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WEIGHTED L2 INEQUALITIES FOR SQUARE FUNCTIONS

RODRIGO BAÑUELOS AND ADAM OSȨKOWSKI

Abstract. Using the Bellman function approach, we present new proofs of
weighted L2 inequalities for square functions, with the optimal dependence
on the A2 characteristics of the weight and further explicit constants. We
study the estimates both in the analytic and probabilistic context, and, as an
application, obtain related estimates for the classical Lusin and Littlewood-
Paley square functions.

1. Introduction

Square function inequalities play an important role in both classical and noncom-
mutative probability theory, harmonic analysis, potential theory and many other
areas of mathematics. The purpose of this paper is to establish sharp bounds in
the dyadic cases, which are closely related to the works of Bollobás [10], Davis [15],
John and Nirenberg [23], Littlewood [27], Marcinkiewicz [29], Paley [36], Slavin and
Vasyunin [42], Wang [48] and many others.

Let us start the paper by introducing some background and notation. In what
follows, the interval [0, 1] will be denoted by I. Let (hn)n≥0 be the Haar system on
I, that is, the family of functions given by

h0 = χ[0,1], h1 = χ[0,1/2) − χ[1/2,1),

h2 = χ[0,1/4) − χ[1/4,1/2), h3 = χ[1/2,3/4) − χ[3/4,1),

h4 = χ[0,1/8) − χ[1/8,1/4), h5 = χ[1/4,3/8) − χ[3/8,1/2),

and so on. For any dyadic subinterval I of I and any integrable function ϕ : I → R,
we will write 〈ϕ〉I for the average of ϕ over I: that is, 〈ϕ〉I = 1

|I|
∫
I
ϕ (unless stated

otherwise, the integration is with respect to Lebesgue measure). Furthermore, for
any such ϕ and any nonnegative integer n, we will write

ϕn =

2n−1∑
k=0

1

|Ik|

∫
I

ϕ(s)hk(s)ds hk

for the projection of ϕ on the subspace generated by the first 2n Haar functions (Ik
is the support of hk). We define the dyadic square function of ϕ by the formula

S(ϕ)(x) =

(∑∣∣∣∣ 1

|In|

∫
I

ϕ(s)hn(s)ds

∣∣∣∣
2
)1/2

,
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where the summation runs over all nonnegative integers n such that x ∈ In.
The inequalities comparing the sizes of ϕ and its square function S(ϕ) are of

importance in analysis and probability and have been studied intensively in the
literature. A classical result of Paley [36] and Marcinkiewicz [33] states that there
are finite absolute constants cp (0 < p < ∞) and Cp (1 < p < ∞), such that for
any ϕ : I → R,

(1.1) ||ϕ||Lp(I) ≤ cp||S(ϕ)||Lp(I)

and

(1.2) ||S(ϕ)||Lp(I) ≤ Cp||ϕ||Lp(I).

The question about the optimal values of cp and Cp was studied by Davis [15]. For
0 < p < ∞, let νp denote the smallest positive zero of a confluent hypergeometric
function Mp (see Abramovitz and Stegun [1] for details). Using a related estimate
for continuous-time martingales and Skorokhod embedding theorems, Davis [15]
showed that if 0 < p ≤ 2, then the best choice for cp is νp, while for p ≥ 2, the
optimal value of Cp is ν−1

p . See also Wang [48] for the vector-valued analogues of
these results.

In recent years, a question about the weighted version of (1.1) and (1.2) gathered
a lot of interest. In what follows, the word “weight” refers to an integrable, positive
function on I, which will usually be denoted by w. Given p ∈ (1,∞), we say that w
belongs to the dyadic Muckenhoupt Ap class (or, in short, that w is an Ap weight)
if the Ap characteristics [w]Ap

, given by

[w]Ap
:= sup

I

(
1

|I|

∫
I

w

)(
1

|I|

∫
I

w−1/(p−1)

)p−1

,

are finite. Here the supremum runs over all dyadic subintervals of I. One can also
define the appropriate versions of this condition for p = 1 and p = ∞ by passing
above with p to the appropriate limit (see e.g. [18], [19]). However, we omit the
details, as in this paper we will be mainly concerned with the case 1 < p < ∞.
The condition Ap arises naturally in the study of weighted estimates for the Hardy-
Littlewood maximal operator, as Muckenhoupt showed in [33].

Coming back to square function estimates, the first weighted bound in this set-
ting is due to Buckley [11], who showed the L2 inequality

(1.3) ||S(ϕ)||L2
w(I) ≤ C[w]

3/2
A2

||ϕ||L2
w(I),

with C being a universal constant. Here, of course, the weighted L2 norm is given
by

||ϕ||L2
w(I) =

(∫
I

ϕ2w

)1/2

.

Can the exponent 3/2 in (1.3) be decreased? This question was studied by Hukovic
[20] and Hukovic, Treil and Volberg [21]. It turns out that the sharp dependence
is linear; i.e., the best exponent is 1. This result was later reproved by Wittwer
[49] and Petermichl and Pott in [37] using a different approach. Actually, the latter
paper contains also the proof of the reverse inequality

||ϕ||L2
w(I) ≤ C[w]

1/2
A2

||S(ϕ)||L2
w(I),
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in which the exponent 1/2 is also optimal. A considerable extension of these results
was obtained recently by Cruz-Uribe, Martell and Pérez in [13], who showed the
weighted Lp bound

||S(ϕ)||Lp
w(I) ≤ C[w]

max{(p−1)−1,1/2}
Ap

||ϕ||Lp
w(I)

and proved that the exponent max{(p− 1)−1, 1/2} is the best.
One of our objectives is to give yet another proof of the weighted L2 estimate

for square functions. Our reasoning will rest on the construction of certain special
functions which enjoy appropriate majorization and concavity properties. This type
of approach, called the Bellman function technique, originates from the theory of
optimal stochastic control and has turned out to be very efficient in various problems
in analysis and probability.

One of our main results is the following.

Theorem 1.1. Suppose that w is an A2 weight and ϕ is a function belonging to
L2
w(I). Then we have the estimates

(1.4) ||ϕ||L2
w(I) ≤ (160[w]A2

)1/2||S(ϕ)||L2
w(I)

and

(1.5) ||S(ϕ)||L2
w(I) ≤ 8

√
2[w]A2

||ϕ||L2
w(I).

Furthermore,

(1.6) ||S(ϕ)||L2
w(I) ≤ inf

1<r<2

(
2r

2− r
[w]Ar

)1/2

||ϕ||L2
w(I).

The reason why we have included (1.6) in the above statement is that this es-
timate implies the weighted L2 bound with the linear dependence on [w]A2

, and
hence can be regarded as an improvement of (1.5). To see the implication, recall
the following classical fact, due to Coifman and Fefferman [12].

Lemma 1.1. There is a constant κp depending only on p such that the following
holds. If w is an Ap weight (1 < p < ∞) on an interval, then w is an Ap−ε weight,

where ε = κ−1
p [w]

−1/(p−1)
Ap

. Moreover, we have [w]Ap−ε
≤ κp[w]Ap

.

We apply this lemma with p = 2. Taking r = 2− ε = 2−κ−1
2 [w]−1

A2
, the estimate

(1.6) yields

||S(ϕ)||L2
w(I) ≤

(
2r

2− r
[w]Ar

)1/2

||ϕ||L2
w(I) ≤ 2κ2[w]A2

||ϕ||L2
w(I),

as desired.
We have organized the paper as follows. In the next section we introduce the

Bellman functions corresponding to the estimates (1.4), (1.5) and (1.6), and study
their properties. Section 3 is devoted to the proof of Theorem 1.1. In §4, we
establish an appropriate probabilistic analogue of Theorem 1.1 for continuous time
martingales, and then in §5 we show how this yields similar results for the classical
Lusin and Littlewood-Paley square functions. In section §6 we further elaborate on
extensions to more general Markovian semigroups.
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2. Special functions

Throughout this section, c > 1 is a fixed parameter. For any 1 < r < ∞, the
symbol Ωr

c will denote the hyperbolic domain given by

Ωr
c = {(w, v) ∈ R+ × R+ : 1 ≤ wvr−1 ≤ c}.

2.1. Bellman function corresponding to (1.4). The key role in the proof of the
estimate (1.4) is played by the function Bc : R× [0,∞)× Ω2

c → R, given by

Bc(x, y, w, v) = x2wϕ(wv)− 40cyw,

where

ϕ(t) = 2− 1

t
− ln t

2c
, t ∈ [1, c].

In what follows, usually we will skip the lower index and write B instead of Bc,
but keep in mind that the function does depend on the parameter c. Let us study
some simple majorization properties of B. We start with the trivial observation
that ϕ(t) ≤ 2 for all t, which implies the bound

(2.1) B(x, x2, w, v) ≤ 2x2w − 40cx2w ≤ 0 for all x ∈ R, (w, v) ∈ Ω2
c .

Next, note that for any t ∈ [1, c] we have ϕ(t) ≥ 2− 1− 1
2 = 1

2 , and hence

(2.2) B(x, y, w, v) ≥ 1

2
w(x2 − 80cy) for all (x, y, w, v) ∈ R× [0,∞)× Ω2

c .

We turn our attention to the crucial property of B. It can be regarded as a
concavity-type condition.

Lemma 2.1. Suppose that (x, y, w, v) ∈ R × [0,∞) × Ω2
c is a given point and

assume further that e, f are real numbers such that the line segment with endpoints
(w ± e, v ± f) is entirely contained in Ω2

c. Then for any d ∈ R we have

2B(x, y, z, w)

≥ B(x− d, y + d2, w − e, v − f) +B(x+ d, y + d2, w + e, v + f).
(2.3)

Proof. We introduce the function b : R × Ω2
c → [0,∞), given by b(x,w, v) =

x2wϕ(wv). Of course, we have the identity

B(x, y, w, v)=b(x,w, v)− 40cyw.

Since −c(y+ d2)(w− e)− c(y+ d2)(w+ e) = −2cyw− 2cd2w, we see that the claim
is equivalent to

(2.4) 2b(x,w, v) ≥ b(x− d, w − e, v − f) + b(x+ d, w + e, v + f)− 80cd2w.

To show this, we will prove that the matrix

(2.5) A(x,w, v) = D2b(x,w, v)−

⎡
⎢⎢⎢⎣

80cw 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

is nonpositive-definite. To see how this yields (2.4), consider the function

F (t) = b(x+ td, w + te, v + tf)− 40ct2d2w, t ∈ [−1, 1].
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Note that for each such t, the point (x + td, w + te, v + tf) lies in the domain of
b: see the assumption in the statement of the lemma above. Denoting the vector
(d, e, f) by Δ, we compute that

F ′′(t) + F ′′(−t) =
(
D2b(x+ td, w + te, v + tf)Δ,Δ

)
− 80cwd2

+
(
D2b(x− td, w − te, v − tf)Δ,Δ

)
− 80cwd2

=
(
D2b(x+ td, w + te, v + tf)Δ,Δ

)
− 80c(w + te)d2

+
(
D2b(x− td, w − te, v − tf)Δ,Δ

)
− 80c(w − te)d2

= (A(x+ td, w + te, v + tf)Δ,Δ)

+ (A(x− td, w − te, v − tf)Δ,Δ)

≤ 0.

