TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 370, Number 4, April 2018, Pages 2423–2461 http://dx.doi.org/10.1090/tran/7023 Article electronically published on October 31, 2017

TAME PRO-2 GALOIS GROUPS AND THE BASIC \mathbb{Z}_2 -EXTENSION

YASUSHI MIZUSAWA

ABSTRACT. For a number field, we consider the Galois group of the maximal tamely ramified pro-2-extension with restricted ramification. Providing a general criterion for the metacyclicity of such Galois groups in terms of 2-ranks and 4-ranks of ray class groups, we classify all finite sets of odd prime numbers such that the maximal pro-2-extension unramified outside the set has prometacyclic Galois group over the \mathbb{Z}_2 -extension of the rationals. The list of such sets yields new affirmative examples of Greenberg's conjecture.

1. Introduction

Let p be a prime number. For an algebraic extension k of the rational number field \mathbb{Q} and a finite set S of primes of (a subfield of) k, we consider the Galois group $G_S(k) = \operatorname{Gal}(k_S/k)$ of the maximal pro-p-extension k_S of k unramified outside (primes dividing an element of) S. When the degree $[k : \mathbb{Q}]$ is finite, the pro-p group $G_S(k)$ is finitely presented by generators and relations. While arithmetical symbols describe the relations approximately (cf. e.g. [14]), it is in general difficult to know the structure explicitly. If k_S contains a \mathbb{Z}_p -extension k_{∞} of k, where \mathbb{Z}_p denotes (the additive group of) the ring of p-adic integers, then $G_S(k)$ and its closed subgroup $G_S(k_{\infty})$ are relatively well studied also in Iwasawa theory (cf. e.g. [18]).

On the other hand, we focus on the case where S contains no primes lying over p. Then $G_S(k)$ is a 'fab' pro-p group with derived series corresponding to the ray p-class field tower of k. Such Galois groups are also studied in nonabelian Iwasawa theory [22] as the closed subgroup $G_S(k_\infty) \simeq \lim G_S(k_n)$ of the finitely presented pro-p group $Gal((k_{\infty})_S/k)$ for the cyclotomic \mathbb{Z}_p -extension $k_{\infty} = k\mathbb{Q}_{\{p\}}$ (cf. also [4], [26], etc.), where the projective limit is taken on the restriction mappings and the subfields $k \subset k_n \subset k_\infty$. While there are several explicit examples of finitely presented $G_S(k_\infty)$ ([27], etc.), it is not known whether $G_S(k_\infty)$ is always finitely presented or not. Moreover, one of the difficulties is Greenberg's conjecture [8] which states the finiteness of the Galois group $G_{\emptyset}(K_{\infty})^{ab}$ of the maximal unramified abelian pro-p-extension over the cyclotomic \mathbb{Z}_p -extension K_{∞} of an arbitrary totally real number field K. Then it is a supplemental strategy to consider $G_{\emptyset}(K_{\infty})^{ab}$ as a subquotient of $G_S(k_\infty)$ for a p-extension K_∞/k_∞ unramified outside S. We consider these subjects in the case where p=2 and $k=\mathbb{Q}$. The main theorem (Theorem 1.1) below gives a classification of all S with prometacyclic $G_S(\mathbb{Q}_{\infty})$ and new examples of finite $G_{\emptyset}(K_{\infty})^{\mathrm{ab}}$ as a subquotient of $G_{S}(\mathbb{Q}_{\infty})$.

Received by the editors April 30, 2016, and, in revised form, July 14, 2016.

²⁰¹⁰ Mathematics Subject Classification. Primary 11R23; Secondary 11R18, 11R20, 11R32.

This work was supported by JSPS KAKENHI Grant Number JP26800010, Grant-in-Aid for Young Scientists (B).

A prometacyclic (resp. procyclic) pro-p group is a projective limit of metacyclic (resp. cyclic) p-groups. A pro-p group is prometacyclic if and only if it has a procyclic closed normal subgroup with procyclic quotient (cf. [5, Exercise 3.10]), and hence a prometacyclic pro-p group is finitely presented.

In this paper, ℓ and q denote prime numbers such that $\ell \equiv -q \equiv 1 \pmod{4}$, and ∞ as an element of S denotes the archimedean prime of \mathbb{Q} . Also $(\frac{\cdot}{\cdot})$ denotes the quadratic residue symbol, and $\left(\frac{\cdot}{\cdot}\right)_4$ denotes the biquadratic residue symbol defined as follows: $\left(\frac{z}{\ell}\right)_4 = \pm 1 \equiv z^{\frac{\ell-1}{4}} \pmod{\ell}$ for $z \in \mathbb{Z}_{\ell}$ such that $\left(\frac{z}{\ell}\right) = 1$, and $\left(\frac{a}{2}\right)_{A} = (-1)^{\frac{a-1}{8}}$ for an integer $a \equiv 1 \pmod{8}$.

Theorem 1.1. Let S be a finite set of primes of \mathbb{Q} not containing 2, and let \mathbb{Q}_{∞} be the \mathbb{Z}_2 -extension of \mathbb{Q} . The Galois group $G_S(\mathbb{Q}_\infty) = \operatorname{Gal}((\mathbb{Q}_\infty)_S/\mathbb{Q}_\infty)$ of the maximal pro-2-extension $(\mathbb{Q}_{\infty})_S$ of \mathbb{Q}_{∞} unramified outside S is prometacyclic if and only if S satisfies one of the following:

- (1) $S \subset \{\infty\}$ or $S = \{q\}$ and $q \equiv 3 \pmod{4}$. Then $G_S(\mathbb{Q}_\infty)$ is trivial.
- (2) $S = \{\ell\}, \ \ell \equiv 5 \pmod{8} \text{ or } \ell \equiv 1 \pmod{8} \text{ and } (\frac{2}{\ell})_4 (\frac{\ell}{2})_4 = -1.$ $G_S(\mathbb{Q}_{\infty})$ is procyclic.
- (3) $S = \{q, r\}, q \equiv 3 \pmod{4} \text{ and } \left(\frac{2}{r}\right) = -1.$ Then $G_S(\mathbb{Q}_{\infty})$ is procyclic.
- (4) $S = \{r, \infty\}$ and $\left(\frac{2}{r}\right) = -1$. Then $G_S(\mathbb{Q}_\infty)$ is procyclic.
- (5) $S = \{\ell\}, \ \ell \equiv 9 \pmod{16}, \ \left(\frac{2}{\ell}\right)_4 = -1 \ and \ \left(\frac{1+\sqrt{2}}{\ell}\right)_4 = (-1)^{1+\frac{1}{2}h_\ell} \ for \ the$ class number h_{ℓ} of $\mathbb{Q}(\sqrt{2+\sqrt{2}},\sqrt{\ell})$. Then $G_S(\mathbb{Q}_{\infty})$ is not procyclic.
- (6) $S = \{r_1, r_2\}$ and one of the following is satisfied:

 - $\begin{array}{l} \cdot \ r_1 \equiv 5 \pmod{8}, \ r_2 \equiv 5 \pmod{8}, \ \left(\frac{r_1}{r_2}\right) = \left(\frac{r_1}{r_2}\right)_4 \left(\frac{r_2}{r_1}\right)_4 = 1. \\ \cdot \ r_1 \equiv 5 \pmod{8}, \ r_2 \equiv 5 \pmod{8}, \ \left(\frac{r_1}{r_2}\right) = \left(\frac{2r_1}{r_2}\right)_4 \left(\frac{2r_2}{r_1}\right)_4 \left(\frac{r_1r_2}{2}\right)_4 = -1. \\ \cdot \ r_1 \equiv 1 \pmod{8}, \ r_2 \equiv 5 \pmod{8}, \ \left(\frac{r_1}{r_2}\right) = \left(\frac{2}{r_1}\right)_4 \left(\frac{r_1}{2}\right)_4 = -1. \\ \cdot \ r_1 \equiv 1 \pmod{8}, \ r_2 \equiv 3 \pmod{4}, \ \left(\frac{r_2}{r_1}\right) = \left(\frac{r_1}{2}\right)_4 = -\left(\frac{2}{r_1}\right)_4 = -\left(\frac{2}{r_2}\right). \end{array}$

 - $r_1 \equiv 7 \pmod{16}, r_2 \equiv 15 \pmod{16}.$

Then $G_S(\mathbb{Q}_{\infty})$ is not procyclic.

- (7) $S = \{q_1, q_2, r\}, q_1 \equiv 3 \pmod{8}$ and one of the following is satisfied:
 - $q_2 \equiv 7 \pmod{8}, r \equiv 5 \pmod{8}, \left(\frac{q_2}{r}\right) = -1.$
 - $q_2 \equiv 3 \pmod{8}, r \equiv 5 \pmod{8}, \left(\frac{q_1q_2}{r}\right) = -1.$
 - $q_2 \equiv 3 \pmod{8}, \ r \equiv 7 \pmod{8}, \ \left(\frac{q_1 q_2}{r}\right) = -1.$

Then $G_S(\mathbb{Q}_{\infty})$ is not procyclic.

(8) $S = \{q, \infty\}$ and $q \equiv 7 \pmod{16}$. Then $G_S(\mathbb{Q}_{\infty})$ is not procyclic.

Moreover, if $\infty \notin S$ and $G_S(\mathbb{Q}_{\infty})$ is prometacyclic, and if K/\mathbb{Q} is a finite extension contained in $(\mathbb{Q}_{\infty})_S$, then the cyclotomic \mathbb{Z}_2 -extension K_{∞} of K has no infinite unramified abelian pro-2-extension (i.e., $G_{\emptyset}(K_{\infty})^{ab}$ is finite).

Remark 1.2. If $\ell \equiv 9 \pmod{16}$ and $\left(\frac{2}{\ell}\right)_4 = -1$, then h_ℓ is even (cf. e.g. [20]). Moreover, one can see that $\left(\frac{1+\sqrt{2}}{\ell}\right) = 1$ from the decomposition of ℓ in $\mathbb{Q}(\sqrt[4]{2}, \sqrt{1+\sqrt{2}})$. Since $(1+\sqrt{2})(1-\sqrt{2})=-1$ and $(\frac{-1}{\ell})_4=1$, the symbol $(\frac{1+\sqrt{2}}{\ell})_4$ does not depend on the choice of an embedding $\mathbb{Z}[\sqrt{2}] \hookrightarrow \mathbb{Z}_{\ell}$.

In the proof of Theorem 1.1, we see that $G_S(\mathbb{Q}_{\infty})$ is infinite procyclic if and only if S satisfies the condition 3 and $q \equiv r \pmod{8}$. By [9, Theorem 1.1], one can also see that (the maximal abelian pro-2 quotient of) $G_S(\mathbb{Q}_{\infty})$ is infinite if S satisfies the condition (6) and $r_2 \not\equiv 7 \pmod 8$ or the condition (7) and $q_2 \equiv 3 \pmod 8$. The finiteness of $G_{\emptyset}(K_{\infty})^{\mathrm{ab}}$ in Theorem 1.1 for abelian K/\mathbb{Q} is already known essentially (cf. [20], [23], [28], etc.) and is used in the proof of Theorem 1.1. Theorem 1.1 yields new examples of finite $G_{\emptyset}(K_{\infty})^{\mathrm{ab}}$ when K/\mathbb{Q} is nonabelian. Similar statements for $p \neq 2$ (and for a special case of p = 2) have been obtained in [10] and [19], while the influences of $G_{\emptyset}(K_{\infty})^{\mathrm{ab}}$ on the prometacyclicity of $G_{S}(\mathbb{Q}_{\infty})$ are different according to the parity of p (cf. assumptions of [19, Theorems 1 and 2]). As a clarification of this difference and as a key tool for the proof of Theorem 1.1, we provide a general criterion (Theorem 3.1 in Section 3) for the metacyclicity of tame pro-2 Galois groups $G_{S}(k)$ in terms of 2-ranks and 4-ranks of ray class groups. After recalling some basic facts on pro-p groups and ray class groups and cyclotomic \mathbb{Z}_2 -extensions (in Sections 2 and 4), we prove the first half of Theorem 1.1, dividing the statements according to $(r \mod 4)_{r \in S}$ (from Sections 5 to 9). Also, we see the structure of $G_{S}(\mathbb{Q}_{\infty})$ more explicitly in some special cases. The proof of Theorem 1.1 will be completed in the final section (Section 10).

Example 1.3. Since $\left(\frac{29}{5}\right)_4 = \left(\frac{5}{29}\right)_4 = -1$, the set $S = \{5, 29\}$ satisfies the condition (6). Then $K = \mathbb{Q}_S$ is a nonabelian metacyclic 2-extension of \mathbb{Q} (cf. Remark 2.2 below). Moreover, $G_S(\mathbb{Q}_\infty)$ is a pro-2 group with two generators a, b and two relations a^{16} , $a^{-3}b^{-1}ab$ (cf. [19, Example 2]). Put $\ell = 137$ or $\ell = 409$. Then $\ell \equiv 9 \pmod{16}$ and $\left(\frac{2}{\ell}\right)_4 = -1$. Since $31^2 \equiv 2 \pmod{137}$ and $97^2 \equiv 2 \pmod{409}$, we have $\left(\frac{1+\sqrt{2}}{137}\right)_4 = \left(\frac{32}{137}\right)_4 = -1$ and $\left(\frac{1+\sqrt{2}}{409}\right)_4 = \left(\frac{98}{409}\right)_4 = 1$. Moreover, $h_{137} \equiv 0 \pmod{4}$ and $h_{409} \equiv 2 \pmod{4}$ by [24]. Hence $S = \{\ell\}$ satisfies the condition (5).

2. Preliminaries

2.1. **Pro-**p **groups.** We denote by |S| the cardinality of a set S and by \mathbb{F}_{p^n} the finite field of cardinality p^n . An abelian pro-p group A is often regarded as a \mathbb{Z}_{p^m} module. For an integer $e \geq 1$, we put $A/p^e = A/A^{p^e}$ and denote by $\mathbf{r}_{p^e}(A) = \dim_{\mathbb{F}_p}(A^{p^{e-1}}/A^{p^e})$ the p^e -rank. In particular, $\mathbf{r}_2(A)$ and $\mathbf{r}_4(A)$ denote the 2-rank and the 4-rank of an abelian pro-2 group A respectively.

Let G be a pro-p group (not necessarily finitely generated) and H a closed subgroup of G. Then [G, H] (resp. H^p) denotes the minimal closed subgroup of G containing all of $[g, h] = g^{-1}h^{-1}gh$ (resp. h^p) $(g \in G, h \in H)$. If H is a normal subgroup of G, the left action of G on H is defined as ${}^gh = ghg^{-1}$. Let $\{G_i\}_i$ be the lower central series of G, which is defined as $G_1 = G$ and $G_i = [G, G_{i-1}]$ for $i \geq 2$ recursively. In particular, $G_2 = [G, G]$ is the closed commutator subgroup of G, and $G^{ab} = G/G_2$ is the maximal abelian pro-p quotient of G. Burnside's basis theorem yields that G is finitely generated if and only if $\mathbf{r}_p(G^{ab})$ is finite. Then $\mathbf{r}_p(G^{ab})$ is the (minimal) number of generators of G. In particular, G is nontrivial procyclic (resp. trivial) if and only if $\mathbf{r}_p(G^{ab}) = 1$ (resp. 0). If G is a prometacyclic pro-g group, then its pro-g quotients and G are also prometacyclic, in particular $\mathbf{r}_p(H^{ab}) \leq 2$. A finite g-group G is metacyclic if and only if $G/(G_2)^pG_3$ is metacyclic (cf. [3, Theorem 2.3]).

A group-theoretical part of the proof of Theorem 1.1 is based on the following proposition, which does not depend on the parity of p.

Proposition 2.1. Let G be a pro-p group such that $r_p(G^{ab}) = 2$. If G has a maximal subgroup H such that $r_p(H/G_2) = r_p(H^{ab})$, then G is a prometacyclic pro-p group.

Proof. First, we prove the statement for a finite p-group G with $r_p(G^{ab}) = 2$. If G is abelian, G is metacyclic. Also, if $r_p(H^{ab}) = 1$, then G is metacyclic. Assume that G is nonabelian and $r_p(H/G_2) = r_p(H^{ab}) = 2$. There are generators a, b of G such that $\langle aG_2 \rangle \cap \langle bG_2 \rangle = \{1\}$. Then H is either $\langle a, b^p \rangle G_2$, $\langle a^p, b \rangle G_2$ or $\langle ab^i, b^p \rangle G_2 = \langle ab^i, a^p \rangle G_2$ with $1 \leq i < p$. Replacing

$$(a,b) \text{ by } \begin{cases} (b,a) & \text{if } H = \langle a^p,b \rangle G_2, \\ (ab^i,a) & \text{if } H = \langle ab^i,b^p \rangle G_2 \text{ and } |\langle aG_2 \rangle| \leq |\langle bG_2 \rangle|, \\ (ab^i,b) & \text{if } H = \langle ab^i,b^p \rangle G_2 \text{ and } |\langle aG_2 \rangle| > |\langle bG_2 \rangle|, \end{cases}$$

we may assume that $H=\langle a,b^p\rangle G_2$ and $\langle aG_2\rangle\cap\langle bG_2\rangle=\{1\}$. (For example, if $(ab^iG_2)^x\in\langle aG_2\rangle$, we have $b^{ix}G_2\in\langle aG_2\rangle\cap\langle bG_2\rangle=\{1\}$, i.e., $x\equiv 0\pmod{|\langle bG_2\rangle|}$.) Then $(ab^iG_2)^x=1$ if $|\langle aG_2\rangle|\leq |\langle bG_2\rangle|$.) Note that $G_2/G_3=\langle [a,b]G_3\rangle\not\simeq 1$. Since $[a,b^p]\equiv [a,b]^p\pmod{G_3}$, there is a surjective homomorphism $H^{ab}\to H/(G_2)^pG_3=\langle a(G_2)^pG_3,b^p(G_2)^pG_3,[a,b](G_2)^pG_3\rangle$. Since $\mathbf{r}_p(H^{ab})=2$, we have $a^x(b^p)^y[a,b]^z\equiv 1\pmod{G_2}^pG_3$ for some $(x,y,z)\not\equiv (0,0,0)\pmod{p}$. In particular, $a^x(b^p)^y\equiv 1\pmod{G_2}$. Then $x=p^mx'$ and $y=p^{n-1}y'$ with some $x',y'\in\mathbb{Z}$, where $p^m=|\langle aG_2\rangle|$ and $p^n=|\langle bG_2\rangle|$. Since $\mathbf{r}_p(H/G_2)=2$, we have $n\geq 2$, and hence $x\equiv y\equiv 0\pmod{p}$. Therefore $z\in\mathbb{Z}_p^\times$. Note that $a^{p^m}\equiv [a,b]^u\pmod{G_3}$ and $b^{p^n}\equiv [a,b]^v\pmod{G_3}$ with some $u,v\in\mathbb{Z}$. Then $[a,b]^{-z}\equiv a^xb^{py}\equiv [a,b]^{ux'+vy'}\pmod{G_2}^pG_3$. This implies that $(u,v)\not\equiv (0,0)\pmod{p}$. Put $N=\langle a\rangle G_2$ or $N=\langle b\rangle G_2$ according to $u\in\mathbb{Z}_p^\times$ or $v\in\mathbb{Z}_p^\times$. Then both $N/(G_2)^pG_3$ and G/N are cyclic, and hence $G/(G_2)^pG_3$ is metacyclic. Therefore G is metacyclic by [3, Theorem 2.3].

Suppose that G is not necessarily finite. Let $\{U_i\}_i$ be the lower p-central series of G, which is defined as $U_1 = G$ and $U_i = U_{i-1}^p[G, U_{i-1}]$ for $i \geq 2$ recursively. We put $\overline{G} = G/U_i$ and $\overline{H} = H/U_i$ for arbitrary $i \geq 2$. Since $\{U_i\}_i$ forms a fundamental system of open neighbourhoods of 1, $r_p(\overline{G}^{ab}) = 2$ and $r_p(\overline{H}/\overline{G}_2) = r_p(\overline{H}^{ab})$ if i is sufficiently large. Then \overline{G} is metacyclic. Therefore $G \simeq \varprojlim G/U_i$ is prometacyclic.

For a nonabelian pro-2 group G, it is well known that $G^{ab} \simeq [2,2]$ if and only if G is either (pro)dihedral, quaternion, generalized quaternion or semidihedral (cf. e.g. [13]). Such pro-2 groups G are prometacyclic.

- Remark 2.2. Shafarevich's formula (cf. e.g. [14, (11.12)]) yields that the tame pro-p Galois group $G = G_S(\mathbb{Q})$ has deficiency zero; i.e., the cohomology with $\mathbb{Z}/p\mathbb{Z}$ -coefficients satisfies $r_p(H^1(G)) = r_p(H^2(G))$ (cf. [21, (10.7.15)]). Since any finite noncyclic abelian p-group has nontrivial Schur multiplier, $G_S(\mathbb{Q})$ (and $G_S(\mathbb{Q}_\infty)$) cannot be abelian if $p \notin S$ and $G_S(\mathbb{Q})$ is not cyclic. We often use this fact.
- 2.2. Ray class groups. Let k/\mathbb{Q} be an algebraic extension and S a finite set of integral divisors of (a subfield of) k which are prime to 2. Let S_k be the set of all primes of k dividing $\prod_{\mathfrak{a} \in S} \mathfrak{a}$. We denote by k_S (resp. k_S^{ab} , k_S^{elem}) the maximal (resp. maximal abelian, maximal elementary abelian) pro-2-extension of k unramified outside S_k , and put $G = G_S(k) = \mathrm{Gal}(k_S/k)$. Suppose that $[k : \mathbb{Q}]$ is finite and $S_k = \{\mathfrak{l}_1, \mathfrak{l}_2, \cdots, \mathfrak{l}_n\}$. Let k' be a subfield of k (possibly k = k') such that k/k' is a 2-extension and $\mathrm{Gal}(k/k')$ acts on S_k . Then $\mathrm{Gal}(k/k')$ acts on G^{ab} via the left action of $\mathrm{Gal}(k_S^{\mathrm{ab}}/k')$ on $\mathrm{Gal}(k_S^{\mathrm{ab}}/k)$. We denote by $A_S(k)$ the Sylow 2-subgroup of the ray class group of k modulo $\prod_{i=1}^n \mathfrak{l}_i$. Then $A_S(k) \simeq \mathrm{Gal}(k_S^{\mathrm{ab}}/k) \simeq G^{\mathrm{ab}}$

and $A_S(k)/2 \simeq \operatorname{Gal}(k_S^{\text{elem}}/k) \simeq G/G^2G_2$ as $\operatorname{Gal}(k/k')$ -modules via the Artin map. Suppose that S_k contains no archimedean prime. The definition of the ray class groups induces an exact sequence

$$E(k) \xrightarrow{\Phi_{k,S}} (O_k / \prod_{i=1}^n \mathfrak{l}_i)^{\times} \otimes \mathbb{Z}_2 \to A_S(k) \to A_{\emptyset}(k) \to 0$$

of $\operatorname{Gal}(k/k')$ -modules, where O_k is the ring of integers in k, $E(k) = O_k^{\times}$ is the unit group of k. For each $1 \leq i \leq n$, we choose a primitive element $g_{\mathfrak{l}_i} \in O_k$ of the finite field O_k/\mathfrak{l}_i . Let 2^{e_i} be the order of the cyclic 2-group $(O_k/\mathfrak{l}_i)^{\times} \otimes \mathbb{Z}_2$. Then $\mathbb{Z}/2^{e_i}\mathbb{Z} \simeq (O_k/\mathfrak{l}_i)^{\times} \otimes \mathbb{Z}_2$: $a \mod 2^{e_i} \mapsto (g_{\mathfrak{l}_i}^a \mod \mathfrak{l}_i) \otimes 1$. Depending on the choice of $g_{\mathfrak{l}_i}$ $(1 \leq i \leq n)$, the above sequence induces the exact sequence

$$E(k) \xrightarrow{\varphi_{k,S}} \begin{bmatrix} 2^{e_1}_{\mathfrak{l}_1}, 2^{e_2}_{\mathfrak{l}_2}, \cdots, 2^{e_n}_{\mathfrak{l}_n} \end{bmatrix} \to A_S(k) \to A_{\emptyset}(k) \to 0,$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

where the second term denotes an abelian group $[2^{e_1}, 2^{e_2}, \cdots, 2^{e_n}] = \bigoplus_{i=1}^n (\mathbb{Z}/2^{e_i}\mathbb{Z})$, and a_i is the abbreviation of $a_i \mod 2^{e_i}$ satisfying $\epsilon \equiv g_{\mathfrak{l}_i}^{a_i} \mod \mathfrak{l}_i$. Let $\{\epsilon_j\}_{1 \leq j \leq d} \subset E(k)$ be a system (not necessarily minimum) such that $\{\varphi_{k,S}(\epsilon_j)\}_{1 \leq j \leq d}$ generates $\varphi_{k,S}(E(k))$ as a \mathbb{Z}_2 -module. Then we put a column vector

$$v_{k,S} = \begin{pmatrix} \varphi_{k,S}(\epsilon_1) \\ \varphi_{k,S}(\epsilon_2) \\ \vdots \\ \varphi_{k,S}(\epsilon_d) \end{pmatrix} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1d} & a_{2d} & \cdots & a_{nd} \end{pmatrix} = (a_{ij})_{1 \le j \le d, 1 \le i \le n}.$$

For any $A \in GL_d(\mathbb{Z}_2)$, the components of a vector $Av_{k,S}$ also generate $\operatorname{Im} \varphi_{k,S}$. By finding suitable A such that $Av_{k,S}$ has a simple form, one can calculate $\operatorname{Coker} \varphi_{k,S}$. For a set Σ of ideals of k such that $\Sigma_k = \{\mathfrak{l}_{i_1}, \mathfrak{l}_{i_2}, \cdots, \mathfrak{l}_{i_m}\} \subset S_k$, we choose the same $g_{\mathfrak{l}_{i_\mu}}$ $(1 \leq \mu \leq m)$. Then we have the exact sequence

$$E(k) \stackrel{\varphi_{k,\Sigma}}{\longrightarrow} [2^{e_{i_1}}_{\mathfrak{l}_i}, 2^{e_{i_2}}_{\mathfrak{l}_{i_2}}, \cdots, 2^{e_{i_m}}_{\mathfrak{l}_{i_m}}] \to A_{\Sigma}(k) \to A_{\emptyset}(k) \to 0$$

with a vector

$$v_{k,\Sigma} = (\varphi_{k,\Sigma}(\epsilon_j))_{1 \le j \le d} = (a_{i\mu j})_{1 \le j \le d, \ 1 \le \mu \le m}.$$

If $Av_{k,S}=(b_{ij})_{1\leq j\leq d,\, 1\leq i\leq n}$ for $A\in GL_d(\mathbb{Z}_2)$, then $Av_{k,\Sigma}=(b_{i\mu j})_{1\leq j\leq d,\, 1\leq \mu\leq m}$. Hence one can also calculate Coker $\varphi_{k,\Sigma}$ simultaneously.

2.3. Class number formulas. We denote by $N_{K/k}$ (a map induced from) the norm mapping of a 2-extension K/k. For a cyclic 2-extension K/k with Galois group $Gal(K/k) = \langle \sigma \rangle$, we have a genus formula

(2.1)
$$|\{[\mathfrak{A}] \in A_{\emptyset}(K) \mid \mathfrak{A}^{\sigma} = \mathfrak{A}\}| = \frac{|A_{\emptyset}(k)| \prod_{\mathfrak{r}} e(\mathfrak{r})}{[K:k] |E(k)/N_{K/k}E(K)|},$$

which is well known as Chevalley's ambiguous class number formula (cf. also [17, Proposition 1], [31, Proof of Lemma 4], etc.), where \mathfrak{r} varies among all primes of k and $e(\mathfrak{r})$ is the ramification index of \mathfrak{r} in K/k. In particular for a quadratic extension K/k, we note that an ideal \mathfrak{A} of K satisfies $\mathfrak{A}^{\sigma} = \mathfrak{A}$ if and only if $\mathfrak{A} = \mathfrak{B}(\mathfrak{a}O_K)$ for some ideal \mathfrak{a} of k and a product \mathfrak{B} of primes of K ramified in K/k.

On the other hand, we suppose that K/k is a [2, 2]-extension with three quadratic subextensions F, F', F''. Then we have Kuroda's formula (cf. [16])

$$(2.2) |A_{\emptyset}(K)| = \frac{2^{d-1-v}}{|E(k)/E(k)|^2} Q(K/k) |A_{\emptyset}(F)| |A_{\emptyset}(F')| |A_{\emptyset}(F'')| |A_{\emptyset}(K)|^{-2}$$

where Q(K/k) = |E(K)/E(F)E(F')E(F'')|, d is the number of archimedean primes of k ramifying in K/k, and v = 1 or 0 according to whether $K = k(\sqrt{\epsilon}, \sqrt{\epsilon'})$ with some $\epsilon, \epsilon' \in E(k)$ or not. In particular, if $k = \mathbb{Q}$ and K is real, then

$$(2.3) |A_{\emptyset}(K)| = 4^{-1}Q(K/\mathbb{Q})|A_{\emptyset}(F)||A_{\emptyset}(F')||A_{\emptyset}(F'')|$$

and $Q(K/\mathbb{Q}) \in \{1,2,4\}$ (cf. [15]). Let ε , ε' , ε'' be the fundamental units of the real quadratic fields F, F', F'' respectively. Then $N_{F/\mathbb{Q}}(\varepsilon) = 1$ if $\sqrt{\varepsilon} \in E(K)$. Moreover, $N_{F/\mathbb{Q}}(\varepsilon) = N_{F'/\mathbb{Q}}(\varepsilon') = 1$ if $\sqrt{\varepsilon\varepsilon'} \in E(K)$, and $N_{F/\mathbb{Q}}(\varepsilon) = N_{F'/\mathbb{Q}}(\varepsilon') = N_{F''/\mathbb{Q}}(\varepsilon'')$ if $\sqrt{\varepsilon\varepsilon'\varepsilon''} \in E(K)$.

3. Criteria

If $A_S(k) \simeq [2,2]$, then $G_S(k)$ is metacyclic. When $A_S(k) \not\simeq [2,2]$ and $A_\emptyset(k) \simeq 0$ (and S contains no archimedean primes), we obtain the following criterion for the metacyclicity of $G_S(k)$.

Theorem 3.1. Let k be a finite extension of \mathbb{Q} with odd class number. Assume that a triple $(K/k, S, \Sigma)$ is given, where S is a finite set of prime ideals of k none of which lies over 2, Σ is a subset of S such that $A_{\Sigma}(k) \simeq 0$, and K/k is a quadratic extension unramified outside S and ramified at all $\mathfrak{l} \in S \setminus \Sigma$. Then we have

(3.1)
$$r_2(A_S(k)) = 1 + r_2(A_{\Sigma}(K)).$$

Moreover, if $r_2(A_S(k)) = 2$ (i.e., $r_2(A_\Sigma(K)) = 1$), then the following four statements hold true:

- (1) For any $\mathfrak{l} \in S \setminus \Sigma$, we have $r_2(A_{S \setminus \{\mathfrak{l}\}}(k)) = 1$; i.e., $k_{S \setminus \{\mathfrak{l}\}}^{\text{elem}}/k$ is a quadratic extension. Then, moreover, $A_{\Sigma}(k_{S \setminus \{\mathfrak{l}\}}^{\text{elem}}) \simeq 0$.
- (2) Assume that there is $\mathfrak{l} \in S \setminus \Sigma$ such that $k_{S \setminus \{\mathfrak{l}\}}^{\text{elem}}$ is contained in a cyclic quartic extension of k unramified outside S, i.e., $\mathfrak{r}_4(A_S(k)) = 2$ or $\mathfrak{r}_4(A_S(k)) = \mathfrak{r}_2(\operatorname{Gal}(k_S^{\text{ab}}/K)) = 1$. Then $G_S(k)$ is metacyclic if and only if $|A_\Sigma(K)| = 2$.
- (3) If $r_4(A_S(k)) = 1$, $r_2(Gal(k_S^{ab}/K)) = 2$ and $|A_{\Sigma}(K)| \ge 4$, then $G_S(k)$ is metacyclic.
- (4) If $r_4(A_S(k)) = 1$, $r_2(Gal(k_S^{ab}/K)) = 2$, $|A_\Sigma(K)| = 2$ and the following three conditions are satisfied, then $G_S(k)$ is not metacyclic.
 - (a) $G_S(k)$ is nonabelian.
 - (b) $|O_k/\mathfrak{l}| \not\equiv 1 \pmod{|A_S(k)|}$ for any $\mathfrak{l} \in S \setminus \Sigma$.
 - (c) There exists $\mathfrak{l}_0 \in S \setminus \Sigma$ such that no $\mathfrak{l} \in S \setminus \Sigma$ is inert in $k_{S \setminus \{\mathfrak{l}_0\}}^{\mathrm{elem}}/k$.

Proof. Since $A_{\Sigma}(k) \simeq 0$, i.e., $k_{\Sigma}^{ab} = k$, the existence of K/k implies that $S \neq \Sigma$. Let σ be a generator of $\operatorname{Gal}(K/k) \simeq \mathbb{Z}/2\mathbb{Z}$. Since $1 + \sigma : A_{\Sigma}(K) \stackrel{\operatorname{norm}}{\longrightarrow} A_{\Sigma}(k) \stackrel{\operatorname{lift}}{\longrightarrow} A_{\Sigma}(K)$ is zero mapping, $(A_{\Sigma}(K)/2)^{1+\sigma} \simeq 0$; i.e., σ acts on $A_{\Sigma}(K)/2$ trivially. Hence $K_{\Sigma}^{\operatorname{elem}} \subset k_{S}^{\operatorname{ab}}$, and the ramification index of any $\mathfrak{l} \in S \setminus \Sigma$ in $K_{\Sigma}^{\operatorname{elem}}/k$ is 2. If $r_{4}(\operatorname{Gal}(K_{\Sigma}^{\operatorname{elem}}/k)) \geq 1$, $K_{\Sigma}^{\operatorname{elem}}$ contains a cyclic quartic extension of k. Then, since

 $A_{\Sigma}(k) \simeq 0$, the cyclic quartic extension is totally ramified at some $\mathfrak{l} \in S \setminus \Sigma$; i.e., the ramification index of such \mathfrak{l} in $K_{\Sigma}^{\mathrm{elem}}/k$ is at least 4. This is a contradiction. Therefore $K_{\Sigma}^{\mathrm{elem}} \subset k_S^{\mathrm{elem}}$, and hence $1 + \mathrm{r}_2(A_{\Sigma}(K)) \leq \mathrm{r}_2(A_S(k))$. On the other hand, since all $\mathfrak{l} \in S \setminus \Sigma$ ramify in K, k_S^{elem}/K is unramified outside Σ . Therefore $\mathrm{r}_2(A_S(k)) - 1 = \mathrm{r}_2(\mathrm{Gal}(k_S^{\mathrm{elem}}/K)) \leq \mathrm{r}_2(A_{\Sigma}(K))$, and hence we obtain the equality (3.1). In particular, we have $K_{\Sigma}^{\mathrm{elem}} = k_S^{\mathrm{elem}}$.

