and (OQn
/q)×⊗Z2 are cyclic Λ-modules, we have (OQn

/�)×⊗Z/2Z �
F2[[T ]]/T

2v and (OQn
/q)×⊗Z/2Z � F2[[T ]]/T

2w as F2[[T ]]-modules. Hence we ob-
tain the commutative diagram

E(Qn)⊗ Z/2Z �� F2[[T ]]/T
2v �� A{�}(Qn)/2 �� 0

E(Qn)⊗ Z/2Z
ϕ

�� F2[[T ]]/T
2v ⊕ F2[[T ]]/T

2w ��

(a,b) �→a
��

(a,b) �→b
��

AS(Qn)/2 �� 0

E(Qn)⊗ Z/2Z �� F2[[T ]]/T
2w �� A{q}(Qn)/2 �� 0

of F2[[T ]]-modules with exact rows. Since E(Qn)⊗Z2 is a cyclic Λ-module, Imϕ =
F2[[T ]](f mod T 2v , g mod T 2w) with some f, g ∈ F2[[T ]]. Since F2[[T ]]/(f, T

2v) �
A{�}(Qn)/2 � Z/2Z and F2[[T ]]/(g, T

2w) � A{q}(Qn)/2 � 0 (cf. Corollary 4.2), we
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have f ≡ T (mod T 2) and g ≡ 1 (mod T ). Hence Imϕ � F2[[T ]]/T
max{2v−1,2w}

as F2[[T ]]-modules. Therefore AS(Qn)/2 � Cokerϕ � F
min{2v ,2w+1}
2 as F2-vector

spaces. Thus the proof of Lemma 6.1 is completed. �

The following proposition determines the case where G{�,q}(Q∞) is procyclic.

Proposition 6.2. Put S = {�, q} with prime numbers � ≡ 1 (mod 4) and q ≡ 3
(mod 4). Then the following three conditions are equivalent:

(1) GS(Q∞) is procyclic.
(2) GS(Q∞) � Z/4Z.
(3) � ≡ 5 (mod 8).

Proof. Suppose that GS(Q∞) is procyclic. Then G{�}(Q∞) is also procyclic, and

hence � ≡ 5 (mod 8) or � ≡ 1 (mod 8) and
(
2
�

)
4

(
�
2

)
4
= −1 by Proposition 5.1.

Since r2(AS(Qn)) ≥ 2 in the latter case by Lemma 6.1, we have � ≡ 5 (mod 8).
Therefore (1) implies (3). Suppose that � ≡ 5 (mod 8). Then k = Qab

S is a cyclic

quartic extension of Q, and Q(
√
�) ⊂ k. Since 2 is inert in k = QS and AS(k) � 0,

GS(k∞) is trivial by Proposition 4.1. This implies that k∞ = (Q∞)S , and hence
GS(Q∞) � Z/4Z. Thus the proof of Proposition 6.2 is completed. �

We prove the following theorem which determines the case where G{�,q}(Q∞) is
nonprocyclic prometacyclic.

Theorem 6.3. Put S = {�, q} with prime numbers � ≡ 1 (mod 8) and q ≡ 3
(mod 4). Then GS(Q∞) is (nonprocyclic) prometacyclic if and only if one of the
following two conditions holds:

(1) � ≡ 9 (mod 16),
(
2
�

)
4
= 1, q ≡ 7 (mod 8) and

(
q
�

)
= −1.

(2) � ≡ 1 (mod 16),
(
2
�

)
4
= −1, q ≡ 3 (mod 8) and

(
q
�

)
= 1.

Proof. Put k = Qelem
S = Q(

√
�) and k′ = Q(

√
2�). Let l be a prime of Q1 lying

over �. In the following, z� (resp. zq) denotes a primitive element modulo � (resp.
q). First, we consider the case where � ≡ 9 (mod 16) and

(
2
�

)
4
= −1.

Lemma 6.4. If � ≡ 9 (mod 16) and
(
2
�

)
4
= −1, then r2(AS(Qn)) = r4(AS(Qn)) =

2 for all n ≥ 1, and |A{q}(k2)| ≥ 4.

Proof. Suppose that n ≥ 1. We have r2(AS(Qn)) ≥ r2(A{�}(Q1)) = 2 by Lemma
5.4. Let Il (resp. Ilγ ) be the inertia group of the prime lOQn

(resp. lγOQn
) of Qn

in GS(Qn)
ab. Since Il and Ilγ are cyclic and GS(Qn)

ab/IlIlγ � A{q}(Qn) � 0
(cf. Corollary 4.2), we have r4(AS(Qn)) ≤ r2(AS(Qn)) = 2. Since r4(AS(Qn)) ≥
r4(A{�}(Q1)), Lemma 5.4 yields that r4(AS(Qn)) = 2 if

(
ε2
�

)
4
= 1. Suppose that(

ε2
�

)
4
	= 1. We choose gl = glγ = z�. If q ≡ 3 (mod 8), then SQ1

= {l, lγ , qOQ1
},

and we fix gqOQ1
. If q ≡ 7 (mod 8), then SQ1

= {l, lγ , q, qγ}, and we choose gq =
gqγ = zq, where q is a prime of Q1 lying over q. Then we have an exact sequence

E(Q1)
ϕQ1,S−→ [8l, 8lγ , 8qOQ1

] → AS(Q1) → 0 if q ≡ 3 (mod 8),

E(Q1)
ϕQ1,S−→ [8l, 8lγ , 2q, 2qγ ] → AS(Q1) → 0 if q ≡ 7 (mod 8).

Since ϕQ1,{�}(ε2) = (2, 2) or (6, 6) ∈ [8, 8] (cf. the proof of Lemma 5.4), we have

vQ1,S =

(
ϕQ1,S(−1)
ϕQ1,S(ε

±1
2 )

)
=

(
4 4 4
2 2 a

)
or

(
4 4 1 1
2 2 a0 a1

)
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with some a, a0, a1 ∈ Z according to q ≡ 3 or 7 (mod 8). Since A{q}(Q1) � 0,
ϕQ1,{q} is surjective. Hence a is odd when q ≡ 3 (mod 8), and (a0, a1) = (1, 0) or
(0, 1) when q ≡ 7 (mod 8). By an easy calculation, we have AS(Q1) � [8, 4].
Then r4(AS(Qn)) ≥ r4(AS(Q1)) = 2, and hence r4(AS(Qn)) = 2. Therefore
r2(AS(Qn)) = r4(AS(Qn)) = 2 for all n ≥ 1.

Put Σ = {q}. We prove the inequality |AΣ(k2)| ≥ 4. By Proposition 5.1 and
Theorem 4.3, A∅(kn) 	� 0 for all n ≥ 1. If |A∅(k2)| ≥ 4, then |AΣ(k2)| ≥ |A∅(k2)| ≥
4. In the following, we assume that A∅(k2) � Z/2Z. Then A∅(k1) � Z/2Z and
hence A∅(kn) � Z/2Z for all n ≥ 1 by Theorem 4.3. Let M be a cyclic quartic
extension of Q contained in k2 different from Q2, and let L be the unique prime
of k2 lying over l. Then M/Q1 is a quadratic extension ramified at l and lγ , and
L ∩ M and Lγ ∩ M are inert in the unramified quadratic extension k2/M . By
[20, Proposition 3.6], we have A∅(M) � [2, 2]. Then Mab

∅ = (k2)
ab
∅ is a [2, 2]-

extension of M , and hence both L and Lγ split in (k2)
ab
∅ /k2; i.e., [L] = [Lγ ] = 1 in

A∅(k2). Moreover, Kuroda’s formula (2.2)

2 = |A∅(k2)| = 2−3Q(k2/Q1)|A∅(Q2)||A∅(M)||A∅(k1)||A∅(Q1)|−2 = Q(k2/Q1)

for k2/Q1 yields that

E(k2)/E(Q2)E(M)E(k1) = 〈ηE(Q2)E(M)E(k1)〉 � Z/2Z

with some η ∈ E(k2). Let σ be a generator of Gal(k2/Q2) � Z/2Z. We regard γ as

a generator of Gal(k2/k) � Z/4Z. Note that ε1+γ
2 = −1 and ε1+σ

� = −1. Moreover,

we have |A∅(k
′)| = 4 and ε1+γ

2� = ε1+σ
2� = −1 by [30, Proposition 3.4 (b)]. Then

Kuroda’s formula (2.3)

2 = |A∅(k1)| = 4−1Q(k1/Q)|A∅(Q1)||A∅(k)||A∅(k
′)| = Q(k1/Q)

for k1/Q yields that E(k1) = 〈−1, ε2, ε�,
√
ε2ε�ε2�〉. Since (ε2ε�ε2�)

1+σ = ε22 and

ε1+σ
� = −1, we have E(k1)

1+σ = E(Q1). By the genus formula (2.1)

1 = |〈[L], [Lγ ]〉| = |A∅(Q2)|22
2|E(Q2)/E(k2)1+σ|

for k2/Q2, we have E(Q2)/E(k2)
1+σ � Z/2Z. Since

E(Q2)/E(Q2)
2E(Q1) = 〈ξE(Q2)

2E(Q1), ξ
γE(Q2)

2E(Q1)〉 � [2, 2],

we obtain the exact sequence

0 → E(k2)/E(Q2)E(M)E(k1)
1+σ−→ E(Q2)/E(Q2)

2E(Q1) → Z/2Z → 0

of Galois modules. Note that (E(Q2)/E(Q2)
2E(Q1))

Γ = 〈ξ1+γE(Q2)
2E(Q1)〉 �

Z/2Z. Since ηγ ≡ η (mod E(Q2)E(M)E(k1)), we have (η1+σ)γ ≡ η1+σ

(mod E(Q2)
2E(Q1)). Hence

η1+σ ≡ ξ1+γ mod E(Q2)
2E(Q1).(6.1)

Let Q be a prime of k2 lying over q.
Suppose that q ≡ 3 (mod 8). Then OQ2

/q � Fq4 , and the prime qOQ1
splits

in k1/Q1. We choose gqOQ2
= gQ = gQσ and gqOQ1

= gQ∩k1
= gQσ∩k1

such that

g1+q2

qOQ2
≡ gqOQ1

(mod q). Since OM/q � Ok2
/Q � Ok2

/Qσ, we can choose gqOM

such that gqOM
≡ gQ (mod Q). Since σ|M acts on OM/q as the generator of
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Gal(Fq4/Fq2), g
σ
qOM

≡ gq
2

qOM
(mod q) and hence gqOM

≡ gq
2

Qσ (mod Qσ). Then we
obtain the commutative diagram

E(M)

⊃

��

ϕM,Σ
�� Z/16Z

ψM

��

�� AΣ(M) �� A∅(M) �� 0

E(Q2)
ϕQ2,Σ

��
⊃��

Z/16Z ��

ψQ2��

0

E(k2)
ϕk2,Σ

�� [16Q, 16Qσ ] �� AΣ(k2) �� Z/2Z �� 0

E(k1)
ϕk1,Σ

��

⊂

��

[8Q∩k1
, 8Qσ∩k1

] ��

ψk1

��

AΣ(k1) �� Z/2Z �� 0

with exact rows, where ψQ2
(x) = (x, x) ∈ 〈(1, 1)〉, ψk1

(x0, x1) = (x0(1 + q2),
x1(1 + q2)) ∈ 2[16, 16] and ψM (y) = (y, q2y) ∈ 〈(2, 0), (1, 1)〉. Since ϕQ2,Σ is sur-
jective, ϕQ2,Σ(ξ) = (u) with some odd u. Since γ acts on OQ2

/q as a generator of

Gal(Fq4/Fq), we have ξ
γ ≡ ξq

i

(mod q) where i ∈ {1, 3}. Since ε2 = ξ1+γ2

, we have
ϕQ2,Σ(ε2) = (u(1 + q2i)) ∈ 2Z/16Z. In particular, ϕk2,Σ(E(Q2)

2E(Q1)) ⊂ 〈(2, 2)〉.
Put (a0, a1) = ϕk2,Σ(η). Then ϕk2,Σ(η

σ) = (a1, a0). The congruence (6.1) yields
that

(a0 + a1, a0 + a1) = ϕk2,Σ(η
1+σ) ≡ ϕk2,Σ(ξ

1+γ) = (u(1 + qi), u(1 + qi))

≡ (0, 0) mod 〈(2, 2)〉.

Hence a0 ≡ a1 (mod 2), i.e., (a0, a1) ∈ 〈(2, 0), (1, 1)〉. Since E(k2) is generated
by η and E(Q2)E(M)E(k1), we have Imϕk2,Σ ⊂ 〈(2, 0), (1, 1)〉; i.e., ϕk2,Σ is not
surjective. Therefore |AΣ(k2)| ≥ 4 if q ≡ 3 (mod 8).

