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PROJECTIVE VARIETIES WITH NONBIRATIONAL LINEAR
PROJECTIONS AND APPLICATIONS

ATSUSHI NOMA

ABSTRACT. We work over an algebraically closed field of characteristic zero.
The purpose of this paper is to characterize a nondegenerate projective va-
riety X with a linear projection which induces a nonbirational map to its
image. As an application, for smooth X of degree d and codimension e, we
prove the “semiampleness” of the (d — e 4+ 1)th twist of the ideal sheaf. This
improves a linear bound of the regularity of smooth projective varieties by
Bayer—-Mumford—Bertram—Ein—Lazarsfeld, and gives an asymptotic regularity
bound.

INTRODUCTION

We work over an algebraically closed field k of characteristic zero. Let X C PV
be a nondegenerate (i.e., not contained in any hyperplane of PV) projective variety
(i.e., irreducible and reduced) of dimension n > 0, codimension e, and degree d. The
linear projection from a general point of PV induces a morphism of X birational
onto its image. If the center of the projection is a special point, this is not true
in some cases. Such special projections were originally studied by Segre [23] (see
also [, [4], [12]). The purpose of this paper is to characterize X with such a
special center. This study is motivated by the problem of finding out whether
X is cut out by hypersurfaces of degree < d — e + 1 (see [22] §3]) as evidence of a
regularity conjecture (see [§] and [I4] for the regularity conjecture). As applications,
for smooth X, we improve a linear bound of the regularity ([2], [3]) and give an
asymptotic regularity bound (Theorems 9 and 10).

To be precise, we say that a point w € PV is a nonbirational center of X if the
linear projection 7, : PV \ {w} — PN¥~! induces a nonbirational map of X to its
image. By B(X) we denote the set of all nonbirational centers out of X and by
C(X) that on the smooth locus Sm X of X:

B(X) :={v e PN\ X|I({v,2) N X) > 2 for general z € X},
C(X) :={u € Sm X|I({u,z) N X) > 3 for general x € X}.

Here {(Z) denotes the length of a scheme Z and ( ) denotes the linear span of
schemes, i.e., the intersection of all hyperplanes containing the schemes. Let B(X)
and C(X), respectively, be the closures of B(X) and C(X) in PV. Note that B(X) =
B(X)\ X and C(X) =C(X)NSm X (22 (4.1) and (4.2)]).
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The structure of B(X) and C(X) is known essentially due to Segre (see [12] for
the positive characteristic case).

Theorem 1 (Segre [23], Calabri-Ciliberto [4], Ballico [1], Noma [22]). Let X C PV
be a mondegenerate projective variety of dimension n > 0 and codimension e > 2.
Then each irreducible component Z of B(X) or C(X) is linear of dimZ < n — 1
and the linear span (Z,T,(X)) of Z and the embedded tangent space T,(X) to X
at general x € X is of dimension n + 1.

This means that X with B(X) # 0 or C(X) # 0 is a codimension-one subvariety
of a cone. By taking a resolution of the singularity of the cone, X is the birational
image of a divisor of a smooth projective bundle (see Lemma 1.1). The purpose
here is to characterize X with B(X) # 0 or C(X) # 0, by describing the condition
for the image of a divisor of a scroll with vertex to have the vertex as a subset of
B(X) or C(X).

To state our results, we introduce definitions about scrolls with vertex.
Definition 2. Let A be an I-dimensional linear subspace of PV and let PV (N =
N — 1 —1) be a subspace of PV disjoint from A. Consider the linear projection
7t PY\A — PV from A. By 7 : F* — PV we denote the P/*1-bundle F» :=
{(z,w)|x € (A,w)} C PN x PY over PV, which is the family of all (I + 1)-planes
in PV containing A or the graph of m5. For a smooth projective variety Y with a
birational-embedding v : Y — P (i.e., Y is birational to the image v(Y) in PV),
the conical scroll with vertex A over Y is the pull-back 71y : FQ =FA Xpn Y =Y
of 7 by v. In this case, F§ has a birational-embedding ¢y : F4 — PV induced
from the first projection of PN x Y and the subbundle /~Xy =AxY C FQ with
projection 7y : Ay — Y, which is mapped onto A by ¢y. Set Opa (1) := ¢3 Opn (1).
A projective variety X C PV is called a birational-divisor of the conical scroll Fﬁ\/
with vertex A over Y if X is birational to some prime divisor X on Fé\, by ¢y .
Moreover X is said to be of type (u, L) if X € |Opa (1) ® 7y L] for p € Z and
L € PicY. We call X the original divisor for X. We say that v is nondegenerate if
v(Y) C PV is nondegenerate.

The first result is the structure of X with B(X) # 0, which is almost done in
[22]. Conventionally we set dim () = —1.

Theorem 3. Let X C PV be a projective variety of dimension n > 0 and codi-
mension e > 2. Let A C PN be a linear subspace of dimensionl (n—1>12>0).
Then X is nondegenerate with A C B(X), and A € X if and only if X is a
birational-divisor of type (u, Oy) (u > 2) on the conical scroll 4 with vertex
A over an (n — l)-dimensional smooth projective variety Y with a nondegenerate
birational-embedding v : Y — PN (N = N—1—1). Moreover, under these equivalent
conditions, the following hold:

(1) p=UXN{(v,z)) for general v € A and general x € X.

(2) deg X = p-degr(Y).

3) ANX C SingX and dimA N X = dimA — 1. In particular, dim A <

dim Sing X + 1.
(4) A is an irreducible component of B(X) if and only if v(Y) is not a cone.

The next results are the structure of X with C(X) # 0, which is the main purpose
of this paper. To this purpose, we divide into two cases by the partial Gauss map of
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X, that is, a rational map v|z : ZNSm X — G(n,PY) from a subset Z C X with
ZNSm X # 0 to the Grassmannian of n-planes in PV, mapping y to T, (X) C PV.

First we consider the case when the partial Gauss map on a subset of C(X) is
constant.

Theorem 4. Let X C PN be a projective variety of dimension n > 0 and codi-
mension e > 2. Let A C PN be a linear subspace of dimensionl (n—1>12>0).
Suppose that X is nondegenerate with A C C(X) and AN SmX # 0 and that
the partial Gauss map y|n is constant. Then X is a birational-divisor of type
(1, L) (> 2,L € PicY) on the conical scroll F4 with vertex A over an (n —1)-
dimensional smooth projective variety Y with a nondegenerate birational-embedding
v:Y — PN (N =N —1—1) satisfying the following:

(1) HY(Y,L) #0, (£,0y(1)" =1 =1 for Oy (1) = v*Opx (1), and deg X =
w-degv(Y)+1;

(2) X NAy = (9)o xY + A x (w)o as a divisor on Ay for some g (# 0) €
HO(A, Op (1)) and w (#0) € HO(Y, £);

(3) (w)o s the sum .. D; of prime divisors D; such that v(Dy) =
TA(Tu(X) \ A) for general u € A and v(D;) C v(Dy) for all i > 1 if
r>1;

(4) p=UXnN{u,x)) —1 holds for general u € A and general x € X;

(5) (9)o €S ANSing X as set; in particular, dim A < dim Sing X + 1;

(6) A is an irreducible component of C(X) if and only if v(Y) is not a cone.

Theorem 5. For integers n > 1 > 0, let X C PN be a birational-divisor of type
(1, £) (0 > 1,L£ € PicY) on the conical scroll F4 with an l-dimensional linear
subspace A as vertex over an (n —l)-dimensional smooth projective variety Y with
a nondegenerate birational-embedding v : Y — PN (N = N — 1 — 1) satisfying
(1) and (2) in Theorem [l If (w)o is irreducible, then ANSmX = A\ (g9)o # 0.
Consequently, if (w)o is irreducible and if p > 2, then X is a nondegenerate n-
dimensional subvariety of PV such that ANSm X = A\ (9)o C C(X) and the partial
Gauss map v|p is constant.

~ Second we consider the case when the partial Gauss map on a component of
C(X) is nonconstant. To this purpose, we introduce definitions about a rational
scroll with vertex.

Definition 6. For an l-dimensional linear subspace A C PV and for an ample
vector bundle € of rank n — I(> 1) over P!, the conical rational scroll EX with
vertex A is the projective bundle Pp1 ((’)gﬁ”l @ &) with birational-embedding v :
E2 — PV defined by a subsystem of |Oga (1)] such that the subbundle Apr =
IP’pl(OE‘,ilH)(Q E2) maps onto A by ¢. Thus ¥ (E2) is nondegenerate in PV and
the cone over ¢)(Pp1(£)) with vertex A. Here Oga (1) is the tautological line bundle
of E} = Pp (Oéﬂlﬂ ®E). A projective variety X C PV is a birational-divisor of the
conical rational scroll EQ if X is a birational image of a prime divisor X on Elg\ by
the birational-embedding ¢ : EX — PV, In this case, X is said to be of type (i, b)
if X € |Oga (1) @ p*Op1 (b)] for the projection p : E} — P'. We call X the original
divisor for X.
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Theorem 7. Let X C PV be a projective variety of dimension n > 0 and codimen-
sion e > 2. Let A C PN be a linear subspace of dimensionl (n—1>12>0). The
following are equivalent:

(1) X is nondegenerate and A is an irreducible component of C(X) such that
the partial Gauss map |5 is nonconstant.
(2) X is a birational-divisor of type (u,1) (1 > 2) on a conical rational scroll

Elg\ with vertex A and original divisor X such that the intersection X NAp

is a nonzero effective divisor of Ap not equal to (g)o x P* + A x (w)o for
any g € HO(A,Ox(p)) and any w € H°(PY, Op1(1)).