In the following, we assume that $r_2(A_S(k)) = 2$. Let K' be the inertia field of $\mathfrak{l} \in S \setminus \Sigma$ in the [2,2]-extension k_S^{elem}/k . Since $k \subset K \subset k_S^{\mathrm{elem}}$ and \mathfrak{l} ramifies in K/k, K' is a quadratic extension of k unramified outside $S \setminus \{\mathfrak{l}\}$. In particular, we have $r_2(A_{S \setminus \{\mathfrak{l}\}}(k)) \geq 1$. Moreover, since $K' \not\subset k_\Sigma^{\mathrm{ab}} = k$, we have $S \setminus \{\mathfrak{l}\} \neq \Sigma$, i.e., $|S \setminus \Sigma| \geq 2$. On the other hand, since k_S^{elem}/k is not unramified outside $S \setminus \{\mathfrak{l}\}$, we have $r_2(A_{S \setminus \{\mathfrak{l}\}}(k)) < r_2(A_S(k)) = 2$, i.e., $r_2(A_{S \setminus \{\mathfrak{l}\}}(k)) = 1$. Hence $K' = k_S^{\mathrm{elem}}$. Moreover, $k_{S \setminus \{\mathfrak{l}\}}/k$ is cyclic. By the assumption that $A_\Sigma(k) \simeq 0$, $k_{S \setminus \{\mathfrak{l}\}}/k$ is totally ramified at some $\mathfrak{l}' \in S \setminus (\Sigma \cup \{\mathfrak{l}\})$. Since $k \subset K' \subset (K')_\Sigma^{\mathrm{ab}} \subset k_{S \setminus \{\mathfrak{l}\}}$, we have $K' = (K')_\Sigma^{\mathrm{ab}}$, i.e., $A_\Sigma(K') \simeq 0$. Hence statement (1) holds.

We show statement (2). Let F/k be a cyclic quartic extension unramified outside S, which contains $K' = k_{S\backslash \{\mathfrak{l}\}}^{\mathrm{elem}}$ for some $\mathfrak{l} \in S \setminus \Sigma$. Let $\Sigma' \subset S \setminus \Sigma$ be the set of all primes in $S \setminus \Sigma$ which ramify in K'. Since $A_{\Sigma}(k) \simeq 0$, we have $\Sigma' \neq \emptyset$. Then $\mathfrak{l} \notin \Sigma' \cup \Sigma$ and $K' = k_{\Sigma \cup \Sigma'}^{\mathrm{elem}}$. Put a sequence $S \setminus \Sigma' = \Sigma_0 \subset \Sigma_1 \subset \cdots \subset \Sigma_n = S$ such that $\Sigma_i \setminus \Sigma_{i-1} = \{\mathfrak{l}_i\}$ $(1 \leq i \leq n)$. Then $\Sigma' = \{\mathfrak{l}_1, \cdots, \mathfrak{l}_n\}$. Since K/k and K'/k are ramified at any $\mathfrak{l}_i \in \Sigma'$, all \mathfrak{l}_i have the common inertia field $K'' = k_{S\backslash \{\mathfrak{l}_i\}}^{\mathrm{elem}} = k_{\Sigma_0}^{\mathrm{elem}}$ in the [2, 2]-extension k_S^{elem}/k . Moreover, we have $k_S^{\mathrm{elem}} \subset (K')_{\Sigma_0}^{\mathrm{elem}}$. Since the inertia group $I_{\mathfrak{l}_i} \subset G_{\Sigma_i}(K')^{\mathrm{ab}}$ of the unique prime of K' lying over \mathfrak{l}_i is cyclic and $G_{\Sigma_i}(K')^{\mathrm{ab}}/I_{\mathfrak{l}_i} \simeq A_{\Sigma_{i-1}}(K')$, we have $\mathfrak{r}_2(A_{\Sigma_i}(K')) \leq 2$ if $\mathfrak{r}_2(A_{\Sigma_{i-1}}(K')) = 1$.

Now we assume that $|A_{\Sigma}(K)|=2$. Since k_S^{elem}/K' is ramified at any prime lying over a prime in $\Sigma_0 \setminus \Sigma$, $(K')_{\Sigma_0}^{\mathrm{elem}}/k_S^{\mathrm{elem}}$ is unramified outside Σ . Recall that $k_S^{\mathrm{elem}}=K_{\Sigma}^{\mathrm{elem}}$. The assumption $|A_{\Sigma}(K)|=2$ implies that $k_S^{\mathrm{elem}}=K_{\Sigma}$, i.e., $A_{\Sigma}(k_S^{\mathrm{elem}})\simeq 0$. Hence $k_S^{\mathrm{elem}}=(K')_{\Sigma_0}^{\mathrm{elem}}$ and $\mathbf{r}_2(A_{\Sigma_0}(K'))=1$. We can show that $\mathbf{r}_2(A_{\Sigma_i}(K'))=1$ if $\mathbf{r}_2(A_{\Sigma_{i-1}}(K'))=1$ and i< n as follows. Suppose that $\mathbf{r}_2(A_{\Sigma_{i-1}}(K'))=1$ and $\mathbf{r}_2(A_{\Sigma_i}(K'))=2$ for i< n. Then $(K')_{\Sigma_i}^{\mathrm{elem}}/k$ is a Galois extension of degree 8, and $k_S^{\mathrm{elem}}=(K')_{\Sigma_{i-1}}^{\mathrm{elem}}$. Since $(K')_{\Sigma_i}^{\mathrm{elem}}\neq(K')_{\Sigma_{i-1}}^{\mathrm{elem}}$, $(K')_{\Sigma_i}^{\mathrm{elem}}/K''$ is totally ramified at a prime lying over \mathbf{l}_i . Then $(K')_{\Sigma_i}^{\mathrm{elem}}/K''$ is a cyclic quartic extension. However, k_S^{elem}/K'' is ramified at any prime lying over $\mathbf{l}_n \notin \Sigma_0$, and $(K')_{\Sigma_i}^{\mathrm{elem}}/k_S^{\mathrm{elem}}$ is unramified at any prime lying over $\mathbf{l}_n \notin \Sigma_0$, and $(K')_{\Sigma_i}^{\mathrm{elem}}/k_S^{\mathrm{elem}}$ is unramified at any prime lying over $\mathbf{l}_n \notin \Sigma_0$, and $(K')_{\Sigma_i}^{\mathrm{elem}}/k_S^{\mathrm{elem}}$ is unramified at any prime lying over $\mathbf{l}_n \notin \Sigma_0$, and $(K')_{\Sigma_i}^{\mathrm{elem}}/k_S^{\mathrm{elem}}$ is unramified at any prime lying over $\mathbf{l}_n \notin \Sigma_0$, and $(K')_{\Sigma_i}^{\mathrm{elem}}/k_S^{\mathrm{elem}}$ is unramified at any prime lying over $\mathbf{l}_n \notin \Sigma_0$. This is a contradiction. Therefore $\mathbf{r}_2(A_{\Sigma_i}(K'))=1$ if $\mathbf{r}_2(A_{\Sigma_{i-1}}(K'))=1$ and i< n. Since $\mathbf{r}_2(A_{\Sigma_0}(K'))=1$, we have $\mathbf{r}_2(A_{\Sigma_{n-1}}(K'))=1$ by induction, and hence $\mathbf{r}_2(A_S(K'))\leq 2$. Put $G=G_S(k)$ and $H=G_S(K')$. Since FK/K' is a [2,2]-extension and $FK\subset k_S^{\mathrm{ab}}$, we have $\mathbf{r}_2(H/G_2)=\mathbf{r}_2(H^{\mathrm{ab}})=\mathbf{r}_2(A_S(K'))=2$. Then G is metacyclic by Proposition 2.1. Thus we obtain the if-part of statement (2).

Conversely, we assume that $|A_{\Sigma}(K)| \geq 4$. Then there exists a unique cyclic quartic extension L/K unramified outside Σ . Then $k_S^{\text{elem}} = K_{\Sigma}^{\text{elem}} \subset L$, and L/k is

a Galois extension of degree 8. Since k_S^{elem}/K' is ramified at the primes lying over $\mathfrak{l}, L/K'$ is not cyclic.

Since K'/k is ramified at $\mathfrak{l}_1 \in \Sigma'$, k_S^{elem}/K' is unramified at any prime lying over \mathfrak{l}_1 . Hence L/K' is a [2,2]-extension unramified outside $S \setminus \{\mathfrak{l}_1\}$. Since F/k is totally ramified at \mathfrak{l}_1 , F/K' is a quadratic extension ramified at the prime lying over \mathfrak{l}_1 . Therefore FL/K' is a [2,2,2]-extension unramified outside S. Then $G_S(k)$ is not metacyclic. Thus we obtain statement (2).

We show statement (3). Assume that $\mathbf{r}_4(A_S(k))=1$, $\mathbf{r}_2(\mathrm{Gal}(k_S^{ab}/K))=2$ and $|A_\Sigma(K)|\geq 4$. Take $\mathfrak{l}\in S\setminus \Sigma$ arbitrarily. Since $A_\Sigma(k)\simeq 0$, the quadratic extension $k_{S\setminus\{\mathfrak{l}\}}^{\mathrm{elem}}/k$ is ramified at some $\mathfrak{l}'\in S\setminus \Sigma$. Then $k_S^{\mathrm{elem}}=k_{S\setminus\{\mathfrak{l}\}}^{\mathrm{elem}}k_{S\setminus\{\mathfrak{l}'\}}^{\mathrm{elem}}$ and $k_{S\setminus\{\mathfrak{l}'\}}^{\mathrm{elem}}/k$ is a quadratic extension ramified at \mathfrak{l} . Since $k_{S\setminus\{\mathfrak{l}\}}^{\mathrm{elem}}\cap k_{S\setminus\{\mathfrak{l}'\}}^{\mathrm{elem}}=k$, we have $k_{S\setminus\{\mathfrak{l}'\}}^{\mathrm{elem}}/k$ is a quadratic extension ramified at \mathfrak{l} . Since $k_{S\setminus\{\mathfrak{l}'\}}^{\mathrm{elem}}\cap k_{S\setminus\{\mathfrak{l}'\}}^{\mathrm{elem}}=k$, we have $k_{S\setminus\{\mathfrak{l}'\}}^{\mathrm{elem}}/k$ is a quadratic extension of $k_{S\setminus\{\mathfrak{l}'\}}^{\mathrm{elem}}$ and $k_{S\setminus\{\mathfrak{l}'\}}^{\mathrm{elem}}$ are cyclic extensions of k. Since $k_{S\setminus\{\mathfrak{l}'\}}^{\mathrm{elem}}/k$ is a quadratic extension. Replacing \mathfrak{l} and \mathfrak{l}' if necessary, we may assume that $|A_{S\setminus\{\mathfrak{l}\}}(k)|=2$, i.e., $k_{S\setminus\{\mathfrak{l}\}}=k_{S\setminus\{\mathfrak{l}\}}^{\mathrm{elem}}=k_{S\setminus\{\mathfrak{l}\}}^{\mathrm{elem}}$. Put $r=r_2(A_{S\setminus\{\mathfrak{l}\}}(K))\geq r_2(A_\Sigma(K))=1$. We can also show that r=1 as follows. Suppose that $r\geq 2$. Note that $k_S^{\mathrm{elem}}=k_S^{\mathrm{elem}} \subset K_S^{\mathrm{elem}}$. Then $K_{S\setminus\{\mathfrak{l}\}}^{\mathrm{elem}}/k$ is a Galois extension of degree 2^{r+1} , and hence $K_{S\setminus\{\mathfrak{l}\}}/k_{S\setminus\{\mathfrak{l}\}}^{\mathrm{elem}}$ is a Galois extension of degree 2^r . Let $M=(k_S^{\mathrm{elem}})_S^{\mathrm{elem}}\cap K_S^{\mathrm{elem}}$ be the maximal abelian extension of $k_S^{\mathrm{elem}}\cap K_S^{\mathrm{elem}}$ (cf. a diagram below). Since $|\mathrm{Gal}(K_S^{\mathrm{elem}}/k_{S\setminus\{\mathfrak{l}\}}^{\mathrm{elem}})|=2^r\neq 2$, we have $|\mathrm{Gal}(K_S^{\mathrm{elem}}/k_S^{\mathrm{elem}})/k_S^{\mathrm{elem}}/k_S^{\mathrm{elem}}$. Then $M/k_S^{\mathrm{elem}}/k_S^{\mathrm{elem}}$ is an abelian extension of degree at least 4. On the other hand, since $r_2(A_\Sigma(K))=1$ and $|A_\Sigma(K)|\geq 4$, there exists a unique cyclic quartic extension L/K unramified outside Σ . Then L/k is a Galois extension of degree 8, and hence L/k_S^{elem} is also an abelian quartic extension. Since M/K is an elementary abelian 2-extension, we have $L\cap M=k_S^{\mathrm{elem}}$.

Let I be the subgroup of $\operatorname{Gal}(LM/k_{S\backslash\{\mathfrak{l}\}}^{\operatorname{elem}})$ generated by the inertia groups of the prime ideals $\mathfrak L$ of $k_{S\backslash\{\mathfrak{l}\}}^{\operatorname{elem}}$ lying over $\mathfrak l$. Since $LM/k_S^{\operatorname{elem}}$ is unramified outside $S\setminus\{\mathfrak{l}\}$, the ramification indices of $\mathfrak L$ in $LM/k_{S\backslash\{\mathfrak{l}\}}^{\operatorname{elem}}$ are at most 2. Since the number of $\mathfrak L$ is at most 2, we have $|I| \leq 4$. Then $|\operatorname{Gal}(LM/k_{S\backslash\{\mathfrak{l}\}}^{\operatorname{elem}})/I| \geq 8/4 = 2$, and hence

the fixed field of I is a nontrivial abelian 2-extension of $k_{S\backslash \{\mathfrak{l}\}}=k_{S\backslash \{\mathfrak{l}\}}^{\text{elem}}$ unramified outside $S\setminus \{\mathfrak{l}\}$. This is a contradiction. Therefore $\mathrm{r}_2(A_{S\backslash \{\mathfrak{l}\}}(K))=r=1$. Put $G=G_S(k)$ and $H=G_S(K)$. Since the inertia group $I_{\mathfrak{l}}\subset H^{\mathrm{ab}}$ of the unique prime of K lying over \mathfrak{l} is cyclic and $H^{\mathrm{ab}}/I_{\mathfrak{l}}\simeq A_{S\backslash \{\mathfrak{l}\}}(K)$, we have $\mathrm{r}_2(H^{\mathrm{ab}})\leq 2$. The assumption $\mathrm{r}_2(H/G_2)=\mathrm{r}_2(\mathrm{Gal}(k_S^{\mathrm{ab}}/K))=2$ yields that $\mathrm{r}_2(H^{\mathrm{ab}})=2$. Then G is metacyclic by Proposition 2.1. Thus we obtain statement (3).

We show statement (4). Put $K' = k_{S\setminus \{I_0\}}^{\text{elem}}$, and put $G = G_S(k)$, $H = G_S(K)$ and $H' = G_S(K')$. Since $G^{\text{ab}} \simeq A_S(k) \simeq [2, 2^m]$ with some $m \geq 2$, G has two generators a, b such that $a^2 \equiv b^{2^m} \equiv 1 \pmod{G_2}$. Since $H/G_2 \simeq \text{Gal}(k_S^{\text{ab}}/K)$ and $r_2(\text{Gal}(k_S^{\text{ab}}/K)) = 2$, we have $r_2(A_S(K)) \geq 2$ and $H'/G_2 \simeq \mathbb{Z}/2^m\mathbb{Z}$. Replacing b by ab if necessary, we may assume that $H' = \langle b, G_2 \rangle$. Then $H = \langle a, b^2, G_2 \rangle = \langle a, b^2, [a, b], (G_2)^2 G_3 \rangle$, and $H/(G_2)^2 G_3$ is abelian (cf. the proof of Proposition 2.1). The condition (4a) yields that $[a, b] \notin (G_2)^2 G_3$. Suppose that $r_2(A_S(K)) = 2$. Then, since there are surjective homomorphisms $A_S(K) \to H/(G_2)^2 G_3 \to H/G_2$, we have $r_2(H/(G_2)^2 G_3) = 2$. Since $\langle a, b^{2^{m-1}} G_2 \rangle / G_2 \simeq [2, 2]$ and $G_2/(G_2)^2 G_3 = \langle [a, b](G_2)^2 G_3 \rangle \simeq \mathbb{Z}/2\mathbb{Z}$, we have $\langle a, b^{2^{m-1}} G_2 \rangle / (G_2)^2 G_3 \simeq [2, 4]$. Hence $a^2 \notin (G_2)^2 G_3$ or $b^{2^m} \notin (G_2)^2 G_3$. Note that $A_{\Sigma}(K') \simeq A_{\emptyset}(K') \simeq 0$ by statement (1). By the snake lemma for the commutative diagram

$$E(K') \otimes \mathbb{Z}_2 \xrightarrow{\Phi_{K',S}} (O_{K'} / \prod_{\mathfrak{L} \in S_{K'}} \mathfrak{L})^{\times} \otimes \mathbb{Z}_2 \xrightarrow{} A_S(K') \xrightarrow{} 0$$

$$\downarrow \qquad \qquad \downarrow \psi \qquad \qquad \downarrow \downarrow$$

$$0 \xrightarrow{} \operatorname{Im} \Phi_{K',\Sigma} \xrightarrow{} (O_{K'} / \prod_{\mathfrak{L} \in \Sigma_{K'}} \mathfrak{Q})^{\times} \otimes \mathbb{Z}_2 \xrightarrow{} A_{\Sigma}(K')$$

with exact rows, we obtain a surjective homomorphism $(O_{K'}/\prod_{\mathfrak{L}\in S_{K'}\setminus\Sigma_{K'}}\mathfrak{L})^{\times}\otimes\mathbb{Z}_2\simeq \operatorname{Ker}\Psi\to A_S(K')$. The condition (4c) yields that $O_{K'}/\mathfrak{L}\simeq O_k/\mathfrak{l}$ for any $\mathfrak{L}\in S_{K'}\setminus\Sigma_{K'}$ and $\mathfrak{l}=\mathfrak{L}\cap K'\in S\setminus\Sigma$. Hence the condition (4b) implies that the exponent of $A_S(K')\simeq (H')^{\operatorname{ab}}$ is at most 2^m . In particular, $b^{2^m}\in (H')_2$. Since $H'/(G_2)^2G_3=\langle b(G_2)^2G_3, [a,b](G_2)^2G_3\rangle$ is also abelian, i.e., $(H')_2\subset (G_2)^2G_3$, we have $b^{2^m}\in (G_2)^2G_3$. Therefore $a^2\notin (G_2)^2G_3$, and hence $a^2\equiv [a,b]\pmod{(G_2)^2G_3}$. Since

$$a^{-1}b^2a \equiv b^2[b^2, a] \equiv b^2[b, a]^2 \equiv b^2 \pmod{(G_2)^2G_3},$$

the fixed field k_S^N of $N=\langle b^2,(G_2)^2G_3\rangle$ is a Galois extension of k. Note that $b^{2^{m-1}}\not\in G_2\supset (G_2)^2G_3$. Since

$$[k_S^N:k] = \frac{|G/G_2||G_2/(G_2)^2G_3|}{|N/(G_2)^2G_3|} = \frac{2^{m+1} \cdot 2}{2^{m-1}} = 8,$$

we have $\operatorname{Gal}(k_S^N/K') \simeq H'/N = \langle bN, [a,b]N \rangle \simeq [2,2]$ and $\operatorname{Gal}(k_S^N/K) \simeq H/N = \langle aN \rangle \simeq \mathbb{Z}/4\mathbb{Z}$. Put $H'' = \langle ab, G_2 \rangle$, and let $K'' = k_S^{H''}$ be the fixed field of H''. Since

$$(ab)^2 = abab \equiv ab^{-1}ab = a^2[a, b] \equiv [a, b]^2 \equiv 1 \pmod{N},$$

we have $\operatorname{Gal}(k_S^N/K'') \simeq H''/N \simeq \langle abN, [a,b]N \rangle \simeq [2,2]$. (In fact, k_S^N/k is a dihedral extension of degree 8.)

For any $l \in S \setminus \Sigma$, the inertia field of l in the [2,2]-extension k_S^{elem}/k is either K' or K''; i.e., either k_S^{elem}/K' or k_S^{elem}/K'' is ramified at any prime lying over l. Since k_S^N/K' and k_S^N/K'' are [2,2]-extensions, k_S^N/k_S^{elem} is unramified outside Σ . Since $k_S^{\text{elem}} = K_\Sigma^{\text{elem}}$, k_S^N/K is a cyclic quartic extension unramified outside Σ . However, $|A_\Sigma(K)| = 2$ by the assumption of statement (4). This is a contradiction. Therefore we have $r_2(A_S(K)) \geq 3$, and hence $G_S(k)$ is not metacyclic. Thus the proof of Theorem 3.1 is completed.

We see various examples of Theorem 3.1 in the proof of Theorem 1.1 (from Sections 5 to 8).

4. Cyclotomic \mathbb{Z}_2 -extensions

We recall some basic facts on cyclotomic \mathbb{Z}_2 -extensions. Put $\zeta_{2^{n+2}} = \exp \frac{2\pi \sqrt{-1}}{2^{n+2}} \in \mathbb{C}$ and $\mathbb{Q}_n = \mathbb{Q}(\cos \frac{2\pi}{2^{n+2}}) \subset \mathbb{Q}(\zeta_{2^{n+2}})$ for each $n \geq 0$. The Galois group $\Gamma = \operatorname{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q})$ of the basic \mathbb{Z}_2 -extension $\mathbb{Q}_{\infty} = \bigcup_{n \geq 0} \mathbb{Q}_n = \mathbb{Q}_{\{2\}}$ is isomorphic to the additive group of \mathbb{Z}_2 (i.e., an infinite procyclic pro-2 group). For a finite extension k/\mathbb{Q} , we put $k_n = k\mathbb{Q}_n$. Then the field $k_\infty = k\mathbb{Q}_\infty = \bigcup_{n \geq 0} k_n$ is the cyclotomic \mathbb{Z}_2 -extension of k with the Galois group $\operatorname{Gal}(k_\infty/k) \simeq \mathbb{Z}_2$. In particular, $\mathbb{Q}(\zeta_{2^\infty}) = \bigcup_{n \geq 0} \mathbb{Q}(\zeta_{2^{n+2}})$ is the cyclotomic \mathbb{Z}_2 -extension of $\mathbb{Q}(\sqrt{-1})$. The following proposition provides a description of the cases with trivial $G_S(\mathbb{Q}_\infty)$.

Proposition 4.1. Let k/\mathbb{Q} be a finite extension and S a finite set of primes of k none of which lies over 2. If the prime of k lying over 2 is unique and $G_S(k)^{ab} \simeq 0$, then $G_S(k_\infty)$ is trivial for the cyclotomic \mathbb{Z}_2 -extension k_∞/k .

Proof. Since $G_S(k)^{\mathrm{ab}} \simeq 0$, we have $A_\emptyset(k) \simeq 0$, and hence k_∞/k is totally ramified at the unique prime $\mathfrak p$ of k lying over 2. Suppose that $G_S(k_\infty)$ is nontrivial. Since k_∞/k is totally ramified at $\mathfrak p$ and $(k_\infty)_S^{\mathrm{ab}}/k_\infty$ is a nontrivial pro-2-extension unramified at the prime lying over $\mathfrak p$, $G = \mathrm{Gal}((k_\infty)_S^{\mathrm{ab}}/k)$ is not procyclic. Hence the fixed field L of G_2 is a nontrivial pro-2-extension of k_∞ unramified outside S. Since the abelian pro-2-extension L/k is not totally ramified at $\mathfrak p$, the inertia field of $\mathfrak p$ is a nontrivial abelian 2-extension of k unramified outside S. Then $G_S(k)^{\mathrm{ab}} \not\simeq 0$. This is a contradiction. Therefore $G_S(k_\infty)$ is trivial. Thus the proof of Proposition 4.1 is completed.

The following corollary for $S = \emptyset$ is a theorem of Weber.

Corollary 4.2. Let S be a finite set of primes of \mathbb{Q} not containing 2. Then $G_S(\mathbb{Q}_{\infty})$ is trivial if and only if $S \subset \{\infty\}$ or $S = \{q\}$ and $q \equiv 3 \pmod{4}$. In particular, we have $A_{\{q\}}(\mathbb{Q}_n) \simeq 0$ for all $n \geq 0$ if $q \equiv 3 \pmod{4}$.

Proof. By Proposition 4.1, $G_S(\mathbb{Q}_{\infty})$ is trivial if and only if $G_S(\mathbb{Q})^{ab} \simeq 0$. Hence we obtain the claim.

Depending on the choice of a topological generator γ of $\operatorname{Gal}(k_\infty/k) \simeq \mathbb{Z}_2$, a module over the complete group ring $\mathbb{Z}_2[[\operatorname{Gal}(k_\infty/k)]]$ is regarded as a module over the ring $\Lambda = \mathbb{Z}_2[[T]]$ of formal power series via the isomorphism $\mathbb{Z}_2[[\operatorname{Gal}(k_\infty/k)]] \simeq \Lambda: \gamma \mapsto 1+T$. Let S be a finite set of primes of k none of which lies over S. For fixed $\widetilde{\gamma} \in \operatorname{Gal}((k_\infty)_S/k)$ such that $\widetilde{\gamma}|_{\mathbb{Q}_\infty} = \gamma$, the left action of Γ on $G_S(k_\infty)$ is defined by $\gamma g = \widetilde{\gamma} g \widetilde{\gamma}^{-1}$ ($g \in G_S(k_\infty)$). Recall that $G_S(k_\infty) \simeq \varprojlim G_S(k_n)$. Then we obtain an isomorphism $G_S(k_\infty)^{\mathrm{ab}} \simeq \varprojlim A_S(k_n)$ as Λ -modules, where the projective limit is taken on N_{k_n/k_m} . Suppose that k_∞/k is totally ramified at any prime lying over S. For any S m, since S m, the restriction mapping S m, is surjective. Hence S m, the restriction mapping S m, is also surjective. The following theorem (Fukuda's theorem [7] for S m is frequently used in the following sections. We give a proof for convenience.

Theorem 4.3 (Fukuda). Let k_{∞} be the cyclotomic \mathbb{Z}_2 -extension of a finite extension k of \mathbb{Q} and S a finite set of prime ideals of k none of which lies over 2. Assume that k_{∞}/k is totally ramified at any prime lying over 2. Then the following two statements hold true for $m \geq 0$:

- (1) If $|A_S(k_{m+1})| = |A_S(k_m)|$, then $A_S(k_n) \simeq A_S(k_m)$ for all $n \ge m$.
- (2) Suppose that $e \ge 1$. If $|A_S(k_{m+1})/2^e| = |A_S(k_m)/2^e|$, then $A_S(k_n)/2^e \simeq A_S(k_m)/2^e$ for all $n \ge m$.

Proof. Since k_{∞} is also the cyclotomic \mathbb{Z}_2 -extension of k_m and $A_S(k_n) = A_{Sk_m}(k_n)$ for all $n \geq m$, it suffices to prove the statements for m = 0. Put $X = G_S(k_{\infty})^{\mathrm{ab}} \simeq \varprojlim A_S(k_n)$. By the same argument as in [29, §13.3], X is a finitely generated A-module, and $A_S(k_n) \simeq X/\nu_n Y$ for all $n \geq 0$, where $Y = \mathrm{Gal}((k_{\infty})_S^{\mathrm{ab}}/k_{\infty}k_S^{\mathrm{ab}})$ and $\nu_n = ((1+T)^{2^n}-1)/T$. Note that $\nu_0 = 1$ and $\nu_1 = 2+T \in (2,T)$, where (2,T) is the maximal ideal of A. If $|A_S(k_1)| = |A_S(k)|$, we have $|X/\nu_1 Y| = |X/Y|$, which implies that $Y = \nu_1 Y \subset (2,T)Y$. Then Nakayama's lemma for Y yields that $Y \simeq 0$, i.e., $A_S(k_n) \simeq X \simeq A_S(k)$ for all $n \geq 0$. Suppose that $|A_S(k_1)/2^e| = |A_S(k)/2^e|$. Then $|X/(\nu_1 Y + 2^e X)| = |X/(Y + 2^e X)|$, and hence $Y + 2^e X = \nu_1 Y + 2^e X \subset (2,T)Y + 2^e X$. Nakayama's lemma for $(Y + 2^e X)/2^e X$ yields that $Y \subset 2^e X$. In particular, $\nu_n Y \subset 2^e X$ for all $n \geq 0$. Therefore $A_S(k_n)/2^e \simeq X/(\nu_n Y + 2^e X) \simeq X/2^e$ for all $n \geq 0$. Thus the proof of Theorem 4.3 is completed.

As an example of the usage of Theorem 4.3, we obtain the following.

Corollary 4.4. Under the same assumptions of Theorem 4.3, the following hold true:

- (1) If $A_S(k) \simeq 0$ and $|A_S(k_2)| = 2$, then $|A_S(k_n)| = 2$ for all $n \ge 1$.
- (2) If $r_2(A_S(k_2)) = 1 + r_2(A_S(k))$, then $r_2(A_S(k_n)) = 1 + r_2(A_S(k))$ for all $n \ge 1$.

Proof. Put $A_n = A_S(k_n)$ or $A_n = A_S(k_n)/2$ according to the statements. If $|A_1| = |A_0|$, then $|A_n| = |A_0|$ for all $n \ge 0$ by Theorem 4.3 for m = 0. Therefore $|A_1| \ne |A_0|$ if $|A_2| \ne |A_0|$. If $|A_2| = 2|A_0|$, the surjectivity of N_{k_n/k_m} yields that $2|A_0| = |A_2| \ge |A_1| > |A_0|$, i.e., $|A_2| = |A_1|$. Then $|A_n| = |A_1| = 2|A_0|$ for all $n \ge 1$ by Theorem 4.3 for m = 1. Thus we obtain the statements.

For the basic \mathbb{Z}_2 -extension $\mathbb{Q}_{\infty}/\mathbb{Q}$, we choose a canonical generator $\gamma = \overline{\gamma}|_{\mathbb{Q}_{\infty}}$ of Γ with a generator $\overline{\gamma}$ of $\overline{\Gamma} = \operatorname{Gal}(\mathbb{Q}(\zeta_{2^{\infty}})/\mathbb{Q}(\zeta_4)) \simeq \mathbb{Z}_2$ such that $\overline{\gamma}(\zeta_{2^{n+2}}) = \zeta_{2^{n+2}}^5$ for all $n \geq 0$. Moreover, we can choose $\widetilde{\gamma}$ such that $\widetilde{\gamma} \in \operatorname{Gal}((\mathbb{Q}_{\infty})_S/\mathbb{Q}_S)$. Fukuda's theorem (Theorem 4.3) above and Theorem 3.1 imply that it suffices to consider mainly the metacyclicity of $G_S(\mathbb{Q}_2)$ (or $G_S(\mathbb{Q}_1)$) in the proof of Theorem 1.1. Then we often use the cyclotomic unit

$$\xi = \zeta_{16}^{-2} \frac{1 - \zeta_{16}^5}{1 - \zeta_{16}} \in E(\mathbb{Q}_2)$$

to calculate $A_S(\mathbb{Q}_2)$. Since $\zeta_{16}^{\gamma^2} = \zeta_{16}^9 = -\zeta_{16}$, we have $N_{\mathbb{Q}_2/\mathbb{Q}_1}(\xi) = \xi^{1+\gamma^2} = \zeta_8^{-2} \frac{1-\zeta_8^5}{1-\zeta_8} = \varepsilon_2$, where $\varepsilon_2 = 1+\sqrt{2} \in E(\mathbb{Q}_1)$ is the fundamental unit of $\mathbb{Q}_1 = \mathbb{Q}(\sqrt{2})$. Note that the class number of $\mathbb{Q}_2 = \mathbb{Q}(\sqrt{2+\sqrt{2}})$ is 1. Since $A_{\emptyset}(\mathbb{Q}_n) \simeq 0$ for all $n \geq 0$ (by Corollary 4.2), the genus formula (2.1) for \mathbb{Q}_n/\mathbb{Q} yields that $N_{\mathbb{Q}_n/\mathbb{Q}} = \sum_{i=0}^{2^n-1} \gamma^i : E(\mathbb{Q}_n) \to E(\mathbb{Q})$ is surjective. Hence $E(\mathbb{Q}_n) \otimes \mathbb{Z}_2$ is a cyclic Λ -module for all $n \geq 0$, and $E(\mathbb{Q}_2) = \langle \xi, \xi^{\gamma}, \xi^{\gamma^2}, \xi^{\gamma^3} \rangle$ (cf. [29, Theorem 8.2, Proposition 8.11 and Remark]). In the following sections, we denote by ε_d the fundamental unit of the real quadratic field $\mathbb{Q}(\sqrt{d})$. For $z \in \mathbb{Z}$, $v_2(z)$ denotes the normalized additive 2-adic valuation, i.e., $|\mathbb{Z}_2/z\mathbb{Z}_2| = 2^{v_2(z)}$.

5. The case
$$S = \{\ell\}$$

This section treats the case where $S = \{\ell\}$ consists of one prime $\ell \equiv 1 \pmod{4}$. First, we determine the sets S with procyclic $G_S(\mathbb{Q}_{\infty})$.

