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PROJECTIVE VARIETIES WITH NONBIRATIONAL LINEAR

PROJECTIONS AND APPLICATIONS

ATSUSHI NOMA

Abstract. We work over an algebraically closed field of characteristic zero.
The purpose of this paper is to characterize a nondegenerate projective va-
riety X with a linear projection which induces a nonbirational map to its
image. As an application, for smooth X of degree d and codimension e, we
prove the “semiampleness” of the (d − e+ 1)th twist of the ideal sheaf. This
improves a linear bound of the regularity of smooth projective varieties by
Bayer–Mumford–Bertram–Ein–Lazarsfeld, and gives an asymptotic regularity
bound.

Introduction

We work over an algebraically closed field k of characteristic zero. Let X ⊆ PN

be a nondegenerate (i.e., not contained in any hyperplane of PN ) projective variety
(i.e., irreducible and reduced) of dimension n > 0, codimension e, and degree d. The
linear projection from a general point of PN induces a morphism of X birational
onto its image. If the center of the projection is a special point, this is not true
in some cases. Such special projections were originally studied by Segre [23] (see
also [1], [4], [12]). The purpose of this paper is to characterize X with such a
special center. This study is motivated by the problem of finding out whether
X is cut out by hypersurfaces of degree ≤ d− e + 1 (see [22, §3]) as evidence of a
regularity conjecture (see [8] and [14] for the regularity conjecture). As applications,
for smooth X, we improve a linear bound of the regularity ([2], [3]) and give an
asymptotic regularity bound (Theorems 9 and 10).

To be precise, we say that a point w ∈ PN is a nonbirational center of X if the
linear projection πw : PN \ {w} → PN−1 induces a nonbirational map of X to its
image. By B(X) we denote the set of all nonbirational centers out of X and by
C(X) that on the smooth locus SmX of X:

B(X) :={v ∈ PN \X|l(〈v, x〉 ∩X) ≥ 2 for general x ∈ X},
C(X) :={u ∈ SmX|l(〈u, x〉 ∩X) ≥ 3 for general x ∈ X}.

Here l(Z) denotes the length of a scheme Z and 〈 〉 denotes the linear span of
schemes, i.e., the intersection of all hyperplanes containing the schemes. Let B̄(X)
and C̄(X), respectively, be the closures of B(X) and C(X) in PN . Note that B(X) =
B̄(X) \X and C(X) = C̄(X) ∩ SmX ([22, (4.1) and (4.2)]).
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The structure of B̄(X) and C̄(X) is known essentially due to Segre (see [12] for
the positive characteristic case).

Theorem 1 (Segre [23], Calabri–Ciliberto [4], Ballico [1], Noma [22]). Let X ⊆ PN

be a nondegenerate projective variety of dimension n > 0 and codimension e ≥ 2.
Then each irreducible component Z of B̄(X) or C̄(X) is linear of dimZ ≤ n − 1
and the linear span 〈Z, Tx(X)〉 of Z and the embedded tangent space Tx(X) to X
at general x ∈ X is of dimension n+ 1.

This means that X with B(X) 
= ∅ or C(X) 
= ∅ is a codimension-one subvariety
of a cone. By taking a resolution of the singularity of the cone, X is the birational
image of a divisor of a smooth projective bundle (see Lemma 1.1). The purpose
here is to characterize X with B(X) 
= ∅ or C(X) 
= ∅, by describing the condition
for the image of a divisor of a scroll with vertex to have the vertex as a subset of
B(X) or C(X).

To state our results, we introduce definitions about scrolls with vertex.

Definition 2. Let Λ be an l-dimensional linear subspace of PN and let PN̄ (N̄ =
N − l − 1) be a subspace of PN disjoint from Λ. Consider the linear projection

πΛ : PN \ Λ → PN̄ from Λ. By τ : FΛ → PN̄ we denote the Pl+1-bundle FΛ :=

{(x,w)|x ∈ 〈Λ, w〉} ⊆ PN × PN̄ over PN̄ , which is the family of all (l + 1)-planes
in PN containing Λ or the graph of πΛ. For a smooth projective variety Y with a
birational-embedding ν : Y → PN̄ (i.e., Y is birational to the image ν(Y ) in PN̄ ),
the conical scroll with vertex Λ over Y is the pull-back τY : FΛ

Y := FΛ ×
PN̄ Y → Y

of τ by ν. In this case, FΛ
Y has a birational-embedding ϕY : FΛ

Y → PN induced

from the first projection of PN × Y and the subbundle Λ̃Y := Λ × Y ⊆ FΛ
Y with

projection τ̄Y : Λ̃Y → Y , which is mapped onto Λ by ϕY . SetOFΛ
Y
(1) := ϕ∗

Y OPN (1).

A projective variety X ⊆ PN is called a birational-divisor of the conical scroll FΛ
Y

with vertex Λ over Y if X is birational to some prime divisor X̃ on FΛ
Y by ϕY .

Moreover X is said to be of type (μ,L) if X̃ ∈ |OFΛ
Y
(μ) ⊗ τ∗Y L| for μ ∈ Z and

L ∈ PicY . We call X̃ the original divisor for X. We say that ν is nondegenerate if
ν(Y ) ⊆ PN̄ is nondegenerate.

The first result is the structure of X with B(X) 
= ∅, which is almost done in
[22]. Conventionally we set dim ∅ = −1.

Theorem 3. Let X ⊆ PN be a projective variety of dimension n > 0 and codi-
mension e ≥ 2. Let Λ ⊆ PN be a linear subspace of dimension l (n − 1 ≥ l ≥ 0).
Then X is nondegenerate with Λ ⊆ B̄(X), and Λ 
⊆ X if and only if X is a
birational-divisor of type (μ,OY ) (μ ≥ 2) on the conical scroll FΛ

Y with vertex
Λ over an (n − l)-dimensional smooth projective variety Y with a nondegenerate

birational-embedding ν : Y → PN̄ (N̄ = N−l−1). Moreover, under these equivalent
conditions, the following hold:

(1) μ = l(X ∩ 〈v, x〉) for general v ∈ Λ and general x ∈ X.
(2) degX = μ · deg ν(Y ).
(3) Λ ∩ X ⊆ SingX and dimΛ ∩ X = dimΛ − 1. In particular, dimΛ ≤

dimSingX + 1.
(4) Λ is an irreducible component of B̄(X) if and only if ν(Y ) is not a cone.

The next results are the structure ofX with C(X) 
= ∅, which is the main purpose
of this paper. To this purpose, we divide into two cases by the partial Gauss map of
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X, that is, a rational map γ|Z : Z ∩ SmX → G(n,PN ) from a subset Z ⊆ X with
Z ∩ SmX 
= ∅ to the Grassmannian of n-planes in PN , mapping y to Ty(X) ⊆ PN .

First we consider the case when the partial Gauss map on a subset of C̄(X) is
constant.

Theorem 4. Let X ⊆ PN be a projective variety of dimension n > 0 and codi-
mension e ≥ 2. Let Λ ⊆ PN be a linear subspace of dimension l (n − 1 ≥ l ≥ 0).
Suppose that X is nondegenerate with Λ ⊆ C̄(X) and Λ ∩ SmX 
= ∅ and that
the partial Gauss map γ|Λ is constant. Then X is a birational-divisor of type
(μ,L) (μ ≥ 2,L ∈ PicY ) on the conical scroll FΛ

Y with vertex Λ over an (n − l)-
dimensional smooth projective variety Y with a nondegenerate birational-embedding
ν : Y → PN̄ (N̄ = N − l − 1) satisfying the following:

(1) H0(Y,L) 
= 0, (L,OY (1)
n−l−1) = 1 for OY (1) = ν∗O

PN̄ (1), and degX =
μ · deg ν(Y ) + 1;

(2) X̃ ∩ Λ̃Y = (g)0 × Y + Λ × (w)0 as a divisor on Λ̃Y for some g ( 
= 0) ∈
H0(Λ,OΛ(μ)) and w ( 
= 0) ∈ H0(Y,L);

(3) (w)0 is the sum
∑r

i=0 Di of prime divisors Di such that ν(D0) =
πΛ(Tu(X) \ Λ) for general u ∈ Λ and ν(Di) � ν(D0) for all i ≥ 1 if
r ≥ 1;

(4) μ = l(X ∩ 〈u, x〉)− 1 holds for general u ∈ Λ and general x ∈ X;
(5) (g)0 ⊆ Λ ∩ SingX as set; in particular, dimΛ ≤ dimSingX + 1;
(6) Λ is an irreducible component of C̄(X) if and only if ν(Y ) is not a cone.

Theorem 5. For integers n > l ≥ 0, let X ⊆ PN be a birational-divisor of type
(μ,L) (μ ≥ 1,L ∈ PicY ) on the conical scroll FΛ

Y with an l-dimensional linear
subspace Λ as vertex over an (n− l)-dimensional smooth projective variety Y with

a nondegenerate birational-embedding ν : Y → PN̄ (N̄ = N − l − 1) satisfying
(1) and (2) in Theorem 4. If (w)0 is irreducible, then Λ ∩ SmX = Λ \ (g)0 
= ∅.
Consequently, if (w)0 is irreducible and if μ ≥ 2, then X is a nondegenerate n-
dimensional subvariety of PN such that Λ∩SmX = Λ\(g)0 ⊆ C(X) and the partial
Gauss map γ|Λ is constant.

Second we consider the case when the partial Gauss map on a component of
C̄(X) is nonconstant. To this purpose, we introduce definitions about a rational
scroll with vertex.

Definition 6. For an l-dimensional linear subspace Λ ⊆ PN and for an ample
vector bundle E of rank n − l(≥ 1) over P1, the conical rational scroll EΛ

E with

vertex Λ is the projective bundle PP1(O⊕l+1
P1 ⊕ E) with birational-embedding ψ :

EΛ
E → PN defined by a subsystem of |OEΛ

E
(1)| such that the subbundle Λ̃P1 :=

PP1(O⊕l+1
P1 )(⊆ EΛ

E ) maps onto Λ by ψ. Thus ψ(EΛ
E ) is nondegenerate in PN and

the cone over ψ(PP1(E)) with vertex Λ. Here OEΛ
E
(1) is the tautological line bundle

of EΛ
E = PP1(O⊕l+1

P1 ⊕E). A projective variety X ⊆ PN is a birational-divisor of the

conical rational scroll EΛ
E if X is a birational image of a prime divisor X̃ on EΛ

E by
the birational-embedding ψ : EΛ

E → PN . In this case, X is said to be of type (μ, b)

if X̃ ∈ |OEΛ
E
(μ)⊗ p∗OP1(b)| for the projection p : EΛ

E → P1. We call X̃ the original

divisor for X.
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Theorem 7. Let X ⊆ PN be a projective variety of dimension n > 0 and codimen-
sion e ≥ 2. Let Λ ⊆ PN be a linear subspace of dimension l (n − 1 ≥ l ≥ 0). The
following are equivalent:

(1) X is nondegenerate and Λ is an irreducible component of C̄(X) such that
the partial Gauss map γ|Λ is nonconstant.

(2) X is a birational-divisor of type (μ, 1) (μ ≥ 2) on a conical rational scroll

EΛ
E with vertex Λ and original divisor X̃ such that the intersection X̃ ∩ Λ̃P1

is a nonzero effective divisor of Λ̃P1 not equal to (g)0 × P1 + Λ × (w)0 for
any g ∈ H0(Λ,OΛ(μ)) and any w ∈ H0(P1,OP1(1)).

Moreover, under these equivalent conditions, we have l ≥ 1, μ = l(X∩〈u, x〉)−1 for
general u ∈ Λ and general x ∈ X, degX = μc1(E)+1, and dimΛ ≤ dimSingX+2.

Theorems 4 and 7 give the structure of smooth X with positive-dimensional
C(X) (Corollary 6.2). As an application, we prove the “semiampleness” of the ideal
sheaf for smooth X.