Moreover, under these equivalent conditions, we have l > 1, u = (X N{u,x))—1 for
general u € A and general x € X, deg X = peq(€)+1, and dim A < dim Sing X +2.

Theorems 4 and 7 give the structure of smooth X with positive-dimensional
C(X) (Corollary 6.2). As an application, we prove the “semiampleness” of the ideal
sheaf for smooth X.

Theorem 8. Let X C PN be a nondegenerate smooth projective variety of degree
d and codimension e > 1. Let o : I@’% — PN be the blowing-up of PN along X with
exceptional divisor E and let A be the divisor of the pull-back of a hyperplane of
PN, Then O@g((d —e+1)A— E) is semiample, i.e., Opy (m((d—e+1)A—E)) is
base-point-free for some m > 0.

Theorem [§ improves a regularity bound for smooth projective varieties ([2] and
[3]) and leads to an asymptotic regularity bound. Recall that for an integer m, a
coherent sheaf F on PY is said to be m-regular in the sense of Castelnuovo-Mumford
if HY(PY, F(m —1)) = 0 for the twisted sheaf F(m —i) := F ® Op~ (m — i) and for
all i > 0. A projective variety X C PV is said to be m-regular if the ideal sheaf Zx
is m-regular. The regularity reg(F) is the least integer m for which F is m-regular.

Theorem 9. Let X C PN be a nondegenerate smooth projective variety of
degree d and codimension e > 1. Then H*(PN Ix(k)) = 0 for all i > 0 and
k> e(d—e+1) —N. In particular, X is (e(d — e) + 1)-regular.

Theorem 10. Let X C PV be a nondegenerate smooth projective variety of
degree d and codimension e > 1. Let a be a positive integer and let 1S be
the ath power of the ideal sheaf of X. Then H'(PN 7% (k)) = 0 for all i > 0 and
k> (d—e+1)(e+a—1)—N. In particular, T% is {(d—e)(e+a—1) +a)}-regular
and therefore lim,_, 1 o0 (regZ% /a) < d —e+ 1.

The asymptotic regularity bounds are studied by many authors ([6], [7], [20]).
In particular, Cutkosky-Ein-Lazarsfeld [6] showed that lim, 4. (regZ%/a) is
bounded by the generating degree (i.e., the smallest d such that Zx(d) is gener-
ated by global sections). On the other hand, the regularity conjecture ([8], [14, §4])
implies that the generating degree is bounded above by d — e + 1 for a projective
variety of degree d and codimension e. Hence Theorem [I0] supports the conjecture.

This paper is organized as follows. In §1, we summarize some properties of
birational-divisors of conical scrolls and prove Theorem Bl In §2, we study condi-
tions for birational-divisors on conical scrolls to be smooth at the general points
of vertices. In §3, we prove Theorem @l In §4, we prove Theorem Bl In §5, we
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study conditions for birational-divisors on rational conical scrolls to be smooth at
the general points of vertices. In §6, we prove Theorem [l In §7, we deal with

the applications of our theorems to regularity problems. In particular, we prove
Theorems R0

1. LOCI OF NONBIRATIONAL CENTERS: PROOF OF THEOREM 3

Lemma 1.1. Let X C PY be a projective variety of dimension n > 0 and codi-

mension e > 2. Let A C PN be a linear subspace of dimensionl (n—1>12>0).

Let X, be the closure of mao(X \ A) for the linear projection w5 : PNV \ A — PV

(N := N —1—1). Then the following are equivalent:

dim(7(X),A) = n+1 for general v € X \ A.

dim X, =n—1L

dim Cone(A, X5) = n+1 for the cone Cone(A, X5) over Xa with vertez A.
is a birational-divisor of type (i, L) for some u(>0) € Z and L € PicY

with (1, £) # (1,0y(—1)) on the conical scroll F§ with vertex A over a

smooth (n—1)-dimensional projective variety Y with a birational-embedding

v:Y = PV,

Moreover, under the above equivalent conditions, the following hold:

(1) For general x € X, (X N (A, z)) \ A is an affine (possibly reducible) hyper-
surface in (A, x) \ A whose closure is a hypersurface of degree p in (A, x)
not containing A.

(2) IfAZ X, then p=1U(X N (u,x)) for general u € A and general x € X .

(3) fACX and ANSmX # 0, then p=1(X N {u,z)) — 1 for general u € A
and general x € X.

(4) Suppose u > 2. Then X C PN is nondegenerate if and only if so is X5 C
PV,

(5) For a linear subspace A' C PN containing A as a proper subset,
dim(T,(X),A") = n+ 1 for general x € X \ A if and only if X, C PV
is a cone with verter A’y = wa(A"\ A).

Proof. The equivalence (a) < (b) follows from T5(Xa) = ma((T(X),A) \ A) for
general * € X and for  := my(x) € X, by the generic smoothness. Since
dim Cone(A, X, ) = I+1+dim Xy, (b) and (c) are equivalent. To prove (¢) = (d),
suppose (c). Let Y — X, be the resolution of singularity of X, ([I6]) and let
v:Y — PN be the composite of Y — X, and the inclusion X4 C PY. The conical
scroll F2 is isomorphic to Cone(A, X, ) except on Ay € |Opa (1) ® 73Oy (—1)| and

(

(a
(b
@ x

—

on the fibres over the nonisomorphic locus of Y — X,. Hence its isomorphic locus
meets with X and there exists a prime divisor X of Fg\, birational to X. By [I5], III,
Ex. 12.5], X is a member of |Opa (1) ® 75 L] for some p > 0 and £ € PicY with
(1, £) # (1,0y(=1)). Hence (d) follows. If (d) holds, then F4 is birational to
Cone(A, X4), and (c) holds.

(1) By assumption, X #* Ay and X N Ay is a divisor of Ay = A x Y. Let
u € A be a general point so that {u} x Y ¢ X NAy. Let 2 € X be general
points so that Zp := mp(x) € SmXA, Zpx = v(y) for a unique point y € Y, and
(u,y) ¢ XNAy. The intersection X = XHTY (y) §~F§‘, is a hypersurfaqe of degree
pin 7yt (y) =2 (A, x) such that X, 2_5 A x{y}. Hence X, is the closure of X,,\Ax{y}
in 75! (y). By the generality of z, the induced morphism F§\Ay — Cone(A, X5)\A
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from @y is isomorphic along 7 '(y), and hence X, \ A x {y} = X N (A, z) \ A.
Consequently, the closure (X N (A, z)) \ A is a hypersurface of degree p isomorphic
to )~(y.

(2) If A ¢ X, for general w € A and z € X, then X N AN (u,z) = ; hence
XN (u,z)) =1(XN{Az) N (u,z)) =1((X N (A z)\ A) N {u,x)) = p by (1).

(3) Suppose A C X and ANSmX # (. For general u € A and = € X, we
may assume 4 € ANSm X and = & T,,(X), i.e., the local length I, (X N (u,x)) of
X N (u,x) at u is one. Moreover u & (X N (A, z)) \ A and X N AN (u,z) = {u}.
Hence, by (1), (X N {(u,z)) = 1((X N {A,z) \ A) N {u, z)) + L, (X N {u,z)) = p+ 1.

(4) X C PV is nondegenerate, so is Xp = v(Y) C PV. Conversely, suppose
X is contained in a hyperplane H C PY. For general 2 € X, H contains the
hypersurface (X N (A, z)) \ A in (A, ) of degree > 2, and hence (A, ). Thus X,
is degenerate.

(5) To prove the only if part, for general x € X \ A/, assuming dim(7,(X),A’) =
n + 1, it suffices to show that Xa contains (A/,z), := ma((A,z) \ A). By (1),
(X N (A, x)) \ A’ is a hypersurface in (A, z). By the linear projection 7y : (A, x)\
A — (A, z),, the hypersurface is mapped onto (A’,z), or it is a cone with vertex
A. In the latter, by the generality of 2, X is a cone with vertex A which contradicts
(c). Hence (A’,z), C X,. Conversely, for the if part, suppose Xy C PV is a cone
with vertex A’p. Set I’ := dim A’ and " := dimA’s. Hence I’ =1+ 1" + 1. The
closure X/ of the image of X by the linear projection from A’ can be seen as the
image XA by the linear projection from A’,. Hence dim X, = n — . By the first
part, dim(T3(X),A’) =n + 1 for general z € X \ A’. O

Proof of Theorem Bl We will prove the first part. Suppose that X is nondegenerate
with A € B(X) and A € X. By Theorem [l (a) of Lemma [Tl holds, and hence,
X is a birational-divisor on the conical scroll F4 of type (i, £) for some p > 1 and
L € PicY. Since ANB(X) # 0, by (2) of Lemma [II] we have p > 2. By (4) of
Lemma [[J] v(Y) C PV is nondegenerate. It remains to show that £ = Oy. This
is proved for 0 < ! < n in [22, Lemma 4.5]. To prove this for I = 0, as in the case
1>0,let Gy € HO(OFQ (1) ® 75-L) be the section defining the original divisor X

for X. For Ay = A xY =Y, we have Gxli, € H(L). Moreover Gg|axqyy is
nonzero for any y € Y since A € X. This means that £ has a nowhere vanishing
global section and hence £ = Oy-.