Consequently, F (1) + F (−1) ≤ 2F (0), which is precisely (2.4). To show that
A(x,w, v) is nonpositive-definite, we compute directly that the matrix is equal to⎡

⎢⎢⎢⎣
2wϕ(t)− 80cw 2xϕ+ 2xtϕ′(t) 2xw2ϕ′(t)

2xϕ(t) + 2xtϕ′(t) 2x2vϕ′(t) + x2tvϕ′′(t) 2x2wϕ′(t) + x2twϕ′′(t)

2xw2ϕ′(t) 2x2wϕ′(t) + x2twϕ′′(t) x2w3ϕ′′(t)

⎤
⎥⎥⎥⎦ ,

where t = wv. By well-known facts from linear algebra, it is enough to show that

(2.6) x2w3ϕ′′(t) ≤ 0,

(2.7) det

⎡
⎣ 2x2vϕ′(t) + x2tvϕ′′(t) 2x2wϕ′(t) + x2twϕ′′(t)

2x2wϕ′(t) + x2twϕ′′(t) x2w3ϕ′′(t)

⎤
⎦ ≥ 0

and

(2.8) detA(x,w, v) ≤ 0.

To establish (2.6), observe that t = wv ∈ [1, c], by the definition of Ω2
c , and therefore

x2w3ϕ′′(t) = −x2w3

2ct3
(4c− t) ≤ 0.

The inequality (2.7) is equivalent to ϕ′(t)(2ϕ′(t)+ tϕ′′(t)) ≥ 0 and follows from the
estimates

ϕ′(t) =
1

2ct2
(2c− t) ≥ 0, 2ϕ′(t) + tϕ′′(t) = − 1

2ct
≤ 0.

Finally, we turn our attention to (2.8). Let us simplify the matrix A by carrying
out some elementary operations. Dividing the second row and the second column
by x and then the third row and column by xw, we see that the determinant of A
has the same sign as

det

⎡
⎢⎢⎢⎣

2wϕ(t)− 80cw 2ϕ+ 2tϕ′(t) 2wϕ′(t)

2ϕ(t) + 2tϕ′(t) 2vϕ′(t) + tvϕ′′(t) 2ϕ′(t) + tϕ′′(t)

2wϕ′(t) 2ϕ′(t) + tϕ′′(t) wϕ′′(t)

⎤
⎥⎥⎥⎦ .
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Next, multiply the third row by v and subtract it from the second row; then multiply
the second row by w and subtract it from the first row. As a result, we obtain that
the sign of the determinant of A is the same as that of

det

⎡
⎢⎢⎢⎣

−80cw 2ϕ+ 2tϕ′(t) 0

2ϕ(t) 0 2ϕ′(t)

2wϕ′(t) 2ϕ′(t) + tϕ′′(t) wϕ′′(t)

⎤
⎥⎥⎥⎦

= 4w
[(

2 (ϕ′(t))
2 − ϕ(t)ϕ′′(t)

)
(ϕ(t) + tϕ′(t)) + 40cϕ′(t) (2ϕ′(t) + tϕ′′(t))

]
.

However, we compute that

ϕ(t) + tϕ′(t) = 2− ln t

2c
− 1

2c
≤ 2,

2(ϕ′(t))2 = ϕ′(t) · 2c− t

ct2
≤ 2ϕ′(t)

t
and, since ϕ(t) ≤ 2,

−ϕ(t)ϕ′′(t)

ϕ′(t)
≤

2
(

2
t3 − 1

2ct2

)
1
t2 − 1

2ct

≤ 8

t
.

Consequently, (
2 (ϕ′(t))

2 − ϕ(t)ϕ′′(t)
)
(ϕ(t) + tϕ′(t)) ≤ 20ϕ′(t)

t
,

and since

40cϕ′(t) (2ϕ′(t) + tϕ′′(t)) = −20ϕ′(t)

t
,

the inequality (2.8) is satisfied. This completes the proof. �

2.2. Bellman function corresponding to (1.6). The Bellman function asso-
ciated with the Ar-estimate is slightly simpler. Let r be an arbitrary number
belonging to (1, 2) and define B = Bc,r : R× [0,∞)× Ωr

c → R by

B(x, y, w, v) = yw − rc

2− r

x2

vr−1
.

As previously, we will first establish the appropriate majorizations for B. By the
definition of Ωr

c, we have cv1−r ≥ w and hence

(2.9) B(x, x2, w, v) ≤ x2w

(
1− r

2− r

)
≤ 0 for all x ∈ R, (w, v) ∈ Ωr

c,

where in the last bound we used the estimate r > 1. Furthermore, the inequality
v1−r ≤ w implies

(2.10) B(x, y, w, v) ≥ yw − rc

2− r
x2w for all (x, y, w, v) ∈ R× [0,∞)× Ωr

c.

We turn to the analogue of Lemma 2.1.

Lemma 2.2. Suppose that (x, y, w, v) ∈ R × [0,∞) × Ωr
c is a given point and

assume further that e, f are real numbers such that the line segment with endpoints
(w ± e, v ± f) is entirely contained in Ωr

c. Then for any d ∈ R we have

2B(x, y, z, w)

≥ B(x− d, y + d2, w − e, v − f) +B(x+ d, y + d2, w + e, v + f).
(2.11)
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Proof. Repeating the reasoning from the proof of Lemma 2.1, we see that it is
enough to show that the matrix

A(x,w, v) = D2b(x,w, v) +

⎡
⎢⎢⎢⎣

2w 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

is nonpositive-definite. Here b is a function given on R× Ωr
c by the formula

b(x,w, v) = − rc

2− r

x2

vr−1
.

We compute directly that

A(x,w, v) =

⎡
⎢⎢⎢⎣
2w − 2rc

(2−r)vr−1 0 2r(r−1)cx
(2−r)vr

0 0 0

2r(r−1)cx
(2−r)vr 0 − r2(r−1)c

2−r
x2

vr+1

⎤
⎥⎥⎥⎦ .

We see that the entry in the lower-right corner is nonpositive and the determinant
is equal to 0. Thus it is enough to show that

det

⎡
⎣2w − 2rc

(2−r)vr−1

2r(r−1)cx
(2−r)vr−2

2r(r−1)cx
(2−r)vr−2 − r2(r−1)c

2−r
x2

vr+1

⎤
⎦ ≥ 0.

But w ≤ cv1−r, so the above determinant is not smaller than

det

⎡
⎣ 2c

vr−1 − 2rc
(2−r)vr−1

2r(r−1)cx
(2−r)vr−2

2r(r−1)cx
(2−r)vr−2 − r2(r−1)c

2−r
x2

vr+1

⎤
⎦

=
2c2x2

v2r

[
−
(
1− r

2− r

)
r2(r − 1)

2− r
− 2r2(r − 1)2

(2− r)2

]
= 0.

This completes the proof. �

2.3. The special function corresponding to (1.5). Finally, we turn our atten-
tion to the second weighted estimate of Theorem 1.1. The Bellman function is
slightly more complicated than that studied in the preceding section, but it has the
advantage that it produces a “self-contained” proof of (1.5) (i.e., it does not refer to
the self-improving properties of A2 weights). Define B = Bc : R× [0,∞)×Ω2

c → R

given by the formula

B(x, y, w, v) = yw − 16c2x2w

(wv − 1/2)α
,

where α = 1− (4c)−1. Let us now establish the appropriate majorizations for this
object. First, note that

B(x, x2, w, v) ≤ x2w

[
1− 16c2

(c− 1/2)α

]
≤ x2w(1− 16c) ≤ 0.

Furthermore, for any (x, y, w, v) from the domain of B, we clearly have

B(x, y, w, v) ≥ yw − 2α · 16c2x2w ≥ yw − 32c2x2w.
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Finally, we will show that B enjoys the property described in Lemma 2.1. We have

B(x, y, w, v) = 16c2
[ yw

16c2
+ b(x,w, v)

]
,

where b(x,w, v) = −x2w(wv−1/2)−α. Arguing as in the preceding subsections, we
see that it is enough to prove that the matrix

A(x,w, v) = D2b(x,w, v) +

⎡
⎢⎢⎢⎣

2w/(16c2) 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

is nonpositive-definite. Substituting t = wv, we compute that

A(x,w, v) =

⎡
⎢⎢⎢⎣

w
8c2 − 2w

(t−1/2)α − 2x((1−α)t−1/2)
(t−1/2)α+1

2αxw2

(t−1/2)α+1

− 2x((1−α)t−1/2)
(t−1/2)α+1

αx2v((1−α)t−1)
(t−1/2)α+2

αx2w((1−α)t−1)
(t−1/2)α+2

2αxw2

(t−1/2)α+1

αx2w((1−α)t−1)
(t−1/2)α+2 −α(α+1)x2w3

(t−1/2)α+2

⎤
⎥⎥⎥⎦ .

As previously, we apply Sylvester’s criterion. Obviously, we have

−α(α+ 1)x2w3

(t− 1/2)α+2
≤ 0.

Furthermore,

det

⎡
⎣ αx2v((1−α)t−1)

(t−1/2)α+2

αx2w((1−α)t−1)
(t−1/2)α+2

αx2w((1−α)t−1)
(t−1/2)α+2 −α(α+1)x2w3

(t−1/2)α+2

⎤
⎦ =

2α2x4w2(1− (1− α)t)(t− 1/2)

(t− 1/2)2α+4
≥ 0,

since 1 − (1 − α)t = 1 − t/(4c) > 0. Thus, to show that A(x,w, v) is nonpositive-
definite, it suffices to show that its determinant is nonpositive. To do this, let us
conduct some operations on the rows of this matrix. First, multiply the third row
by v/w and add it to the second row. Then

detA(x,w, v) = det

⎡
⎢⎢⎢⎣

w
8c2 − 2w

(t−1/2)α − 2x((1−α)t−1/2)
(t−1/2)α+1

2αxw2

(t−1/2)α+1

− 2x
(t−1/2)α 0 2αx2w

(t−1/2)α+1

2αxw2

(t−1/2)α+1

αx2w((1−α)t−1)
(t−1/2)α+2 −α(α+1)x2w3

(t−1/2)α+2

⎤
⎥⎥⎥⎦ .