Theorem 8. Let X ⊆ PN be a nondegenerate smooth projective variety of degree
d and codimension e ≥ 1. Let σ : P̂N

X → PN be the blowing-up of PN along X with
exceptional divisor E and let A be the divisor of the pull-back of a hyperplane of
PN . Then O

P̂
N
X
((d− e+1)A−E) is semiample, i.e., O

P̂
N
X
(m((d− e+ 1)A−E)) is

base-point-free for some m > 0.

Theorem 8 improves a regularity bound for smooth projective varieties ([2] and
[3]) and leads to an asymptotic regularity bound. Recall that for an integer m, a
coherent sheaf F on PN is said to bem-regular in the sense of Castelnuovo–Mumford
if Hi(PN ,F(m− i)) = 0 for the twisted sheaf F(m− i) := F ⊗OPN (m− i) and for
all i > 0. A projective variety X ⊆ PN is said to be m-regular if the ideal sheaf IX
is m-regular. The regularity reg(F) is the least integer m for which F is m-regular.

Theorem 9. Let X ⊆ PN be a nondegenerate smooth projective variety of
degree d and codimension e ≥ 1. Then Hi(PN , IX(k)) = 0 for all i > 0 and
k ≥ e(d−e+1) −N . In particular, X is (e(d− e) + 1)-regular.

Theorem 10. Let X ⊆ PN be a nondegenerate smooth projective variety of
degree d and codimension e ≥ 1. Let a be a positive integer and let Ia

X be
the ath power of the ideal sheaf of X. Then Hi(PN , Ia

X(k)) = 0 for all i > 0 and
k ≥ (d− e+1)(e+a− 1)−N . In particular, Ia

X is {(d− e)(e+a− 1)+a)}-regular
and therefore lima→+∞ (reg Ia

X/a) ≤ d− e+ 1.

The asymptotic regularity bounds are studied by many authors ([6], [7], [20]).
In particular, Cutkosky–Ein–Lazarsfeld [6] showed that lima→+∞(reg Ia

X/a) is
bounded by the generating degree (i.e., the smallest d such that IX(d) is gener-
ated by global sections). On the other hand, the regularity conjecture ([8], [14, §4])
implies that the generating degree is bounded above by d − e + 1 for a projective
variety of degree d and codimension e. Hence Theorem 10 supports the conjecture.

This paper is organized as follows. In §1, we summarize some properties of
birational-divisors of conical scrolls and prove Theorem 3. In §2, we study condi-
tions for birational-divisors on conical scrolls to be smooth at the general points
of vertices. In §3, we prove Theorem 4. In §4, we prove Theorem 5. In §5, we
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study conditions for birational-divisors on rational conical scrolls to be smooth at
the general points of vertices. In §6, we prove Theorem 7. In §7, we deal with
the applications of our theorems to regularity problems. In particular, we prove
Theorems 8-10.

1. Loci of nonbirational centers: Proof of Theorem 3

Lemma 1.1. Let X ⊆ PN be a projective variety of dimension n > 0 and codi-
mension e ≥ 2. Let Λ ⊆ PN be a linear subspace of dimension l (n − 1 ≥ l ≥ 0).

Let X̄Λ be the closure of πΛ(X \ Λ) for the linear projection πΛ : PN \ Λ → PN̄

(N̄ := N − l − 1). Then the following are equivalent:

(a) dim〈Tx(X),Λ〉 = n+ 1 for general x ∈ X \ Λ.
(b) dim X̄Λ = n− l.
(c) dimCone(Λ, X̄Λ) = n+1 for the cone Cone(Λ, X̄Λ) over X̄Λ with vertex Λ.
(d) X is a birational-divisor of type (μ,L) for some μ(> 0) ∈ Z and L ∈ PicY

with (μ,L) 
= (1,OY (−1)) on the conical scroll FΛ
Y with vertex Λ over a

smooth (n− l)-dimensional projective variety Y with a birational-embedding

ν : Y → PN̄ .

Moreover, under the above equivalent conditions, the following hold:

(1) For general x ∈ X, (X ∩ 〈Λ, x〉) \ Λ is an affine (possibly reducible) hyper-
surface in 〈Λ, x〉 \ Λ whose closure is a hypersurface of degree μ in 〈Λ, x〉
not containing Λ.

(2) If Λ 
⊆ X, then μ = l(X ∩ 〈u, x〉) for general u ∈ Λ and general x ∈ X.
(3) If Λ ⊆ X and Λ ∩ SmX 
= ∅, then μ = l(X ∩ 〈u, x〉)− 1 for general u ∈ Λ

and general x ∈ X.
(4) Suppose μ ≥ 2. Then X ⊆ PN is nondegenerate if and only if so is X̄Λ ⊆

PN̄ .
(5) For a linear subspace Λ′ ⊆ PN containing Λ as a proper subset,

dim〈Tx(X),Λ′〉 = n + 1 for general x ∈ X \ Λ′ if and only if X̄Λ ⊆ PN̄

is a cone with vertex Λ̄′
Λ := πΛ(Λ

′ \ Λ).

Proof. The equivalence (a) ⇔ (b) follows from Tx̄(X̄Λ) = πΛ(〈Tx(X),Λ〉 \ Λ) for
general x ∈ X and for x̄ := πΛ(x) ∈ X̄Λ by the generic smoothness. Since
dimCone(Λ, X̄Λ) = l+1+dim X̄Λ, (b) and (c) are equivalent. To prove (c) =⇒ (d),
suppose (c). Let Y → X̄Λ be the resolution of singularity of X̄Λ ([16]) and let

ν : Y → PN̄ be the composite of Y → X̄Λ and the inclusion X̄Λ ⊆ PN̄ . The conical
scroll FΛ

Y is isomorphic to Cone(Λ, X̄Λ) except on Λ̃Y ∈ |OFΛ
Y
(1)⊗ τ∗Y OY (−1)| and

on the fibres over the nonisomorphic locus of Y → X̄Λ. Hence its isomorphic locus
meets with X and there exists a prime divisor X̃ of FΛ

Y birational to X. By [15, III,

Ex. 12.5], X̃ is a member of |OFΛ
Y
(μ) ⊗ τ∗Y L| for some μ > 0 and L ∈ PicY with

(μ,L) 
= (1,OY (−1)). Hence (d) follows. If (d) holds, then FΛ
Y is birational to

Cone(Λ, X̄Λ), and (c) holds.

(1) By assumption, X̃ 
= Λ̃Y and X̃ ∩ Λ̃Y is a divisor of Λ̃Y = Λ × Y . Let

u ∈ Λ be a general point so that {u} × Y 
⊆ X̃ ∩ Λ̃Y . Let x ∈ X be general
points so that x̄Λ := πΛ(x) ∈ Sm X̄Λ, x̄Λ = ν(y) for a unique point y ∈ Y , and

(u, y) 
∈ X̃∩Λ̃Y . The intersection X̃y := X̃∩τ−1
Y (y) ⊆ FΛ

Y is a hypersurface of degree

μ in τ−1
Y (y) ∼= 〈Λ, x〉 such that X̃y 
⊇ Λ×{y}. Hence X̃y is the closure of X̃y\Λ×{y}

in τ−1
Y (y). By the generality of x, the induced morphism FΛ

Y \Λ̃Y → Cone(Λ, X̄Λ)\Λ
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from ϕY is isomorphic along τ−1
Y (y), and hence X̃y \ Λ × {y} ∼= X ∩ 〈Λ, x〉 \ Λ.

Consequently, the closure (X ∩ 〈Λ, x〉) \ Λ is a hypersurface of degree μ isomorphic

to X̃y.
(2) If Λ 
⊂ X, for general u ∈ Λ and x ∈ X, then X ∩ Λ ∩ 〈u, x〉 = ∅; hence

l(X ∩ 〈u, x〉) = l(X ∩ 〈Λ, x〉 ∩ 〈u, x〉) = l((X ∩ 〈Λ, x〉 \ Λ) ∩ 〈u, x〉) = μ by (1).
(3) Suppose Λ ⊆ X and Λ ∩ SmX 
= ∅. For general u ∈ Λ and x ∈ X, we

may assume u ∈ Λ ∩ SmX and x 
∈ Tu(X), i.e., the local length lu(X ∩ 〈u, x〉) of
X ∩ 〈u, x〉 at u is one. Moreover u 
∈ (X ∩ 〈Λ, x〉) \ Λ and X ∩ Λ ∩ 〈u, x〉 = {u}.
Hence, by (1), l(X ∩ 〈u, x〉) = l((X ∩ 〈Λ, x〉 \ Λ) ∩ 〈u, x〉) + lu(X ∩ 〈u, x〉) = μ+ 1.

(4) X ⊆ PN is nondegenerate, so is X̄Λ = ν(Y ) ⊆ PN̄ . Conversely, suppose
X is contained in a hyperplane H ⊆ PN . For general x ∈ X, H contains the
hypersurface (X ∩ 〈Λ, x〉) \ Λ in 〈Λ, x〉 of degree μ ≥ 2, and hence 〈Λ, x〉. Thus X̄Λ

is degenerate.
(5) To prove the only if part, for general x ∈ X \Λ′, assuming dim〈Tx(X),Λ′〉 =

n + 1, it suffices to show that X̄Λ contains 〈Λ′, x〉Λ := πΛ(〈Λ′, x〉 \ Λ). By (1),

(X ∩ 〈Λ′, x〉) \ Λ′ is a hypersurface in 〈Λ′, x〉. By the linear projection πΛ : 〈Λ′, x〉 \
Λ → 〈Λ′, x〉Λ, the hypersurface is mapped onto 〈Λ′, x〉Λ or it is a cone with vertex
Λ. In the latter, by the generality of x, X is a cone with vertex Λ which contradicts
(c). Hence 〈Λ′, x〉Λ ⊆ X̄Λ. Conversely, for the if part, suppose X̄Λ ⊆ PN̄ is a cone
with vertex Λ̄′

Λ. Set l′ := dimΛ′ and l′′ := dim Λ̄′
Λ. Hence l′ = l + l′′ + 1. The

closure X̄Λ′ of the image of X by the linear projection from Λ′ can be seen as the
image X̄Λ by the linear projection from Λ̄′

Λ. Hence dim X̄Λ′ = n− l′. By the first
part, dim〈Tx(X),Λ′〉 = n+ 1 for general x ∈ X \ Λ′. �

Proof of Theorem 3. We will prove the first part. Suppose that X is nondegenerate
with Λ ⊆ B̄(X) and Λ 
⊆ X. By Theorem 1, (a) of Lemma 1.1 holds, and hence,
X is a birational-divisor on the conical scroll FΛ

Y of type (μ,L) for some μ ≥ 1 and
L ∈ PicY . Since Λ ∩ B(X) 
= ∅, by (2) of Lemma 1.1, we have μ ≥ 2. By (4) of

Lemma 1.1, ν(Y ) ⊆ PN̄ is nondegenerate. It remains to show that L ∼= OY . This
is proved for 0 < l < n in [22, Lemma 4.5]. To prove this for l = 0, as in the case

l > 0, let GX̃ ∈ H0(OFΛ
Y
(μ) ⊗ τ∗Y L) be the section defining the original divisor X̃

for X. For Λ̃Y = Λ × Y ∼= Y , we have GX̃ |Λ̃Y
∈ H0(L). Moreover GX̃ |Λ×{y} is

nonzero for any y ∈ Y since Λ 
⊆ X. This means that L has a nowhere vanishing
global section and hence L ∼= OY .

Conversely, suppose that X is a birational-divisor of type (μ,OY ) (μ ≥ 2) on
FΛ

Y over an (n− l)-dimensional smooth projective variety Y with a nondegenerate

birational-embedding ν : Y → PN̄ . By (4) of Lemma 1.1, X is nondegenerate.