Proposition 5.1. Put $S = \{\ell\}$ with a prime number $\ell \equiv 1 \pmod{4}$. Then the following four conditions are equivalent:

- (1) $G_S(\mathbb{Q}_{\infty})$ is procyclic.
- (2) $G_S(\mathbb{Q}_{\infty})$ is finite cyclic.
- (3) $G_{\emptyset}(\mathbb{Q}_{\infty}(\sqrt{\ell}))$ is trivial.
- (4) ℓ satisfies $\ell \equiv 5 \pmod{8}$ or $\ell \equiv 1 \pmod{8}$ and $\left(\frac{2}{\ell}\right)_4 \left(\frac{\ell}{2}\right)_4 = -1$.

Moreover, we have $G_S(\mathbb{Q}_{\infty}) \simeq \mathbb{Z}/2\mathbb{Z}$ if $\ell \equiv 5 \pmod{8}$.

Proof. Since $G_S(\mathbb{Q}_{\infty})^{\mathrm{ab}}$ is finite by [9, Theorem 3.1], the conditions (1) and (2) are equivalent. Put $k = \mathbb{Q}(\sqrt{\ell})$. By (3.1) for the triple $(k_n/\mathbb{Q}_n, S_{\mathbb{Q}_n}, \emptyset)$, we have $r_2(G_S(\mathbb{Q}_n)^{\mathrm{ab}}) = 1 + r_2(G_{\emptyset}(k_n)^{\mathrm{ab}})$ for all $n \geq 0$, and hence the conditions (1) and (3) are equivalent. The conditions (3) and (4) are also equivalent by [20, Corollary 3.4] (and [23]). Suppose that $\ell \equiv 5 \pmod{8}$. Then $k = \mathbb{Q}_S$. Since 2 is inert in k and $A_S(k) \simeq 0$, $G_S(k_{\infty})$ is trivial by Proposition 4.1. This implies that $k_{\infty} = (\mathbb{Q}_{\infty})_S$, and hence $G_S(\mathbb{Q}_{\infty}) \simeq \mathbb{Z}/2\mathbb{Z}$.

We prove the following theorem which characterizes $S = \{\ell\}$ such that $G_S(\mathbb{Q}_{\infty})$ is nonprocyclic prometacyclic.

Theorem 5.2. Put $S = \{\ell\}$ with a prime number $\ell \equiv 1 \pmod{4}$. Then $G_S(\mathbb{Q}_{\infty})$ is nonprocyclic prometacyclic if and only if one of the following two conditions holds:

- (1) $\ell \equiv 9 \pmod{16}, \left(\frac{2}{\ell}\right)_4 = -1, \left(\frac{\varepsilon_2}{\ell}\right)_4 = 1, \text{ and } |A_{\emptyset}(\mathbb{Q}_2(\sqrt{\ell}))| = 2.$
- (2) $\ell \equiv 9 \pmod{16}, \ \left(\frac{2}{\ell}\right)_4 = -1, \ \left(\frac{\varepsilon_2}{\ell}\right)_4 \neq 1, \ and \ |A_{\emptyset}(\mathbb{Q}_2(\sqrt{\ell}))| \geq 4.$

Proof. By Proposition 5.1, it suffices to consider the case where $\ell \equiv 1 \pmod 8$ and $\left(\frac{2}{\ell}\right)_4 = (-1)^{\frac{\ell-1}{8}}$. Put $k = \mathbb{Q}(\sqrt{\ell})$ and $k' = \mathbb{Q}(\sqrt{2\ell})$. Let \mathfrak{l} be a prime ideal of \mathbb{Q}_1 lying over ℓ . In the following, $z_\ell \in \mathbb{Z}$ denotes a primitive element modulo ℓ .

Lemma 5.3. If $\ell \equiv 1 \pmod{16}$, $\left(\frac{2}{\ell}\right)_4 = 1$ and $r_2(A_S(\mathbb{Q}_2)) = 2$, then $|A_{\emptyset}(k_2)| \geq 4$ and $r_4(A_S(\mathbb{Q}_2)) = 2$.

Proof. Proposition 5.1 and Theorem 4.3 imply that $A_{\emptyset}(k_1) \not\simeq 0$. Since $k' \subset k_1 \subset (k')^{\mathrm{ab}}_{\emptyset}$ and $\mathrm{r}_2(A_{\emptyset}(k')) = 1$ (cf. e.g. [30]), we have $(k')^{\mathrm{ab}}_{\emptyset} = (k_1)^{\mathrm{ab}}_{\emptyset}$ and hence $\mathrm{r}_2(A_{\emptyset}(k_1)) = 1$. Then (3.1) for the triple $(k_1/\mathbb{Q}_1, \{\mathfrak{l}, \mathfrak{l}^{\gamma}\}, \emptyset)$ yields that $\mathrm{r}_2(A_S(\mathbb{Q}_1)) = 2$. Moreover, $(\mathbb{Q}_1)^{\mathrm{elem}}_{\{\mathfrak{l}\}}/\mathbb{Q}_1$ is a quadratic extension by Theorem 3.1(1). Note that $A_{\{\mathfrak{l}\}}(\mathbb{Q}_1)/2 \simeq \mathrm{Gal}((\mathbb{Q}_1)^{\mathrm{elem}}_{\{\mathfrak{l}\}}/\mathbb{Q}_1)$ via the Artin map. Since $O_{\mathbb{Q}_1}/\mathfrak{l} \simeq \mathbb{Z}/\ell\mathbb{Z}$, $\sqrt{2} \equiv z_\ell^x$ (mod \mathfrak{l}) with some $x \in \mathbb{Z}$. Then $2 \equiv z_\ell^{2x}$ (mod ℓ). The assumption $(\frac{2}{\ell})_4 = 1$ yields that x is even. Therefore $[(\sqrt{2}^{\frac{\ell-1}{2m}})] = [(z_\ell^{\frac{\ell-1}{2m}})]^x \in 2A_{\{\mathfrak{l}\}}(\mathbb{Q}_1)$ as the ideal classes, where $m = v_2(\ell-1) \geq 4$. This implies that the prime $(\sqrt{2})$ of \mathbb{Q}_1 splits in $(\mathbb{Q}_1)^{\mathrm{elem}}_{\{\mathfrak{l}\}}$. Then the prime of \mathbb{Q}_n lying over 2 splits completely in the [2, 2]-extension $(\mathbb{Q}_1)^{\mathrm{elem}}_{\{\mathfrak{l}\}}k_n/\mathbb{Q}_n$, and hence a prime \mathfrak{p}_n of k_n lying over 2 also splits in the unramified quadratic extension $(\mathbb{Q}_1)^{\mathrm{elem}}_{\{\mathfrak{l}\}}k_n/k_n$ for all $n \geq 1$. Suppose that $|A_{\emptyset}(k_2)| = 2$. Then $A_{\emptyset}(k_n) \simeq \mathbb{Z}/2\mathbb{Z}$ for all $n \geq 1$ by Theorem 4.3, and $A_{\emptyset}(k_n) = A_{\emptyset}(k_n)^{\Gamma} = \langle [\mathfrak{p}_n^{h_n/2}] \rangle$ by [8, Theorem 2], where h_n is the class number of k_n . This implies that \mathfrak{p}_n is inert in $(k_n)^{\mathrm{ab}}_{\emptyset} = (\mathbb{Q}_1)^{\mathrm{elem}}_{\{\mathfrak{l}\}}k_n$. This is a contradiction. Therefore $|A_{\emptyset}(k_2)| \geq 4$.

Let $\mathfrak L$ be a prime ideal of $\mathbb Q_2$ lying over $\mathfrak l$. By the assumption $\ell \equiv 1 \pmod{16}$, ℓ splits completely in $\mathbb Q_2$, and hence $O_{\mathbb Q_2}/\mathfrak L^{\gamma^i} \simeq O_{\mathbb Q_1}/\mathfrak l^{\gamma^i} \simeq \mathbb Z/\ell \mathbb Z$. We choose $g_{\mathfrak L^{\gamma^i}} = g_{\mathfrak l^{\gamma^i}} = z_\ell$ for any i. Recall that $m = v_2(\ell-1) \geq 4$. Then we obtain the commutative diagram

$$\begin{split} E(\mathbb{Q}_2) & \xrightarrow{\varphi_{\mathbb{Q}_2,S}} [2^m_{\mathfrak{L}}, 2^m_{\mathfrak{L}^{\gamma}}, 2^m_{\mathfrak{L}^{\gamma^2}}, 2^m_{\mathfrak{L}^{\gamma^3}}] \longrightarrow A_S(\mathbb{Q}_2) \longrightarrow 0 \\ \uparrow \cup & \uparrow \psi \\ E(\mathbb{Q}_1) & \xrightarrow{\varphi_{\mathbb{Q}_1,S}} [2^m_{\mathfrak{l}}, 2^m_{\mathfrak{l}^{\gamma}}] \longrightarrow A_S(\mathbb{Q}_1) \longrightarrow 0 \end{split}$$

with exact rows, where $\psi(x_0, x_1) = (x_0, x_1, x_0, x_1)$. Moreover, since $\varepsilon_2 = \xi^{1+\gamma^2}$, we have

$$v_{\mathbb{Q}_{2},S} = \begin{pmatrix} \varphi_{\mathbb{Q}_{2},S}(\xi) \\ \varphi_{\mathbb{Q}_{2},S}(\xi^{\gamma}) \\ \varphi_{\mathbb{Q}_{2},S}(\xi^{\gamma^{2}}) \\ \varphi_{\mathbb{Q}_{3},S}(\xi^{\gamma^{3}}) \end{pmatrix} = \begin{pmatrix} a_{0} & a_{1} & a_{2} & a_{3} \\ a_{3} & a_{0} & a_{1} & a_{2} \\ a_{2} & a_{3} & a_{0} & a_{1} \\ a_{1} & a_{2} & a_{3} & a_{0} \end{pmatrix}$$

and

$$v_{\mathbb{Q}_1,S} = \begin{pmatrix} \varphi_{\mathbb{Q}_1,S}(-1) \\ \varphi_{\mathbb{Q}_1,S}(\varepsilon_2) \end{pmatrix} = \begin{pmatrix} 2^{m-1} & 2^{m-1} \\ a_0 + a_2 & a_1 + a_3 \end{pmatrix}$$

with some a_j $(0 \le j \le 3)$, where we note that $-1 \equiv z_\ell^{\frac{\ell-1}{2}}$ $\pmod{\ell}$ and $\frac{\ell-1}{2} \equiv 2^{m-1}$ $\pmod{2^m}$. By the assumption that $\mathrm{r_2}(A_S(\mathbb{Q}_2)) = 2$, at least one of a_j is odd. Since $\xi^{1+\gamma+\gamma^2+\gamma^3} = -1$, we have $a_0 + a_1 + a_2 + a_3 \equiv 2^{m-1} \pmod{2^m}$. Since $\mathrm{r_2}(A_S(\mathbb{Q}_1)) = 2$, we have $\mathrm{Im}\,\varphi_{\mathbb{Q}_1,S} \subset 2[2^m,2^m]$, i.e., $a_0 + a_2 \equiv a_1 + a_3 \equiv 0 \pmod{2}$. Then, in particular, $a_0 + a_2 \equiv a_1 + a_3 \pmod{4}$. If $a_0 + a_2 \equiv a_1 + a_3 \equiv 0 \pmod{4}$, we have $\mathrm{Im}\,\varphi_{\mathbb{Q}_1,S} \subset 4[2^m,2^m]$ and hence $\mathrm{r_4}(A_S(\mathbb{Q}_2)) = \mathrm{r_4}(A_S(\mathbb{Q}_1)) = 2$. Suppose that $a_0 + a_2 \equiv a_1 + a_3 \equiv 2 \pmod{4}$. If all of a_j is odd, then $v_{\mathbb{Q}_2,S} \equiv (1)_{0 \le i \le 3,0 \le j \le 3} \pmod{2}$, which implies that $A_S(\mathbb{Q}_2)/2 \simeq \mathrm{Coker}(\varphi_{\mathbb{Q}_2,S} \mod 2) \simeq [2,2,2]$. Hence,

by the assumption that $r_2(A_S(\mathbb{Q}_2)) = 2$, at least one of a_j is even. Then $a_{j_0} \equiv 0 \pmod{4}$ for some j_0 . Recall that there are also odd a_j . Replacing the pair $(\mathfrak{l},\mathfrak{L})$ by $(\mathfrak{l}^{j_0},\mathfrak{L}^{\gamma^{j_0}})$ if $j_0 \neq 0$, we may assume that $(a_0,a_1,a_2,a_3) \equiv (0,1,2,1) \pmod{4}$. Since

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ -1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} v_{\mathbb{Q}_2, S} \equiv \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \pmod{4},$$

we have $A_S(\mathbb{Q}_2)/4 \simeq \operatorname{Coker}(\varphi_{\mathbb{Q}_2,S} \mod 4) \simeq [4,4]$. Thus the proof of Lemma 5.3 is completed.

Lemma 5.4. Assume that $\ell \equiv 9 \pmod{16}$ and $\left(\frac{2}{\ell}\right)_4 = -1$. Then

$$\begin{split} A_S(\mathbb{Q}_1) &\simeq A_S(\mathbb{Q}_2) \simeq [4,4] & if \left(\frac{\varepsilon_2}{\ell}\right)_4 = 1, \\ A_S(\mathbb{Q}_1) &\simeq [8,2] \ and \ A_S(\mathbb{Q}_2) \simeq [16,2] \ if \left(\frac{\varepsilon_2}{\ell}\right)_4 \neq 1. \end{split}$$

Proof. Since $\ell \equiv 9 \pmod{16}$, $O_{\mathbb{Q}_2}/\mathfrak{l} \simeq O_{\mathbb{Q}_2}/\mathfrak{l}^{\gamma} \simeq \mathbb{F}_{\ell^2}$ on which γ^2 acts as the Frobenius automorphism $x \mapsto x^{\ell}$ $(x \in \mathbb{F}_{\ell^2})$. We choose $g_{\mathfrak{l}O_{\mathbb{Q}_2}}$ and z_{ℓ} such that $z_{\ell} \equiv g_{\mathfrak{l}O_{\mathbb{Q}_2}}^{1+\ell} \pmod{\mathfrak{l}}$. Put $g_{\mathfrak{l}^{\gamma}O_{\mathbb{Q}_2}} = g_{\mathfrak{l}O_{\mathbb{Q}_2}}^{\gamma}$. Then $z_{\ell} \equiv g_{\mathfrak{l}^{\gamma}O_{\mathbb{Q}_2}}^{1+\ell} \pmod{\mathfrak{l}^{\gamma}}$, and we obtain the commutative diagram

$$E(\mathbb{Q}_2) \xrightarrow{\varphi_{\mathbb{Q}_2,S}} [16_{\mathfrak{l}O_{\mathbb{Q}_2}}, 16_{\mathfrak{l}^{\gamma}O_{\mathbb{Q}_2}}] \longrightarrow A_S(\mathbb{Q}_2) \longrightarrow 0$$

$$\uparrow \cup \qquad \qquad \uparrow \psi$$

$$E(\mathbb{Q}_1) \xrightarrow{\varphi_{\mathbb{Q}_1,S}} [8_{\mathfrak{l}}, 8_{\mathfrak{l}^{\gamma}}] \longrightarrow A_S(\mathbb{Q}_1) \longrightarrow 0$$

with exact rows, where $\psi(x_0,x_1)=((\ell+1)x_0,(\ell+1)x_1)=(10x_0,10x_1)$. In particular, $\mathbf{r}_2(A_S(\mathbb{Q}_1))\leq \mathbf{r}_2(A_S(\mathbb{Q}_2))\leq 2$. Since $\mathbf{r}_2(A_S(\mathbb{Q}))=1$ and $G_S(\mathbb{Q}_\infty)$ is not cyclic by Proposition 5.1, we have $\mathbf{r}_2(A_S(\mathbb{Q}_n))=2$ for all $n\geq 1$ by Theorem 4.3. Since $-1\equiv z_\ell^{\frac{\ell-1}{2}}\pmod{\ell}$ and ℓ a

$$\operatorname{Im} \varphi_{\mathbb{Q}_1,S} = \left\{ \begin{array}{ll} \langle (4,0), (0,4) \rangle & \text{if } \left(\frac{\varepsilon_2}{\ell}\right)_4 = 1, \\ \langle (2,2) \rangle & \text{if } \left(\frac{\varepsilon_2}{\ell}\right)_4 \neq 1. \end{array} \right.$$

Thus we obtain the claim for $A_S(\mathbb{Q}_1)$. Since $r_2(A_S(\mathbb{Q}_2)) = 2$ and $2\ell \equiv 2 \pmod{16}$, we have

$$v_{\mathbb{Q}_{2},S} = \begin{pmatrix} \varphi_{\mathbb{Q}_{2},S}(\xi) \\ \varphi_{\mathbb{Q}_{2},S}(\xi^{\gamma}) \\ \varphi_{\mathbb{Q}_{2},S}(\xi^{\gamma^{2}}) \\ \varphi_{\mathbb{Q}_{3},S}(\xi^{\gamma^{3}}) \end{pmatrix} = \begin{pmatrix} b_{0} & b_{1} \\ b_{1}\ell & b_{0} \\ b_{0}\ell & b_{1}\ell \\ b_{1}\ell^{2} & b_{0}\ell \end{pmatrix} = \begin{pmatrix} b_{0} & b_{1} \\ b_{1} & b_{0} \\ b_{0} & b_{1} \\ b_{1} & b_{0} \end{pmatrix}$$

with some $b_0, b_1 \in 2\mathbb{Z}$. Since $\varepsilon_2 = \xi^{1+\gamma^2}$ and $\varphi_{\mathbb{Q}_2,S}|_{E(\mathbb{Q}_1)} = \psi \circ \varphi_{\mathbb{Q}_1,S}$, we have $(2b_0, 2b_1) = (10a_0, 10a_1) = (2a_0, 2a_1) \in [16, 16]$, i.e., $(b_0, b_1) \equiv (a_0, a_1)$ (mod 8[16, 16]). Recall that $a_0 \equiv 0 \pmod{4}$ if and only if $\left(\frac{\varepsilon_2}{\ell}\right)_4 = 1$. Since $b_0 + b_1 \equiv a_0 + a_1 \equiv \pm 4 \pmod{16}$, we have

$$\operatorname{Im} \varphi_{\mathbb{Q}_2,S} = \langle (b_0,b_1), (4,4) \rangle = \left\{ \begin{array}{l} \langle (4,0), (0,4) \rangle & \text{if } \left(\frac{\varepsilon_2}{\ell}\right)_4 = 1, \\ \langle (2,2) \rangle \text{ or } \langle (2,10) \rangle & \text{if } \left(\frac{\varepsilon_2}{\ell}\right)_4 \neq 1. \end{array} \right.$$

This implies the claim for $A_S(\mathbb{Q}_2)$. Thus the proof of Lemma 5.4 is completed. \square

Lemma 5.5. If $\ell \equiv 9 \pmod{16}$, $\left(\frac{2}{\ell}\right)_4 = -1$, $\left(\frac{\varepsilon_2}{\ell}\right)_4 \neq 1$, then $G_S(\mathbb{Q}_1)$ is nonabelian metacyclic.

Proof. Since $\ell \equiv 9 \pmod{16}$ and $\left(\frac{2}{\ell}\right)_4 = -1$, we have $A_{\emptyset}(k') \simeq \mathbb{Z}/4\mathbb{Z}$ and $N_{k'/\mathbb{Q}}(\varepsilon_{2\ell}) = -1$ by [30, Proposition 3.4(b)]. Then $A_{\emptyset}(k_1) \simeq \mathbb{Z}/2\mathbb{Z}$. Applying Kuroda's formula (2.3) for k_1/\mathbb{Q} , we have

$$2 = |A_{\emptyset}(k_1)| = 4^{-1}Q(k_1/\mathbb{Q})|A_{\emptyset}(\mathbb{Q}_1)||A_{\emptyset}(k')||A_{\emptyset}(k)| = Q(k_1/\mathbb{Q}),$$

i.e., $|E(k_1)/\langle -1, \varepsilon_2, \varepsilon_\ell, \varepsilon_{2\ell} \rangle| = 2$. Let $\mathfrak L$ be the prime ideal of k_1 lying over $\mathfrak L$. Choosing $g_{\mathfrak L^{\gamma^i}} = g_{\mathfrak l^{\gamma^i}} = g_{\sqrt{\ell}O_k} = g_{\mathfrak L\cap k'} = z_\ell$, we obtain the commutative diagram

$$E(\mathbb{Q}_{1}) \xrightarrow{\varphi_{\mathbb{Q}_{1},S}} [8_{\mathfrak{l}},8_{\mathfrak{l}^{\gamma}}] \longrightarrow A_{S}(\mathbb{Q}_{1}) \longrightarrow 0$$

$$\downarrow \cap \qquad \qquad \parallel$$

$$E(k_{1}) \xrightarrow{\varphi_{k_{1},S}} [8_{\mathfrak{L}},8_{\mathfrak{L}^{\gamma}}] \longrightarrow A_{S}(k_{1}) \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

$$\uparrow \cup \qquad \qquad \psi \uparrow \qquad \qquad \psi \uparrow$$

$$E(k) \xrightarrow{\varphi_{k,S}} \mathbb{Z}/8\mathbb{Z} \xrightarrow{\psi} A_{S}(k) \longrightarrow 0$$

$$E(k') \xrightarrow{\varphi_{k',S}} \mathbb{Z}/8\mathbb{Z} \longrightarrow A_{S}(k') \longrightarrow \mathbb{Z}/4\mathbb{Z} \longrightarrow 0$$

with exact rows, where $\psi(x)=(x,x)$. In the proof of Lemma 5.4, we have seen that $\varphi_{k_1,S}(E(\mathbb{Q}_1))=\operatorname{Im}\varphi_{\mathbb{Q}_1,S}=\langle (2,2)\rangle$ when $\left(\frac{\varepsilon_2}{\ell}\right)_4\neq 1$. Since $A_S(\mathbb{Q})\simeq\operatorname{Gal}(\mathbb{Q}_S^{\operatorname{ab}}/\mathbb{Q})\simeq\mathbb{Z}/4\mathbb{Z}$, we have $A_S(k)\simeq\mathbb{Z}/2\mathbb{Z}$ and hence $\varphi_{k_1,S}(E(k))=\psi(\operatorname{Im}\varphi_{k,S})=\psi(2\mathbb{Z}/8\mathbb{Z})=\langle (2,2)\rangle$. Since $k'\subset(\mathbb{Q}_S^{\operatorname{ab}})_1\subset(k')_S^{\operatorname{ab}}$ and $(\mathbb{Q}_S^{\operatorname{ab}})_1/k'$ is not unramified, we have $A_S(k')\not\simeq A_\emptyset(k')$; i.e., $\varphi_{k',S}$ is not surjective. Hence $\varphi_{k_1,S}(E(k'))\subset\psi(2\mathbb{Z}/8\mathbb{Z})=\langle (2,2)\rangle$. Then $\varphi_{k_1,S}$ induces the surjective homomorphism

$$\mathbb{Z}/2\mathbb{Z} \simeq E(k_1)/\langle -1, \varepsilon_2, \varepsilon_\ell, \varepsilon_{2\ell} \rangle \to \operatorname{Im} \varphi_{k_1,S}/\langle (2,2) \rangle$$

This implies that $|\operatorname{Im} \varphi_{k_1,S}| \leq 8$, i.e., $|\operatorname{Coker} \varphi_{k_1,S}| \geq 8$. Since $A_S(\mathbb{Q}_1) \simeq [8,2]$ by Lemma 5.4, we have $|A_S(k_1)| = 2|\operatorname{Coker} \varphi_{k_1,S}| \geq 16 = |A_S(\mathbb{Q}_1)|$. This implies that $G_S(\mathbb{Q}_1)$ is nonabelian. Put $G = G_S(\mathbb{Q}_1)$ and $H = G_S(K)$, where $K = (\mathbb{Q}_1)_{\{i\}}$. Since $\operatorname{Im} \varphi_{\mathbb{Q}_1,\{i\}} = 2\mathbb{Z}/8\mathbb{Z}$, we have $|A_{\{i\}}(\mathbb{Q}_1)| = 2$ and hence K/\mathbb{Q}_1 is a quadratic extension such that $A_{\{i\}}(K) \simeq 0$. Recall that $A_{\emptyset}(k') \simeq \mathbb{Z}/4\mathbb{Z}$ and $N_{k'/\mathbb{Q}}(\varepsilon_{2\ell}) = -1$. Then $1 \neq [\mathfrak{L} \cap k'] \in A_{\emptyset}(k') \simeq A_{\{\infty\}}(k')$ and $[\mathfrak{L} \cap k']^2 = 1$. Hence $1 \neq [\mathfrak{L}^{\gamma}] \in A_{\emptyset}(k_1)$; i.e., \mathfrak{L}^{γ} is inert in $(k_1)_{\emptyset} = k_1K$. This implies that \mathfrak{l}^{γ} is inert in K/\mathbb{Q}_1 . Since $A_{\{i\}}(K) \simeq 0$, K_S^{ab}/K is totally ramified at $\mathfrak{l}^{\gamma}O_K$. Therefore $r_2(H^{ab}) = r_2(A_S(K)) = 1$; i.e., G has a cyclic maximal subgroup H. Hence G is metacyclic. Thus the proof of Lemma 5.5 is completed.

Now we complete the proof of Theorem 5.2. If $\ell \equiv 9 \pmod{16}$ and $\binom{2}{\ell}_4 = -1$, we have $S_{\mathbb{Q}_n} = \{ \mathfrak{l}O_{\mathbb{Q}_n}, \mathfrak{l}^{n}O_{\mathbb{Q}_n} \}$ and $r_2(A_S(\mathbb{Q}_n)) = 2$ for any $n \geq 1$ by Lemma 5.4 and Theorem 4.3. Then, since $(\mathbb{Q}_n)_{\{\mathfrak{l}\}}^{\mathrm{elem}}/\mathbb{Q}_n$ is a quadratic extension by Theorem 3.1(1) for $(k_n/\mathbb{Q}_n, S_{\mathbb{Q}_n}, \emptyset)$, $\mathbb{Q}_S^{\mathrm{ab}}(\mathbb{Q}_n)_{\{\mathfrak{l}\}}^{\mathrm{elem}}/k_n$ is a [2, 2]-extension. This implies that $r_2(\mathrm{Gal}((\mathbb{Q}_n)_S^{\mathrm{ab}}/k_n)) = 2$ for any $n \geq 1$. Now we assume one of the two conditions of Theorem 5.2. Suppose $n \geq 2$. Then

$$A_S(\mathbb{Q}_n) \simeq [4,4]$$
 and $|A_{\emptyset}(k_n)| = 2$ if $\left(\frac{\varepsilon_2}{\ell}\right)_4 = 1$ and $|A_{\emptyset}(k_2)| = 2$, $A_S(\mathbb{Q}_n)/4 \simeq [2,4]$ and $|A_{\emptyset}(k_n)| \ge 4$ if $\left(\frac{\varepsilon_2}{\ell}\right)_4 \ne 1$ and $|A_{\emptyset}(k_2)| \ge 4$

by Lemma 5.4 and Theorem 4.3. Hence $G_S(\mathbb{Q}_n)$ is metacyclic by Theorem 3.1(2), (3) for $(k_n/\mathbb{Q}_n, S_{\mathbb{Q}_n}, \emptyset)$. Therefore $G_S(\mathbb{Q}_\infty) \simeq \varprojlim G_S(\mathbb{Q}_n)$ is prometacyclic. Thus the if-part is completed.

Conversely, we assume that $G_S(\mathbb{Q}_\infty)$ is nonprocyclic prometacyclic. Then $\ell \equiv 1 \pmod{8}$, $\binom{2}{\ell}_4 = (-1)^{\frac{\ell-1}{8}}$ and $G_\emptyset(k_\infty)^{\mathrm{ab}} \not\simeq 0$ by Proposition 5.1. Theorem 4.3 implies that $|A_\emptyset(k_n)| \geq 2$ and $\mathrm{r}_2(A_S(\mathbb{Q}_n)) = 2$ for all $n \geq 1$. We apply Theorem 3.1 for $(k_2/\mathbb{Q}_2, S_{\mathbb{Q}_2}, \emptyset)$. Then $\mathrm{r}_2(A_\emptyset(k_2)) = 1$ by (3.1). Since $G_S(\mathbb{Q}_2)$ is metacyclic, $\mathrm{r}_4(A_S(\mathbb{Q}_2)) = 1$ or $|A_\emptyset(k_2)| = 2$ by Theorem 3.1(2). Hence $\ell \equiv 9 \pmod{16}$ and $\binom{2}{\ell}_4 = -1$ by Lemma 5.3. Then we have seen that $\mathrm{r}_2(\mathrm{Gal}((\mathbb{Q}_2)_S^{\mathrm{ab}}/k_2)) = 2$. Since $(\mathbb{Q}_2)_{\{1\}}^{\mathrm{elem}}/\mathbb{Q}_1$ is a [2,2]-extension and Γ is inert in $\mathbb{Q}_2/\mathbb{Q}_1$, $\Gamma O_{\mathbb{Q}_2}$ splits in $(\mathbb{Q}_2)_{\{1\}}^{\mathrm{elem}}/\mathbb{Q}_2$; i.e., the condition (4c) of Theorem 3.1 is satisfied. Note that $|O_{\mathbb{Q}_2}/\Gamma| = |O_{\mathbb{Q}_2}/\Gamma| = \ell^2 \not\equiv 1 \pmod{32}$. If $\mathrm{r}_4(A_S(\mathbb{Q}_2)) = 1$, we have $A_S(\mathbb{Q}_2) \simeq [2,16]$ and $\binom{\varepsilon_2}{\ell}_4 \not= 1$ by Lemma 5.4, and $G_S(\mathbb{Q}_2)$ is nonabelian by Lemma 5.5. Then the conditions (4a) and (4b) are also satisfied. Moreover if $|A_\emptyset(k_2)| = 2$ is also satisfied, $G_S(\mathbb{Q}_2)$ is not metacyclic by Theorem 3.1(4). This is a contradiction. Therefore $\mathrm{r}_4(A_S(\mathbb{Q}_2)) = 1$ and $|A_\emptyset(k_2)| = 2$ do not occur simultaneously; i.e., we have either $\mathrm{r}_4(A_S(\mathbb{Q}_2)) = 1$ and $|A_\emptyset(k_2)| \geq 4$ or $\mathrm{r}_4(A_S(\mathbb{Q}_2)) = 2$ and $|A_\emptyset(k_2)| = 2$. Then Lemma 5.4 completes the only-if part. Thus the proof of Theorem 5.2 is completed.

Remark 5.6. Assume that $\ell \equiv 9 \pmod{16}$, $\left(\frac{2}{\ell}\right)_4 = -1$ and $\left(\frac{\varepsilon_2}{\ell}\right)_4 \neq 1$. Then $A_S(\mathbb{Q}_1) \simeq [2,8]$ by Lemma 5.4, and $r_2(\operatorname{Gal}((\mathbb{Q}_1)_S^{\operatorname{ab}}/k_1)) = 2$. Moreover, $|A_\emptyset(k_1)| = 2$ (cf. the proof of Lemma 5.5). Since $|O_{\mathbb{Q}_1}/\mathfrak{l}| = |O_{\mathbb{Q}_1}/\mathfrak{l}| = \ell \neq 1 \pmod{16}$ and $G_S(\mathbb{Q}_1)$ is nonabelian metacyclic by Lemma 5.5, the triple $(k_1/\mathbb{Q}_1, S_{\mathbb{Q}_1}, \emptyset)$ satisfies the assumptions of Theorem 3.1(4) except (4c).

6. The case
$$S = \{\ell, q\}$$

This section treats the case where $S = \{\ell, q\}$ consists of two primes $\ell \equiv 1 \pmod{4}$ and $q \equiv 3 \pmod{4}$. First, we prepare the following lemma.

Lemma 6.1. Put $S = \{\ell, q\}$ with prime numbers $\ell \equiv 1 \pmod{4}$ and $q \equiv 3 \pmod{4}$. Assume that $(\frac{2}{\ell})_4(\frac{\ell}{2})_4 = -1$ if $\ell \equiv 1 \pmod{8}$. Put $v = v_2(\frac{\ell-1}{4}) \geq 0$ and $w = v_2(\frac{q+1}{4}) \geq 0$. Then $r_2(A_S(\mathbb{Q}_n)) = \min\{2^v, 2^w + 1\}$ for all $n \geq \max\{v, w\}$.

Proof. The decomposition field of ℓ (resp. q) in $\mathbb{Q}_{\infty}/\mathbb{Q}$ is \mathbb{Q}_v (resp. \mathbb{Q}_w). By Proposition 5.1, $A_{\{\ell\}}(\mathbb{Q}_n)$ is cyclic for all n. Suppose that $n \geq \max\{v, w\}$. Since $(O_{\mathbb{Q}_n}/\ell)^{\times} \otimes \mathbb{Z}_2$ and $(O_{\mathbb{Q}_n}/q)^{\times} \otimes \mathbb{Z}_2$ are cyclic Λ -modules, we have $(O_{\mathbb{Q}_n}/\ell)^{\times} \otimes \mathbb{Z}/2\mathbb{Z} \simeq \mathbb{F}_2[[T]]/T^{2^v}$ and $(O_{\mathbb{Q}_n}/q)^{\times} \otimes \mathbb{Z}/2\mathbb{Z} \simeq \mathbb{F}_2[[T]]/T^{2^v}$ as $\mathbb{F}_2[[T]]$ -modules. Hence we obtain the commutative diagram

$$E(\mathbb{Q}_n) \otimes \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{F}_2[[T]]/T^{2^v} \longrightarrow A_{\{\ell\}}(\mathbb{Q}_n)/2 \longrightarrow 0$$

$$\parallel \qquad \uparrow_{(a,b)\mapsto a}$$

$$E(\mathbb{Q}_n) \otimes \mathbb{Z}/2\mathbb{Z} \xrightarrow{\varphi} \mathbb{F}_2[[T]]/T^{2^v} \oplus \mathbb{F}_2[[T]]/T^{2^w} \longrightarrow A_S(\mathbb{Q}_n)/2 \longrightarrow 0$$

$$\parallel \qquad \downarrow_{(a,b)\mapsto b}$$

$$E(\mathbb{Q}_n) \otimes \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{F}_2[[T]]/T^{2^w} \longrightarrow A_{\{q\}}(\mathbb{Q}_n)/2 \longrightarrow 0$$

of $\mathbb{F}_2[[T]]$ -modules with exact rows. Since $E(\mathbb{Q}_n) \otimes \mathbb{Z}_2$ is a cyclic Λ -module, Im $\varphi = \mathbb{F}_2[[T]](f \mod T^{2^v}, g \mod T^{2^w})$ with some $f, g \in \mathbb{F}_2[[T]]$. Since $\mathbb{F}_2[[T]]/(f, T^{2^v}) \simeq A_{\{\ell\}}(\mathbb{Q}_n)/2 \simeq \mathbb{Z}/2\mathbb{Z}$ and $\mathbb{F}_2[[T]]/(g, T^{2^w}) \simeq A_{\{q\}}(\mathbb{Q}_n)/2 \simeq 0$ (cf. Corollary 4.2), we

have $f \equiv T \pmod{T^2}$ and $g \equiv 1 \pmod{T}$. Hence $\operatorname{Im} \varphi \simeq \mathbb{F}_2[[T]]/T^{\max\{2^v-1,2^w\}}$ as $\mathbb{F}_2[[T]]$ -modules. Therefore $A_S(\mathbb{Q}_n)/2 \simeq \operatorname{Coker} \varphi \simeq \mathbb{F}_2^{\min\{2^v,2^w+1\}}$ as \mathbb{F}_2 -vector spaces. Thus the proof of Lemma 6.1 is completed.