Conversely, suppose that X is a birational-divisor of type (u,Oy) (u > 2) on
Fé\, over an (n — l)-dimensional smooth projective variety Y with a nondegenerate
birational-embedding v : Y — P¥. By (4) of Lemma [l X is nondegenerate.
The original divisor X (C F%) for X is not equal to Ay and X N Ay € |03, (W)]-
Since H°(O3_ (1)) = H°(Ox(p)), X N A is codimension one in A and A ¢ X.
Consequently A C B(X) by (2) of Lemma [Tl

We will show (1)-(4), supposing X is nondegenerate with A C B(X) and A  X.
(1) follows from (2) of Lemma[lTl (2) follows from deg X = (Opa (1), Opa (1)) =
w-degr(Y). (3) is proved in [22] Theorem 4.4]. Finally we will prove (4). If A
is a proper subset of an irreducible component A’ of B(X), then A’ is linear and
dim(T,(X),A’) = n+1 for general z € X \ A’ by Theorem[I] and hence X, = v(Y)
is a cone by (5) of Lemma [Tl Conversely suppose X, is a cone with vertex
A" C PN, Set A’ := (A,A”) C PN. For general z € X , (XN (A, z))\ A is a




VARIETIES WITH NONBIRATIONAL LINEAR PROJECTIONS 2305

hypersurface in (A’, x) by Lemma [[Tl The hypersurface is of degree u(> 2), since
I(XN(v,x)) = p for general v € A by (2) of Lemma[[Tand since X NA'N (v, z) =0
by the generality of . Hence (A C)A’ C B(X). O

2. THE STRUCTURE OF PROJECTIVE VARIETIES
WITH NONBIRATIONAL INNER CENTERS

In this section, we find conditions for a birational-divisor of a conical scroll to
be smooth at general points of the vertex (Proposition 23]). We begin with the
following proposition.

Proposition 2.1. Let X C PV be a projective variety of dimension n > 0 and
codimension e > 2. Let A be an l-dimensional linear subspace of]P’N (0<i<n-1).
Set N =N —1—1. Then the following are equivalent:

(1) X is nondegenerate with A C C(X) and AN Sm X # ().
(2) X is a birational-divisor of type (u, L) (1 > 2) on the conical scroll F%
with vertex A over an (n —1)-dimensional smooth projective variety Y with

a nondegenerate birational-embedding v : Y — PN such that A C X and
ANSmX # 0.

Moreover, under the condition above, A is an irreducible component of C(X) if and
only if v(Y') is not a cone.

Proof. To prove (1) = (2), suppose (1). For general z € X, dim(T,(X),A) =
n 4+ 1 by Theorem 1. Hence X is a birational-divisor of type (i, £) on the conical
scroll F4 over an (n —[)-dimensional smooth projective variety Y with a birational-
embedding v : Y — PV by Lemma [LT Moreover v(Y) is nondegenerate by (4) of
Lemmal[lIl For general z € X and u € A, (X N{u,z)) > 3since ANSm X C C(X).
Hence p > 2 by (3) of Lemma [[LTl Conversely, to prove (2) = (1), suppose (2).
Since p > 2 and v(Y) is nondegenerate, X is nondegenerate by (4) of Lemma [[.T]
For general x € X and u € A, (X N (u,z)) = u+1 > 3 by (3) of Lemma [[LT] This
means A N Sm X (# 0) C C(X).

We will prove the second part. The if part follows from (5) of Lemma [[] as
in Theorem 3. To prove the only if part, suppose that X, = v(Y) is a cone
with vertex A” C PY. We will show A’ := (A, A”) C C(X). For general z € X,
X N (A, x) \ A is a hypersurface in (A, z) by Lemma [Tl and let m be its degree.
Then m > (X N{A,z) \ A') N (u,z)) = I(X N (u,z)) — L (X N {u,z)) = p > 2 for
general u € A since the local length 1, (X N(u, )) is one (see Lemmal[ld]). If A’ Z X,
m = (X N (w,)) for general w € A’ by (2) of Lemma [Tl and hence A’ C B(X)
and A C A’NX C Sing X by (3) of Theorem 3, a contradiction. Consequently
A" C X. Hence m = (X N(w, z)) —1 for general w € A’ by (3) of Lemma [[T] since
A NSm X (D ANSmX) # (. This means A’ C C(X). O

For the remainder of this section, we assume the following conditions.

(2.2). Let X C PV be a nondegenerate projective variety of dimension n > 0 which
is a birational-divisor of type (u, £) (1 > 1, £ € PicY) on the conical scroll F4 with
an [-dimensional linear subspace A C PV (0 <1 < n — 1) as vertex over an (n —)-
dimensional smooth projective variety ¥ with a birational-embedding v : ¥ — PN
(N =N —1—1). We keep the notation as in Definition 2. Set i = n — . Let X,

be the closure of 74 (X \ A) for the linear projection mp : PN \ A — PV,
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Proposition 2.3. Under (2.2), suppose that A C X and ANSm X # 0. Then the
following hold:
(1) (£,0y(1)" 1) =1 and H°(Y,L) #0. Hence d =deg X = p-degv(Y)+1.
(2) The intersection X NAy is an effective divisor of Ay containing a prime
divisor D whose image by the natural morphism Ay = A xY — A x X, is
the closure of lyecansm xTy(X),, where Ty(X), = ma(Ty(X) \ A).
(3) The divisor D in (2) is a unique irreducible component of XN Ay such that
¢y (D) = A and dim v(ry (D)) > dim X, — 1. Moreover ord (X NAy) = 1,
where ord p(+) is the order along D.

To prove Proposition 2.3} we need the following lemma.

Lemma 2.4. Suppose AC X, ANSmX #0, andn =n—1>2. Let H C PN be
a general hyperplane containing A and let Hy be the hyperplane mA(H \ A) in PV,

Then Yy, =Y Xpx Hy is smooth and irreducible, XHA =X X pN Hy is irreducible
and reduced, and Xg, := (X N H)eq is a nondegenerate projective variety in H
with A € Xg, and ANSm Xz, # 0. Consequently Xg, is a birational-divisor of
type (u,ﬁ\YHA) on the conical scroll FAHA with vertex A over Yg whose original

divisor is Xp, .

Proof. Since Hy C PV s general, the reducedness and the smoothness of PN-
schemes are stable under the pull-back Hy — PY by Bertini’s Theorem in char-
acteristic zero (see [9] (3.4.9)]). Also the irreducibility is stable by the assumption
dim X, =n > 2 (see [9, (3.4.10)]). Hence Yj, is smooth and irreducible, and XHA
is irreducible and reduced. Moreover, Yz — Hj is a birational-embedding, and
Xp, is birational to (X \ A)g, by the induced morphism Py, Fg}ﬁ — Hy,
A
and hence Xp, = oy, (XHA). This means that Xz is a birational-divisor of
type (,u,£|yHA) on the conical scroll Fg\,HA with original divisor XHA- To see

ANSmXg, # 0, we note, by the generality of H, that T, (X) ¢ H for general
y € ANSm X, and hence X N H is smooth at y. Therefore AN Sm X7, # 0, since
Xpg, and X N H are equal on the union of (X \ A) N H and the locus of points
y € ANSm X with Ty,(X) € H. O

Proof of Proposition 3. First we will prove (2). Since X is birational to X and
dim X = dim Ay, X # Ay and X N Ay is a divisor of Ay. Consider the blowing-
up ox/p : Xa — X of X along A, which is a closed subset of the blowing-up
o: ]P’f\v — PN of PV along A by Iapy ® Ox — Iy x. Here note that ]P’f\v =FA
as a closed subscheme of PV x PV and o = ¢. Moreover X, is a closed sub-
scheme of the pull-back F‘)\—(A = FA xpy Xp of 7 FA — PN by X\ — PN
since 7(X,) = Xa. Hence X, is the birational image of X by F& — F%A. For
A= Fl)\—(A xpy A = A x X, we have A Xpa F{\, = A x Y, and hence the in-
A
duced morphism X N Ay — X, N A is surjective. To obtain D, we will show
Ey := Hyepnsm xTy(X), is a subscheme of Xy NA. In fact, D is an (n — 1)-
dimensional component of X N Ay dominating Ey under the surjection. Since
XaNA = o)_(}A(A) = Proj@®;-,Z /X/ /X and since IA/X/IA/X is locally

free on A N Sm X, we have only to show that PAmSmX(IA/X/IA/X|Amsz) is Fy.
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Set V := HO(PY,Opn (1)) and W := HO(PYN,Zy pn(1)). Then PN = P(V) and
PN = P(W), and m, is defined by the evaluation & : W ® Opn (1) — Zyspn (1). Re-
call that the tangent bundle II,cx7T,(X) C X x PV corresponds to the surjection
from V ® Ox to the bundle P} (Ox(1)) of the principal part (see [I9, Ch. IV.A],
[13, Ch. IV, §16]). Hence T, (X), C PN for each y € AN Sm X corresponds to the
image of W — V — PL(Ox(1)) ® k(y). Thus we have to show that the image of
W ® Op — PX(Ox(1))|a is (IA/X/IIQ\/X)(l)~ This follows by comparing two of
the exact sequences 0 — (IA/X/IIQ\/X)(I) — PL(Ox(1))|a = PL(Oa(1)) = 0 on
ANSmX and 0 = W @0, -V R0\ — V/W@OA — 0, since V/W@OA —
P}(Ox(1)) is isomorphic. o