The original divisor X̃(⊆ FΛ
Y ) for X is not equal to Λ̃Y and X̃ ∩ Λ̃Y ∈ |OΛ̃Y

(μ)|.
Since H0(OΛ̃Y

(μ)) ∼= H0(OΛ(μ)), X ∩ Λ is codimension one in Λ and Λ 
⊂ X.

Consequently Λ ⊆ B̄(X) by (2) of Lemma 1.1.
We will show (1)-(4), supposing X is nondegenerate with Λ ⊆ B̄(X) and Λ 
⊆ X.

(1) follows from (2) of Lemma 1.1. (2) follows from degX = (OFΛ
Y
(μ),OFΛ

Y
(1)n) =

μ · deg ν(Y ). (3) is proved in [22, Theorem 4.4]. Finally we will prove (4). If Λ
is a proper subset of an irreducible component Λ′ of B̄(X), then Λ′ is linear and
dim〈Tx(X),Λ′〉 = n+1 for general x ∈ X \Λ′ by Theorem 1, and hence X̄Λ = ν(Y )
is a cone by (5) of Lemma 1.1. Conversely suppose X̄Λ is a cone with vertex

Λ′′ ⊆ PN̄ . Set Λ′ := 〈Λ,Λ′′〉 ⊆ PN . For general x ∈ X , (X ∩ 〈Λ′, x〉) \ Λ′ is a
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hypersurface in 〈Λ′, x〉 by Lemma 1.1. The hypersurface is of degree μ(≥ 2), since
l(X∩〈v, x〉) = μ for general v ∈ Λ by (2) of Lemma 1.1 and since X∩Λ′∩〈v, x〉 = ∅
by the generality of x. Hence (Λ ⊂)Λ′ ⊆ B̄(X). �

2. The structure of projective varieties

with nonbirational inner centers

In this section, we find conditions for a birational-divisor of a conical scroll to
be smooth at general points of the vertex (Proposition 2.3). We begin with the
following proposition.

Proposition 2.1. Let X ⊆ PN be a projective variety of dimension n > 0 and
codimension e ≥ 2. Let Λ be an l-dimensional linear subspace of PN (0 ≤ l ≤ n−1).
Set N̄ = N − l − 1. Then the following are equivalent:

(1) X is nondegenerate with Λ ⊆ C̄(X) and Λ ∩ SmX 
= ∅.
(2) X is a birational-divisor of type (μ,L) (μ ≥ 2) on the conical scroll FΛ

Y

with vertex Λ over an (n− l)-dimensional smooth projective variety Y with

a nondegenerate birational-embedding ν : Y → PN̄ such that Λ ⊆ X and
Λ ∩ SmX 
= ∅.

Moreover, under the condition above, Λ is an irreducible component of C̄(X) if and
only if ν(Y ) is not a cone.

Proof. To prove (1) =⇒ (2), suppose (1). For general x ∈ X, dim〈Tx(X),Λ〉 =
n+ 1 by Theorem 1. Hence X is a birational-divisor of type (μ,L) on the conical
scroll FΛ

Y over an (n− l)-dimensional smooth projective variety Y with a birational-

embedding ν : Y → PN̄ by Lemma 1.1. Moreover ν(Y ) is nondegenerate by (4) of
Lemma 1.1. For general x ∈ X and u ∈ Λ, l(X∩〈u, x〉) ≥ 3 since Λ∩SmX ⊆ C(X).
Hence μ ≥ 2 by (3) of Lemma 1.1. Conversely, to prove (2) =⇒ (1), suppose (2).
Since μ ≥ 2 and ν(Y ) is nondegenerate, X is nondegenerate by (4) of Lemma 1.1.
For general x ∈ X and u ∈ Λ, l(X ∩ 〈u, x〉) = μ+1 ≥ 3 by (3) of Lemma 1.1. This
means Λ ∩ SmX( 
= ∅) ⊆ C(X).

We will prove the second part. The if part follows from (5) of Lemma 1.1 as
in Theorem 3. To prove the only if part, suppose that X̄Λ = ν(Y ) is a cone

with vertex Λ′′ ⊆ PN̄ . We will show Λ′ := 〈Λ,Λ′′〉 ⊆ C̄(X). For general x ∈ X,

X ∩ 〈Λ′, x〉 \ Λ′ is a hypersurface in 〈Λ′, x〉 by Lemma 1.1, and let m be its degree.
Then m ≥ l((X ∩ 〈Λ′, x〉 \ Λ′) ∩ 〈u, x〉) = l(X ∩ 〈u, x〉)− lu(X ∩ 〈u, x〉) = μ ≥ 2 for
general u ∈ Λ since the local length lu(X∩〈u, x〉) is one (see Lemma 1.1). If Λ′ 
⊆ X,
m = l(X ∩ 〈w, x〉) for general w ∈ Λ′ by (2) of Lemma 1.1, and hence Λ′ ⊆ B̄(X)
and Λ ⊆ Λ′ ∩ X ⊆ SingX by (3) of Theorem 3, a contradiction. Consequently
Λ′ ⊆ X. Hence m = l(X ∩〈w, x〉)−1 for general w ∈ Λ′ by (3) of Lemma 1.1, since
Λ′ ∩ SmX(⊇ Λ ∩ SmX) 
= ∅. This means Λ′ ⊆ C̄(X). �

For the remainder of this section, we assume the following conditions.

(2.2). Let X ⊆ PN be a nondegenerate projective variety of dimension n > 0 which
is a birational-divisor of type (μ,L) (μ ≥ 1,L ∈ PicY ) on the conical scroll FΛ

Y with
an l-dimensional linear subspace Λ ⊆ PN (0 ≤ l ≤ n− 1) as vertex over an (n− l)-

dimensional smooth projective variety Y with a birational-embedding ν : Y → PN̄

(N̄ = N − l − 1). We keep the notation as in Definition 2. Set n̄ = n− l. Let X̄Λ

be the closure of πΛ(X \ Λ) for the linear projection πΛ : PN \ Λ → PN̄ .
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Proposition 2.3. Under (2.2), suppose that Λ ⊆ X and Λ ∩ SmX 
= ∅. Then the
following hold:

(1) (L,OY (1)
n̄−1) = 1 and H0(Y,L) 
= 0. Hence d = degX = μ · deg ν(Y )+ 1.

(2) The intersection X̃ ∩ Λ̃Y is an effective divisor of Λ̃Y containing a prime

divisor D̃ whose image by the natural morphism Λ̃Y
∼= Λ× Y → Λ× X̄Λ is

the closure of �y∈Λ∩SmXTy(X)Λ, where Ty(X)Λ := πΛ(Ty(X) \ Λ).
(3) The divisor D̃ in (2) is a unique irreducible component of X̃ ∩ Λ̃Y such that

ϕY (D̃) = Λ and dim ν(τY (D̃)) ≥ dim X̄Λ−1. Moreover ordD̃(X̃∩Λ̃Y ) = 1,

where ordD̃(·) is the order along D̃.

To prove Proposition 2.3, we need the following lemma.

Lemma 2.4. Suppose Λ ⊆ X, Λ ∩ SmX 
= ∅, and n̄ = n− l ≥ 2. Let H ⊆ PN be
a general hyperplane containing Λ and let H̄Λ be the hyperplane πΛ(H \ Λ) in PN̄ .

Then YH̄Λ
:= Y ×

PN̄ H̄Λ is smooth and irreducible, X̃H̄Λ
:= X̃×

PN̄ H̄Λ is irreducible
and reduced, and XH̄Λ

:= (X ∩ H)red is a nondegenerate projective variety in H
with Λ ⊆ XH̄Λ

and Λ ∩ SmXH̄Λ

= ∅. Consequently XH̄Λ

is a birational-divisor of

type (μ,L|YH̄Λ
) on the conical scroll FΛ

YH̄Λ
with vertex Λ over YH̄Λ

whose original

divisor is X̃H̄Λ
.

Proof. Since H̄Λ ⊆ PN̄ is general, the reducedness and the smoothness of PN̄ -
schemes are stable under the pull-back H̄Λ → PN̄ by Bertini’s Theorem in char-
acteristic zero (see [9, (3.4.9)]). Also the irreducibility is stable by the assumption

dim X̄Λ = n̄ ≥ 2 (see [9, (3.4.10)]). Hence YH̄Λ
is smooth and irreducible, and X̃H̄Λ

is irreducible and reduced. Moreover, YH̄Λ
→ H̄Λ is a birational-embedding, and

X̃H̄Λ
is birational to (X \ Λ)H̄Λ

by the induced morphism ϕYH̄Λ
: FΛ

YH̄Λ
→ H̄Λ,

and hence XH̄Λ
= ϕYH̄Λ

(X̃H̄Λ
). This means that XH̄Λ

is a birational-divisor of

type (μ,L|YH̄Λ
) on the conical scroll FΛ

YH̄Λ
with original divisor X̃H̄Λ

. To see

Λ ∩ SmXH̄Λ

= ∅, we note, by the generality of H, that Ty(X) 
⊆ H for general

y ∈ Λ ∩ SmX, and hence X ∩H is smooth at y. Therefore Λ ∩ SmXH̄Λ

= ∅, since

XH̄Λ
and X ∩ H are equal on the union of (X \ Λ) ∩ H and the locus of points

y ∈ Λ ∩ SmX with Ty(X) 
⊆ H. �

Proof of Proposition 2.3. First we will prove (2). Since X is birational to X̃ and

dim X̃ = dim Λ̃Y , X̃ 
= Λ̃Y and X̃ ∩ Λ̃Y is a divisor of Λ̃Y . Consider the blowing-
up σX/Λ : X̂Λ → X of X along Λ, which is a closed subset of the blowing-up

σ : P̂N
Λ → PN of PN along Λ by IΛ/PN ⊗ OX → IΛ/X . Here note that P̂N

Λ = FΛ

as a closed subscheme of PN × PN̄ and σ = ϕ. Moreover X̂Λ is a closed sub-
scheme of the pull-back FΛ

X̄Λ
:= FΛ ×

PN̄ X̄Λ of τ : FΛ → PN̄ by X̄Λ → PN̄

since τ (X̂Λ) = X̄Λ. Hence X̂Λ is the birational image of X̃ by FΛ
Y → FΛ

X̄Λ
. For

Λ̂ := FΛ
X̄Λ

×PN Λ = Λ × X̄Λ, we have Λ̂ ×FΛ
X̄Λ

FΛ
Y = Λ × Y , and hence the in-

duced morphism X̃ ∩ Λ̃Y → X̂Λ ∩ Λ̂ is surjective. To obtain D̃, we will show
E0 := �y∈Λ∩SmXTy(X)Λ is a subscheme of X̂Λ ∩ Λ̂. In fact, D̃ is an (n − 1)-

dimensional component of X̃ ∩ Λ̃Y dominating E0 under the surjection. Since
X̂Λ ∩ Λ̂ = σ−1

X/Λ(Λ) = Proj
⊕

k≥0 Ik
Λ/X/Ik+1

Λ/X and since IΛ/X/I2
Λ/X is locally

free on Λ ∩ SmX, we have only to show that PΛ∩SmX(IΛ/X/I2
Λ/X |Λ∩SmX) is E0.
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Set V := H0(PN ,OPN (1)) and W := H0(PN , IΛ/PN (1)). Then PN = P(V ) and

PN̄ = P(W ), and πΛ is defined by the evaluation ε : W ⊗OPN (1) → IΛ/PN (1). Re-

call that the tangent bundle �x∈XTx(X) ⊆ X × PN corresponds to the surjection
from V ⊗ OX to the bundle P 1

X(OX(1)) of the principal part (see [19, Ch. IV.A],

[13, Ch. IV, §16]). Hence Ty(X)Λ ⊆ PN̄ for each y ∈ Λ ∩ SmX corresponds to the

image of W → V → P 1
X(OX(1))⊗ k(y). Thus we have to show that the image of

W ⊗ OΛ → P 1
X(OX(1))|Λ is (IΛ/X/I2

Λ/X)(1). This follows by comparing two of

the exact sequences 0 → (IΛ/X/I2
Λ/X)(1) → P 1

X(OX(1))|Λ → P 1
Λ(OΛ(1)) → 0 on

Λ ∩ SmX and 0 → W ⊗ OΛ → V ⊗ OΛ → V/W ⊗ OΛ → 0, since V/W ⊗ OΛ →
P 1
Λ(OΛ(1)) is isomorphic.