Next, multiply the second row by αw2/(t − 1/2) and add it to the third row;
furthermore, multiply the second row by w/x and subtract it from the first row.
As a result, we see that

detA(x,w, v) = det

⎡
⎢⎢⎢⎣

w
8c2 − 2x((1−α)t−1/2)

(t−1/2)α 0

− 2x
(t−1/2)α 0 2αx2w

(t−1/2)α+1

0 αx2w((1−α)t−1)
(t−1/2)α+2

α(α−1)x2w3

(t−1/2)α+2

⎤
⎥⎥⎥⎦ ,
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so the sign of detA(x,w, v) is the same as the sign of

det

⎡
⎢⎢⎢⎣

w
16c2 −((1− α)t− 1/2) 0

−1 0 1

0 α((1− α)t− 1) (α−1)w
(t−1/2)α

⎤
⎥⎥⎥⎦

=
((1− α)t− 1/2)(1− α)w

(t− 1/2)α
+

α(1− (1− α)t)w

16c2
.

But the above expression is nonpositive; this can be equivalently rewritten in the
form

α(1− (1− α)t)(t− 1/2)α < (1− α)(1/2− (1− α)t) · 16c2

and follows from the observations that α < 1, 0 < 1 − (1 − α)t < 1, (t − 1/2)α <
cα ≤ c and (1− α)(1/2− (1− α)t) · 16c2 = 4c(1/2− t/(4c)) ≥ 4c(1/2− 1/4) = c.

3. Proof of Theorem 1.1

We start with the following geometric fact.

Lemma 3.1. Assume that c > 1 and r ∈ (1, 2]. Suppose that points P, Q and
R = (P+ Q)/2 lie in Ωr

c. Then the whole line segment PQ is contained within Ωr
2c.

Proof. Using a simple geometrical argument, it is enough to consider the case when
the points P and R lie on the curve wvr−1 = c (the upper boundary of Ωr

c) and Q

lies on the curve wvr−1 = 1 (the lower boundary of Ωr
c). Then the line segment RQ

is contained within Ωr
c, and hence also within Ωr

2c, so it is enough to ensure that
the segment PR is contained in Ωr

2c. Let P = (Px, Py), Q = (Qx, Qy) and R = (Rx, Ry).
We consider two cases. If Px < Rx, then

Py = 2Ry − Qy < 2Ry,

so the segment PR is contained in the quadrant {(x, y) : x ≤ Rx, y ≤ 2Ry}. Con-
sequently, PR lies below the hyperbola xyr−1 = 2r−1c passing through (Rx, 2Ry),
and hence also below the hyperbola xyr−1 = 2c. This proves the assertion in the
case Px < Rx. In the case Px ≥ Rx the reasoning is similar. Indeed, we check eas-
ily that the line segment PR lies below the hyperbola xyr−1 = 2c passing through
(2Rx, Ry). �

We are ready to establish the inequalities of Theorem 1.1.

Proof of (1.4). Let us start with introducing some auxiliary objects and notation.
Let (In)n≥0 denote the dyadic filtration of I: given a nonnegative integer n, In

denotes the σ-algebra generated by all dyadic intervals contained within I, which
are of measure 2−n. Let w be an A2 weight with c = [w]A2

and let ϕ be a function
belonging to L2

w(I). For any x ∈ I and any nonnegative integer n, define

(3.1) ϕn(x) = 〈ϕ〉I , wn(x) = 〈w〉I and vn(x) = 〈w−1〉I ,
where I = I(x) is the atom of In which contains x (such an atom is unique for
almost all x ∈ I, so the above equalities give functions which are well-defined on
the subset of I of full measure). Note that this definition of ϕn is consistent with
that given in the introductory section. Furthermore, define the truncated square
function of ϕ by

Sn(ϕ) = S(ϕn), n = 0, 1, 2, . . . .
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Now, let B = B2c be the function introduced in §2.1 (note that we take the
index 2c). A crucial fact which exhibits the interplay between B and the sequences
ϕn, Sn(ϕ), wn and vn is that∫

I

B(ϕn(s), S
2
n(ϕ)(s), wn(s), vn(s))ds

≥
∫
I

B(ϕn+1(s), S
2
n+1(ϕ)(s), wn+1(s), vn+1(s))ds

(3.2)

for n ≥ 0. To prove this estimate, fix an n and pick an atom I of In. We will prove
a slightly stronger statement than (3.2), in which I is replaced by I, i.e.,∫

I

B(ϕn(s), S
2
n(ϕ)(s), wn(s), vn(s))ds

≥
∫
I

B(ϕn+1(s), S
2
n+1(ϕ)(s), wn+1(s), vn+1(s))ds.

(3.3)

Denote the left and right halves of I by I− and I+, respectively. Then the functions
ϕn, S

2
n(ϕ), wn and vn are constant on I; let us denote the corresponding values by

x, y, w and v. Similarly, ϕn+1, S
2
n+1(ϕ), wn+1 and vn+1 are constant on each of I−,

I+: denote the appropriate values by x±, y±, w± and v±. From the very definition
of the sequences (ϕn)n≥0, (wn)n≥0 and (vn)n≥0, we infer that

x = (x− + x+)/2, w = (w− + w−)/2 and v = (v− + v+)/2,

so there are d, e, f ∈ R such that

x± = x± d, w± = w ± e and v± = v ± f.

In addition, by the very definition of (Sn(ϕ))n≥0, we see that y− = y+ = y + d2. If
we plug all these facts into (3.3) and divide both sides by |I|/2, we get an estimate
which is equivalent to (2.3). Thus, (3.3) will be established if we show that the
assumption of Lemma 2.1 is satisfied. However, the points

(w−, v−) =

(
1

|I−|

∫
I−

w,
1

|I−|

∫
I−

w−1

)
,

(w+, v+) =

(
1

|I+|

∫
I+

w,
1

|I+|

∫
I+

w−1

)
,

(w, v) =
(w−, v−) + (w+, v+)

2
=

(
1

|I|

∫
I

w,
1

|I|

∫
I

w−1

)

belong to Ω2
c by the very definition of A2 weights. Consequently, by Lemma 3.1,

the line segment with endpoints (w−, v−), (w+, v+) is entirely contained in Ω2
2c,

which is precisely the requirement of Lemma 2.1 (recall that the special function
B we use corresponds to the parameter 2c). This yields (3.3), and summing over
all atoms I of In, we obtain (3.2). The remainder of the proof is straightforward.
By induction, (3.2) gives
(3.4)∫

I

B(ϕn(s), S
2
n(ϕ)(s), wn(s), vn(s))ds ≤

∫
I

B(ϕ0(s), S
2
0(ϕ)(s), w0(s), v0(s))ds.

However, we have

ϕ0(s) =
1

|I|

∫
I

ϕ and S0(ϕ) =

∣∣∣∣ 1

|I|

∫
I

ϕ

∣∣∣∣ ,
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so (2.1) implies that the right-hand side of (3.4) is nonpositive. To deal with the
left-hand side, we exploit (2.2). As the result, we obtain the estimate∫

I

(ϕn(s))
2wn(s)ds ≤ 160c

∫
I

S2
n(ϕ)(s)wn(s)ds,

which, by the very definition of wn, implies∫
I

(ϕn(s))
2w(s)ds ≤ 160c

∫
I

S2
n(ϕ)(s)w(s)ds.

However, if we let n go to infinity, then Sn(ϕ) ↑ S(ϕ) and ϕn → ϕ almost surely by
Lebesgue’s differentiation theorem. Consequently, Fatou’s lemma and Lebesgue’s
monotone convergence theorem imply

||ϕ||L2
w(I) ≤ (160c)1/2||S(ϕ)||L2

w(I),

which is the desired claim. �

Proof of (1.5). The arguments go along the same lines as above. We omit the
straightforward repetitions. �

Proof of (1.6). Here the reasoning is essentially the same as above, but we have
decided to include some details due to the appearance of the Ar weights. Suppose
that w is an A2 weight. Then, by Lemma 1.1, w is an Ar weight for some r < 2. Let
c = [w]Ar

and assume that B = B2c,r is the function introduced in §2.2 (again, note
that we use the doubled index 2c). Let ϕ be a function belonging to L2

w(I) and
define (ϕn)n≥0, (Sn(ϕ))n≥0, (wn)n≥0 as previously. The corresponding sequence
(vn)n≥0 is slightly different, as it captures the fact that w is an Ar weight: let

vn(x) = 〈w−1/(r−1)〉I(x)
(recall that I(x) is the element of In which contains the point x). By Muckenhoupt’s
condition Ar, we see that the sequence ((wn, vn))n≥0 is Ωr

c-valued. Therefore, re-
peating the arguments from the preceding proof, we get that∫

I

B(ϕn(s), S
2
n(ϕ)(s), wn(s), vn(s))ds ≤

∫
I

B(ϕ0(s), S
2
0(ϕ)(s), w0(s), v0(s))ds

for any n ≥ 0. Consequently, by (2.9) and (2.10), we get∫
I

S2
n(ϕ)wn(s)ds ≤

2rc

2− r

∫
I

(ϕn(s))
2wn(s)ds

and hence ∫
I

S2
n(ϕ)w(s)ds ≤

2rc

2− r

∫
I

(ϕn(s))
2w(s)ds.

If we let n → ∞, the left-hand side converges to ||S(ϕ)||2L2
w(I) by Lebesgue’s mono-

tone convergence theorem. To deal with the right-hand side, recall that ϕ belongs
to L2

w(I) and hence, by Muckenhoupt’s inequality, so does the dyadic maximal
function Mdϕ. Therefore, by Lebesgue’s differentiation and dominated converge
theorems, we see that ∫

I

(ϕn(s))
2w(s)ds

n→∞−−−−→ ||ϕ||2L2
w(I).

This gives the claim. �
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4. Inequalities for continuous time martingales

All the results studied above have their counterparts in the martingale theory,
as we will prove now. Suppose that (Ω,F ,P) is a complete probability space,
equipped with a filtration (Ft)t≥0, i.e., a nondecreasing sequence of sub-σ-algebras
of F . Assume further that F0 contains all the events of probability 0. Let X =
(Xt)t≥0 be an adapted, uniformly integrable continuous-path martingale and let
〈X〉 = (〈Xt〉)t≥0 stand for its quadratic covariance process (square bracket). See
e.g. Dellacherie and Meyer [16] for the detailed exposition and properties of this

object. Then X and 〈X〉1/2 are the probabilistic versions of the function ϕ and
its square function S(ϕ). To introduce the appropriate analogue of Ap weights,
assume that Y is a nonnegative, uniformly integrable martingale with continuous
trajectories satisfying Y0 = E[Y∞] = 1. (Note that this normalization is not an
essential assumption as multiplying by a constant does not affect the Ap condition.)
Following Izumisawa and Kazamaki [22], we say that Y satisfies Muckenhoupt’s
condition Ap(mart) (where 1 < p < ∞ is a fixed parameter) if

(4.1) ‖Y ‖Ap(mart) := sup
t>0

∥∥∥Yt

(
E
[( 1

Y∞

)1/(p−1) ∣∣Ft

])p−1 ∥∥∥
∞
< ∞,

where Yt = E [Y∞ |Ft]. Any process Y as above gives rise to the probability measure
Q defined by the equation dQ = Y∞dP, and thus it can be regarded as a weight.