Suppose that q ≡ 7 (mod 8), and assume that q 	≡ 15 (mod 16) or
(
�
q

)
= −1.

Then q splits in Q1, and none of the primes lying over q splits completely in k2/Q1.
Let F be the decomposition field of q in k2/Q, and let F ′, F ′′ be the quadratic
extensions of Q1 contained in k2 and different from F . ({F, F ′, F ′′} = {Q2,M, k1}
as a set.) Then OF ′/(Q ∩ F ′) � Ok2

/Q � OF ′′/(Q ∩ F ′′) � Fq2 . Let τ be the
generator of Gal(k2/F

′). We choose gQ∩F ′ = gQ = gQτ and zq such that zq ≡
g1+q
Q∩F ′ (mod Q1+τ ). Then gQγ∩F ′ = gQγ = gQγτ := gγ

Q∩F ′ satisfies zq ≡ g1+q
Qγ∩F ′

(mod Qγ(1+τ)). On the other hand, we choose gQ∩F ′′ such that gQ∩F ′′ ≡ gQ
(mod Q). Then gτQ∩F ′′ ≡ gQτ (mod Qτ ). Moreover, gQγ∩F ′′ := gγ

Q∩F ′′ satisfies
gQγ∩F ′′ ≡ gQγ (mod Qγ). Since Q ∩ F ′′ = Qτ ∩ F ′′, τ acts on OF ′′/(Q ∩ F ′′)
as the Frobenius automorphism. Then gτQ∩F ′′ ≡ gq

Q∩F ′′ (mod Q1+τ ), and hence

gQ∩F ′′ ≡ gq
2

Q∩F ′′ ≡ gτq
Q∩F ′′ ≡ gq

Qτ (mod Qτ ). Then gQγ∩F ′′ ≡ gq
Qγτ (mod Qγτ ).

Choosing zq as the primitive elements of the residue fields Fq of OF , we obtain the
commutative diagram

E(F ′′)

⊃

		

ϕF ′′,Σ
�� [2mQ∩F ′′ , 2mQγ∩F ′′ ]

ψ2





�� AΣ(F
′′) �� A∅(F

′′) → 0

E(F ′)
ϕF ′,Σ

��

⊃��

[2mQ∩F ′ , 2mQγ∩F ′ ] ��

ψ1��

AΣ(F
′) �� A∅(F

′) → 0

E(k2)
ϕk2,Σ

�� [2mQ , 2mQτ , 2mQγ , 2mQγτ ] �� AΣ(k2) �� Z/2Z → 0

E(F )
ϕF,Σ

��

⊂

��

[2Q∩F , 2Qτ∩F , 2Qγ∩F , 2Qγτ∩F ] ��

ψ0

��

AΣ(F ) �� A∅(F ) → 0
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with exact rows, where m = v2(q
2 − 1) ≥ 4,

ψ0(x0, x1, x2, x3) = (2m−1x0, 2
m−1x1, 2

m−1x2, 2
m−1x3),

ψ1(x0, x1) = (x0, x0, x1, x1) and ψ2(x0, x1) = (x0, qx0, x1, qx1). Then
∑2

i=0 Imψi

is generated by 2m−1[2m, 2m, 2m, 2m] and (1, 1, 0, 0), (0, 0, 1, 1), (1, q, 0, 0), (0, 0, 1, q).

Hence [2m, 2m, 2m, 2m]/
∑2

i=0 Imψi � [2, 2]. Since ϕk2,Σ(E(Q2)E(M)E(k1)) ⊂∑2
i=0 Imψi and E(k2)/E(Q2)E(M)E(k1) � Z/2Z, ϕk2,Σ is not surjective. There-

fore |AΣ(k2)| ≥ 4 if q 	≡ 15 (mod 16) or
(
�
q

)
= −1.

Suppose that q ≡ 15 (mod 16) and
(
�
q

)
= 1. Then q splits completely in k2.

Choosing zq as the primitive elements of the residue fields Fq, we obtain a commu-
tative diagram

E(k2)
ϕk2,Σ

�� [2Q, 2Qγ , 2
Qγ2 , 2

Qγ3 , 2Qσ , 2Qγσ , 2
Qγ2σ , 2Qγ3σ ] �� AΣ(k2) � Z/2Z

E(F )
ϕF,Σ

��

⊂

��

[2Q∩F , 2Qγ∩F , 2Qτ∩F , 2Qγτ∩F ] ��

ψF

��

AΣ(F ) � A∅(F )

with exact rows, where

ψF (x0, x1, x2, x3) =

⎧⎨⎩
(x0, x1, x0, x1, x2, x3, x2, x3) and τ = σ if F = k1,
(x0, x1, x2, x3, x0, x1, x2, x3) and τ = γ2 if F = Q2,
(x0, x1, x2, x3, x2, x3, x0, x1) and τ = γ2 if F = M.

An easy calculation shows that [2, 2, 2, 2, 2, 2, 2, 2]/
∑

F∈{Q2,M,k1} ImψF � [2, 2].

This implies that |AΣ(k2)| ≥ 4. Thus the proof of Lemma 6.4 is completed. �

As we will see later, Lemma 6.4 implies that GS(Q∞) is not prometacyclic if(
2
�

)
4
= (−1)

�−1
8 . In the following, we consider the case where

(
2
�

)
4
	= (−1)

�−1
8 . If

GS(Q∞) is prometacyclic, then r2(AS(Qn)) ≤ 2 for all n. Hence, by Lemma 6.1,
it suffices to consider the case where v = 1 or w = 0, i.e., � ≡ 9 (mod 16) or q ≡ 3
(mod 8).

Lemma 6.5. Assume that � ≡ 1 (mod 8) and
(
2
�

)
4
	= (−1)

�−1
8 . If q ≡ 3 (mod 8),

then r4(AS(Q1)) = 2 and

|A{q}(k2)| = 2 if � ≡ 1 (mod 16) and
(
q
�

)
= 1,

|A{q}(k2)| ≥ 4 if � ≡ 9 (mod 16) or
(
q
�

)
= −1.

If � ≡ 9 (mod 16) and q ≡ 7 (mod 8), then AS(Q2) � [2, 16] and

|A{q}(k2)| = 2 if
(
q
�

)
= 1,

|A{q}(k2)| ≥ 4 if
(
q
�

)
= −1.

Proof. First, we prepare some properties of units. By the assumption, A∅(kn) � 0
for all n ≥ 0 (cf. Proposition 5.1). Let σ be a generator of Gal(k2/Q2). We

regard γ as a generator of Gal(k2/k). Recall that εγ+1
2 = εσ+1

� = −1. Since k1/k
′

is unramified and A∅(k1) � 0, we have k1 = (k′)ab∅ and A∅(k
′) � Z/2Z. Since

|A{∞}(k
′)| ≥ 4 (cf. [30]), we have εσ+1

2� = 1. Kuroda’s formula (2.3)

1 = |A∅(k1)| = 4−1Q(k1/Q)|A∅(Q1)||A∅(k)||A∅(k
′)| = 2−1Q(k1/Q)

for k1/Q yields that E(k1) = 〈−1, ε2, ε�,
√
ε2�〉. An easy calculation shows that√

ε2� = x
√
2+ y

√
� ∈ Ok1

with some x, y ∈ Q. Then 2x2− �y2 =
√
ε2�

1+σ = ±1. If

2x2 − �y2 = 1, then 2|x|+ |y|
√
2� ∈ Ok′ is totally positive and (2|x|+ |y|

√
2�)Ok′ is
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the prime lying over 2. If 2x2−�y2 = −1, then �|y|+ |x|
√
2� ∈ Ok′ is totally positive

and (�|y| + |x|
√
2�)Ok′ is the prime lying over �. By [30, Proposition 3.4(a)], we

have

−√
ε2�

1+γ
=

√
ε2�

1+σ
= (−1)

�−1
8 ,(6.2)

where we note that
√
ε2�

γσ = −√
ε2�. Let M be a cyclic quartic extension of Q

contained in k2 different from Q2. Then k2 = Mab
∅ . Kuroda’s formula (2.2)

1 = |A∅(k2)| = 2−3Q(k2/Q1)|A∅(Q2)||A∅(M)||A∅(k1)||A∅(Q1)|−2 = 2−2Q(k2/Q1)

for k2/Q1 yields that |E(k2)/E(Q2)E(M)E(k1)| = 4. The genus formula (2.1)

1 = |A∅(k2)| ≥
|A∅(k1)|22

2|E(k1)/E(k2)1+γ2 |
for k2/k1 yields the existence of an exact sequence

E(k2)/E(Q2)E(M)E(k1)
1+γ2

−→ E(k1)/E(Q1)E(k1)
2 → Z/2Z → 0.

Note that E(Q1)E(k1)
2 = 〈−1, ε2, ε

2
� , ε2�〉 = (E(Q2)E(M)E(k1))

1+γ2

and

E(k1)/E(Q1)E(k1)
2 = 〈ε�E(Q1)E(k1)

2,
√
ε2�E(Q1)E(k1)

2〉 � [2, 2].

The genus formula (2.1)

1 = |A∅(k2)| ≥
|A∅(k)|42

4|E(k)/E(k2)(1+γ2)(1+γ)|

for k2/k yields that E(k2)
(1+γ2)(1+γ) = 〈−1, ε4�〉. Since ε1+γ

� = ε2� and (
√
ε2�ε�)

1+γ

= ±ε2� , we have ε�,
√
ε2�ε� 	∈ E(k2)

1+γ2

, and hence
√
ε2� ∈ E(k2)

1+γ2

. Therefore

E(k2) = 〈η1, η2〉E(Q2)E(M)E(k1)

with some η1, η2 ∈ E(k2) such that

η1+γ2

1 ≡ √
ε2�, η1+γ2

2 ≡ 1 (mod E(Q1)E(k1)
2).(6.3)

Put Σ = {q}, and put e = v2(q+ 1) ≥ 2. Let Q be a prime of k2 lying over q. If
� ≡ 9 (mod 16) or q ≡ 3 (mod 8), we have r2(AS(Qn)) = 2 for all n ≥ 1 by Lemma
6.1. Then r2(AΣ(kn)) = 1 for all n ≥ 1 by (3.1) for the triple (kn/Qn, SQn

,ΣQn
).

Since Qab
S /Q is a cyclic extension totally ramified at �, we have AΣ(k) � 0, and

hence γ acts on AΣ(k1) as −1. Since AΣ(Q1) � 0, σ also acts on AΣ(k1) as
−1. Therefore σγ acts on AΣ(k1) trivially. This implies that (k′)abΣ = (k1)

ab
Σ . In

particular, |AΣ(k
′)| = 2|AΣ(k1)| ≥ 4. Recall the exact sequence

E(k′)
Φk′,Σ−→ (Ok′/q)× ⊗ Z2 → AΣ(k

′) → Z/2Z → 0.

Since Φk′,Σ(−1) is nontrivial, Φk′,Σ is not zero mapping. If
(
2�
q

)
= 1, then

(Ok′/q)× ⊗ Z2 � [2, 2], and hence |AΣ(k
′)| = 4. This implies that ImΦk′,Σ =

〈Φk′,Σ(−1)〉 if
(
2�
q

)
= 1. If

(
2�
q

)
= −1, we choose gqOk′ which is also a primitive ele-

ment of Ok1
/(Q∩k1) � Ok′/q � Fq2 . Then (Ok′/q)×⊗Z2 = 〈gqOk′ ⊗1〉 � Z/2e+1Z

and
√
ε2� ≡ gtqOk′ (mod Q ∩ k1) with some t ∈ Z. If

(
2
q

)
= −1 and

(
q
�

)
= 1, then

g
(1+q)t
qOk′ ≡ √

ε2�
1+γ (mod Q ∩ k1 = Qγ ∩ k1). If

(
2
q

)
= 1 and

(
q
�

)
= −1, then
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g
(1+q)t
qOk′ ≡ √

ε2�
1+σ (mod Q∩ k1 = Qσ ∩ k1). By (6.2), the parity of t is determined

as

(−1)t =
(
2
q

)
(−1)

�−1
8 .(6.4)

Since ε2� ≡ g2tqOk′ (mod q) and |AΣ(k1)| = |CokerΦk′,Σ|, we have

|AΣ(k1)| = 2 if
(
2�
q

)
= 1 or (−1)

�−1
8 	=

(
2
q

)
,

|AΣ(k1)| ≥ 4 if
(
2�
q

)
= −1 and (−1)

�−1
8 =

(
2
q

)
.

