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HOMOLOGICAL DEGREES OF REPRESENTATIONS

OF CATEGORIES WITH SHIFT FUNCTORS

LIPING LI

Abstract. Let � be a commutative Noetherian ring and let C be a locally
finite �-linear category equipped with a self-embedding functor of degree 1.
We show under a moderate condition that finitely generated torsion represen-
tations of C are super finitely presented (that is, they have projective resolu-
tions, each term of which is finitely generated). In the situation that these
self-embedding functors are genetic functors, we give upper bounds for homo-
logical degrees of finitely generated torsion modules. These results apply to
quite a few categories recently appearing in representation stability theory. In
particular, when � is a field of characteristic 0, using the result of Church and
Ellenberg [arXiv:1506.01022], we obtain another upper bound for homological
degrees of finitely generated FI-modules.
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1. Introduction

1.1. Background. Recently, a few combinatorial categories appeared in represen-
tation stability theory, an exciting new research area involving many mathematical
branches, such as representation theory, group cohomology, algebraic topolgy, al-
gebraic geometry, algebraic number theory, commutative algebra, combinatorics,

etc. Examples include F̃I, 1 the category of finite sets and injections investigated
by Church, Ellenberg, Farb, and Nagpal in a series of papers [2, 4, 5, 7, 20] and its
many variations introduced by Putman, Sam, Snowden, and Wilson in [22,25–27].
Representation theory of these categories, on the one hand, was used to prove
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different stability phenomena as shown in [3–5, 21, 22]; on the other hand, it was
studied in its own right since these categories have very interesting combinatorial
structures, which often induce surprising representational and homological proper-
ties. For example, when � is a commutative Noetherian ring, the �-linearizations of
many categories are locally Noetherian ([4,5,10,26]); that is, submodules of finitely
generated modules are still finitely generated.

A central property shared by many of these combinatorial categories is the ex-
istence of a faithful endofunctor called a self-embedding functor by us; see Section
3.1. It induces a shift functor Sa of degree a in the module categories for every
a ∈ Z+, the set of nonnegative integers; see Definition 3.2. These self-embedding
functors and their induced shift functors have nice properties, such as preserving
finitely generated projective representations, and hence play an extremely impor-
tant role in exploring representational and homological properties of these cate-
gories. For instance, they were first observed in [5] and used to prove the locally

Noetherian property of the category F̃I over Noetherian rings �. When � is a field
of characteristic 0, Gan and the author used them in [11] to show the Koszulity
of �-linearizations of quite a few combinatorial categories simultaneously. In [12]
we introduced coinduction functors, which are right adjoints of shift functors, and
gave new and simpler proofs for many results of FI established in [4] and [25]. A
few months ago, Church and Ellenberg used shift functors to study homologies of
FI-modules and proved a surprising upper bound for homological degrees of them
([2, Theorem A]).

Motivated by the work of Church and Ellenberg in [2], in this paper we focus on
homologies of representations of �-linear categories C equipped with self-embedding
functors and induced shift functors, where � is a commutative ring. Note that C in
general might not be locally Noetherian. Thus from the homological viewpoint we
are more interested in super finitely presented representations, or FP∞ represen-
tations, of C, which by definition have resolutions consisting of finitely generated
projective representations. Specifically, we want to know what representations are
FP∞, explore homologies of these FP∞ representations, and estimate upper bounds
for their homological degrees.

1.2. General results. Let � be a commutative Noetherian ring, and let C be a
locally finite �-linear category of type A∞. That is, objects of C are parameterized
by nonnegative integers, there is no nonzero morphisms from bigger objects to
smaller ones, and C(i, j) is a finitely generated �-module for all i, j ∈ Z+.

By the A∞ structure, C has a two-sided ideal J consisting of finite linear com-
binations of morphisms between distinct objects. Thus we identify C0, the set of
finite linear combinations of endomorphisms in C, with C/J . It has the following
decomposition as C-modules:

C0 =
⊕
i∈Z+

C(i, i).

Given a C-module V , its s-th homology is set to be

Hs(V ) = TorCs (C0, V ), s ∈ Z+.

Since C0 = C/J is a C-bimodule, Hs(V ) is a left C-module as well and is torsion
(see Definition 2.7). Moreover, it is discrete; that is, the value of Hs(V ) on each
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object is a C-module concentrated on this object, and Hs(V ) is the direct sum of
them.

The s-th homological degree of V is defined to be

hds(V ) = sup{i ∈ Z+ | the value of Hs(V ) on i is nonzero}

or −∞ if this set is empty. We also define the torsion degree of V to be

td(V ) = sup{i ∈ Z+ | HomC(C(i, i), V ) �= 0}

or −∞ if this set is empty. Sometimes we call hd0(V ) the generating degree and
denote it by gd(V ).

Remark 1.1. Torsion degrees and homological degrees are closely related. Actually,
for s � 0, one can see that hds(V ) = td(Hs(V )). It is also clear that if V is
generated by

⊕n
i=0 Vi, then n � gd(V ).

To avoid the situation that certain homological degrees of a C-module V are infin-
ity, in this paper we mainly consider FP∞ modules V . It turns out many interesting
C-modules fall into this class when C has a self-embedding functor satisfying some
assumption.

Theorem 1.2. Let � be a commutative Noetherian ring and C be a locally finite
�-linear category of type A∞ equipped with a self-embedding functor ι of degree 1.
Let S1 be the induced shift functor. If S1 preserves finitely generated projective C-
modules, then a C-module V is FP∞ if and only if so is S1V . In particular, every
finitely generated torsion module is FP∞.

Remark 1.3. Of course, if C is locally Noetherian, the conclusion of this theorem is
implied trivially by the Noetherian property. The usefulness of this theorem is that
it does not require C to be locally Noetherian. Indeed, there are many locally finite
�-linear categories of type A∞ which are not locally Noetherian, and in practice it
is difficult to check the locally Noetherian property of C.

Remark 1.4. A similar result was pointed out by Franjou, Lannes, and Schwartz
earlier for the category of vector spaces over finite fields; see [8, Proposition 10.1].

Usually it is hard to estimate homological degrees of finitely generated torsion
C-modules V . However, if the self-embedding functor is a genetic functor (see
Definition 4.1, then one can prove that V has Castelnuovo-Mumford regularity (see
[6] for a definition in commutative algebra) expressed in terms of td(V ) only.

Theorem 1.5 (Castelnuovo-Mumford regularity). Let � and C be as in the previous
theorem, and let V be an FP∞ module of C. Suppose that C is equipped with a
genetic functor.

(1) If there exists a certain a ∈ Z+ such that

hds(SaV ) � gd(SaV ) + s,

for s � 0, then

hds(V ) � gd(V ) + a+ s.

(2) If V is a finitely generated torsion module, then

hds(V ) � td(V ) + s.
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Remark 1.6. Although in this paper we restrict ourselves to the setting of FP∞
modules, with the same essential idea and suitable modifications, the above reg-
ularity result holds for all representations generated in finite degrees which might
not be finitely generated. For example, an infinitely generated representation con-
centrated in one object is generated in finite degrees. We should also point out
that the conclusion of this theorem holds for arbitrary commutative rings � which
might not be Noetherian.