Put Zt = E
{
Y

−1/(p−1)
∞

∣∣Ft

}
for t ≥ 0. If ||Y ||Ap

≤ c, then we have YtZ
p−1
t ≤ c for

all t; that is, the process (Y, Z) takes values in the set Ωp
c . This process is precisely

the martingale analogue of the sequence ((wn, vn))n≥0 studied in §3 above.
The analogue of Theorem 1.1 is the following.

Theorem 4.1. Suppose that Y is an A2 weight and X is a martingale bounded in
L2(Q). Then we have the estimates

(4.2) ||X∞||L2(Q) ≤
(
80‖Y ‖A2(mart)

)1/2 ||〈X〉1/2∞ ||L2(Q)

and

(4.3) ||〈X〉1/2∞ ||L2(Q) ≤ 4
√
2‖Y ‖A2(mart)||X∞||L2(Q).

Furthermore,

(4.4) ||〈X〉1/2||L2(Q) ≤ inf
1<r<2

(
r

2− r
‖Y ‖Ar(mart)

)1/2

||X∞||L2(Q).

Note that the constants are slightly better: this is due to the fact that we will
not require Lemma 3.1 or any probabilistic counterpart of that statement (see the
beginning of the proof below).

Proof. We will focus on (4.2); the reasoning leading to (4.4) is essentially the same.
Let c = ‖Y ‖

A2(mart)
and let B = Bc be the function of §2.1. (Note that in contrast

to the analytic setting, here we use the function Bc, not B2c. This will give the
aforementioned improvement of the constants.) The function B is of class C∞;
actually, it can be extended to a C∞ function on a certain open set containing
R × [0,∞) × Ω2

c . Furthermore, by the probabilistic A2 condition, we see that the
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process S = (X, 〈X〉, Y, Z) takes values in the domain of B. Thus, an application
of Itô’s formula gives that for each t ≥ 0,

(4.5) B(St) = B(S0) + I1 + I2 + I3/2,

where

I1 =

∫ t

0+

Bx(Ss)dXs +

∫ t

0+

Bw(Ss)dYs +

∫ t

0+

Bv(Ss)dZs,

I2 =

∫ t

0+

By(Ss)d〈X〉s,

I3 =

∫ t

0+

D2
x,w,vB(Ss) · d〈(X,Y, Z), (X,Y, Z)〉s.

Here

D2
x,w,vB(x, y, w, v) =

⎡
⎢⎢⎢⎣

Bxx Bxw Bxv

Bxw Bww Bwv

Bxv Bwv Bvv

⎤
⎥⎥⎥⎦ ,

and the integral I3 is actually a sum of the integrals∫ t

0+

Bxx(Ss)d〈X〉s, 2

∫ t

0+

Bxw(Ss)d〈X,Y 〉s, 2

∫ t

0+

Bxv(Ss)d〈X,Z〉s, . . . ,

and so on. By the properties of stochastic integrals, we see that the term I1 has
expectation 0. Furthermore, the sum I2+I3 is nonpositive: this follows directly from
some standard approximation and the fact that the matrix A, introduced in (2.5), is
nonpositive-definite. Consequently, integrating both sides of (4.5) gives EB(St) ≤
EB(S0). However, 〈X〉0 = |X0|2, so (2.1) implies B(S0) ≤ 0; furthermore, by (2.2),
we have

B(St) ≥
Yt

2
(X2

t − 80c〈X〉t).
Combining these facts, we get the estimate

EX2
t Yt ≤ 80cE〈X〉tYt,

which, by the martingale property of Y , implies

EX2
t Y∞ ≤ 80cE〈X〉tY∞ ≤ 80cE〈X〉∞Y∞.

This clearly implies (4.2), in view of Fatou’s lemma. As we have mentioned above,
the proofs of (4.3) and (4.4) are similar, so we leave them to the interested reader.

�

The estimate (4.4) leads to the following improvement of (4.3).

Corollary 4.1. Suppose that Y is an A2 weight and X is a martingale bounded in
L2(Q). Then we have the estimate

(4.6) ||〈X〉1/2||L2(Q) ≤ 27/4‖Y ‖A2(mart)||X∞||L2(Q).

Proof. We will need an appropriate probabilistic version of the Coifman-Fefferman
Ap−ε-result (see Lemma 1.1 above). As shown by Uchiyama [45], we have the
identity

(4.7) ||Y ||Ar(mart) = sup
[
λrQ(ξ∗ > λ)/||ξ∞||rLr(Q)

]
,
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where the supremum is taken over all λ > 0 and all adapted cádlág martingales
ξ = (ξt)t≥0. On the other hand, it follows from the results of Osȩkowski [35] that if
Y is an A2 weight satisfying ||Y ||A2

= c, then the expression on the right of (4.7)
does not exceed ⎡

⎣(1−
√
1− c−1

r − 1

)r−1 (
1 +

√
1− c−1

)⎤⎦
−1/r

,

provided 1 +
√
1− c−1 < r ≤ 2. As one easily verifies, the latter double bound is

satisfied by r = 2− (2c)−1, and then (4.7) implies

||Y ||Ar
≤

⎡
⎣(1−

√
1− c−1

1− (2c)−1

)1−(2c)−1 (
1 +

√
1− c−1

)⎤⎦
−1/(2−(2c)−1)

.

However, 1 +
√
1− c−1 ≥ 1 and

1−
√
1− c−1

1− (2c)−1
=

(4c2)−1

(1− (2c)−1)(1− (2c)−1 +
√
1− c−1)

≥ 1

8c2
.

Consequently, we obtain the upper bound

||Y ||Ar
≤ (8c2)(1−(2c)−1)/(2−(2c)−1) ≤ (8c2)1/2 = 2

√
2c.

Furthermore, we have
r

2− r
=

2− (2c)−1

(2c)−1
≤ 4c.

Plugging the above two estimates into (4.4) gives the claim. �

5. Littlewood-Paley square functions and the Lusin area integral

Our goal in this section is to prove versions of Theorems 1.1 and 4.1 for the
Littlewood-Paley square functions g∗ and G∗ for harmonic and parabolic functions,
respectively. These operators arise as conditional expectations of square functions
of martingales obtained by composing harmonic functions in the upper half-space
with Brownian motion and from martingales obtained by composing solutions of
the heat equation with space-time Brownian motion. These constructions are quite
general and apply in the wide setting of general symmetric Markovian semigroups
and their Poisson semigroups obtained by Bochner’s 1/2-subordination.

Before proceeding further, we mention here that there is a vast literature on
weighted Lp inequalities for the classical Littlewood-Paley square functions and
their many variants. These include estimates with the sharp dependence on the
characteristics [w]Ap

of the weight. For some of this literature we refer the reader
to Lerner [24–26] and the many references given in those papers. Our inequalities
below provide information not only on the [w]A2

dependence but also give L2 bounds
with very explicit constants. This raises questions of obtaining sharp bounds on
weighted norm inequalities for classical operators not only with respect to [w]Ap

but also with respect to p when the weights are the probabilistic Poisson or heat
(and even more general symmetric Markovian) semigroups as defined below. Of
particular interest would be the case of the Hilbert transform, first and second
order Riesz transforms, and the Beurling-Ahlfors operator. A first step in these
problems would be to obtain such sharp weighted norm inequalities for martingale
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transforms of stochastic integrals with the probabilistic weights as defined by (4.1).
Unfortunately, as of now we have not been able to make progress on these problems
and they remain quite open.

5.1. Littlewood-Paley and Lusin square functions for harmonic functions.
In this section we will derive versions of Theorems 1.1 and 4.1 for the Littlewood-
Paley g∗ function for harmonic and parabolic functions. This function dominates,
pointwise, the classical Littlewood-Paley g function and the Lusin area integral.
We will use the standard construction of g∗ as the conditional expectation of the
martingale square function. For this construction we refer the reader to [5], which
is a special case of the more general Poisson semigroup construction presented in
Varopoulos [46]. (See also Meyer [30–32].)

For any f ∈ Lp(Rn), 1 < p < ∞, we will denote by Ky(f)(x) its harmonic

extension to the upper half-space Rn+1
+ = {(x, y) : x ∈ Rn, y > 0} obtained by

convolving f with the Poisson kernel

(5.1) ky(x) =
cn y

(y2 + |x|2)(n+1)/2
, cn =

Γ(n+1
2 )

π
n+1
2

,

where cn is chosen so that ky(x) has integral 1 for all y > 0. The cone in Rn+1
+

with vertex at x and aperture α > 0 is defined by

Γα(x) = {(z, y) : |z − x| < αy, z ∈ Rn, y > 0}.
The Littlewood-Paley functions g(f), g∗(f), and Lusin area integral Aα(f) are

defined, respectively, by

(5.2) g(f)(x) =

(∫ ∞

0

y|∇Ky(f)(x)|2 dy
)1/2

,

(5.3) g∗(f)(x) =

(∫ ∞

0

∫
Rd

y ky(x− z)|∇Ky(f)(z)|2 dz dy
)1/2

and

(5.4) Aα(f)(x) =

(∫
Γα(x)

y1−n|∇Ky(f)(x)|2dzdy
)1/2

,

where for any u in the upper half-space,

∇u =
(

∂u
∂x1

, ∂u
∂x2

, . . . , ∂u∂x ,
∂u
∂y

)
is the full gradient.

As in the case of the dyadic square function, the inequalities (1.1) and (1.2)
hold for all f ∈ Lp(Rn), for 1 < p < ∞, for both g and Aα. For g∗ we have
‖g∗(f)‖p ≤ cp‖f‖p for 2 ≤ p < ∞, and it is well-known that the inequality fails
for 1 < p < 2; see [8] for an explicit example. We refer the reader to Stein [44]
for these classical results and where it is also shown that there are constants cα,n,
Cα,n, depending only on α and n, such that

(5.5) g(f)(x) ≤ cα,nAα(f)(x) ≤ Cα,ng∗(f)(x) for all x ∈ Rn.

In fact, the second inequality is trivial since

y−n ≤ (α2 + 1)
n+1
2

cn
ky(z − x), (z, y) ∈ Γα(x),
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where cn is the constant in (5.1). This gives

(5.6) Aα(f)(x) ≤
(α2 + 1)

n+1
4

√
cn

g∗(f)(x).

Also, the semigroup property of Ky gives directly (see also the proof of (5.16)
below) that

(5.7) g(f)(x) ≤ 2g∗(f)(x).