The following proposition determines the case where $G_{\{\ell,q\}}(\mathbb{Q}_{\infty})$ is procyclic.

Proposition 6.2. Put $S = \{\ell, q\}$ with prime numbers $\ell \equiv 1 \pmod{4}$ and $q \equiv 3$ (mod 4). Then the following three conditions are equivalent:

- (1) $G_S(\mathbb{Q}_{\infty})$ is procyclic.
- (2) $G_S(\mathbb{Q}_{\infty}) \simeq \mathbb{Z}/4\mathbb{Z}$.
- (3) $\ell \equiv 5 \pmod{8}$.

Proof. Suppose that $G_S(\mathbb{Q}_{\infty})$ is procyclic. Then $G_{\{\ell\}}(\mathbb{Q}_{\infty})$ is also procyclic, and hence $\ell \equiv 5 \pmod{8}$ or $\ell \equiv 1 \pmod{8}$ and $\left(\frac{2}{\ell}\right)_4 \left(\frac{\ell}{2}\right)_4 = -1$ by Proposition 5.1. Since $r_2(A_S(\mathbb{Q}_n)) \geq 2$ in the latter case by Lemma 6.1, we have $\ell \equiv 5 \pmod{8}$. Therefore (1) implies (3). Suppose that $\ell \equiv 5 \pmod{8}$. Then $k = \mathbb{Q}_S^{ab}$ is a cyclic quartic extension of \mathbb{Q} , and $\mathbb{Q}(\sqrt{\ell}) \subset k$. Since 2 is inert in $k = \mathbb{Q}_S$ and $A_S(k) \simeq 0$, $G_S(k_\infty)$ is trivial by Proposition 4.1. This implies that $k_\infty = (\mathbb{Q}_\infty)_S$, and hence $G_S(\mathbb{Q}_{\infty}) \simeq \mathbb{Z}/4\mathbb{Z}$. Thus the proof of Proposition 6.2 is completed.

We prove the following theorem which determines the case where $G_{\{\ell,q\}}(\mathbb{Q}_{\infty})$ is nonprocyclic prometacyclic.

Theorem 6.3. Put $S = \{\ell, q\}$ with prime numbers $\ell \equiv 1 \pmod{8}$ and $q \equiv 3$ (mod 4). Then $G_S(\mathbb{Q}_{\infty})$ is (nonprocyclic) prometacyclic if and only if one of the following two conditions holds:

- (1) $\ell \equiv 9 \pmod{16}$, $\left(\frac{2}{\ell}\right)_4 = 1$, $q \equiv 7 \pmod{8}$ and $\left(\frac{q}{\ell}\right) = -1$. (2) $\ell \equiv 1 \pmod{16}$, $\left(\frac{2}{\ell}\right)_4 = -1$, $q \equiv 3 \pmod{8}$ and $\left(\frac{q}{\ell}\right) = 1$.

Proof. Put $k = \mathbb{Q}_S^{\text{elem}} = \mathbb{Q}(\sqrt{\ell})$ and $k' = \mathbb{Q}(\sqrt{2\ell})$. Let \mathfrak{l} be a prime of \mathbb{Q}_1 lying over ℓ . In the following, z_{ℓ} (resp. z_{q}) denotes a primitive element modulo ℓ (resp. q). First, we consider the case where $\ell \equiv 9 \pmod{16}$ and $\left(\frac{2}{\ell}\right)_{\ell} = -1$.

Lemma 6.4. If $\ell \equiv 9 \pmod{16}$ and $\left(\frac{2}{\ell}\right)_4 = -1$, then $r_2(A_S(\mathbb{Q}_n)) = r_4(A_S(\mathbb{Q}_n)) = r_4(A_S(\mathbb{Q}_n))$ 2 for all $n \ge 1$, and $|A_{\{a\}}(k_2)| \ge 4$.

Proof. Suppose that $n \geq 1$. We have $r_2(A_S(\mathbb{Q}_n)) \geq r_2(A_{\{\ell\}}(\mathbb{Q}_1)) = 2$ by Lemma 5.4. Let $I_{\mathfrak{l}}$ (resp. $I_{\mathfrak{l}^{\gamma}}$) be the inertia group of the prime $\mathcal{O}_{\mathbb{Q}_n}$ (resp. $\mathcal{I}^{\gamma}O_{\mathbb{Q}_n}$) of \mathbb{Q}_n in $G_S(\mathbb{Q}_n)^{\mathrm{ab}}$. Since $I_{\mathfrak{l}}$ and $I_{\mathfrak{l}^{\gamma}}$ are cyclic and $G_S(\mathbb{Q}_n)^{\mathrm{ab}}/I_{\mathfrak{l}}I_{\mathfrak{l}^{\gamma}} \simeq A_{\{q\}}(\mathbb{Q}_n) \simeq 0$ (cf. Corollary 4.2), we have $r_4(A_S(\mathbb{Q}_n)) \leq r_2(A_S(\mathbb{Q}_n)) = 2$. Since $r_4(A_S(\mathbb{Q}_n)) \geq$ $r_4(A_{\{\ell\}}(\mathbb{Q}_1))$, Lemma 5.4 yields that $r_4(A_S(\mathbb{Q}_n)) = 2$ if $\left(\frac{\varepsilon_2}{\ell}\right)_4 = 1$. Suppose that $\left(\frac{\varepsilon_2}{\ell}\right)_4 \neq 1$. We choose $g_{\mathfrak{l}} = g_{\mathfrak{l}^{\gamma}} = z_{\ell}$. If $q \equiv 3 \pmod{8}$, then $S_{\mathbb{Q}_1} = \{\mathfrak{l}, \mathfrak{l}^{\gamma}, qO_{\mathbb{Q}_1}\}$, and we fix $g_{qO_{\mathbb{Q}_1}}$. If $q \equiv 7 \pmod{8}$, then $S_{\mathbb{Q}_1} = \{\mathfrak{l}, \mathfrak{l}^{\gamma}, \mathfrak{q}, \mathfrak{q}^{\gamma}\}$, and we choose $g_{\mathfrak{q}} = g_{\mathfrak{q}^{\gamma}} = z_q$, where \mathfrak{q} is a prime of \mathbb{Q}_1 lying over q. Then we have an exact sequence

$$E(\mathbb{Q}_1) \stackrel{\varphi_{\mathbb{Q}_1,S}}{\longrightarrow} [8_{\mathfrak{l}}, 8_{\mathfrak{l}^{\gamma}}, 8_{qO_{\mathbb{Q}_1}}] \to A_S(\mathbb{Q}_1) \to 0 \quad \text{if } q \equiv 3 \pmod{8},$$

$$E(\mathbb{Q}_1) \stackrel{\varphi_{\mathbb{Q}_1,S}}{\longrightarrow} [8_{\mathfrak{l}},8_{\mathfrak{l}^{\gamma}},2_{\mathfrak{q}},2_{\mathfrak{q}^{\gamma}}] \to A_S(\mathbb{Q}_1) \to 0 \ \text{ if } q \equiv 7 \pmod{8}.$$

Since $\varphi_{\mathbb{Q}_1,\{\ell\}}(\varepsilon_2) = (2,2)$ or $(6,6) \in [8,8]$ (cf. the proof of Lemma 5.4), we have

$$v_{\mathbb{Q}_1,S} = \begin{pmatrix} \varphi_{\mathbb{Q}_1,S}(-1) \\ \varphi_{\mathbb{Q}_1,S}(\varepsilon_2^{\pm 1}) \end{pmatrix} = \begin{pmatrix} 4 & 4 & 4 \\ 2 & 2 & a \end{pmatrix} \text{ or } \begin{pmatrix} 4 & 4 & 1 & 1 \\ 2 & 2 & a_0 & a_1 \end{pmatrix}$$

with some $a, a_0, a_1 \in \mathbb{Z}$ according to $q \equiv 3$ or 7 (mod 8). Since $A_{\{q\}}(\mathbb{Q}_1) \simeq 0$, $\varphi_{\mathbb{Q}_1,\{q\}}$ is surjective. Hence a is odd when $q \equiv 3 \pmod 8$, and $(a_0,a_1)=(1,0)$ or (0,1) when $q \equiv 7 \pmod 8$. By an easy calculation, we have $A_S(\mathbb{Q}_1) \simeq [8,4]$. Then $r_4(A_S(\mathbb{Q}_n)) \geq r_4(A_S(\mathbb{Q}_1)) = 2$, and hence $r_4(A_S(\mathbb{Q}_n)) = 2$. Therefore $r_2(A_S(\mathbb{Q}_n)) = r_4(A_S(\mathbb{Q}_n)) = 2$ for all $n \geq 1$.

Put $\Sigma = \{q\}$. We prove the inequality $|A_{\Sigma}(k_2)| \geq 4$. By Proposition 5.1 and Theorem 4.3, $A_{\emptyset}(k_n) \not\simeq 0$ for all $n \geq 1$. If $|A_{\emptyset}(k_2)| \geq 4$, then $|A_{\Sigma}(k_2)| \geq |A_{\emptyset}(k_2)| \geq 4$. In the following, we assume that $A_{\emptyset}(k_2) \simeq \mathbb{Z}/2\mathbb{Z}$. Then $A_{\emptyset}(k_1) \simeq \mathbb{Z}/2\mathbb{Z}$ and hence $A_{\emptyset}(k_n) \simeq \mathbb{Z}/2\mathbb{Z}$ for all $n \geq 1$ by Theorem 4.3. Let M be a cyclic quartic extension of \mathbb{Q} contained in k_2 different from \mathbb{Q}_2 , and let \mathfrak{L} be the unique prime of k_2 lying over \mathfrak{l} . Then M/\mathbb{Q}_1 is a quadratic extension ramified at \mathfrak{l} and \mathfrak{l}^{γ} , and $\mathfrak{L} \cap M$ and $\mathfrak{L}^{\gamma} \cap M$ are inert in the unramified quadratic extension k_2/M . By [20, Proposition 3.6], we have $A_{\emptyset}(M) \simeq [2,2]$. Then $M_{\emptyset}^{\mathrm{ab}} = (k_2)_{\emptyset}^{\mathrm{ab}}$ is a [2,2]-extension of M, and hence both \mathfrak{L} and \mathfrak{L}^{γ} split in $(k_2)_{\emptyset}^{\mathrm{ab}}/k_2$; i.e., $[\mathfrak{L}] = [\mathfrak{L}^{\gamma}] = 1$ in $A_{\emptyset}(k_2)$. Moreover, Kuroda's formula (2.2)

$$2 = |A_{\emptyset}(k_2)| = 2^{-3}Q(k_2/\mathbb{Q}_1)|A_{\emptyset}(\mathbb{Q}_2)||A_{\emptyset}(M)||A_{\emptyset}(k_1)||A_{\emptyset}(\mathbb{Q}_1)|^{-2} = Q(k_2/\mathbb{Q}_1)$$

for k_2/\mathbb{Q}_1 yields that

$$E(k_2)/E(\mathbb{Q}_2)E(M)E(k_1) = \langle \eta E(\mathbb{Q}_2)E(M)E(k_1) \rangle \simeq \mathbb{Z}/2\mathbb{Z}$$

with some $\eta \in E(k_2)$. Let σ be a generator of $\operatorname{Gal}(k_2/\mathbb{Q}_2) \simeq \mathbb{Z}/2\mathbb{Z}$. We regard γ as a generator of $\operatorname{Gal}(k_2/k) \simeq \mathbb{Z}/4\mathbb{Z}$. Note that $\varepsilon_2^{1+\gamma} = -1$ and $\varepsilon_\ell^{1+\sigma} = -1$. Moreover, we have $|A_{\emptyset}(k')| = 4$ and $\varepsilon_{2\ell}^{1+\gamma} = \varepsilon_{2\ell}^{1+\sigma} = -1$ by [30, Proposition 3.4 (b)]. Then Kuroda's formula (2.3)

$$2 = |A_{\emptyset}(k_1)| = 4^{-1}Q(k_1/\mathbb{Q})|A_{\emptyset}(\mathbb{Q}_1)||A_{\emptyset}(k)||A_{\emptyset}(k')| = Q(k_1/\mathbb{Q})$$

for k_1/\mathbb{Q} yields that $E(k_1) = \langle -1, \varepsilon_2, \varepsilon_\ell, \sqrt{\varepsilon_2 \varepsilon_\ell \varepsilon_{2\ell}} \rangle$. Since $(\varepsilon_2 \varepsilon_\ell \varepsilon_{2\ell})^{1+\sigma} = \varepsilon_2^2$ and $\varepsilon_\ell^{1+\sigma} = -1$, we have $E(k_1)^{1+\sigma} = E(\mathbb{Q}_1)$. By the genus formula (2.1)

$$1 = |\langle [\mathfrak{L}], [\mathfrak{L}^{\gamma}] \rangle| = \frac{|A_{\emptyset}(\mathbb{Q}_2)|2^2}{2|E(\mathbb{Q}_2)/E(k_2)^{1+\sigma}|}$$

for k_2/\mathbb{Q}_2 , we have $E(\mathbb{Q}_2)/E(k_2)^{1+\sigma} \simeq \mathbb{Z}/2\mathbb{Z}$. Since

$$E(\mathbb{Q}_2)/E(\mathbb{Q}_2)^2 E(\mathbb{Q}_1) = \langle \xi E(\mathbb{Q}_2)^2 E(\mathbb{Q}_1), \xi^{\gamma} E(\mathbb{Q}_2)^2 E(\mathbb{Q}_1) \rangle \simeq [2, 2],$$

we obtain the exact sequence

$$0 \to E(k_2)/E(\mathbb{Q}_2)E(M)E(k_1) \xrightarrow{1+\sigma} E(\mathbb{Q}_2)/E(\mathbb{Q}_2)^2E(\mathbb{Q}_1) \to \mathbb{Z}/2\mathbb{Z} \to 0$$

of Galois modules. Note that $(E(\mathbb{Q}_2)/E(\mathbb{Q}_2)^2E(\mathbb{Q}_1))^{\Gamma} = \langle \xi^{1+\gamma}E(\mathbb{Q}_2)^2E(\mathbb{Q}_1)\rangle \simeq \mathbb{Z}/2\mathbb{Z}$. Since $\eta^{\gamma} \equiv \eta \pmod{E(\mathbb{Q}_2)E(M)E(k_1)}$, we have $(\eta^{1+\sigma})^{\gamma} \equiv \eta^{1+\sigma} \pmod{E(\mathbb{Q}_2)^2E(\mathbb{Q}_1)}$. Hence

(6.1)
$$\eta^{1+\sigma} \equiv \xi^{1+\gamma} \mod E(\mathbb{Q}_2)^2 E(\mathbb{Q}_1).$$

Let \mathfrak{Q} be a prime of k_2 lying over q.

Suppose that $q \equiv 3 \pmod 8$. Then $O_{\mathbb{Q}_2}/q \simeq \mathbb{F}_{q^4}$, and the prime $qO_{\mathbb{Q}_1}$ splits in k_1/\mathbb{Q}_1 . We choose $g_{qO_{\mathbb{Q}_2}} = g_{\mathfrak{Q}} = g_{\mathfrak{Q}^{\sigma}}$ and $g_{qO_{\mathbb{Q}_1}} = g_{\mathfrak{Q} \cap k_1} = g_{\mathfrak{Q}^{\sigma} \cap k_1}$ such that $g_{qO_{\mathbb{Q}_2}}^{1+q^2} \equiv g_{qO_{\mathbb{Q}_1}} \pmod{q}$. Since $O_M/q \simeq O_{k_2}/\mathfrak{Q} \simeq O_{k_2}/\mathfrak{Q}^{\sigma}$, we can choose g_{qO_M} such that $g_{qO_M} \equiv g_{\mathfrak{Q}} \pmod{\mathfrak{Q}}$. Since $\sigma|_M$ acts on O_M/q as the generator of

 $\operatorname{Gal}(\mathbb{F}_{q^4}/\mathbb{F}_{q^2}), \ g^{\sigma}_{qO_M} \equiv g^{q^2}_{qO_M} \pmod{q}$ and hence $g_{qO_M} \equiv g^{q^2}_{\mathfrak{Q}^{\sigma}} \pmod{\mathfrak{Q}^{\sigma}}$. Then we obtain the commutative diagram

$$E(M) \xrightarrow{\varphi_{M,\Sigma}} \mathbb{Z}/16\mathbb{Z} \xrightarrow{\psi_{M}} A_{\Sigma}(M) \longrightarrow A_{\emptyset}(M) \longrightarrow 0$$

$$E(\mathbb{Q}_{2}) \xrightarrow{\varphi_{\mathbb{Q}_{2},\Sigma}} \mathbb{Z}/16\mathbb{Z} \xrightarrow{\psi_{M}} 0$$

$$\downarrow \cap \qquad \qquad \downarrow \psi_{\mathbb{Q}_{2}} \qquad \downarrow 0$$

$$E(k_{2}) \xrightarrow{\varphi_{k_{2},\Sigma}} [16_{\mathfrak{Q}}, 16_{\mathfrak{Q}^{\sigma}}] \longrightarrow A_{\Sigma}(k_{2}) \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

$$\uparrow \cup \qquad \qquad \uparrow \psi_{k_{1}}$$

$$E(k_{1}) \xrightarrow{\varphi_{k_{1},\Sigma}} [8_{\mathfrak{Q}\cap k_{1}}, 8_{\mathfrak{Q}^{\sigma}\cap k_{1}}] \longrightarrow A_{\Sigma}(k_{1}) \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

with exact rows, where $\psi_{\mathbb{Q}_2}(x) = (x,x) \in \langle (1,1) \rangle$, $\psi_{k_1}(x_0,x_1) = (x_0(1+q^2), x_1(1+q^2)) \in 2[16,16]$ and $\psi_M(y) = (y,q^2y) \in \langle (2,0),(1,1) \rangle$. Since $\varphi_{\mathbb{Q}_2,\Sigma}$ is surjective, $\varphi_{\mathbb{Q}_2,\Sigma}(\xi) = (u)$ with some odd u. Since γ acts on $O_{\mathbb{Q}_2}/q$ as a generator of $\operatorname{Gal}(\mathbb{F}_{q^4}/\mathbb{F}_q)$, we have $\xi^{\gamma} \equiv \xi^{q^i} \pmod{q}$ where $i \in \{1,3\}$. Since $\varepsilon_2 = \xi^{1+\gamma^2}$, we have $\varphi_{\mathbb{Q}_2,\Sigma}(\varepsilon_2) = (u(1+q^{2i})) \in 2\mathbb{Z}/16\mathbb{Z}$. In particular, $\varphi_{k_2,\Sigma}(E(\mathbb{Q}_2)^2E(\mathbb{Q}_1)) \subset \langle (2,2) \rangle$. Put $(a_0,a_1) = \varphi_{k_2,\Sigma}(\eta)$. Then $\varphi_{k_2,\Sigma}(\eta^{\sigma}) = (a_1,a_0)$. The congruence (6.1) yields that

$$(a_0 + a_1, a_0 + a_1) = \varphi_{k_2, \Sigma}(\eta^{1+\sigma}) \equiv \varphi_{k_2, \Sigma}(\xi^{1+\gamma}) = (u(1+q^i), u(1+q^i))$$

$$\equiv (0, 0) \mod \langle (2, 2) \rangle.$$

Hence $a_0 \equiv a_1 \pmod{2}$, i.e., $(a_0, a_1) \in \langle (2, 0), (1, 1) \rangle$. Since $E(k_2)$ is generated by η and $E(\mathbb{Q}_2)E(M)E(k_1)$, we have $\operatorname{Im} \varphi_{k_2,\Sigma} \subset \langle (2, 0), (1, 1) \rangle$; i.e., $\varphi_{k_2,\Sigma}$ is not surjective. Therefore $|A_{\Sigma}(k_2)| \geq 4$ if $q \equiv 3 \pmod{8}$.

Suppose that $q \equiv 7 \pmod 8$, and assume that $q \not\equiv 15 \pmod 16$ or $\left(\frac{\ell}{q}\right) = -1$. Then q splits in \mathbb{Q}_1 , and none of the primes lying over q splits completely in k_2/\mathbb{Q}_1 . Let F be the decomposition field of q in k_2/\mathbb{Q} , and let F', F'' be the quadratic extensions of \mathbb{Q}_1 contained in k_2 and different from F. $(\{F, F', F''\} = \{\mathbb{Q}_2, M, k_1\}$ as a set.) Then $O_{F'}/(\mathfrak{Q} \cap F') \simeq O_{k_2}/\mathfrak{Q} \simeq O_{F''}/(\mathfrak{Q} \cap F'') \simeq \mathbb{F}_{q^2}$. Let τ be the generator of $\operatorname{Gal}(k_2/F')$. We choose $g_{\mathfrak{Q} \cap F'} = g_{\mathfrak{Q}} = g_{\mathfrak{Q}^{\tau}}$ and z_q such that $z_q \equiv g_{\mathfrak{Q} \cap F'}^{1+q}$ (mod $\mathfrak{Q}^{1+\tau}$). Then $g_{\mathfrak{Q}^{\gamma} \cap F'} = g_{\mathfrak{Q}^{\gamma}} = g_{\mathfrak{Q}^{\gamma}} = g_{\mathfrak{Q}^{\gamma F'}}$ satisfies $z_q \equiv g_{\mathfrak{Q}^{\gamma} \cap F'}^{1+q}$ (mod $\mathfrak{Q}^{\gamma(1+\tau)}$). On the other hand, we choose $g_{\mathfrak{Q} \cap F''}$ such that $g_{\mathfrak{Q} \cap F''} \equiv g_{\mathfrak{Q}} \pmod{\mathfrak{Q}}$. Then $g_{\mathfrak{Q} \cap F''}^{\tau} \equiv g_{\mathfrak{Q}^{\tau}}^{\tau} \pmod{\mathfrak{Q}^{\tau}}$. Moreover, $g_{\mathfrak{Q}^{\gamma} \cap F''} := g_{\mathfrak{Q} \cap F''}^{\tau} = g_{\mathfrak{Q} \cap F''}^{\tau}$ satisfies $g_{\mathfrak{Q}^{\gamma} \cap F''} \equiv g_{\mathfrak{Q}^{\gamma}} \pmod{\mathfrak{Q}^{\gamma}}$. Since $\mathfrak{Q} \cap F'' = \mathfrak{Q}^{\tau} \cap F''$, τ acts on $O_{F''}/(\mathfrak{Q} \cap F'')$ as the Frobenius automorphism. Then $g_{\mathfrak{Q} \cap F''}^{\tau} \equiv g_{\mathfrak{Q} \cap F''}^{q} \pmod{\mathfrak{Q}^{\gamma}}$, and hence $g_{\mathfrak{Q} \cap F''} \equiv g_{\mathfrak{Q} \cap F''}^{q} \pmod{\mathfrak{Q}^{\gamma}}$. Choosing z_q as the primitive elements of the residue fields \mathbb{F}_q of O_F , we obtain the commutative diagram

$$E(F'') \xrightarrow{\varphi_{F'',\Sigma}} [2^m_{\mathfrak{Q}\cap F''}, 2^m_{\mathfrak{Q}^{\gamma}\cap F''}] \xrightarrow{\psi_2} A_{\Sigma}(F'') \xrightarrow{} A_{\emptyset}(F'') \to 0$$

$$C(F') \xrightarrow{\varphi_{F',\Sigma}} [2^m_{\mathfrak{Q}\cap F'}, 2^m_{\mathfrak{Q}^{\gamma}\cap F'}] \xrightarrow{\psi_2} A_{\Sigma}(F') \xrightarrow{} A_{\emptyset}(F') \to 0$$

$$C(F') \xrightarrow{\varphi_{k_2,\Sigma}} [2^m_{\mathfrak{Q}}, 2^m_{\mathfrak{Q}^{\gamma}}, 2^m_{\mathfrak{Q}^{\gamma}}, 2^m_{\mathfrak{Q}^{\gamma}}] \xrightarrow{} A_{\Sigma}(k_2) \xrightarrow{} Z/2\mathbb{Z} \to 0$$

$$C(F) \xrightarrow{\varphi_{F,\Sigma}} [2^m_{\mathfrak{Q}\cap F}, 2^m_{\mathfrak{Q}^{\gamma}\cap F}, 2^m_{\mathfrak{Q}^{\gamma}\cap F}] \xrightarrow{} A_{\Sigma}(F) \xrightarrow{} A_{\emptyset}(F) \to 0$$

with exact rows, where $m = v_2(q^2 - 1) \ge 4$,

$$\psi_0(x_0, x_1, x_2, x_3) = (2^{m-1}x_0, 2^{m-1}x_1, 2^{m-1}x_2, 2^{m-1}x_3),$$

 $\psi_1(x_0,x_1) = (x_0,x_0,x_1,x_1) \text{ and } \psi_2(x_0,x_1) = (x_0,qx_0,x_1,qx_1). \text{ Then } \sum_{i=0}^2 \operatorname{Im} \psi_i \text{ is generated by } 2^{m-1}[2^m,2^m,2^m] \text{ and } (1,1,0,0), (0,0,1,1), (1,q,0,0), (0,0,1,q). \\ \operatorname{Hence } [2^m,2^m,2^m,2^m]/\sum_{i=0}^2 \operatorname{Im} \psi_i \simeq [2,2]. \text{ Since } \varphi_{k_2,\Sigma}(E(\mathbb{Q}_2)E(M)E(k_1)) \subset \sum_{i=0}^2 \operatorname{Im} \psi_i \text{ and } E(k_2)/E(\mathbb{Q}_2)E(M)E(k_1) \simeq \mathbb{Z}/2\mathbb{Z}, \ \varphi_{k_2,\Sigma} \text{ is not surjective. Therefore } |A_{\Sigma}(k_2)| \geq 4 \text{ if } q \not\equiv 15 \pmod{16} \text{ or } \left(\frac{\ell}{q}\right) = -1.$

Suppose that $q \equiv 15 \pmod{16}$ and $\left(\frac{\ell}{q}\right) = 1$. Then q splits completely in k_2 . Choosing z_q as the primitive elements of the residue fields \mathbb{F}_q , we obtain a commutative diagram

$$\begin{split} E(k_2) & \xrightarrow{\varphi_{k_2,\Sigma}} [2_{\mathfrak{Q}}, 2_{\mathfrak{Q}^{\gamma}}, 2_{\mathfrak{Q}^{\gamma^2}}, 2_{\mathfrak{Q}^{\gamma^3}}, 2_{\mathfrak{Q}^{\sigma}}, 2_{\mathfrak{Q}^{\gamma\sigma}}, 2_{\mathfrak{Q}^{\gamma^2\sigma}}, 2_{\mathfrak{Q}^{\gamma^3\sigma}}] & \longrightarrow A_{\Sigma}(k_2) \twoheadrightarrow \mathbb{Z}/2\mathbb{Z} \\ \uparrow \cup & \uparrow \psi_F \\ E(F) & \xrightarrow{\varphi_{F,\Sigma}} [2_{\mathfrak{Q}\cap F}, 2_{\mathfrak{Q}^{\gamma}\cap F}, 2_{\mathfrak{Q}^{\tau}\cap F}, 2_{\mathfrak{Q}^{\gamma\tau}\cap F}] & \longrightarrow A_{\Sigma}(F) \twoheadrightarrow A_{\emptyset}(F) \end{split}$$

with exact rows, where

$$\psi_F(x_0, x_1, x_2, x_3) = \begin{cases} (x_0, x_1, x_0, x_1, x_2, x_3, x_2, x_3) \text{ and } \tau = \sigma & \text{if } F = k_1, \\ (x_0, x_1, x_2, x_3, x_0, x_1, x_2, x_3) \text{ and } \tau = \gamma^2 & \text{if } F = \mathbb{Q}_2, \\ (x_0, x_1, x_2, x_3, x_2, x_3, x_0, x_1) \text{ and } \tau = \gamma^2 & \text{if } F = M. \end{cases}$$

An easy calculation shows that $[2,2,2,2,2,2,2]/\sum_{F\in\{\mathbb{Q}_2,M,k_1\}}\operatorname{Im}\psi_F\simeq [2,2]$. This implies that $|A_{\Sigma}(k_2)|\geq 4$. Thus the proof of Lemma 6.4 is completed.

As we will see later, Lemma 6.4 implies that $G_S(\mathbb{Q}_\infty)$ is not prometacyclic if $\left(\frac{2}{\ell}\right)_4 = (-1)^{\frac{\ell-1}{8}}$. In the following, we consider the case where $\left(\frac{2}{\ell}\right)_4 \neq (-1)^{\frac{\ell-1}{8}}$. If $G_S(\mathbb{Q}_\infty)$ is prometacyclic, then $r_2(A_S(\mathbb{Q}_n)) \leq 2$ for all n. Hence, by Lemma 6.1, it suffices to consider the case where v=1 or w=0, i.e., $\ell\equiv 9 \pmod{16}$ or $q\equiv 3 \pmod{8}$.