Remark 1.7. We remind the reader that the above result actually can be used to
estimate homological degrees of many interesting modules besides torsion modules.
Examples include truncations of projective modules, “syzygies” of finitely generated
torsion modules, etc. Moreover, if a C-module V is almost isomorphic to (see
Definition 3.11) one of the above modules, then homological degrees of V can be
estimated as well by using this result.

Remark 1.8. The essential idea of the first statement of this theorem is that while
applying the shift functor enough times to a finitely generated representation V , it
often happens that the shifted module becomes very simple, and hence its homo-
logical degrees can be easily estimated. For instance, in a forthcoming paper [18]
it will be proved that if we apply the shift functor enough times to an arbitrary
finitely generated representation of FI, then higher homologies of the shift module
all vanish. Therefore, the condition in the first statement of this theorem is fulfilled
trivially.

1.3. Application in representation stability theory. These results immedi-
ately apply to a few combinatorial categories in representation stability theory. Let
us briefly recall their definitions. For more details, the reader may refer to [26] or
[11].

Example 1.9 (The category FIG). Let G be a finite group. The category C = FIG
has objects that are nonnegative integers. For i, j ∈ Z+, C(i, j) is the set of pairs
(f, g) where f : {1, . . . , i} → {1, . . . , j} is an injection and g : {1, . . . , i} → G is
an arbitrary map. For (f1, g1) ∈ C(i, j) and (f2, g2) ∈ C(j, k), their composition is
(f3, g3) where

f3 = f2 ◦ f1 and g3(r) = g2(f1(r)) · g1(r)
for 1 � r � i.

Example 1.10 (The category VIq). Let F be a finite field. The category VIq has
objects that are nonnegative integers. Morphisms from i to j are linear injections
from F

⊕i to F
⊕j .

Example 1.11 (The category OIG). As a subcategory of FIG, OIG has the same
objects as FIG. For x, y ∈ Z+, a morphism (f, c) ∈ FIG(x, y) is contained in
OIG(x, y) if and only if f is increasing.

Example 1.12 (The category FId). Let d be a positive integer. The category FId
has objects that are nonnegative integers. For x, y ∈ Z+, FId(x, y) is the set of all
pairs (f, δ) where f : [x] → [y] is injective and δ : [y] \ Im(f) → [d] is an arbitrary
map. For (f1, δ1) ∈ FId(x, y) and (f2, δ2) ∈ FId(y, z), their composition is (f3, δ3)
where f3 = f2 ◦ f1 and

δ3(m) =

{
δ1(r) if m = f2(r) for some r,
δ2(m) else.
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Example 1.13 (The category OId). As a subcategory of FId, OId has the same
objects. For x, y ∈ Z+, OId(x, y) consists of pairs (f, δ) such that f is increasing.

Example 1.14 (The opposite category FS
op
G of FSG). Let G be a finite group.

The category FSG has objects that are all positive integers. For two objects x
and y, FSG(y, x) consists of pairs (f, δ) where f : [y] → [x] is a surjection and
δ : [y] → G is an arbitrary map. For (f1, δ1) ∈ FSG(y, x) and (f2, δ2) ∈ FSG(z, y),
their composition is (f3, δ3) where

f3 = f1 ◦ f2 and δ3(r) = δ1(f2(r)) · δ2(r)
for r ∈ [z].

Example 1.15 (The opposite category OS
op
G of OSG). The subcategory OSG has

the same objects as FSG. For two objects x and y, OSG(y, x) consists of pairs
(f, c) ∈ FSG(y, x) where f is an ordered surjection.

It has been shown in [11] that �-linearizations of the above categories all have
genetic functors. Thus we have:

Corollary 1.16. Let C be the �-linearization of one of the following categories:

FIG, OIG, VIq, FId, OId, FS
op
G , OS

op
G ,

and let V be a finitely generated torsion C-module. Then for s ∈ Z+,

hds(V ) � td(V ) + s.

The category FI has many interesting and surprising representational and ho-
mological properties. In particular, when � is a field of characteristic 0, finitely
generated projective FI-modules are injective as well, and every finitely generated
FI-module V has a finite injective resolution; see [12, 25]. Using this result, as
well as the upper bound given in [2, Theorem A], we get another upper bound for
homological degrees of finitely generated FI-modules V . That is:

Theorem 1.17. Let � be a field of characteristic 0, and let V be a finitely generated
FI-module. Then for s � 1,

hds(V ) � max{2 gd(V )− 1, td(V )}+ s.

Remark 1.18. In [2] Church and Ellenberg gave the following upper bounds for
homological degrees of FI-modules for an arbitrary ring:

hds(V ) � gd(V ) + hd1(V ) + s− 1.

Compared to it, the conclusion of Theorem 1.17 has a big shortcoming. That is, it
depends on the existence of a finite injective resolution for every finitely generated
FI-module. When � is an arbitrary commutative Noetherian ring, this fact may no
longer be true, even for fields with a positive characteristic.2

But our result does have some advantages. Firstly, in practice it is usually easier
to obtain td(V ) compared to hd1(V ). Moreover, if V is torsionless, then td(V ) = 0,
and one deduces that

hds(V ) � 2 gd(V ) + s− 1

2Using a crucial technique developed in [2,20], in a forthcoming paper [18] we will remove from
the above theorem the unnecessary assumption that � is a field of characteristic 0.
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for s � 1. Since by Lemma 5.13 one always has hd1(V ) > gd(V ) when k is a
field of characteristic 0, our bounds are a little more optimal for these modules; see
Example 5.20.

In [25] Sam and Snowden have shown that when � is a field of characteristic 0,
every finitely generated FI-module has finite Castelnuovo-Mumford regularity; see
[26, Corollary 6.3.5]. But an explicit upper bound of this regularity was not given.

Remark 1.19. Recently, much progress on homological properties of the category
FI has been achieved via the works of Church, Ellenberg, Gan, Ramos, Yu, and the
author. To track the latest developments, the reader can refer to [2,9,15–18,23,24].

1.4. Organization. This paper is organized as follows. In Section 2 we give ba-
sic definitions and elementary results used throughout this paper. In particular,
homological degrees, torsion degrees, and generating degrees of modules are defined
and their relationships are clarified.

General results are described and proved in Sections 3 and 4. In Section 3
we consider self-embedding functors and their induced shift functors. Under a
moderate assumption, we show that a representation is finitely generated (resp.,
finitely presented; FP∞) if and only if so is the shifted one. Using this, one can easily
deduce Theorem 1.2. Genetic functors and their induced shift functors are studied
in Section 4. We describe a crucial recursive procedure to compare homological
degrees of a module to those of the shifted module and prove Theorem 1.5.

Applications of general results in representation stability theory are collected in
Section 5. Corollary 1.16 is an immediate result of Theorem 1.5 since the existence
of genetic functors for these categories was already proved in [11]. Moreover, when
� is a field of characteristic 0, we give another proof of the Koszulity of these
combinatorial categories and show that the category of Koszul modules is closed
under truncation functors (Proposition 5.7). Finally, using the method described in
[12], we explicitly construct an injective resolution for every finitely generated FI-
module and use this resolution, as well as the general results, to establish Theorem
1.17.

2. Preliminaries

Throughout this paper let � be a commutative Noetherian ring with identity,
and let C be a (small) �-linear category. That is, for x, y ∈ ObC, the morphism
set C(x, y) is a �-module; furthermore, composition of morphisms is �-linear. Note
that for every object x ∈ ObC, C(x, x) is a �-algebra with identity 1x.