We will prove (1) and (3) in case dimY = 7 = 1. Since X N Ay is a divisor
on Ay, the birational morphism X — X is quasi-finite at general points of A and
hence scheme-theoretically one-to-one at general points of ANSm X # () by Zariski’s
Main Theorem ([I5, I11.11.4]). Consequently X NAy — A is generically isomorphic.
Since X N Ay € |03, (1) ® 75 L], this means that deg £ = 1 and H(Y, L) # 0,
which proves (1), and also the uniqueness of the component Din (2), which proves
(3)-

Now we prove (1) and (3) in case dimY = 72 > 2 by the induction on 1. For a gen-
eral hyperplane H C PV containing A and for Hx := mA(H \ A), by (2.4), Xz, =
(XN H)eq is a nondegenerate projective variety in H with ANSm Xz, # 0 which is
a birational-divisor of type (u, L]y, ) on the conical scroll FQ/HA with vertex A over

the (7 — 1)-dimensional smooth projective variety Yz, =Y Xpxn Hy. By the induc-
tion, X, satisfies (1) and (3). Hence (£,0y(1)"!) = (‘C|YEA’OYEA(1)ﬁ_2) = 1.
Since X N Ay € |03, (1) ® 7y-L] is a nonzero effective divisor, £ has a nonzero
global section, which proves (1).

To prove (3) in case 7 > 2, note that if D is an irreducible component, of X N Ay
with dimv(7y (D)) > dim X5 —1 = n—1 > 1, then the pull-back Dg, := D xpx Hp
is irreducible and reduced. Indeed, by Bertini’s Theorem (]9, (3.4.9) and (3.4.10)]),
Dy, is irreducible and reduced unless dim v(7y (D)) = 1. If dimv(7y (D)) = 1, then
n=2and D = 7y (D) x A, and consequently Dz, = 1y (D)g, x A for v(D)g, =
Ty (D) Xpx Ha, which is reduced by the generality of Hx; hence deg 7y (D) g, = 1 by
(3) in case n = 1. This implies the irreducibility of Dy, for dimv(ry (D)) = 1. To
prove the uniqueness of D for 1 > 2, by the contradiction, we assume that D’ (# f))
is another irreducible component of X N Ay such that dim v(7y(D’)) > dim X, — 1
and ¢y (D’) = A. Then D;—{A + D i, satisfy the same property, which contradicts

the uniqueness of D f,- The second part is clear since if ordp ()~( N Ay) > 1, then
ordD, (XgA N (Ay)gA) > 1 for (Ay)gA = (Ay) xpy Hy. (Il

Hp

We conclude this section by proving the following lemma about the singular locus
of X on A.

Lemma 2.5. U@der~(2.2), assume thatn >1 and 1 > 1. If u € A is a point such
that {u} xY C X N Ay in Ay, then u € AN Sing X.

Proof. To the contrary, suppose u € Sm X. Take a general hyperplane H containing
A and set Hy := wa(H \ A). We may assume T,,(X) ¢ H and X N H is smooth
at u, and hence Xg, := (X N H)eq is smooth at u. If » > 2, replacing X by
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Xpg, by Lemma 2.4] we may assume n = 1, since XHA =X xpy Hp contains
{u} x Yg,. Then H contains a general point 2 € X so that, by (1.1), the closure
(X N (A,z))\ A is a hypersurface in (A,z) not containing A, isomorphic to X N
7y (v~ (ma(x))) by @y. Hence it passes through u by assumption {u} x ¥ € X N
Ay. Thus X N H has two distinct components through u, A, and (X N (A, z)) \ A.
This contradicts the smoothness of X N H at w. 0

3. THE STRUCTURE OF PROJECTIVE VARIETIES WITH NONBIRATIONAL INNER
CENTERS OF CONSTANT PARTIAL (GAUSS MAPS: PROOF OF THEOREM 4

Proof of Theorem 4. By Proposition [, X is a birational-divisor of type (u, L)
(> 2,L£ € PicY) on the conical scroll F4 with vertex A over a smooth (n — [)-
dimensional projective variety Y such that (6) holds. Moreover, (1) and (4) hold
by Proposition 2.3 and Lemma 11

(2) If an irreducible component of X N Ay € |03, (1) ® 75-L] dominates both

Y and A, then it must be the unique divisor D in (3) of Proposition 23, but D
does not dominate Y by our assumption that 7|5 is constant and (2) of Proposition
23| a contradiction. Hence each irreducible component D of X N Ay is of the form
D =py(D)xY or D=A xT1y(D). This means (2).

(3) For the decomposition (w)y = Y_;_, D; into prime divisors D; on Y, we may
assume that the unique divisor D in (3) of Proposition Z3lis 74 (Do) (= A x Dy) with
dimv(Dg) = dim X — 1. Tt follows from (£, Oy (1)"~!~1) = 1 that dimv(D;) <
dimv(Dyg) for ¢ > 1 if » > 1. Thus we have only to show that v(D;) C v(Dy) for
every ¢ > 1. By contradiction, we assume that v(D;) € v(Dg) for some i > 1.
Set s := max{dimv(D;)|v(D;) € v(Dy), i > 1}. By taking general hyperplane
sections of X5 C PV in s-times as in Lemma 4] and by (possibly) replacing the
decomposition of (w)y € |£|, we may assume that there exists a prime divisor D;,
(i > 0) such that D;, N Dy = 0 and v(D;,) is a point which is not contained
in v(Dy). Hence (A x Dg) N (A x D;;) = 0 in Ay, and the birational projective
morphism X — X has non-connected fibres at general points of AN Sm X. This is
a contradiction by Zariski’s Main Theorem ([I5], III.11.4]).

(5) If I = 0, the assertion is clear since A N Sing X = (g)g = 0. If I > 1, then
(¢9)o € ANSing X by Lemma[20l Hence dim Sing X > dim ANSing X > dim(g)g =
dim A — 1. O

4. THE CONSTRUCTION OF PROJECTIVE VARIETIES WITH NONBIRATIONAL INNER
CENTERS OF CONSTANT PARTIAL GAUSS MAPS: PROOF OF THEOREM 5

First we describe the section rings of a conical scroll and its birational-divisor.

(4.1). Keep the notation and assumption as in (2.2). Let Tp, ..., Tn be the homoge-
neous coordinates of PV. Let S = k[T, ..., Ty] be the homogeneous coordinate ring
of PV. Since we consider the target PV of the linear projection 7 : PV \ A — PV
from A to be a subspace of PV disjoint from A, we may assume that H°(Zpy (1))
is spanned by T, ..., T; and H°(Z,(1)) is spanned by 141, ...,Ty. We may con-
sider that Z; := T;|p (i =0,...,1) are the homogeneous coordinates of A and that
Tila =0 (i > 1 +1). Also we may consider that T;|pxy (i =1+ 1,...,N) are the
homogeneous coordinates of PV and that T;|py = 0 (i < 1). The surjection

H(Opn (1)) @ Opx — HY(OA(1)) ® Opny @ Opx (1) =: F
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induced from the isomorphism H®(Opn (1)) = H°(OA(1)) ® H°(Opx (1)) corre-
sponds to FA C PN x PV, Let Z;,, be the formal basis of the subbundle Opx (1) of
F so that Opx (1) = Opx (1) Z141. Let Fy = HY(Ox(1)) @ Oy @ Oy (1)Z;41 be the
pull-back of F to Y. Hence F§ = Py (Fy) and Opa (1) = ¢3Opn (1). Let K(Y)
be the function field of Y. The section ring Spa = €D,,5¢(SFa )m is the graded
subring of K(Y)[Zy,...,Z;4+1] with deg(Z;) =1 (i =0,...,1+ 1) such that

(S ) = HO(FY, Opy (m) = HO(Y, Sym™ (Fy)).
For the morphism v : Y — PN, we set fi := v*(Ti|pn) € HO(Oy (1)) (i = | +
1,...,N). Then the birational-embedding ¢y : F{\, — PV is defined by

(4.1.1) oy (To,... TNl = 2o, Z1, fis1 2141, - - -5 [NZi41]

and the graded homomorphism ¢3j : S — SF/; is given by (4.1.1). Thus the
homogenous coordinate ring R of the cone Cone(A,v(Y)) over v(Y) with vertex A
is given by

R=1Im(py) =k[Zo,..., 21, fix1Z141, - -, [NZi41] € Spa

since Cone(A,v(Y)) = ¢y (F4). Note that Spa is a finitely generated R-module
since py«Os_, is a coherent Oggpne(a, x,)-module. For each element
Y

Fe K(Y)[Z,...,Z141],
we define the Z;,1-order of F' by
ordz,, ,(F):=max{m >0 | F'= Z, - Q for some Q € K(Y)[Zo,...,Zi111]}.
In particular, ordz,, (0) = +oo. If we set
M =2} K(Y)[Zo,....Zi;1] N R
and consider it a graded submodule by M,, = M N R,,, then M is the pull-back

of the ideal (Tjy1,...,Tn)? of S by ¢}. For nonnegative integers m and e with
m > e >0, set
(Sep )m,e = Zi HO (Y, Oy (€) @x k[ Zo, - -, Zilim—e and

