PROJECTIVE VARIETIES WITH NONBIRATIONAL LINEAR PROJECTIONS AND APPLICATIONS

ATSUSHI NOMA

Abstract

We work over an algebraically closed field of characteristic zero. The purpose of this paper is to characterize a nondegenerate projective variety X with a linear projection which induces a nonbirational map to its image. As an application, for smooth X of degree d and codimension e, we prove the "semiampleness" of the $(d-e+1)$ th twist of the ideal sheaf. This improves a linear bound of the regularity of smooth projective varieties by Bayer-Mumford-Bertram-Ein-Lazarsfeld, and gives an asymptotic regularity bound.

Introduction

We work over an algebraically closed field \mathbb{k} of characteristic zero. Let $X \subseteq \mathbb{P}^{N}$ be a nondegenerate (i.e., not contained in any hyperplane of \mathbb{P}^{N}) projective variety (i.e., irreducible and reduced) of dimension $n>0$, codimension e, and degree d. The linear projection from a general point of \mathbb{P}^{N} induces a morphism of X birational onto its image. If the center of the projection is a special point, this is not true in some cases. Such special projections were originally studied by Segre [23] (see also [1], 4], [12]). The purpose of this paper is to characterize X with such a special center. This study is motivated by the problem of finding out whether X is cut out by hypersurfaces of degree $\leq d-e+1$ (see [22, §3]) as evidence of a regularity conjecture (see [8] and [14] for the regularity conjecture). As applications, for smooth X, we improve a linear bound of the regularity ($[2,[3]$) and give an asymptotic regularity bound (Theorems 9 and 10).

To be precise, we say that a point $w \in \mathbb{P}^{N}$ is a nonbirational center of X if the linear projection $\pi_{w}: \mathbb{P}^{N} \backslash\{w\} \rightarrow \mathbb{P}^{N-1}$ induces a nonbirational map of X to its image. By $\mathcal{B}(X)$ we denote the set of all nonbirational centers out of X and by $\mathcal{C}(X)$ that on the smooth locus $\operatorname{Sm} X$ of X :

$$
\begin{aligned}
& \mathcal{B}(X):=\left\{v \in \mathbb{P}^{N} \backslash X \mid l(\langle v, x\rangle \cap X) \geq 2 \text { for general } x \in X\right\}, \\
& \mathcal{C}(X):=\{u \in \operatorname{Sm} X \mid l(\langle u, x\rangle \cap X) \geq 3 \text { for general } x \in X\} .
\end{aligned}
$$

Here $l(Z)$ denotes the length of a scheme Z and \rangle denotes the linear span of schemes, i.e., the intersection of all hyperplanes containing the schemes. Let $\overline{\mathcal{B}}(X)$ and $\overline{\mathcal{C}}(X)$, respectively, be the closures of $\mathcal{B}(X)$ and $\mathcal{C}(X)$ in \mathbb{P}^{N}. Note that $\mathcal{B}(X)=$ $\overline{\mathcal{B}}(X) \backslash X$ and $\mathcal{C}(X)=\overline{\mathcal{C}}(X) \cap \operatorname{Sm} X$ ([22, (4.1) and (4.2)]).

[^0]The structure of $\overline{\mathcal{B}}(X)$ and $\overline{\mathcal{C}}(X)$ is known essentially due to Segre (see 12 for the positive characteristic case).
Theorem 1 (Segre [23], Calabri-Ciliberto [4, Ballico [1], Noma [22]). Let $X \subseteq \mathbb{P}^{N}$ be a nondegenerate projective variety of dimension $n>0$ and codimension $e \geq 2$. Then each irreducible component Z of $\overline{\mathcal{B}}(X)$ or $\overline{\mathcal{C}}(X)$ is linear of $\operatorname{dim} Z \leq n-1$ and the linear span $\left\langle Z, T_{x}(X)\right\rangle$ of Z and the embedded tangent space $T_{x}(X)$ to X at general $x \in X$ is of dimension $n+1$.

This means that X with $\mathcal{B}(X) \neq \emptyset$ or $\mathcal{C}(X) \neq \emptyset$ is a codimension-one subvariety of a cone. By taking a resolution of the singularity of the cone, X is the birational image of a divisor of a smooth projective bundle (see Lemma 1.1). The purpose here is to characterize X with $\mathcal{B}(X) \neq \emptyset$ or $\mathcal{C}(X) \neq \emptyset$, by describing the condition for the image of a divisor of a scroll with vertex to have the vertex as a subset of $\mathcal{B}(X)$ or $\mathcal{C}(X)$.