2.1. Type A∞ categories and their representations. Recall that the �-linear
category C is of type A∞ if ObC = Z+ and C(i, j) = 0 whenever i > j. For technical
purposes, we suppose that C satisfies the following locally finite condition: C(i, j)
is a finitely generated �-module for all i, j ∈ Z+.

A representation V of C (or a C-module) by definition is a covariant �-linear
functor from C to � -Mod, the category of left �-modules. For each object i ∈ Z+,
we let Vi = V (i) be the image of i under V , which is a C(i, i)-module, called the
value of V on i.

Remark 2.1. Clearly C can be viewed as a (non-unital) algebra AC in a natural way.
Therefore, given a representation V of C, the �-module

⊕
i∈Z+

Vi is an AC-module,

denoted by V , again by abuse of notation. The category of representations of C
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can be identified with a full subcategory of AC-modules. That is, an AC-module V
is a representation of C if and only if V ∼=

⊕
i∈Z+

1iV as �-modules. Sometimes we

regard C as an algebra via identifying it with AC, and hopefully this will not cause
confusion to the reader.

In this paper we only consider representations of C, or C-modules, rather than
all AC-modules. Denote by C -Mod the category of all C-modules and by C -lfmod
the category of locally finite C-modules. We remind the reader that a C-module V
is locally finite if for each i ∈ Z+, the C(i, i)-module Vi restricted as a �-module is
finitely generated. Since � is Noetherian and kernels and cokernels of C-modules
are defined via values on objects, the category C -lfmod is abelian.

2.2. Finitely generated modules. For i ∈ Z+, the representable functor C(i,−)
is a projective object in C -Mod. We identify it with the C-module C1i consisting
of finite linear combinations of morphisms starting from the object i.

Lemma 2.2. The category C -lfmod has enough projectives.

Proof. Indeed, for V ∈ C -lfmod, one has V =
⊕

i∈Z+
Vi such that the C(i, i)-module

Vi restricted as a �-module is finitely generated. Therefore, as a C(i, i)-module it is
finitely generated as well. Now choose a surjection C(i, i)⊕ai → Vi of C(i, i)-modules
for each i ∈ Z+. We get a surjection⊕

i∈Z+

C(i, i)⊕ai →
⊕
i∈Z+

Vi,

which induces a surjection of C-modules as follows:

P =
⊕
i∈Z+

C⊗C(i,i) C(i, i)
⊕ai ∼=

⊕
i∈Z+

(C1i)
⊕ai → V.

One has to show that P is locally finite. But this is clear since for every j,

Pj =
⊕

0�i�j

C(i, j)⊕ai ,

which is a finitely generated �-module by the locally finite condition of C. �

Based on this lemma, one can define finitely generated C-modules.

Definition 2.3. A C-module V is finitely generated if there exists a surjective
C-module homomorphism

π :
⊕
i∈Z+

(C1i)
⊕ai → V

such that
∑

i∈Z+
ai < ∞.

Finitely generated C-modules are always locally finite. Therefore, the category of
finitely generated C-modules, denoted by C -fgmod, is a full subcategory of C -lfmod.
However, C -fgmod in general is not abelian, and it is abelian if and only if C is a
locally Noetherian category; i.e., submodules of C1i are finitely generated for i ∈ Z+.

Remark 2.4. A locally finite C-module V is finitely generated if and only if it is

generated in finite degrees. That is, V is generated by the subset
⊕N

i=0 Vi for a

certain N ∈ Z+, or equivalently, any submodule of V containing
⊕N

i=0 Vi coincides
with V .
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2.3. Truncations. Given n ∈ Z+, one defines the truncation functor of degree n
as

τn : C -Mod → C -Mod, V 	→ τnV =
⊕
i�n

Vi.

Note that τnV is viewed as a C-module via setting its value on each i with i < n
to be 0. Moreover,

⊕
i<n Vi is also a C-module via identifying it with the quotient

module V/τnV . Clearly, τn is an exact functor, and one has

HomC(τnV,W ) ∼= HomC(τnV, τnW )

for C-modules V and W .
The truncation functor τn preserves the locally finite property and hence induces

a functor C -lfmod → C -lfmod, which is still denoted by τn. However, it does not
preserve the finitely generated property, as shown by the following example.

Example 2.5. Let C be the �-linearization of the following quiver:

0

�����
���

���
���

��

����
��
��
��

�� ��
��

��
��

��

���
�������

1 2 3 4 . . . .

The reader can check that C is a locally finite �-linear category of type A∞. How-
ever, τ1(C10) is not finitely generated.

2.4. Torsion degrees and torsion modules. Let V be a locally finite C-module.
The torsion degree of V , denoted by td(V ), is defined to be

td(V ) = sup{i ∈ Z+ | HomC(C(i, i), V ) �= 0},
where C(i, i) is viewed as a C-module in a natural way. If the above set is empty,
we set td(V ) = −∞ and say that V is torsionless.

Lemma 2.6. Let 0 → U → V → W → 0 be a short exact sequence of locally finite
C-modules. Then

td(U) � td(V ) � max{td(U), td(W )}.

Proof. It V is torsionless, then HomC(C(i, i), V ) = 0 for every i ∈ Z+, and hence
HomC(C(i, i), U) = 0 as well. Therefore, both td(U) and td(V ) are −∞, and the
conclusion holds.

If td(V ) = ∞, then for every N ∈ Z+, one can find i ∈ Z+ with i > N
such that HomC(C(i, i), V ) is nonzero. Applying the functor HomC(C(i, i),−) to
the short exact sequence one deduces that either HomC(C(i, i), U) is nonzero or
HomC(C(i, i),W ) is nonzero. Consequently, either td(U) or td(V ) is ∞. The con-
clusion still holds.

If td(V ) is a finite number, we can let i be an integer with i > td(V ). By defini-
tion, HomC(C(i, i), V ) is 0. Applying HomC(C(i, i),−) to the sequence one deduces
that HomC(C(i, i), U) = 0, so td(U) � td(V ). To check the second inequality, one
only needs to note that if both HomC(C(i, i), U) and HomC(C(i, i),W ) are 0, then
HomC(C(i, i), V ) must be 0 as well. �
Definition 2.7. A finitely generated C-module U is a torsion module if there exists
a certain N ∈ Z+ such that Ui = 0 for i > N . A locally finite C-module V is a
torsion module if V can be written as a direct sum of finitely generated torsion
C-modules.
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Remark 2.8. Note that for an infinitely generated torsion module V , one may not
be able to find a fixed number N ∈ Z+ such that Vi = 0 for i > N . However, if
V is a (nonzero) finitely generated torsion module, then one can let N = td(V ),
which is nothing but the last object on which the value of V is nonzero.

2.5. Homologies of representations. Let

J =
⊕

0�i<j<∞
C(i, j),

which is a two-sided ideal of C (or more precisely, a two-sided ideal of the �-algebra
AC). Let

C0 =
⊕
i∈Z+

C(i, i),

which is a (left and right) quotient C-module via identifying it with C/J .
For every V ∈ C -lfmod, the map

V 	→ V/JV ∼= C0 ⊗C V

gives rise to a functor from C -lfmod to itself. This is a right exact functor, so we
define homologies of V by setting

Hi(V ) = Tor
C
i (C0, V ),

which are C-modules again. Calculations of homologies of V can be carried out
via the usual homological method. That is, take a projective resolution of V and
tensor it with C0 ⊗C −.