Rm,e = k[fl-l—lZH-la R fNZl—i-l]e QK k[ZOa R Zl]m—e-

Hence (Spa )m = @, (Spa Jm.er Bin = Dorg Bm.er and My, = @,y Rin . For a
nonzero element p € (SF/;)m, by p* we denote the component of p in (Sga )m,e for

e =ordg,, (p) i
Let G € H(F%, Opa (1) ® 73 L) be a section with (G g)o = X. For the dual
LY of L, we set

Jg = @ By Ggx € Spp for By = HO(F%, Opy (M) ® LY,
m>0
which have the decompositions B,, = @7::0 By, . for
Bm,e = ZleJrlHO(K Oy(e) X £\/) Rk k[Zo, ey Zl]mfe'
Let Sz = D,.>0 H°(X,04(m)) be the section ring of X. Then 0 — Jz —
Spa — Sk is exact. The homogeneous ideal Ix of X (= ¢y (X)) € PV is given by
Ix = (p3) " (Jg), since the ideal sheaf Zx of X is the kernel of Opn — 0y, O5.
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Proof of Theorem [6l By the assumption (2) in Theorem @] we have G ¢|; = gw for
g€ HY(A,Ox(p) =k[Zo, ..., 2], and w € H°(Y, L), and hence

(4.1.2) Ggy=gw—h

for some h € H°(F%, Opy (p) ® 73.L) with ordgz,,, (h) = 1. To prove Theorem 5,
assuming the divisor Dy := (w)g € |£]| is irreducible, we have only to show that

(4.1.3) ANSmX DA\ (9)o (#0).

In fact, from (4.1.3) it follows that ANSm X = A\ (¢)o since (g)o € AN Sing X by
Lemma 2.5, and hence if y > 2 furthermore, then A\ (g)o € C(X) by Proposition
2.Iand |4 is constant since the prime divisor D(C XN Ay) in Proposition 23] is
Do x A(C Ay). To prove (4.1.3), we will find homogeneous polynomials defining X
which show the smoothness of X along A\ (g)o.

Before starting the proof, for Op, (k) := Oy (k)|p,, we claim that H°(Op, (k))
HO(Opa-1(k)) (i = n —1) for every k > 0. Indeed, v(Do) = P"~! and v : Dy
v(Dy) is birational since (£, Oy (1)"~1) = 1 and Dy is irreducible. Hence ,Op,
Opn-1 by Zariski’s Main Theorem ([15, 1I1.11.4]). Consequently H°(Op,(k))
H°(0,.0p,(k)) = H°(Opa-1(k)) by the projection formula. Thus we may assume
that fii1|Dys- - -, falD, consist of a basis of H(Dy, Op, (1)) = H°(Ops-1(1)) and
that fno+1lp, = -+ = fn|p, = 0 after a change of the basis. Let k[fi11,..., fn]
be the graded k-subalgebra of the section ring @, H°(Y, Oy (k)) generated by
fit1,--., fn, which is the polynomial ring with n — [ variables. From the exact
sequence

R R4

0 = HO(Y, Oy () @ £Y) ¥ HO(Y, Oy (¢)) 2 H(Dy, Op, (€))

in which the subspace k[fiy1,. .., fa]le € HY(Y,Oy(e)) spanned by monomials of
degree e in fi11,..., fn is mapped isomorphically onto H°(Op,(e)) by |p,, we
have decompositions HO(Y, Oy (e)) = H(Y, Oy (e) ® LY)w ® K[fi41, .-, fu]e and
consequently

(414) (SF{)\,)m,e - Bm,ew ® (Zle+1k[fl+la ey fn]e Pk k[ZOa ey Zl]mfe) )

where the second summand is a subspace of R, .
To prove (4.1.3), for each j = n+1,..., N, we will find a homogenous polynomial

(4.1.5) T;g" (Ty,...,T) + F; € Ix

for some integer k; > 0 and F; € (Tj41,...,Tn)* C S. In fact, (4.1.5) implies that
T; (j =n+1,...,N) are defining equations of the tangent space T,,(X) C PV at
every y € A\ (9)o, and hence dim T, (X) < n, which means X is smooth at y.

From now on, we fix j (j =n+1,...,N). To obtain (4.1.5), it suffices to show
that for some integer k; > 0, there ex1st ue (Jg )k u+1 and v € My, 41 such that

(4.1.6) fiZisg" +utv=0 ¢ (Sea )kp+1-

In fact, if so, we have f;Z; 119" +v= —u€JgNRand F; €(Ti41,...,Tn)*(CS) such
that v=%} (F;) and hence (4.1.5) holds since f;Z;419% =% (T;g% (Ty, ..., T})).
To obtain (4 1.6), noting that there exists ¢ € By 1 such that f;Z;41 = quw €
(SFQ,)Ll since f;|p, = 0, and setting p := qw, we start with ¢G ¢ = pg—gh obtained
from (4.1.2). Since gh € (Spa)ut1 in the left-hand side has the decomposition
gh = —vy + quw for vy € M,y and q1 € By with ordg,, (q1) > ordg,_, (gh) > 2
by (4.1.4), setting p1 = qrw € (Spa)u+1 and wy 1= —q¢Gx € (Jg)u41, We have
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p1 =pg+ui +v1. If p1 =0, we have (4.1.6). If p; # 0, our argument proceeds by
the following induction.

Claim. For a positive integer k, suppose that there exist nonzero p; € (SFQ, )ipt1
(i =1,..., k) such that p; = qw = pgi + u; + v; with u; € (JX)/L'IL+1, v; € Merl,
¢ € Biuq1, and with ordz, (p1) < ordz,, (p2) < --- < ordz,, (px). Then there
exists prr1 € (Spa)(k+1)u+1 such that

(1) pr+1 = qesr1w = pg" ™ + upy1 + vgy1 for some quy1 € Birg)us1, Ukt €
(J%) (bt )pt1> and Va1 € M(gp1yusr;

(2) ordz,,, (pr41) > ordz,, (px); and

(3) each nonzero homogeneous part of pyi1 with respect to the Z;;q-order is
not contained in R+ Rpj + --- + Rpj.

If the claim is proved, we must have py; = 0 for some integer k; > 0, i.e., we have
ur; € (Jg)(k)ut1> Uk; € M,ps1, and qi, € By, uq1 such that pghs +ug,; + vy, =0,
and hence (4.1.6) holds; otherwise, there exists a strictly increasing sequence

RC R+ Rpy C R+ Rpy + Rp; C -+

=

of R-submodules of the finite R-module S’ng/ , which is impossible.
Now we will prove the Claim. From (4.1.2) and gyw = py, we have

(4.1.7) G 5 = prg — qih.

We make a division of qxh € (Spa)@+1)u+1 by {p1,... . pr}: There exist by €
Ript1yus1s bi € Rig1—iyu (i =1,...,k), and qry1 € Bpy1)u41 such that
(1) grh = bo +bip1 + bapa + - -+ + bepr + G 1w;
(ii) each nonzero homogeneous part of gx41w with respect to the Z;;q-order is
not contained in R+ Rp] + --- + Rpj;

(iii) ordg,, (bo),ordz,,, (qrr1w) > ordg,, (qrh), and ordg, (b)) > 1 (1 <i <
Once we have the division with (i)-(iii), setting pg+1 := @r+1w, from (4.1.7) and (i)
we obtain

Pr41(= qep1w) = prg — qG g — (bo + bip1 + bapa + - - - + bipr)

with (2) and (3). Taking into account that p; = pg’ + u; + v; and setting

U1 =urg — @G g — (bruy + boug + - - + bpug) € (Jg)(kt1)pt1  and
Vg1 :=Vkg — bo — b1(pg + v1) — b2 (pg® + va) — -+ — bi(pg" + vk) € Riky1ypss

we have pry1 = pg" Tt + upy1 + vpgp1. Moreover vy € M (j41)u+1 by looking at
the Z;1-order from (iii) and the assumption. Consequently we have the Claim.
To obtain the division, first set by := 0,61 :=0,...,b :=0,qx41 := 0, r := qh,
and e; := ordg,, (p;) (1 = 1,...,k). While r # 0, for e = ordz,,(r), do the
following process: If 7* = ag + a1p] + -+ + axpj, for some ag € Ri1),41,e and
a; € Rp1—iype—e; (1 =1,...,k), thenadd a; to b; (i =0, ..., k) and —(ap+aip: +
<o+ agpe) to 7 else (e, 7 & Riup1yut1,e + Brpe—erPT + - + Rye—e, py) take
ao € Rpt1yut1,e and ¢ € B(gy1)u41,e such that r* = ag + cw by (4.1.4) and add ag
to bo, ¢ to gr41, and —r* to r. This process will stop in finite steps, since ordz,_, (r)
(< (k4 1)p+1) increases after this process. Then (i) and (ii) hold by the choice of
b; and gp41. Moreover, the Z; -orders of by, b;p; (i =1,...,k), and gr11w are at
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least that of gxh, and hence ordz,, , (b;) > ordz,, , (qx) —ordz,, (p;)+ordz_ (h) > 1
(i=1,...,k), which means (iii). This completes the proof of Theorem 5. O

Example 4.2. For an integer n > 1, we will give two examples of n-dimensional
varieties Y and line bundles £ on Y with birational-embedding v : ¥ — PV for
some N. For an integer [ > 0 withn:=n+1>2and N := N +1+1, consider PV
to be a linear subspace of PV and let A C PV be an [-dimensional linear subspace
disjoint from P¥. Consider the conical scroll Fg\, with birational-embedding ¢y :
F4 — PV. In the both cases, dimy H°(Y,£) = 1 and |Opa (1) @ 3 L] for p > 2
is not a composite with pencil whose base locus is of codimension > 2. A general
member X € |OFQ, (1) ® 74 L] is irreducible and reduced by Bertini’s Theorem

(see [9, (3.4.10)]) satisfying (1) and (2) in Theorem 4, and X = ¢y (X) satisfies
C(X) #0. )

(1) Let Y’ be an 7-dimensional nondegenerate smooth projective variety in PV +1
(7 > 2). Let 0 : Y — Y’ be the blowing up of Y’ at a smooth point y not in
C(Y"). The linear projection of Y’ from y to P induces a nondegenerate birational-
embedding v : Y — PV, Let £ be the line bundle on Y of the exceptional divisor
of . Then (£, 0y (1)" 1) =1 and dimy H(Y, L) = 1.