Lemma 6.5. Assume that $\ell \equiv 1 \pmod 8$ and $\left(\frac{2}{\ell}\right)_4 \neq (-1)^{\frac{\ell-1}{8}}$. If $q \equiv 3 \pmod 8$, then $r_4(A_S(\mathbb{Q}_1)) = 2$ and

$$|A_{\{q\}}(k_2)| = 2 \quad \text{if } \ell \equiv 1 \pmod{16} \text{ and } \left(\frac{q}{\ell}\right) = 1,$$

$$|A_{\{q\}}(k_2)| \ge 4 \quad \text{if } \ell \equiv 9 \pmod{16} \text{ or } \left(\frac{q}{\ell}\right) = -1.$$

If $\ell \equiv 9 \pmod{16}$ and $q \equiv 7 \pmod{8}$, then $A_S(\mathbb{Q}_2) \simeq [2, 16]$ and

$$|A_{\{q\}}(k_2)| = 2 \quad if\left(\frac{q}{\ell}\right) = 1,$$

$$|A_{\{q\}}(k_2)| \ge 4 \quad if\left(\frac{q}{\ell}\right) = -1.$$

Proof. First, we prepare some properties of units. By the assumption, $A_{\emptyset}(k_n) \simeq 0$ for all $n \geq 0$ (cf. Proposition 5.1). Let σ be a generator of $\operatorname{Gal}(k_2/\mathbb{Q}_2)$. We regard γ as a generator of $\operatorname{Gal}(k_2/k)$. Recall that $\varepsilon_2^{\gamma+1} = \varepsilon_\ell^{\sigma+1} = -1$. Since k_1/k' is unramified and $A_{\emptyset}(k_1) \simeq 0$, we have $k_1 = (k')_{\emptyset}^{\operatorname{ab}}$ and $A_{\emptyset}(k') \simeq \mathbb{Z}/2\mathbb{Z}$. Since $|A_{\{\infty\}}(k')| \geq 4$ (cf. [30]), we have $\varepsilon_{2\ell}^{\sigma+1} = 1$. Kuroda's formula (2.3)

$$1 = |A_{\emptyset}(k_1)| = 4^{-1}Q(k_1/\mathbb{Q})|A_{\emptyset}(\mathbb{Q}_1)||A_{\emptyset}(k)||A_{\emptyset}(k')| = 2^{-1}Q(k_1/\mathbb{Q})$$

for k_1/\mathbb{Q} yields that $E(k_1) = \langle -1, \varepsilon_2, \varepsilon_\ell, \sqrt{\varepsilon_{2\ell}} \rangle$. An easy calculation shows that $\sqrt{\varepsilon_{2\ell}} = x\sqrt{2} + y\sqrt{\ell} \in O_{k_1}$ with some $x, y \in \mathbb{Q}$. Then $2x^2 - \ell y^2 = \sqrt{\varepsilon_{2\ell}}^{1+\sigma} = \pm 1$. If $2x^2 - \ell y^2 = 1$, then $2|x| + |y|\sqrt{2\ell} \in O_{k'}$ is totally positive and $(2|x| + |y|\sqrt{2\ell})O_{k'}$ is

the prime lying over 2. If $2x^2 - \ell y^2 = -1$, then $\ell |y| + |x| \sqrt{2\ell} \in O_{k'}$ is totally positive and $(\ell |y| + |x| \sqrt{2\ell}) O_{k'}$ is the prime lying over ℓ . By [30, Proposition 3.4(a)], we have

(6.2)
$$-\sqrt{\varepsilon_{2\ell}}^{1+\gamma} = \sqrt{\varepsilon_{2\ell}}^{1+\sigma} = (-1)^{\frac{\ell-1}{8}},$$

where we note that $\sqrt{\varepsilon_{2\ell}}^{\gamma\sigma} = -\sqrt{\varepsilon_{2\ell}}$. Let M be a cyclic quartic extension of \mathbb{Q} contained in k_2 different from \mathbb{Q}_2 . Then $k_2 = M_{\emptyset}^{ab}$. Kuroda's formula (2.2)

$$1 = |A_{\emptyset}(k_2)| = 2^{-3}Q(k_2/\mathbb{Q}_1)|A_{\emptyset}(\mathbb{Q}_2)||A_{\emptyset}(M)||A_{\emptyset}(k_1)||A_{\emptyset}(\mathbb{Q}_1)|^{-2} = 2^{-2}Q(k_2/\mathbb{Q}_1)$$

for k_2/\mathbb{Q}_1 yields that $|E(k_2)/E(\mathbb{Q}_2)E(M)E(k_1)|=4$. The genus formula (2.1)

$$1 = |A_{\emptyset}(k_2)| \ge \frac{|A_{\emptyset}(k_1)|2^2}{2|E(k_1)/E(k_2)^{1+\gamma^2}|}$$

for k_2/k_1 yields the existence of an exact sequence

$$E(k_2)/E(\mathbb{Q}_2)E(M)E(k_1) \xrightarrow{1+\gamma^2} E(k_1)/E(\mathbb{Q}_1)E(k_1)^2 \to \mathbb{Z}/2\mathbb{Z} \to 0.$$

Note that $E(\mathbb{Q}_1)E(k_1)^2 = \langle -1, \varepsilon_2, \varepsilon_\ell^2, \varepsilon_{2\ell} \rangle = (E(\mathbb{Q}_2)E(M)E(k_1))^{1+\gamma^2}$ and

$$E(k_1)/E(\mathbb{Q}_1)E(k_1)^2 = \langle \varepsilon_{\ell}E(\mathbb{Q}_1)E(k_1)^2, \sqrt{\varepsilon_{2\ell}}E(\mathbb{Q}_1)E(k_1)^2 \rangle \simeq [2, 2].$$

The genus formula (2.1)

$$1 = |A_{\emptyset}(k_2)| \ge \frac{|A_{\emptyset}(k)|4^2}{4|E(k)/E(k_2)^{(1+\gamma^2)(1+\gamma)}|}$$

for k_2/k yields that $E(k_2)^{(1+\gamma^2)(1+\gamma)} = \langle -1, \varepsilon_\ell^4 \rangle$. Since $\varepsilon_\ell^{1+\gamma} = \varepsilon_\ell^2$ and $(\sqrt{\varepsilon_{2\ell}}\varepsilon_\ell)^{1+\gamma} = \pm \varepsilon_\ell^2$, we have ε_ℓ , $\sqrt{\varepsilon_{2\ell}}\varepsilon_\ell \notin E(k_2)^{1+\gamma^2}$, and hence $\sqrt{\varepsilon_{2\ell}} \in E(k_2)^{1+\gamma^2}$. Therefore

$$E(k_2) = \langle \eta_1, \eta_2 \rangle E(\mathbb{Q}_2) E(M) E(k_1)$$

with some $\eta_1, \eta_2 \in E(k_2)$ such that

(6.3)
$$\eta_1^{1+\gamma^2} \equiv \sqrt{\varepsilon_{2\ell}}, \quad \eta_2^{1+\gamma^2} \equiv 1 \pmod{E(\mathbb{Q}_1)E(k_1)^2}.$$

Put $\Sigma = \{q\}$, and put $e = v_2(q+1) \geq 2$. Let $\mathfrak Q$ be a prime of k_2 lying over q. If $\ell \equiv 9 \pmod{16}$ or $q \equiv 3 \pmod{8}$, we have $\mathbf r_2(A_S(\mathbb Q_n)) = 2$ for all $n \geq 1$ by Lemma 6.1. Then $\mathbf r_2(A_\Sigma(k_n)) = 1$ for all $n \geq 1$ by (3.1) for the triple $(k_n/\mathbb Q_n, S_{\mathbb Q_n}, \Sigma_{\mathbb Q_n})$. Since $\mathbb Q_S^{\mathrm{ab}}/\mathbb Q$ is a cyclic extension totally ramified at ℓ , we have $A_\Sigma(k) \simeq 0$, and hence γ acts on $A_\Sigma(k_1)$ as -1. Since $A_\Sigma(\mathbb Q_1) \simeq 0$, σ also acts on $A_\Sigma(k_1)$ as -1. Therefore $\sigma\gamma$ acts on $A_\Sigma(k_1)$ trivially. This implies that $(k')_\Sigma^{\mathrm{ab}} = (k_1)_\Sigma^{\mathrm{ab}}$. In particular, $|A_\Sigma(k')| = 2|A_\Sigma(k_1)| \geq 4$. Recall the exact sequence

$$E(k') \xrightarrow{\Phi_{k',\Sigma}} (O_{k'}/q)^{\times} \otimes \mathbb{Z}_2 \to A_{\Sigma}(k') \to \mathbb{Z}/2\mathbb{Z} \to 0.$$

Since $\Phi_{k',\Sigma}(-1)$ is nontrivial, $\Phi_{k',\Sigma}$ is not zero mapping. If $\left(\frac{2\ell}{q}\right)=1$, then $(O_{k'}/q)^{\times}\otimes\mathbb{Z}_{2}\simeq[2,2]$, and hence $|A_{\Sigma}(k')|=4$. This implies that $\mathrm{Im}\,\Phi_{k',\Sigma}=\langle\Phi_{k',\Sigma}(-1)\rangle$ if $\left(\frac{2\ell}{q}\right)=1$. If $\left(\frac{2\ell}{q}\right)=-1$, we choose $g_{qO_{k'}}$ which is also a primitive element of $O_{k_{1}}/(\mathfrak{Q}\cap k_{1})\simeq O_{k'}/q\simeq\mathbb{F}_{q^{2}}$. Then $(O_{k'}/q)^{\times}\otimes\mathbb{Z}_{2}=\langle g_{qO_{k'}}\otimes 1\rangle\simeq\mathbb{Z}/2^{e+1}\mathbb{Z}$ and $\sqrt{\varepsilon_{2\ell}}\equiv g_{qO_{k'}}^{t}\pmod{\mathfrak{Q}\cap k_{1}}$ with some $t\in\mathbb{Z}$. If $\left(\frac{2}{q}\right)=-1$ and $\left(\frac{q}{\ell}\right)=1$, then $g_{qO_{k'}}^{(1+q)t}\equiv\sqrt{\varepsilon_{2\ell}}^{1+\gamma}\pmod{\mathfrak{Q}\cap k_{1}}=\mathfrak{Q}^{\gamma}\cap k_{1}$. If $\left(\frac{2}{q}\right)=1$ and $\left(\frac{q}{\ell}\right)=-1$, then

 $g_{qO_{k'}}^{(1+q)t} \equiv \sqrt{\varepsilon_{2\ell}}^{1+\sigma} \pmod{\mathfrak{Q} \cap k_1} = \mathfrak{Q}^{\sigma} \cap k_1$. By (6.2), the parity of t is determined as

$$(6.4) (-1)^t = \left(\frac{2}{a}\right)(-1)^{\frac{\ell-1}{8}}.$$

Since $\varepsilon_{2\ell} \equiv g_{qO_{k'}}^{2t} \pmod{q}$ and $|A_{\Sigma}(k_1)| = |\operatorname{Coker} \Phi_{k',\Sigma}|$, we have

(6.5)
$$|A_{\Sigma}(k_1)| = 2 \quad \text{if } \left(\frac{2\ell}{q}\right) = 1 \text{ or } (-1)^{\frac{\ell-1}{8}} \neq \left(\frac{2}{q}\right), \\ |A_{\Sigma}(k_1)| \geq 4 \quad \text{if } \left(\frac{2\ell}{q}\right) = -1 \text{ and } (-1)^{\frac{\ell-1}{8}} = \left(\frac{2}{q}\right).$$

Suppose that $q \equiv 3 \pmod{8}$. For $g_{qO_{\mathbb{Q}_1}}$ and $g_{\mathfrak{l}} = g_{\mathfrak{l}^{\gamma}} = z_{\ell}$, we obtain the exact sequence

$$E(\mathbb{Q}_1) \stackrel{\varphi_{\mathbb{Q}_1,S}}{\longrightarrow} [2^m_{\mathfrak{l}}, 2^m_{\mathfrak{l}^{\gamma}}, 8_{qO_{\mathbb{Q}_1}}] \to A_S(\mathbb{Q}_1) \to 0$$

and

$$v_{\mathbb{Q}_1,S} = \left(\begin{array}{c} \varphi_{\mathbb{Q}_1,S}(-1) \\ \varphi_{\mathbb{Q}_1,S}(\varepsilon_2) \end{array} \right) = \left(\begin{array}{ccc} 2^{m-1} & 2^{m-1} & 4 \\ a_0 & a_1 & b \end{array} \right),$$

with some $a_0, a_1, b \in \mathbb{Z}$, where $m = v_2(\ell - 1) \geq 3$. Since $G_{\{\ell\}}(\mathbb{Q}_{\infty})$ is cyclic by Proposition 5.1, $(\mathbb{Q}_1)_{\{\ell\}}^{\text{elem}} = k_1$, and hence $A_{\{\mathfrak{l}\}}(\mathbb{Q}_1) \simeq A_{\{\mathfrak{l}^{\gamma}\}}(\mathbb{Q}_1) \simeq 0$. Recall that $A_{\Sigma}(\mathbb{Q}_1) \simeq 0$ (cf. Corollary 4.2). These imply that $\varphi_{\mathbb{Q}_1,\{\mathfrak{l}^{\gamma}\}}, \varphi_{\mathbb{Q}_1,\{\mathfrak{l}^{\gamma}\}}$ and $\varphi_{\mathbb{Q}_1,\Sigma}$ are surjective; i.e., a_0, a_1 and b are odd. An easy calculation shows that $A_S(\mathbb{Q}_1) \simeq [2^m, 4]$. In particular, $\mathbf{r}_4(A_S(\mathbb{Q}_1)) = 2$. If $\left(\frac{q}{\ell}\right) = 1$ and $\ell \equiv 9 \pmod{16}$, we have the claim $|A_{\Sigma}(k_2)| \geq |A_{\Sigma}(k_1)| \geq 4$ by (6.5). Suppose that $\left(\frac{q}{\ell}\right) = -1$ or $\ell \equiv 1 \pmod{16}$. Then $|A_{\Sigma}(k_1)| = 2$ by (6.5). Note that $O_{\mathbb{Q}_2}/q \simeq \mathbb{F}_{q^4} \simeq O_M/q$ and that $qO_{\mathbb{Q}_1}$ splits in k_1/\mathbb{Q}_1 . We choose $g_{qO_{\mathbb{Q}_1}} = g_{\mathfrak{Q}\cap k_1} = g_{\mathfrak{Q}^{\gamma}\cap k_1}$ and $g_{qO_{\mathbb{Q}_2}} = g_{\mathfrak{Q}} = g_{\mathfrak{Q}^{\gamma}}$ such that $g_{qO_{\mathbb{Q}_1}} \equiv g_{qO_{\mathbb{Q}_2}}^{1+q^2}$ (mod q). We also choose g_{qO_M} such that $g_{qO_M} \equiv g_{\mathfrak{Q}}$ (mod \mathfrak{Q}). Since $\mathfrak{Q}^{\sigma\gamma^2} = \mathfrak{Q}^{\sigma}$ and γ^2 acts on $O_{k_2}/\mathfrak{Q}^{\sigma}$ as a generator of $\operatorname{Gal}(\mathbb{F}_{q^4}/\mathbb{F}_{q^2})$, we have $g_{qO_M} \equiv g_{\mathfrak{Q}^{\gamma}}^{2} \equiv g_{\mathfrak{Q}^{\sigma}}^{2}$ (mod \mathfrak{Q}^{σ}). Then we obtain the commutative diagram

$$\mathbb{Z} = \mathcal{Z} \xrightarrow{\text{and } \gamma} \text{ acts on } O_{k_2}/\mathcal{Z} \text{ as } a \text{ generator of } \operatorname{Gal}(\mathbb{F}_q^{*_1}/\mathbb{F}_q^{*_2}), \text{ we}$$

$$\equiv g_{\mathfrak{Q}}^{\sigma\gamma^2} \equiv g_{\mathfrak{Q}^{\sigma}}^{q^2} \pmod{\mathfrak{Q}^{\sigma}}. \text{ Then we obtain the commutative diagram}$$

$$E(M) \xrightarrow{\varphi_{M,\Sigma}} \mathbb{Z}/16\mathbb{Z} \xrightarrow{\psi_M} A_{\Sigma}(M) \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

$$\downarrow C(\mathbb{Q}_2) \xrightarrow{\varphi_{\mathbb{Q}_2,\Sigma}} \mathbb{Z}/16\mathbb{Z} \xrightarrow{\psi_M} 0$$

$$\downarrow C(k_2) \xrightarrow{\varphi_{k_2,\Sigma}} [16_{\mathfrak{Q}_1}, 16_{\mathfrak{Q}^{\sigma}}] \longrightarrow A_{\Sigma}(k_2) \longrightarrow 0$$

$$\uparrow C(k_1) \xrightarrow{\varphi_{k_1,\Sigma}} [8_{\mathfrak{Q}\cap k_1}, 8_{\mathfrak{Q}^{\sigma}\cap k_1}] \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

$$\uparrow C(k_1) \xrightarrow{\varphi_{k_1,\Sigma}} [8_{\mathfrak{Q}\cap k_1}, 8_{\mathfrak{Q}^{\sigma}\cap k_1}] \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

$$\uparrow C(k_1) \xrightarrow{\varphi_{k_1,\Sigma}} (O_{k_1}/q)^{\times} \otimes \mathbb{Z}_2$$

with exact rows, where $\psi_{k_1}(x_0, x_1) = ((1+q^2)x_0, (1+q^2)x_1) = (10x_0, 10x_1),$ $\psi_{\mathbb{Q}_2}(x) = (x, x)$ and $\psi_M(y) = (y, q^2y) \in \langle (1, 1), (4, 0) \rangle$. If $(x_0, x_1) = \varphi_{k_1, \Sigma}(\varepsilon)$ with some $\varepsilon \in E(k_1)$, then $(x_1, x_0) = \varphi_{k_1, \Sigma}(\varepsilon^{\sigma})$. This implies that $\operatorname{Im} \varphi_{k_1, \Sigma} = \langle (1, 1), (2, 0) \rangle$, i.e., $\varphi_{k_2, \Sigma}(E(k_1)) = \langle (2, 2), (4, 0) \rangle$. Therefore

(6.6)
$$\varphi_{k_2,\Sigma}(E(\mathbb{Q}_2)E(M)E(k_1)) = \langle (1,1), (4,0) \rangle.$$

If $\left(\frac{q}{\ell}\right) = -1$, we have $\varphi_{k_2,\Sigma}(\varepsilon_{2\ell}) \in \psi_{k_1}(\Psi(\operatorname{Im}\Phi_{k',\Sigma})) = \psi_{k_1}(\Psi(\langle \Phi_{k',\Sigma}(-1)\rangle)) = \langle (8,8)\rangle$. On the other hand, if $\left(\frac{q}{\ell}\right) = 1$, $g_{qO_{k'}} \equiv g_{\mathfrak{Q}\cap k_1}^u$ (mod $\mathfrak{Q}\cap k_1$) with some odd $u \in \mathbb{Z}$. Then, since $\mathfrak{Q}^{\sigma\gamma} \cap k_1 = \mathfrak{Q}^{\sigma} \cap k_1$ and γ acts on $O_{k_1}/(\mathfrak{Q}^{\sigma} \cap k_1)$ as the Frobenius automorphism, we have $g_{qO_{k'}} \equiv g_{\mathfrak{Q}\cap k_1}^{u\sigma\gamma} \equiv g_{\mathfrak{Q}^{\sigma}\cap k_1}^{qu}$ (mod $\mathfrak{Q}^{\sigma} \cap k_1$). Since $\varepsilon_{2\ell} \equiv g_{qO_{k'}}^{2t}$

(mod q), we have $\varphi_{k_2,\Sigma}(\varepsilon_{2\ell}) = \psi_{k_1}(\varphi_{k_1,\Sigma}(\varepsilon_{2\ell})) = \psi_{k_1}((2tu,2tuq)) = (4tu,-4tu)$ if $\left(\frac{q}{\ell}\right) = 1$. Therefore

$$(6.7) \varphi_{k_2,\Sigma}(\sqrt{\varepsilon_{2\ell}}) \equiv \begin{cases} (0,0) \pmod{\langle (4,4),(8,0) \rangle} & \text{if } \left(\frac{q}{\ell}\right) = -1, \\ (2tu, -2tu) \pmod{8[16,16]} & \text{if } \left(\frac{q}{\ell}\right) = 1. \end{cases}$$

Recall that $(E(\mathbb{Q}_2)E(M)E(k_1))^{1+\gamma^2} = E(\mathbb{Q}_1)E(k_1)^2$. If $(y_0,y_1) = \varphi_{k_2,\Sigma}(\varepsilon)$ with some $\varepsilon \in E(k_2)$, then $(q^2y_0,q^2y_1) = \varphi_{k_2,\Sigma}(\varepsilon^{\gamma^2})$. Hence $\varphi_{k_2,\Sigma}(E(\mathbb{Q}_1)E(k_1)^2) = \langle (2,2),(8,0)\rangle \supset 8[16,16]$ by (6.6). Put $(c_0,c_1) = \varphi_{k_2,\Sigma}(\eta_1)$ and $(d_0,d_1) = \varphi_{k_2,\Sigma}(\eta_2)$. Since $(10c_0,10c_1) = \varphi_{k_2,\Sigma}(\eta_1^{1+\gamma^2}) \equiv \varphi_{k_2,\Sigma}(\sqrt{\varepsilon_{2\ell}})$ (mod $\langle (2,2),(8,0)\rangle$) and $(10d_0,10d_1) = \varphi_{k_2,\Sigma}(\eta_2^{1+\gamma^2}) \in \langle (2,2),(8,0)\rangle$ by (6.3), we have

$$(5c_0, 5c_1) \equiv \begin{cases} (0,0) & (\text{mod } \langle (1,1), (4,0) \rangle) & \text{if } \left(\frac{q}{\ell}\right) = -1, \\ (tu, -tu) & (\text{mod } \langle (1,1), (4,0) \rangle) & \text{if } \left(\frac{q}{\ell}\right) = 1 \end{cases}$$

and $(5d_0, 5d_1) \in \langle (1, 1), (4, 0) \rangle$ by (6.7). Then $\operatorname{Im} \varphi_{k_2, \Sigma} = \langle (5c_0, 5c_1), (1, 1), (4, 0) \rangle$. If $\left(\frac{q}{\ell}\right) = -1$, we have $|A_{\Sigma}(k_2)| = 4$. If $\left(\frac{q}{\ell}\right) = 1$ and $\ell \equiv 1 \pmod{16}$, then t is odd by (6.4), and hence $|A_{\Sigma}(k_2)| = 2$. Thus we obtain the statement for the case where $q \equiv 3 \pmod{8}$.

Suppose that $\ell \equiv 9 \pmod{16}$. Recall that $r_2(A_{\Sigma}(k_n)) = 1$ for all $n \geq 1$. Then $(k_2)_{\Sigma}^{\text{elem}} = (k_1)_{\Sigma}^{\text{elem}} k_2$ is a [2,2]-extension of k_1 . Let \mathfrak{L} be a prime of k_2 lying over \mathfrak{l} . Since $\mathfrak{L} \cap k_1$ is inert in k_2/k_1 , \mathfrak{L} splits in $(k_2)_{\Sigma}^{\text{elem}}/k_2$. Since $\mathfrak{L} \cap M$ is also inert in k_2/M , the quartic extension $(k_2)_{\Sigma}^{\text{elem}}/M$ is a [2,2]-extension unramified outside Σ . Since $M_{\Sigma} = (k_2)_{\Sigma}^{\text{ab}}$, $r_4(A_{\Sigma}(M)) \leq 1$ and $r_2(A_{\Sigma}(M)) = 2$. Let M' and M'' be the distinct quadratic extensions of M contained in $(k_2)_{\Sigma}^{\text{elem}}$ different from k_2 . Since $(k_2)_{\Sigma}^{\text{elem}}/\mathbb{Q}$ is not abelian, M'/\mathbb{Q} is not a Galois extension, and M'' is the conjugate of M'. Then $G_{\Sigma}(M)^{\text{ab}} \simeq A_{\Sigma}(M)$ has a cyclic maximal subgroup $\operatorname{Gal}(M_{\Sigma}^{\text{ab}}/k_2)$, and two other maximal subgroups $\operatorname{Gal}(M_{\Sigma}^{\text{ab}}/M')$, $\operatorname{Gal}(M_{\Sigma}^{\text{ab}}/M'')$ are isomorphic to each other. This implies that $r_4(A_{\Sigma}(M)) = 0$, i.e., $A_{\Sigma}(M) \simeq [2,2]$.

Suppose that $\ell \equiv 9 \pmod{16}$ and $q \equiv 7 \pmod{16}$. Then $O_{\mathbb{Q}_2}/\mathfrak{l} \simeq \mathbb{F}_{\ell^2}$ and $O_{\mathbb{Q}_2}/(\mathfrak{Q} \cap \mathbb{Q}_2) \simeq \mathbb{F}_{q^2}$. We choose $g_{\mathfrak{l}O_{\mathbb{Q}_2}}$, $g_{\mathfrak{Q} \cap \mathbb{Q}_2}$, and put $g_{\mathfrak{l}^{\gamma}O_{\mathbb{Q}_2}} = g_{\mathfrak{l}O_{\mathbb{Q}_2}}^{\gamma}$, $g_{\mathfrak{Q}^{\gamma} \cap \mathbb{Q}_2} = g_{\mathfrak{Q} \cap \mathbb{Q}_2}^{\gamma}$. If $\varepsilon \equiv g_{\mathfrak{l}^{\gamma}O_{\mathbb{Q}_2}}^a \pmod{\mathfrak{l}^{\gamma}}$ and $\varepsilon \equiv g_{\mathfrak{Q}^{\gamma} \cap \mathbb{Q}_2}^b \pmod{\mathfrak{Q}^{\gamma} \cap \mathbb{Q}_2}$ for some $\varepsilon \in E(\mathbb{Q}_2)$ and $a, b \in \mathbb{Z}$, then $\varepsilon^{\gamma} \equiv g_{\mathfrak{l}O_{\mathbb{Q}_2}}^{\gamma^2 a} \equiv g_{\mathfrak{l}O_{\mathbb{Q}_2}}^{\ell a} \pmod{\mathfrak{l}}$ and $\varepsilon^{\gamma} \equiv g_{\mathfrak{Q} \cap \mathbb{Q}_2}^{\gamma^2 b} \equiv g_{\mathfrak{Q} \cap \mathbb{Q}_2}^{qb} \pmod{\mathfrak{Q} \cap \mathbb{Q}_2}$. Hence we obtain the exact sequence

$$E(\mathbb{Q}_2) \stackrel{\varphi_{\mathbb{Q}_2,S}}{\longrightarrow} [16_{\mathsf{I}O_{\mathbb{Q}_2}}, 16_{\mathsf{I}^\gamma O_{\mathbb{Q}_2}}, 16_{\mathfrak{Q} \cap \mathbb{Q}_2}, 16_{\mathfrak{Q}^\gamma \cap \mathbb{Q}_2}] \to A_S(\mathbb{Q}_2) \to 0$$

and

$$v_{\mathbb{Q}_2,S} = \begin{pmatrix} \varphi_{\mathbb{Q}_2,S}(\xi) \\ \varphi_{\mathbb{Q}_2,S}(\xi^{\gamma}) \\ \varphi_{\mathbb{Q}_2,S}(\xi^{\gamma^2}) \\ \varphi_{\mathbb{Q}_2,S}(\xi^{\gamma^3}) \end{pmatrix} = \begin{pmatrix} a_0 & a_1 & b_0 & b_1 \\ \ell a_1 & a_0 & qb_1 & b_0 \\ \ell a_0 & \ell a_1 & qb_0 & qb_1 \\ \ell^2 a_1 & \ell a_0 & q^2b_1 & qb_0 \end{pmatrix} = \begin{pmatrix} a_0 & a_1 & b_0 & b_1 \\ 9a_1 & a_0 & 7b_1 & b_0 \\ 9a_0 & 9a_1 & 7b_0 & 7b_1 \\ a_1 & 9a_0 & b_1 & 7b_0 \end{pmatrix}.$$

Since $\varphi_{\mathbb{Q}_2,S}(\xi^{1+\gamma+\gamma^2+\gamma^3}) = \varphi_{\mathbb{Q}_2,S}(-1) = (8,8,8,8)$, we have $a_0 + a_1 \equiv 4 \pmod 8$ and $b_0 + b_1 \equiv 1 \pmod 2$. In particular, $a_0 + a_1 \equiv \pm 4 \pmod {16}$. Replacing \mathfrak{Q} by \mathfrak{Q}^{γ} if necessary, we may assume that $b_0 \in \mathbb{Z}_2^{\times}$. Since $A_{\{\ell\}}(\mathbb{Q}_2)$ is cyclic by Proposition 5.1, $\operatorname{Im} \varphi_{\mathbb{Q}_2,\{\ell\}} \notin 2[16,16]$, i.e., $a_0 \equiv a_1 \equiv 1 \pmod 2$. Then $a_1^2 \equiv 8 + a_0^2 \pmod {16}$.

Since

$$\begin{pmatrix} 1 & -1 & \frac{a_0 - 9a_1}{2a_0} & 0 \\ 0 & 1 & \frac{9a_1 - 1}{2a_0} & 0 \\ 0 & -2 & \frac{-9a_1}{a_0} & 0 \\ 0 & 0 & 4 & 1 \end{pmatrix} \begin{pmatrix} \frac{9 - 7b_0}{2b_0} & 0 & \frac{b_0 - 1}{2b_0} & 0 \\ \frac{b_1}{2b_0} & 1 & \frac{7b_1}{2b_0} & 0 \\ 7 & 0 & -1 & 0 \\ \frac{b_0 - 4}{b_0} & 1 & \frac{b_0 + 4}{b_0} & 1 \end{pmatrix} v_{\mathbb{Q}_2, S} = \begin{pmatrix} 0 & 0 & 1 & \frac{b_1 - b_0^2 - b_1^2}{b_0} \\ 1 & \frac{a_1}{a_0} & 0 & \frac{b_0^2 + b_1^2}{b_0} \\ 0 & 0 & 0 & -2\frac{b_0^2 + b_1^2}{b_0} \\ 0 & 0 & 0 & 8 \end{pmatrix},$$

one can see that $A_S(\mathbb{Q}_2) \simeq [2,16]$. Since $O_{\mathbb{Q}_2}/(\mathfrak{Q} \cap \mathbb{Q}_2) \simeq O_{k_2}/\mathfrak{Q} \simeq O_{k_2}/\mathfrak{Q}^{\sigma}$, we can put $g_{\mathfrak{Q}} = g_{\mathfrak{Q} \cap \mathbb{Q}_2}$ and $g_{\mathfrak{Q}^{\gamma}} = g_{\mathfrak{Q}^{\sigma \gamma}} := g_{\mathfrak{Q}^{\gamma} \cap \mathbb{Q}_2}$. Put $(F,F') = (k_1,M)$ or (M,k_1) according to $\binom{q}{\ell} = 1$ or -1. Then F is the decomposition field of q in k_2/\mathbb{Q} , and $\mathfrak{Q} \cap F' = \mathfrak{Q}^{\sigma} \cap F'$. We choose z_q satisfying $g_{\mathfrak{Q}}^{1+q} \equiv z_q \pmod{\mathfrak{Q}}$ as the primitive elements of residue fields \mathbb{F}_q , and $g_{\mathfrak{Q} \cap F'}$ such that $g_{\mathfrak{Q} \cap F'} \equiv g_{\mathfrak{Q}} \pmod{\mathfrak{Q}}$. Since σ acts on $O_{F'}/(\mathfrak{Q} \cap F')$ as the Frobenius automorphism, $g_{\mathfrak{Q} \cap F'} \equiv g_{\mathfrak{Q} \cap F'}^{q\sigma} \equiv g_{\mathfrak{Q} \cap F'}^{q\sigma} \pmod{\mathfrak{Q}^{\sigma}}$, and $g_{\mathfrak{Q}^{\gamma} \cap F'} := g_{\mathfrak{Q} \cap F'}^{\gamma}$ satisfies $g_{\mathfrak{Q}^{\gamma} \cap F'} \equiv g_{\mathfrak{Q}^{\gamma}} \pmod{\mathfrak{Q}^{\gamma}}$ and $g_{\mathfrak{Q}^{\gamma} \cap F'} \equiv g_{\mathfrak{Q} \cap F'}^{\gamma} \equiv g_{\mathfrak{Q}^{\gamma}} \pmod{\mathfrak{Q}^{\gamma}}$. Then we obtain the commutative diagram

with exact rows, where $\psi_{\mathbb{Q}_2}(x_0, x_1) = (x_0, x_0, x_1, x_1)$, $\psi'(y_0, y_1) = (y_0, qy_0, y_1, qy_1)$ and $\psi(x_0, x_1, x_2, x_3) = (8x_0, 8x_1, 8x_2, 8x_3)$. Recall that $A_{\Sigma}(M) \simeq [2, 2]$, $A_{\emptyset}(M) \simeq \mathbb{Z}/2\mathbb{Z}$ and $A_{\emptyset}(k_1) \simeq 0$. By (6.5), we have $A_{\Sigma}(k_1) \simeq \mathbb{Z}/2\mathbb{Z}$. These yield that $|\operatorname{Coker} \varphi_{F,\Sigma}| = |\operatorname{Coker} \varphi_{F',\Sigma}| = 2$. Note that $g_{\mathfrak{Q}^{\gamma} \cap F'}^{\gamma} = g_{\mathfrak{Q} \cap F'}^{\gamma^2} \equiv g_{\mathfrak{Q} \cap F'}^{q}$ or $g_{\mathfrak{Q} \cap F'}$ (mod $\mathfrak{Q} \cap F'$) according to $\left(\frac{q}{\ell}\right) = 1$ or -1. If $\varphi_{F',\Sigma}(\varepsilon) = (1,0)$ (resp. (0,1)) for some ε , then $\varphi_{F',\Sigma}(\varepsilon^{\gamma}) = (0,1)$ (resp. (q,0) or (1,0)). Since $\varphi_{F',\Sigma}$ is not surjective, $\{(1,0),(0,1)\} \cap \operatorname{Im} \varphi_{F',\Sigma} = \emptyset$, and hence $\operatorname{Im} \varphi_{F',\Sigma} = \langle (1,1),(2,0) \rangle$. Then

$$\varphi_{k_2,\Sigma}(E(\mathbb{Q}_2)E(F')) = \langle (1,1,0,0), (0,0,1,1), (1,q,1,q), (2,2q,0,0) \rangle$$
$$= \langle (1,1,0,0), (0,0,1,1), (0,2,0,2), (0,4,0,0) \rangle$$

and $\varphi_{k_2,\Sigma}(E(F)) \subset \operatorname{Im} \psi = 8[16,16,16,16] \subset \varphi_{k_2,\Sigma}(E(\mathbb{Q}_2)E(F'))$. In particular,

$$\varphi_{k_2,\Sigma}(E(\mathbb{Q}_2)E(M)E(k_1)) = \langle (1,1,0,0), (0,0,1,1), (0,2,0,2), (0,4,0,0) \rangle.$$

Since $A_{\Sigma}(\mathbb{Q}_2) \simeq 0$, σ acts on $A_{\Sigma}(k_2)$ as -1. If $\left(\frac{q}{\ell}\right) = 1$, the inclusion $\operatorname{Im} \psi \subset \operatorname{Im} \varphi_{k_2,\Sigma}$ implies that $\iota: A_{\Sigma}(k_1) \to A_{\Sigma}(k_2)$ is zero mapping; i.e., γ^2 also acts on $A_{\Sigma}(k_2)$ as -1. Then, since $\sigma \gamma^2$ acts on $A_{\Sigma}(k_2)$ trivially, $(k_2)_{\Sigma}^{\operatorname{ab}}/M$ is abelian, i.e., $(k_2)_{\Sigma}^{\operatorname{ab}} = M_{\Sigma}^{\operatorname{ab}}$. Therefore $|A_{\Sigma}(k_2)| = \frac{1}{2}|A_{\Sigma}(M)| = 2$ if $\left(\frac{q}{\ell}\right) = 1$. Suppose that $\left(\frac{q}{\ell}\right) = -1$. Then $(F, F') = (M, k_1)$ and $\mathfrak{Q}^{\sigma} = \mathfrak{Q}^{\gamma^2}$. Recall that $(E(\mathbb{Q}_2)E(M)E(k_1))^{1+\gamma^2} = E(\mathbb{Q}_1)E(k_1)^2$. If $(y_0, y_1, y_2, y_3) = \varphi_{k_2,\Sigma}(\varepsilon)$ with some $\varepsilon \in E(k_2)$, then $(qy_1, qy_0, qy_3, qy_2) = \varphi_{k_2,\Sigma}(\varepsilon^{\gamma^2})$. Hence

$$\varphi_{k_2,\Sigma}(E(\mathbb{Q}_1)E(k_1)^2) = \langle (-2,2,-2,2), (-4,4,0,0) \rangle.$$

Put $(d_0, d_1, d_2, d_3) = \varphi_{k_2, \Sigma}(\eta_2)$. By (6.3), we have

$$(d_0 + qd_1, d_1 + qd_0, d_2 + qd_3, d_3 + qd_2) \in \langle (-2, 2, -2, 2), (-4, 4, 0, 0) \rangle.$$

In particular, $d_0 - d_1 \equiv d_2 - d_3 \pmod{4}$ and $d_2 - d_3 \equiv 0 \pmod{2}$. Then

$$\varphi_{k_2,\Sigma}(\eta_2)$$

$$= d_0(1,1,0,0) + d_2(0,0,1,1) - \frac{d_2 - d_3}{2}(0,2,0,2) + \frac{(d_2 - d_3) - (d_0 - d_1)}{4}(0,4,0,0)$$

$$\in \varphi_{k_2,\Sigma}(E(\mathbb{Q}_2)E(M)E(k_1)).$$

Hence $|\operatorname{Im} \varphi_{k_2,\Sigma}/\varphi_{k_2,\Sigma}(E(\mathbb{Q}_2)E(M)E(k_1))| \leq 2$. Since

$$[16, 16, 16, 16]/\varphi_{k_2,\Sigma}(E(\mathbb{Q}_2)E(M)E(k_1)) \simeq [2, 4],$$

we have $|A_{\Sigma}(k_2)| \geq 4$ if $\left(\frac{q}{\ell}\right) = -1$.