To state our results, we introduce definitions about scrolls with vertex.
Definition 2. Let Λ be an l-dimensional linear subspace of \mathbb{P}^{N} and let $\mathbb{P}^{\bar{N}}(\bar{N}=$ $N-l-1)$ be a subspace of \mathbb{P}^{N} disjoint from Λ. Consider the linear projection $\pi_{\Lambda}: \mathbb{P}^{N} \backslash \Lambda \rightarrow \mathbb{P}^{\bar{N}}$ from Λ. By $\tau: \mathbf{F}^{\Lambda} \rightarrow \mathbb{P}^{\bar{N}}$ we denote the \mathbb{P}^{l+1}-bundle $\mathbf{F}^{\Lambda}:=$ $\{(x, w) \mid x \in\langle\Lambda, w\rangle\} \subseteq \mathbb{P}^{N} \times \mathbb{P}^{\bar{N}}$ over $\mathbb{P}^{\bar{N}}$, which is the family of all $(l+1)$-planes in \mathbb{P}^{N} containing Λ or the graph of π_{Λ}. For a smooth projective variety Y with a birational-embedding $\nu: Y \rightarrow \mathbb{P}^{\bar{N}}$ (i.e., Y is birational to the image $\nu(Y)$ in $\mathbb{P}^{\bar{N}}$), the conical scroll with vertex Λ over Y is the pull-back $\tau_{Y}: \mathbf{F}_{Y}^{\Lambda}:=\mathbf{F}^{\Lambda} \times_{\mathbb{P}_{\bar{N}}} Y \rightarrow Y$ of τ by ν. In this case, \mathbf{F}_{Y}^{Λ} has a birational-embedding $\varphi_{Y}: \mathbf{F}_{Y}^{\Lambda} \rightarrow \mathbb{P}^{N}$ induced from the first projection of $\mathbb{P}^{N} \times Y$ and the subbundle $\tilde{\Lambda}_{Y}:=\Lambda \times Y \subseteq \mathbf{F}_{Y}^{\Lambda}$ with projection $\bar{\tau}_{Y}: \tilde{\Lambda}_{Y} \rightarrow Y$, which is mapped onto Λ by φ_{Y}. Set $\mathcal{O}_{\mathbf{F}_{\hat{Y}}}(1):=\varphi_{Y}^{*} \mathcal{O}_{\mathbb{P}^{N}}(1)$. A projective variety $X \subseteq \mathbb{P}^{N}$ is called a birational-divisor of the conical scroll \mathbf{F}_{Y}^{Λ} with vertex Λ over Y if X is birational to some prime divisor \tilde{X} on \mathbf{F}_{Y}^{Λ} by φ_{Y}. Moreover X is said to be of type (μ, \mathcal{L}) if $\tilde{X} \in\left|\mathcal{O}_{\mathbf{F}_{Y}^{A}}(\mu) \otimes \tau_{Y}^{*} \mathcal{L}\right|$ for $\mu \in \mathbb{Z}$ and $\mathcal{L} \in \operatorname{Pic} Y$. We call \tilde{X} the original divisor for X. We say that ν is nondegenerate if $\nu(Y) \subseteq \mathbb{P}^{\bar{N}}$ is nondegenerate.

The first result is the structure of X with $\mathcal{B}(X) \neq \emptyset$, which is almost done in [22]. Conventionally we set $\operatorname{dim} \emptyset=-1$.
Theorem 3. Let $X \subseteq \mathbb{P}^{N}$ be a projective variety of dimension $n>0$ and codimension $e \geq 2$. Let $\Lambda \subseteq \mathbb{P}^{N}$ be a linear subspace of dimension $l(n-1 \geq l \geq 0)$. Then X is nondegenerate with $\Lambda \subseteq \overline{\mathcal{B}}(X)$, and $\Lambda \nsubseteq X$ if and only if X is a birational-divisor of type $\left(\mu, \mathcal{O}_{Y}\right)(\mu \geq 2)$ on the conical scroll \mathbf{F}_{Y}^{Λ} with vertex Λ over an $(n-l)$-dimensional smooth projective variety Y with a nondegenerate birational-embedding $\nu: Y \rightarrow \mathbb{P}^{\bar{N}}(\bar{N}=N-l-1)$. Moreover, under these equivalent conditions, the following hold:
(1) $\mu=l(X \cap\langle v, x\rangle)$ for general $v \in \Lambda$ and general $x \in X$.
(2) $\operatorname{deg} X=\mu \cdot \operatorname{deg} \nu(Y)$.
(3) $\Lambda \cap X \subseteq \operatorname{Sing} X$ and $\operatorname{dim} \Lambda \cap X=\operatorname{dim} \Lambda-1$. In particular, $\operatorname{dim} \Lambda \leq$ $\operatorname{dim} \operatorname{Sing} X+1$.
(4) Λ is an irreducible component of $\overline{\mathcal{B}}(X)$ if and only if $\nu(Y)$ is not a cone.

The next results are the structure of X with $\mathcal{C}(X) \neq \emptyset$, which is the main purpose of this paper. To this purpose, we divide into two cases by the partial Gauss map of
X, that is, a rational map $\left.\gamma\right|_{Z}: Z \cap \operatorname{Sm} X \rightarrow \mathbb{G}\left(n, \mathbb{P}^{N}\right)$ from a subset $Z \subseteq X$ with $Z \cap \operatorname{Sm} X \neq \emptyset$ to the Grassmannian of n-planes in \mathbb{P}^{N}, mapping y to $T_{y}(\bar{X}) \subseteq \mathbb{P}^{N}$.

First we consider the case when the partial Gauss map on a subset of $\overline{\mathcal{C}}(X)$ is constant.