We will prove (1) and (3) in case dimY = n̄ = 1. Since X̃ ∩ Λ̃Y is a divisor

on Λ̃Y , the birational morphism X̃ → X is quasi-finite at general points of Λ and
hence scheme-theoretically one-to-one at general points of Λ∩SmX 
= ∅ by Zariski’s
Main Theorem ([15, III.11.4]). Consequently X̃∩Λ̃Y → Λ is generically isomorphic.

Since X̃ ∩ Λ̃Y ∈ |OΛ̃Y
(μ) ⊗ τ̄∗Y L|, this means that degL = 1 and H0(Y,L) 
= 0,

which proves (1), and also the uniqueness of the component D̃ in (2), which proves
(3).

Now we prove (1) and (3) in case dim Y = n̄ ≥ 2 by the induction on n̄. For a gen-
eral hyperplane H ⊆ PN containing Λ and for H̄Λ := πΛ(H \ Λ), by (2.4), XH̄Λ

:=
(X∩H)red is a nondegenerate projective variety in H with Λ∩SmXH̄Λ


= ∅ which is

a birational-divisor of type (μ,L|YH̄Λ
) on the conical scroll FΛ

YH̄Λ
with vertex Λ over

the (n̄−1)-dimensional smooth projective variety YH̄Λ
:= Y ×

PN̄ H̄Λ. By the induc-
tion, XH̄Λ

satisfies (1) and (3). Hence (L,OY (1)
n̄−1) = (L|YH̄Λ

,OYH̄Λ
(1)n̄−2) = 1.

Since X̃ ∩ Λ̃Y ∈ |OΛ̃Y
(μ) ⊗ τ̄∗Y L| is a nonzero effective divisor, L has a nonzero

global section, which proves (1).

To prove (3) in case n̄ ≥ 2, note that if D is an irreducible component of X̃ ∩ Λ̃Y

with dim ν(τY (D)) ≥ dim X̄Λ−1 = n̄−1 ≥ 1, then the pull-back DH̄Λ
:= D×

PN̄ H̄Λ

is irreducible and reduced. Indeed, by Bertini’s Theorem ([9, (3.4.9) and (3.4.10)]),
DH̄Λ

is irreducible and reduced unless dim ν(τY (D)) = 1. If dim ν(τY (D)) = 1, then
n̄ = 2 and D ∼= τY (D)×Λ, and consequently DH̄Λ

∼= τY (D)H̄Λ
×Λ for τY (D)H̄Λ

:=

τY (D)×
PN̄ H̄Λ, which is reduced by the generality of H̄Λ; hence deg τY (D)H̄Λ

= 1 by
(3) in case n̄ = 1. This implies the irreducibility of DH̄Λ

for dim ν(τY (D)) = 1. To

prove the uniqueness of D̃ for n̄ ≥ 2, by the contradiction, we assume that D̃′ ( 
= D̃)

is another irreducible component of X̃ ∩ Λ̃Y such that dim ν(τY (D̃
′)) ≥ dim X̄Λ− 1

and ϕY (D̃
′) = Λ. Then D̃′

H̄Λ

= D̃H̄Λ

satisfy the same property, which contradicts

the uniqueness of D̃H̄Λ
. The second part is clear since if ordD̃(X̃ ∩ Λ̃Y ) > 1, then

ordD̃H̄Λ

(X̃H̄Λ
∩ (Λ̃Y )H̄Λ

) > 1 for (Λ̃Y )H̄Λ
:= (Λ̃Y )×PN̄ H̄Λ. �

We conclude this section by proving the following lemma about the singular locus
of X on Λ.

Lemma 2.5. Under (2.2), assume that n̄ ≥ 1 and l ≥ 1. If u ∈ Λ is a point such

that {u} × Y ⊆ X̃ ∩ Λ̃Y in Λ̃Y , then u ∈ Λ ∩ SingX.

Proof. To the contrary, suppose u ∈ SmX. Take a general hyperplaneH containing
Λ and set H̄Λ := πΛ(H \ Λ). We may assume Tu(X) 
⊆ H and X ∩ H is smooth
at u, and hence XH̄Λ

:= (X ∩ H)red is smooth at u. If n̄ ≥ 2, replacing X by
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XH̄Λ
by Lemma 2.4, we may assume n̄ = 1, since X̃H̄Λ

= X̃ ×
PN̄ H̄Λ contains

{u} × YH̄Λ
. Then H contains a general point x ∈ X so that, by (1.1), the closure

(X ∩ 〈Λ, x〉) \ Λ is a hypersurface in 〈Λ, x〉 not containing Λ, isomorphic to X̃ ∩
τ−1
Y (ν−1(πΛ(x))) by ϕY . Hence it passes through u by assumption {u} × Y ⊆ X̃ ∩
Λ̃Y . Thus X ∩H has two distinct components through u, Λ, and (X ∩ 〈Λ, x〉) \ Λ.
This contradicts the smoothness of X ∩H at u. �

3. The structure of projective varieties with nonbirational inner

centers of constant partial Gauss maps: Proof of Theorem 4

Proof of Theorem 4. By Proposition 2.1, X is a birational-divisor of type (μ,L)
(μ ≥ 2,L ∈ PicY ) on the conical scroll FΛ

Y with vertex Λ over a smooth (n − l)-
dimensional projective variety Y such that (6) holds. Moreover, (1) and (4) hold
by Proposition 2.3 and Lemma 1.1.

(2) If an irreducible component of X̃ ∩ Λ̃Y ∈ |OΛ̃Y
(μ) ⊗ τ̄∗Y L| dominates both

Y and Λ, then it must be the unique divisor D̃ in (3) of Proposition 2.3, but D̃
does not dominate Y by our assumption that γ|Λ is constant and (2) of Proposition

2.3, a contradiction. Hence each irreducible component D of X̃ ∩ Λ̃Y is of the form
D = ϕY (D)× Y or D = Λ× τY (D). This means (2).

(3) For the decomposition (w)0 =
∑r

i=0 Di into prime divisors Di on Y , we may

assume that the unique divisor D̃ in (3) of Proposition 2.3 is τ̄∗Y (D0)(= Λ×D0) with
dim ν(D0) = dim X̄Λ − 1. It follows from (L,OY (1)

n−l−1) = 1 that dim ν(Di) <
dim ν(D0) for i ≥ 1 if r ≥ 1. Thus we have only to show that ν(Di) ⊆ ν(D0) for
every i ≥ 1. By contradiction, we assume that ν(Di) 
⊆ ν(D0) for some i ≥ 1.
Set s := max{dim ν(Di)|ν(Di) 
⊆ ν(D0), i ≥ 1}. By taking general hyperplane

sections of X̄Λ ⊆ PN̄ in s-times as in Lemma 2.4, and by (possibly) replacing the
decomposition of (w)0 ∈ |L|, we may assume that there exists a prime divisor Di0

(i0 > 0) such that Di0 ∩ D0 = ∅ and ν(Di0) is a point which is not contained

in ν(D0). Hence (Λ × D0) ∩ (Λ × Di0) = ∅ in Λ̃Y , and the birational projective

morphism X̃ → X has non-connected fibres at general points of Λ∩ SmX. This is
a contradiction by Zariski’s Main Theorem ([15, III.11.4]).

(5) If l = 0, the assertion is clear since Λ ∩ SingX = (g)0 = ∅. If l ≥ 1, then
(g)0 ⊆ Λ∩SingX by Lemma 2.5. Hence dimSingX ≥ dimΛ∩SingX ≥ dim(g)0 =
dimΛ− 1. �

4. The construction of projective varieties with nonbirational inner

centers of constant partial Gauss maps: Proof of Theorem 5

First we describe the section rings of a conical scroll and its birational-divisor.

(4.1). Keep the notation and assumption as in (2.2). Let T0, . . . , TN be the homoge-
neous coordinates of PN . Let S = k[T0, . . . , TN ] be the homogeneous coordinate ring

of PN . Since we consider the target PN̄ of the linear projection πΛ : PN \ Λ → PN̄

from Λ to be a subspace of PN disjoint from Λ, we may assume that H0(I
PN̄ (1))

is spanned by T0, . . . , Tl and H0(IΛ(1)) is spanned by Tl+1, . . . , TN . We may con-
sider that Zi := Ti|Λ (i = 0, . . . , l) are the homogeneous coordinates of Λ and that
Ti|Λ = 0 (i ≥ l + 1). Also we may consider that Ti|PN̄ (i = l + 1, . . . , N) are the

homogeneous coordinates of PN̄ and that Ti|PN̄ = 0 (i ≤ l). The surjection

H0(OPN (1))⊗O
PN̄ → H0(OΛ(1))⊗O

PN̄ ⊕O
PN̄ (1) =: F
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induced from the isomorphism H0(OPN (1))
∼→ H0(OΛ(1)) ⊕ H0(O

PN̄ (1)) corre-

sponds to FΛ ⊆ PN ×PN̄ . Let Zl+1 be the formal basis of the subbundle O
PN̄ (1) of

F so that O
PN̄ (1) = O

PN̄ (1)Zl+1. Let FY = H0(OΛ(1))⊗OY ⊕OY (1)Zl+1 be the
pull-back of F to Y . Hence FΛ

Y = PY (FY ) and OFΛ
Y
(1) = ϕ∗

Y OPN (1). Let K(Y )

be the function field of Y . The section ring SFΛ
Y

=
⊕

m≥0(SFΛ
Y
)m is the graded

subring of K(Y )[Z0, . . . , Zl+1] with deg(Zi) = 1 (i = 0, . . . , l + 1) such that

(SFΛ
Y
)m = H0(FΛ

Y ,OFΛ
Y
(m)) = H0(Y, Symm(FY )).

For the morphism ν : Y → PN̄ , we set fi := ν∗(Ti|PN̄ ) ∈ H0(OY (1))) (i = l +
1, . . . , N). Then the birational-embedding ϕY : FΛ

Y → PN is defined by

(4.1.1) ϕ∗
Y [T0, . . . , TN ] = [Z0, . . . , Zl, fl+1Zl+1, . . . , fNZl+1]

and the graded homomorphism ϕ∗
Y : S → SFΛ

Y
is given by (4.1.1). Thus the

homogenous coordinate ring R of the cone Cone(Λ, ν(Y )) over ν(Y ) with vertex Λ
is given by

R = Im(ϕ∗
Y ) = k[Z0, . . . , Zl, fl+1Zl+1, . . . , fNZl+1] ⊆ SFΛ

Y

since Cone(Λ, ν(Y )) = ϕY (F
Λ
Y ). Note that SFΛ

Y
is a finitely generated R-module

since ϕY ∗OS
FΛ
Y

is a coherent OCone(Λ,X̄Λ)-module. For each element

F ∈ K(Y )[Z0, . . . , Zl+1],

we define the Zl+1-order of F by

ordZl+1
(F ) := max{m ≥ 0 | F = Zm

l+1 ·Q for some Q ∈ K(Y )[Z0, . . . , Zl+1]}.
In particular, ordZl+1

(0) = +∞. If we set

M := Z2
l+1K(Y )[Z0, . . . , Zl+1] ∩R

and consider it a graded submodule by Mm = M ∩ Rm, then M is the pull-back
of the ideal (Tl+1, . . . , TN )2 of S by ϕ∗

Y . For nonnegative integers m and e with
m ≥ e ≥ 0, set

(SFΛ
Y
)m,e := Ze

l+1H
0(Y,OY (e))⊗k k[Z0, . . . , Zl]m−e and

Rm,e := k[fl+1Zl+1, . . . , fNZl+1]e ⊗k k[Z0, . . . , Zl]m−e.