(2) Let Y be an n-dimensional projective bundle over a smooth projective curve
C of genus g > 1 whose tautological line bundle defines a nondegenerate birational-
embedding v : Y — PV. Let £ be the line bundle on Y associated with a fibre.
Then (£, 0y (1)" 1) =1 and dimy H°(Y, £) = 1. A simple case is Y = C and L to
be a line bundle of a point of C.

5. DIVISORS OF CONICAL RATIONAL SCROLLS

In this section, we assume the following conditions and study a prime divisor of
a conical rational scroll to be a nondegenerate birational-divisor and to have the
nonempty smooth locus on the vertex.

(5.1). Let N,n,l be integers with e: =N —n>2 n:=n—1>1,and [ > 0. Let
EQ be the conical rational scroll with an I-dimensional linear subspace A C PN as
vertex and with a birational-embedding v : EX — PV for an ample vector bundle
£ of rank n over P'. Keep the notation as in Definition 6. We assume that £ =
@Ll-s—l Op1 (a;) for some positive integers 0 < a;41 < -+ < a,, and fix formal basis
W; of OZH! @ € so that OF ' @ € = (@i_o OmW;) @ (B, Opi (a;)W;). Let
s,t be homogeneous coordinates of P'. Let Ty, ..., T be homogeneous coordinates
of PN, Assume that A C PV is defined by Tj;; = --- = Ty = 0. Since A = )(Ap1)
for Ap1 = ]P’Pl(Ong) >~ A x P!, after change of the basis Wy,...,W;, we may
assume that v*(Ty) = Wo,...,¥*(T;) = W, which can be seen as homogeneous
coordinates of A. Hence the image ¥(Y) of Y := Pp:(€)(C E2) is contained in
PN = V,(Ty,...,T}) (N = N —1—1). Note that v := tly : ¥ — PV is a
birational-embedding since v is a birational-embedding if and only if so is ¥. Also
v is nondegenerate since 1 is defined by a subsystem of [Oga(1)], and hence ¢ is
nondegenerate.
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Let X C PN be the image ¢(X) of a prime divisor X € |Oga (1) @ p*Op: (b))
(1> 0,beZ) of EX defined by

Gg= D G W3 Wi € HY(EZ, Oy (1) @ p" O (1)

BOseees 1n >0
o+ Fun=p

for homogeneous polynomials g,,......., € k[s,t] of degree pyy1a;41+ -+ pnan, +b.
Set

mo = min{g41 + - + pnlGpuo,... p, 7 0 for some po, ..., p > 0}.
Note that Ap1 C X, namely GX|AP1 = 0, if and only if my is positive. Let [y be the
length (X N (u,z)) for general u € A and general z € X.

Proposition 5.2. Keep the notation and the assumption as in (5.1).

(1) Assume X is nondegenerate and birational to X with ANSm X # (. Then
()Apl,@X mo=0,b=1andu>1; or
(b) Apr CX,mo=1,l=n—-2,an_1=1,b=—a,, and u > 2.

(2) Assume (a) in (1) holds. Hence GX|/~\P1 is linear in s,t and we may write

GX‘]\]PI = Gl(Wo,...,WZ)S+G2(W0,...,Wl)t 7£ 0.

Then X is nondegenerate in PN and birational to X such that ANSm X =
A\VL(G1,Ge) £ 0, p=1lp—1, and deg X = p-c1(E) + 1. If we sup-
pose furthermore that 1 > 2, then A is an irreducible component of C(X).
Moreover,

(i) if deg GCD(G1, G2) = u, then the partial Gauss map y|p is constant;

(ii) if deg GCD(G1,G2) < u, then the partial Gauss map y|p is noncon-
stant and dim Sing X > dim ANSing X = dim V, (G1,G2) > dim A—2.

(3) Assume (b) in (1) holds. Then X is nondegenerate in P and birational to
X such that ANSm X # 0 and p = ly. Hence A is an irreducible component
of C(X) if u > 3. Moreover,

(i) if an > 1, then the partial Gauss map | is constant;

(i) if a, = 1, then X is the birational image of another prime divisor X, e
HO((E®)1, Oma), (k—1)®p*Op1(1)) on another conical rational scroll
(E2); with the same vertex A and £ but with different )’ : (EX); — PV
such that mq for G g is 0 (equivalently X1 2 Api (€ (ER))).

To prove (5.2), we consider the conical scroll F4 for A, PV, Y = P (&), and
v=1ly:Y — PV and we will relate Elg\ to Fﬁ\, Keep the notation as in Definition
2 and (4.1) for F&. Let p: Y — P! be the projection. We fix basis Z; for the bundle
Fy asin (4.1).

Lemma 5.3. Under the assumption (5.1), there exists a birational morphism o :
F)

— E2 such that oy = oo, 0"Oga (1) = Opa (1),

(531) O'*W():Zo,... O'*VVI :Zl,U*Wl+1 ZZ1+1W1+1,.. O'*W :Zl+1W

Ifn—1=1, then Y =2 P! and o is an isomorphism. If n —1 > 2, then the
exceptional set of o is Ay which is mapped onto Api, and the strict transform X'
of X by o is defined by Gz, € H° (Opa (1 = mo) @ 75 (Oy (mo) ® p*Op1 (b)) such

that U*GX = ln}rlG
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Proof. The natural homomorphism p*& — Oy (1) and the isomorphism ]3*((91??1”1)
=~ 0P induce the surjection ¢ : p* (O @ &) — OP' @ Oy (1). Thus we have
the corresponding inclusion

F) =Py (09" @ 0y (1)) CPy (" (OF T @ €)) = Y xp P (05 @ €).

From this and the second projection, we have the required morphism ¢. By the

construction of e, we have (5.3.1). If n —[ = 1, then Y = P!, and hence o is

isomorphic. Suppose n —1 > 2. By looking at each fibre over P!, we sce that o is

a birational morphism and the exceptional set of o is Ay. From (5.3.1), we obtain
D R AR T T

Moreover we recover G ¢ from 0*G ¢ by substituting Wy, ..., Wy, 1 for Zy, ..., Z;,

Z141. Hence if 0*G ; is reducible, then G ; is reducible or 0*G 3 is divisible by

Zj41. Since Gg is irreducible, 0*G ¢ /Z}" is irreducible and 0*G ¢ = 219G z,. O

Proof of Proposition 5.2l Let X' be the strict transform of X by ¢ in Lemma 5.3.

(1) By the assumption, X is the birational image of X’ C F% by ¢y = ¢ o0 0.
Note that g — mg > 1. In fact, if 4 — mg = 0, then X is a cone with vertex A,
which contradicts the assumption that X is nondegenerate of codimension e > 2
with ANSm X # . By (1) of Proposition 2.3 and our assumption,

(Oy (mo) @ p*Op1 (b), Oy (1)" ) = mper (€) +b =1

and H°(Oy (mg) ® p*Op1 (b)) # 0. From the latter, we obtain that mga, +b > 0.
Hence mo(c1(€) — an) < 1. We divide into three cases. When mg = 0, we have
b =1, which is (a). When mg =1 and ¢;(£) = a, +1, we have a,,_1 =1, =n—2,
b= —ay,, and u > mg + 1 = 2, which is (b) When my > 1 and ¢1(€) = ay, we
have l =n — 1 and Ap1 C X, hence Ap1 = X, which contradicts our assumption.

(2) First we will prove that X is nondegenerate in PV and birational to X.
Since 9 is defined a base-point-free subspace of H O(OEQ( )) and since H O(OEQ (1-
) ® p*Op1(—1)) = 0, the pull-back HY(Opn (1)) = H°(O4(1)) is injective, and
hence the image X = 9(X) is nondegenerate in PY. To prove that X is bira-
tional to X, we have to show that X is birational to X’(C F%). Note that F%
and (py(FA) are isomorphic except for the union of Ay and the fibres over the
nonisomorphic locus of Y — v(Y). Since the strict transform X’ of X by o is
not contained in the exceptional set Ay and since X’ dominates Y because of
X' e |Opa (1) ® 730" Op1 (b)], X' meets the embedding locus of ¢y, and hence
X and X’ are birational. Consequently X is a birational-divisor on F4 of type
(1, 74p*Op1(1)) and also X is a birational-divisor on E2 of type (u,1). Hence
deg X = (Ogy (1)7, Opy (1) @ p*Opa (1)) = i+ 1 () + 1.