Theorem 4. Let $X \subseteq \mathbb{P}^{N}$ be a projective variety of dimension $n>0$ and codimension $e \geq 2$. Let $\Lambda \subseteq \mathbb{P}^{N}$ be a linear subspace of dimension $l(n-1 \geq l \geq 0)$. Suppose that X is nondegenerate with $\Lambda \subseteq \overline{\mathcal{C}}(X)$ and $\Lambda \cap \operatorname{Sm} X \neq \emptyset$ and that the partial Gauss map $\left.\gamma\right|_{\Lambda}$ is constant. Then X is a birational-divisor of type $(\mu, \mathcal{L})(\mu \geq 2, \mathcal{L} \in \operatorname{Pic} Y)$ on the conical scroll \mathbf{F}_{Y}^{Λ} with vertex Λ over an $(n-l)$ dimensional smooth projective variety Y with a nondegenerate birational-embedding $\nu: Y \rightarrow \mathbb{P}^{\bar{N}}(\bar{N}=N-l-1)$ satisfying the following:
(1) $H^{0}(Y, \mathcal{L}) \neq 0,\left(\mathcal{L}, \mathcal{O}_{Y}(1)^{n-l-1}\right)=1$ for $\mathcal{O}_{Y}(1)=\nu^{*} \mathcal{O}_{\mathbb{P}^{\bar{N}}}(1)$, and $\operatorname{deg} X=$ $\mu \cdot \operatorname{deg} \nu(Y)+1 ;$
(2) $\tilde{X} \cap \tilde{\Lambda}_{Y}=(g)_{0} \times Y+\Lambda \times(w)_{0}$ as a divisor on $\tilde{\Lambda}_{Y}$ for some $g(\neq 0) \in$ $H^{0}\left(\Lambda, \mathcal{O}_{\Lambda}(\mu)\right)$ and $w(\neq 0) \in H^{0}(Y, \mathcal{L})$;
(3) $(w)_{0}$ is the sum $\sum_{i=0}^{r} D_{i}$ of prime divisors D_{i} such that $\nu\left(D_{0}\right)=$ $\pi_{\Lambda}\left(T_{u}(X) \backslash \Lambda\right)$ for general $u \in \Lambda$ and $\nu\left(D_{i}\right) \subsetneq \nu\left(D_{0}\right)$ for all $i \geq 1$ if $r \geq 1$;
(4) $\mu=l(X \cap\langle u, x\rangle)-1$ holds for general $u \in \Lambda$ and general $x \in X$;
(5) $(g)_{0} \subseteq \Lambda \cap \operatorname{Sing} X$ as set; in particular, $\operatorname{dim} \Lambda \leq \operatorname{dim} \operatorname{Sing} X+1$;
(6) Λ is an irreducible component of $\overline{\mathcal{C}}(X)$ if and only if $\nu(Y)$ is not a cone.

Theorem 5. For integers $n>l \geq 0$, let $X \subseteq \mathbb{P}^{N}$ be a birational-divisor of type $(\mu, \mathcal{L})(\mu \geq 1, \mathcal{L} \in \operatorname{Pic} Y)$ on the conical scroll \mathbf{F}_{Y}^{Λ} with an l-dimensional linear subspace Λ as vertex over an $(n-l)$-dimensional smooth projective variety Y with a nondegenerate birational-embedding $\nu: Y \rightarrow \mathbb{P}^{\bar{N}}(\bar{N}=N-l-1)$ satisfying (1) and (2) in Theorem 4. If $(w)_{0}$ is irreducible, then $\Lambda \cap \operatorname{Sm} X=\Lambda \backslash(g)_{0} \neq \emptyset$. Consequently, if $(w)_{0}$ is irreducible and if $\mu \geq 2$, then X is a nondegenerate n dimensional subvariety of \mathbb{P}^{N} such that $\Lambda \cap \operatorname{Sm} X=\Lambda \backslash(g)_{0} \subseteq \mathcal{C}(X)$ and the partial Gauss map $\left.\gamma\right|_{\Lambda}$ is constant.

Second we consider the case when the partial Gauss map on a component of $\overline{\mathcal{C}}(X)$ is nonconstant. To this purpose, we introduce definitions about a rational scroll with vertex.

Definition 6. For an l-dimensional linear subspace $\Lambda \subseteq \mathbb{P}^{N}$ and for an ample vector bundle \mathcal{E} of rank $n-l(\geq 1)$ over \mathbb{P}^{1}, the conical rational scroll $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ with vertex Λ is the projective bundle $\mathbb{P}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}}^{\oplus l+1} \oplus \mathcal{E}\right)$ with birational-embedding ψ : $\mathbf{E}_{\mathcal{E}}^{\Lambda} \rightarrow \mathbb{P}^{N}$ defined by a subsystem of $\left|\mathcal{O}_{\mathbf{E}_{\mathcal{E}}^{\lambda}}(1)\right|$ such that the subbundle $\tilde{\Lambda}_{\mathbb{P}^{1}}:=$ $\mathbb{P}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}}^{\oplus l+1}\right)\left(\subseteq \mathbf{E}_{\mathcal{E}}^{\Lambda}\right)$ maps onto Λ by ψ. Thus $\psi\left(\mathbf{E}_{\mathcal{E}}^{\Lambda}\right)$ is nondegenerate in \mathbb{P}^{N} and the cone over $\psi\left(\mathbb{P}_{\mathbb{P}^{1}}(\mathcal{E})\right)$ with vertex Λ. Here $\mathcal{O}_{\mathbf{E}_{\mathcal{E}}^{\Lambda}}(1)$ is the tautological line bundle of $\mathbf{E}_{\mathcal{E}}^{\Lambda}=\mathbb{P}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}}^{\oplus l+1} \oplus \mathcal{E}\right)$. A projective variety $X \subseteq \mathbb{P}^{N}$ is a birational-divisor of the conical rational scroll $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ if X is a birational image of a prime divisor \tilde{X} on $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ by the birational-embedding $\psi: \mathbf{E}_{\mathcal{E}}^{\Lambda} \rightarrow \mathbb{P}^{N}$. In this case, X is said to be of type (μ, b) if $\tilde{X} \in\left|\mathcal{O}_{\mathbf{E}_{\mathcal{E}}^{\Lambda}}(\mu) \otimes p^{*} \mathcal{O}_{\mathbb{P}^{1}}(b)\right|$ for the projection $p: \mathbf{E}_{\mathcal{E}}^{\Lambda} \rightarrow \mathbb{P}^{1}$. We call \tilde{X} the original divisor for X.