An important property for our purpose in this paper is the fact that g∗(f) can be
expressed as the conditional expectation of the quadratic variation (square function)
of the martingale obtained by composing the harmonic function Kyf(x) with the

Brownian motion in Rn+1
+ . Let us explain this further. Let Bt = (Xt, Yt), t ≥ 0,

be Brownian motion in Rn+1
+ starting at the point (z, a) so that (Xt)t≥0 is an n-

dimensional Brownian motion and (Yt)t≥0 is a one-dimensional Brownian motion.
We denote the corresponding starting probability measure and expectation by P(z,a)

and E(z,a), respectively. Let τ be its exit time from Rn+1
+ so that τ = inf{s > 0 :

Ys = 0}. Since the density of the distribution of the random variable Xτ under
the probability measure P(z,a) is given by the Poisson kernel ka(z − x), Fubini’s
theorem gives that for nonnegative (or integrable) functions F on Rn we have

(5.8)

∫
Rn

E(z,a)F (Xτ )dz =

∫
Rn

(∫
Rn

ka(z − x)F (x)dx

)
dz =

∫
Rn

F (x)dx,

for all a > 0. This simple formula is used below multiple times to convert integrals
over Rn with respect to the Lebesgue measure to expectations, which then permits
the application of martingale inequalities.

We now consider the martingale M(f)t = KYτ∧t
(f)(Xτ∧t), t ≥ 0. By the Itô

formula,

M(f)t = Kaf(z) +

∫ τ∧t

0

∇KYs
(f)(Xs) · dBs,

and the quadratic variation of the martingale is given by

〈M(f)〉t = |Kaf(z)|2 +
∫ τ∧t

0

|∇KYs
(f)(Xs)|2 ds.

Setting

Ex
(z,a)

(∫ τ

0

|∇KYs
(f)(Xs)|2ds

)
= E(z,a)

(∫ τ

0

|∇KYs
(f)(Xs)|2ds

∣∣Bτ = (x, 0)

)
,

it is proved in Bañuelos [5, p. 663]) that

g2∗,a(f)(x) =

∫ a

0

∫
Rn

y ky(x− z)|∇Ky(f)(z)|2 dz dy(5.9)

=
1

2

∫
Rn

Ex
(z,a)

(∫ τ

0

|∇KYs
(f)(Xs)|2 ds

)
ka(x− z)dz.
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5.2. Littlewood-Paley and Lusin square functions for parabolic functions.
As is well known, the Poisson kernel in the above construction can be replaced by
more general volume preserving dilations of approximations to the identity, and
these give rise to more general Littlewood-Paley and Lusin square functions that
have similar Lp boundedness properties. See, for example, [7]. A probabilistic
way (also well known by now) to generalize the Poisson kernel construction above
is to replace it with a more general Poisson semigroup obtained by the Bochner
1/2-subordination of a symmetric Markovian semigroup. This is what is done in
Varopoulos [46] and Meyer [30]. A variation of this construction applies to space-
time martingales arising from the Markovian semigroup itself and not just by its
1/2-subordination. This construction was used in, for example, [6] for applications
to the Beurling-Ahlfors operator and second order Riesz transforms. For our pur-
pose here, and to connect to the classical Ap-weights and the classical parabolic
square functions in analysis, we present the construction for the heat (Gaussian
kernel) semigroup on Rn. For t > 0, x ∈ Rn, denote the heat (Gaussian) kernel by

(5.10) pt(x) =
1

(2πt)
n
2
e−

|x|2
2t

and this time consider the heat extension Ptf(x) = (pt∗f)(x) of f . The parabolic
“cone” in Rn+1

+ with vertex at x and aperture α is defined by

Pα(x) = {(z, t) ∈ Rn+1
+ : |z − x| < α

√
t}.

The corresponding parabolic Littlewood-Paley functions G(f), G∗(f) and para-
bolic Lusin area function PAαf(x) are given, respectively, by

(5.11) G(f)(x) =

(∫ ∞

0

|∇xPtf(x)|2 dt
)1/2

,

(5.12) G∗(f)(x) =

(∫ ∞

0

∫
Rd

pt(x− z)|∇xPtf(z)|2 dzdt
)1/2

,

and

(5.13) PAα(f)(x) =

(∫
Pα(x)

t−
n
2 |∇xPtf(z)|2dzdt

)1/2

,

where for any function U(x, t) in the upper half-space

∇xU =
(

∂U
∂x1

, ∂U
∂x2

, . . . , ∂U
∂xn

)
denotes its “horizontal” gradient.

These square functions have also been widely studied in the literature. We refer
the reader to [7] (and references given there) for some of their basic properties. As
in the case of harmonic functions we have ‖G(f)(x)‖p ≈ ‖PAαf(x)‖p ≈ ‖f‖p, for
1 < p < ∞, and ‖G∗(f)‖p ≤ cp‖f‖p, 2 ≤ p < ∞. Similarly, the following pointwise
inequality holds:

(5.14) G(f)(x) ≤ cα,nPAα(f)(x) ≤ Cα,nG∗(f)(x) for all x ∈ Rn,

for some constants cα,n and Cα,n depending only on α and n. In fact, since

t−n/2 ≤ (2π)n/2eα
2/2pt(x− z) for z ∈ Pα(x),
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we have

(5.15) PAα(f)(x) ≤ (2π)n/4eα
2/4G∗(f)(x).

Similarly, by the semigroup property,

Ptf(x) = Pt/2(Pt/2f)(x) =

∫
Rn

pt/2(x− z)Pt/2f(z)dz,

and by Jensen’s inequality,

|∇xPtf)(x)|2 ≤
∫
Rn

pt/2(x− z)|∇xPt/2f(z)|2dz.

This gives

G2(f)(x) =

∫ ∞

0

|∇xPtf(z)|2dt

≤
∫ ∞

0

∫
Rn

pt/2(z − x)|∇xPt/2f(z)|2dzdt(5.16)

= 2G2
∗(f)(x).

As in the case of the Poisson kernel, the Littlewood-Paley G∗ function is the
conditional expectation of the corresponding martingale square function. This time,
however, the martingales arise from space-time Brownian motion. This fact is
proved exactly as in [46] or [5, p. 663], once the space-time martingale is identified.
For the sake of completeness, we briefly explain this. For the space-time martingale
details as used here, see for example [6].

Let (Bt)t≥0 be the Brownian motion in Rn starting at z and let Pz and Ez be
the probability and expectation for B. Fix 0 < T < ∞. Then

M(f)t = PT−tf(Bt), 0 ≤ t ≤ T,

is a martingale, and by Itô’s formula,

M(f)t = PT f(z) +

∫ t

0

∇xPT−sf(Bs) · dBs.

The quadratic variation (square function) of this martingale is given by

〈M(f)〉t = |PT f(z)|2 +
∫ t

0

|∇xPT−sf(Bs)|2 ds.

Setting

(5.17) G∗,T (f)(x) =

(∫ T

0

∫
Rd

pt(x− z)|∇xPtf(z)|2dz dt
)1/2

,

we claim that

(5.18) G2
∗,T f(x) =

∫
Rn

Ex
z

(∫ T

0

|∇xPT−sf(Bs)|2 ds
)
pT (x− z)dz,

where

Ex
z

(∫ T

0

|∇xPT−sf(Bs)|2 ds
)

= Ez

(∫ T

0

|∇xPT−sf(Bs)|2 ds
∣∣BT = x

)
.
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To prove (5.18) recall that the conditional distribution of Bs given BT = x (the
Brownian bridge with B0 = z, BT = x) is

ps(z − w)pT−s(w − x)

pT (z − x)
dw.

Thus,

Ex
z

(∫ T

0

|∇zPT−sf(Bs)|2ds
)

=

∫ T

0

∫
Rn

ps(z − w)pT−s(w − x)

pT (z − x)
|∇xPT−sf(w)|2dwds.

Multiplying both sides of this equality by pT (z−x) and integrating on z we obtain∫
Rd

Ex
z

(∫ T

0

|∇xPT−sf(Bs)|2ds
)
pT (z − x)dz

=

∫ T

0

∫
Rd

∫
Rn

ps(z − w)pT−s(w − x)|∇xUf (w, T − s)|2 dwdzds

=

∫ T

0

∫
Rd

pT−s(w − x)|∇PT−sf(y)|2 dwds

=

∫ T

0

∫
Rd

ps(w − x)|∇xPT−sf(w)|2 dw ds = G2
∗,T f(x),

which verifies (5.18).

5.3. Poisson Ap weights in the disc. We now explore the connections between
the martingale Ap weights studied in §4 and various classes previously studied in
analysis. These connections are more transparent for the unit disk in the plane (or
unit ball in Rn) where the Brownian motion has a natural place to start, namely the
origin. For further clarity and to connect to the classical Littlewood-Paley square
functions, we first treat this case. Let D = {x ∈ C : |z| < 1} be the unit disc in the
complex plane with the circle T = ∂D as its boundary and Poisson kernel given by

Pz(e
iθ) =

1− |z|2
|z − eiθ|2 , z ∈ D.

For the rest of this section we assume that w is a positive and integrable function
on the unit circle T. Let

uw(z) =
1

2π

∫
T

Pz(e
iθ)w(eiθ)dθ

be the Poisson integral of w.

Definition 5.1. We say that w ∈ Ap(Poisson,T) if

(5.19) ‖w‖Ap,T
= ‖uw(z) (uw−1/p−1(z))

p−1 ‖L∞(D) < ∞.

Now, let (Bt)t≥0 be Brownian motion in D starting at the origin and let τ be its
first exit time from D. Since uw(z) is harmonic, the process Yt = uw(Bτ∧t), t ≥ 0,
is a martingale with Y∞ = w(Bτ ). By the strong Markov property,

E0

(
Y∞

∣∣Fτ∧t

)
= EBτ∧t

(w(Bτ )) = Yt
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and similarly for Y
−1/(p−1)
∞ :

E0

(
Y −1/(p−1)
∞

∣∣Fτ∧t

)
= E0

(
uw−1/p−1(Bτ )

∣∣Fτ∧t

)
= EBτ∧t

(uw−1/p−1(Bτ )) .

Recalling the martingale Ap weights defined in (4.1), we see that Y ∈ Ap(mart) if
and only if w ∈ Ap(Poisson,T) and in fact we have

(5.20) ‖Y ‖Ap(mart) = ‖w‖Ap,T
.

Remark 5.1. The Ap(Poisson,T) weights have been studied in recent years in con-
nection with the L2

w(T) boundedness of the conjugate function (Hilbert transform)
with the correct dependence on the constant ‖w‖Ap,T

. For this, we refer the reader to
Petermichl and Wittwer [39]. The fact that these weights are probabilistic weights
for the corresponding martingales has been known for many years. The first author
learned this from R. Durrett in the early 1980’s.