(6.5)

Suppose that q ≡ 3 (mod 8). For gqOQ1
and gl = glγ = z�, we obtain the exact

sequence

E(Q1)
ϕQ1,S−→ [2ml , 2mlγ , 8qOQ1

] → AS(Q1) → 0

and

vQ1,S =

(
ϕQ1,S(−1)
ϕQ1,S(ε2)

)
=

(
2m−1 2m−1 4
a0 a1 b

)
,

with some a0, a1, b ∈ Z, where m = v2(� − 1) ≥ 3. Since G{�}(Q∞) is cyclic by

Proposition 5.1, (Q1)
elem
{�} = k1, and hence A{l}(Q1) � A{lγ}(Q1) � 0. Recall that

AΣ(Q1) � 0 (cf. Corollary 4.2). These imply that ϕQ1,{l}, ϕQ1,{lγ} and ϕQ1,Σ are
surjective; i.e., a0, a1 and b are odd. An easy calculation shows that AS(Q1) �
[2m, 4]. In particular, r4(AS(Q1)) = 2. If

(
q
�

)
= 1 and � ≡ 9 (mod 16), we have the

claim |AΣ(k2)| ≥ |AΣ(k1)| ≥ 4 by (6.5). Suppose that
(
q
�

)
= −1 or � ≡ 1 (mod 16).

Then |AΣ(k1)| = 2 by (6.5). Note that OQ2
/q � Fq4 � OM/q and that qOQ1

splits
in k1/Q1. We choose gqOQ1

= gQ∩k1
= gQσ∩k1

and gqOQ2
= gQ = gQσ such that

gqOQ1
≡ g1+q2

qOQ2
(mod q). We also choose gqOM

such that gqOM
≡ gQ (mod Q).

Since Qσγ2

= Qσ and γ2 acts on Ok2
/Qσ as a generator of Gal(Fq4/Fq2), we have

gqOM
≡ gσγ

2

Q
≡ gq

2

Qσ (mod Qσ). Then we obtain the commutative diagram

E(M)

⊃

��

ϕM,Σ
�� Z/16Z

ψM

��

�� AΣ(M) �� Z/2Z �� 0

E(Q2)

⊃��

ϕQ2,Σ
�� Z/16Z

ψQ2��

�� 0

E(k2)
ϕk2,Σ

�� [16Q, 16Qσ ] �� AΣ(k2) �� 0

E(k1)
ϕk1,Σ

��

⊂

��

[8Q∩k1
, 8Qσ∩k1

] ��

ψk1

��

Z/2Z �� 0

E(k′)
Φk′,Σ

��

⊂

��

(Ok′/q)× ⊗ Z2

Ψ
��

with exact rows, where ψk1
(x0, x1) = ((1 + q2)x0, (1 + q2)x1) = (10x0, 10x1),

ψQ2
(x) = (x, x) and ψM (y) = (y, q2y) ∈ 〈(1, 1), (4, 0)〉. If (x0, x1) = ϕk1,Σ(ε)

with some ε ∈ E(k1), then (x1, x0) = ϕk1,Σ(ε
σ). This implies that Imϕk1,Σ =

〈(1, 1), (2, 0)〉, i.e., ϕk2,Σ(E(k1)) = 〈(2, 2), (4, 0)〉. Therefore
ϕk2,Σ(E(Q2)E(M)E(k1)) = 〈(1, 1), (4, 0)〉.(6.6)

If
(
q
�

)
= −1, we have ϕk2,Σ(ε2�) ∈ ψk1

(Ψ(ImΦk′,Σ)) = ψk1
(Ψ(〈Φk′,Σ(−1)〉)) =

〈(8, 8)〉. On the other hand, if
(
q
�

)
= 1, gqOk′ ≡ guQ∩k1

(mod Q∩k1) with some odd
u ∈ Z. Then, since Qσγ∩k1 = Qσ∩k1 and γ acts on Ok1

/(Qσ∩k1) as the Frobenius
automorphism, we have gqOk′ ≡ guσγ

Q∩k1
≡ gqu

Qσ∩k1
(mod Qσ ∩ k1). Since ε2� ≡ g2tqOk′
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(mod q), we have ϕk2,Σ(ε2�) = ψk1
(ϕk1,Σ(ε2�)) = ψk1

((2tu, 2tuq)) = (4tu,−4tu) if(
q
�

)
= 1. Therefore

ϕk2,Σ(
√
ε2�) ≡

{
(0, 0) (mod 〈(4, 4), (8, 0)〉) if

(
q
�

)
= −1,

(2tu,−2tu) (mod 8[16, 16]) if
(
q
�

)
= 1.

(6.7)

Recall that (E(Q2)E(M)E(k1))
1+γ2

= E(Q1)E(k1)
2. If (y0, y1) = ϕk2,Σ(ε) with

some ε ∈ E(k2), then (q2y0, q
2y1) = ϕk2,Σ(ε

γ2

). Hence ϕk2,Σ(E(Q1)E(k1)
2) =

〈(2, 2), (8, 0)〉 ⊃ 8[16, 16] by (6.6). Put (c0, c1) = ϕk2,Σ(η1) and (d0, d1) = ϕk2,Σ(η2).

Since (10c0, 10c1) = ϕk2,Σ(η
1+γ2

1 ) ≡ ϕk2,Σ(
√
ε2�) (mod 〈(2, 2), (8, 0)〉) and

(10d0, 10d1) = ϕk2,Σ(η
1+γ2

2 ) ∈ 〈(2, 2), (8, 0)〉 by (6.3), we have

(5c0, 5c1) ≡
{

(0, 0) (mod 〈(1, 1), (4, 0)〉) if
(
q
�

)
= −1,

(tu,−tu) (mod 〈(1, 1), (4, 0)〉) if
(
q
�

)
= 1

and (5d0, 5d1) ∈ 〈(1, 1), (4, 0)〉 by (6.7). Then Imϕk2,Σ = 〈(5c0, 5c1), (1, 1), (4, 0)〉.
If

(
q
�

)
= −1, we have |AΣ(k2)| = 4. If

(
q
�

)
= 1 and � ≡ 1 (mod 16), then t is odd

by (6.4), and hence |AΣ(k2)| = 2. Thus we obtain the statement for the case where
q ≡ 3 (mod 8).

Suppose that � ≡ 9 (mod 16). Recall that r2(AΣ(kn)) = 1 for all n ≥ 1. Then
(k2)

elem
Σ = (k1)

elem
Σ k2 is a [2, 2]-extension of k1. Let L be a prime of k2 lying over l.

Since L ∩ k1 is inert in k2/k1, L splits in (k2)
elem
Σ /k2. Since L ∩M is also inert in

k2/M , the quartic extension (k2)
elem
Σ /M is a [2, 2]-extension unramified outside Σ.

Since MΣ = (k2)
ab
Σ , r4(AΣ(M)) ≤ 1 and r2(AΣ(M)) = 2. Let M ′ and M ′′ be the

distinct quadratic extensions of M contained in (k2)
elem
Σ different from k2. Since

(k2)
elem
Σ /Q is not abelian, M ′/Q is not a Galois extension, and M ′′ is the conjugate

of M ′. Then GΣ(M)ab � AΣ(M) has a cyclic maximal subgroup Gal(Mab
Σ /k2),

and two other maximal subgroups Gal(Mab
Σ /M ′), Gal(Mab

Σ /M ′′) are isomorphic to
each other. This implies that r4(AΣ(M)) = 0, i.e., AΣ(M) � [2, 2].

Suppose that � ≡ 9 (mod 16) and q ≡ 7 (mod 16). Then OQ2
/l � F�2 and

OQ2
/(Q ∩ Q2) � Fq2 . We choose glOQ2

, gQ∩Q2
, and put glγOQ2

= gγ
lOQ2

, gQγ∩Q2
=

gγ
Q∩Q2

. If ε ≡ galγOQ2
(mod lγ) and ε ≡ gbQγ∩Q2

(mod Qγ ∩ Q2) for some ε ∈
E(Q2) and a, b ∈ Z, then εγ ≡ gγ

2a
lOQ2

≡ g�alOQ2
(mod l) and εγ ≡ gγ

2b
Q∩Q2

≡ gqb
Q∩Q2

(mod Q ∩Q2). Hence we obtain the exact sequence

E(Q2)
ϕQ2,S−→ [16lOQ2

, 16lγOQ2
, 16Q∩Q2

, 16Qγ∩Q2
] → AS(Q2) → 0

and

vQ2,S =

⎛⎜⎜⎝
ϕQ2,S(ξ)
ϕQ2,S(ξ

γ)

ϕQ2,S(ξ
γ2

)

ϕQ2,S(ξ
γ3

)

⎞⎟⎟⎠=

⎛⎜⎜⎝
a0 a1 b0 b1
�a1 a0 qb1 b0
�a0 �a1 qb0 qb1
�2a1 �a0 q2b1 qb0

⎞⎟⎟⎠=

⎛⎜⎜⎝
a0 a1 b0 b1
9a1 a0 7b1 b0
9a0 9a1 7b0 7b1
a1 9a0 b1 7b0

⎞⎟⎟⎠ .

Since ϕQ2,S(ξ
1+γ+γ2+γ3

) = ϕQ2,S(−1) = (8, 8, 8, 8), we have a0 + a1 ≡ 4 (mod 8)
and b0+b1 ≡ 1 (mod 2). In particular, a0+a1 ≡ ±4 (mod 16). Replacing Q by Qγ

if necessary, we may assume that b0 ∈ Z×
2 . Since A{�}(Q2) is cyclic by Proposition

5.1, ImϕQ2,{�} 	∈ 2[16, 16], i.e., a0 ≡ a1 ≡ 1 (mod 2). Then a21 ≡ 8 + a20 (mod 16).
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Since⎛⎜⎜⎜⎝
1 −1 a0−9a1

2a0
0

0 1 9a1−1
2a0

0

0 −2 −9a1

a0
0

0 0 4 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

9−7b0
2b0

0 b0−1
2b0

0
b1
2b0

1 7b1
2b0

0

7 0 −1 0
b0−4
b0

1 b0+4
b0

1

⎞⎟⎟⎟⎠ vQ2,S =

⎛⎜⎜⎜⎜⎜⎝
0 0 1

b1−b20−b21
b0

1 a1

a0
0

b20+b21
b0

0 0 0 −2
b20+b21
b0

0 0 0 8

⎞⎟⎟⎟⎟⎟⎠ ,

one can see that AS(Q2) � [2, 16]. Since OQ2
/(Q ∩ Q2) � Ok2

/Q � Ok2
/Qσ, we

can put gQ = gQσ := gQ∩Q2
and gQγ = gQσγ := gQγ∩Q2

. Put (F, F ′) = (k1,M) or
(M,k1) according to

(
q
�

)
= 1 or −1. Then F is the decomposition field of q in k2/Q,

and Q∩F ′ = Qσ∩F ′. We choose zq satisfying g1+q
Q

≡ zq (mod Q) as the primitive
elements of residue fields Fq, and gQ∩F ′ such that gQ∩F ′ ≡ gQ (mod Q). Since
σ acts on OF ′/(Q ∩ F ′) as the Frobenius automorphism, gQ∩F ′ ≡ gqσ

Q∩F ′ ≡ gq
Qσ

(mod Qσ), and gQγ∩F ′ := gγ
Q∩F ′ satisfies gQγ∩F ′ ≡ gQγ (mod Qγ) and gQγ∩F ′ ≡

gq
Qσγ (mod Qσγ). Then we obtain the commutative diagram

E(F ′)
ϕF ′,Σ

��

⊃

		

[16Q∩F ′ , 16Qγ∩F ′ ] ��

ψ′

��

AΣ(F
′) �� A∅(F

′) → 0

E(Q2)

⊃��

ϕQ2,Σ
�� [16Q∩Q2

, 16Qγ∩Q2
]

ψQ2 ��

�� 0

E(k2)
ϕk2,Σ

�� [16Q, 16Qσ , 16Qγ , 16Qσγ ] �� AΣ(k2) �� 0

E(F )

⊂

��

ϕF,Σ
�� [2Q∩F , 2Qσ∩F , 2Qγ∩F , 2Qσγ∩F ]

ψ
��

�� AΣ(F ) ��

ι
��

A∅(F ) → 0

with exact rows, where ψQ2
(x0, x1) = (x0, x0, x1, x1), ψ

′(y0, y1) = (y0, qy0, y1, qy1)
and ψ(x0, x1, x2, x3) = (8x0, 8x1, 8x2, 8x3). Recall that AΣ(M) � [2, 2], A∅(M) �
Z/2Z and A∅(k1) � 0. By (6.5), we have AΣ(k1) � Z/2Z. These yield that

|CokerϕF,Σ| = |CokerϕF ′,Σ| = 2. Note that gγ
Qγ∩F ′ = gγ

2

Q∩F ′ ≡ gq
Q∩F ′ or gQ∩F ′

(mod Q ∩ F ′) according to
(
q
�

)
= 1 or −1. If ϕF ′,Σ(ε) = (1, 0) (resp. (0, 1)) for

some ε, then ϕF ′,Σ(ε
γ) = (0, 1) (resp. (q, 0) or (1, 0)). Since ϕF ′,Σ is not surjective,

{(1, 0), (0, 1)} ∩ ImϕF ′,Σ = ∅, and hence ImϕF ′,Σ = 〈(1, 1), (2, 0)〉. Then

ϕk2,Σ(E(Q2)E(F ′)) = 〈(1, 1, 0, 0), (0, 0, 1, 1), (1, q, 1, q), (2, 2q, 0, 0)〉
= 〈(1, 1, 0, 0), (0, 0, 1, 1), (0, 2, 0, 2), (0, 4, 0, 0)〉

and ϕk2,Σ(E(F )) ⊂ Imψ = 8[16, 16, 16, 16] ⊂ ϕk2,Σ(E(Q2)E(F ′)). In particular,

ϕk2,Σ(E(Q2)E(M)E(k1)) = 〈(1, 1, 0, 0), (0, 0, 1, 1), (0, 2, 0, 2), (0, 4, 0, 0)〉.