Theorem 7. Let $X \subseteq \mathbb{P}^{N}$ be a projective variety of dimension $n>0$ and codimension $e \geq 2$. Let $\Lambda \subseteq \mathbb{P}^{N}$ be a linear subspace of dimension $l(n-1 \geq l \geq 0)$. The following are equivalent:
(1) X is nondegenerate and Λ is an irreducible component of $\overline{\mathcal{C}}(X)$ such that the partial Gauss map $\left.\gamma\right|_{\Lambda}$ is nonconstant.
(2) X is a birational-divisor of type $(\mu, 1)(\mu \geq 2)$ on a conical rational scroll $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ with vertex Λ and original divisor \tilde{X} such that the intersection $\tilde{X} \cap \tilde{\Lambda}_{\mathbb{P}^{1}}$ is a nonzero effective divisor of $\tilde{\Lambda}_{\mathbb{P}^{1}}$ not equal to $(g)_{0} \times \mathbb{P}^{1}+\Lambda \times(w)_{0}$ for any $g \in H^{0}\left(\Lambda, \mathcal{O}_{\Lambda}(\mu)\right)$ and any $w \in H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(1)\right)$.
Moreover, under these equivalent conditions, we have $l \geq 1, \mu=l(X \cap\langle u, x\rangle)-1$ for general $u \in \Lambda$ and general $x \in X, \operatorname{deg} X=\mu c_{1}(\mathcal{E})+1$, and $\operatorname{dim} \Lambda \leq \operatorname{dim} \operatorname{Sing} X+2$.

Theorems 4 and 7 give the structure of smooth X with positive-dimensional $\mathcal{C}(X)$ (Corollary 6.2). As an application, we prove the "semiampleness" of the ideal sheaf for smooth X.

Theorem 8. Let $X \subseteq \mathbb{P}^{N}$ be a nondegenerate smooth projective variety of degree d and codimension $e \geq 1$. Let $\sigma: \hat{\mathbb{P}}_{X}^{N} \rightarrow \mathbb{P}^{N}$ be the blowing-up of \mathbb{P}^{N} along X with exceptional divisor E and let A be the divisor of the pull-back of a hyperplane of \mathbb{P}^{N}. Then $\mathcal{O}_{\hat{\mathbb{P}}_{X}^{N}}((d-e+1) A-E)$ is semiample, i.e., $\mathcal{O}_{\hat{\mathbb{P}}_{X}^{N}}(m((d-e+1) A-E))$ is base-point-free for some $m>0$.

Theorem 8 improves a regularity bound for smooth projective varieties ([2] and [3) and leads to an asymptotic regularity bound. Recall that for an integer m, a coherent sheaf \mathcal{F} on \mathbb{P}^{N} is said to be m-regular in the sense of Castelnuovo-Mumford if $H^{i}\left(\mathbb{P}^{N}, \mathcal{F}(m-i)\right)=0$ for the twisted sheaf $\mathcal{F}(m-i):=\mathcal{F} \otimes \mathcal{O}_{\mathbb{P}^{N}}(m-i)$ and for all $i>0$. A projective variety $X \subseteq \mathbb{P}^{N}$ is said to be m-regular if the ideal sheaf \mathcal{I}_{X} is m-regular. The regularity $\operatorname{reg}(\mathcal{F})$ is the least integer m for which \mathcal{F} is m-regular.

Theorem 9. Let $X \subseteq \mathbb{P}^{N}$ be a nondegenerate smooth projective variety of degree d and codimension $e \geq 1$. Then $H^{i}\left(\mathbb{P}^{N}, \mathcal{I}_{X}(k)\right)=0$ for all $i>0$ and $k \geq e(d-e+1)-N$. In particular, X is $(e(d-e)+1)$-regular.

Theorem 10. Let $X \subseteq \mathbb{P}^{N}$ be a nondegenerate smooth projective variety of degree d and codimension $e \geq 1$. Let a be a positive integer and let \mathcal{I}_{X}^{a} be the ath power of the ideal sheaf of X. Then $H^{i}\left(\mathbb{P}^{N}, \mathcal{I}_{X}^{a}(k)\right)=0$ for all $i>0$ and $k \geq(d-e+1)(e+a-1)-N$. In particular, \mathcal{I}_{X}^{a} is $\left.\{(d-e)(e+a-1)+a)\right\}$-regular and therefore $\lim _{a \rightarrow+\infty}\left(\operatorname{reg} \mathcal{I}_{X}^{a} / a\right) \leq d-e+1$.