Hence (SFΛ
Y
)m =

⊕m
e=0(SFΛ

Y
)m,e, Rm =

⊕m
e=0 Rm,e, and Mm =

⊕m
e=2 Rm,e. For a

nonzero element p ∈ (SFΛ
Y
)m, by p∗ we denote the component of p in (SFΛ

Y
)m,e for

e = ordZl+1
(p).

Let GX̃ ∈ H0(FΛ
Y ,OFΛ

Y
(μ) ⊗ τ∗Y L) be a section with (GX̃)0 = X̃. For the dual

L∨ of L, we set

JX̃ :=
⊕
m≥0

Bm−μ ·GX̃ ⊆ SFΛ
Y

for Bm := H0(FΛ
Y ,OFΛ

Y
(m)⊗ τ∗Y L∨),

which have the decompositions Bm =
⊕m

e=0 Bm,e for

Bm,e := Ze
l+1H

0(Y,OY (e)⊗ L∨)⊗k k[Z0, . . . , Zl]m−e.

Let SX̃ =
⊕

m≥0 H
0(X̃,OX̃(m)) be the section ring of X̃. Then 0 → JX̃ →

SFΛ
Y
→ SX̃ is exact. The homogeneous ideal IX of X(= ϕY (X̃)) ⊆ PN is given by

IX = (ϕ∗
Y )

−1(JX̃), since the ideal sheaf IX of X is the kernel of OPN → ϕY ∗OX̃ .
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Proof of Theorem 5. By the assumption (2) in Theorem 4, we have GX̃ |Λ̃ = gw for
g ∈ H0(Λ,OΛ(μ)) = k[Z0, . . . , Zl]μ and w ∈ H0(Y,L), and hence

(4.1.2) GX̃ = gw − h

for some h ∈ H0(FΛ
Y ,OFΛ

Y
(μ) ⊗ τ∗Y L) with ordZl+1

(h) ≥ 1. To prove Theorem 5,

assuming the divisor D0 := (w)0 ∈ |L| is irreducible, we have only to show that

(4.1.3) Λ ∩ SmX ⊇ Λ \ (g)0 ( 
= ∅).
In fact, from (4.1.3) it follows that Λ∩ SmX = Λ \ (g)0 since (g)0 ⊆ Λ∩ SingX by
Lemma 2.5, and hence if μ ≥ 2 furthermore, then Λ \ (g)0 ⊆ C(X) by Proposition

2.1 and γ|Λ is constant since the prime divisor D̃(⊆ X̃ ∩ Λ̃Y ) in Proposition 2.3 is

D0×Λ(⊆ Λ̃Y ). To prove (4.1.3), we will find homogeneous polynomials defining X
which show the smoothness of X along Λ \ (g)0.

Before starting the proof, for OD0
(k) := OY (k)|D0

, we claim that H0(OD0
(k)) ∼=

H0(OPn̄−1(k)) (n̄ = n − l) for every k ≥ 0. Indeed, ν(D0) ∼= Pn̄−1 and ν̄ : D0 →
ν(D0) is birational since (L,OY (1)

n̄−1) = 1 and D0 is irreducible. Hence ν̄∗OD0
∼=

OPn̄−1 by Zariski’s Main Theorem ([15, III.11.4]). Consequently H0(OD0
(k)) ∼=

H0(ν̄∗OD0
(k)) ∼= H0(OPn̄−1(k)) by the projection formula. Thus we may assume

that fl+1|D0
, . . . , fn|D0

consist of a basis of H0(D0,OD0
(1)) ∼= H0(OPn̄−1(1)) and

that fn+1|D0
= · · · = fN |D0

= 0 after a change of the basis. Let k[fl+1, . . . , fn]
be the graded k-subalgebra of the section ring

⊕
k≥0 H

0(Y,OY (k)) generated by
fl+1, . . . , fn, which is the polynomial ring with n − l variables. From the exact
sequence

0 → H0(Y,OY (e)⊗ L∨)
×w→ H0(Y,OY (e))

|D0→ H0(D0,OD0
(e))

in which the subspace k[fl+1, . . . , fn]e ⊆ H0(Y,OY (e)) spanned by monomials of
degree e in fl+1, . . . , fn is mapped isomorphically onto H0(OD0

(e)) by |D0
, we

have decompositions H0(Y,OY (e)) = H0(Y,OY (e) ⊗ L∨)w ⊕ k[fl+1, . . . , fn]e and
consequently

(4.1.4) (SFΛ
Y
)m,e = Bm,ew ⊕

(
Ze
l+1k[fl+1, . . . , fn]e ⊗k k[Z0, . . . , Zl]m−e

)
,

where the second summand is a subspace of Rm,e.
To prove (4.1.3), for each j = n+1, . . . , N , we will find a homogenous polynomial

(4.1.5) Tjg
kj (T0, . . . , Tl) + Fj ∈ IX

for some integer kj > 0 and Fj ∈ (Tl+1, . . . , TN )2 ⊆ S. In fact, (4.1.5) implies that
Tj (j = n + 1, . . . , N) are defining equations of the tangent space Ty(X) ⊆ PN at
every y ∈ Λ \ (g)0, and hence dimTy(X) ≤ n, which means X is smooth at y.

From now on, we fix j (j = n+ 1, . . . , N). To obtain (4.1.5), it suffices to show
that for some integer kj > 0, there exist u ∈ (JX̃)kjμ+1 and v ∈ Mkjμ+1 such that

(4.1.6) fjZl+1g
kj + u+ v = 0 ∈ (SFΛ

Y
)kjμ+1.

In fact, if so, we have fjZl+1g
kj+v=−u∈JX̃ ∩R and Fj∈(Tl+1, . . . , TN )2(⊆S) such

that v=ϕ∗
Y (Fj) and hence (4.1.5) holds since fjZl+1g

kj =ϕ∗
Y (Tjg

kj (T0, . . . , Tl)).
To obtain (4.1.6), noting that there exists q ∈ B1,1 such that fjZl+1 = qw ∈

(SFΛ
Y
)1,1 since fj |D0

= 0, and setting p := qw, we start with qGX̃ = pg−qh obtained

from (4.1.2). Since qh ∈ (SFΛ
Y
)μ+1 in the left-hand side has the decomposition

qh = −v1 + q1w for v1 ∈ Mμ+1 and q1 ∈ Bμ+1 with ordZl+1
(q1) ≥ ordZl+1

(qh) ≥ 2
by (4.1.4), setting p1 := q1w ∈ (SFΛ

Y
)μ+1 and u1 := −qGX̃ ∈ (JX̃)μ+1, we have
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p1 = pg + u1 + v1. If p1 = 0, we have (4.1.6). If p1 
= 0, our argument proceeds by
the following induction.

Claim. For a positive integer k, suppose that there exist nonzero pi ∈ (SFΛ
Y
)iμ+1

(i = 1, . . . , k) such that pi = qiw = pgi + ui + vi with ui ∈ (JX̃)iμ+1, vi ∈ Miμ+1,
qi ∈ Biμ+1, and with ordZl+1

(p1) < ordZl+1
(p2) < · · · < ordZl+1

(pk). Then there
exists pk+1 ∈ (SFΛ

Y
)(k+1)μ+1 such that

(1) pk+1 = qk+1w = pgk+1 + uk+1 + vk+1 for some qk+1 ∈ B(k+1)μ+1, uk+1 ∈
(JX̃)(k+1)μ+1, and vk+1 ∈ M(k+1)μ+1;

(2) ordZl+1
(pk+1) > ordZl+1

(pk); and
(3) each nonzero homogeneous part of pk+1 with respect to the Zl+1-order is

not contained in R+Rp∗1 + · · ·+Rp∗k.

If the claim is proved, we must have pkj
= 0 for some integer kj > 0, i.e., we have

ukj
∈ (JX̃)(kj)μ+1, vkj

∈ Mkjμ+1, and qkj
∈ Bkjμ+1 such that pgkj + ukj

+ vkj
= 0,

and hence (4.1.6) holds; otherwise, there exists a strictly increasing sequence

R � R+Rp∗1 � R+Rp∗1 +Rp∗2 � · · ·
of R-submodules of the finite R-module SFΛ

Y
, which is impossible.

Now we will prove the Claim. From (4.1.2) and qkw = pk we have

(4.1.7) qkGX̃ = pkg − qkh.

We make a division of qkh ∈ (SFΛ
Y
)(k+1)μ+1 by {p1, . . . , pk}: There exist b0 ∈

R(k+1)μ+1, bi ∈ R(k+1−i)μ (i = 1, . . . , k), and qk+1 ∈ B(k+1)μ+1 such that

(i) qkh = b0 + b1p1 + b2p2 + · · ·+ bkpk + qk+1w;
(ii) each nonzero homogeneous part of qk+1w with respect to the Zl+1-order is

not contained in R+Rp∗1 + · · ·+Rp∗k;
(iii) ordZl+1

(b0), ordZl+1
(qk+1w) ≥ ordZl+1

(qkh), and ordZl+1
(bi) ≥ 1 (1 ≤ i ≤

k).

Once we have the division with (i)-(iii), setting pk+1 := qk+1w, from (4.1.7) and (i)
we obtain

pk+1(= qk+1w) = pkg − qkGX̃ − (b0 + b1p1 + b2p2 + · · ·+ bkpk)

with (2) and (3). Taking into account that pi = pgi + ui + vi and setting

uk+1 :=ukg − qkGX̃ − (b1u1 + b2u2 + · · ·+ bkuk) ∈ (JX̃)(k+1)μ+1 and

vk+1 :=vkg − b0 − b1(pg + v1)− b2(pg
2 + v2)− · · · − bk(pg

k + vk) ∈ R(k+1)μ+1,

we have pk+1 = pgk+1 + uk+1 + vk+1. Moreover vk+1 ∈ M(k+1)μ+1 by looking at
the Zl+1-order from (iii) and the assumption. Consequently we have the Claim.

To obtain the division, first set b0 := 0, b1 := 0, . . . , bk := 0, qk+1 := 0, r := qkh,
and ei := ordZl+1

(pi) (i = 1, . . . , k). While r 
= 0, for e = ordZl+1
(r), do the

following process: If r∗ = a0 + a1p
∗
1 + · · · + akp

∗
k for some a0 ∈ R(k+1)μ+1,e and

ai ∈ R(k+1−i)μ,e−ei (i = 1, . . . , k), then add ai to bi (i = 0, . . . , k) and −(a0+a1p1+
· · · + akpk) to r; else (i.e., r∗ 
∈ R(k+1)μ+1,e + Rkμ,e−e1p

∗
1 + · · · + Rμ,e−ekp

∗
k) take

a0 ∈ R(k+1)μ+1,e and c ∈ B(k+1)μ+1,e such that r∗ = a0 + cw by (4.1.4) and add a0
to b0, c to qk+1, and −r∗ to r. This process will stop in finite steps, since ordZl+1

(r)
(≤ (k+1)μ+1) increases after this process. Then (i) and (ii) hold by the choice of
bi and qk+1. Moreover, the Zl+1-orders of b0, bipi (i = 1, . . . , k), and qk+1w are at
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least that of qkh, and hence ordZl+1
(bi) ≥ ordZl+1

(qk)−ordZl+1
(pi)+ordZl+1

(h) ≥ 1
(i = 1, . . . , k), which means (iii). This completes the proof of Theorem 5. �

Example 4.2. For an integer n̄ ≥ 1, we will give two examples of n̄-dimensional
varieties Y and line bundles L on Y with birational-embedding ν : Y → PN̄ for
some N̄ . For an integer l ≥ 0 with n := n̄+ l ≥ 2 and N := N̄ + l+1, consider PN̄

to be a linear subspace of PN and let Λ ⊆ PN be an l-dimensional linear subspace
disjoint from PN̄ . Consider the conical scroll FΛ

Y with birational-embedding ϕY :
FΛ

Y → PN . In the both cases, dimk H
0(Y,L) = 1 and |OFΛ

Y
(μ) ⊗ τ∗Y L| for μ ≥ 2

is not a composite with pencil whose base locus is of codimension ≥ 2. A general
member X̃ ∈ |OFΛ

Y
(μ) ⊗ τ∗Y L| is irreducible and reduced by Bertini’s Theorem

(see [9, (3.4.10)]) satisfying (1) and (2) in Theorem 4, and X = ϕY (X̃) satisfies
C(X) 
= ∅.