Since AΣ(Q2) � 0, σ acts on AΣ(k2) as −1. If
(
q
�

)
= 1, the inclusion Imψ ⊂

Imϕk2,Σ implies that ι : AΣ(k1) → AΣ(k2) is zero mapping; i.e., γ2 also acts on
AΣ(k2) as −1. Then, since σγ2 acts on AΣ(k2) trivially, (k2)

ab
Σ /M is abelian,

i.e., (k2)
ab
Σ = Mab

Σ . Therefore |AΣ(k2)| = 1
2 |AΣ(M)| = 2 if

(
q
�

)
= 1. Sup-

pose that
(
q
�

)
= −1. Then (F, F ′) = (M,k1) and Qσ = Qγ2

. Recall that

(E(Q2)E(M)E(k1))
1+γ2

= E(Q1)E(k1)
2. If (y0, y1, y2, y3) = ϕk2,Σ(ε) with some

ε ∈ E(k2), then (qy1, qy0, qy3, qy2) = ϕk2,Σ(ε
γ2

). Hence

ϕk2,Σ(E(Q1)E(k1)
2) = 〈(−2, 2,−2, 2), (−4, 4, 0, 0)〉.
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Put (d0, d1, d2, d3) = ϕk2,Σ(η2). By (6.3), we have

(d0 + qd1, d1 + qd0, d2 + qd3, d3 + qd2) ∈ 〈(−2, 2,−2, 2), (−4, 4, 0, 0)〉.

In particular, d0 − d1 ≡ d2 − d3 (mod 4) and d2 − d3 ≡ 0 (mod 2). Then

ϕk2,Σ(η2)

= d0(1, 1, 0, 0) + d2(0, 0, 1, 1)− d2−d3

2 (0, 2, 0, 2) + (d2−d3)−(d0−d1)
4 (0, 4, 0, 0)

∈ ϕk2,Σ(E(Q2)E(M)E(k1)).

Hence |Imϕk2,Σ/ϕk2,Σ(E(Q2)E(M)E(k1))| ≤ 2. Since

[16, 16, 16, 16]/ϕk2,Σ(E(Q2)E(M)E(k1)) � [2, 4],

we have |AΣ(k2)| ≥ 4 if
(
q
�

)
= −1.

Suppose that � ≡ 9 (mod 16) and q ≡ 15 (mod 16). We choose glOQ2
and put

glγOQ2
= gγ

lOQ2
. Choosing zq as the primitive elements of residue fields Fq, we obtain

the exact sequence

E(Q2)
ϕQ2,S−→ [16lOQ2

, 16lγOQ2
, 2Q∩Q2

, 2
Qγ2∩Q2

, 2Qγ∩Q2
, 2

Qγ3∩Q2
] → AS(Q2) → 0

and

vQ2,S =

⎛⎜⎜⎝
ϕQ2,S(ξ)
ϕQ2,S(ξ

γ)

ϕQ2,S(ξ
γ2

)

ϕQ2,S(ξ
γ3

)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
a0 a1 b0 b2 b1 b3
9a1 a0 b3 b1 b0 b2
9a0 9a1 b2 b0 b3 b1
a1 9a0 b1 b3 b2 b0

⎞⎟⎟⎠ .

Since ξ1+γ+γ2+γ3

= −1, we have a0+a1 ≡ ±4 (mod 16) and
∑3

i=0 bi ≡ 1 (mod 2).

ReplacingQ byQγi

if necessary, we may assume that b0 ≡ 1, b2 ≡ 0 (mod 2). Then
b1 ≡ b3 (mod 2). Since A{�}(Q2) is cyclic by Proposition 5.1, ImϕQ2,{�} 	∈ 2[16, 16],
i.e., a0 ≡ a1 ≡ 1 (mod 2). Then⎛⎜⎜⎝

1 0 0 b1
0 1 b1 b1
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
8− a1

a0
1 0 0

−9 0 1 0
10 3 2 1

⎞⎟⎟⎠ vQ2,S =

⎛⎜⎜⎝
a0 a1 1 0 0 0
0 0 1 0 1 0
0 0 1 1 0 0
0 0 0 0 1 1

⎞⎟⎟⎠ .

Hence we have AS(Q2) � [2, 16]. Recall that r2(AΣ(k2)) = 1. If
(
q
�

)
= 1, q splits

completely in k2/Q. Then the exact sequence

E(k2)
ϕk2,Σ−→ [2Q, 2

Qγ2 , 2Qγ , 2
Qγ3 , 2Qσ , 2

Qσγ2 , 2Qσγ , 2
Qσγ3 ] → AΣ(k2) → 0

yields that |AΣ(k2)| = 2. Suppose that
(
q
�

)
= −1. We choose gqOk

= g
Qγi∩k1

=

g
Qγi commonly for all i. Then zq ≡ g

u(1+q)
qOk

(mod q) with some odd u. We
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choose gQ∩M such that gQ∩M ≡ gqOk
(mod Q). Then gQ∩M ≡ gqγ

2

Q∩M ≡ gqqOk

(mod Qγ2

), and gQγ∩M = gγ
Q∩M satisfies gQγ∩M ≡ gqOk

(mod Qγ) and gQγ∩M ≡
gqqOk

(mod Qγ3

). Then we obtain a commutative diagram

E(Q2)

⊃

��

ϕQ2,Σ
�� [2Q∩Q2

, 2
Qγ2∩Q2

, 2Qγ∩Q2
, 2

Qγ3∩Q2
]

ψQ2��

�� 0

E(k2)
ϕk2,Σ

�� [2e+1
Q

, 2e+1

Qγ2 , 2
e+1
Qγ , 2e+1

Qγ3 ] �� AΣ(k2) �� 0

E(k1)

⊂

��

ϕk1,Σ
�� [2e+1

Q∩k1
, 2e+1

Qγ∩k1
]

ψk1

��

�� AΣ(k1) �� 0

E(M)
ϕM,Σ

��

⊂

��

[2e+1
Q∩M , 2e+1

Qγ∩M ] ��

ψM





AΣ(M) �� �� A∅(M)

with exact rows, where e = v2(q + 1) ≥ 4, ψk1
(x0, x1) = (x0, x0, x1, x1),

ψM (x0, x1) = (x0, qx0, x1, qx1) and ψQ2
(y0, y2, y1, y3) = (2ey0, 2

ey2, 2
ey1, 2

ey3). By
(6.5), AΣ(k1) � Z/2Z. Recall that AΣ(M) � [2, 2] and A∅(M) � Z/2Z. Note
that ϕk1,Σ(ε

γ) = (x1, x0) if ϕk1,Σ(ε) = (x0, x1) and that ϕM,Σ(ε
γ) = (qx1, x0) if

ϕM,Σ(ε) = (x0, x1). Therefore Imϕk1,Σ = 〈(1, 1), (2, 0)〉 and ImϕM,Σ =
〈(1, 1), (2, 0)〉. Then

ϕk2,Σ(E(M)E(k1)) = 〈(1, 1, 1, 1), (2, 2, 0, 0), (1, q, 1, q), (2, 2q, 0, 0)〉
and ϕk2,Σ(E(Q2)) = 2e[2e+1, 2e+1, 2e+1, 2e+1] ⊂ ϕk2,Σ(E(M)E(k1)). Thus we have

ϕk2,Σ(E(Q2)E(M)E(k1)) = 〈(1, 1, 1, 1), (2, 2, 0, 0), (2, 0, 2, 0), (4, 0, 0, 0)〉.
Since |Imϕk2,Σ/ϕk2,Σ(E(Q2)E(M)E(k1))| ≤ 4 and

[2e+1, 2e+1, 2e+1, 2e+1]/ϕk2,Σ(E(Q2)E(M)E(k1)) � [2, 2, 4],

we have |AΣ(k2)| ≥ 4. Thus the proof of Lemma 6.5 is completed. �

Lemma 6.6. If � ≡ 9 (mod 16),
(
2
�

)
4
= 1, q ≡ 7 (mod 8) and

(
q
�

)
= 1, then

GS(Q1) is nonabelian.

Proof. Recall that E(k1) = 〈−1, ε2, ε�,
√
ε2�〉 (cf. the proof of Lemma 6.5). Let σ

(resp. γ) be a generator of Gal(k1/Q1) (resp. Gal(k1/k)). Let L (resp. Q) be a
prime of k1 lying over l (resp. q). We choose z� (resp. zq) as the primitive elements
of residue fields F� (resp. Fq). Then we obtain the commutative diagram

E(k)
ϕk,S

��

⊃��

[8√�Ok
, 2Q∩k, 2Qσ∩k]

ψk��

�� AS(k) �� 0

E(k1)
ϕk1,S

�� [8L, 8Lγ , 2Q, 2Qσ , 2Qγ , 2Qσγ ] �� AS(k1) �� 0

E(Q1)
ϕQ1,S

��

⊂

��

[8l, 8lγ , 2Q∩Q1
, 2Qγ∩Q1

]

ψQ1

��

�� AS(Q1) �� 0

with exact rows, where ψk(x, y0, y1) = (x, x, y0, y1, y0, y1) and ψQ1
(x0, x1, y0, y1) =

(x0, x1, y0, y0, y1, y1). Recall that ε
1+γ
2 = −1 and A{q}(Q1) � 0. Since r2(A{�}(Q1))

= 1 by Proposition 5.1, we have

vQ1,S =

(
ϕQ1,S(−1)
ϕQ1,S(ε2)

)
=

(
4 4 1 1
u 4− u b b+ 1

)
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with some u ≡ 1 (mod 2) and b ∈ {0, 1}. Then one can easily see that AS(Q1) �
[2, 8]. Since ε1+σ

� = −1, we have ϕk,S(ε�) = (a, d, d + 1) with some a ≡ 2

(mod 4) and d ∈ {0, 1}. Since ε2� ∈ E(k1)
2 and ε1+σ

2� = 1, we have ϕk1,S(ε2�) =
(c, c, 0, 0, 0, 0) with some c ≡ 0 (mod 4). Put

wk1,S =

⎛⎜⎜⎝
ϕk1,S(−1)
ϕk1,S(ε2)
ϕk1,S(ε�)
ϕk1,S(ε2�)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
4 4 1 1 1 1
u 4− u b b b+ 1 b+ 1
a a d d+ 1 d d+ 1
c c 0 0 0 0

⎞⎟⎟⎠ .

Then ⎛⎜⎜⎝
−1 0 2 0
−b 1

u 2b 0
−d 0 2

a + 2d 0
0 0 c

2 1

⎞⎟⎟⎠wk1,S =

⎛⎜⎜⎝
0 0 1 1 1 1
1 3 0 0 1 1
2 2 0 1 0 1
0 0 0 0 0 0

⎞⎟⎟⎠ .

This yields that [8, 8, 2, 2, 2, 2]/ϕk1,S(〈−1, ε2, ε�, ε2�〉) � [8, 2, 2]. Hence |AS(k1)| =
|Cokerϕk1,S | ≥ 1

2 |[8, 2, 2]| = |AS(Q1)|. This implies that GS(Q1) is nonabelian.
Thus the proof of Lemma 6.6 is completed. �

Now we complete the proof of Theorem 6.3. Put Σ = {q}. Since � ≡ 1 (mod 8)
and q ≡ 3 (mod 4), Qab

S /Q is a cyclic extension of degree at least 8, which is
totally ramified at �. Hence r4(AS(Qn)) ≥ 1 for all n ≥ 0. Moreover, GS(Q∞)
is not procyclic by Proposition 6.2, and hence r2(AS(Qn)) ≥ 2 for all n ≥ 1 by
Theorem 4.3. If r2(AS(Qn)) = 2, Theorem 3.1(1) for (kn/Qn, SQn

,ΣQn
) yields that

(Qn)
elem
SQn\{L} 	= Qn for L ∈ SQn

\ ΣQn
. Then Qab

S (Qn)
elem
SQn\{L}/kn is a noncyclic

abelian extension. Therefore r2(Gal((Qn)
ab
S /kn)) = 2 if r2(AS(Qn)) = 2.