Remark 2.9. This definition is motivated by the definition of homologies of FI-
modules discussed in literature such as [2,4,5,13]. In [2,13], it was pointed out that
homologies of FI-modules can be computed through an explicit complex constructed
by using the shift functor.

Remark 2.10. From the above definition one knows that for each i ∈ Z+, Hi(V )
has the following decomposition as C-modules:

Hi(V ) ∼=
⊕
j∈Z+

Hi(V )j ,

where Hi(V )j is a C-module concentrated on object j. In particular, Hi(V ) is a
torsion module.

The homological degrees of V are defined via letting

hdi(V ) = td(Hi(V )), i ∈ Z+.

For i = 0, we call hd0(V ) the generating degree of V , denoted by gd(V ). To
justify this name, one only needs to keep in mind that gd(V ) has the following
interpretation: for a nonzero module V ,

gd(V ) = sup{i ∈ Z+ | (V/JV )i �= 0}

= min{N ∈ Z+ ∪ {∞} | V is generated by
⊕
i�N

Vi}.

The following result is trivial.
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Lemma 2.11. Let 0 → U → V → W → 0 be a short exact sequence of locally
finite C-modules. Then

gd(W ) � gd(V ) � max{gd(U), gd(W )}.

3. Super finitely presented property

In this section we focus on categories equipped with self-embedding functors and
consider FP∞ modules of these categories.

3.1. Definitions. An endofunctor ι : C → C is called a self-embedding functor of
degree 1 if ι is faithful and one has ι(s) = s+ 1 for s ∈ Z+. It induces a pull-back
functor ι∗ : C -Mod → C -Mod. Explicitly, if V : C → � -Mod is a representation of
C, then one defines ι∗(V ) = V ◦ ι.
Remark 3.1. Clearly, ι∗ restricts to a functor C -lfmod → C -lfmod. We denote this
restricted functor ι∗ as well. However, it is not clear whether ι∗ preserves finitely
generated C-modules.

Definition 3.2. Suppose that C has a self-embedding functor ι of degree 1. The
shift functor S1 of degree 1 is defined to be ι∗◦τ1, where τ1 is the truncation functor
of degree 1. For a � 1, one can define Sa = S1 ◦ Sa−1 recursively and call it the
shift functor of degree a.

Remark 3.3. When C is the �-linearization of FI, one readily sees that shift functors
defined in our sense are precisely shift functors Sa introduced in [4, 5]. Moreover,
it is also clear that Sa = (ι∗)a ◦ τa and all Sa are exact functors.

In the rest of this paper we suppose that C is equipped with a fixed self-embedding
functor ι of degree 1 and fix S1 to be the corresponding shift functor of degree 1.
Moreover, we assume that S1 satisfies the following property:

FGP: For every s ∈ Z+, S1(C1s) is a finitely generated projective C-module.

In other words, S1 preserves finitely generated projective C-modules.

3.2. Finitely generated property. As the starting point, we show that shift
functors restrict to endofunctors in C -fgmod.

Lemma 3.4. A locally finite C-module V is finitely generated if and only if so is
SaV for a certain a ∈ Z+.

Proof. The conclusion holds trivially for a = 0. We prove the conclusion for a = 1,
since for an arbitrary a � 1, the conclusion follows from recursion.

If V is finitely generated, by definition, one can find a surjective C-module ho-
momorphism

P =
⊕
i∈Z+

(C1i)
⊕ai → V

such that
∑

i∈Z+
ai < ∞. Applying S1 to this surjection, one deduces a surjection

S1P → S1V . By the FGP condition, S1P is a finitely generated C-module, and so
is its quotient S1V .

Now suppose that S1V is finitely generated. By Remark 2.4, we note that S1V
is generated in degrees � N for a certain N ∈ Z+. Therefore, for any s � i, it is
always true that ∑

i�N

C(i, s) · (S1V )i = (S1V )s.
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But (S1V )i = Vi+1, and ι identifies C(i, s) with the subset ι(C(i, s)) ⊆ C(i+1, s+1),
which means that ∑

i�N

ι(C(i, s)) · Vi+1 = Vs+1,

and hence ∑
i�N

C(i+ 1, s+ 1) · Vi+1 = Vs+1.

That is, V is generated in degrees� N+1. Consequently, it is finitely generated. �

Remark 3.5. From the proof one easily sees that if S1V is finitely generated, then
V must be finitely generated as well even if the FGP condition fails. This result
actually comes from the existence of a self-embedding functor. Conversely, suppose
that V is finitely generated. To show the finite generality of S1V , one only needs
to assume that every S1(C1s) is finitely generated and the projectivity of S1(C1s)
is not required.

3.3. Super finitely presented property. In this subsection we consider super
finitely presented modules.

Definition 3.6. A locally finite C-module V is finitely presented if there is a
projective presentation P 1 → P 0 → V → 0 such that both P 1 and P 0 are finitely
generated. We say that V is super finitely presented (or FP∞) if there is a projective
resolution P • → V → 0 such that every P i is finitely generated.

Remark 3.7. In the language of homologies, V is finitely generated (resp., finitely
presented; FP∞) if and only if Hi(V ) is finitely generated for i = 0 (resp., for i � 1;
for i ∈ Z+). Equivalently, V is finitely generated (resp., finitely presented; FP∞) if
and only if hdi(V ) < ∞ for i = 0 (resp, for i � 1; for i ∈ Z+).

Since C might not be locally Noetherian, finitely generated C-modules in general
are not FP∞. However, we have the following result.

Proposition 3.8. Let V be a locally finite C-module. Then V is finitely presented
(resp., FP∞) if and only if so is SaV for a certain a ∈ Z+.

Proof. Again, it is enough to show the conclusion for a = 1. We only consider FP∞
modules since the same technique applies to finitely presented modules.

If V is FP∞, then one can find a projective resolution P • → V → 0 such that
every P i is a finitely generated C-module. Since S1 is exact and C has the FGP
property, one gets a projective resolution S1P

• → S1V → 0 such that every S1P
i

is still finitely generated. In other words, S1V is FP∞.
Now suppose that S1V is FP∞. In particular, S1V is finitely generated, and so

is V by Lemma 3.4. Therefore, one gets a short exact sequence

0 → V 1 → P 0 → V → 0,

where P 0 is a finitely generated projective C-module. We claim that V 1 is finitely
generated as well. To see this, it is enough to prove the finite generality of S1V

1.
We apply S1 to the exact sequence to get

0 → S1V
1 → S1P

0 → S1V → 0,
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which gives a long exact sequence

. . . → H1(S1V
1) → H1(S1P

0) = 0 → H1(S1V )

→ H0(S1V
1) → H0(S1P

0) → H0(S1V ) → 0.