Suppose that $\ell \equiv 9 \pmod{16}$ and $q \equiv 15 \pmod{16}$. We choose $g_{\mathcal{I}O_{\mathbb{Q}_2}}$ and put $g_{\mathcal{I}^{\gamma}O_{\mathbb{Q}_2}} = g_{\mathcal{I}O_{\mathbb{Q}_2}}^{\gamma}$. Choosing z_q as the primitive elements of residue fields \mathbb{F}_q , we obtain the exact sequence

$$E(\mathbb{Q}_2) \xrightarrow{\varphi_{\mathbb{Q}_2}, S} [16_{\mathsf{I}O_{\mathbb{Q}_2}}, 16_{\mathsf{I}^\gamma O_{\mathbb{Q}_2}}, 2_{\mathfrak{Q} \cap \mathbb{Q}_2}, 2_{\mathfrak{Q}^{\gamma^2} \cap \mathbb{Q}_2}, 2_{\mathfrak{Q}^{\gamma} \cap \mathbb{Q}_2}, 2_{\mathfrak{Q}^{\gamma^3} \cap \mathbb{Q}_2}] \to A_S(\mathbb{Q}_2) \to 0$$

and

$$v_{\mathbb{Q}_2,S} = \begin{pmatrix} \varphi_{\mathbb{Q}_2,S}(\xi) \\ \varphi_{\mathbb{Q}_2,S}(\xi^{\gamma}) \\ \varphi_{\mathbb{Q}_2,S}(\xi^{\gamma^2}) \\ \varphi_{\mathbb{Q}_2,S}(\xi^{\gamma^3}) \end{pmatrix} = \begin{pmatrix} a_0 & a_1 & b_0 & b_2 & b_1 & b_3 \\ 9a_1 & a_0 & b_3 & b_1 & b_0 & b_2 \\ 9a_0 & 9a_1 & b_2 & b_0 & b_3 & b_1 \\ a_1 & 9a_0 & b_1 & b_3 & b_2 & b_0 \end{pmatrix}.$$

Since $\xi^{1+\gamma+\gamma^2+\gamma^3}=-1$, we have $a_0+a_1\equiv \pm 4\pmod{16}$ and $\sum_{i=0}^3 b_i\equiv 1\pmod{2}$. Replacing $\mathfrak Q$ by $\mathfrak Q^{\gamma^i}$ if necessary, we may assume that $b_0\equiv 1,\,b_2\equiv 0\pmod{2}$. Then $b_1\equiv b_3\pmod{2}$. Since $A_{\{\ell\}}(\mathbb Q_2)$ is cyclic by Proposition 5.1, $\operatorname{Im}\varphi_{\mathbb Q_2,\{\ell\}}\not\in 2[16,16]$, i.e., $a_0\equiv a_1\equiv 1\pmod{2}$. Then

$$\left(\begin{array}{ccccc} 1 & 0 & 0 & b_1 \\ 0 & 1 & b_1 & b_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \left(\begin{array}{cccccc} 1 & 0 & 0 & 0 \\ 8 - \frac{a_1}{a_0} & 1 & 0 & 0 \\ -9 & 0 & 1 & 0 \\ 10 & 3 & 2 & 1 \end{array}\right) v_{\mathbb{Q}_2,S} = \left(\begin{array}{cccccc} a_0 & a_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{array}\right).$$

Hence we have $A_S(\mathbb{Q}_2) \simeq [2, 16]$. Recall that $r_2(A_{\Sigma}(k_2)) = 1$. If $\binom{q}{\ell} = 1$, q splits completely in k_2/\mathbb{Q} . Then the exact sequence

$$E(k_2) \overset{\varphi_{k_2,\Sigma}}{\longrightarrow} [2_{\mathfrak{Q}}, 2_{\mathfrak{Q}^{\gamma^2}}, 2_{\mathfrak{Q}^{\gamma}}, 2_{\mathfrak{Q}^{\gamma^3}}, 2_{\mathfrak{Q}^{\sigma}}, 2_{\mathfrak{Q}^{\sigma\gamma^2}}, 2_{\mathfrak{Q}^{\sigma\gamma}}, 2_{\mathfrak{Q}^{\sigma\gamma^3}}] \to A_{\Sigma}(k_2) \to 0$$

yields that $|A_{\Sigma}(k_2)|=2$. Suppose that $\left(\frac{q}{\ell}\right)=-1$. We choose $g_{qO_k}=g_{\mathfrak{Q}^{\gamma^i}\cap k_1}=g_{\mathfrak{Q}^{\gamma^i}}$ commonly for all i. Then $z_q\equiv g_{qO_k}^{u(1+q)}\pmod{q}$ with some odd u. We

choose $g_{\mathfrak{Q}\cap M}$ such that $g_{\mathfrak{Q}\cap M} \equiv g_{qO_k} \pmod{\mathfrak{Q}}$. Then $g_{\mathfrak{Q}\cap M} \equiv g_{\mathfrak{Q}\cap M}^{q\gamma^2} \equiv g_{qO_k}^q \pmod{\mathfrak{Q}^{\gamma^2}}$, and $g_{\mathfrak{Q}^{\gamma}\cap M} = g_{\mathfrak{Q}\cap M}^{\gamma}$ satisfies $g_{\mathfrak{Q}^{\gamma}\cap M} \equiv g_{qO_k} \pmod{\mathfrak{Q}^{\gamma}}$ and $g_{\mathfrak{Q}^{\gamma}\cap M} \equiv g_{qO_k} \pmod{\mathfrak{Q}^{\gamma^3}}$. Then we obtain a commutative diagram

$$E(\mathbb{Q}_{2}) \xrightarrow{\varphi_{\mathbb{Q}_{2},\Sigma}} [2_{\mathfrak{Q} \cap \mathbb{Q}_{2}}, 2_{\mathfrak{Q}^{\gamma^{2}} \cap \mathbb{Q}_{2}}, 2_{\mathfrak{Q}^{\gamma} \cap \mathbb{Q}_{2}}, 2_{\mathfrak{Q}^{\gamma^{3}} \cap \mathbb{Q}_{2}}] \longrightarrow 0$$

$$\downarrow \cap \qquad \qquad \downarrow \psi_{\mathbb{Q}_{2}}$$

$$E(k_{2}) \xrightarrow{\varphi_{k_{2},\Sigma}} [2_{\mathfrak{Q}}^{e+1}, 2_{\mathfrak{Q}^{\gamma^{2}}}^{e+1}, 2_{\mathfrak{Q}^{\gamma}}^{e+1}, 2_{\mathfrak{Q}^{\gamma^{3}}}^{e+1}] \longrightarrow A_{\Sigma}(k_{2}) \longrightarrow 0$$

$$\uparrow \cup \qquad \qquad \uparrow \psi_{k_{1}} \qquad \qquad \downarrow \psi_{k_{1}}$$

with exact rows, where $e = v_2(q+1) \geq 4$, $\psi_{k_1}(x_0, x_1) = (x_0, x_0, x_1, x_1)$, $\psi_M(x_0, x_1) = (x_0, qx_0, x_1, qx_1)$ and $\psi_{\mathbb{Q}_2}(y_0, y_2, y_1, y_3) = (2^e y_0, 2^e y_2, 2^e y_1, 2^e y_3)$. By (6.5), $A_{\Sigma}(k_1) \simeq \mathbb{Z}/2\mathbb{Z}$. Recall that $A_{\Sigma}(M) \simeq [2, 2]$ and $A_{\emptyset}(M) \simeq \mathbb{Z}/2\mathbb{Z}$. Note that $\varphi_{k_1,\Sigma}(\varepsilon^{\gamma}) = (x_1, x_0)$ if $\varphi_{k_1,\Sigma}(\varepsilon) = (x_0, x_1)$ and that $\varphi_{M,\Sigma}(\varepsilon^{\gamma}) = (qx_1, x_0)$ if $\varphi_{M,\Sigma}(\varepsilon) = (x_0, x_1)$. Therefore $\operatorname{Im} \varphi_{k_1,\Sigma} = \langle (1, 1), (2, 0) \rangle$ and $\operatorname{Im} \varphi_{M,\Sigma} = \langle (1, 1), (2, 0) \rangle$. Then

$$\varphi_{k_2,\Sigma}(E(M)E(k_1)) = \langle (1,1,1,1), (2,2,0,0), (1,q,1,q), (2,2q,0,0) \rangle$$

and $\varphi_{k_2,\Sigma}(E(\mathbb{Q}_2)) = 2^e[2^{e+1}, 2^{e+1}, 2^{e+1}, 2^{e+1}] \subset \varphi_{k_2,\Sigma}(E(M)E(k_1))$. Thus we have

$$\varphi_{k_2,\Sigma}(E(\mathbb{Q}_2)E(M)E(k_1)) = \langle (1,1,1,1), (2,2,0,0), (2,0,2,0), (4,0,0,0) \rangle.$$

Since $|\operatorname{Im} \varphi_{k_2,\Sigma}/\varphi_{k_2,\Sigma}(E(\mathbb{Q}_2)E(M)E(k_1))| \leq 4$ and

$$[2^{e+1}, 2^{e+1}, 2^{e+1}, 2^{e+1}]/\varphi_{k_2, \Sigma}(E(\mathbb{Q}_2)E(M)E(k_1)) \simeq [2, 2, 4],$$

we have $|A_{\Sigma}(k_2)| \geq 4$. Thus the proof of Lemma 6.5 is completed.

Lemma 6.6. If $\ell \equiv 9 \pmod{16}$, $\left(\frac{2}{\ell}\right)_4 = 1$, $q \equiv 7 \pmod{8}$ and $\left(\frac{q}{\ell}\right) = 1$, then $G_S(\mathbb{Q}_1)$ is nonabelian.

Proof. Recall that $E(k_1) = \langle -1, \varepsilon_2, \varepsilon_\ell, \sqrt{\varepsilon_{2\ell}} \rangle$ (cf. the proof of Lemma 6.5). Let σ (resp. γ) be a generator of $\operatorname{Gal}(k_1/\mathbb{Q}_1)$ (resp. $\operatorname{Gal}(k_1/k)$). Let \mathfrak{L} (resp. \mathfrak{Q}) be a prime of k_1 lying over \mathfrak{l} (resp. q). We choose z_ℓ (resp. z_q) as the primitive elements of residue fields \mathbb{F}_ℓ (resp. \mathbb{F}_q). Then we obtain the commutative diagram

$$\begin{split} E(k) & \xrightarrow{\varphi_{k,S}} \left[8_{\sqrt{\ell}O_k}, 2_{\mathfrak{Q}\cap k}, 2_{\mathfrak{Q}^{\sigma}\cap k} \right] \longrightarrow A_S(k) \longrightarrow 0 \\ & \downarrow \cap \qquad \qquad \downarrow \psi_k \\ E(k_1) & \xrightarrow{\varphi_{k_1,S}} \left[8_{\mathfrak{L}}, 8_{\mathfrak{L}^{\gamma}}, 2_{\mathfrak{Q}}, 2_{\mathfrak{Q}^{\sigma}}, 2_{\mathfrak{Q}^{\gamma}}, 2_{\mathfrak{Q}^{\sigma\gamma}} \right] \longrightarrow A_S(k_1) \longrightarrow 0 \\ & \uparrow \cup \qquad \qquad \uparrow \psi_{\mathbb{Q}_1} \\ E(\mathbb{Q}_1) & \xrightarrow{\varphi_{\mathbb{Q}_1,S}} \left[8_{\mathfrak{l}}, 8_{\mathfrak{l}^{\gamma}}, 2_{\mathfrak{Q}\cap\mathbb{Q}_1}, 2_{\mathfrak{Q}^{\gamma}\cap\mathbb{Q}_1} \right] \longrightarrow A_S(\mathbb{Q}_1) \longrightarrow 0 \end{split}$$

with exact rows, where $\psi_k(x,y_0,y_1)=(x,x,y_0,y_1,y_0,y_1)$ and $\psi_{\mathbb{Q}_1}(x_0,x_1,y_0,y_1)=(x_0,x_1,y_0,y_0,y_1,y_1)$. Recall that $\varepsilon_2^{1+\gamma}=-1$ and $A_{\{q\}}(\mathbb{Q}_1)\simeq 0$. Since $\mathrm{r}_2(A_{\{\ell\}}(\mathbb{Q}_1))=1$ by Proposition 5.1, we have

$$v_{\mathbb{Q}_1,S} = \left(\begin{array}{c} \varphi_{\mathbb{Q}_1,S}(-1) \\ \varphi_{\mathbb{Q}_1,S}(\varepsilon_2) \end{array} \right) = \left(\begin{array}{cccc} 4 & 4 & 1 & 1 \\ u & 4-u & b & b+1 \end{array} \right)$$

with some $u \equiv 1 \pmod{2}$ and $b \in \{0,1\}$. Then one can easily see that $A_S(\mathbb{Q}_1) \simeq [2,8]$. Since $\varepsilon_{\ell}^{1+\sigma} = -1$, we have $\varphi_{k,S}(\varepsilon_{\ell}) = (a,d,d+1)$ with some $a \equiv 2 \pmod{4}$ and $d \in \{0,1\}$. Since $\varepsilon_{2\ell} \in E(k_1)^2$ and $\varepsilon_{2\ell}^{1+\sigma} = 1$, we have $\varphi_{k_1,S}(\varepsilon_{2\ell}) = (c,c,0,0,0,0)$ with some $c \equiv 0 \pmod{4}$. Put

$$w_{k_1,S} = \begin{pmatrix} \varphi_{k_1,S}(-1) \\ \varphi_{k_1,S}(\varepsilon_2) \\ \varphi_{k_1,S}(\varepsilon_\ell) \\ \varphi_{k_1,S}(\varepsilon_{2\ell}) \end{pmatrix} = \begin{pmatrix} 4 & 4 & 1 & 1 & 1 & 1 \\ u & 4-u & b & b & b+1 & b+1 \\ a & a & d & d+1 & d & d+1 \\ c & c & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Then

$$\begin{pmatrix} -1 & 0 & 2 & 0 \\ -b & \frac{1}{u} & 2b & 0 \\ -d & 0 & \frac{2}{a} + 2d & 0 \\ 0 & 0 & \frac{c}{2} & 1 \end{pmatrix} w_{k_1,S} = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 3 & 0 & 0 & 1 & 1 \\ 2 & 2 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

This yields that $[8, 8, 2, 2, 2, 2]/\varphi_{k_1,S}(\langle -1, \varepsilon_2, \varepsilon_\ell, \varepsilon_{2\ell} \rangle) \simeq [8, 2, 2]$. Hence $|A_S(k_1)| = |\operatorname{Coker} \varphi_{k_1,S}| \geq \frac{1}{2}|[8,2,2]| = |A_S(\mathbb{Q}_1)|$. This implies that $G_S(\mathbb{Q}_1)$ is nonabelian. Thus the proof of Lemma 6.6 is completed.

Now we complete the proof of Theorem 6.3. Put $\Sigma = \{q\}$. Since $\ell \equiv 1 \pmod 8$ and $q \equiv 3 \pmod 4$, $\mathbb{Q}_S^{ab}/\mathbb{Q}$ is a cyclic extension of degree at least 8, which is totally ramified at ℓ . Hence $\mathrm{r}_4(A_S(\mathbb{Q}_n)) \geq 1$ for all $n \geq 0$. Moreover, $G_S(\mathbb{Q}_\infty)$ is not procyclic by Proposition 6.2, and hence $\mathrm{r}_2(A_S(\mathbb{Q}_n)) \geq 2$ for all $n \geq 1$ by Theorem 4.3. If $\mathrm{r}_2(A_S(\mathbb{Q}_n)) = 2$, Theorem 3.1(1) for $(k_n/\mathbb{Q}_n, S_{\mathbb{Q}_n}, \Sigma_{\mathbb{Q}_n})$ yields that $(\mathbb{Q}_n)_{S_{\mathbb{Q}_n} \setminus \{\mathfrak{L}\}}^{\mathrm{elem}} \neq \mathbb{Q}_n$ for $\mathfrak{L} \in S_{\mathbb{Q}_n} \setminus \Sigma_{\mathbb{Q}_n}$. Then $\mathbb{Q}_S^{\mathrm{ab}}(\mathbb{Q}_n)_{S_{\mathbb{Q}_n} \setminus \{\mathfrak{L}\}}^{\mathrm{elem}}/k_n$ is a noncyclic abelian extension. Therefore $\mathrm{r}_2(\mathrm{Gal}((\mathbb{Q}_n)_S^{\mathrm{ab}}/k_n)) = 2$ if $\mathrm{r}_2(A_S(\mathbb{Q}_n)) = 2$.

First, we prove the if-part. Assume one of the two conditions, and suppose $n \geq 1$. Then $\left(\frac{2}{\ell}\right)_4 \neq (-1)^{\frac{\ell-1}{8}}$. Since $\ell \equiv 9 \pmod{16}$ or $q \equiv 3 \pmod{8}$, we have $r_2(A_S(\mathbb{Q}_n)) = 2$ by Lemma 6.1, and hence $r_2(\operatorname{Gal}((\mathbb{Q}_n)_S^{\operatorname{ab}}/k_n)) = 2$. Recall that $r_4(A_S(\mathbb{Q}_1)) \geq 1$. For any $n \geq 2$,

$$r_4(A_S(\mathbb{Q}_n)) = 1$$
 and $|A_{\Sigma}(k_n)| \ge 4$ if $\ell \equiv 9 \pmod{16}$, $q \equiv 7 \pmod{8}$, $\binom{q}{\ell} = -1$, $r_4(A_S(\mathbb{Q}_n)) = 2$ and $|A_{\Sigma}(k_n)| = 2$ if $\ell \equiv 1 \pmod{16}$, $q \equiv 3 \pmod{8}$, $\binom{q}{\ell} = 1$

by Lemma 6.5 and Theorem 4.3. Hence $G_S(\mathbb{Q}_n)$ is metacyclic for all $n \geq 2$ by Theorem 3.1(2), (3) for $(k_n/\mathbb{Q}_n, S_{\mathbb{Q}_n}, \Sigma_{\mathbb{Q}_n})$. Therefore $G_S(\mathbb{Q}_\infty)$ is prometacyclic.

Conversely, we assume that $G_S(\mathbb{Q}_\infty)$ is prometacyclic. Then $G_{\{\ell\}}(\mathbb{Q}_\infty)$ is also prometacyclic. Suppose that $\left(\frac{2}{\ell}\right)_4 = (-1)^{\frac{\ell-1}{8}}$. Then, since $\ell \equiv 9 \pmod{16}$ and $\left(\frac{2}{\ell}\right)_4 = -1$ by Theorem 5.2, we have $\mathrm{r}_4(A_S(\mathbb{Q}_n)) = 2$ and $|A_\Sigma(k_n)| \geq 4$ for all $n \geq 2$ by Lemma 6.4. Theorem 3.1(2) for $(k_n/\mathbb{Q}_n, S_{\mathbb{Q}_n}, \Sigma_{\mathbb{Q}_n})$ implies that $G_S(\mathbb{Q}_n)$ is not metacyclic if $n \geq 2$. This is a contradiction. Therefore $\left(\frac{2}{\ell}\right)_4 \neq (-1)^{\frac{\ell-1}{8}}$. Since $G_S(\mathbb{Q}_\infty)$ is nonprocyclic prometacyclic, we have $\mathrm{r}_2(A_S(\mathbb{Q}_n)) = 2$ for all $n \geq 1$ by Theorem 4.3. In particular, $\mathrm{r}_2(A_S(\mathbb{Q}_2)) = 2$, and hence $\mathrm{r}_2(\mathrm{Gal}((\mathbb{Q}_2)_S^{\mathrm{ab}}/k_2)) = 2$. Also, $\ell \equiv 9 \pmod{16}$ or $q \equiv 3 \pmod{8}$ by Lemma 6.1. We apply Theorem 3.1 for $(k_2/\mathbb{Q}_2, S_{\mathbb{Q}_2}, \Sigma_{\mathbb{Q}_2})$. Since $G_S(\mathbb{Q}_2)$ is metacyclic, $\mathrm{r}_4(A_S(\mathbb{Q}_1)) = 1$ or $|A_\Sigma(k_2)| = 2$ by Theorem 3.1(2). Hence, if $q \equiv 3 \pmod{8}$, we have $\ell \equiv 1 \pmod{16}$ (i.e., $\left(\frac{2}{\ell}\right)_4 = -1$) and $\left(\frac{q}{\ell}\right) = 1$ by Lemma 6.5. This is one of the two conditions. On the other hand, we assume that $\ell \equiv 9 \pmod{16}$ (i.e., $\left(\frac{2}{\ell}\right)_4 = 1$). Then $q \equiv 7 \pmod{8}$, and $S_{\mathbb{Q}_2} \setminus \Sigma_{\mathbb{Q}_2} = \{IO_{\mathbb{Q}_2}, \Gamma^\gamma O_{\mathbb{Q}_2}\}$. Lemma 6.5 yields that $A_S(\mathbb{Q}_2) \simeq [2,16]$. In particular, $\mathrm{r}_4(A_S(\mathbb{Q}_2)) = 1$ and $|O_{\mathbb{Q}_2}/\mathfrak{l}| = |O_{\mathbb{Q}_2}/\Gamma| = \ell^2 \not\equiv 1 \pmod{|A_S(\mathbb{Q}_2)|}$.

Since $(\mathbb{Q}_2)^{\text{elem}}_{\{1,q\}}/\mathbb{Q}_1$ is a [2,2]-extension and Γ is inert in $\mathbb{Q}_2/\mathbb{Q}_1$, $\Gamma O_{\mathbb{Q}_2}$ splits in the quadratic extension $(\mathbb{Q}_2)^{\text{elem}}_{\{1,q\}}/\mathbb{Q}_2$ ramified at $(O_{\mathbb{Q}_2})$. Hence the conditions (4b), (4c) of Theorem 3.1 are satisfied. If $(\frac{q}{\ell}) = 1$, we have $|A_{\Sigma}(k_2)| = 2$ by Lemma 6.5, and $G_S(\mathbb{Q}_2)$ is nonabelian (i.e., (4a) is also satisfied) by Lemma 6.6. Then Theorem 3.1(4) yields that $G_S(\mathbb{Q}_2)$ is not metacyclic. This is a contradiction. Therefore, $q \equiv 7 \pmod{8}$ and $(\frac{q}{\ell}) = -1$ if $\ell \equiv 9 \pmod{16}$ (i.e., $(\frac{2}{\ell})_4 = 1$). Thus the proof of Theorem 6.3 is completed.

7. The case of other
$$S = \{r_1, r_2\}$$

This section treats the cases where $S = \{r_1, r_2\}$ and $r_1 \equiv r_2 \pmod{4}$. First, we consider the case $S = \{\ell_1, \ell_2\}$. The following theorem is a partial refinement of [19, Theorem 2].

Theorem 7.1. Put $S = \{\ell_1, \ell_2\}$ with two distinct prime numbers $\ell_1 \equiv 1 \pmod{4}$ and $\ell_2 \equiv 1 \pmod{4}$. Then $G_S(\mathbb{Q}_{\infty})$ is prometacyclic if and only if one of the following two conditions holds:

- (1) $\ell_1 \equiv \ell_2 \equiv 5 \pmod{8}$ and $|A_{\emptyset}(\mathbb{Q}_1(\sqrt{\ell_1 \ell_2}))| \geq 4$.
- (2) $\ell_i \equiv 1 \pmod{8}$, $\left(\frac{2}{\ell_i}\right)_4 \left(\frac{\ell_i}{2}\right)_4 = -1$ and $\ell_j \equiv 5 \pmod{8}$ for (i, j) = (1, 2) or (2, 1), and $|A_{\emptyset}(\mathbb{Q}_1(\sqrt{\ell_1 \ell_2}))| = 2$.

Proof. Since $r_2(A_S(\mathbb{Q})) = 2$, $G_S(\mathbb{Q}_n)$ is not cyclic for all $n \geq 0$. Put $k = \mathbb{Q}(\sqrt{\ell_1 \ell_2})$. Then $2 \leq r_2(A_S(\mathbb{Q}_n)) = 1 + r_2(A_{\emptyset}(k_n))$ for all $n \geq 0$ by (3.1) for $(k_n/\mathbb{Q}_n, S_{\mathbb{Q}_n}, \emptyset)$. Theorem 4.3 implies that $G_{\emptyset}(k_{\infty})^{\text{ab}}$ is procyclic (i.e., $r_2(A_{\emptyset}(k_n)) = 1$ for all $n \geq 0$) if and only if $r_2(A_{\emptyset}(k_1)) = 1$. Since $r_2(A_S(\mathbb{Q}_1)) = 2$ if $G_S(\mathbb{Q}_{\infty})$ is prometacyclic, it suffices to consider only the case where $r_2(A_{\emptyset}(k_1)) = 1$. If $\ell_1 \equiv \ell_2 \equiv 1 \pmod{8}$, then $G_{\emptyset}(k_{\infty})^{\text{ab}}$ is not procyclic (cf. e.g. [20, Theorem 3.8]). Hence, replacing (ℓ_1, ℓ_2) by (ℓ_2, ℓ_1) if necessary, we may assume that $\ell_2 \equiv 5 \pmod{8}$. Then $r_2(A_{\emptyset}(k_1)) = 1$ if and only if $\ell_1 \equiv 5 \pmod{8}$ or $\ell_1 \equiv 1 \pmod{8}$ and $(\frac{2}{\ell_1})_4(\frac{\ell_1}{2})_4 = -1$ (cf. [20, Theorem 3.8]).

Assume that $\ell_1 \equiv \ell_2 \equiv 5 \pmod{8}$. Then $A_S(\mathbb{Q}) \simeq [2,4]$. Note that γ acts on $O_{\mathbb{Q}_1}/\ell_i \simeq \mathbb{F}_{\ell_i^2}$ as the Frobenius automorphism for each i. Choosing $g_{\ell_1 O_{\mathbb{Q}_1}}$ and $g_{\ell_2 O_{\mathbb{Q}_1}}$, we obtain the exact sequence

$$E(\mathbb{Q}_1) \stackrel{\varphi_{\mathbb{Q}_1,S}}{\longrightarrow} [8_{\ell_1O_{\mathbb{Q}_1}},8_{\ell_2O_{\mathbb{Q}_1}}] \to A_S(\mathbb{Q}_1) \to 0.$$

Since $r_2(A_S(\mathbb{Q}_1)) = 2$, $\varphi_{\mathbb{Q}_1,S}(\varepsilon_2) = (a,b)$ with some $a, b \in 2\mathbb{Z}$. Since $(4,4) = \varphi_{\mathbb{Q}_1,S}(-1) = \varphi_{\mathbb{Q}_1,S}(\varepsilon_2^{1+\gamma}) = ((\ell_1+1)a,(\ell_2+1)b)$, we have $a \equiv b \equiv 2 \pmod{4}$. Then $A_S(\mathbb{Q}_1) \simeq [2,8]$, and hence $A_S(\mathbb{Q}_n)/4 \simeq [2,4]$ for all $n \geq 0$ by Theorem 4.3. Moreover, $|O_{\mathbb{Q}_1}/\ell_1| \equiv |O_{\mathbb{Q}_1}/\ell_2| \not\equiv 1 \pmod{|A_S(\mathbb{Q}_1)|}$. Since $G_S(\mathbb{Q})$ is nonabelian (cf. Remark 2.2), $G_S(\mathbb{Q}_1)$ is also nonabelian. Moreover, $\ell_2 O_{\mathbb{Q}_1}$ splits in $\mathbb{Q}_1(\sqrt{\ell_1}) = (\mathbb{Q}_1)_{\{\ell_1\}}^{\text{elem}}$. Hence the conditions (4a), (4b) and (4c) of Theorem 3.1 for $(k_1/\mathbb{Q}_1, S_{\mathbb{Q}_1}, \emptyset)$ are satisfied. Since $\mathbb{Q}_S^{\text{ab}}/k$ is a [2, 2]-extension, we have $r_2(\text{Gal}((\mathbb{Q}_n)_S^{\text{ab}}/k_n)) = 2$ for any $n \geq 0$. Hence, if $|A_\emptyset(k_1)| = 2$, then $G_S(\mathbb{Q}_1)$ is not metacyclic by Theorem 3.1(4) for $(k_1/\mathbb{Q}_1, S_{\mathbb{Q}_1}, \emptyset)$. On the other hand, if $|A_\emptyset(k_1)| \geq 4$, then $|A_\emptyset(k_n)| \geq 4$ for all $n \geq 1$, and hence $G_S(\mathbb{Q}_n)$ is metacyclic for all $n \geq 1$ by Theorem 3.1(3) for $(k_n/\mathbb{Q}_n, S_{\mathbb{Q}_n}, \emptyset)$. Therefore $G_S(\mathbb{Q}_\infty)$ is prometacyclic if and only if $|A_\emptyset(k_1)| \geq 4$.

Assume that $\ell_1 \equiv 1 \pmod{8}$, $\left(\frac{2}{\ell_1}\right)_4 \left(\frac{\ell_1}{2}\right)_4 = -1$ and $\ell_2 \equiv 5 \pmod{8}$. Let \mathfrak{l} be a prime of \mathbb{Q}_1 lying over ℓ_1 . Choosing $g_{\mathfrak{l}} = g_{\mathfrak{l}^{\gamma}} = z_{\ell_1}$ and $g_{\ell_2 O_{\mathbb{Q}_1}}$, we obtain the exact

sequence

$$E(\mathbb{Q}_1) \xrightarrow{\varphi_{\mathbb{Q}_1,S}} [2_{\mathfrak{l}}^m, 2_{\mathfrak{l}^{\gamma}}^m, 8_{\ell_2 O_{\mathbb{Q}_1}}] \to A_S(\mathbb{Q}_1) \to 0$$

and

$$v_{\mathbb{Q}_1,S} = \left(\begin{array}{c} \varphi_{\mathbb{Q}_1,S}(-1) \\ \varphi_{\mathbb{Q}_1,S}(\varepsilon_2) \end{array}\right) = \left(\begin{array}{ccc} 2^{m-1} & 2^{m-1} & 4 \\ a_0 & a_1 & b \end{array}\right),$$

where $m = v_2(\ell_1 - 1) \geq 3$. Since $\varepsilon_2^{1+\gamma} = -1$ and $r_2(A_S(\mathbb{Q}_1)) = 2$, we have $a_0 \equiv a_1 \equiv 1 \pmod{2}$ and $b \equiv 2 \pmod{4}$. Then $A_S(\mathbb{Q}_1) \simeq [2^m, 4]$, and hence $r_4(A_S(\mathbb{Q}_n)) = 2$ for all $n \geq 1$. For any $n \geq 1$, Theorem 3.1(2) for $(k_n/\mathbb{Q}_n, S_{\mathbb{Q}_n}, \emptyset)$ yields that $G_S(\mathbb{Q}_n)$ is metacyclic if and only if $|A_{\emptyset}(k_n)| = 2$. Theorem 4.3 implies that $G_S(\mathbb{Q}_\infty)$ is prometacyclic if and only if $|A_{\emptyset}(k_1)| = 2$. Thus the proof of Theorem 7.1 is completed.

For a real quadratic field k, the 4-rank $r_4(A_{\{\infty\}}(k))$ of the narrow class group of k can be calculated by the theorem of Rédei and Reichardt [25] (cf. [1, Proposition 1]), and whether $G_{\emptyset}(k)$ is abelian or not can be decided by the theorems of Benjamin, Lemmermeyer and Snyder [1]. Hence the two conditions of Theorem 7.1 can be written in the words of power residue symbols as follows.

Lemma 7.2. Let ℓ_1 and ℓ_2 be distinct prime numbers such that $\ell_1 \equiv 1 \pmod{4}$ and $\ell_2 \equiv 5 \pmod{8}$. When $\ell_1 \equiv 5 \pmod{8}$, we have $|A_{\emptyset}(\mathbb{Q}_1(\sqrt{\ell_1\ell_2}))| \geq 4$ if and only if $(\frac{\ell_1}{\ell_2}) = (\frac{\ell_1}{\ell_2})_4 (\frac{\ell_2}{\ell_1})_4 = 1$ or $(\frac{\ell_1}{\ell_2}) = (\frac{2\ell_1}{\ell_2})_4 (\frac{2\ell_2}{\ell_1})_4 (\frac{\ell_1\ell_2}{\ell_2})_4 = -1$. When $\ell_1 \equiv 1 \pmod{8}$ and $(\frac{2}{\ell_1})_4 (\frac{\ell_1}{\ell_2})_4 = -1$, we have $|A_{\emptyset}(\mathbb{Q}_1(\sqrt{\ell_1\ell_2}))| = 2$ if and only if $(\frac{\ell_1}{\ell_2}) = -1$.

Proof. Put $k = \mathbb{Q}(\sqrt{\ell_1\ell_2})$ and $k' = \mathbb{Q}(\sqrt{2\ell_1\ell_2})$. Then $r_2(A_{\emptyset}(k')) = 2$. Since $(k')_{\emptyset}^{\text{elem}} = k_1(\sqrt{\ell_1}) \subset (k_1)_{\emptyset}^{\text{elem}}$, we have $|A_{\emptyset}(k_1)| = 2$ if and only if $G_{\emptyset}(k') \simeq [2, 2]$.

Suppose that $\ell_1 \equiv 5 \pmod{8}$. Then, since $A_{\{\infty\}}(k') \simeq A_{\emptyset}(k') \simeq [2,2]$ by [25] (cf. [1, Proposition 1]), $|A_{\emptyset}(k_1)| \geq 4$ if and only if $G_{\emptyset}(k')$ is nonabelian. Hence [1, Theorem 1] implies the claim for the case $\ell_1 \equiv 5 \pmod{8}$.