First, we prove the if-part. Assume one of the two conditions, and suppose

n ≥ 1. Then
(
2
�

)
4
	= (−1)

�−1
8 . Since � ≡ 9 (mod 16) or q ≡ 3 (mod 8), we have

r2(AS(Qn)) = 2 by Lemma 6.1, and hence r2(Gal((Qn)
ab
S /kn)) = 2. Recall that

r4(AS(Q1)) ≥ 1. For any n ≥ 2,

r4(AS(Qn)) = 1 and |AΣ(kn)| ≥ 4 if � ≡ 9 (mod 16), q ≡ 7 (mod 8),
(
q
�

)
= −1,

r4(AS(Qn)) = 2 and |AΣ(kn)| = 2 if � ≡ 1 (mod 16), q ≡ 3 (mod 8),
(
q
�

)
= 1

by Lemma 6.5 and Theorem 4.3. Hence GS(Qn) is metacyclic for all n ≥ 2 by
Theorem 3.1(2), (3) for (kn/Qn, SQn

,ΣQn
). Therefore GS(Q∞) is prometacyclic.

Conversely, we assume that GS(Q∞) is prometacyclic. Then G{�}(Q∞) is also

prometacyclic. Suppose that
(
2
�

)
4
= (−1)

�−1
8 . Then, since � ≡ 9 (mod 16) and(

2
�

)
4
= −1 by Theorem 5.2, we have r4(AS(Qn)) = 2 and |AΣ(kn)| ≥ 4 for all

n ≥ 2 by Lemma 6.4. Theorem 3.1(2) for (kn/Qn, SQn
,ΣQn

) implies that GS(Qn)

is not metacyclic if n ≥ 2. This is a contradiction. Therefore
(
2
�

)
4
	= (−1)

�−1
8 .

Since GS(Q∞) is nonprocyclic prometacyclic, we have r2(AS(Qn)) = 2 for all n ≥ 1
by Theorem 4.3. In particular, r2(AS(Q2)) = 2, and hence r2(Gal((Q2)

ab
S /k2)) = 2.

Also, � ≡ 9 (mod 16) or q ≡ 3 (mod 8) by Lemma 6.1. We apply Theorem 3.1 for
(k2/Q2, SQ2

,ΣQ2
). Since GS(Q2) is metacyclic, r4(AS(Q1)) = 1 or |AΣ(k2)| = 2 by

Theorem 3.1(2). Hence, if q ≡ 3 (mod 8), we have � ≡ 1 (mod 16) (i.e.,
(
2
�

)
4
= −1)

and
(
q
�

)
= 1 by Lemma 6.5. This is one of the two conditions. On the other

hand, we assume that � ≡ 9 (mod 16) (i.e.,
(
2
�

)
4
= 1). Then q ≡ 7 (mod 8),

and SQ2
\ ΣQ2

= {lOQ2
, lγOQ2

}. Lemma 6.5 yields that AS(Q2) � [2, 16]. In
particular, r4(AS(Q2)) = 1 and |OQ2

/l| = |OQ2
/lγ | = �2 	≡ 1 (mod |AS(Q2)|).
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Since (Q2)
elem
{l,q}/Q1 is a [2, 2]-extension and lγ is inert in Q2/Q1, l

γOQ2
splits in the

quadratic extension (Q2)
elem
{l,q}/Q2 ramified at lOQ2

. Hence the conditions (4b), (4c)

of Theorem 3.1 are satisfied. If
(
q
�

)
= 1, we have |AΣ(k2)| = 2 by Lemma 6.5, and

GS(Q2) is nonabelian (i.e., (4a) is also satisfied) by Lemma 6.6. Then Theorem
3.1(4) yields that GS(Q2) is not metacyclic. This is a contradiction. Therefore,
q ≡ 7 (mod 8) and

(
q
�

)
= −1 if � ≡ 9 (mod 16) (i.e.,

(
2
�

)
4
= 1). Thus the proof of

Theorem 6.3 is completed. �

7. The case of other S = {r1, r2}
This section treats the cases where S = {r1, r2} and r1 ≡ r2 (mod 4). First,

we consider the case S = {�1, �2}. The following theorem is a partial refinement of
[19, Theorem 2].

Theorem 7.1. Put S = {�1, �2} with two distinct prime numbers �1 ≡ 1 (mod 4)
and �2 ≡ 1 (mod 4). Then GS(Q∞) is prometacyclic if and only if one of the
following two conditions holds:

(1) �1 ≡ �2 ≡ 5 (mod 8) and |A∅(Q1(
√
�1�2))| ≥ 4.

(2) �i ≡ 1 (mod 8),
(

2
�i

)
4

(
�i
2

)
4
= −1 and �j ≡ 5 (mod 8) for (i, j) = (1, 2) or

(2, 1), and |A∅(Q1(
√
�1�2))| = 2.

Proof. Since r2(AS(Q)) = 2, GS(Qn) is not cyclic for all n ≥ 0. Put k = Q(
√
�1�2).

Then 2 ≤ r2(AS(Qn)) = 1 + r2(A∅(kn)) for all n ≥ 0 by (3.1) for (kn/Qn, SQn
, ∅).

Theorem 4.3 implies that G∅(k∞)ab is procyclic (i.e., r2(A∅(kn)) = 1 for all n ≥ 0)
if and only if r2(A∅(k1)) = 1. Since r2(AS(Q1)) = 2 if GS(Q∞) is prometacyclic,
it suffices to consider only the case where r2(A∅(k1)) = 1. If �1 ≡ �2 ≡ 1 (mod 8),
then G∅(k∞)ab is not procyclic (cf. e.g. [20, Theorem 3.8]). Hence, replacing (�1, �2)
by (�2, �1) if necessary, we may assume that �2 ≡ 5 (mod 8). Then r2(A∅(k1)) =
1 if and only if �1 ≡ 5 (mod 8) or �1 ≡ 1 (mod 8) and

(
2
�1

)
4

(
�1
2

)
4
= −1 (cf.

[20, Theorem 3.8]).
Assume that �1 ≡ �2 ≡ 5 (mod 8). Then AS(Q) � [2, 4]. Note that γ acts

on OQ1
/�i � F�2i

as the Frobenius automorphism for each i. Choosing g�1OQ1
and

g�2OQ1
, we obtain the exact sequence

E(Q1)
ϕQ1,S−→ [8�1OQ1

, 8�2OQ1
] → AS(Q1) → 0.

Since r2(AS(Q1)) = 2, ϕQ1,S(ε2) = (a, b) with some a, b ∈ 2Z. Since (4, 4) =

ϕQ1,S(−1) = ϕQ1,S(ε
1+γ
2 ) = ((�1 + 1)a, (�2 + 1)b), we have a ≡ b ≡ 2 (mod 4).

Then AS(Q1) � [2, 8], and hence AS(Qn)/4 � [2, 4] for all n ≥ 0 by Theo-
rem 4.3. Moreover, |OQ1

/�1| ≡ |OQ1
/�2| 	≡ 1 (mod |AS(Q1)|). Since GS(Q) is

nonabelian (cf. Remark 2.2), GS(Q1) is also nonabelian. Moreover, �2OQ1
splits

in Q1(
√
�1) = (Q1)

elem
{�1} . Hence the conditions (4a), (4b) and (4c) of Theorem

3.1 for (k1/Q1, SQ1
, ∅) are satisfied. Since Qab

S /k is a [2, 2]-extension, we have
r2(Gal((Qn)

ab
S /kn)) = 2 for any n ≥ 0. Hence, if |A∅(k1)| = 2, then GS(Q1)

is not metacyclic by Theorem 3.1(4) for (k1/Q1, SQ1
, ∅). On the other hand, if

|A∅(k1)| ≥ 4, then |A∅(kn)| ≥ 4 for all n ≥ 1, and hence GS(Qn) is metacyclic for
all n ≥ 1 by Theorem 3.1(3) for (kn/Qn, SQn

, ∅). Therefore GS(Q∞) is prometa-
cyclic if and only if |A∅(k1)| ≥ 4.

Assume that �1 ≡ 1 (mod 8),
(

2
�1

)
4

(
�1
2

)
4
= −1 and �2 ≡ 5 (mod 8). Let l be a

prime of Q1 lying over �1. Choosing gl = glγ = z�1 and g�2OQ1
, we obtain the exact
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sequence

E(Q1)
ϕQ1,S−→ [2ml , 2mlγ , 8�2OQ1

] → AS(Q1) → 0

and

vQ1,S =

(
ϕQ1,S(−1)
ϕQ1,S(ε2)

)
=

(
2m−1 2m−1 4
a0 a1 b

)
,

where m = v2(�1 − 1) ≥ 3. Since ε1+γ
2 = −1 and r2(AS(Q1)) = 2, we have

a0 ≡ a1 ≡ 1 (mod 2) and b ≡ 2 (mod 4). Then AS(Q1) � [2m, 4], and hence
r4(AS(Qn)) = 2 for all n ≥ 1. For any n ≥ 1, Theorem 3.1(2) for (kn/Qn, SQn

, ∅)
yields that GS(Qn) is metacyclic if and only if |A∅(kn)| = 2. Theorem 4.3 implies
that GS(Q∞) is prometacyclic if and only if |A∅(k1)| = 2. Thus the proof of
Theorem 7.1 is completed. �

For a real quadratic field k, the 4-rank r4(A{∞}(k)) of the narrow class group of k
can be calculated by the theorem of Rédei and Reichardt [25] (cf. [1, Proposition 1]),
and whether G∅(k) is abelian or not can be decided by the theorems of Benjamin,
Lemmermeyer and Snyder [1]. Hence the two conditions of Theorem 7.1 can be
written in the words of power residue symbols as follows.

Lemma 7.2. Let �1 and �2 be distinct prime numbers such that �1 ≡ 1 (mod 4) and
�2 ≡ 5 (mod 8). When �1 ≡ 5 (mod 8), we have |A∅(Q1(

√
�1�2))| ≥ 4 if and only if(

�1
�2

)
=

(
�1
�2

)
4

(
�2
�1

)
4
= 1 or

(
�1
�2

)
=

(
2�1
�2

)
4

(
2�2
�1

)
4

(
�1�2
2

)
4
= −1. When �1 ≡ 1 (mod 8)

and
(

2
�1

)
4

(
�1
2

)
4
= −1, we have |A∅(Q1(

√
�1�2))| = 2 if and only if

(
�1
�2

)
= −1.

Proof. Put k = Q(
√
�1�2) and k′ = Q(

√
2�1�2). Then r2(A∅(k

′)) = 2. Since
(k′)elem∅ = k1(

√
�1) ⊂ (k1)

elem
∅ , we have |A∅(k1)| = 2 if and only if G∅(k

′) � [2, 2].
Suppose that �1 ≡ 5 (mod 8). Then, since A{∞}(k

′) � A∅(k
′) � [2, 2] by [25]

(cf. [1, Proposition 1]), |A∅(k1)| ≥ 4 if and only if G∅(k
′) is nonabelian. Hence

[1, Theorem 1] implies the claim for the case �1 ≡ 5 (mod 8).
Suppose that �1 ≡ 1 (mod 8) and

(
2
�1

)
4

(
�1
2

)
4
= −1. If G∅(k

′) is abelian and(
�1
�2

)
= 1, we have Nk′/Q(ε2�1�2) = −1 by [1, Theorem 1]. Then A∅(k

′) � A{∞}(k
′),

and hence r4(A∅(k
′)) ≥ 1 by [25] (cf. [1, Proposition 1]). Hence

(
�1
�2

)
= −1 if

G∅(k
′) � [2, 2]. Conversely, if

(
�1
�2

)
= −1, then G∅(k

′) is abelian and r4(A∅(k
′)) = 0

by [1, Theorem 1] and [25] (cf. [1, Proposition 1]). Thus we obtain Lemma 7.2. �

The next theorem treats the case S = {q1, q2}.

Theorem 7.3. Put S = {q1, q2} with two distinct prime numbers q1 ≡ 3 (mod 4)
and q2 ≡ 3 (mod 4). Then the following two statements hold true:

(1) GS(Q∞) is procyclic if and only if q1 ≡ 3 (mod 8) or q2 ≡ 3 (mod 8).
Then

GS(Q∞) �
{

Z2 if q1 ≡ q2 ≡ 3 (mod 8),
Z/2Z if q1 	≡ q2 (mod 8).