The asymptotic regularity bounds are studied by many authors (6 , [7, 20]). In particular, Cutkosky-Ein-Lazarsfeld [6] showed that $\lim _{a \rightarrow+\infty}\left(\operatorname{reg} \mathcal{I}_{X}^{a} / a\right)$ is bounded by the generating degree (i.e., the smallest d such that $\mathcal{I}_{X}(d)$ is generated by global sections). On the other hand, the regularity conjecture (8 , [14, §4]) implies that the generating degree is bounded above by $d-e+1$ for a projective variety of degree d and codimension e. Hence Theorem 10 supports the conjecture.

This paper is organized as follows. In §1, we summarize some properties of birational-divisors of conical scrolls and prove Theorem 3. In §2, we study conditions for birational-divisors on conical scrolls to be smooth at the general points of vertices. In $\S 3$, we prove Theorem [4. In $\S 4$, we prove Theorem 5. In §5, we
study conditions for birational-divisors on rational conical scrolls to be smooth at the general points of vertices. In $\S 6$, we prove Theorem 7 In $\S 7$, we deal with the applications of our theorems to regularity problems. In particular, we prove Theorems 8 8

1. Loci of nonbirational centers: Proof of Theorem 3

Lemma 1.1. Let $X \subseteq \mathbb{P}^{N}$ be a projective variety of dimension $n>0$ and codimension $e \geq 2$. Let $\Lambda \subseteq \mathbb{P}^{N}$ be a linear subspace of dimension $l(n-1 \geq l \geq 0)$. Let \bar{X}_{Λ} be the closure of $\pi_{\Lambda}(X \backslash \Lambda)$ for the linear projection $\pi_{\Lambda}: \mathbb{P}^{N} \backslash \Lambda \rightarrow \mathbb{P}^{\bar{N}}$ $(\bar{N}:=N-l-1)$. Then the following are equivalent:
(a) $\operatorname{dim}\left\langle T_{x}(X), \Lambda\right\rangle=n+1$ for general $x \in X \backslash \Lambda$.
(b) $\operatorname{dim} \bar{X}_{\Lambda}=n-l$.
(c) $\operatorname{dim} \operatorname{Cone}\left(\Lambda, \bar{X}_{\Lambda}\right)=n+1$ for the cone $\operatorname{Cone}\left(\Lambda, \bar{X}_{\Lambda}\right)$ over \bar{X}_{Λ} with vertex Λ.
(d) X is a birational-divisor of type (μ, \mathcal{L}) for some $\mu(>0) \in \mathbb{Z}$ and $\mathcal{L} \in \operatorname{Pic} Y$ with $(\mu, \mathcal{L}) \neq\left(1, \mathcal{O}_{Y}(-1)\right)$ on the conical scroll \mathbf{F}_{Y}^{Λ} with vertex Λ over a smooth $(n-l)$-dimensional projective variety Y with a birational-embedding $\nu: Y \rightarrow \mathbb{P}^{\bar{N}}$.
Moreover, under the above equivalent conditions, the following hold:
(1) For general $x \in X,(X \cap\langle\Lambda, x\rangle) \backslash \Lambda$ is an affine (possibly reducible) hypersurface in $\langle\Lambda, x\rangle \backslash \Lambda$ whose closure is a hypersurface of degree μ in $\langle\Lambda, x\rangle$ not containing Λ.
(2) If $\Lambda \nsubseteq X$, then $\mu=l(X \cap\langle u, x\rangle)$ for general $u \in \Lambda$ and general $x \in X$.
(3) If $\Lambda \subseteq X$ and $\Lambda \cap \operatorname{Sm} X \neq \emptyset$, then $\mu=l(X \cap\langle u, x\rangle)-1$ for general $u \in \Lambda$ and general $x \in X$.
(4) Suppose $\mu \geq 2$. Then $X \subseteq \mathbb{P}^{N}$ is nondegenerate if and only if so is $\bar{X}_{\Lambda} \subseteq$ $\mathbb{P}^{\bar{N}}$.
(5) For a linear subspace $\Lambda^{\prime} \subseteq \mathbb{P}^{N}$ containing Λ as a proper subset, $\operatorname{dim}\left\langle T_{x}(X), \Lambda^{\prime}\right\rangle=n+1$ for general $x \in X \backslash \Lambda^{\prime}$ if and only if $\bar{X}_{\Lambda} \subseteq \mathbb{P}^{\bar{N}}$ is a cone with vertex $\bar{\Lambda}_{\Lambda}^{\prime}:=\pi_{\Lambda}\left(\Lambda^{\prime} \backslash \Lambda\right)$.