Since S1V is FP∞, by Remark 3.7, both H0(S1V ) and H1(S1V ) are finitely gener-
ated torsion C-modules. Clearly, H0(S1P

0) is a finitely generated torsion C-module
as well. This forces H0(S1V

1) to be finitely generated, and so is S1V
1. Therefore,

as claimed, V 1 is finitely generated as well. Moreover, since

Hi(S1V
1) ∼= Hi+1(S1V )

for i � 1, S1V
1 is FP∞. Replacing V by V 1 and using the same argument, one

gets a short exact sequence

0 → V 2 → P 1 → V 1 → 0

such that every term is finitely generated. Recursively, we can construct a projective
resolution P • for V such that every P i is finitely generated. That is, V is FP∞. �

This immediately implies:

Corollary 3.9. Every finitely generated torsion C-module is FP∞.

Proof. Let V be a nonzero finitely generated torsion C-module, and let a = td(V )+
1, which is finite. Then one has SaV = 0, clearly FP∞. �

3.4. Category of FP∞ modules. Now we consider the category of locally finite
FP∞ modules and denote it by C -sfpmod. Note that C -sfpmod ⊆ C -fgmod ⊆
C -lfmod.

The following lemma is well known. For the convenience of the reader, we give
a proof using homologies of modules.

Lemma 3.10. Let 0 → U → V → W → 0 be a short exact sequence of locally
finite C-modules. If two of them are FP∞, then so is the third one.

Proof. Applying C0 ⊗C − to the short exact sequence one gets the following long
exact sequence:

. . . → H2(W ) → H1(U) → H1(V ) → H1(W ) → H0(U) → H0(V ) → H0(W ) → 0.

If two of them are FP∞, then the homologies of these two modules are only sup-
ported on finitely many objects in C. Therefore, homologies of the third one must
also be supported on finitely many objects by the long exact sequence. In other
words, every homological degree of this module is finite. �

Definition 3.11. Two locally finite C-modules U and V are almost isomorphic,
denoted by U ∼ V , if there exists a certain N ∈ Z+ such that τNU ∼= τNV as
C-modules. This is an equivalence relation.

Recall that C -sfpmod is the category of FP∞, locally finite C-modules.

Proposition 3.12. The following statements are equivalent:

(1) The category C -sfpmod contains all finitely generated torsion modules.
(2) The category C -sfpmod is closed under the equivalence relation ∼. That is,

if U and V are locally finite C-modules such that U ∼ V , then one is FP∞
if and only if so is the other one.
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(3) A locally finite C-module V is FP∞ if and only if so is a truncation τiV for
some i ∈ Z+.

Proof. (1) ⇒ (2): Suppose that U is FP∞. Since U ∼ V , there is a certain N ∈ Z+

such that τNU ∼= τNV . Now consider the exact sequence

0 → τNU → U → U → 0.

Clearly, U is a finitely generated torsion module and hence is FP∞ by the assump-
tion. By the previous lemma, τNU is FP∞ as well.

Now in the exact sequence

0 → τNV → V → V → 0,

τNV ∼= τNU , and V is a finitely generated torsion module. Since they both are
FP∞, so is V , again by the previous lemma.

(2) ⇒ (3): Note that V ∼ τiV .
(3) ⇒ (1): If V is a finitely generated torsion module, then for a large enough i,

one has τiV = 0, which is clearly contained in C -sfpmod. Therefore, V is contained
in C -sfpmod as well. �
Remark 3.13. Actually, the previous proposition holds for an arbitrary locally finite
�-linear category C even if it does not have a self-embedding functor.

Now we collect main results in this section in the following theorem.

Theorem 3.14. A locally finite C-module is FP∞ if and only if so is S1V . In
particular, the following equivalent conditions hold:

(1) The category C -sfpmod contains all finitely generated torsion modules.
(2) The category C -sfpmod is closed under the equivalence relation ∼.
(3) A locally finite C-module V is FP∞ if and only if so is a truncation τiV for

some i ∈ Z+.

Proof. The conclusion follows from Proposition 3.8, Corollary 3.9, and Proposition
3.12. �

4. Upper bounds of homological degrees

As before, let C be a locally finite �-linear category of type A∞ equipped with a
self-embedding functor ι of degree 1. Let S1 be the shift functor induced by ι. In the
previous section we have shown that many interesting C-modules including finitely
generated torsion modules are FP∞ provided that S1 preserves finitely generated
projective C-modules (the FGP condition). Therefore, we may try to compute their
homological degrees. In general it is very difficult to get an explicit answer to this
question. However, for many combinatorial categories appearing in representation
stability theory, their self-embedding functors and the induced shift functors have
extra interesting properties, allowing us to get upper bounds for homological degrees
of finitely generated torsion modules.

4.1. Genetic functors. Genetic functors were firstly introduced and studied in
[11], where they were used to show the Koszulity of many categories in representa-
tion stability theory.

Definition 4.1. A self-embedding functor ι : C → C of degree 1 is a genetic functor
if the corresponding shift functor S1 satisfies the FGP condition and, moreover,
gd(S1(C1s)) � s for s ∈ Z+.
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Remark 4.2. The first example of categories equipped with genetic functors is the
category FI observed by Church, Ellenberg, and Farb in [4]. They explicitly con-
structed the shift functor and proved that it has the property specified in the above
definition, but did not mention that this shift functor is induced by a genetic func-
tor.

From the definition, one immediately observes that S1(C1s) = Ps−1 ⊕Ps, where
Ps−1 and Ps are finitely generated projective C-modules generated in degree s− 1
and degree s respectively; here for s = 0 we let P−1 = 0.

4.2. A recursive technique. The importance of genetic functors and their in-
duced shift functors is that they give us a recursive way to compute homological
degrees. Firstly we consider the zero-th homological degree and strengthen the
conclusion of Lemma 3.4 as follows.

Lemma 4.3. Let V be a finitely generated C-module. Then one has

gd(S1V ) � gd(V ) � gd(S1V ) + 1.

Proof. The second inequality has already been established in the proof of Lemma
3.4. To show the first one, we notice that if V is generated in degrees � n, then
there is a surjection P → V such that P is a finitely generated projective C-module
generated in degrees � n. Applying S1 we get a surjection S1P → S1V . The
property of genetic functors tells us that S1P is still generated in degrees � n. �

Another technical lemma is:

Lemma 4.4. Let 0 → W → P → V → 0 be a short exact sequence of locally finite
C-modules. Suppose that P is projective and gd(P ) = gd(V ). Then

hd1(V ) � gd(W ) � max{gd(V ), hd1(V )}.

Proof. Applying C0 ⊗C − to the exact sequence one obtains

0 → H1(V ) → H0(W ) → H0(P ) → H0(V ) → 0.

Now the conclusion follows from Lemma 2.6. �

Now let us compare homological degrees of FP∞ modules to those of shifted
modules.

Proposition 4.5. Let V be a locally finite C-module.

(1) If S1V is finitely presented, then one has

hd1(V ) � max{hd0(V ) + 1, hd1(S1V ) + 1}.
(2) If S1V is FP∞, then one has

hds(V ) � max{hd0(V ) + 1, . . . , hds−1(V ) + 1, hds(S1V ) + 1}
for s � 0.

Here we set hd−1(V ) = 0.

Proof. The conclusion holds trivially for V = 0, so we suppose that V �= 0. Since
S1V is finitely presented, there is a short exactsequence

0 → V 1 → P → V → 0,
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where P is a finitely generated projective C-module. Clearly, one can assume that
hd0(P ) = hd0(V ). Applying S1 to it one has

0 → S1V
1 → S1P → S1V → 0.