(2) GS(Q∞) is nonprocyclic prometacyclic if and only if q1 ≡ q2 ≡ 7 (mod 8)
and q1 	≡ q2 (mod 16). Then GS(Q∞)ab � [2, 2].

Proof. Put k = Q(
√
q1q2) = Qab

S . For each n ≥ 0, r2(AS(Qn)) = 1 + r2(A∅(kn))
by (3.1) for (kn/Qn, SQn

, ∅). Hence GS(Q∞) is procyclic (i.e., A∅(kn) � 0 for all
n) if and only if q1 ≡ 3 (mod 8) or q2 ≡ 3 (mod 8) by [20, Corollary 3.4] (and
[23]). If q1 ≡ q2 ≡ 3 (mod 8), then GS(Q∞)ab is infinite, i.e., GS(Q∞) � Z2 by



2452 YASUSHI MIZUSAWA

[9, Theorem 1.1]. If q1 	≡ q2 (mod 8), 2 is inert in k = QS . Then, since AS(k) � 0,
GS(k∞) is trivial by Proposition 4.1. Therefore GS(Q∞) � GS(Q) � Z/2Z.

On the other hand, r2(AS(Qn)) = 2 for all n ≥ 1 (i.e., G∅(k∞)ab is nontrivial
procyclic) if and only if q1 ≡ q2 ≡ 7 (mod 8) and qi ≡ 7 (mod 16) for i = 1 or 2
by [20, Theorem 3.8] and Theorem 4.3. If GS(Q∞) is nonprocyclic prometacyclic,
then r2(AS(Qn)) = 2 for all n ≥ 1 by Theorem 4.3. Hence, replacing (q1, q2) by
(q2, q1) if necessary, it suffices to consider only the case where q1 ≡ 7 (mod 16) and
q2 ≡ 7 (mod 8) for the second statement.

Lemma 7.4. Assume q1 ≡ 7 (mod 16) and q2 ≡ 7 (mod 8). Then AS(Q1) � [2, 2].
Moreover, the primes of k1 lying over 2 split in (Q1)

elem
S if and only if q2 ≡ 7

(mod 16).

Proof. We regard γ as a generator of Gal(k1/k). Let Qi be a prime of k1 lying over
qi. Choosing zqi ∈ Z as the primitive element of Fqi , we obtain the commutative
diagram

E(Q1)
ϕQ1,S

��

⊃��

[2Q1∩Q1
, 2Qγ

1∩Q1
, 2Q2∩Q1

, 2Qγ
2∩Q1

] �� AS(Q1)

��

�� 0

Z[ 1√
2
]×

ϕ′
Q1,S

�� [2Q1∩Q1
, 2Qγ

1∩Q1
, 2Q2∩Q1

, 2Qγ
2∩Q1

] �� AS(Q1)/〈[
√
2OQ1

]〉 �� 0

with exact rows, where ϕ′
Q1,S

|E(Q1) = ϕQ1,S and ϕ′
Q1,S

(
√
2) = (a1, b1, a2, b2) with ai,

bi ∈ Z such that
√
2 ≡ zai

qi (mod Qi) and
√
2 ≡ zbiqi (mod Q

γ
i ). Since ϕQ1,S(−1) =

(1, 1, 1, 1) and A{qi}(Q1) � 0 (i.e., ϕQ1,{qi} is surjective), we may assume that
ϕQ1,S(ε2) = (1, 0, 1, 0), replacing Qi by Q

γ
i if necessary. In particular, we have

AS(Q1) � [2, 2]. Since zai
qi ≡

√
2
γ ≡ −zbiqi (mod Q

γ
i ), we have ai ≡ 1 + bi (mod 2),

i.e., ϕ′
Q1,S

(ε2
√
2) = (b1, b1, b2, b2). Note that Qi ∩ Q1 is inert in Q2 = Q(

√
ε2
√
2)

(i.e.,
√
ε2
√
2 	∈ Zqi) if and only if qi ≡ 7 (mod 16). Hence bi ≡ 1 (mod 2) if and

only if qi ≡ 7 (mod 16). Therefore b1 ≡ 1 (mod 2), and

ϕ′
Q1,S(

√
2) =

{
(0, 1, 0, 1) ∈ ImϕQ1,S if q2 ≡ 7 (mod 16),
(0, 1, 1, 0) 	∈ ImϕQ1,S if q2 ≡ 15 (mod 16).

This implies that the prime
√
2OQ1

splits completely in the [2, 2]-extension

(Q1)
elem
S /Q1 (i.e., 〈[

√
2OQ1

]〉 � 0) if and only if q2 ≡ 7 (mod 16). Since
√
2OQ1

splits in k1/Q1, we obtain the claim. �

Assume that q1 ≡ 7 (mod 16) and q2 ≡ 15 (mod 16). Since A{q1}(Q2) � 0, the
snake lemma for the commutative diagram

E(Q2)⊗ Z2

��

ΦQ2,S
�� (OQ2

/q1q2)
× ⊗ Z2

��

Ψ��

AS(Q2) ��

��

0

0 �� ImΦQ2,{q1}
�� (OQ2

/q1)
× ⊗ Z2

�� A{q1}(Q2)

with exact rows induces a surjective homomorphism [2, 2, 2, 2] � (OQ2
/q2)

×⊗Z2 →
AS(Q2). Since r2(AS(Q2)) = 2, this implies that AS(Q2) � AS(Q1) � [2, 2]. Then
GS(Q∞)ab � [2, 2] by Theorem 4.3, and hence GS(Q∞) is prometacyclic.

Assume that q1 ≡ q2 ≡ 7 (mod 16). Let p1 be a prime of k1 lying over 2. By
Lemma 7.4, p1 splits in (Q1)

elem
S . On the other hand, we have GS(Q∞)ab � Z2

2 by
[9, Theorem 1.1]. HenceGS(Q∞) is abelian ifGS(Q∞) is prometacyclic. Recall that
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r2(A∅(kn)) = 1 for all n ≥ 1. Since the generator of Gal(kn/Qn) acts on A∅(kn)
as −1, Gal((kn)

ab
∅ /Qn) is nonabelian if |A∅(kn)| ≥ 4. Suppose that GS(Q∞) is

prometacyclic. Then |A∅(kn)| = 2 for all n ≥ 1. In particular, A∅(kn) = A∅(kn)
Γ

and (Q1)
elem
S = (k1)

ab
∅ . Since Nkn/k1

: A∅(kn) → A∅(k1) is surjective, we have

A∅(k1) = 〈[ph1/2
1 ]〉 by [8, Theorem 2], where h1 is the class number of k1. This

implies that p1 is inert in (k1)
ab
∅ = (Q1)

elem
S . This is a contradiction. Therefore

GS(Q∞) is not prometacyclic if q1 ≡ q2 ≡ 7 (mod 16). Thus the proof of Theorem
7.3 is completed. �

Lemma 7.4 above induces the following corollary which we need in the proof of
Theorem 1.1.

Corollary 7.5. Put k = Q(
√
q1q2) with prime numbers q1 ≡ 7 (mod 16) and

q2 ≡ 15 (mod 16). Then G∅(k∞)ab is finite cyclic.

Proof. By [20, Theorem 3.8] and Theorem 4.3, we have r2(A∅(kn)) = 1 for all
n ≥ 1. Let p0 be a prime of k lying over 2 and pn the prime of kn lying over p0. Put
S = {q1, q2}. By Lemma 7.4, AS(Q1) � [2, 2], and p1 is inert in (Q1)

elem
S = (k1)

elem
∅ .

Therefore, pn is also inert in (kn)
elem
∅ ; i.e., A∅(kn) = 〈[ph

′
n

n ]〉 for any n ≥ 1, where
h′
n is the maximal odd factor of the class number of kn. In particular, A∅(kn) =

A∅(kn)
Γ for all n ≥ 1. Since k∞ is the unique Z2-extension of k, |A∅(kn)

Γ | is
bounded as n → ∞ (cf. [8, Proposition 1]), and hence G∅(k∞)ab is finite cyclic. �

8. The case S = {r1, r2, r3}
If GS(Q∞) is prometacyclic for S = {r1, r2, r3} (and {2,∞} ∩ S = ∅), then

r2(AS(Q)) ≤ 2, and hence S contains at least one prime q ≡ 3 (mod 4).

Proposition 8.1. If S = {�1, �2, q} with three distinct prime numbers �1 ≡ 1
(mod 4), �2 ≡ 1 (mod 4) and q ≡ 3 (mod 4), then GS(Q∞) is not prometacyclic.

Proof. Note that r4(AS(Q)) = r2(AS(Q)) = 2. Suppose that GS(Q∞) is prometa-
cyclic. Then r4(AS(Q1)) = r2(AS(Q1)) = 2, and (Q∞)elemS /Q∞ is a [2, 2]-extension.
For each i ∈ {1, 2}, since Q∞(

√
�i) ⊂ (Q∞)elem{�i} , we have (Q∞)elemS 	= (Q∞)elemS\{�i},

and hence (Q∞)elemS\{�i}/Q∞ is a quadratic extension; i.e., GS\{�i}(Q∞) is procyclic.

Proposition 6.2 yields that �1 ≡ �2 ≡ 5 (mod 8). Put k = Q(
√
�1�2) and Σ = {q}.

Since G{�1,�2}(Q∞) is also prometacyclic, we have |AΣ(k1)| ≥ |A∅(k1)| ≥ 4 by The-
orem 7.1. Then GS(Q1) is not metacyclic by Theorem 3.1(2) for (k1/Q1, SQ1

,ΣQ1
).

This is a contradiction. Thus we obtain the statement. �

Theorem 8.2. Put S = {�, q1, q2} with three distinct prime numbers � ≡ 1 (mod 4),
q1 ≡ 3 (mod 4) and q2 ≡ 3 (mod 4). Then GS(Q∞) is prometacyclic if and only if
one of the following two conditions holds true:

(1) � ≡ 5 (mod 8), q1 ≡ q2 ≡ 3 (mod 8),
(
q1q2
�

)
= −1.

(2) � ≡ 5 (mod 8), qi ≡ 3 (mod 8), qj ≡ 7 (mod 8),
( qj

�

)
= −1 for (i, j) =

(1, 2) or (2, 1).

Moreover, we have G∅(Q∞(
√
�q1q2)) � Z/2Z under each of these conditions.

Proof. Put k = Q(
√
�q1q2). For each n ≥ 0, r2(AS(Qn)) = 1 + r2(A∅(kn)) ≥ 2

by (3.1) for (kn/Qn, SQn
, ∅). Then r2(AS(Qn)) = 2 for all n ≥ 0 (i.e., G∅(k∞)ab

is procyclic) if and only if � ≡ 5 (mod 8) and qi ≡ 3 (mod 8) for i = 1 or 2 by
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[20, Theorem 3.8]. Since r2(AS(Qn)) = 2 for all n ≥ 0 if GS(Q∞) is prometa-
cyclic, it suffices to consider only this case. Replacing (q1, q2) by (q2, q1) if nec-
essary, we may assume that � ≡ 5 (mod 8) and q1 ≡ 3 (mod 8). Then, since

r2(AS(Qn)) = 2, we have (Qn)
elem
SQn\{l} = Qn(

√
�) for l = q1OQn

by Theorem 3.1(1).

Since Qab
{�,q1}Qn/Qn is a cyclic quartic extension which contains Qn(

√
�), The-

orem 3.1(2) for (kn/Qn, SQn
, ∅) yields that GS(Qn) is metacyclic if and only if

|A∅(kn)| = 2. Theorem 4.3 implies that GS(Q∞) is prometacyclic if and only if

|A∅(k1)| = 2. Put k′ = Q(
√
2�q1q2). Since (k′)elem∅ = k1(

√
�) ⊂ (k1)

elem
∅ , we

have |A∅(k1)| = 2 if and only if G∅(k
′) � [2, 2]. By the theorem of Rédei and

Reichardt [25] (or [2, Proposition 1]), A∅(k
′) � [2, 2] if and only if at least one

of
(

2
q2

)
,
(
q1
�

)
,
(
q2
�

)
is 1. Then G∅(k

′) � [2, 2] if and only if
(

2
q2

)
=

(
q1q2
�

)
= −1

or
(

2
q2

)
= −

(
q2
�

)
= 1 by [1, Theorem 2] (or [2, Theorem 2]). Thus the proof of

Theorem 8.2 is completed. �

Theorem 8.3. Put S = {q1, q2, q3} with three distinct prime numbers q1 ≡ 3
(mod 4), q2 ≡ 3 (mod 4) and q3 ≡ 3 (mod 4). Then GS(Q∞) is prometacyclic if
and only if q1 ≡ q2 ≡ 3 (mod 8), q3 ≡ 7 (mod 8) and

(
q1q2
q3

)
= −1 after a suitable

permutation of the indices.