The Littlewood-Paley g∗ function on the circle T is defined by

(5.21) g∗(f)(e
iθ) =

(
1

π

∫
D

1− |z|2
|z − eiθ|2 log

1

|z| |∇uf (z)|2dz
)1/2

,

where dz denotes the area measure in the plane. This version, which is pointwise
comparable to the classical Zygmund [50] g∗ function, was introduced in [5]. As
in the case of Rn, this square function is the conditional expectation of the square
function of the martingale uf (Bτ∧t). That is, by the Itô formula, we have

uf (Bτ∧t) = uf (0) +

∫ τ∧t

0

∇uf (Bs) · dBs

for all t, and hence this martingale has the square function given by

〈uf (B)〉τ∧t = |uf (0)|2 +
∫ τ∧t

0

|∇uf (Bs)|2ds.

Now, we have

g2∗(f)(e
iθ) = Eθ

0

(∫ τ

0

|∇uf (Bs)|2ds
)

= E0

(∫ τ

0

|∇uf (Bs)|2ds
∣∣Bτ = eiθ

)
.

We refer the reader to [5, p. 650] for the details on this formula, which is proved using
the transition probabilities for the Doob h-process for Brownian motion starting at
0, conditioned to exit D at eiθ. Since Bτ is uniformly distributed on T under P0,
we have

1

2π

∫
T

g2∗(f)(e
iθ)w(eiθ)dθ = E0

(
E0

(∫ τ

0

|∇uf (Bs)|2ds
∣∣Bτ

)
w(Bτ )

)

= E0

((∫ τ

0

|∇uf (Bs)|2ds
)

w(Bτ )

)
.(5.22)

Theorem 5.1. Suppose w ∈ A2(Poisson,T) and f ∈ C(T), the space of continuous
functions in T. Then,

||f − uf (0)||L2
w(T) ≤

(
80‖w‖A2,T

)1/2 ||g∗(f)(eiθ)||L2
w(T),(5.23)

‖g∗(f)(eiθ)‖L2
w(T) ≤ inf

1<r<2

(
r

2− r
‖w‖Ar,T

)1/2

‖f‖L2
w(T)(5.24)
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and

(5.25) ‖g∗(f)(eiθ)‖L2
w(T) ≤ 27/4‖w‖A2,T

‖f‖L2
w(T),

where uf (0) =
1
2π

∫
T
f(eiθ)dθ.

Proof. Applying (5.20) and the inequality (4.2) of Theorem 4.1, we have

1

2π

∫
T

|f(eiθ)− uf (0)|2w(eiθ)dθ = E0

(
|f(Bτ )− uf (0)|2w(Bτ

)
= E0

(∣∣ ∫ τ

0

∇uf (Bs)dBs

∣∣2w(Bτ )

)

≤ 80‖w‖A2,T
E0

((∫ τ

0

|∇uf (Bs)|2ds
)

w(Bτ )

)

= 80‖w‖A2,T

(
1

2π

∫
T

g2∗(f)(e
iθ)w(eiθ)dθ

)
,

where the last equality follows from (5.22). This proves (5.23). To establish (5.24)
we apply (4.4) to obtain

1

2π

∫
T

g2∗(f)(e
iθ)w(eiθ)dθ = E0

((∫ τ

0

|∇uf (Bs)|2ds
)

w(Bτ )

)

≤ E0

((
|uf (0)|2 +

∫ τ

0

|∇uf (Bs)|2ds
)

w(Bτ )

)

≤ inf
1<r<2

(
r

2− r
‖w‖Ar,T

)
E0

(
|f(Bτ )|2 w(Bτ )

)
= inf

1<r<2

(
r

2− r
‖w‖Ar,T

)(
1

2π

∫
T

|f(eiθ)|2w(eiθ)dθ
)
.

Finally, (5.25) is proved the same way applying Corollary 4.1. �

For 0 < α < 1, the Stoltz domain, denoted here by Γα(θ), is the interior of the
smallest convex set containing the disc {z ∈ C : |z| < α} and the point eiθ. The
Lusin area function (area integral) of f is

Aα(f)(e
iθ) =

(∫
Γα(θ)

|∇uf (z)|2dz
)1/2

.

Similarly, the Littlewood-Paley function g is defined by

g(f)(eiθ) =

(∫ 1

0

(1− r)|∇uf (re
iθ)|2dr

)1/2

.

As before, it is easy to show that there are universal constants Cα and C such that
the pointwise inequalities Aα(f)(e

iθ) ≤ Cαg∗(f)(e
iθ) and g(f)(eiθ) ≤ Cg∗(f)(e

iθ)
hold. This gives the following corollary.

Corollary 5.1. Suppose w ∈ A2(Poisson,T) and f ∈ C(T). Then

(5.26) ‖Aα(f)(e
iθ)‖L2(w) ≤ 27/4Cα‖w‖A2,T

‖f‖L2(w)

and

(5.27) ‖g(f)(eiθ)‖L2(w) ≤ 27/4C‖w‖A2,T
‖f‖L2(w).
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5.4. Poisson and heat Ap weights on Rn. In this section we carry out the
computations in Rn done above for the disc. We follow the notation of §5.1.

Definition 5.2. Let w be a positive locally integrable function defined on Rn and
1 < p < ∞.

(i) We will say w ∈ Ap(Poisson,R
n) if

(5.28) ‖w‖Ap(Poisson,Rn) := ‖Kyw(x)
(
Ky(w

−1/(p−1)(x)
)p−1

‖L∞(Rn+1
+ ) < ∞.

(ii) We will say w ∈ Ap(heat,R
n) if

(5.29) ‖w‖Ap(heat,Rn) := ‖Ptw(x)
(
Pt(w

−1/(p−1)(x)
)p−1

‖L∞(Rn+1
+ ) < ∞.

We remark here that these Ap weights can be defined for any Markovian semi-
group and not just for the Poisson or heat semigroup in Rn. Such Ap weights are
nothing more than the martingale Ap(mart) weights arising from the stochastic
process associated with the semigroup. Before we explain this more precisely, we
recall that both classes of Ap weights defined above have been studied before in
connection to weight problems and applications. Indeed, it was proved by Peter-
michl and Volberg in [38] that there are constants a and b, depending only on the
dimension n, such that

(5.30) aAp(heat,R
n) ≤ ‖w‖Ap

≤ bAp(heat,R
n),

where ‖w‖Ap
is as in the original definition of Muckenhoupt. That is, w ∈ Ap if

‖w‖Ap
= sup

Q

(
1

|Q|

∫
Q

w

)(
1

|Q|

∫
Q

w−1/(p−1)

)p−1

< ∞,

where the sup is taken over all cubes Q ⊂ Rn. As for Ap(Poisson,R
n), it is known

that when n = 1, A2(Poisson) = A2 and that in fact there are universal constants
a and b such that

(5.31) a‖w‖A2
≤ ‖w‖A2(Poisson,Rn) ≤ b‖w‖2A2

.

On the other hand, for n > 1 there are weights w for which we have ‖w‖A2
< ∞,

but ‖w‖A2(Poisson,Rn) = ∞. Thus, for n > 1, A2 �= A2(Poisson,R
n). For these

results, as well as the boundedness of the classical Riesz transforms on L2
w(R

n),
w ∈ A2(Poisson) with constants independent of the dimension n, we refer the
reader to Hukov́ıc [21], Petermichl [39] and Domelevo, Petermichl and Wittwer
[40].

Remark 5.2. We remark here that while A2 �= A2(Poisson,R
n), it is easy to see

that A2(Poisson,R
n) ⊂ A2 for all n ≥ 1. Indeed, given a cube Q centered at z

and length lQ, we pick a ≈ lQ to obtain that 1
|Q|χQ ≤ Cnka(z − x) for all x ∈ Q

for some universal constant Cn depending only on n. This immediately shows that
A2(Poisson,R

n) ⊂ A2 for all 1 < p < ∞ and n ≥ 1. The same argument (picking
this time t2 ≈ lQ) shows that 1

|Q|χQ ≤ C ′
npt(z − x) for all x ∈ Q. This gives that

Ap(heat,R
n) ⊂ Ap for all 1 < p < ∞ and n ≥ 1.

Our aim now is to prove versions of Theorem 4.1 and Corollary 4.1 for the
Littlewood-Paley functions g∗ and G∗ with respect to weights in A2(Poisson,R

n)
and A2(heat,R

n).
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Lemma 5.1. Suppose w ∈ Ap(Poisson,R
n). Fix (z, a) ∈ Rn+1

+ and let Bt =

(Xt, Yt), t ≥ 0, be Brownian motion Rn+1
+ starting at (z, a) and denote by τ its exit

time from Rn+1
+ . Let Ỹt = KYτ∧t

w(Xτ∧t), t ≥ 0, be the martingale under the mea-

sure P(z,a). Then Ỹ∞ = w(Xτ ) ∈ Ap(mart) and ‖Ỹ∞‖Ap(mart) ≤ ‖w‖Ap(Poisson,Rn).

Proof. With Ỹ∞ = w(Xτ ) and Kaw(z) = E(z,a)w(Xτ ), the strong Markov property
gives

E(z,a)

((
1

Ỹ∞

)1/(p−1) ∣∣Fτ∧t

)
= E(z,a)

((
1

w(Xτ )

)1/(p−1) ∣∣Fτ∧t

)

= EBτ∧t

((
1

w(Xτ )

)1/(p−1)
)

= KYτ∧t
(w−1/(p−1)(Xτ∧t).

Hence,

Ỹt

(
E(z,a)

((
1

Ỹ∞

)1/(p−1) ∣∣Fτ∧t

))p−1

= KYτ∧t
w(Xτ∧t)

(
KYτ∧t

(w−1/(p−1))(Xτ∧t)
)p−1

.

It follows from this that for all (z, a) ∈ Rn+1
+ ,

‖Ỹ∞‖Ap(mart) = sup
t≥0

∥∥∥Ỹt

(
E(z,a)

((
1

Ỹ∞

)1/(p−1) ∣∣Fτ∧t

))p−1 ∥∥∥
∞

= sup
t>0

‖KYτ∧t
w(Xτ∧t)

(
KYτ∧t

(w−1/(p−1))(Xτ∧t)
)p−1

‖∞

≤ ‖w‖Ap(Poisson,Rn).

This completes the proof. �

Remark 5.3. It is important to note here, for our applications below, that the
above inequality ‖Ỹ ‖Ap(mart) ≤ ‖w‖Ap(Poisson,Rn) holds for all starting points (z, a).
While not needed for the purpose of this paper, we note that here we actually have
equality. That is, ‖Ỹ ‖Ap(mart) = ‖w‖Ap(Poisson,Rn). This follows from the fact that
if F (x, y) is a continuous bounded function in the upper half-space, then

sup
t

‖F (Xτ∧t, Yτ∧t)‖L∞(P(z,a)) = ‖F (x, y)‖L∞(Rn+1
+ ),

since given any ball B in the upper half-space there will be a time t > 0 such that
P(z,a){(Xτ∧t, Yτ∧t) ∈ B)} > 0. Indeed, this quantity is given by the integral of the
Dirichlet heat kernel in the upper half-space (which is just the product of the heat
kernel in Rn and the heat kernel for the half line) over the ball B.