Suppose that $\ell_1 \equiv 1 \pmod 8$ and $\left(\frac{2}{\ell_1}\right)_4 \left(\frac{\ell_1}{2}\right)_4 = -1$. If $G_{\emptyset}(k')$ is abelian and $\left(\frac{\ell_1}{\ell_2}\right) = 1$, we have $N_{k'/\mathbb{Q}}(\varepsilon_{2\ell_1\ell_2}) = -1$ by [1, Theorem 1]. Then $A_{\emptyset}(k') \simeq A_{\{\infty\}}(k')$, and hence $\mathrm{r}_4(A_{\emptyset}(k')) \geq 1$ by [25] (cf. [1, Proposition 1]). Hence $\left(\frac{\ell_1}{\ell_2}\right) = -1$ if $G_{\emptyset}(k') \simeq [2, 2]$. Conversely, if $\left(\frac{\ell_1}{\ell_2}\right) = -1$, then $G_{\emptyset}(k')$ is abelian and $\mathrm{r}_4(A_{\emptyset}(k')) = 0$ by [1, Theorem 1] and [25] (cf. [1, Proposition 1]). Thus we obtain Lemma 7.2. \square

The next theorem treats the case $S = \{q_1, q_2\}$.

Theorem 7.3. Put $S = \{q_1, q_2\}$ with two distinct prime numbers $q_1 \equiv 3 \pmod{4}$ and $q_2 \equiv 3 \pmod{4}$. Then the following two statements hold true:

(1) $G_S(\mathbb{Q}_{\infty})$ is procyclic if and only if $q_1 \equiv 3 \pmod 8$ or $q_2 \equiv 3 \pmod 8$. Then

$$G_S(\mathbb{Q}_{\infty}) \simeq \left\{ \begin{array}{ll} \mathbb{Z}_2 & \text{if } q_1 \equiv q_2 \equiv 3 \pmod{8}, \\ \mathbb{Z}/2\mathbb{Z} & \text{if } q_1 \not\equiv q_2 \pmod{8}. \end{array} \right.$$

(2) $G_S(\mathbb{Q}_{\infty})$ is nonprocyclic prometacyclic if and only if $q_1 \equiv q_2 \equiv 7 \pmod{8}$ and $q_1 \not\equiv q_2 \pmod{16}$. Then $G_S(\mathbb{Q}_{\infty})^{ab} \simeq [2,2]$.

Proof. Put $k = \mathbb{Q}(\sqrt{q_1q_2}) = \mathbb{Q}_S^{ab}$. For each $n \geq 0$, $r_2(A_S(\mathbb{Q}_n)) = 1 + r_2(A_{\emptyset}(k_n))$ by (3.1) for $(k_n/\mathbb{Q}_n, S_{\mathbb{Q}_n}, \emptyset)$. Hence $G_S(\mathbb{Q}_{\infty})$ is procyclic (i.e., $A_{\emptyset}(k_n) \simeq 0$ for all n) if and only if $q_1 \equiv 3 \pmod 8$ or $q_2 \equiv 3 \pmod 8$ by [20, Corollary 3.4] (and [23]). If $q_1 \equiv q_2 \equiv 3 \pmod 8$, then $G_S(\mathbb{Q}_{\infty})^{ab}$ is infinite, i.e., $G_S(\mathbb{Q}_{\infty}) \simeq \mathbb{Z}_2$ by

[9, Theorem 1.1]. If $q_1 \not\equiv q_2 \pmod{8}$, 2 is inert in $k = \mathbb{Q}_S$. Then, since $A_S(k) \simeq 0$, $G_S(k_\infty)$ is trivial by Proposition 4.1. Therefore $G_S(\mathbb{Q}_\infty) \simeq G_S(\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z}$.

On the other hand, $r_2(A_S(\mathbb{Q}_n)) = 2$ for all $n \geq 1$ (i.e., $G_{\emptyset}(k_{\infty})^{ab}$ is nontrivial procyclic) if and only if $q_1 \equiv q_2 \equiv 7 \pmod 8$ and $q_i \equiv 7 \pmod 16$ for i = 1 or 2 by [20, Theorem 3.8] and Theorem 4.3. If $G_S(\mathbb{Q}_{\infty})$ is nonprocyclic prometacyclic, then $r_2(A_S(\mathbb{Q}_n)) = 2$ for all $n \geq 1$ by Theorem 4.3. Hence, replacing (q_1, q_2) by (q_2, q_1) if necessary, it suffices to consider only the case where $q_1 \equiv 7 \pmod 16$ and $q_2 \equiv 7 \pmod 8$ for the second statement.

Lemma 7.4. Assume $q_1 \equiv 7 \pmod{16}$ and $q_2 \equiv 7 \pmod{8}$. Then $A_S(\mathbb{Q}_1) \simeq [2, 2]$. Moreover, the primes of k_1 lying over 2 split in $(\mathbb{Q}_1)_S^{\text{elem}}$ if and only if $q_2 \equiv 7 \pmod{16}$.

Proof. We regard γ as a generator of $\operatorname{Gal}(k_1/k)$. Let \mathfrak{Q}_i be a prime of k_1 lying over q_i . Choosing $z_{q_i} \in \mathbb{Z}$ as the primitive element of \mathbb{F}_{q_i} , we obtain the commutative diagram

$$E(\mathbb{Q}_1) \xrightarrow{\varphi_{\mathbb{Q}_1,S}} [2_{\mathfrak{Q}_1 \cap \mathbb{Q}_1}, 2_{\mathfrak{Q}_1^{\gamma} \cap \mathbb{Q}_1}, 2_{\mathfrak{Q}_2 \cap \mathbb{Q}_1}, 2_{\mathfrak{Q}_2^{\gamma} \cap \mathbb{Q}_1}] \xrightarrow{} A_S(\mathbb{Q}_1) \xrightarrow{} 0$$

$$\downarrow \cap \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}[\frac{1}{\sqrt{2}}]^{\times} \xrightarrow{\varphi_{\mathbb{Q}_1,S}'} [2_{\mathfrak{Q}_1 \cap \mathbb{Q}_1}, 2_{\mathfrak{Q}_1^{\gamma} \cap \mathbb{Q}_1}, 2_{\mathfrak{Q}_2 \cap \mathbb{Q}_1}, 2_{\mathfrak{Q}_2^{\gamma} \cap \mathbb{Q}_1}] \xrightarrow{} A_S(\mathbb{Q}_1)/\langle [\sqrt{2}O_{\mathbb{Q}_1}] \rangle \xrightarrow{} 0$$

with exact rows, where $\varphi'_{\mathbb{Q}_1,S}|_{E(\mathbb{Q}_1)}=\varphi_{\mathbb{Q}_1,S}$ and $\varphi'_{\mathbb{Q}_1,S}(\sqrt{2})=(a_1,b_1,a_2,b_2)$ with $a_i,b_i\in\mathbb{Z}$ such that $\sqrt{2}\equiv z_{q_i}^{a_i}\pmod{\mathfrak{Q}_i}$ and $\sqrt{2}\equiv z_{q_i}^{b_i}\pmod{\mathfrak{Q}_i^{\gamma}}$. Since $\varphi_{\mathbb{Q}_1,S}(-1)=(1,1,1,1)$ and $A_{\{q_i\}}(\mathbb{Q}_1)\simeq 0$ (i.e., $\varphi_{\mathbb{Q}_1,\{q_i\}}$ is surjective), we may assume that $\varphi_{\mathbb{Q}_1,S}(\varepsilon_2)=(1,0,1,0)$, replacing \mathfrak{Q}_i by \mathfrak{Q}_i^{γ} if necessary. In particular, we have $A_S(\mathbb{Q}_1)\simeq [2,2]$. Since $z_{q_i}^{a_i}\equiv \sqrt{2}^{\gamma}\equiv -z_{q_i}^{b_i}\pmod{\mathfrak{Q}_i^{\gamma}}$, we have $a_i\equiv 1+b_i\pmod{2}$, i.e., $\varphi'_{\mathbb{Q}_1,S}(\varepsilon_2\sqrt{2})=(b_1,b_1,b_2,b_2)$. Note that $\mathfrak{Q}_i\cap\mathbb{Q}_1$ is inert in $\mathbb{Q}_2=\mathbb{Q}(\sqrt{\varepsilon_2\sqrt{2}})$ (i.e., $\sqrt{\varepsilon_2\sqrt{2}}\not\in\mathbb{Z}_{q_i}$ if and only if $q_i\equiv 7\pmod{16}$. Hence $b_i\equiv 1\pmod{2}$ if and only if $q_i\equiv 7\pmod{16}$. Therefore $b_1\equiv 1\pmod{2}$, and

$$\varphi_{\mathbb{Q}_{1},S}'(\sqrt{2}) = \begin{cases} (0,1,0,1) \in \operatorname{Im} \varphi_{\mathbb{Q}_{1},S} & \text{if } q_{2} \equiv 7 \pmod{16}, \\ (0,1,1,0) \not\in \operatorname{Im} \varphi_{\mathbb{Q}_{1},S} & \text{if } q_{2} \equiv 15 \pmod{16}. \end{cases}$$

This implies that the prime $\sqrt{2}O_{\mathbb{Q}_1}$ splits completely in the [2,2]-extension $(\mathbb{Q}_1)_S^{\text{elem}}/\mathbb{Q}_1$ (i.e., $\langle [\sqrt{2}O_{\mathbb{Q}_1}] \rangle \simeq 0$) if and only if $q_2 \equiv 7 \pmod{16}$. Since $\sqrt{2}O_{\mathbb{Q}_1}$ splits in k_1/\mathbb{Q}_1 , we obtain the claim.

Assume that $q_1 \equiv 7 \pmod{16}$ and $q_2 \equiv 15 \pmod{16}$. Since $A_{\{q_1\}}(\mathbb{Q}_2) \simeq 0$, the snake lemma for the commutative diagram

$$E(\mathbb{Q}_{2}) \otimes \mathbb{Z}_{2} \xrightarrow{\Phi_{\mathbb{Q}_{2},S}} (O_{\mathbb{Q}_{2}}/q_{1}q_{2})^{\times} \otimes \mathbb{Z}_{2} \xrightarrow{} A_{S}(\mathbb{Q}_{2}) \xrightarrow{} 0$$

$$\downarrow^{\Psi} \qquad \qquad \downarrow$$

$$0 \xrightarrow{} \operatorname{Im} \Phi_{\mathbb{Q}_{2},\{q_{1}\}} \xrightarrow{} (O_{\mathbb{Q}_{2}}/q_{1})^{\times} \otimes \mathbb{Z}_{2} \xrightarrow{} A_{\{q_{1}\}}(\mathbb{Q}_{2})$$

with exact rows induces a surjective homomorphism $[2,2,2,2] \simeq (O_{\mathbb{Q}_2}/q_2)^{\times} \otimes \mathbb{Z}_2 \to A_S(\mathbb{Q}_2)$. Since $r_2(A_S(\mathbb{Q}_2)) = 2$, this implies that $A_S(\mathbb{Q}_2) \simeq A_S(\mathbb{Q}_1) \simeq [2,2]$. Then $G_S(\mathbb{Q}_\infty)^{ab} \simeq [2,2]$ by Theorem 4.3, and hence $G_S(\mathbb{Q}_\infty)$ is prometacyclic.

Assume that $q_1 \equiv q_2 \equiv 7 \pmod{16}$. Let \mathfrak{p}_1 be a prime of k_1 lying over 2. By Lemma 7.4, \mathfrak{p}_1 splits in $(\mathbb{Q}_1)_S^{\text{elem}}$. On the other hand, we have $G_S(\mathbb{Q}_\infty)^{\text{ab}} \simeq \mathbb{Z}_2^2$ by [9, Theorem 1.1]. Hence $G_S(\mathbb{Q}_\infty)$ is abelian if $G_S(\mathbb{Q}_\infty)$ is prometacyclic. Recall that

 $\mathbf{r}_2(A_{\emptyset}(k_n))=1$ for all $n\geq 1$. Since the generator of $\mathrm{Gal}(k_n/\mathbb{Q}_n)$ acts on $A_{\emptyset}(k_n)$ as -1, $\mathrm{Gal}((k_n)_{\emptyset}^{\mathrm{ab}}/\mathbb{Q}_n)$ is nonabelian if $|A_{\emptyset}(k_n)|\geq 4$. Suppose that $G_S(\mathbb{Q}_{\infty})$ is prometacyclic. Then $|A_{\emptyset}(k_n)|=2$ for all $n\geq 1$. In particular, $A_{\emptyset}(k_n)=A_{\emptyset}(k_n)^T$ and $(\mathbb{Q}_1)_S^{\mathrm{elem}}=(k_1)_{\emptyset}^{\mathrm{ab}}$. Since $N_{k_n/k_1}:A_{\emptyset}(k_n)\to A_{\emptyset}(k_1)$ is surjective, we have $A_{\emptyset}(k_1)=\langle [\mathfrak{p}_1^{h_1/2}]\rangle$ by [8, Theorem 2], where h_1 is the class number of k_1 . This implies that \mathfrak{p}_1 is inert in $(k_1)_{\emptyset}^{\mathrm{ab}}=(\mathbb{Q}_1)_S^{\mathrm{elem}}$. This is a contradiction. Therefore $G_S(\mathbb{Q}_{\infty})$ is not prometacyclic if $q_1\equiv q_2\equiv 7\pmod{16}$. Thus the proof of Theorem 7.3 is completed.

Lemma 7.4 above induces the following corollary which we need in the proof of Theorem 1.1.

Corollary 7.5. Put $k = \mathbb{Q}(\sqrt{q_1q_2})$ with prime numbers $q_1 \equiv 7 \pmod{16}$ and $q_2 \equiv 15 \pmod{16}$. Then $G_{\emptyset}(k_{\infty})^{ab}$ is finite cyclic.

Proof. By [20, Theorem 3.8] and Theorem 4.3, we have $\mathbf{r}_2(A_{\emptyset}(k_n)) = 1$ for all $n \geq 1$. Let \mathfrak{p}_0 be a prime of k lying over 2 and \mathfrak{p}_n the prime of k_n lying over \mathfrak{p}_0 . Put $S = \{q_1, q_2\}$. By Lemma 7.4, $A_S(\mathbb{Q}_1) \simeq [2, 2]$, and \mathfrak{p}_1 is inert in $(\mathbb{Q}_1)_S^{\mathrm{elem}} = (k_1)_{\emptyset}^{\mathrm{elem}}$. Therefore, \mathfrak{p}_n is also inert in $(k_n)_{\emptyset}^{\mathrm{elem}}$; i.e., $A_{\emptyset}(k_n) = \langle [\mathfrak{p}_n^{h'_n}] \rangle$ for any $n \geq 1$, where h'_n is the maximal odd factor of the class number of k_n . In particular, $A_{\emptyset}(k_n) = A_{\emptyset}(k_n)^{\Gamma}$ for all $n \geq 1$. Since k_{∞} is the unique \mathbb{Z}_2 -extension of k, $|A_{\emptyset}(k_n)^{\Gamma}|$ is bounded as $n \to \infty$ (cf. [8, Proposition 1]), and hence $G_{\emptyset}(k_{\infty})^{\mathrm{ab}}$ is finite cyclic. \square

8. The case
$$S = \{r_1, r_2, r_3\}$$

If $G_S(\mathbb{Q}_{\infty})$ is prometacyclic for $S = \{r_1, r_2, r_3\}$ (and $\{2, \infty\} \cap S = \emptyset$), then $r_2(A_S(\mathbb{Q})) \leq 2$, and hence S contains at least one prime $q \equiv 3 \pmod{4}$.

Proposition 8.1. If $S = \{\ell_1, \ell_2, q\}$ with three distinct prime numbers $\ell_1 \equiv 1 \pmod{4}$, $\ell_2 \equiv 1 \pmod{4}$ and $q \equiv 3 \pmod{4}$, then $G_S(\mathbb{Q}_{\infty})$ is not prometacyclic.

Proof. Note that $r_4(A_S(\mathbb{Q})) = r_2(A_S(\mathbb{Q})) = 2$. Suppose that $G_S(\mathbb{Q}_{\infty})$ is prometacyclic. Then $r_4(A_S(\mathbb{Q}_1)) = r_2(A_S(\mathbb{Q}_1)) = 2$, and $(\mathbb{Q}_{\infty})_S^{\text{elem}}/\mathbb{Q}_{\infty}$ is a [2,2]-extension. For each $i \in \{1,2\}$, since $\mathbb{Q}_{\infty}(\sqrt{\ell_i}) \subset (\mathbb{Q}_{\infty})_{\{\ell_i\}}^{\text{elem}}$, we have $(\mathbb{Q}_{\infty})_S^{\text{elem}} \neq (\mathbb{Q}_{\infty})_{S\setminus \{\ell_i\}}^{\text{elem}}$, and hence $(\mathbb{Q}_{\infty})_{S\setminus \{\ell_i\}}^{\text{elem}}/\mathbb{Q}_{\infty}$ is a quadratic extension; i.e., $G_{S\setminus \{\ell_i\}}(\mathbb{Q}_{\infty})$ is procyclic. Proposition 6.2 yields that $\ell_1 \equiv \ell_2 \equiv 5 \pmod{8}$. Put $k = \mathbb{Q}(\sqrt{\ell_1\ell_2})$ and $\Sigma = \{q\}$. Since $G_{\{\ell_1,\ell_2\}}(\mathbb{Q}_{\infty})$ is also prometacyclic, we have $|A_{\Sigma}(k_1)| \geq |A_{\emptyset}(k_1)| \geq 4$ by Theorem 7.1. Then $G_S(\mathbb{Q}_1)$ is not metacyclic by Theorem 3.1(2) for $(k_1/\mathbb{Q}_1, S_{\mathbb{Q}_1}, \Sigma_{\mathbb{Q}_1})$. This is a contradiction. Thus we obtain the statement.

Theorem 8.2. Put $S = \{\ell, q_1, q_2\}$ with three distinct prime numbers $\ell \equiv 1 \pmod{4}$, $q_1 \equiv 3 \pmod{4}$ and $q_2 \equiv 3 \pmod{4}$. Then $G_S(\mathbb{Q}_\infty)$ is prometacyclic if and only if one of the following two conditions holds true:

- (1) $\ell \equiv 5 \pmod{8}$, $q_1 \equiv q_2 \equiv 3 \pmod{8}$, $\binom{q_1 q_2}{\ell} = -1$.
- (2) $\ell \equiv 5 \pmod{8}, \ q_i \equiv 3 \pmod{8}, \ q_j \equiv 7 \pmod{8}, \ \left(\frac{q_j}{\ell}\right) = -1 \ for \ (i,j) = (1,2) \ or \ (2,1).$

Moreover, we have $G_{\emptyset}(\mathbb{Q}_{\infty}(\sqrt{\ell q_1 q_2})) \simeq \mathbb{Z}/2\mathbb{Z}$ under each of these conditions.

Proof. Put $k = \mathbb{Q}(\sqrt{\ell q_1 q_2})$. For each $n \geq 0$, $r_2(A_S(\mathbb{Q}_n)) = 1 + r_2(A_{\emptyset}(k_n)) \geq 2$ by (3.1) for $(k_n/\mathbb{Q}_n, S_{\mathbb{Q}_n}, \emptyset)$. Then $r_2(A_S(\mathbb{Q}_n)) = 2$ for all $n \geq 0$ (i.e., $G_{\emptyset}(k_{\infty})^{\mathrm{ab}}$ is procyclic) if and only if $\ell \equiv 5 \pmod{8}$ and $q_i \equiv 3 \pmod{8}$ for i = 1 or 2 by

[20, Theorem 3.8]. Since $r_2(A_S(\mathbb{Q}_n)) = 2$ for all $n \geq 0$ if $G_S(\mathbb{Q}_\infty)$ is prometacyclic, it suffices to consider only this case. Replacing (q_1,q_2) by (q_2,q_1) if necessary, we may assume that $\ell \equiv 5 \pmod{8}$ and $q_1 \equiv 3 \pmod{8}$. Then, since $r_2(A_S(\mathbb{Q}_n)) = 2$, we have $(\mathbb{Q}_n)_{S\mathbb{Q}_n \setminus \{1\}}^{\text{elem}} = \mathbb{Q}_n(\sqrt{\ell})$ for $\mathfrak{l} = q_1 O_{\mathbb{Q}_n}$ by Theorem 3.1(1). Since $\mathbb{Q}_{\{\ell,q_1\}}^{\text{ab}}\mathbb{Q}_n/\mathbb{Q}_n$ is a cyclic quartic extension which contains $\mathbb{Q}_n(\sqrt{\ell})$, Theorem 3.1(2) for $(k_n/\mathbb{Q}_n, S_{\mathbb{Q}_n}, \emptyset)$ yields that $G_S(\mathbb{Q}_n)$ is metacyclic if and only if $|A_{\emptyset}(k_n)| = 2$. Theorem 4.3 implies that $G_S(\mathbb{Q}_\infty)$ is prometacyclic if and only if $|A_{\emptyset}(k_1)| = 2$. Put $k' = \mathbb{Q}(\sqrt{2\ell q_1 q_2})$. Since $(k')_{\emptyset}^{\text{elem}} = k_1(\sqrt{\ell}) \subset (k_1)_{\emptyset}^{\text{elem}}$, we have $|A_{\emptyset}(k_1)| = 2$ if and only if $G_{\emptyset}(k') \simeq [2, 2]$. By the theorem of Rédei and Reichardt [25] (or [2, Proposition 1]), $A_{\emptyset}(k') \simeq [2, 2]$ if and only if at least one of $(\frac{2}{q_2})$, $(\frac{q_1}{\ell})$, $(\frac{q_2}{\ell})$ is 1. Then $G_{\emptyset}(k') \simeq [2, 2]$ if and only if $(\frac{2}{q_2}) = (\frac{q_1 q_2}{\ell}) = -1$ or $(\frac{2}{q_2}) = -(\frac{q_2}{\ell}) = 1$ by [1, Theorem 2] (or [2, Theorem 2]). Thus the proof of Theorem 8.2 is completed.

Theorem 8.3. Put $S = \{q_1, q_2, q_3\}$ with three distinct prime numbers $q_1 \equiv 3 \pmod{4}$, $q_2 \equiv 3 \pmod{4}$ and $q_3 \equiv 3 \pmod{4}$. Then $G_S(\mathbb{Q}_{\infty})$ is prometacyclic if and only if $q_1 \equiv q_2 \equiv 3 \pmod{8}$, $q_3 \equiv 7 \pmod{8}$ and $\left(\frac{q_1q_2}{q_3}\right) = -1$ after a suitable permutation of the indices.

Proof. Since $(\mathbb{Q}_{\infty})_{S\backslash\{q_i\}}^{ab}\cap(\mathbb{Q}_{\infty})_{S\backslash\{q_j\}}^{ab}=\mathbb{Q}_{\infty}$ for any distinct i and j, $G_{S\backslash\{q_i\}}(\mathbb{Q}_{\infty})^{ab}$ is procyclic for any i if $G_S(\mathbb{Q}_{\infty})$ is prometacyclic. Theorem 7.3 implies that $G_{S\backslash\{q_i\}}(\mathbb{Q}_{\infty})^{ab}$ is procyclic for any i if and only if at least two $q\in S$ satisfy $q\equiv 3\pmod{8}$. If all of $q\in S$ satisfy $q\equiv 3\pmod{8}$, $G_S(\mathbb{Q}_{\infty})$ has a quotient $G_{S\backslash\{q_1\}}(\mathbb{Q}_{\infty})\times G_{S\backslash\{q_2\}}(\mathbb{Q}_{\infty})\simeq \mathbb{Z}_2^2$ by Theorem 7.3. Then, since $G_S(\mathbb{Q})$ is nonabelian (cf. Remark 2.2), $G_S(\mathbb{Q}_{\infty})$ is not prometacyclic. Hence, permuting the indices if necessary, it suffices to consider only the case where $q_1\equiv q_2\equiv 3\pmod{8}$ and $q_3\equiv 7\pmod{8}$. Then, since the inertia group $I_{q_2}\subset G_S(\mathbb{Q}_n)^{ab}$ of the prime $q_2O_{\mathbb{Q}_n}$ is cyclic and $G_S(\mathbb{Q}_n)^{ab}/I_{q_2}\simeq A_{\{q_1,q_3\}}(\mathbb{Q}_n)\simeq \mathbb{Z}/2\mathbb{Z}$ by Theorem 7.3, we have $r_2(A_S(\mathbb{Q}_n))=2$ and $r_4(A_S(\mathbb{Q}_n))\leq 1$ for all $n\geq 0$.

Put $k = \mathbb{Q}(\sqrt{q_1q_2})$ and $k' = \mathbb{Q}(\sqrt{2q_1q_2})$. Then $A_{\emptyset}(k_n) \simeq 0$ for all $n \geq 0$ by [23, Theorem]. We regard γ as the generator of $\operatorname{Gal}(k_1/k)$. Since $-1 = \varepsilon_2^{1+\gamma} \in E(k_1)^{1+\gamma}$, the genus formula (2.1)

$$1 = |A_{\emptyset}(k_1)| \ge \frac{2^2}{2|E(k)/E(k_1)^{1+\gamma}|}$$

for k_1/k yields that $\pm \varepsilon_{q_1q_2} \notin E(k_1)^{1+\gamma}$. Hence Kuroda's formula (2.3)

$$1 = |A_{\emptyset}(k_1)| = 4^{-1}Q(k_1/\mathbb{Q})|A_{\emptyset}(\mathbb{Q}_1)||A_{\emptyset}(k)||A_{\emptyset}(k')| = 2^{-1}Q(k_1/\mathbb{Q})$$

implies that $E(k_1) = \langle -1, \varepsilon_2, \varepsilon_{q_1q_2}, \sqrt{\varepsilon_{2q_1q_2}} \rangle$. Let \mathfrak{Q}_i be a prime of k_1 lying over q_i . Then $\mathfrak{Q}_i \cap \mathbb{Q}_1 = q_i O_{\mathbb{Q}_1}$ for $i \in \{1, 2\}$. Choosing $g_{q_1 O_{\mathbb{Q}_1}}$, $g_{q_2 O_{\mathbb{Q}_1}}$ and $g_{\mathfrak{Q}_3 \cap \mathbb{Q}_1} = g_{\mathfrak{Q}_3^{\gamma} \cap \mathbb{Q}_1} = z_{q_3} \in \mathbb{Z}$, we obtain the exact sequence

$$E(\mathbb{Q}_1) \stackrel{\varphi_{\mathbb{Q}_1,S}}{\longrightarrow} [8_{q_1O_{\mathbb{Q}_1}},8_{q_2O_{\mathbb{Q}_1}},2_{\mathfrak{Q}_3\cap\mathbb{Q}_1},2_{\mathfrak{Q}_3^\gamma\cap\mathbb{Q}_1}] \to A_S(\mathbb{Q}_1) \to 0.$$

Since $\operatorname{Coker} \varphi_{\mathbb{Q}_1,\{q_i\}} \simeq A_{\{q_i\}}(\mathbb{Q}_1) \simeq 0$ for all $i \in \{1,2,3\}$, replacing \mathfrak{Q}_3 by \mathfrak{Q}_3^{γ} if necessary, we may assume that

$$v_{\mathbb{Q}_1,S} = \left(\begin{array}{c} \varphi_{\mathbb{Q}_1,S}(-1) \\ \varphi_{\mathbb{Q}_1,S}(\varepsilon_2) \end{array} \right) = \left(\begin{array}{ccc} 4 & 4 & 1 & 1 \\ a_1 & a_2 & 0 & 1 \end{array} \right)$$

with $a_1 \equiv a_2 \equiv 1 \pmod 2$. Hence an easy calculation shows that $A_S(\mathbb{Q}_1) \simeq [2,8]$ and $A_{\{q_1,q_2\}}(\mathbb{Q}_1) \simeq \mathbb{Z}/8\mathbb{Z}$. This implies that $\mathrm{r}_2(\mathrm{Gal}((\mathbb{Q}_n)_S^{\mathrm{ab}}/k_n)) = 2$ for all $n \geq 1$. Moreover, we have $\mathrm{r}_4(A_S(\mathbb{Q}_n)) = 1$ for all $n \geq 1$. Put $\Sigma = \{q_3\}$. Then (3.1) for $(k_n/\mathbb{Q}_n, S_{\mathbb{Q}_n}, \Sigma_{\mathbb{Q}_n})$ yields that $\mathrm{r}_2(A_\Sigma(k_n)) = 1$ for all $n \geq 0$. Assume that $(\frac{q_1q_2}{q_3}) = -1$. We choose $g_{\mathfrak{Q}_3} = g_{q_3O_k}$ and $g_{q_3O_{k'}}$ such

Assume that $\left(\frac{q_1q_2}{q_3}\right) = -1$. We choose $g_{\mathfrak{Q}_3} = g_{q_3O_k} = g_{q_3O_k}$ and $g_{q_3O_{k'}}$ such that $g_{q_3O_{k'}} \equiv g_{\mathfrak{Q}_3} \pmod{\mathfrak{Q}_3}$. Then $g_{q_3O_k}^{(1+q_3)u} \equiv z_{q_3} \pmod{q_3}$ with some odd u. Moreover, since $g_{q_3O_{k'}}^{\gamma} \equiv g_{q_3O_{k'}}^{q_3} \pmod{q_3}$, we have $g_{q_3O_{k'}} \equiv g_{\mathfrak{Q}_3}^{q_3} \pmod{\mathfrak{Q}_3}$. Then we obtain the commutative diagram

$$E(\mathbb{Q}_{1}) \xrightarrow{\varphi_{\mathbb{Q}_{1},\Sigma}} [2_{\mathfrak{Q}_{3} \cap \mathbb{Q}_{1}}, 2_{\mathfrak{Q}_{3}^{\gamma} \cap \mathbb{Q}_{1}}] \longrightarrow 0$$

$$\downarrow \cap \qquad \qquad \downarrow \psi_{\mathbb{Q}_{1}}$$

$$E(k_{1}) \xrightarrow{\varphi_{k_{1},\Sigma}} [2_{\mathfrak{Q}_{3}}^{m}, 2_{\mathfrak{Q}_{3}^{\gamma}}^{m}] \longrightarrow A_{\Sigma}(k_{1}) \longrightarrow 0$$

$$\uparrow \cup \qquad \qquad \uparrow \psi_{k} \qquad \qquad \downarrow \\ E(k) \xrightarrow{\varphi_{k,\Sigma}} \mathbb{Z}/2^{m}\mathbb{Z} \xrightarrow{\psi_{k'}} A_{\Sigma}(k) \longrightarrow 0$$

$$E(k') \xrightarrow{\varphi_{k',\Sigma}} \mathbb{Z}/2^{m}\mathbb{Z} \xrightarrow{\psi_{k'}} A_{\Sigma}(k') \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

with exact rows, where $m = v_2(q_3^2 - 1) \ge 4$, $\psi_{\mathbb{Q}_1}(x_0, x_1) = (2^{m-1}x_0, 2^{m-1}x_1)$, $\psi_k(x) = (x, x)$, and $\psi_{k'}(x) = (x, q_3 x) = (x, (2^{m-1} - 1)x)$. Since $k(\sqrt{q_1 q_3}) \subset k_{\Sigma}^{ab}$ and $k_1(\sqrt{q_1 q_3}) \subset (k')_{\Sigma}^{ab}$, we have $|A_{\Sigma}(k)| \ge 2$ and $|A_{\Sigma}(k')| \ge 4$. Hence $\varphi_{k,\Sigma}(\varepsilon_{q_1 q_2}) = (2a)$ and $\varphi_{k',\Sigma}(\varepsilon_{2q_1 q_2}) = (2b)$ with some $a, b \in \mathbb{Z}$. Then

$$v_{k_1,\Sigma} = \begin{pmatrix} \varphi_{k_1,\Sigma}(-1) \\ \varphi_{k_1,\Sigma}(\varepsilon_2) \\ \varphi_{k_1,\Sigma}(\varepsilon_{q_1q_2}) \\ \varphi_{k_1,\Sigma}(\sqrt{\varepsilon_{2q_1q_2}}) \end{pmatrix} = \begin{pmatrix} 2^{m-1} & 2^{m-1} \\ 0 & 2^{m-1} \\ 2a & 2a \\ b + 2^{m-1}e_0 & -b + 2^{m-1}e_1 \end{pmatrix}$$

with some $e_0, e_1 \in \{0, 1\}$. Since $r_2(A_{\Sigma}(k_1)) = 1$, we have $b \equiv 1 \pmod{2}$. Then

$$\begin{pmatrix} 1 & 0 & 0 & 2^{m-1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2a \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \frac{e_0}{b} & \frac{e_0 + e_1}{b} & 0 & b^{-1} \end{pmatrix} v_{k_1,\Sigma} = \begin{pmatrix} 0 & 0 \\ 0 & 2^{m-1} \\ 0 & 4a \\ 1 & -1 \end{pmatrix},$$

and hence $|A_{\Sigma}(k_1)| \geq 4$. By Theorem 3.1(3) for $(k_n/\mathbb{Q}_n, S_{\mathbb{Q}_n}, \Sigma_{\mathbb{Q}_n})$, $G_S(\mathbb{Q}_n)$ is metacyclic for any $n \geq 1$. Therefore $G_S(\mathbb{Q}_{\infty})$ is prometacyclic if $\left(\frac{q_1q_2}{q_3}\right) = -1$.

Assume that $\left(\frac{q_1q_2}{q_3}\right)=1$. Then q_3 splits completely in k_1/\mathbb{Q} . Since there is a surjective homomorphism $[2_{\mathfrak{Q}_3},2_{\mathfrak{Q}_3^\sigma},2_{\mathfrak{Q}_3^\sigma},2_{\mathfrak{Q}_3^\sigma},2_{\mathfrak{Q}_3^\sigma}]\to A_{\Sigma}(k_1)$, we have $|A_{\Sigma}(k_1)|=2$. We apply Theorem 3.1 for $(k_1/\mathbb{Q}_1,S_{\mathbb{Q}_1},\Sigma_{\mathbb{Q}_1})$. Since $G_S(\mathbb{Q})$ is nonabelian (cf. Remark 2.2), $G_S(\mathbb{Q}_1)$ is also nonabelian. For each $i\in\{1,2\}$, $|O_{\mathbb{Q}_1}/q_i|=q_i^2\not\equiv 1$ (mod $|A_S(\mathbb{Q}_1)|$). By Theorem 3.1(1), $(\mathbb{Q}_1)_{S_{\mathbb{Q}_1}\setminus\{\mathfrak{l}_0\}}^{\mathrm{elem}}=\mathbb{Q}_1(\sqrt{q_1q_3})$ for $\mathfrak{l}_0=q_2O_{\mathbb{Q}_1}$. Since $\mathbb{Q}_1(\sqrt{q_1q_3})/\mathbb{Q}$ is a [2,2]-extension, the prime $q_2O_{\mathbb{Q}_1}$ splits in $\mathbb{Q}_1(\sqrt{q_1q_3})$. Hence no prime in $S_{\mathbb{Q}_1}\setminus\Sigma_{\mathbb{Q}_1}$ is inert in $\mathbb{Q}_1(\sqrt{q_1q_3})/\mathbb{Q}_1$. By Theorem 3.1(4), $G_S(\mathbb{Q}_1)$ is not metacyclic. Therefore $G_S(\mathbb{Q}_{\infty})$ is not prometacyclic if $\left(\frac{q_1q_2}{q_3}\right)=1$. Thus the proof of Theorem 8.3 is completed.