Proof. Since (Q∞)abS\{qi}∩(Q∞)abS\{qj} = Q∞ for any distinct i and j, GS\{qi}(Q∞)ab

is procyclic for any i if GS(Q∞) is prometacyclic. Theorem 7.3 implies that
GS\{qi}(Q∞)ab is procyclic for any i if and only if at least two q ∈ S satisfy
q ≡ 3 (mod 8). If all of q ∈ S satisfy q ≡ 3 (mod 8), GS(Q∞) has a quotient
GS\{q1}(Q∞) × GS\{q2}(Q∞) � Z2

2 by Theorem 7.3. Then, since GS(Q) is non-
abelian (cf. Remark 2.2), GS(Q∞) is not prometacyclic. Hence, permuting the
indices if necessary, it suffices to consider only the case where q1 ≡ q2 ≡ 3 (mod 8)
and q3 ≡ 7 (mod 8). Then, since the inertia group Iq2 ⊂ GS(Qn)

ab of the prime
q2OQn

is cyclic and GS(Qn)
ab/Iq2 � A{q1,q3}(Qn) � Z/2Z by Theorem 7.3, we have

r2(AS(Qn)) = 2 and r4(AS(Qn)) ≤ 1 for all n ≥ 0.
Put k = Q(

√
q1q2) and k′ = Q(

√
2q1q2). Then A∅(kn) � 0 for all n ≥ 0 by

[23, Theorem]. We regard γ as the generator of Gal(k1/k). Since −1 = ε1+γ
2 ∈

E(k1)
1+γ , the genus formula (2.1)

1 = |A∅(k1)| ≥
22

2|E(k)/E(k1)1+γ |

for k1/k yields that ±εq1q2 	∈ E(k1)
1+γ . Hence Kuroda’s formula (2.3)

1 = |A∅(k1)| = 4−1Q(k1/Q)|A∅(Q1)||A∅(k)||A∅(k
′)| = 2−1Q(k1/Q)

implies that E(k1) = 〈−1, ε2, εq1q2 ,
√
ε2q1q2〉. Let Qi be a prime of k1 lying over

qi. Then Qi ∩ Q1 = qiOQ1
for i ∈ {1, 2}. Choosing gq1OQ1

, gq2OQ1
and gQ3∩Q1

=
gQγ

3∩Q1
= zq3 ∈ Z, we obtain the exact sequence

E(Q1)
ϕQ1,S−→ [8q1OQ1

, 8q2OQ1
, 2Q3∩Q1

, 2Qγ
3∩Q1

] → AS(Q1) → 0.

Since CokerϕQ1,{qi} � A{qi}(Q1) � 0 for all i ∈ {1, 2, 3}, replacing Q3 by Q
γ
3 if

necessary, we may assume that

vQ1,S =

(
ϕQ1,S(−1)
ϕQ1,S(ε2)

)
=

(
4 4 1 1
a1 a2 0 1

)
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with a1 ≡ a2 ≡ 1 (mod 2). Hence an easy calculation shows that AS(Q1) � [2, 8]
and A{q1,q2}(Q1) � Z/8Z. This implies that r2(Gal((Qn)

ab
S /kn)) = 2 for all n ≥ 1.

Moreover, we have r4(AS(Qn)) = 1 for all n ≥ 1. Put Σ = {q3}. Then (3.1) for
(kn/Qn, SQn

,ΣQn
) yields that r2(AΣ(kn)) = 1 for all n ≥ 0.

Assume that
(
q1q2
q3

)
= −1. We choose gQ3

= gQγ
3

= gq3Ok
and gq3Ok′ such

that gq3Ok′ ≡ gQ3
(mod Q3). Then g

(1+q3)u
q3Ok

≡ zq3 (mod q3) with some odd u.

Moreover, since gγq3Ok′ ≡ gq3q3Ok′ (mod q3), we have gq3Ok′ ≡ gq3
Q

γ
3
(mod Q

γ
3). Then

we obtain the commutative diagram

E(Q1)

⊃

��

ϕQ1,Σ
�� [2Q3∩Q1

, 2Qγ
3∩Q1

]

ψQ1��

�� 0

E(k1)
ϕk1,Σ

�� [2mQ3
, 2m

Q
γ
3
] �� AΣ(k1) �� 0

E(k)

⊂

��

ϕk,Σ
�� Z/2mZ

ψk

��

�� AΣ(k) �� 0

E(k′)
ϕk′,Σ

��

⊂

��

Z/2mZ ��

ψk′

��

AΣ(k
′) �� Z/2Z �� 0

with exact rows, where m = v2(q
2
3 − 1) ≥ 4, ψQ1

(x0, x1) = (2m−1x0, 2
m−1x1),

ψk(x) = (x, x), and ψk′(x) = (x, q3x) = (x, (2m−1−1)x). Since k(
√
q1q3) ⊂ kabΣ and

k1(
√
q1q3) ⊂ (k′)abΣ , we have |AΣ(k)| ≥ 2 and |AΣ(k

′)| ≥ 4. Hence ϕk,Σ(εq1q2) =
(2a) and ϕk′,Σ(ε2q1q2) = (2b) with some a, b ∈ Z. Then

vk1,Σ =

⎛⎜⎜⎝
ϕk1,Σ(−1)
ϕk1,Σ(ε2)

ϕk1,Σ(εq1q2)
ϕk1,Σ(

√
ε2q1q2)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2m−1 2m−1

0 2m−1

2a 2a
b+ 2m−1e0 −b+ 2m−1e1

⎞⎟⎟⎠
with some e0, e1 ∈ {0, 1}. Since r2(AΣ(k1)) = 1, we have b ≡ 1 (mod 2). Then⎛⎜⎜⎝

1 0 0 2m−1

0 1 0 0
0 0 1 −2a
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
e0
b

e0+e1
b 0 b−1

⎞⎟⎟⎠ vk1,Σ =

⎛⎜⎜⎝
0 0
0 2m−1

0 4a
1 −1

⎞⎟⎟⎠ ,

and hence |AΣ(k1)| ≥ 4. By Theorem 3.1(3) for (kn/Qn, SQn
,ΣQn

), GS(Qn) is
metacyclic for any n ≥ 1. Therefore GS(Q∞) is prometacyclic if

(
q1q2
q3

)
= −1.

Assume that
(
q1q2
q3

)
= 1. Then q3 splits completely in k1/Q. Since there is

a surjective homomorphism [2Q3
, 2Qσ

3
, 2Qγ

3
, 2Qσγ

3
] → AΣ(k1), we have |AΣ(k1)| =

2. We apply Theorem 3.1 for (k1/Q1, SQ1
,ΣQ1

). Since GS(Q) is nonabelian (cf.
Remark 2.2), GS(Q1) is also nonabelian. For each i ∈ {1, 2}, |OQ1

/qi| = q2i 	≡ 1
(mod |AS(Q1)|). By Theorem 3.1(1), (Q1)

elem
SQ1

\{l0} = Q1(
√
q1q3) for l0 = q2OQ1

.

SinceQ1(
√
q1q3)/Q is a [2, 2]-extension, the prime q2OQ1

splits inQ1(
√
q1q3). Hence

no prime in SQ1
\ΣQ1

is inert in Q1(
√
q1q3)/Q1. By Theorem 3.1(4), GS(Q1) is not

metacyclic. Therefore GS(Q∞) is not prometacyclic if
(
q1q2
q3

)
= 1. Thus the proof

of Theorem 8.3 is completed. �
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9. The case ∞ ∈ S

For a finite extension k/Q, the Iwasawa λ-invariant λ(k) is defined as the 2-rank
of the maximal free abelian pro-2 quotient of G∅(k∞). Then there is a surjec-

tive homomorphism G∅(k∞)ab → Z
λ(k)
2 with torsion kernel. First, we prepare the

following lemma.

Lemma 9.1. Let S be a finite set of primes of Q not containing 2 and K/Q a finite
extension such that K∞ ⊂ (Q∞)S. If GS(Q∞) is prometacyclic, then λ(K) ≤ 1.

Proof. Assume that λ(K) ≥ 2. Then there are surjective homomorphisms GS(K∞)
→ G∅(K∞)ab → Z2

2. Suppose that GS(Q∞) is prometacyclic. Then there exists
a procyclic extension M/Q∞ such that (Q∞)S/M is also a procyclic extension.
Moreover, since GS(K∞) is also prometacyclic, we have GS(K∞) � Z2

2. Then
(Q∞)S = (K∞)ab∅ .

(Q∞)S

K∞ K∞M

Q∞ K∞ ∩M M

Hence K∞M/K∞ is an unramified Z2-extension. Since [K∞ : K∞ ∩ M ] ≤ [K :
Q], any prime has finite ramification index in K∞M/(K∞ ∩ M). On the other
hand, since G{∞}(Q∞) � 1 (cf. Corollary 4.2) and M/(K∞ ∩ M) is also a Z2-
extension, M/Q∞ is a Z2-extension totally ramified at some v ∈ SQ∞ . Then the
primes lying over v have infinite ramification indices in K∞M/(K∞ ∩M). This is
a contradiction. Therefore GS(Q∞) is not prometacyclic if λ(K) ≥ 2. Thus the
proof is completed. �

We recall Kida’s formulas [12] for the λ-invariants. Suppose that k/Q is an
imaginary abelian extension unramified at 2. Then k ∩ Q∞ = Q,

√
−1 	∈ k∞ and

the μ-invariant is zero (cf. [12, Remarks (i)] or [29, §7.5]). By [12, Theorem 1], we
have

λ(k) = λ(k+) + r2(A{∞}(k
+
n ))− 1 + s(kn/k

+
n )(9.1)

for all sufficiently large n, where k+ = k ∩ R, and s(kn/k
+
n ) denotes the number

of prime ideals of kn ramified over k+n . Moreover, G∅(k∞)ab � Z
λ(k)
2 if k is an

imaginary quadratic field with odd discriminant (cf. [6] or [11, Theorem 1]). Let
K be a CM-field such that K/k is a finite 2-extension. Suppose that K∞/Q∞ is
unramified at any prime lying over 2. Then

√
−1 	∈ K∞, and we have

λ(K)− λ(K+) = [K∞ : k∞](λ(k)− λ(k+)) +
∑

v(ev − 1)−
∑

v+(ev+ − 1)(9.2)

by [12, Theorem 3], where K+ = K ∩R, v (resp. v+) runs over all nonarchimedean
primes of K∞ (resp. K+

∞), and ev (resp. ev+) is the ramification index of v in
K∞/k∞ (resp. v+ in K+

∞/k+∞). Using these formulas, we obtain the following
theorem.
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Theorem 9.2. Let Σ be a finite set of odd prime numbers, and put S = Σ∪ {∞}.
Then the following two statements hold true:

(1) GS(Q∞) is nontrivial procyclic if and only if Σ = {r} and
(
2
r

)
= −1. Then

GS(Q∞) � Z2/(r − 1)Z2.
(2) GS(Q∞) is nonprocyclic prometacyclic if and only if Σ = {q} and q ≡ 7

(mod 16). Then GS(Q∞) is isomorphic to a prodihedral pro-2 group Z2 �

(Z/2Z).

Proof. If GS(Q∞) is nontrivial prometacyclic, then |Σ| = r2(GS(Q)ab) ≤ 2. More-
over, Σ 	= ∅ by Corollary 4.2. Hence it suffices to consider the case 1 ≤ |Σ| ≤ 2.