Theorem 5.2. Suppose w ∈ A2(Poisson,R
n) and f ∈ C0(R

n), the space of con-
tinuous functions of compact support. Then,

||f ||L2
w(Rn) ≤

(
320‖w‖A2(Poisson,Rn)

)1/2 ||g∗(f)||L2
w(Rn),(5.32)

||g∗(f)||L2
w(Rn) ≤

1√
2

inf
1<r<2

(
r

2− r
‖w‖Ar(Poisson,Rn)

)1/2

‖f‖L2
w(Rn)(5.33)
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and

(5.34) ‖g∗(f)‖L2
w(Rn) ≤ 25/4‖w‖A2(Poisson,Rn)‖f‖L2

w(Rn).

Proof. Let R be large enough so that the support of f is contained in the ball
B = B(0, R). By (5.8) we have∫

Rn

|f(x)|2w(x)dx =

∫
Rn

1B(x)|f(x)|2w(x)dx

=

∫
Rn

E(z,a)

(
1B(Xτ )|f(Xτ )|2w(Xτ )

)
dz

≤ 2

∫
Rn

E(z,a)

(
1B(Xτ )|f(Xτ )−Kaf(z)|2w(Xτ )

)
dz(5.35)

+ 2

∫
Rn

|Kaf(z)|2E(z,a)1B(Xτ )w(Xτ )dz.

We now estimate the first term under the integral on the right-hand side of the
above inequality. By Theorem 4.1 and Lemma 5.1 we have

2E(z,a)

(
|f(Xτ )−Kaf(z)|2w(Xτ )

)
≤ 160‖w‖A2(Poisson)E(z,a)

(∫ τ

0

|∇KYs
(f)(Xs)|2 dsw(Xτ )

)

= 160‖w‖A2(Poisson,Rn)E(z,a)

(
E(z,a)

(∫ τ

0

|∇KYs
(f)(Xs)|2 dsw(Xτ )

∣∣Xτ

))

= 160‖w‖A2(Poisson,Rn)E(z,a)

(
E(z,a)

(∫ τ

0

|∇KYs
(f)(Xs)|2 ds )

∣∣Xτ

)
w(Xτ )

)

= 160‖w‖A2(Poisson,Rn)E(z,a)

(
E
Xτ

(z,a)

(∫ τ

0

|∇KYs
(f)(Xs)|2 ds

)
w(Xτ )

)
= 320‖w‖A2(Poisson,Rn)E(z,a)

[
g2∗,a(f)(Xτ )w(Xτ )

]
.

Integrating both sides of this inequality in z gives

2

∫
Rn

E(z,a)

(
|f(Xτ )−Kaf(z)|2w(Xτ )

)
dz

≤ 320‖w‖A2(Poisson,Rn)

∫
Rn

E(z,a)

[
g2∗,a(f)(Xτ )w(Xτ )

]
dz

= 320‖w‖A2(Poisson,Rn)

∫
Rn

g2∗,a(f)(x)w(x)dx

≤ 320‖w‖A2(Poisson,Rn)

∫
Rn

g2∗(f)(x)w(x)dx.

Combining this with (5.35) we obtain∫
Rn

|f(x)|2w(x)dx ≤ 320‖w‖A2(Poisson,Rn)

∫
Rn

g2∗(f)(x)w(x)dx

+ 2

∫
Rn

|Kaf(z)|2E(z,a) (1B(Xτ )w(Xτ )) dz.

(5.36)

Since f ∈ C0(R
n), we have

|Kaf(z)| = |
∫
Rn

ka(x− z)f(x) dx| ≤ cn
an

∫
Rn

|f(x)|dx.
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Thus,

2

∫
Rn

|Kaf(z)|2E(z,a) (1B(Xτ )w(Xτ )) dz

≤ 2cn
an

(∫
Rn

|f(x)|dx
)(∫

Rn

E(z,a) (1B(Xτ )w(Xτ )) dz

)

=
2cn
an

(∫
Rn

|f(x)|dx
)(∫

B

w(x)dx

)
.

Combining this with (5.36) and letting a → ∞ give∫
Rn

|f(x)|2w(x)dx ≤ 320‖w‖A2(Poisson,Rn)

∫
Rn

g2∗(f)(x)w(x)dx,

which is the announced inequality.
Similarly, inequality (4.4) in Theorem 4.1 gives∫

Rn

g2∗,a(f)(x)w(x)dx

=
1

2

∫
Rn

E(z,a)

(∫ τ

0

|∇KYs
(f)(Xs)|2 dsw(Xτ )

)
dz

≤ 1

2

∫
Rn

E(z,a)

((
|Kaf(z)|2 +

∫ τ

0

|∇KYs
(f)(Xs)|2 ds

)
w(Xτ )

)
dz

≤ 1

2
inf

1<r<2

(
r

2− r
‖w‖Ar(Poisson,Rn)

)∫
Rn

E(z,a)|f(Xτ )|2w(Xτ )dz

=
1

2
inf

1<r<2

(
r

2− r
‖w‖Ar(Poisson,Rn)

)∫
Rn

|f(x)|2w(x)dx.

Combining the above arguments with Corollary 4.1 we obtain (5.34), and this
completes the proof of the theorem. �

From the pointwise inequalities (5.6) and (5.7), combined with (5.34), we obtain

Corollary 5.2. Suppose w ∈ A2(Poisson,R
n) and f ∈ C0(R

n). Then

(5.37) ‖Aα(f)(x)‖L2
w(Rn) ≤

(α2 + 1)
n+1
4

√
cn

25/4‖w‖A2(Poisson,Rn)‖f‖L2
w(Rn)

and

(5.38) ‖g(f)(x)‖L2
w(Rn) ≤ 29/4‖w‖A2(Poisson,Rn)‖f‖L2

w(Rn).

Our results for Ap(heat,R
n) weights parallel those for Ap(Poisson,R

n). We start
with the corresponding lemma which shows the identification of these weights with
the martingale weights arising from the semigroup.

Lemma 5.2. Suppose w ∈ Ap(heat,R
n). Fix 0 < T < ∞ and z ∈ Rn. Let

(Bt)t≥0 be Brownian motion in Rn starting at z. Consider the martingale Yt =
PT−tw(Bt), 0 ≤ t ≤ T , under the measure Pz. Then YT = w(BT ) ∈ Ap(mart) and
‖YT ‖Ap(mart) ≤ ‖w‖Ap(heat,Rn).
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Proof. Recall that Ptw(z) = Ezw(Bt). As before, we apply the strong Markov
property to obtain that for any 0 < t < T ,

Ez

((
1

YT

)1/(p−1) ∣∣Ft

)
= Ez

((
1

w(BT )

)1/(p−1) ∣∣Ft

)

= EBt

((
1

w(XT−t)

)1/(p−1)
)

= PT−t(w
−1/(p−1))(Bt).

Thus,

Yt

(
Ez

((
1

YT

)1/(p−1) ∣∣Ft

))p−1

= PT−tw(Bt)
(
PT−t(w

−1/(p−1))(Bt)
)p−1

and

‖YT ‖Ap(mart) = sup
0<t<T

‖Yt

(
Ez

((
1

YT

)1/(p−1) ∣∣Ft

))p−1

‖∞ ≤ ‖w‖Ap(heat,Rn),

as claimed. �

As before, a remark similar to Remark 5.3 applies. With this lemma established,
we can repeat the above argument for the space-time martingales and obtain similar
results for ‖w‖Ap(heat,Rn) weights.

Theorem 5.3. Suppose w ∈ A2(heat,R
n) and f ∈ C0(R

n). Then

||f ||L2
w(Rn) ≤

(
160‖w‖A2(heat,Rn)

)1/2 ||G∗(f)||L2
w(Rn),(5.39)

||G∗(f)||L2
w(Rn) ≤ inf

1<r<2

(
r

2− r
‖w‖Ar(heat,Rn)

)1/2

‖f‖L2
w(Rn)(5.40)

and

(5.41) ‖G∗(f)‖L2
w(Rn) ≤ 27/4‖w‖A2(heat,Rn)‖f‖L2

w(Rn).

We remark that the reason the constants here are slightly different than those
for the Poisson case is that the representation for G∗,T in terms of the conditional
expectation of the corresponding martingale square function given in (5.18) does
not have the 1

2 factor as in (5.9).

From the inequalities PAα(f)(x) ≤ (2π)n/4eα
2/4G∗(f)(x) and G(f)(x)

≤
√
2G∗(f)(x) already proved in (5.15) and (5.16), we obtain

Corollary 5.3. Suppose w ∈ A2(heat,R
n) and f ∈ C0(R

n). Then

(5.42) ‖PAα(f)(x)‖L2
w(Rn) ≤ (2π)n/4eα

2/427/4‖w‖A2(heat,Rn)‖f‖L2
w(Rn)

and

(5.43) ‖G(f)(x)‖L2
w(Rn) ≤ 29/4‖w‖A2(heat,Rn)‖f‖L2

w(Rn).

Theorem 5.3 and Corollary 5.3, combined with the Petermichl-Volberg inequality
(5.30) proving the equivalence of the classical Muckenhoupt Ap and Ap(heat), give
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Corollary 5.4. Suppose w ∈ A2 is in the classical Muckenhoupt class and f ∈
C0(R

n). Then

||f ||L2
w(Rn) ≤

(
160‖w‖A2

a

)1/2

||G∗(f)||L2
w(Rn),(5.44)

||G∗(f)||L2
w(Rn) ≤ inf

1<r<2

(
r

2− r

‖w‖Ar

a

)1/2

‖f‖L2
w(Rn),(5.45)

‖G∗(f)‖L2
w(Rn) ≤

27/4‖w‖A2

a
‖f‖L2

w(Rn),(5.46)

‖PAα(f)(x)‖L2
w(Rn) ≤

(2π)n/4eα
2/427/4‖w‖A2

a
‖f‖L2

w(Rn)(5.47)

and

(5.48) ‖G(f)(x)‖L2
w(Rn) ≤

29/4‖w‖A2

a
‖f‖L2

w(Rn),

where a is the constant in (5.30).