(1) Let Y ′ be an n̄-dimensional nondegenerate smooth projective variety in PN̄+1

(n̄ ≥ 2). Let σ : Y → Y ′ be the blowing up of Y ′ at a smooth point y not in

C(Y ′). The linear projection of Y ′ from y to PN̄ induces a nondegenerate birational-

embedding ν : Y → PN̄ . Let L be the line bundle on Y of the exceptional divisor
of σ. Then (L,OY (1)

n̄−1) = 1 and dimk H
0(Y,L) = 1.

(2) Let Y be an n̄-dimensional projective bundle over a smooth projective curve
C of genus g ≥ 1 whose tautological line bundle defines a nondegenerate birational-
embedding ν : Y → PN̄ . Let L be the line bundle on Y associated with a fibre.
Then (L,OY (1)

n̄−1) = 1 and dimk H
0(Y,L) = 1. A simple case is Y = C and L to

be a line bundle of a point of C.

5. Divisors of conical rational scrolls

In this section, we assume the following conditions and study a prime divisor of
a conical rational scroll to be a nondegenerate birational-divisor and to have the
nonempty smooth locus on the vertex.

(5.1). Let N,n, l be integers with e := N − n ≥ 2, n̄ := n − l ≥ 1, and l ≥ 0. Let
EΛ

E be the conical rational scroll with an l-dimensional linear subspace Λ ⊆ PN as
vertex and with a birational-embedding ψ : EΛ

E → PN for an ample vector bundle
E of rank n̄ over P1. Keep the notation as in Definition 6. We assume that E =⊕n

i=l+1 OP1(ai) for some positive integers 0 < al+1 ≤ · · · ≤ an and fix formal basis

Wi of O⊕l+1
P1 ⊕ E so that O⊕l+1

P1 ⊕ E = (
⊕l

i=0 OP1Wi) ⊕ (
⊕n

i=l+1 OP1(ai)Wi). Let

s, t be homogeneous coordinates of P1. Let T0, . . . , TN be homogeneous coordinates
of PN . Assume that Λ ⊆ PN is defined by Tl+1 = · · · = TN = 0. Since Λ = ψ(Λ̃P1)

for Λ̃P1 = PP1(O⊕l+1
P1 ) ∼= Λ × P1, after change of the basis W0, . . . ,Wl, we may

assume that ψ∗(T0) = W0, . . . , ψ
∗(Tl) = Wl, which can be seen as homogeneous

coordinates of Λ. Hence the image ψ(Y ) of Y := PP1(E)(⊆ EΛ
E ) is contained in

PN̄ := V+(T0, . . . , Tl) (N̄ = N − l − 1). Note that ν := ψ|Y : Y → PN̄ is a
birational-embedding since ν is a birational-embedding if and only if so is ψ. Also
ν is nondegenerate since ψ is defined by a subsystem of |OEΛ

E
(1)|, and hence ψ is

nondegenerate.
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Let X ⊆ PN be the image ψ(X̃) of a prime divisor X̃ ∈ |OEΛ
E
(μ) ⊗ p∗OP1(b)|

(μ ≥ 0, b ∈ Z) of EΛ
E defined by

GX̃ =
∑

μ0,...,μn≥0
μ0+···+μn=μ

gμ0,...,μn
Wμ0

0 · · ·Wμn
n ∈ H0(EΛ

E ,OEΛ
E
(μ)⊗ p∗OP1(b))

for homogeneous polynomials gμ0,...,μn
∈ k[s, t] of degree μl+1al+1 + · · ·+μnan + b.

Set

m0 := min{μl+1 + · · ·+ μn|gμ0,...,μn

= 0 for some μ0, . . . , μl ≥ 0}.

Note that Λ̃P1 ⊆ X̃, namely GX̃ |Λ̃
P1

= 0, if and only if m0 is positive. Let l0 be the

length l(X ∩ 〈u, x〉) for general u ∈ Λ and general x ∈ X.

Proposition 5.2. Keep the notation and the assumption as in (5.1).

(1) Assume X is nondegenerate and birational to X̃ with Λ∩ SmX 
= ∅. Then

(a) Λ̃P1 
⊆ X̃, m0 = 0, b = 1, and μ ≥ 1; or

(b) Λ̃P1 ⊆ X̃, m0 = 1, l = n− 2, an−1 = 1, b = −an, and μ ≥ 2.
(2) Assume (a) in (1) holds. Hence GX̃ |Λ̃

P1
is linear in s, t and we may write

GX̃ |Λ̃
P1

= G1(W0, . . . ,Wl)s+G2(W0, . . . ,Wl)t 
= 0.

Then X is nondegenerate in PN and birational to X̃ such that Λ∩SmX =
Λ \ V+(G1, G2) 
= ∅, μ = l0 − 1, and degX = μ · c1(E) + 1. If we sup-
pose furthermore that μ ≥ 2, then Λ is an irreducible component of C̄(X).
Moreover,
(i) if degGCD(G1, G2) = μ, then the partial Gauss map γ|Λ is constant;
(ii) if degGCD(G1, G2) < μ, then the partial Gauss map γ|Λ is noncon-

stant and dimSingX ≥ dimΛ∩SingX = dimV+(G1, G2) ≥ dimΛ−2.
(3) Assume (b) in (1) holds. Then X is nondegenerate in PN and birational to

X̃ such that Λ∩SmX 
= ∅ and μ = l0. Hence Λ is an irreducible component
of C̄(X) if μ ≥ 3. Moreover,
(i) if an > 1, then the partial Gauss map γ|Λ is constant;

(ii) if an = 1, then X is the birational image of another prime divisor X̃1 ∈
H0((EΛ

E )1,O(EΛ
E )1(μ−1)⊗p∗OP1(1)) on another conical rational scroll

(EΛ
E )1 with the same vertex Λ and E but with different ψ′ : (EΛ

E )1 → PN

such that m0 for GX̃1
is 0 (equivalently X̃1 
⊃ Λ̃P1(⊆ (EΛ

E )1)).

To prove (5.2), we consider the conical scroll FΛ
Y for Λ, PN̄ , Y = PP1(E), and

ν = ψ|Y : Y → PN̄ , and we will relate EΛ
E to FΛ

Y . Keep the notation as in Definition
2 and (4.1) for FΛ

Y . Let p̄ : Y → P1 be the projection. We fix basis Zi for the bundle
FY as in (4.1).

Lemma 5.3. Under the assumption (5.1), there exists a birational morphism σ :
FΛ

Y

→ EΛ
E such that ϕY = ψ ◦ σ, σ∗OEΛ

E
(1) = OFΛ

Y
(1),

(5.3.1) σ∗W0 = Z0, . . . , σ
∗Wl = Zl, σ

∗Wl+1 = Zl+1Wl+1, . . . , σ
∗Wn = Zl+1Wn.

If n − l = 1, then Y ∼= P1 and σ is an isomorphism. If n − l ≥ 2, then the
exceptional set of σ is Λ̃Y which is mapped onto Λ̃P1 , and the strict transform X̃ ′

of X̃ by σ is defined by GX̃′ ∈ H0(OFΛ
Y
(μ −m0) ⊗ τ∗Y (OY (m0) ⊗ p̄∗OP1(b))) such

that σ∗GX̃ = Zm0

l+1GX̃′ .
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Proof. The natural homomorphism p̄∗E → OY (1) and the isomorphism p̄∗(O⊕l+1
P1 )

∼= O⊕l+1
Y induce the surjection ε : p̄∗(O⊕l+1

P1 ⊕E) → O⊕l+1
Y ⊕OY (1). Thus we have

the corresponding inclusion

FΛ
Y = PY (O⊕l+1

Y ⊕OY (1)) ⊆ PY (p̄
∗(O⊕l+1

P1 ⊕ E)) = Y ×P1 PP1(O⊕l+1
P1 ⊕ E).

From this and the second projection, we have the required morphism σ. By the
construction of ε, we have (5.3.1). If n − l = 1, then Y = P1, and hence σ is
isomorphic. Suppose n− l ≥ 2. By looking at each fibre over P1, we see that σ is
a birational morphism and the exceptional set of σ is Λ̃Y . From (5.3.1), we obtain

σ∗GX̃ =
∑

μ0,...,μn

gμ0...μn
W

μl+1

l+1 · · ·Wμn
n Zμ0

0 · · ·Zμl

l Z
μl+1+···+μn

l+1 .

Moreover we recover GX̃ from σ∗GX̃ by substituting W0, . . . ,Wl, 1 for Z0, . . . , Zl,
Zl+1. Hence if σ∗GX̃ is reducible, then GX̃ is reducible or σ∗GX̃ is divisible by
Zl+1. Since GX̃ is irreducible, σ∗GX̃/Zm0

l+1 is irreducible and σ∗GX̃ = Zm0

l+1GX̃′ . �

Proof of Proposition 5.2. Let X̃ ′ be the strict transform of X̃ by σ in Lemma 5.3.
(1) By the assumption, X is the birational image of X̃ ′ ⊆ FΛ

Y by ϕY = ψ ◦ σ.
Note that μ − m0 ≥ 1. In fact, if μ − m0 = 0, then X is a cone with vertex Λ,
which contradicts the assumption that X is nondegenerate of codimension e ≥ 2
with Λ ∩ SmX 
= ∅. By (1) of Proposition 2.3 and our assumption,

(OY (m0)⊗ p̄∗OP1(b),OY (1)
n̄−1) = m0c1(E) + b = 1

and H0(OY (m0) ⊗ p̄∗OP1(b)) 
= 0. From the latter, we obtain that m0an + b ≥ 0.
Hence m0(c1(E) − an) ≤ 1. We divide into three cases. When m0 = 0, we have
b = 1, which is (a). When m0 = 1 and c1(E) = an+1, we have an−1 = 1, l = n−2,
b = −an, and μ ≥ m0 + 1 = 2, which is (b). When m0 ≥ 1 and c1(E) = an, we

have l = n− 1 and Λ̃P1 ⊆ X̃, hence Λ̃P1 = X̃, which contradicts our assumption.
(2) First we will prove that X is nondegenerate in PN and birational to X̃.

Since ψ is defined a base-point-free subspace of H0(OEΛ
E
(1)) and since H0(OEΛ

E
(1−

μ) ⊗ p∗OP1(−1)) = 0, the pull-back H0(OPN (1)) → H0(OX̃(1)) is injective, and

hence the image X = ψ(X̃) is nondegenerate in PN . To prove that X is bira-

tional to X̃, we have to show that X is birational to X̃ ′(⊆ FΛ
Y ). Note that FΛ

Y

and ϕY (F
Λ
Y ) are isomorphic except for the union of Λ̃Y and the fibres over the

nonisomorphic locus of Y → ν(Y ). Since the strict transform X̃ ′ of X̃ by σ is

not contained in the exceptional set Λ̃Y and since X̃ ′ dominates Y because of
X̃ ′ ∈ |OFΛ

Y
(μ) ⊗ τ∗Y p̄

∗OP1(b)|, X̃ ′ meets the embedding locus of ϕY , and hence

X and X̃ ′ are birational. Consequently X is a birational-divisor on FΛ
Y of type

(μ, τ∗Y p̄
∗OP1(1)) and also X is a birational-divisor on EΛ

E of type (μ, 1). Hence
degX = (OEΛ

E
(1)n,OEΛ

E
(μ)⊗ p∗OP1(1)) = μ · c1(E) + 1.