Proof. The equivalence (a) \Leftrightarrow (b) follows from $T_{\bar{x}}\left(\bar{X}_{\Lambda}\right)=\pi_{\Lambda}\left(\left\langle T_{x}(X), \Lambda\right\rangle \backslash \Lambda\right)$ for general $x \in X$ and for $\bar{x}:=\pi_{\Lambda}(x) \in \bar{X}_{\Lambda}$ by the generic smoothness. Since $\operatorname{dim} \operatorname{Cone}\left(\Lambda, \bar{X}_{\Lambda}\right)=l+1+\operatorname{dim} \bar{X}_{\Lambda},(\mathrm{b})$ and (c) are equivalent. To prove $(c) \Longrightarrow(d)$, suppose (c). Let $Y \rightarrow \bar{X}_{\Lambda}$ be the resolution of singularity of \bar{X}_{Λ} (16) and let $\nu: Y \rightarrow \mathbb{P}^{\bar{N}}$ be the composite of $Y \rightarrow \bar{X}_{\Lambda}$ and the inclusion $\bar{X}_{\Lambda} \subseteq \mathbb{P}^{\bar{N}}$. The conical scroll \mathbf{F}_{Y}^{Λ} is isomorphic to $\operatorname{Cone}\left(\Lambda, \bar{X}_{\Lambda}\right)$ except on $\tilde{\Lambda}_{Y} \in\left|\mathcal{O}_{\mathbf{F}_{\hat{Y}}^{\wedge}}(1) \otimes \tau_{Y}^{*} \mathcal{O}_{Y}(-1)\right|$ and on the fibres over the nonisomorphic locus of $Y \rightarrow \bar{X}_{\Lambda}$. Hence its isomorphic locus meets with X and there exists a prime divisor \tilde{X} of \mathbf{F}_{Y}^{Λ} birational to X. By [15, III, Ex. 12.5], \tilde{X} is a member of $\left|\mathcal{O}_{\mathbf{F}_{Y}^{A}}(\mu) \otimes \tau_{Y}^{*} \mathcal{L}\right|$ for some $\mu>0$ and $\mathcal{L} \in \operatorname{Pic} Y$ with $(\mu, \mathcal{L}) \neq\left(1, \mathcal{O}_{Y}(-1)\right)$. Hence (d) follows. If (d) holds, then \mathbf{F}_{Y}^{Λ} is birational to Cone($\Lambda, \bar{X}_{\Lambda}$), and (c) holds.
(1) By assumption, $\tilde{X} \neq \tilde{\Lambda}_{Y}$ and $\tilde{X} \cap \tilde{\Lambda}_{Y}$ is a divisor of $\tilde{\Lambda}_{Y}=\Lambda \times Y$. Let $u \in \Lambda$ be a general point so that $\{u\} \times Y \nsubseteq \tilde{X} \cap \tilde{\Lambda}_{Y}$. Let $x \in X$ be general points so that $\bar{x}_{\Lambda}:=\pi_{\Lambda}(x) \in \operatorname{Sm} \bar{X}_{\Lambda}, \bar{x}_{\Lambda}=\nu(y)$ for a unique point $y \in Y$, and $(u, y) \notin \tilde{X} \cap \tilde{\Lambda}_{Y}$. The intersection $\tilde{X}_{y}:=\tilde{X} \cap \tau_{Y}^{-1}(y) \subseteq \mathbf{F}_{Y}^{\Lambda}$ is a hypersurface of degree μ in $\tau_{Y}^{-1}(y) \cong\langle\Lambda, x\rangle$ such that $\tilde{X}_{y} \nsupseteq \Lambda \times\{y\}$. Hence \tilde{X}_{y} is the closure of $\tilde{X}_{y} \backslash \Lambda \times\{y\}$ in $\tau_{Y}^{-1}(y)$. By the generality of x, the induced morphism $\mathbf{F}_{Y}^{\Lambda} \backslash \tilde{\Lambda}_{Y} \rightarrow \operatorname{Cone}\left(\Lambda, \bar{X}_{\Lambda}\right) \backslash \Lambda$
from φ_{Y} is isomorphic along $\tau_{Y}^{-1}(y)$, and hence $\tilde{X}_{y} \backslash \Lambda \times\{y\} \cong X \cap\langle\Lambda, x\rangle \backslash \Lambda$. Consequently, the closure $\overline{(X \cap\langle\Lambda, x\rangle) \backslash \Lambda}$ is a hypersurface of degree μ isomorphic to \tilde{X}_{y}.
(2) If $\Lambda \not \subset X$, for general $u \in \Lambda$ and $x \in X$, then $X \cap \Lambda \cap\langle u, x\rangle=\emptyset$; hence $l(X \cap\langle u, x\rangle)=l(X \cap\langle\Lambda, x\rangle \cap\langle u, x\rangle)=l((X \cap\langle\Lambda, x\rangle \backslash \Lambda) \cap\langle u, x\rangle)=\mu$ by (1).
(3) Suppose $\Lambda \subseteq X$ and $\Lambda \cap \operatorname{Sm} X \neq \emptyset$. For general $u \in \Lambda$ and $x \in X$, we may assume $u \in \Lambda \cap \operatorname{Sm} X$ and $x \notin T_{u}(X)$, i.e., the local length $l_{u}(X \cap\langle u, x\rangle)$ of $X \cap\langle u, x\rangle$ at u is one. Moreover $u \notin \overline{(X \cap\langle\Lambda, x\rangle) \backslash \Lambda}$ and $X \cap \Lambda \cap\langle u, x\rangle=\{u\}$. Hence, by (1), $l(X \cap\langle u, x\rangle)=l((X \cap\langle\Lambda, x\rangle \backslash \Lambda) \cap\langle u, x\rangle)+l_{u}(X \cap\langle u, x\rangle)=\mu+1$.
(4) $X \subseteq \mathbb{P}^{N}$ is nondegenerate, so is $\bar{X}_{\Lambda}=\nu(Y) \subseteq \mathbb{P}^{N}$. Conversely, suppose X is contained in a hyperplane $H \subseteq \mathbb{P}^{N}$. For general $x \in X, H$ contains the hypersurface $\overline{(X \cap\langle\Lambda, x\rangle) \backslash \Lambda}$ in $\langle\Lambda, x\rangle$ of degree $\mu \geq 2$, and hence $\langle\Lambda, x\rangle$. Thus \bar{X}_{Λ} is degenerate.
(5) To prove the only if part, for general $x \in X \backslash \Lambda^{\prime}$, assuming $\operatorname{dim}\left\langle T_{x}(X), \Lambda^{\prime}\right\rangle=$ $n+1$, it suffices to show that \bar{X}_{Λ} contains ${\overline{\left\langle\Lambda^{\prime}, x\right\rangle}}_{\Lambda}:=\overline{\pi_{\Lambda}\left(\left\langle\Lambda^{\prime}, x\right\rangle \backslash \Lambda\right)}$. By (1), $\overline{\left(X \cap\left\langle\Lambda^{\prime}, x\right\rangle\right) \backslash \Lambda^{\prime}}$ is a hypersurface in $\left\langle\Lambda^{\prime}, x\right\rangle$. By the linear projection $\pi_{\Lambda}:\left\langle\Lambda^{\prime}, x\right\rangle \backslash$ $\Lambda \rightarrow \overline{\left\langle\Lambda^{\prime}, x\right\rangle}{ }_{\Lambda}$, the hypersurface is mapped onto $\overline{\left\langle\Lambda^{\prime}, x\right\rangle}{ }_{\Lambda}$ or it is a cone with vertex Λ. In the latter, by the generality of x, X is a cone with vertex Λ which contradicts (c). Hence $\overline{\left\langle\Lambda^{\prime}, x\right\rangle} \bar{\Lambda}_{\Lambda} \subseteq \bar{X}_{\Lambda}$. Conversely, for the if part, suppose $\bar{X}_{\Lambda} \subseteq \mathbb{P}^{\bar{N}}$ is a cone with vertex $\bar{\Lambda}^{\prime}{ }_{\Lambda}$. Set $l^{\prime}:=\operatorname{dim} \Lambda^{\prime}$ and $l^{\prime \prime}:=\operatorname{dim}{\overline{\Lambda^{\prime}}}_{\Lambda}$. Hence $l^{\prime}=l+l^{\prime \prime}+1$. The closure $\bar{X}_{\Lambda^{\prime}}$ of the image of X by the linear projection from Λ^{\prime} can be seen as the image \bar{X}_{Λ} by the linear projection from $\bar{\Lambda}_{\Lambda}^{\prime}$. Hence $\operatorname{dim} \bar{X}_{\Lambda^{\prime}}=n-l^{\prime}$. By the first part, $\operatorname{dim}\left\langle T_{x}(X), \Lambda^{\prime}\right\rangle=n+1$ for general $x \in X \backslash \Lambda^{\prime}$.