Note that S1P is still projective. Applying C0 ⊗C − to these two sequences we get

0 → H1(V ) → H0(V
1) → H0(P ) → H0(V ) → 0

and

0 → H1(S1V ) → H0(S1V
1) → H0(S1P ) → H0(S1V ) → 0.

Therefore

hd1(V ) = td(H1(V )) � td(H0(V
1)) by Lemma 2.6

= gd(V 1) � gd(S1V
1) + 1 by Lemma 4.3

= td(H0(S1V
1)) + 1

� max{td(H1(S1V )) + 1, td(H0(S1P )) + 1} by Lemma 2.6

= max{hd1(S1V ) + 1, gd(S1P ) + 1}
� max{hd1(S1V ) + 1, gd(P ) + 1} by Lemma 4.3

= max{hd1(S1V ) + 1, hd0(V ) + 1},
as claimed by statement (1).

One can use recursion to prove the second statement. Replacing V by V 1 (which
is also super finitely presented) and using the same argument, one deduces that

hd1(V
1) � max{hd0(V 1) + 1, hd1(S1V

1) + 1}.
Note that hd1(S1V

1) = hd2(S1V ), and by the previous lemma,

hd0(V
1) + 1 � max{hd0(V ) + 1, hd1(V ) + 1}.

Putting these two inequalities together, one deduces that

hd2(V ) = hd1(V
1) � max{hd0(V ) + 1, hd1(V ) + 1, hd2(S1V ) + 1}.

The conclusion follows from recursion. �

4.3. Castelnuovo-Mumford regularity under shift functors. It is often the
case that we need to apply S1 several times to a given C-module. The follow-
ing proposition, deduced by extensively using Proposition 3.8, plays a key role
for estimating upper bounds for homological degrees of many interesting modules,
including torsion modules.

Proposition 4.6. Let V be an FP∞ C-module. Suppose that there exists a certain
a ∈ Z+ such that

(4.1) hds(SaV ) � hd0(SaV ) + s

for s � 0. Then for s � 0 one also has

hds(V ) � hd0(V ) + s+ a.

Proof. We use induction on s. The conclusion for s = 0 holds trivially. Now
suppose that the conclusion is true for all s which are at most n ∈ Z+, and let us
consider s = n+ 1. One has

hdn+1(V ) � max{hd0(V ) + 1, . . . , hdn(V ) + 1, hdn+1(S1V ) + 1}
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by Proposition 4.5. By the induction hypothesis, for 0 � i � n, one has

hdi(V ) + 1 � hd0(V ) + a+ i+ 1 � hd0(V ) + a+ n+ 1 = hd0(V ) + a+ s.

Therefore, it suffices to show that

(4.2) hdn+1(S1V ) � hd0(V ) + a+ n.

If a = 1, letting s = n+ 1 in the given inequality (4.1) one has

hdn+1(S1V ) � hd0(S1V ) + n+ 1 � hd0(V ) + n+ 1

by Lemma 4.3, which is exactly what we want. Otherwise, note that S1V also
satisfies the inequality (4.1) (replacing a by a− 1 and V by S1V ). Applying (2) of
Proposition 4.5 to S1V rather than V one has

hdn+1(S1V ) � max{hd0(S1V ) + 1, . . . , hdn(S1V ) + 1, hdn+1(S2V ) + 1}
by Proposition 4.5. By the induction hypothesis on S1V , for 0 � i � n, one has

hdi(S1V ) + 1 � hd0(S1V ) + (a− 1) + i+ 1 = hd0(S1V ) + a+ i � hd0(V ) + a+ n.

Therefore, to prove inequality (4.2), it suffices to show that

(4.3) hdn+1(S2V ) � hd0(V ) + a+ n− 1.

One can repeat the above argument recursively, and finally it suffices to verify
that

hdn+1(SaV ) � hd0(V ) + n+ 1.

But this is implied by inequality (4.1) since one always has hd0(SaV ) � hd0(V ).
We have proved the wanted inequality for s = n+ 1 recursively. The conclusion

then follows from induction. �

Remark 4.7. The above proposition tells us that if there exists a certain a ∈ Z+

such that SaV has Castelnuovo-Mumford regularity bounded by hd0(SaV ), then
V has Castelnuovo-Mumford regularity bounded by hd0(V ) + a. In a forthcoming
paper we will show that inequality (4.1) is satisfied for every finitely generated
FI-module.

4.4. Homological degrees of torsion modules. Now we consider homological
degrees of torsion modules.

Theorem 4.8. If V is a finitely generated torsion C-module, then for s ∈ Z+, one
has

hds(V ) � td(V ) + s.

Proof. The conclusion trivially holds for s = 0 since we always have hd0(V ) � td(V )
for torsion modules. So we let s � 1. We use induction on td(V ). Firstly, let us
consider td(V ) = 0. Then S1V = 0, and hence hds(S1V ) = −∞ for all s ∈ Z+. By
Proposition 4.5, one has

hds(V ) � max{hd0(V ) + 1, . . . , hds−1(V ) + 1, hds(S1V ) + 1}
= max{hd0(V ) + 1, . . . , hds−1(V ) + 1}.

Using this recursive formula, one easily sees that

hds(V ) � s = s+ td(V )

for s ∈ Z+.
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Now suppose that the conclusion holds for all torsion modules with torsion de-
grees at most n, and let V be a torsion module such that td(V ) = n+ 1. Clearly,
td(S1V ) = n. Therefore, by the induction hypothesis,

hds(S1V ) � s+ td(S1V ) = s+ n

for s ∈ Z+. Consequently, Proposition 4.5 tells us that

hds(V ) � max{hd0(V ) + 1, . . . , hds−1(V ) + 1, s+ n+ 1}.
Recursively, we verify that

hd1(V ) � max{hd0(V ) + 1, 1 + n+ 1} = n+ 2,

hd2(V ) � max{hd0(V ) + 1, hd1(V ) + 1, 2 + n+ 1} = n+ 3,

and so on. That is, for s � 0,

hds(V ) � s+ n+ 1 = s+ td(V )

as claimed. The conclusion follows from induction. �

Remark 4.9. These upper bounds for homological degrees of finitely generated tor-
sion modules are not optimal. See a detailed discussion in Example 5.20.

The above theorem applies to many other FP∞ modules, such as truncations of
projective modules.

Corollary 4.10. Let P be a finitely generated projective C-module and let n be a
nonnegative integer. Then

hds(τnP ) � n+ s

for s � 1.

Proof. Consider the short exact sequence

0 → τnP → P → P → 0,

where P is a finitely generated torsion module with td(P ) < n. Therefore,

hds(τnP ) = hds+1(P ) � td(P ) + s+ 1 < n+ s+ 1

as claimed. �

5. Applications in representation stability theory

In this section we apply general results obtained in previous sections to combi-
natorial categories appearing in representation stability theory.

5.1. Categories with genetic functors. In [11] Gan and the author showed
that the �-linearizations of the following combinatorial categories all have genetic
functors:

(5.1) FIG, OIG, VIq, FId, OId, FS
op
G , OS

op
G .

Therefore, applying Theorem 4.8, one immediately gets

Corollary 5.1. Let C be the �-linearization of one of the above combinatorial
categories, and let V be a finitely generated torsion C-module. Then

hds(V ) � td(V ) + s

for s ∈ Z+.
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Remark 5.2. These categories have been shown to be locally Noetherian; see [26].
Therefore, every finitely generated representation is FP∞. However, except for
the category FI (see [2, Theorem A]), no explicit upper bounds for homological
degrees of finitely generated representations were described before, even for finitely
generated torsion modules.