Assume that Σ = {r} and
(
2
r

)
= −1. Then 2 does not split in k = Qab

S . Since

k/Q is cyclic, we have k = QS . Since GS(k)
ab � 0, GS(k∞) is trivial by Proposition

4.1. This implies that (Q∞)S = k∞. Hence GS(Q∞) � GS(Q)ab � Z2/(r − 1)Z2.
Assume that Σ = {�} and � ≡ 1 (mod 8). Put k = Qab

S . Then k/Q is a
cyclic extension totally ramified at �, and hence s(k1/k

+
1 ) = |ΣQ1

| = 2. Since

|A{∞}(Q(
√
2�))| ≥ 4 (cf. [30]), we have |A{∞}(k

+
1 )| ≥ |A{∞}(Q1(

√
�))| ≥ 2. Then

λ(k) ≥ r2(A{∞}(k
+
1 )) − 1 + s(k1/k

+
1 ) ≥ 2 by (9.1), and hence GS(Q∞) is not

prometacyclic by Lemma 9.1.
Assume that Σ = {q} and q ≡ 7 (mod 8). Put k = Q(

√−q). Since AΣ(Qn) � 0,
the commutative diagram

E(kn)
Φkn,Σ

�� (Okn
/
√−q)× ⊗ Z2

�� AΣ(kn) �� A∅(kn) �� 0

E(Qn)
ΦQn,Σ

�� (OQn
/q)× ⊗ Z2

�
��

�� AΣ(Qn) �� 0

with exact rows yields that GS(kn)
ab � AΣ(kn) � A∅(kn) for all n ≥ 0. Hence

GS(k∞)ab � lim←−A∅(kn) � Z
λ(k)
2 . If q ≡ 15 (mod 16), then λ(k) ≥ −1+s(k2/Q2) =

3 by (9.1), and hence GS(Q∞) is not prometacyclic by Lemma 9.1. Suppose that
q ≡ 7 (mod 16). Then λ(k) = 1 by (9.1) (or [6, Theorem 7]). Since A∅(Qn) � 0
for all n ≥ 0, the generator of Gal(k∞/Q∞) acts on GS(k∞) � lim←−A∅(kn) � Z2 as

−1. Therefore GS(Q∞) is prodihedral if q ≡ 7 (mod 16).
Assume that Σ = {�1, �2} and �1 ≡ �2 ≡ 1 (mod 4). If

(
2
�1

)
= 1 or

(
2
�2

)
= 1,

then we have seen that G{�i,∞}(Q∞) is not prometacyclic. Put k = Q(
√
�1�2).

If �1 ≡ �2 ≡ 5 (mod 8) and |A∅(k2)| = 2, then GΣ(Q∞) is not prometacyclic by
Theorem 7.1. Note that Qab

S ∩ k(
√
�1)

ab
∅ = k(

√
�1) = kelem∅ . If �1 ≡ �2 ≡ 5 (mod 8)

and |A∅(k2)| ≥ 4, then Qab
S L/k2(

√
�1) is a [2, 2, 2]-extension unramified outside

S, where L is an unramified quartic extension of k2. Therefore GS(Q∞) is not
prometacyclic.

Assume that Σ = {�, q} and � 	≡ q ≡ 3 (mod 4). Put k = Q(
√−q) and K = Qab

S .
Then K∞/k∞ and K+

∞/Q∞ are cyclic extensions unramified outside � and totally
ramified at any prime lying over �. Since any prime of Q∞ lying over � splits in
k∞, we have λ(K) ≥

∑
v+|�(ev+ − 1) ≥

∑
v+|� 3 ≥ 3 by (9.2). Hence GS(Q∞) is

not prometacyclic by Lemma 9.1.
Assume that Σ = {q1, q2} and q1 ≡ q2 ≡ 3 (mod 4). Since (Q∞){q1,∞} ∩

(Q∞){q2,∞} = Q∞, G{q1,∞}(Q∞) and G{q2,∞}(Q∞) are procyclic if GS(Q∞) is
prometacyclic. We have seen that G{qi,∞}(Q∞) is not procyclic if qi ≡ 7 (mod 8).

Hence GS(Q∞) is not prometacyclic if
(

2
q1

)
= 1 or

(
2
q2

)
= 1. Suppose that

q1 ≡ q2 ≡ 3 (mod 8). Then q1 and q2 are primes in Q∞. Since GΣ(Q∞) � Z2
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by Theorem 7.3, there is a 2-extension K+/Q such that Q(
√
q1q2) ⊂ K+ and

K+
∞ is the unique cyclic quartic extension of Q∞ unramified outside Σ. Then

K+
∞/Q∞ is totally ramified at q1 and q2. Put k = Q(

√−q2), k
′ = Q(

√−q1) and
K = K+k = K+k′. Note that q1 (resp. q2) splits in k∞/Q∞ (resp. k′∞/Q∞). Then
λ(K) ≥

∑
v|q1 3 +

∑
v|q2 1−

∑
v+∈Σ 3 = 2 by (9.2) for K/k, and hence GS(Q∞) is

not prometacyclic by Lemma 9.1. Thus the proof of Theorem 9.2 is completed. �

10. Proof of Theorem 1.1

By Corollary 4.2, GS(Q∞) is trivial if and only if S ⊂ {∞} or S = {q} and
q ≡ 3 (mod 4) (i.e., GS(Q) is trivial). Then G∅(K∞) is trivial for such S and
K ⊂ (Q∞)S = Q∞. The statement for the case ∞ ∈ S has been obtained as
Theorem 9.2. In the following, we assume that ∞ 	∈ S and GS(Q∞) is nontrivial.
If GS(Q∞) is nontrivial prometacyclic, GS(Q) is also nontrivial metacyclic. Then
1 ≤ r2(AS(Q)) ≤ 2, and hence S = {�}, {r1, r2} or {r1, r2, q}, where � ≡ −q ≡ 1
(mod 4). Thus we obtain the list of all S with prometacyclic GS(Q∞), combining
the following:

· Proposition 5.1 and Theorem 5.2 for S = {�}.
· Proposition 6.2 and Theorem 6.3 for S = {r1, r2} with r1 	≡ r2 (mod 4).
· Theorem 7.1 (with Lemma 7.2) and Theorem 7.3 for S = {r1, r2} with
r1 ≡ r2 (mod 4).

· Proposition 8.1, Theorem 8.2 and Theorem 8.3 for S = {r1, r2, q}.
Put G = GS(Q∞). Recall that Γ has a generator γ = γ|Q∞ , where γ is a

generator of Γ such that γ(ζ2n+2) = ζ52n+2 for all n ≥ 0. Put nr = v2(
r2−1

8 ) ≥ 0 for
r ∈ S. Then the decomposition field of r in Q∞/Q is Qnr

. Let r be a prime of Qnr

lying over r. Suppose that n > nr. Since Q(ζ2n+2)/Qnr
is not a cyclic extension

and r does not split in Qn/Qnr
, rOQn

splits in Q(ζ2n+2) = Qn(
√
−1). Let R be a

prime of Q(ζ2nr+3) lying over r. Then OQn
/r � Z[ζ2n+2 ]/R � Fr2

n−nr . Note that

v2(|F×
r2

n−nr |) = v2(r
2n−nr − 1) = 2n+2. Since

(OQn
/r)× ⊗ Z2 � (Z[ζ2n+2 ]/R)× ⊗ Z2 = 〈(ζ2n+2 mod R)⊗ 1〉 � 〈ζ2n+2〉

as Γ
2nr+1

-modules, γ2nr+1

acts on (OQn
/r)×⊗Z2 �

⊕
r|r((OQn

/r)×⊗Z2) as 5
2nr+1

for any n > nr. Put ν = max{nr + 1 | r ∈ S}. Then, since there is a surjective
Λ-homomorphism lim←−((OQn

/
∏

r∈S r)× ⊗ Z2) → lim←−AS(Qn) � Gab, γ2ν acts on

Gab as 52
ν

, i.e., γ2ν

g = γ̃2νgγ̃−2ν ≡ g5
2ν

(mod G2) for g ∈ G.
Let K/Q be a finite extension such that K ⊂ (Q∞)S . Then Q∞ ⊂ K∞ ⊂

(K∞)ab∅ ⊂ (Q∞)S . We show that G∅(K∞)ab is finite if G is prometacyclic. If

G is finite, then G∅(K∞)ab is also finite. In the following, we assume that G
is infinite prometacyclic. If G∅(K

′
∞)ab is finite for some finite extension K ′/K,

then G∅(K∞)ab is also finite. Hence we may assume that K/Q is a finite Galois
extension such that (Q∞)elemS ⊂ K∞. Let N be a procyclic closed normal subgroup
of G such that G/N is also procyclic. If G is procyclic, we assume that N is
trivial. Put M = (Q∞)NS the fixed field of N . Since G∅(Q∞) is trivial, M/Q∞
is totally ramified at some prime v of Q∞. If G is procyclic, then (Q∞)S = M ,
and hence G∅(K∞)ab is trivial. Suppose that N is finite. Then the subquotient
Gal((K∞)abS /K∞M) ofN is also finite. Since G is infinite, M/Q∞ is a Z2-extension,
and hence K∞M is the unique Z2-extension of K∞ unramified outside S. Since
M/Q∞ is totally ramified at v, K∞M/K∞ is not unramified. This implies that
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K∞ has no unramified Z2-extension. Therefore G∅(K∞)ab is finite if N is finite.
In the following, we assume that N is infinite and G is not procyclic. Let a, b be
the generators of G such that N = 〈a〉 � Z2 and G/N = 〈bN〉. Since G2 ⊂ N , we
have [a, b] = az with some z ∈ 2Z2. Then G2 = 〈az〉 and b−1ab = a1+z. Since γ2ν

acts on Gab as 52
ν

, γ2ν

a = a5
2ν+xz and γ2ν

b = b5
2ν

ayz with some x, y ∈ Z2. Hence

1 = γ2ν

1 = γ2ν

(a−(1+z)b−1ab) = a(1+z)(52
ν
+xz)((1+z)5

2ν −1−1).

This implies that (1 + z)5
2ν−1 = 1, i.e., z = 0 or z = −2. If z = 0, then G is

abelian, and G/G2 � F2[[T ]]/T
2 or (F2[[T ]]/T )

2 as F2[[T ]]-modules. If z = −2, we
have b−1ab = a−1 and G2 = 〈a2〉. Then [a, b2] = 1. Let H be an abelian maximal
subgroup of G such that:

· H/G2 = T (G/G2) if z = 0 and G/G2 � F2[[T ]]/T
2,

· H = 〈a, b2〉 if z = −2.

(If z = 0 and G/G2 � (F2[[T ]]/T )
2, then H is an arbitrary maximal subgroup

of G.) If z = 0, then T (H/G2) � 0, i.e., γh ≡ h (mod G2) for any h ∈ H, and
hence γH = H. If z = −2 and b2 ∈ N , then G is prodihedral, and H = N is the
unique procyclic maximal subgroup. If z = −2 and b2 	∈ N , then r4(G/G2) = 1,
and H is the unique maximal subgroup such that r2(H/G2) = 2. Therefore, by
the uniqueness of such H, we have γH = H even if z = −2. This implies that the
fixed field (Q∞)HS of H is a Galois extension of Q. Since γ acts on G/H trivially,
(Q∞)HS /Q is abelian. Hence the inertia field k of 2 in (Q∞)HS /Q is a real quadratic
field, and (Q∞)HS = k∞. Recall that we are assuming k∞ ⊂ (Q∞)elemS ⊂ K∞. Since
H is abelian, (K∞)ab∅ /k∞ is an abelian extension. Since any prime in the finite set

Sk∞ has finite ramification index in (K∞)ab∅ /k∞, G∅(k∞)ab is infinite if G∅(K∞)ab

is infinite. Hence it suffices to show the finiteness of nontrivial G∅(k∞)ab. Since
(k∞)elem∅ /Q∞ is an elementary abelian 2-extension, G∅(k∞)ab is procyclic. By the
list of S with nonprocyclic prometacyclic G and [20, Corollary 3.4 and Theorem
3.8], the real quadratic field k ⊂ QS with nontrivial procyclic G∅(k∞)ab satisfies
one of the following:

· k = Q(
√
�), � ≡ 9 (mod 16),

(
2
�

)
4
= −1. Then G∅(k∞)ab is finite by

[20, Theorem 4.1].
· k = Q(

√
r1r2), r1 ≡ r2 ≡ 5 (mod 8). Then G∅(k∞)ab is finite by [23].

· k = Q(
√
r1r2), r1 ≡ 1 (mod 8), r2 ≡ 5 (mod 8),

(
r1
r2

)
= −1,

(
2
r1

)
4

(
r1
2

)
4
=

−1. Then G∅(k∞)ab � Z/2Z by Theorem 4.3 and Lemma 7.2.
· k = Q(

√
r1r2), r1 ≡ 7 (mod 16), r2 ≡ 15 (mod 16). Then G∅(k∞)ab is

finite by Corollary 7.5.
· k = Q(

√
q1q2r), q1 ≡ 3 (mod 8), q2 ≡ 7 (mod 8), r ≡ 5 (mod 8),

(
q2
r

)
=

−1. Then G∅(k∞)ab � Z/2Z by Theorem 8.2 (cf. also [20, Theorem 4.4]).
· k = Q(

√
q1q2r), q1 ≡ q2 ≡ 3 (mod 8), r ≡ 5 (mod 8),

(
q1q2
r

)
= −1. Then

G∅(k∞)ab � Z/2Z by Theorem 8.2.

The finiteness of G∅(k∞)ab has been known in each case. Therefore G∅(K∞)ab is
finite if GS(Q∞) is prometacyclic. Thus the proof of Theorem 1.1 is completed.
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