To prove Λ ∩ SmX = Λ \ Λ0 for Λ0 := V+(G1, G2) ⊆ Λ, first we will show

SmX ⊇ Λ \ Λ0 by looking at X̃ ⊆ EΛ
E . Since GX̃ |Λ̃P1 = G1s+G2t, we see that X̃

is smooth at each point of X̃ ∩ (Λ̃P1 \ Λ0 × P1) and that X̃ ∩ Λ̃P1 → Λ is scheme-

theoretically one-to-one on Λ \ Λ0. From the latter, we obtain that ψ|X̃ : X̃ → PN

is finite and scheme-theoretically one-to-one on Λ\Λ0 since (ψ|X̃)−1(Λ) = X̃ ∩ Λ̃P1 .

Hence X is isomorphic to X̃ along Λ \ Λ0, and therefore SmX ⊇ Λ \ Λ0. Next
we will prove SingX ⊇ Λ0. When l = 0, since G1 
= 0 or G2 
= 0 by m0 = 0, we
have Λ0 = ∅. When l ≥ 1, considering X as a birational-divisor on FΛ

Y of type
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(μ, τ∗Y p̄
∗OP1(1)) and noting that GX̃′ |Λ̃Y = G1(Z0, . . . , Zl)s + G2(Z0, . . . , Zl)t by

Lemma 5.3 and assumption m0 = 0, we have Λ0 ⊆ Λ ∩ SingX by Lemma 2.5.
SinceX is a birational-divisor on FΛ

Y such that Λ∩SmX = Λ\Λ0 
= ∅, by Lemma
1.1, we have μ = l0 − 1. Hence, if μ ≥ 2, then Λ ⊆ C̄(X) and Λ is an irreducible
component of C̄(X) by Proposition 2.1, since the image ν(Y ) of the finite morphism
ν is not cone. To prove the last part of (2), set G0 := GCD(G1, G2). When l = 0,
Λ is a one-point set, and hence degG0 = μ and γ|Λ is constant. Suppose l ≥ 1.

The unique component D̃ of X̃ ′∩ Λ̃Y dominating Λ in Proposition 2.3 is defined by
σ∗((G1/G0)s+(G2/G0)t) on Λ̃Y in this case, since σ∗((G1/G0)s+(G2/G0)t)|{x}×Y

defines the nonempty subset of Y for any point x ∈ Λ. Thus degG0 
= μ if and
only if D̃ dominates Y , namely σ∗((G1/G0)s+ (G2/G0)t)|Λ×{y} for general y ∈ Y

defines the nonempty subset of Λ. On the other hand, by (2) of Proposition 2.3, D̃
dominates Y if and only if γ|Λ is nonconstant. Therefore degG0 
= μ if and only if
γ|Λ is nonconstant. The last inequality in (ii) is clear from Λ ∩ SmX = Λ \ Λ0.

(3) By the same way as in (2), we obtain that X is nondegenerate in PN and

birational to X̃ in this case. Consequently X is a birational-divisor on FΛ
Y of type

(μ− 1,OY (1)⊗ p̄∗OP1(−an)) by Lemma 5.3 since m0 = 1. Moreover

GX̃′ = σ∗GX̃/Zn−1 =
∑

μ0,...,μn

gμ0···μn
W

μn−1

n−1 Wμn
n Zμ0

0 · · ·Zμn−2

n−2 Z
μn−1+μn−1
n−1

for homogeneous polynomials gμ0···μn
∈ k[s, t] of degree μn−1 + μnan − an and

X̃ ′ ∩ Λ̃Y ∈ |OΛ̃Y
(μ− 1)⊗ τ̄∗Y (OY (1)⊗ p̄∗OP1(−an))| with

GX̃′ |Λ̃Y =
∑

μ0,...,μn−2≥0

μ0+···+μn−2=μ−1

(gμ0···μn−201Wn + gμ0···μn−210Wn−1)Z
μ0

0 · · ·Zμn−2

n−2 ( 
= 0).

Here deg(gμ0···μn−201) = 0 and deg(gμ0···μn−210) = 1−an if these are nonzero. Thus,
to prove the remaining part, we divide into two cases, an > 1 or an = 1.

Suppose an > 1. Then GX̃′ |Λ̃Y = gWn for

g =
∑

μ0,...,μn−2≥0

μ0+···+μn−2=μ−1

gμ0···μn−201Z
μ0

0 · · ·Zμn−2

n−2 ∈ H0(OΛ(μ− 1)).

Since the zero ofWn∈H0(OY (1)⊗p̄∗OP1(−an)) is a prime divisor PP1(OP1(1)Wn−1)
of Y = PP1(OP1(1)Wn−1⊕OP1(an)Wn), from Theorem 5, we obtain that Λ∩SmX =
Λ \ (g)0 
= ∅, Λ ⊆ C̄(X), and γ|Λ is constant. By (3) of Lemma 1.1, we have μ = l0.
By Proposition 2.1, Λ is an irreducible component of C̄(X) if μ ≥ 3.

Suppose an = 1. Then we have Y ∼= P1 × P1 with projections pi : Y → P1

and OY (1) = p∗1OP1(1) ⊗ p∗2OP1(1). Note that the morphism ψ must be de-
fined by the complete linear system |OEΛ

E
(1)| in this case. We consider p̄ = p2;

namely, the homogeneous coordinates of the second P1 are s, t and those of the
first P1 are Wn−1,Wn. Then X̃ ′ ∈ |OFΛ

Y
(μ− 1)⊗ τ∗Y (p

∗
1OP1(1))|. We take another

conical rational scroll (EΛ
E )1 with the same vertex Λ and the same ample bundle

E = OP1(1)⊕OP1(1) over different P1 whose homogeneous coordinates areWn−1 and

Wn, and with different basis (
⊕n−2

i=0 OP1Wi)⊕(OP1(1)s⊕OP1(1)t) and different pro-
jection p′ : (EΛ

E )1 → P1. The morphism ψ′ : (EΛ
E )1 → PN is defined by |O(EΛ

E )1(1)|
as ψ. By Lemma 5.3, there is a birational morphism σ′ : FΛ

Y → (EΛ
E )1 such that

σ′∗W0 = Z0, . . . , σ
′∗Wn−2 = Zn−2, σ

′∗s = Zn−1s, σ
′∗t = Zn−1t. Then ψ′◦σ′ = ψ◦σ



2316 ATSUSHI NOMA

and there is a prime divisor X̃1 on (EΛ
E )1 such that σ′∗X̃1 = X̃ ′. Actually, if we con-

siderGX̃′ as a polynomialGX̃′(Z0, . . . , Zn−1), thenGX̃1
= GX̃′(W0, . . . ,Wn−2, 1) ∈

H0((EΛ
E )1,O(EΛ

E )1(μ − 1) ⊗ p′
∗OP1(1)). Consequently m0 for GX̃1

is 0. Hence by

(2), we have Λ ∩ SmX 
= ∅. �

6. The structure of projective varieties with nonbirational inner

centers of nonconstant partial Gauss maps

Theorem 7 is a consequence of Proposition 5.2 and the following theorem.

Theorem 6.1. Let X ⊆ PN be a nondegenerate projective variety of dimension
n ≥ 1 and codimension e ≥ 2 such that C(X) 
= ∅. Suppose that the partial Gauss
map γ|Λ is nonconstant on an l-dimensional irreducible component Λ of C̄(X), and
hence we suppose n > l ≥ 1. Let l0 be the length l(X ∩ 〈u, x〉) for general u ∈ Λ
and general x ∈ X. Then X is a birational-divisor of a conical rational scroll EΛ

E
with vertex Λ of type (μ, 1) for μ = l0 − 1 such that the original divisor X̃ does not

contain Λ̃P1 and X̃∩Λ̃P1 contains a prime divisor of Λ̃P1 ∼= Λ×P1 dominating both Λ
and P1 by its projections. In particular, dimSingX ≥ dimΛ∩SingX ≥ dimΛ− 2.

Proof. Let πΛ : PN \ Λ → PN̄ (N̄ := N − l − 1) be the linear projection of PN

from Λ. We consider the target PN̄ to be a subspace of PN disjoint from Λ. By our
assumption and by counting the dimension, together with (2) of Proposition 2.3,

the closure X̄Λ of the image πΛ(X\Λ) is the closure of the union
⋃

y∈Λ∩SmX Ty(X)Λ
of the images Ty(X)Λ := πΛ(Ty(X)\Λ) of the tangent spaces to X at y ∈ Λ∩SmX.

Hence Cone(Λ, X̄Λ) is the closure of
⋃

y∈Λ∩SmX Ty(X). We will construct the

desingularization of X̄Λ and Cone(Λ, X̄Λ) as projective bundles over P
1. Let ρ : Λ∩

SmX → G := G(n− l−1,PN̄ ) be the morphism to the Grassmannian of (n− l−1)-

planes of PN̄ defined by y �→ Ty(X)Λ. By assumption, dim ρ(Λ ∩ SmX) ≥ 1. Let
L be a general line in Λ so that the closure of ρ(L ∩ SmX) is a rational curve, say

C ⊆ G. Let η : C̃(∼= P1) → C be the normalization and let E be the pull-back

of the universal quotient bundle on G to C̃. We claim that E is ample or, more
strongly, Λ′ :=

⋂
y∈L∩SmX Ty(X)Λ is empty. Indeed, if Λ′ 
= ∅, then X̄Λ is a cone

with vertex Λ′, and hence Λ is a proper subset of an irreducible component of
C̄(X) by Proposition 2.1, which contradicts our assumption. Moreover the natural

morphism ν : PP1(E) → PN̄ induces a birational morphism PP1(E) → X̄Λ, since η

is birational and X̄Λ = ν(PP1(E)) is nondegenerate in PN̄ (see [17, Lemma 1.1]).
Hence we have the conical rational scroll EΛ

E for Λ and E with birational-embedding

ψ : EΛ
E = PP1(O⊕l+1

P1 ⊕ E) → PN induced from ν. By the construction, ψ induces a

birational morphism ψEΛ
E
: EΛ

E → Cone(Λ, X̄Λ). Moreover the isomorphic locus of

ψEΛ
E
meets X, since ψEΛ

E
is isomorphic on Cone(Λ, U) \ Λ for the isomorphic locus

U ⊆ X̄Λ of PP1(E) → X̄Λ (see Lemma 5.3). Let X̃ be the prime divisor on EΛ
E

birational to X by ψ. Since Λ ∩ SmX 
= ∅ and γ|Λ is nonconstant, by Proposition

5.2, possibly after replacing X̃ ⊆ EΛ
E in case (ii) of Proposition 5.2 (3), X is a

birational-divisor of type (μ, 1) on EΛ
E such that X̃ 
⊇ Λ̃P1 and the divisor X̃ ∩ Λ̃P1

of Λ̃P1 ∼= Λ× P1 defined by GX̃ |Λ̃
P1

contains a prime divisor dominating Λ and P1.