5.2. Koszul modules. In the rest of this paper we let � be a field of characteristic
0. For this subsection let C be the �-linearization of one of the categories in the list
(5.1). The following result was established in [11, Proposition 2.10].

Proposition 5.3. For every V ∈ C -fgmod, the projective cover of V exists and is
unique up to isomorphism.

The projective cover PV of V has the following explicit description:

PV = C⊗C0
H0(V ),

where we regard C0 as a subcategory of C. SinceH0(V ) ∼= V/JV is finitely generated
and each C(i, i) is a finite dimensional semisimple algebra for i ∈ Z+, the reader
easily sees that PV is indeed a finitely generated projective C-module. Moreover,
one has H0(P ) ∼= H0(V ).

Since a projective cover of V exists and is unique up to isomorphism, syzygies
are well defined. Explicitly, given a finitely generated C-module V , there exists a
surjection

C⊗C0
H0(V ) → V.

The first syzygy ΩV is defined to be the kernel of this map, which is unique up to
isomorphism. Recursively, one can define ΩiV , the i-th syzygy of V for i ∈ Z+.

For V ∈ C -fgmod, its support, denoted by supp(V ), is set to be

{i ∈ Z+ | Vi �= 0}.
Its initial degree, denoted by ini(V ), is the minimal object in supp(V ). If V = 0,
we let ini(V ) = −∞.

Lemma 5.4. Let V be a finitely generated C-module. One has H1(V ) ∼= H0(ΩV ).
In particular, hd1(V ) = gd(ΩV ), and hence ini(ΩV ) > ini(V ) if ΩV �= 0.

Proof. Let P be a projective cover of V . From the short exact sequence

0 → ΩV → P → V → 0

one gets
0 → H1(V ) → H0(ΩV ) → H0(P ) → H0(V ) → 0.

However, since P is a projective cover of V , H0(P ) ∼= H0(V ). Consequently,
H1(V ) ∼= H0(ΩV ) as claimed. It immediately follows that hd1(V ) = gd(ΩV ).
Moreover, since the values of P and V on the object ini(V ) must be isomorphic,
this forces the value of ΩV on ini(V ) to be 0, so ini(ΩV ) > ini(V ) when ΩV �= 0. �

In [11] we proved that C is a Koszul category. That is, C(i, i) has a linear
projective resolution for every i ∈ Z+. We give an equivalent definition here; see
[11, Lemma 4.2]. For a general introduction to Koszul theory (including several
generalized versions), one may refer to [1, 14, 19].

Definition 5.5. A finitely generated C-module generated in degree d is said to be
Koszul if for s � 0, one has supp(Hs(V )) ⊆ {s+ d}. In other words, ΩsV is either
0 or is generated in degree s+ d.
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Using this equivalent definition, Corollary 5.1 actually gives another proof for
the Koszulity of C.

Corollary 5.6 ([11], Theorem 4.15). The category C is a Koszul category.

Proof. For an arbitrary i ∈ Z+, let V = C(i, i), regarded as a C-module concentrated
on object i. By Theorem 4.8, one has hds(V ) � i+ s for s ∈ Z+. Therefore,

supp(Hs(V )) ⊆ {i, i+ 1, . . . , i+ s}.
On the other hand, by Lemma 5.4, if Hs(V ) �= 0, then

Hs(V ) = Hs−1(ΩV ) = . . . = H0(Ω
sV )

and

ini(ΩsV ) > ini(Ωs−1V ) > . . . > ini(Ω(V )) > ini(V ).

This forces

ini(Hs(V )) = ini(H0(Ω
s(V ))) = ini(ΩsV ) � ini(V ) + s = i+ s.

Consequently, supp(Hs(V )) = {i + s}. By the above definition, V = C(i, i) is a
Koszul module. Since i is arbitrary, C is a Koszul category. �

The following proposition tells us that functors τn preserve Koszul modules for
n ∈ Z+.

Proposition 5.7. Let V be a finitely generated C-module. Then:

(1) If V is generated in degree d with d � 1 and S1V is Koszul, then V is
Koszul as well.

(2) If V is Koszul, so is τnV for every n ∈ Z+.

Proof. The first part is precisely [11, Proposition 4.13], although a different notation
is used there.

Now we prove (2). Let V be a nonzero Koszul module generated in degree d for
a certain d ∈ Z+. For n < d, the conclusion holds trivially since τnV ∼= V . So we
assume n � d and carry out induction on the difference n−d. The conclusion holds
for n−d = 0. Suppose that it is true for n−d = r, and let us consider n−d = r+1.

Applying C0 ⊗C − to the exact sequence

0 → τnV → τn−1V → Vn−1 → 0

of C-modules one gets

. . . → Hs+1(Vn−1) → Hs(τnV ) → Hs(τn−1V ) → Hs(Vn−1) → . . . .

Since C is a Koszul category, Vn is a Koszul module. By induction, τn−1V is also
a Koszul module. Therefore,

supp(Hs+1(Vn−1)) ⊆ {n− 1 + s+ 1} = {n+ s}
and

supp(Hs(τn−1V )) ⊆ {n− 1 + s}.
Therefore,

supp(Hs(τnV )) ⊆ {n− 1 + s, n+ s}.
However, by Lemma 5.4, if Ωs(τnV ) �= 0, one has

ini(Ωs(τnV )) > ini(Ωs−1(τnV )) > . . . > ini(τnV ) = n,
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so ini(Ωs(τnV )) � n+ s. However, since

Hs(τnV ) ∼= C0 ⊗C Ωs(τnV ),

one also has ini(Hs(τnV )) � s+n if ΩsV (τnV ) is nonzero. Thus supp(Hs(τnV )) =
{n+ s} for s ∈ Z+, and hence τnV is Koszul as well. The conclusion then follows
from induction. �
Remark 5.8. In the first statement of this proposition we require d � 1 to avoid the
following case. Let P = C(0,−) and V = P/J2P . Then S1V is a Koszul module,
but V is not Koszul.

Remark 5.9. The reader can see that proofs in this subsection do not rely on any
specific property of these combinatorial categories in list (5.1). Therefore, all results
described in this subsection hold for general k-linear, locally finite categories of type
A∞, provided that they are equipped with genetic functors, and the endomorphism
algebra of each object is a finite dimensional semisimple algebra.

5.3. Homological degrees of FI-modules. In the rest of this paper let � be a
field of characteristic 0, and fix C to be the �-linearization of FI. We list some
results which will be used later.

Theorem 5.10. Let C be the �-linearization of FI. Then:

(1) The category C -fgmod is abelian.
(2) Every finitely generated projective C-module is also injective. Moreover, a

finitely generated injective C-module is a direct sum of a finitely generated
projective module and a finite dimensional injective module.

(3) Every finitely generated C-module V has a finite injective resolution. In
particular, for a sufficiently large a, SaV is a finitely generated projective
module.

Remark 5.11. Statement (1) of the theorem was first proved by Church, Ellenberg,
and Farb in [4] over fields with characteristic 0. In [5] they and Nagpal showed
the same conclusion for arbitrary commutative Noetherian rings by using the shift
functor. The result was generalized to many combinatorial categories by Gan and
the author in [10] and by Sam and Snowden in [26].