9. The case $\infty \in S$

For a finite extension k/\mathbb{Q} , the Iwasawa λ -invariant $\lambda(k)$ is defined as the 2-rank of the maximal free abelian pro-2 quotient of $G_{\emptyset}(k_{\infty})$. Then there is a surjective homomorphism $G_{\emptyset}(k_{\infty})^{\mathrm{ab}} \to \mathbb{Z}_{2}^{\lambda(k)}$ with torsion kernel. First, we prepare the following lemma.

Lemma 9.1. Let S be a finite set of primes of \mathbb{Q} not containing 2 and K/\mathbb{Q} a finite extension such that $K_{\infty} \subset (\mathbb{Q}_{\infty})_S$. If $G_S(\mathbb{Q}_{\infty})$ is prometacyclic, then $\lambda(K) \leq 1$.

Proof. Assume that $\lambda(K) \geq 2$. Then there are surjective homomorphisms $G_S(K_\infty) \to G_\emptyset(K_\infty)^{\mathrm{ab}} \to \mathbb{Z}_2^2$. Suppose that $G_S(\mathbb{Q}_\infty)$ is prometacyclic. Then there exists a procyclic extension M/\mathbb{Q}_∞ such that $(\mathbb{Q}_\infty)_S/M$ is also a procyclic extension. Moreover, since $G_S(K_\infty)$ is also prometacyclic, we have $G_S(K_\infty) \simeq \mathbb{Z}_2^2$. Then $(\mathbb{Q}_\infty)_S = (K_\infty)_\emptyset^{\mathrm{ab}}$.

Hence $K_{\infty}M/K_{\infty}$ is an unramified \mathbb{Z}_2 -extension. Since $[K_{\infty}:K_{\infty}\cap M]\leq [K:\mathbb{Q}]$, any prime has finite ramification index in $K_{\infty}M/(K_{\infty}\cap M)$. On the other hand, since $G_{\{\infty\}}(\mathbb{Q}_{\infty})\simeq 1$ (cf. Corollary 4.2) and $M/(K_{\infty}\cap M)$ is also a \mathbb{Z}_2 -extension, M/\mathbb{Q}_{∞} is a \mathbb{Z}_2 -extension totally ramified at some $v\in S_{\mathbb{Q}_{\infty}}$. Then the primes lying over v have infinite ramification indices in $K_{\infty}M/(K_{\infty}\cap M)$. This is a contradiction. Therefore $G_S(\mathbb{Q}_{\infty})$ is not prometacyclic if $\lambda(K)\geq 2$. Thus the proof is completed.

We recall Kida's formulas [12] for the λ -invariants. Suppose that k/\mathbb{Q} is an imaginary abelian extension unramified at 2. Then $k \cap \mathbb{Q}_{\infty} = \mathbb{Q}$, $\sqrt{-1} \notin k_{\infty}$ and the μ -invariant is zero (cf. [12, Remarks (i)] or [29, §7.5]). By [12, Theorem 1], we have

(9.1)
$$\lambda(k) = \lambda(k^{+}) + r_2(A_{\{\infty\}}(k_n^{+})) - 1 + s(k_n/k_n^{+})$$

for all sufficiently large n, where $k^+ = k \cap \mathbb{R}$, and $s(k_n/k_n^+)$ denotes the number of prime ideals of k_n ramified over k_n^+ . Moreover, $G_{\emptyset}(k_{\infty})^{\mathrm{ab}} \simeq \mathbb{Z}_2^{\lambda(k)}$ if k is an imaginary quadratic field with odd discriminant (cf. [6] or [11, Theorem 1]). Let K be a CM-field such that K/k is a finite 2-extension. Suppose that $K_{\infty}/\mathbb{Q}_{\infty}$ is unramified at any prime lying over 2. Then $\sqrt{-1} \notin K_{\infty}$, and we have

$$(9.2) \quad \lambda(K) - \lambda(K^+) = [K_{\infty} : k_{\infty}](\lambda(k) - \lambda(k^+)) + \sum_{v} (e_v - 1) - \sum_{v+} (e_{v^+} - 1)$$

by [12, Theorem 3], where $K^+ = K \cap \mathbb{R}$, v (resp. v^+) runs over all nonarchimedean primes of K_{∞} (resp. K_{∞}^+), and e_v (resp. e_{v^+}) is the ramification index of v in K_{∞}/k_{∞} (resp. v^+ in $K_{\infty}^+/k_{\infty}^+$). Using these formulas, we obtain the following theorem.

Theorem 9.2. Let Σ be a finite set of odd prime numbers, and put $S = \Sigma \cup \{\infty\}$. Then the following two statements hold true:

- (1) $G_S(\mathbb{Q}_{\infty})$ is nontrivial procyclic if and only if $\Sigma = \{r\}$ and $\left(\frac{2}{r}\right) = -1$. Then $G_S(\mathbb{Q}_{\infty}) \simeq \mathbb{Z}_2/(r-1)\mathbb{Z}_2$.
- (2) $G_S(\mathbb{Q}_{\infty})$ is nonprocyclic prometacyclic if and only if $\Sigma = \{q\}$ and $q \equiv 7 \pmod{16}$. Then $G_S(\mathbb{Q}_{\infty})$ is isomorphic to a prodihedral pro-2 group $\mathbb{Z}_2 \rtimes (\mathbb{Z}/2\mathbb{Z})$.

Proof. If $G_S(\mathbb{Q}_{\infty})$ is nontrivial prometacyclic, then $|\Sigma| = r_2(G_S(\mathbb{Q})^{ab}) \leq 2$. Moreover, $\Sigma \neq \emptyset$ by Corollary 4.2. Hence it suffices to consider the case $1 \leq |\Sigma| \leq 2$.

Assume that $\Sigma = \{r\}$ and $\binom{2}{r} = -1$. Then 2 does not split in $k = \mathbb{Q}_S^{ab}$. Since k/\mathbb{Q} is cyclic, we have $k = \mathbb{Q}_S$. Since $G_S(k)^{ab} \simeq 0$, $G_S(k_\infty)$ is trivial by Proposition 4.1. This implies that $(\mathbb{Q}_\infty)_S = k_\infty$. Hence $G_S(\mathbb{Q}_\infty) \simeq G_S(\mathbb{Q})^{ab} \simeq \mathbb{Z}_2/(r-1)\mathbb{Z}_2$.

Assume that $\Sigma = \{\ell\}$ and $\ell \equiv 1 \pmod 8$. Put $k = \mathbb{Q}_S^{ab}$. Then k/\mathbb{Q} is a cyclic extension totally ramified at ℓ , and hence $s(k_1/k_1^+) = |\Sigma_{\mathbb{Q}_1}| = 2$. Since $|A_{\{\infty\}}(\mathbb{Q}(\sqrt{2\ell}))| \geq 4$ (cf. [30]), we have $|A_{\{\infty\}}(k_1^+)| \geq |A_{\{\infty\}}(\mathbb{Q}_1(\sqrt{\ell}))| \geq 2$. Then $\lambda(k) \geq r_2(A_{\{\infty\}}(k_1^+)) - 1 + s(k_1/k_1^+) \geq 2$ by (9.1), and hence $G_S(\mathbb{Q}_\infty)$ is not prometacyclic by Lemma 9.1.

Assume that $\Sigma = \{q\}$ and $q \equiv 7 \pmod{8}$. Put $k = \mathbb{Q}(\sqrt{-q})$. Since $A_{\Sigma}(\mathbb{Q}_n) \simeq 0$, the commutative diagram

$$E(k_n) \xrightarrow{\Phi_{k_n,\Sigma}} (O_{k_n}/\sqrt{-q})^{\times} \otimes \mathbb{Z}_2 \longrightarrow A_{\Sigma}(k_n) \longrightarrow A_{\emptyset}(k_n) \longrightarrow 0$$

$$\parallel \qquad \qquad \cong \uparrow$$

$$E(\mathbb{Q}_n) \xrightarrow{\Phi_{\mathbb{Q}_n,\Sigma}} (O_{\mathbb{Q}_n}/q)^{\times} \otimes \mathbb{Z}_2 \longrightarrow A_{\Sigma}(\mathbb{Q}_n) \longrightarrow 0$$

with exact rows yields that $G_S(k_n)^{\mathrm{ab}} \simeq A_{\Sigma}(k_n) \simeq A_{\emptyset}(k_n)$ for all $n \geq 0$. Hence $G_S(k_{\infty})^{\mathrm{ab}} \simeq \varprojlim A_{\emptyset}(k_n) \simeq \mathbb{Z}_2^{\lambda(k)}$. If $q \equiv 15 \pmod{16}$, then $\lambda(k) \geq -1 + s(k_2/\mathbb{Q}_2) = 3$ by (9.1), and hence $G_S(\mathbb{Q}_{\infty})$ is not prometacyclic by Lemma 9.1. Suppose that $q \equiv 7 \pmod{16}$. Then $\lambda(k) = 1$ by (9.1) (or [6, Theorem 7]). Since $A_{\emptyset}(\mathbb{Q}_n) \simeq 0$ for all $n \geq 0$, the generator of $\operatorname{Gal}(k_{\infty}/\mathbb{Q}_{\infty})$ acts on $G_S(k_{\infty}) \simeq \varprojlim A_{\emptyset}(k_n) \simeq \mathbb{Z}_2$ as -1. Therefore $G_S(\mathbb{Q}_{\infty})$ is prodihedral if $q \equiv 7 \pmod{16}$.

Assume that $\Sigma = \{\ell_1, \ell_2\}$ and $\ell_1 \equiv \ell_2 \equiv 1 \pmod{4}$. If $\left(\frac{2}{\ell_1}\right) = 1$ or $\left(\frac{2}{\ell_2}\right) = 1$, then we have seen that $G_{\{\ell_i,\infty\}}(\mathbb{Q}_{\infty})$ is not prometacyclic. Put $k = \mathbb{Q}(\sqrt{\ell_1\ell_2})$. If $\ell_1 \equiv \ell_2 \equiv 5 \pmod{8}$ and $|A_{\emptyset}(k_2)| = 2$, then $G_{\Sigma}(\mathbb{Q}_{\infty})$ is not prometacyclic by Theorem 7.1. Note that $\mathbb{Q}_S^{ab} \cap k(\sqrt{\ell_1})_{\emptyset}^{ab} = k(\sqrt{\ell_1}) = k_{\emptyset}^{\text{elem}}$. If $\ell_1 \equiv \ell_2 \equiv 5 \pmod{8}$ and $|A_{\emptyset}(k_2)| \geq 4$, then $\mathbb{Q}_S^{ab} L/k_2(\sqrt{\ell_1})$ is a [2,2,2]-extension unramified outside S, where L is an unramified quartic extension of k_2 . Therefore $G_S(\mathbb{Q}_{\infty})$ is not prometacyclic.

Assume that $\Sigma = \{\ell, q\}$ and $\ell \not\equiv q \equiv 3 \pmod 4$. Put $k = \mathbb{Q}(\sqrt{-q})$ and $K = \mathbb{Q}_S^{ab}$. Then K_{∞}/k_{∞} and $K_{\infty}^+/\mathbb{Q}_{\infty}$ are cyclic extensions unramified outside ℓ and totally ramified at any prime lying over ℓ . Since any prime of \mathbb{Q}_{∞} lying over ℓ splits in k_{∞} , we have $\lambda(K) \geq \sum_{v^+|\ell} (e_{v^+} - 1) \geq \sum_{v^+|\ell} 3 \geq 3$ by (9.2). Hence $G_S(\mathbb{Q}_{\infty})$ is not prometacyclic by Lemma 9.1.

Assume that $\Sigma = \{q_1, q_2\}$ and $q_1 \equiv q_2 \equiv 3 \pmod{4}$. Since $(\mathbb{Q}_{\infty})_{\{q_1, \infty\}} \cap (\mathbb{Q}_{\infty})_{\{q_2, \infty\}} = \mathbb{Q}_{\infty}$, $G_{\{q_1, \infty\}}(\mathbb{Q}_{\infty})$ and $G_{\{q_2, \infty\}}(\mathbb{Q}_{\infty})$ are procyclic if $G_S(\mathbb{Q}_{\infty})$ is prometacyclic. We have seen that $G_{\{q_i, \infty\}}(\mathbb{Q}_{\infty})$ is not procyclic if $q_i \equiv 7 \pmod{8}$. Hence $G_S(\mathbb{Q}_{\infty})$ is not prometacyclic if $(\frac{2}{q_1}) = 1$ or $(\frac{2}{q_2}) = 1$. Suppose that $q_1 \equiv q_2 \equiv 3 \pmod{8}$. Then q_1 and q_2 are primes in \mathbb{Q}_{∞} . Since $G_{\Sigma}(\mathbb{Q}_{\infty}) \simeq \mathbb{Z}_2$

by Theorem 7.3, there is a 2-extension K^+/\mathbb{Q} such that $\mathbb{Q}(\sqrt{q_1q_2}) \subset K^+$ and K_∞^+ is the unique cyclic quartic extension of \mathbb{Q}_∞ unramified outside Σ . Then $K_\infty^+/\mathbb{Q}_\infty$ is totally ramified at q_1 and q_2 . Put $k=\mathbb{Q}(\sqrt{-q_2})$, $k'=\mathbb{Q}(\sqrt{-q_1})$ and $K=K^+k=K^+k'$. Note that q_1 (resp. q_2) splits in $k_\infty/\mathbb{Q}_\infty$ (resp. $k'_\infty/\mathbb{Q}_\infty$). Then $\lambda(K) \geq \sum_{v|q_1} 3 + \sum_{v|q_2} 1 - \sum_{v^+ \in \Sigma} 3 = 2$ by (9.2) for K/k, and hence $G_S(\mathbb{Q}_\infty)$ is not prometacyclic by Lemma 9.1. Thus the proof of Theorem 9.2 is completed. \square

10. Proof of Theorem 1.1

By Corollary 4.2, $G_S(\mathbb{Q}_{\infty})$ is trivial if and only if $S \subset \{\infty\}$ or $S = \{q\}$ and $q \equiv 3 \pmod 4$ (i.e., $G_S(\mathbb{Q})$ is trivial). Then $G_\emptyset(K_\infty)$ is trivial for such S and $K \subset (\mathbb{Q}_\infty)_S = \mathbb{Q}_\infty$. The statement for the case $\infty \in S$ has been obtained as Theorem 9.2. In the following, we assume that $\infty \not\in S$ and $G_S(\mathbb{Q}_\infty)$ is nontrivial. If $G_S(\mathbb{Q}_\infty)$ is nontrivial prometacyclic, $G_S(\mathbb{Q})$ is also nontrivial metacyclic. Then $1 \leq r_2(A_S(\mathbb{Q})) \leq 2$, and hence $S = \{\ell\}$, $\{r_1, r_2\}$ or $\{r_1, r_2, q\}$, where $\ell \equiv -q \equiv 1 \pmod 4$. Thus we obtain the list of all S with prometacyclic $G_S(\mathbb{Q}_\infty)$, combining the following:

- · Proposition 5.1 and Theorem 5.2 for $S = \{\ell\}$.
- · Proposition 6.2 and Theorem 6.3 for $S = \{r_1, r_2\}$ with $r_1 \not\equiv r_2 \pmod{4}$.
- · Theorem 7.1 (with Lemma 7.2) and Theorem 7.3 for $S = \{r_1, r_2\}$ with $r_1 \equiv r_2 \pmod{4}$.
- · Proposition 8.1, Theorem 8.2 and Theorem 8.3 for $S = \{r_1, r_2, q\}$.

Put $G = G_S(\mathbb{Q}_{\infty})$. Recall that Γ has a generator $\gamma = \overline{\gamma}|_{\mathbb{Q}_{\infty}}$, where $\overline{\gamma}$ is a generator of $\overline{\Gamma}$ such that $\overline{\gamma}(\zeta_{2^{n+2}}) = \zeta_{2^{n+2}}^5$ for all $n \geq 0$. Put $n_r = v_2(\frac{r^2-1}{8}) \geq 0$ for $r \in S$. Then the decomposition field of r in $\mathbb{Q}_{\infty}/\mathbb{Q}$ is \mathbb{Q}_{n_r} . Let \mathfrak{r} be a prime of \mathbb{Q}_{n_r} lying over r. Suppose that $n > n_r$. Since $\mathbb{Q}(\zeta_{2^{n+2}})/\mathbb{Q}_{n_r}$ is not a cyclic extension and \mathfrak{r} does not split in $\mathbb{Q}_n/\mathbb{Q}_{n_r}$, $\mathfrak{r}O_{\mathbb{Q}_n}$ splits in $\mathbb{Q}(\zeta_{2^{n+2}}) = \mathbb{Q}_n(\sqrt{-1})$. Let \mathfrak{R} be a prime of $\mathbb{Q}(\zeta_{2^{n_r+3}})$ lying over \mathfrak{r} . Then $O_{\mathbb{Q}_n}/\mathfrak{r} \simeq \mathbb{Z}[\zeta_{2^{n+2}}]/\mathfrak{R} \simeq \mathbb{F}_{r^{2^{n-n_r}}}$. Note that $v_2(|\mathbb{F}_{r^{2^{n-n_r}}}^{\times}|) = v_2(r^{2^{n-n_r}} - 1) = 2^{n+2}$. Since

$$(O_{\mathbb{Q}_n}/\mathfrak{r})^\times \otimes \mathbb{Z}_2 \simeq (\mathbb{Z}[\zeta_{2^{n+2}}]/\mathfrak{R})^\times \otimes \mathbb{Z}_2 = \langle (\zeta_{2^{n+2}} \bmod \mathfrak{R}) \otimes 1 \rangle \simeq \langle \zeta_{2^{n+2}} \rangle$$

as $\overline{\Gamma}^{2^{n_r+1}}$ -modules, $\gamma^{2^{n_r+1}}$ acts on $(O_{\mathbb{Q}_n}/r)^{\times} \otimes \mathbb{Z}_2 \simeq \bigoplus_{\mathfrak{r}|r} ((O_{\mathbb{Q}_n}/\mathfrak{r})^{\times} \otimes \mathbb{Z}_2)$ as $5^{2^{n_r+1}}$ for any $n > n_r$. Put $\nu = \max\{n_r + 1 \mid r \in S\}$. Then, since there is a surjective Λ -homomorphism $\varprojlim ((O_{\mathbb{Q}_n}/\prod_{r \in S} r)^{\times} \otimes \mathbb{Z}_2) \to \varprojlim A_S(\mathbb{Q}_n) \simeq G^{\mathrm{ab}}, \ \gamma^{2^{\nu}}$ acts on G^{ab} as $5^{2^{\nu}}$, i.e., $\gamma^{2^{\nu}}g = \widetilde{\gamma}^{2^{\nu}}g\widetilde{\gamma}^{-2^{\nu}} \equiv g^{5^{2^{\nu}}} \pmod{G_2}$ for $g \in G$.

Let K/\mathbb{Q} be a finite extension such that $K \subset (\mathbb{Q}_{\infty})_S$. Then $\mathbb{Q}_{\infty} \subset K_{\infty} \subset (K_{\infty})^{\mathrm{ab}}_{\emptyset} \subset (\mathbb{Q}_{\infty})_S$. We show that $G_{\emptyset}(K_{\infty})^{\mathrm{ab}}$ is finite if G is prometacyclic. If G is finite, then $G_{\emptyset}(K_{\infty})^{\mathrm{ab}}$ is also finite. In the following, we assume that G is infinite prometacyclic. If $G_{\emptyset}(K'_{\infty})^{\mathrm{ab}}$ is finite for some finite extension K'/K, then $G_{\emptyset}(K_{\infty})^{\mathrm{ab}}$ is also finite. Hence we may assume that K/\mathbb{Q} is a finite Galois extension such that $(\mathbb{Q}_{\infty})_S^{\mathrm{elem}} \subset K_{\infty}$. Let N be a procyclic closed normal subgroup of G such that G/N is also procyclic. If G is procyclic, we assume that N is trivial. Put $M = (\mathbb{Q}_{\infty})_S^N$ the fixed field of N. Since $G_{\emptyset}(\mathbb{Q}_{\infty})$ is trivial, M/\mathbb{Q}_{∞} is totally ramified at some prime v of \mathbb{Q}_{∞} . If G is procyclic, then $(\mathbb{Q}_{\infty})_S = M$, and hence $G_{\emptyset}(K_{\infty})^{\mathrm{ab}}$ is trivial. Suppose that N is finite. Then the subquotient $\mathrm{Gal}((K_{\infty})_S^{\mathrm{ab}}/K_{\infty}M)$ of N is also finite. Since G is infinite, M/\mathbb{Q}_{∞} is a \mathbb{Z}_2 -extension, and hence $K_{\infty}M$ is the unique \mathbb{Z}_2 -extension of K_{∞} unramified outside S. Since M/\mathbb{Q}_{∞} is totally ramified at v, $K_{\infty}M/K_{\infty}$ is not unramified. This implies that

 K_{∞} has no unramified \mathbb{Z}_2 -extension. Therefore $G_{\emptyset}(K_{\infty})^{\mathrm{ab}}$ is finite if N is finite. In the following, we assume that N is infinite and G is not procyclic. Let a, b be the generators of G such that $N = \langle a \rangle \simeq \mathbb{Z}_2$ and $G/N = \langle bN \rangle$. Since $G_2 \subset N$, we have $[a,b] = a^z$ with some $z \in 2\mathbb{Z}_2$. Then $G_2 = \langle a^z \rangle$ and $b^{-1}ab = a^{1+z}$. Since $\gamma^{2^{\nu}}$ acts on G^{ab} as $5^{2^{\nu}}$, $\gamma^{2^{\nu}}$ $a = a^{5^{2^{\nu}}+xz}$ and $\gamma^{2^{\nu}}$ $b = b^{5^{2^{\nu}}}$ a^{yz} with some $x, y \in \mathbb{Z}_2$. Hence

$$1 = {{\gamma^2}^{\nu}} 1 = {{\gamma^2}^{\nu}} (a^{-(1+z)}b^{-1}ab) = a^{(1+z)(5^{2^{\nu}} + xz)((1+z)^{5^{2^{\nu}} - 1} - 1)}.$$

This implies that $(1+z)^{5^{2^{\nu}}-1}=1$, i.e., z=0 or z=-2. If z=0, then G is abelian, and $G/G^2\simeq \mathbb{F}_2[[T]]/T^2$ or $(\mathbb{F}_2[[T]]/T)^2$ as $\mathbb{F}_2[[T]]$ -modules. If z=-2, we have $b^{-1}ab=a^{-1}$ and $G_2=\langle a^2\rangle$. Then $[a,b^2]=1$. Let H be an abelian maximal subgroup of G such that:

- · $H/G^2 = T(G/G^2)$ if z = 0 and $G/G^2 \simeq \mathbb{F}_2[[T]]/T^2$,
- $\cdot H = \langle a, b^2 \rangle \text{ if } z = -2.$

(If z=0 and $G/G^2\simeq (\mathbb{F}_2[[T]]/T)^2$, then H is an arbitrary maximal subgroup of G.) If z=0, then $T(H/G^2)\simeq 0$, i.e., $\gamma h\equiv h\pmod{G^2}$ for any $h\in H$, and hence ${}^{\gamma}H=H$. If z=-2 and $b^2\in N$, then G is prodihedral, and H=N is the unique procyclic maximal subgroup. If z=-2 and $b^2 \notin N$, then $r_4(G/G_2)=1$, and H is the unique maximal subgroup such that $r_2(H/G_2) = 2$. Therefore, by the uniqueness of such H, we have ${}^{\gamma}H = H$ even if z = -2. This implies that the fixed field $(\mathbb{Q}_{\infty})_S^H$ of H is a Galois extension of \mathbb{Q} . Since γ acts on G/H trivially, $(\mathbb{Q}_{\infty})_S^H/\mathbb{Q}$ is abelian. Hence the inertia field k of 2 in $(\mathbb{Q}_{\infty})_S^H/\mathbb{Q}$ is a real quadratic field, and $(\mathbb{Q}_{\infty})_S^H = k_{\infty}$. Recall that we are assuming $k_{\infty} \subset (\mathbb{Q}_{\infty})_S^{\text{elem}} \subset K_{\infty}$. Since H is abelian, $(K_{\infty})_{\emptyset}^{ab}/k_{\infty}$ is an abelian extension. Since any prime in the finite set $S_{k_{\infty}}$ has finite ramification index in $(K_{\infty})_{\emptyset}^{ab}/k_{\infty}$, $G_{\emptyset}(k_{\infty})^{ab}$ is infinite if $G_{\emptyset}(K_{\infty})^{ab}$ is infinite. Hence it suffices to show the finiteness of nontrivial $G_{\emptyset}(k_{\infty})^{\mathrm{ab}}$. Since $(k_{\infty})_{\emptyset}^{\text{elem}}/\mathbb{Q}_{\infty}$ is an elementary abelian 2-extension, $G_{\emptyset}(k_{\infty})^{\text{ab}}$ is procyclic. By the list of S with nonprocyclic prometacyclic G and [20, Corollary 3.4 and Theorem 3.8], the real quadratic field $k \subset \mathbb{Q}_S$ with nontrivial procyclic $G_{\emptyset}(k_{\infty})^{\mathrm{ab}}$ satisfies one of the following:

- · $k = \mathbb{Q}(\sqrt{\ell}), \ \ell \equiv 9 \pmod{16}, \ \left(\frac{2}{\ell}\right)_4 = -1$. Then $G_{\emptyset}(k_{\infty})^{\mathrm{ab}}$ is finite by [20, Theorem 4.1].
- $k = \mathbb{Q}(\sqrt{r_1 r_2}), r_1 \equiv r_2 \equiv 5 \pmod{8}$. Then $G_{\emptyset}(k_{\infty})^{ab}$ is finite by [23].
- $k = \mathbb{Q}(\sqrt{r_1 r_2}), r_1 \equiv 1 \pmod{8}, r_2 \equiv 5 \pmod{8}, \left(\frac{r_1}{r_2}\right) = -1, \left(\frac{2}{r_1}\right)_4 \left(\frac{r_1}{r_2}\right)_4 = -1. \text{ Then } G_{\emptyset}(k_{\infty})^{\mathrm{ab}} \simeq \mathbb{Z}/2\mathbb{Z} \text{ by Theorem 4.3 and Lemma 7.2.}$
- · $k = \mathbb{Q}(\sqrt{r_1 r_2})$, $r_1 \equiv 7 \pmod{16}$, $r_2 \equiv 15 \pmod{16}$. Then $G_{\emptyset}(k_{\infty})^{ab}$ is finite by Corollary 7.5.
- · $k = \mathbb{Q}(\sqrt{q_1q_2r}), q_1 \equiv 3 \pmod{8}, q_2 \equiv 7 \pmod{8}, r \equiv 5 \pmod{8}, \left(\frac{q_2}{r}\right) = -1$. Then $G_{\emptyset}(k_{\infty})^{\mathrm{ab}} \simeq \mathbb{Z}/2\mathbb{Z}$ by Theorem 8.2 (cf. also [20, Theorem 4.4]).
- $k = \mathbb{Q}(\sqrt{q_1q_2r}), q_1 \equiv q_2 \equiv 3 \pmod{8}, r \equiv 5 \pmod{8}, \left(\frac{q_1q_2}{r}\right) = -1.$ Then $G_{\emptyset}(k_{\infty})^{\mathrm{ab}} \simeq \mathbb{Z}/2\mathbb{Z}$ by Theorem 8.2.

The finiteness of $G_{\emptyset}(k_{\infty})^{\mathrm{ab}}$ has been known in each case. Therefore $G_{\emptyset}(K_{\infty})^{\mathrm{ab}}$ is finite if $G_{S}(\mathbb{Q}_{\infty})$ is prometacyclic. Thus the proof of Theorem 1.1 is completed.

ACKNOWLEDGMENT

The author thanks the referee for valuable comments for the improvement of this paper.

References

- Elliot Benjamin, Franz Lemmermeyer, and C. Snyder, Real quadratic fields with abelian 2class field tower, J. Number Theory 73 (1998), no. 2, 182–194, DOI 10.1006/jnth.1998.2291.
 MR1658015
- [2] Elliot Benjamin and C. Snyder, Real quadratic number fields with 2-class group of type (2,2),
 Math. Scand. 76 (1995), no. 2, 161–178, DOI 10.7146/math.scand.a-12532. MR1354574
- [3] N. Blackburn, On prime-power groups with two generators, Proc. Cambridge Philos. Soc. 54 (1958), 327–337. MR0102557
- [4] Julien Blondeau, Philippe Lebacque, and Christian Maire, On the cohomological dimension of some pro-p-extensions above the cyclotomic Z_p-extension of a number field (English, with English and Russian summaries), Mosc. Math. J. 13 (2013), no. 4, 601–619, 736–737. MR3184074
- [5] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-p groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR1720368
- [6] Bruce Ferrero, The cyclotomic Z₂-extension of imaginary quadratic fields, Amer. J. Math. 102 (1980), no. 3, 447–459, DOI 10.2307/2374108. MR573095
- [7] Takashi Fukuda, Remarks on Z_p-extensions of number fields, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), no. 8, 264–266. MR1303577
- [8] Ralph Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), no. 1, 263–284, DOI 10.2307/2373625. MR0401702
- [9] Tsuyoshi Itoh, Yasushi Mizusawa, and Manabu Ozaki, On the \mathbb{Z}_p -ranks of tamely ramified Iwasawa modules, Int. J. Number Theory **9** (2013), no. 6, 1491–1503, DOI 10.1142/S1793042113500395. MR3103900
- [10] Tsuyoshi Itoh and Yasushi Mizusawa, On tamely ramified pro-p-extensions over Z_p-extensions of Q, Math. Proc. Cambridge Philos. Soc. 156 (2014), no. 2, 281–294, DOI 10.1017/S0305004113000637. MR3177870
- [11] Yûji Kida, On cyclotomic Z₂-extensions of imaginary quadratic fields, Tôhoku Math. J. (2) 31 (1979), no. 1, 91–96, DOI 10.2748/tmj/1178229880. MR526512
- [12] Yûji Kida, Cyclotomic Z₂-extensions of J-fields, J. Number Theory 14 (1982), no. 3, 340–352, DOI 10.1016/0022-314X(82)90069-5. MR660379
- [13] H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's theorem 94, J. Number Theory 8 (1976), no. 3, 271–279, DOI 10.1016/0022-314X(76)90004-4. MR0417128
- [14] Helmut Koch, Galois theory of p-extensions, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. MR1930372
- [15] Tomio Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65–85. MR0083009
- [16] Franz Lemmermeyer, Kuroda's class number formula, Acta Arith. 66 (1994), no. 3, 245–260. MR1276992
- [17] Franz Lemmermeyer, The ambiguous class number formula revisited, J. Ramanujan Math. Soc. 28 (2013), no. 4, 415–421. MR3158989
- [18] Christian Maire, Sur la dimension cohomologique des pro-p-extensions des corps de nombres (French, with English and French summaries), J. Théor. Nombres Bordeaux 17 (2005), no. 2, 575–606. MR2211309
- [19] Yasushi Mizusawa and Manabu Ozaki, On tame pro-p Galois groups over basic \mathbb{Z}_p -extensions, Math. Z. **273** (2013), no. 3-4, 1161–1173, DOI 10.1007/s00209-012-1048-2. MR3030694
- [20] Ali Mouhib and Abbas Movahhedi, Cyclicity of the unramified Iwasawa module, Manuscripta Math. 135 (2011), no. 1-2, 91–106, DOI 10.1007/s00229-010-0407-8. MR2783388
- [21] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR2392026
- [22] Manabu Ozaki, Non-abelian Iwasawa theory of \mathbb{Z}_p -extensions, J. Reine Angew. Math. **602** (2007), 59–94, DOI 10.1515/CRELLE.2007.003. MR2300452
- [23] Manabu Ozaki and Hisao Taya, On the Iwasawa λ_2 -invariants of certain families of real quadratic fields, Manuscripta Math. **94** (1997), no. 4, 437–444, DOI 10.1007/BF02677865. MR1484637

- [24] The PARI Group, PARI/GP ver. 2.5.5, Bordeaux, 2013. http://pari.math.u-bordeaux.fr/
- [25] L. Rédei and H. Reichardt, Die Anzahl der durch vier teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1934), 69–74, DOI 10.1515/crll.1934.170.69. MR1581397
- [26] Landry Salle, Sur les pro-p-extensions à ramification restreinte au-dessus de la \mathbb{Z}_p -extension cyclotomique d'un corps de nombres, J. Théor. Nombres Bordeaux **20** (2008), no. 2, 485–523. MR2477515
- [27] Landry Salle, On maximal tamely ramified pro-2-extensions over the cyclotomic Z₂-extension of an imaginary quadratic field, Osaka J. Math. 47 (2010), no. 4, 921–942. MR2791570
- [28] H. Taya and G. Yamamoto, Notes on certain real abelian 2-extension fields with $\lambda_2 = \mu_2 = \nu_2 = 0$, Trends in Mathematics, Information Center for Mathematical Sciences 9 (2006), no. 1, 81–89. http://mathnet.kaist.ac.kr/new_TM/
- [29] Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR1421575
- [30] Yoshihiko Yamamoto, Divisibility by 16 of class number of quadratic fields whose 2-class groups are cyclic, Osaka J. Math. 21 (1984), no. 1, 1–22. MR736966
- [31] Hideo Yokoi, On the class number of a relatively cyclic number field, Nagoya Math. J. 29 (1967), 31–44. MR0207681

Department of Mathematics, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan

E-mail address: mizusawa.yasushi@nitech.ac.jp