In particular, the inequality holds. �
Proof of Theorem 7. First suppose (1) holds. By Theorem 6.1, X is a birational-
divisor of a conical rational scroll EΛ

E with vertex Λ of type (μ, 1) for μ = l0−1 such
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that X̃ 
⊇ Λ̃P1 and X̃ ∩ Λ̃P1 contains a prime divisor of Λ̃P1 ∼= Λ × P1 dominating
both Λ and P1 by its projections. Hence (2) holds. Moreover degX = μ · c1(E) + 1
and dimΛ ≤ dimSingX + 2. Conversely if (2) holds, by (2) of Proposition 5.2, we
have (1). �

Corollary 6.2. Let X ⊆ PN be a nondegenerate projective variety of dimen-
sion n ≥ 2, codimension e ≥ 2, and degree d. Assume that X is smooth and
C (X)(= C̄(X)) has an irreducible component Λ of dimΛ ≥ 1. Let l0 be the length
l(X ∩ 〈u, x〉) for general u ∈ Λ and general x ∈ X. Then Λ is a line, X is a
birational-divisor of type (μ, 1) for μ = l0 − 1 ≥ 2 on a conical rational scroll EΛ

E
with a birational-embedding ψ : EΛ

E → PN and with original divisor X̃, and X is

isomorphic to X̃ by ψ. In particular, h1(OX) = 0, and if n ≥ 3, PicX ∼= Z2.
Moreover (IX/I2

X)(d− e+ 1)|Λ is an ample vector bundle on Λ.

Proof. By Theorem 1, Λ is linear. By Theorem 4, the partial Gauss map γ|Λ is
nonconstant since Λ∩SmX = Λ and dimΛ ≥ 1. By Theorem 6.1, Λ is a line and X
is a birational-divisor of a conical rational scroll EΛ

E of type (μ, 1) for μ = l0−1 ≥ 2

with the original divisor X̃. By (2) of Proposition 5.2, X̃ ∩ Λ̃P1 → Λ is isomorphic

and X̃ → X is finite. Thus X̃ and X are isomorphic by Zariski’s Main Theorem
([15, III.11.4]). By a Lefschetz-type Theorem (see for example [10, p. 55]), an ample

divisor X̃ ∼= X of EΛ
E satisfies the required condition. To see the last part, consider

the bundle P 1
X(OX(1)) of principal part of X which fits into the exact sequence

(6.3.1) 0 → (IX/I2
X)(1) → V ⊗OX

α→ P 1
X(OX(1)) → 0

for V :=H0(PN ,OPN (1)) and gives the tangent bundle �x∈XTx(X)=P(P 1
X(OX(1)))

⊆ PN ×X (see [13, Ch. IV §16], [19, Ch. IV. A)]). As in (6.1), for the linear pro-
jection πΛ : PN \Λ → PN−2 from Λ, let ρ̃ : Λ → P1 be the morphism induced from
the morphism ρ : Λ → G := G(n− 2,PN−2), ρ(y) = [πΛ(Ty(X) \ Λ)] by taking the

normalization η : P1 = C̃ → C of the image C = ρ(Λ), i.e., ρ = iC ◦ η ◦ ρ̃ for the in-
clusion iC : C ↪→ G. By the construction of EΛ

E , the quotient β : V ⊗OP1 → O⊕2
P1 ⊕E

defining ψ : EΛ
E → PN is obtained from α so that we have ρ̃∗β = α|Λ. Hence, for

the kernel K of β, we have ρ̃∗K ∼= (IX/I2
X)(1)|Λ. Note that K =

⊕e
i=1 OP1(−bi)

for some bi > 0 with
∑e

i=1 bi = c1(E), since ψ is defined by β and ψ(EΛ
E ) is non-

degenerate. To see ρ̃, we claim that for each ỹ ∈ Λ̃P1 ∩ X̃ and for y := ψ(ỹ) ∈ Λ,
Ty(X) ⊆ PN is the image ψ(F ) ⊆ PN of the fiber F := p−1(p(ỹ)) for the projection

p : EΛ
E → P1, i.e., ρ̃(y) = p(ỹ) for general ỹ ∈ Λ̃P1 ∩ X̃. This implies that ρ̃ is

finite of degree μ since X̃ ∩ Λ̃P1 is a divisor of Λ̃P1 of type (μ, 1). To prove the
claim, since both are linear in PN through y ∈ Λ, we will show that the Zariski
tangent space Θy(X)(⊆ Θy(P

N )) is equal to the image of Θỹ(F ) by the differential

dψỹ : Θỹ(E
Λ
E ) → Θy(P

N ) of ψ at ỹ. Since X̃ and X are isomorphic by ψ, Θỹ(X̃)
is mapped isomorphically to Θy(X) by dψỹ. On the other hand, as a vector space,

Θỹ(E
Λ
E ) is spanned by Θỹ(F ) and Θỹ(ψ

−1

Λ̃
P1
(y)) for ψΛ̃

P1
: Λ̃P1 → Λ. Moreover,

Θỹ(F ) is mapped injectively by dψỹ in Θy(P
N ) since F is embedded in PN , and

Θỹ(ψ
−1

Λ̃
P1
(y)) is the kernel of dψỹ. Therefore Θy(X) = dψỹ(Θỹ(F )).
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By the claim, (IX/I2
X)(1)|Λ ∼= ρ̃∗K ∼=

⊕e
i=1 OP1(−μbi). To show the ampleness

of (IX/I2
X)(d − e + 1)|Λ, we have to prove d − e − μbi ≥ 1. Since

∑e
i=1 μbi =

μc1(E) = d − 1 by Proposition 5.2, and since μbi ≥ μ ≥ 2, we have max{μbi|i =
1, . . . , e} ≤ d− 1− 2(e− 1). Hence

d− e− μbi ≥ d− e−max{μbi|i = 1, . . . , e} ≥ d− e− (d− 2e+ 1) = e− 1 ≥ 1.

�

7. Applications to the Castelnuovo-Mumford regularity:

Proof of Theorems 8, 9 and 10

Proof of Theorem 8. When e = 1, the assertion is clear. So we assume e ≥ 2.
Set L := O

P̂N ((d − e + 1)A − E). Let ε̃ : H0(P̂N
X ,L) ⊗ O

P̂N → L and let

ε : H0(PN , IX(d − e + 1)) ⊗ OPN → IX(d − e + 1) be the evaluation maps.
Since ε̃ is the composite of σ∗ε and the natural surjection σ∗IX(d − e + 1) → L,
we have SuppCoker(ε̃) ⊆ σ−1(SuppCoker(ε)). On the other hand, by (2) of
Theorem 2 in [22] and our assumption, SuppCoker(ε) ⊆ B(X) ∪ C(X). Hence
SuppCoker(ε̃) ⊆ σ−1(B(X)) ∪ σ−1(C(X)). To see the semiampleness of L, by
Zariski–Fujita’s Theorem [11] (see also Remark 2.1.32 [21, I. p. 132]), it is enough
to show that L is ample on each irreducible component of σ−1(C(X))∪σ−1(B(X)).
Each component of B(X) is a point away from X by (3) of Theorem 3, and hence

each irreducible component of σ−1(B(X)) is a point of P̂N
X and L is ample on

it. Before looking at the ampleness on each irreducible component of σ−1(C(X)),
we note that E = σ−1(X) is the projective bundle PX(IX/I2

X) with projection
σE := σ|E : PX(IX/I2

X) → X and with OPX(IX/I2
X )(1) ∼= O

P̂N (−E) ⊗ OE (see

[15, Ch. II 8.24]). Hence

L ⊗OE
∼= OPX (IX/I2

X)(1)⊗ σ∗
EOX(d− e+ 1) ∼= OPX((IX/I2

X)(d−e+1))(1).

If Q is a 0-dimensional component of C(X), then σ−1(Q) ∼= Pe−1 and L⊗Oσ−1(Q)
∼=

OPe−1(1) is ample. If Λ is a positive-dimensional component of C(X), then Λ is a
line and (IX/I2

X)(d− e+1)|Λ is ample by Corollary 6.2, and hence L⊗Oσ−1(Λ) is
ample. �

Proof of Theorem 9. If e = 1, the conclusion is clear. Hence we assume e ≥ 2. By
Theorem 8, the proof follows from the argument of [3] as follows (see also [21, I.

(4.3.15), p. 259]). Let σ : P̂N
X → PN be the blowing-up of PN along X with

exceptional divisor E and let A be the divisor of the pull-back of a hyperplane
section of PN . For each integer � ≥ 1, D� := e((d− e+ 1)A−E) + �A is a nef and
big divisor by Theorem 8. Since K

P̂
N
X
+D� = (e(d−e+1)+ �−N −1)A−E for the

canonical divisor K
P̂
N
X
of P̂N

X , by the Kawamata–Viehweg Vanishing Theorem ([18],

[23]; see also [21, I. Theorem 4.3.1]), Hi(P̂N
X ,O

P̂
N
X
((e(d−e+1)+�−N−1)A−E)) = 0

for all i > 0. Hence Hi(PN , IX(e(d− e + 1) −N + (� − 1))) = 0 for all i > 0 (see
for example [21, I (4.3.16), p. 259] ). This together with the consequence of the
Grothendieck vanishing theorem, Hi(PN , IX(m)) = 0 for all i ≥ n+2 andm ≥ −N ,
implies that X is (e(d− e) + 1)-regular. �
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Corollary 7.1. Let X ⊆ PN be a nondegenerate smooth projective variety of di-
mension n, codimension e, and degree d. Set

e0 :=

⎧⎪⎨
⎪⎩
e

if e < n+ 1 or

if e ≥ n+ 1 and |d2 − e| ≥ |d2 − (n+ 1)|,
n+ 1 if e ≥ n+ 1 and |d2 − e| ≤ |d2 − (n+ 1)|.

Then X is (e0(d− e0) + 1)-regular.

Proof. We have only to show that if e ≥ n+1, for each k with n+ 1 ≤ k ≤ e, X is
(k(d− k) + 1)-regular. This is because the quadratic function f(k) := k(d− k) + 1
on k (n + 1 ≤ k ≤ e) has the minimum value f(e0) at k = e0. Assume e >
n + 1. For each k with n + 1 ≤ k < e, by taking a general linear projection
π : PN ��� Pn+k we have X ′ := π(X) ⊆ Pn+k, which is isomorphic to X by π.
Hence X ′ is (k(d − k) + 1)-regular for n + 1 ≤ k ≤ e. Set t := k(d − k) + 1.
In this case, H1(IX′/Pn+k(t − 1)) = 0 implies H1(IX/PN (t − 1)) = 0. This is

because if H1(IX′/Pn+k(t − 1)) = 0, then H0(OPn+k(t − 1)) → H0(OX′(t − 1))

is surjective, and hence so is H0(OPN (t − 1)) → H0(OX(t − 1)). Moreover for
2 ≤ i ≤ n + 1, Hi(IX/PN (t − i)) = 0 if and only if Hi(IX′/Pn+k(t − i)) = 0, since

Hi(IX/PN (t− i)) = 0 if and only if Hi−1(OX(t− i)) = 0, and the same is true for

X ′ ⊆ Pn+k. Thus X is also (k(d−k)+1)-regular for n+1 ≤ k ≤ e, as required. �

Remark 7.2. Our result slightly improves [3] (see also [5]): [3] proved under the same
assumption as in Theorem 9, that X is (c(d−1)+1)-regular for c := min{e, n+1}.
It is easy to see that c(d− 1) + 1 ≥ c(d− c) + 1 ≥ e0(d− e0) + 1.

Proof of Theorem 10. Keep the same notation as in the proof of Theorem 9, but
for D� we set D� := (e+ a− 1)((d− e+ 1)A−E) + �A for � ≥ 1 instead. Then D�

is nef and big, and Hi(P̂N
X ,O

P̂
N
X
(K

P̂
N
X
+D�)) = 0 for all i > 0 by the Kawamata–

Viehweg vanishing theorem, and hence Hi(PN , Ia
X((e + a − 1)(d − e + 1) − N +

(� − 1))) = 0 for all i > 0 and � ≥ 1. By the same way as in Theorem 9, Ia
X is

{(d− e)(e+ a− 1) + a)}-regular. �
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