6. symmetric Markovian semigroups

In [46], Varopoulos defines the g∗ function in the general setting of Poisson semi-
groups. However, due to the lack of gradient in this general setting, he only con-
siders the time derivative of the semigroup in the definition of his square functions
for both his g and g∗. This construction can be applied to obtain versions of the
above inequalities for semigroups which yield martingales with continuous paths. In
this section we aim to define a Littlewood-Paley function G∗ for general Markovian
semigroups and the corresponding Ap weights. Since our martingale results re-
quire continuous trajectories, our A2 inequality will only be stated for Riemannian
manifolds of nonnegative Ricci curvature, using Meyer’s “carré du champ”.

Let (M,M, μ) be a metric measure space, that is, a measure space (equipped
with a countably generated σ-algebra) M which is also a metric space with metric
ρ. The measure μ is assumed to be σ-finite. Let (Pt, t ≥ 0) be a family of Markovian
linear operators which acts as a C0-contraction semigroup on Lp(M) for all 1 ≤
p ≤ ∞. We further assume that Pt is self-adjoint on L2(M) for all t ≥ 0 and that
it is given by an integral kernel

Ptf(x) =

∫
M

pt(x, y)f(y)dμ(y)

which is symmetric. That is, pt(x, y) = pt(y, x) and∫
M

pt(x, y)dμ(y) = 1.

It follows from [14] that Tt = e−tL where L is a positive self-adjoint operator on
L2(M). If we denote by D(L) ⊂ L2(M) the domain of L for f, h ∈ D(L), the
operator “carré du champ” is defined by

(6.1) Γ(f, h) = L(fh)− fLh− hLf.
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By the definition of Γ, we have∫ ∞

0

∫
M

Γ(Ptf, Ptf)(x)dμ(x)dt = −2

∫ ∞

0

∫
M

Ptf(x)LPtf(x)dμ(x)dt

= −2

∫ ∞

0

∫
M

Ptf(x)
d

dt
Ptf(x)dμ(x)dt

= −
∫ ∞

0

∫
M

d

dt
(Ptf(x))

2dμ(x)dt

=

∫
M

|f(x)|2dμ(x).

Defining, respectively, the Littlewood-Paley G and G∗ by

(6.2) G(f)(x) =

(∫ ∞

0

Γ(Ptf, Ptf)(x) dt

)1/2

and

(6.3) G∗(f)(x) =

(∫ ∞

0

∫
M

Γ(Ptf, Ptf)(x)pt(x, z)dμ(z) dt

)1/2

,

we see that

‖G∗f‖2 = ‖G(f)‖2 = ‖f‖2.
We now denote by (Xt)t≥0 the Markov process associated with this semigroup

so that Ptf(x) = Ex[f(Xt)], and consider the martingale

(6.4) Mt(f) = PT−tf(Xt), 0 ≤ t ≤ T.

Under quite general conditions on the Markovian semigroup (as those imposed in
[46]), the process (Xt)t≥0 has càdlàg paths, G∗ is the conditional expectation of
the square function for this martingale (see Bakry and Emery [4, p. 181] or Revuz
and Yor [43, p. 326]) and it follows from the Burkholder-Gundy inequalities that
‖G∗f(x)‖p ≤ Cp‖f‖p, 2 ≤ p < ∞, where Cp depends only on p.

For the remainder of this paper we will make the further assumption that our
Markovian semigroup corresponds to Brownian motion on a complete Riemannian
manifold of nonnegative Ricci curvature and therefore the process has continuous
paths. To be precise, we let M be a complete Riemannian manifold of dimension
n with nonnegative Ricci curvature. Let Δ be the Laplace-Beltrami operator and
μ be the Riemannian volume measure. Then the heat equation ∂u

∂t = Δu(t) has
a fundamental solution p ∈ C∞((0,∞) ×M × M), which we call the heat kernel,
and this gives the kernel generating our semigroup (Pt)t≥0 above. The following
heat kernel bounds of Li and Yau [28] are important for many applications. For all
t > 0, x, z ∈ M :

(6.5)
C1

V (x,
√
t)

exp

(
−ρ(x, y)2

c1t

)
≤ pt(x, y) ≤

C2

V (x,
√
t)

exp

(
−ρ(x, y)2

c2t

)
,

where ρ is the Riemannian metric and for r > 0, V (x, r) = μ(B(x, r)) is the volume
of the ball B(x, r) of radius r centered at x. It is also well-known (cf. [9]) that for
all x ∈ M ,

(6.6) V (x, r) ≤ v(n)rn,

where v(n) is the volume of the unit ball in Rd.



WEIGHTED INEQUALITIES 2419

With the Laplacian as the generator, the carré du champ has the familiar form

Γ(Ptf, Ptf)(x) = |∇Ptf(x)|2,
and the square function of the martingale Mf (f) is given by

〈M(f)〉t = |PT f(x)|2 +
∫ t

0

|∇xPT−sf(Xs)|2 ds, t ≥ 0.

With this, the exact same argument as in Rn gives that

G∗,T (f)(x) =

∫ T

0

∫
Rd

|∇xPtf(z)|2pt(x, z)dμ(z) dt

=

∫
Rn

Ex
z

(∫ T

0

|∇xPT−sf(Xs)|2 ds
)
pT (x, z)dμ(z).(6.7)

As before we have the pointwise inequality

(6.8) G(f)(x) ≤
√
2G∗(f)(x).

To prove this we recall that under the assumption of nonnegative Ricci curvature,
the “Bakry Γ2 ≥ 0” holds. That is, we have the inequality Γ(Ptf, Ptf) ≤ PtΓ(f, f)
(see [3] for details). From this and the semigroup property, we obtain

Γ(Ptf, Ptf)(x) = Γ(Pt/2Tt/2f, Pt/2Pt/2f)(x)

≤ Pt/2Γ(Tt/2f, Pt/2f)(x)

=

∫
M

Γ(Tt/2f, Pt/2f)(y)pt/2(x, y)dμ(y).

Integrating both sides of this inequality in t gives (6.8).
Next, we introduce the parabolic cone using the metric on the manifold by

Pα(x) = {(z, t) ∈ Rn+1
+ : d(x, z) < α

√
t}

and define the Lusin area integral by

(6.9) PAα(f)(x) =

(∫
Pα(x)

t−n/2|∇Ptf(z)|2dμ(z)dt
)1/2

.

By (6.5) and (6.6) we have

(6.10) PAα(f)(x) ≤

√
v(n)e

α2

2c1

C1
G∗(f)(x).

Given a positive and μ-locally integrable function w on M , we will write w ∈
Ap(heat,M) if

(6.11) ‖w‖Ap(heat,M) := ‖Ptw(x)
(
Pt(w

−1/(p−1))(x)
)p−1

‖L∞(M×(0,∞)) < ∞.

The same argument as that in Lemma 5.2 shows that

‖YT ‖Ap(mart) ≤ ‖w‖Ap(heat,M),

where Y stands for the martingale Yt = PT−tw(Xt), 0 ≤ t ≤ T .
Similarly, we say that w ∈ Ap(M) (the classical Muckenhoupt Ap-class) if

‖w‖Ap
(M) = sup

B

(
1

μ(B)

∫
B

w(z)dμ(z)

)(
1

μ(B)

∫
B

w(z)−1/(p−1)dμ(z)

)p−1

< ∞,
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where the supremum is taken over balls. Because of the bound on the heat kernel
pt(x, z) given in (6.5), the observations of Remark 5.2 show that

Ap(M) ≤ aAp(heat,M),

for some constant a depending on c1, C1.
With the above definitions in place, we now state the following version of Theo-

rem 5.3, whose proof is exactly the same as the proof of that theorem.

Theorem 6.1. Let M be a complete Riemannian manifold of nonnegative Ricci
curvature. Assume further that (*) supx∈M pt(x, x) = ct → 0, as t → ∞, holds
true. Suppose w ∈ A2(heat,M) and f ∈ C0(M). Then inequalities (5.39), (5.40),
(5.41), (5.42) and (5.43) hold for the functions G(f), G∗(f) and PAα(f) as defined
in (6.2), (6.3) and (6.9).

Remark 6.1. If in addition we assume that V (x, r) ≥ cnr
n, then (*) is automatically

satisfied. For various known conditions that guarantee this lower bound volume
growth, see [47, p. 255]) and [2].
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no. 3, 463–470, DOI 10.2748/tmj/1178229981. MR509027

[46] Nicolas Th. Varopoulos, Aspects of probabilistic Littlewood-Paley theory, J. Funct. Anal. 38
(1980), no. 1, 25–60, DOI 10.1016/0022-1236(80)90055-5. MR583240

[47] N. Th. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63 (1985), no. 2,
240–260, DOI 10.1016/0022-1236(85)90087-4. MR803094

[48] Gang Wang, Sharp inequalities for the conditional square function of a martingale, Ann.
Probab. 19 (1991), no. 4, 1679–1688. MR1127721

[49] Janine Wittwer, A sharp estimate on the norm of the martingale transform, Math. Res. Lett.
7 (2000), no. 1, 1–12, DOI 10.4310/MRL.2000.v7.n1.a1. MR1748283

[50] Antoni Zygmund, Trigonometrical series, Dover Publications, New York, 1955. MR0072976

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

E-mail address: banuelos@math.purdue.edu

Department of Mathematics, Informatics and Mechanics, University of Warsaw,

Banacha 2, 02-097 Warsaw, Poland

E-mail address: ados@mimuw.edu.pl

http://www.ams.org/mathscinet-getitem?mr=1873024
http://www.ams.org/mathscinet-getitem?mr=1894362
http://www.ams.org/mathscinet-getitem?mr=1897034
http://www.ams.org/mathscinet-getitem?mr=3667592
http://www.ams.org/mathscinet-getitem?mr=1482934
http://www.ams.org/mathscinet-getitem?mr=2792983
http://www.ams.org/mathscinet-getitem?mr=1083357
http://www.ams.org/mathscinet-getitem?mr=0290095
http://www.ams.org/mathscinet-getitem?mr=509027
http://www.ams.org/mathscinet-getitem?mr=583240
http://www.ams.org/mathscinet-getitem?mr=803094
http://www.ams.org/mathscinet-getitem?mr=1127721
http://www.ams.org/mathscinet-getitem?mr=1748283
http://www.ams.org/mathscinet-getitem?mr=0072976

	1. Introduction
	2. Special functions
	2.1. Bellman function corresponding to (1.4)
	2.2. Bellman function corresponding to (1.6)
	2.3. The special function corresponding to (1.5)

	3. Proof of Theorem 1.1
	4. Inequalities for continuous time martingales
	5. Littlewood-Paley square functions and the Lusin area integral
	5.1. Littlewood-Paley and Lusin square functions for harmonic functions
	5.2. Littlewood-Paley and Lusin square functions for parabolic functions
	5.3. Poisson 𝐴_{𝑝} weights in the disc
	5.4. Poisson and heat 𝐴_{𝑝} weights on \Rⁿ

	6. symmetric Markovian semigroups
	Acknowledgments
	References