Proof of Theorem 3. We will prove the first part. Suppose that X is nondegenerate with $\Lambda \subseteq \overline{\mathcal{B}}(X)$ and $\Lambda \nsubseteq X$. By Theorem (1) (a) of Lemma 1.1 holds, and hence, X is a birational-divisor on the conical scroll \mathbf{F}_{Y}^{Λ} of type (μ, \mathcal{L}) for some $\mu \geq 1$ and $\mathcal{L} \in \operatorname{Pic} Y$. Since $\Lambda \cap \mathcal{B}(X) \neq \emptyset$, by (2) of Lemma 1.1, we have $\mu \geq 2$. By (4) of Lemma 1.1 is proved for $0<l<n$ in [22, Lemma 4.5]. To prove this for $l=0$, as in the case $l>0$, let $G_{\tilde{X}} \in H^{0}\left(\mathcal{O}_{\mathbf{F}_{\hat{Y}}}(\mu) \otimes \tau_{Y}^{*} \mathcal{L}\right)$ be the section defining the original divisor \tilde{X} for X. For $\tilde{\Lambda}_{Y}=\Lambda \times Y \cong Y$, we have $\left.G_{\tilde{X}}\right|_{\tilde{\Lambda}_{Y}} \in H^{0}(\mathcal{L})$. Moreover $\left.G_{\tilde{X}}\right|_{\Lambda \times\{y\}}$ is nonzero for any $y \in Y$ since $\Lambda \nsubseteq X$. This means that \mathcal{L} has a nowhere vanishing global section and hence $\mathcal{L} \cong \mathcal{O}_{Y}$.