To prove ANSmX = A\ Ag for Ay := Vi (G1,G2) C A, first we will show
Sm X D A\ Ag by looking at X C EIE\ Since GX|1~\E»1 = G15 + Got, we see that X
is smooth at each point of X N (Ap: \ Ag x P!) and that X N Apt — A is scheme-
theoretically one-to-one on A \ Ag. From the latter, we obtain that |z : X — PN
is finite and scheme-theoretically one-to-one on A\ Ag since (¥] ) "' (A) = X N Ap:.
Hence X is isomorphic to X along A \ Ag, and therefore Sm X D A\ Ag. Next
we will prove Sing X O Ag. When [ = 0, since G; # 0 or Gy # 0 by mg = 0, we
have Ag = . When [ > 1, considering X as a birational-divisor on Fé\, of type
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(11, 75" Op1 (1)) and noting that G ¢,|Ay = G1(Zo, ..., Z1)s + Ga(Zo, ..., Zi)t by
Lemma [5.3] and assumption mq = 0, we have A9 € A N Sing X by Lemma
Since X is a birational-divisor on F% such that ANSm X = A\Ag # (), by Lemma
LIl we have u = lp — 1. Hence, if u > 2, then A C C(X) and A is an irreducible
component of C(X) by Proposition EZ1] since the image v(Y') of the finite morphism
v is not cone. To prove the last part of (2), set Gy := GCD(G1,G2). When [ = 0,
A is a one-point set, and hence deg Go = p and 7|a is constant. Suppose [ > 1.
The unique component D of X’ N Ay dominating A in Proposition 2:3]is defined by
0*((G1/Go)s+(G2/Go)t) on Ay in this case, since o*((G1/Go)s+(Ga/Go)t MNizyxy
deﬁnes the nonempty subset of Y for any point z € A. Thus deg Gy # p if and
only if D dominates Y, namely o*((G1/Go)s + (G2/Go)t)|ax{y for general y € Y’
defines the nonempty subset of A. On the other hand, by (2) of Proposition 23] D
dominates Y if and only if v|4 is nonconstant. Therefore deg Gy # p if and only if
v|a is nonconstant. The last inequality in (ii) is clear from ANSm X = A\ Ag.
(3) By the same way as in (2), we obtain that X is nondegenerate in PV and
birational to X in this case. Consequently X is a birational-divisor on Fé\, of type
(b—1,0y(1) ® p*Op1(—ay)) by Lemma B3] since mg = 1. Moreover

* un LT/ Mn 7HO | Hn—2 r7pn—1+pn—1
G =0"Gg/Zna= Z Guo-un Wa "0 Wi 20" - 205" 25,0

KOy

for homogeneous polynomials g,...., € kl[s,t] of degree p,—1 + pna, — a, and
X'NAy €103, (0 —1) @ 75 (Oy (1) ® p*Opi (—ay))| with

G)E" ‘AY = Z (guomﬂn—'zOan + 9#0"'#n,—210Wn*1)Z(/)m T ngéz (# O)'

Ko+t Hp _2=p—1

Here deg(g,0---u,,_201) = 0 and deg(g,g.-.,_»10) = 1 —ay, if these are nonzero. Thus,
to prove the remaining part, we divide into two cases, a, > 1 or a, = 1.
Suppose a,, > 1. Then G ¢, |Ay = gW, for

9= Z gHo"'un—zolz(l)m o '25152 € HO(OA(M - 1))
HOsee by —2>0
pottpn_o=p—1
Since the zero of W,, € H?(Oy (1)®p*Op1 (—a,,)) is a prime divisor Ppi (Op1 (1)W,,_1)
of Y = Pp1 (Op1 (1) Wy, 18 Op1 (ay, )W), from Theorem 5, we obtain that ANSm X =

A\ (9)o #0, A CC(X )7 and 7|4 is constant. By (3) of Lemma [L1] we have pu = lo.
By Proposition 1] A is an irreducible component of C(X) if p > 3.

Suppose a, = 1. Then we have Y = P! x P! with projections p; : ¥ — P!
and Oy (1) = pjOp1(1) ® p5Op1(1). Note that the morphism ) must be de-
fined by the complete linear system |(’)E£(1)| in this case. We consider p = pa;
namely, the homogeneous coordinates of the second P! are s,t and those of the
first P' are Wy,_1, W,. Then X’ € |Opa (1 — 1) ® 73 (p1Op:1 (1))|. We take another
conical rational scroll (E2); with the same vertex A and the same ample bundle
E = Op1(1)®O0p1 (1) over different P! whose homogeneous coordinates are W,,_; and
W,,, and with different basis (EB?:_Oz Op1 W;)®(Op1(1)s®Op1 (1)t) and different pro-
jection p’ : (E2); — P!. The morphism ¢’ : (E2); — PV is defined by 1O®a), (1)
as ¥. By Lemma 53] there is a birational morphism ¢’ : F§ — (E2); such that
o"Wo=20,....,0 " Wyp_9="Zp_9,0"s=Z,_15,0"t=27,_1t. Theny'oo’ = oo
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and there is a prime divisor X; on (E2); such that o’* X, = X'. Actually, if we con-
sider G'g, as a polynomial G 3, (Zo, ..., Zn—1),then G ¢ = G, (Wo, ..., Wy_2,1) €
HO((EQ)LO(EQ)I(M —1) ® p'"Op1(1)). Consequently myg for G ¢ is 0. Hence by
(2), we have A N Sm X # (. O

6. THE STRUCTURE OF PROJECTIVE VARIETIES WITH NONBIRATIONAL INNER
CENTERS OF NONCONSTANT PARTIAL (GAUSS MAPS

Theorem 7 is a consequence of Proposition and the following theorem.

Theorem 6.1. Let X C PV be a nondegenerate projective variety of dimension
n > 1 and codimension e > 2 such that C(X) # 0. Suppose that the partial Gauss
map y|a is nonconstant on an l-dimensional irreducible component A of C(X), and
hence we suppose m > 1 > 1. Let ly be the length I(X N (u,x)) for general u € A
and general x € X. Then X is a birational-divisor of a conical rational scroll Efg\
with vertex A of type (u,1) for u =1lo — 1 such that the original divisor X does not
contain Apr and XNAp1 contains a prime divisor of Ap1 =2 AxP' dominating both A
and P' by its projections. In particular, dim Sing X > dim A N Sing X > dim A — 2.

Proof. Let mp : PN\ A — PYN (N := N — [ — 1) be the linear projection of PV

from A. We consider the target PN to be a subspace of PV disjoint from A. By our
assumption and by counting the dimension, together with (2) of Proposition 23]

the closure X of the image 7 (X \A) is the closure of the union Uyeansm x Ty(X) 5
of the images T, (X ), := ma(T,,(X)\A) of the tangent spaces to X at y € ANSm X.
Hence Cone(A, Xy) is the closure of (J,crngm x Ty(X). We will construct the
desingularization of X, and Cone(A, X,) as projective bundles over P1. Let p: AN
SmX — G := G(n—1—1,PN) be the morphism to the Grassmannian of (n—1—1)-
planes of PV defined by y — T,(X),. By assumption, dim p(A NSm X) > 1. Let
L be a general line in A so that the closure of p(L N Sm X) is a rational curve, say
C C G. Let n: C(= P') = C be the normalization and let £ be the pull-back
of the universal quotient bundle on G to C. We claim that & is ample or, more
strongly, A" := [, cpngm x Ty(X), is empty. Indeed, if A" # 0, then X, is a cone
with vertex A’, and hence A is a proper subset of an irreducible component of
C(X) by Proposition I}, which contradicts our assumption. Moreover the natural
morphism v : Ppi(£) — PV induces a birational morphism Pp () — X, since 7
is birational and X, = v(Ppi(€)) is nondegenerate in PV (see [I7, Lemma 1.1]).
Hence we have the conical rational scroll E2 for A and € with birational-embedding
P EA =Pp (OH%lel @® €) — PV induced from v. By the construction, 1 induces a
birational morphism ’l/}Eé\ : EQ — Cone(A, X5 ). Moreover the isomorphic locus of
Ygs meets X, since ¢gs is isomorphic on Cone(A,U) \ A for the isomorphic locus
U C Xp of Pp(E) — X (see Lemma B3). Let X be the prime divisor on E2
birational to X by 1. Since AN Sm X # @ and 7|, is nonconstant, by Proposition
5.2 possibly after replacing X C E2 in case (i) of Proposition (3), X is a
birational-divisor of type (u,1) on Eé‘ such that X ) Ap1 and the divisor X N Ap:
of Apr 22 A x P! defined by G ¢| A, contains a prime divisor dominating A and P!
In particular, the inequality holds. O

Proof of Theorem 7. First suppose (1) holds. By Theorem [6.1] X is a birational-
divisor of a conical rational scroll E{g\ with vertex A of type (u, 1) for p = lp—1 such
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that X ) Ap: and X N Ap: contains a prime divisor of Apt 2 A x P! dominating
both A and P! by its projections. Hence (2) holds. Moreover deg X = p1-¢1(€) + 1
and dim A < dim Sing X + 2. Conversely if (2) holds, by (2) of Proposition 5.2} we
have (1). O

Corollary 6.2. Let X C PN be a nondegenerate projective variety of dimen-
sion n > 2, codimension e > 2, and degree d. Assume that X is smooth and
C (X)(=C(X)) has an irreducible component A of dim A > 1. Let ly be the length
(X N (u,z)) for general u € A and general x € X. Then A is a line, X is a
birational-divisor of type (u,1) for p =1y — 1 > 2 on a conical rational scroll E?
with a birational-embedding 1 : Eé\ — PN and with original divisor X, and X is
isomorphic to X by ¥. In particular, h'(Ox) = 0, and if n > 3, PicX = 72
Moreover (Ix/Z%)(d — e+ 1)|s is an ample vector bundle on A.