Statement (2) and the first half of statement (3) were proved by Sam and Snow-
den in [25] in the language of twisted commutative algebras. Using the coinduction
functor related to S1, Gan and the author gave in [12] a proof of statements (2) and
(3) for FIG. In [12] we also observed that (3) implies the representation stability
of FIG-modules.

Remark 5.12. In [12] Gan and the author proved that when � is a field of char-
acteristic 0, every finitely generated projective representation of VIq is injective as
well. However, we do not know whether the second half of statements (2) and (3)
hold for VIq.

Lemma 5.13. Let V be a nonzero finitely generated FI-module. Then td(V ) < ∞.
Moreover, if V has no projective summands, then

gd(V ) < hd1(V ).

Proof. Since FI is locally Noetherian over a field of characteristic 0, V is a Noether-
ian module. This implies the first statement; see [4, Definition 3.3.2, I. Injectivity]
or [10, Proposition 5.1].
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Since a projective cover of V exists, one may consider the exact sequence

0 → ΩV → P → V → 0.

Note that hd1(V ) = gd(ΩV ). Also note that gd(V ) = gd(P ).
Let s = gd(V ). The above short exact sequence gives rise to a commutative

diagram of exact sequences:

0 �� ΩV ∩ P ′ ��

��

P ′ ��

��

V ′ ��

��

0

0 �� ΩV ��

��

P ��

��

V ��

��

0

0 �� ΩV �� P ′′ �� V ′′ �� 0

where P ′ is generated in degrees < s and P ′′ is generated in degree s.
Since gd(V ) = s, P ′′ cannot be 0. Since V has no projective summands, ΩV

cannot be 0. Moreover, one has P ′′
s
∼= V ′′

s since P ′′ is also a projective cover of V ′′.
Consequently,

hd1(V ) = gd(ΩV ) � gd(ΩV ) > gd(P ′′) = s = gd(V )

as claimed. �

Recall that every finitely generated FI-module has a finite injective resolution.
We briefly mention the construction; for details, see [12, Section 7].

Let V be a nonzero finitely generated FI-module. Again, without loss of general-
ity we can assume that V has no projective summands since projective FI-modules
are also injective. The module V gives rise to a short exact sequence

0 → VT → V → VF → 0

such that VT is a finite dimensional torsion module (might be 0) and VF is a finitely
generated torsionless module (might be 0). Now since VT is finite dimensional, one
can get an injection VT → I0, where I0 is the injective hull of VT . For VF , by
Proposition 7.5 and Theorem 1.7 in [12], there is also an injection VF → P 0 with
gd(P 0) < gd(VF ). Of course, we can make P 0 minimal by removing all projective
summands from the cokernel of this map. Putting these two injections together,
one has

(5.2) 0 �� VT
��

��

V ��

��

VF
��

��

0

0 �� I0 ��

��

I0 ⊕ P 0 ��

��

P 0 ��

��

0

0 �� C ′ �� V −1 ���� C ′′ �� 0,

where C ′ and C ′′ are the cokernels. Repeating the above procedure for V −1, after
finitely many steps, one can reach V −i = 0 at a certain step; see [12, Theorem 1.7].

Remark 5.14. Note that one cannot expect C ′ to be precisely the torsion part of
V −1 because C ′′ might not be torsionless. Therefore, one has to construct the
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torsion-torsionless exact sequence again for V −1, which in general is different from
the bottom sequence in the above diagram.

Remark 5.15. In [20] Nagpal showed that for an arbitrary commutative Noetherian
ring � and a finitely generated FI-module V , there exists a complex of finite length
each term of which is a certain special module coinciding with a projective C-module
when � is a field of characteristic 0; see [20, Theorem A]. His result generalized our
construction.

The following observation is crucial for us to obtain an upper bound for homo-
logical degrees of C-modules.

Lemma 5.16. Let V and V −1 be as above. If V is torsionless, then for s ∈ Z+,

Hs(V ) ∼= Hs+1(V
−1) and hds(V ) = hds+1(V

−1).

Proof. Since V is torsionless, we know that VT = C ′ = 0, VF
∼= V , and V −1 ∼= C ′′

in the above diagram. Furthermore, ΩC ′′ ∼= V since V has been supposed to have
no projective summands. Now the conclusion follows from Lemma 5.4. �

The following result gives us an upper bound for homological degrees of torsion-
less modules.

Lemma 5.17. Let V be a torsionless C-module. Then for s � 1,

hds(V ) � 2 gd(V ) + s− 1.

Proof. The proof relies on [2, Theorem A]. One may assume that V has no projective
summands. By Lemma 5.16, one has

hds(V ) = hds+1(V
−1) � gd(V −1) + hd1(V

−1) + s

by [2, Theorem A]. However, from diagram (5.2), one has

hd1(V
−1) = gd(V )

and

gd(V −1) = gd(P 0) � gd(V )− 1.

Consequently, we have

hds(V ) � gd(V −1) + hd1(V
−1) + s � 2 gd(V ) + s− 1

as claimed. �

Now we are ready to prove the main result of this section.

Theorem 5.18. Let � be a field of characteristic 0 and let C be the �-linearization
of FI. Let V be a finitely generated C-module. Then for s � 1, we have

hds(V ) � max{td(V ), 2 gd(V )− 1}+ s.

Proof. The short exact sequence

0 → VT → V → VF → 0

induces a long exact sequence

. . . → Hs(VT ) → Hs(V ) → Hs(VF ) → . . . .

We deduce that

hds(V ) � max{hds(VT ), hds(VF )}.
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Note that

hds(VT ) � td(VT ) + s = td(V ) + s

by Corollary 5.1 and

hds(VF ) � 2 gd(VF ) + s− 1 � 2 gd(V ) + s− 1

by the previous lemma. The conclusion follows. �

Remark 5.19. For torsionless modules, the upper bound provided in this theorem
is always more optimal than that of [2, Theorem A]. Indeed, if V is torsionless, we
have

hds(V ) � 2 gd(V ) + s− 1 < gd(V ) + hd1(V ) + s− 1

by Lemma 5.13.

Here is an example:

Example 5.20. The projective C-module C(1,−) has the following structure:

0 �� �1
��

���
��

��
��

� �2
��

���
��

��
��

� �3
��

���
��

��
��

� �4
��

		�
��

��
��

��
. . .

ε2 �� ε3 �� ε4 �� . . . ,

where �i and εi are the trivial representation and standard representation of sym-
metric groups with i letters. Let V be the submodule

0 �� 0 ��




��

��
��

��
�2

��

��
		

		
		

		
�3

��

��
		

		
		

		
�4

��

��	
		

		
		

		
. . .

0 �� ε3 �� ε4 �� . . .

and let V be the quotient C(1,−)/V . A direct computation shows that gd(V ) = 2
and hd1(V ) = 4. Therefore, by [2, Theorem A], one should have

hds(V ) � 2 + 4 + s− 1 = s+ 5

for s � 1. However, the above theorem tells us that

hds(V ) � 4 + s− 1 = s+ 3.

We also have td(V ) = 2 = hd1(V ). Therefore, the upper bounds described in
Theorem 4.8 are not sharp.
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