Proof. By Theorem [Il A is linear. By Theorem M the partial Gauss map ~|a is
nonconstant since ANSm X = A and dim A > 1. By Theorem[6.1] A is a line and X
is a birational-divisor of a conical rational scroll E2 of type (,u, Yforp=1l—-1>2
with the original divisor X. By (2) of Proposition (2] X N Ap1 — A is isomorphic
and X — X is finite. Thus X and X are isomorphic by Zariski’s Main Theorem
([15, I11.11.4]). By a Lefschetz-type Theorem (see for example [I0, p. 55]), an ample
divisor X = X of EQ satisfies the required condition. To see the last part, consider
the bundle P (Ox (1)) of principal part of X which fits into the exact sequence

(6.3.1) 0— (Ix/I%)(1) = V@ Ox = P%(Ox(1)) =0

for V:=H°(PY, Op~ (1)) and gives the tangent bundle I1,.c x T (X ) =P(P% (Ox(1)))
C PN x X (see [13, Ch. IV §16], [19, Ch. IV. A)]). As in (6.1), for the linear pro-
jection mp : PV \ A — PN=2 from A, let 5 : A — P! be the morphism induced from
the morphism p: A = G := G(n — 2,PN72), p(y) = [7a(T,(X) \ A)] by taking the
normalization n : P! = C' — C of the image C' = p(A), i.e., p = ic onop for the in-
clusion i¢ : C'— G. By the construction of E‘€7 the quotient 8 : V®Op1 — (9 g
defining ¢ : E& — PV is obtained from « so that we have 5*3 = a|x. Hence, for
the kernel K of B, we have p*K = (Ix/Z%)(1)|a. Note that K = @;_, Op1 (—b;)
for some b; > 0 with > {_, b; = ¢1(€), since ¢ is defined by 8 and ¥(E2) is non-
degenerate. To see p, we claim that for each § € Ap N X and for y := »(g) € A,
T,(X) C PN is the image y(F) C PN of the fiber F := p’l(p( 7)) for the projection
p:E} = Pl de, ply) = p(y j) for general §j € Apr N X. This implies that p is
finite of degree p since X N Apr is a divisor of Apr of type (4, 1). To prove the
claim, since both are linear in PV through y € A, we will show that the Zariski
tangent space O, (X)(C 0,(PY)) is equal to the image of ©;(F) by the differential
dipy : ©5(ER) — ©,(PN) of ¢ at §. Since X and X are isomorphic by 1, 95(X)
is mapped 1s0morph1cally to ©,(X) by dipy. On the other hand, as a vector space,
0;(E2) is spanned by ©;(F) and @g(wgﬂi (y)) for Vi, Apl — A. Moreover,

©;(F) is mapped injectively by dipz in ©,(PV) since F is embedded in PV, and
S (wgl:l (v)) is the kernel of dipy. Therefore ©,(X) = di3(©4(F)).
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By the claim, (Zx/Z%)(1)[a = p*K = @;_, Op: (—pub;). To show the ampleness
of (Ix/I%)(d — e + 1)|5, we have to prove d — e — ub; > 1. Since > i, ub; =
e (€) = d — 1 by Proposition 52, and since pb; > p > 2, we have max{ub;|i =
1,...,e} <d—1-2(e—1). Hence

d—e—pb; >d—e—max{ubli=1,...,e} >d—e—(d—2e+1)=e—-1> 1.

O

7. APPLICATIONS TO THE CASTELNUOVO-MUMFORD REGULARITY:
PROOF OF THEOREMS 8, 9 AND 10

Proof of Theorem 8. When e = 1, the assertion is clear. So we assume e > 2.
Set L := Osn((d — e+ 1)A — E). Let & : H'(PY,L) ® Opy — L and let
e HYPN,Ix(d — e + 1)) ® Opy — Ix(d — e + 1) be the evaluation maps.
Since € is the composite of o*e and the natural surjection *Zx(d —e+ 1) = L,
we have Supp Coker() C o~ !(Supp Coker(e)). On the other hand, by (2) of
Theorem 2 in [22] and our assumption, Supp Coker(s) C B(X) U C(X). Hence
Supp Coker(¢) C o~ }(B(X)) Uo~1(C(X)). To see the semiampleness of £, by
Zariski-Fujita’s Theorem [I1] (see also Remark 2.1.32 [21I] I. p. 132]), it is enough
to show that £ is ample on each irreducible component of 0= (C(X))Uo 1 (B(X)).
Each component of B(X) is a point away from X by (3) of Theorem 3, and hence
each irreducible component of ¢~ (B(X)) is a point of PY and £ is ample on
it. Before looking at the ampleness on each irreducible component of ¢~1(C(X)),
we note that £ = o7'(X) is the projective bundle Px(Zx/Z%) with projection
or = o|lp : Px(Ix/Z%) — X and with Opy(zx/72)(1) = Opn (—E) ® Op (see
[15, Ch. IT 8.24]). Hence

L& Op = Opy (15 /12)(1) ® 050x(d — e+ 1) = Op (25 /72 )(d—et1))(1)-

If Q is a O-dimensional component of C(X), then 0~ 1(Q) =2 P! and LRO,-1(g) =
Ope-1(1) is ample. If A is a positive-dimensional component of C(X), then A is a
line and (Zx /Z%)(d — e+ 1)|5 is ample by Corollary 6.2, and hence £ ® O,-1(y) is
ample. O

Proof of Theorem 9. If e = 1, the conclusion is clear. Hence we assume e > 2. By
Theorem 8, the proof follows from the argument of [3] as follows (see also [2T] I.
(4.3.15), p. 259]). Let o : PY¥ — PV be the blowing-up of PV along X with
exceptional divisor E and let A be the divisor of the pull-back of a hyperplane
section of PV. For each integer £ > 1, Dy :=e((d — e+ 1)A — E) + (A is a nef and
big divisor by Theorem 8. Since Koy +De = (e(d—e+1)+¢—N—-1)A—FE for the
canonical divisor Kpy of PY, by the KawamataViehweg Vanishing Theorem ([18],
[23]; see also [21], I. Theorem 4.3.1]), H(PY, O@,Q((e(d—e+1)+€—N—1)A—E)) =0
for all i > 0. Hence H(PY,Zx(e(d—e+1) — N+ (£ —1))) =0 for all i > 0 (see
for example [2I], T (4.3.16), p. 259] ). This together with the consequence of the

Grothendieck vanishing theorem, H!(PY, Zx(m)) = 0 for alli > n+2 and m > —N,
implies that X is (e(d — e) 4+ 1)-regular. O
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Corollary 7.1. Let X C PV be a nondegenerate smooth projective variety of di-
mension n, codimension e, and degree d. Set

ife<n+1or
€y 1= ° ife>n+1and |2 —e| >[4 — (n+1),
n+1l ife>n+1and|2—el<|4—(n+1)
Then X is (eo(d — eg) + 1)-regular.

Proof. We have only to show that if e > n+ 1, for each k withn+1 <k <e, X is
(k(d — k) + 1)-regular. This is because the quadratic function f(k) := k(d — k) +1
on k (n+1 < k < e) has the minimum value f(ep) at k = ep. Assume e >
n + 1. For each k with n +1 < k < e, by taking a general linear projection
7 : PN ——s P"F we have X’ := 7(X) C P"** which is isomorphic to X by 7.
Hence X' is (k(d — k) + 1)-regular for n +1 < k < e. Set t := k(d — k) + 1.
In this case, H'(Zx: pn+s(t — 1)) = 0 implies H'(Zxpn(t — 1)) = 0. This is
because if H'(Zx//pnir(t — 1)) = 0, then H(Opnsr(t — 1)) = H(Ox/(t — 1))
is surjective, and hence so is H°(Opn(t — 1)) — H°(Ox(t — 1)). Moreover for
2<i<n+1, H(Zxp~(t—1i)) = 0if and only if H(Zx/ pn+r(t —i)) = 0, since
H'(Zxp~(t —i)) = 0 if and only if H*~'(Ox (t —i)) = 0, and the same is true for
X" C Pk Thus X is also (k(d—k)+1)-regular for n+1 < k < e, as required. [

Remark 7.2. Our result slightly improves [3] (see also [B]): [3] proved under the same
assumption as in Theorem [0 that X is (¢(d — 1) + 1)-regular for ¢ := min{e, n+1}.
It is easy to see that ¢(d —1)+1>c(d—c¢)+ 1> ep(d — o) + 1.

Proof of Theorem 10. Keep the same notation as in the proof of Theorem [ but
for Dy we set Dy := (e+a—1)((d—e+1)A— E) + (A for ¢ > 1 instead. Then D,
is nef and big, and H*(PY, OJ@,% (KH}% + Dy)) = 0 for all i > 0 by the Kawamata—

Viehweg vanishing theorem, and hence H*(PY,Z%((e + a — 1)(d —e+ 1) — N +
(¢—-1))) =0forall i >0 and £ > 1. By the same way as in Theorem [0 Z% is
{(d—e)(e+a—1)+ a)}-regular. O
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