Conversely, suppose that X is a birational-divisor of type $\left(\mu, \mathcal{O}_{Y}\right)(\mu \geq 2)$ on \mathbf{F}_{Y}^{Λ} over an $(n-l)$-dimensional smooth projective variety Y with a nondegenerate birational-embedding $\nu: Y \rightarrow \mathbb{P}^{\bar{N}}$. By (4) of Lemma $1.1 X$ is nondegenerate. The original divisor $\tilde{X}\left(\subseteq \mathbf{F}_{Y}^{\Lambda}\right)$ for X is not equal to $\tilde{\Lambda}_{Y}$ and $\tilde{X} \cap \tilde{\Lambda}_{Y} \in\left|\mathcal{O}_{\tilde{\Lambda}_{Y}}(\mu)\right|$. Since $H^{0}\left(\mathcal{O}_{\tilde{\Lambda}_{Y}}(\mu)\right) \cong H^{0}\left(\mathcal{O}_{\Lambda}(\mu)\right), X \cap \Lambda$ is codimension one in Λ and $\Lambda \not \subset X$. Consequently $\Lambda \subseteq \overline{\mathcal{B}}(X)$ by (2) of Lemma 1.1.

We will show (1)-(4), supposing X is nondegenerate with $\Lambda \subseteq \overline{\mathcal{B}}(X)$ and $\Lambda \nsubseteq X$. (1) follows from (2) of Lemma 1.1. (2) follows from $\operatorname{deg} X=\left(\mathcal{O}_{\mathbf{F}_{\hat{Y}}^{\wedge}}(\mu), \mathcal{O}_{\mathbf{F}_{\hat{Y}}}(1)^{n}\right)=$ $\mu \cdot \operatorname{deg} \nu(Y)$. (3) is proved in [22, Theorem 4.4]. Finally we will prove (4). If Λ is a proper subset of an irreducible component Λ^{\prime} of $\overline{\mathcal{B}}(X)$, then Λ^{\prime} is linear and $\operatorname{dim}\left\langle T_{x}(X), \Lambda^{\prime}\right\rangle=n+1$ for general $x \in X \backslash \Lambda^{\prime}$ by Theorem 1 and hence $\bar{X}_{\Lambda}=\nu(Y)$ is a cone by (5) of Lemma 1.1. Conversely suppose \bar{X}_{Λ} is a cone with vertex $\Lambda^{\prime \prime} \subseteq \mathbb{P}^{\bar{N}}$. Set $\Lambda^{\prime}:=\left\langle\Lambda, \Lambda^{\prime \prime}\right\rangle \subseteq \mathbb{P}^{N}$. For general $x \in X, \overline{\left(X \cap\left\langle\Lambda^{\prime}, x\right\rangle\right) \backslash \Lambda^{\prime}}$ is a
hypersurface in $\left\langle\Lambda^{\prime}, x\right\rangle$ by Lemma 1.1. The hypersurface is of degree $\mu(\geq 2)$, since $l(X \cap\langle v, x\rangle)=\mu$ for general $v \in \Lambda$ by (2) of Lemma 1.1 and since $X \cap \Lambda^{\prime} \cap\langle v, x\rangle=\emptyset$ by the generality of x. Hence $(\Lambda \subset) \Lambda^{\prime} \subseteq \overline{\mathcal{B}}(X)$.

2. The structure of projective varieties WITH NONBIRATIONAL INNER CENTERS

In this section, we find conditions for a birational-divisor of a conical scroll to be smooth at general points of the vertex (Proposition 2.3). We begin with the following proposition.
Proposition 2.1. Let $X \subseteq \mathbb{P}^{N}$ be a projective variety of dimension $n>0$ and codimension $e \geq 2$. Let Λ be an l-dimensional linear subspace of $\mathbb{P}^{N}(0 \leq l \leq n-1)$. Set $\bar{N}=N-l-1$. Then the following are equivalent:
(1) X is nondegenerate with $\Lambda \subseteq \overline{\mathcal{C}}(X)$ and $\Lambda \cap \operatorname{Sm} X \neq \emptyset$.
(2) X is a birational-divisor of type $(\mu, \mathcal{L})(\mu \geq 2)$ on the conical scroll \mathbf{F}_{Y}^{Λ} with vertex Λ over an $(n-l)$-dimensional smooth projective variety Y with a nondegenerate birational-embedding $\nu: Y \rightarrow \mathbb{P}^{N}$ such that $\Lambda \subseteq X$ and $\Lambda \cap \operatorname{Sm} X \neq \emptyset$.
Moreover, under the condition above, Λ is an irreducible component of $\overline{\mathcal{C}}(X)$ if and only if $\nu(Y)$ is not a cone.

Proof. To prove (1) \Longrightarrow (2), suppose (1). For general $x \in X, \operatorname{dim}\left\langle T_{x}(X), \Lambda\right\rangle=$ $n+1$ by Theorem 1. Hence X is a birational-divisor of type (μ, \mathcal{L}) on the conical scroll \mathbf{F}_{Y}^{Λ} over an $(n-l)$-dimensional smooth projective variety Y with a birationalembedding $\nu: Y \rightarrow \mathbb{P}^{\bar{N}}$ by Lemma 1.1. Moreover $\nu(Y)$ is nondegenerate by (4) of Lemma 1.1 For general $x \in X$ and $u \in \Lambda, l(X \cap\langle u, x\rangle) \geq 3$ since $\Lambda \cap \operatorname{Sm} X \subseteq \mathcal{C}(X)$. Hence $\mu \geq 2$ by (3) of Lemma 1.1 Conversely, to prove (2) \Longrightarrow (1), suppose (2). Since $\mu \geq 2$ and $\nu(Y)$ is nondegenerate, X is nondegenerate by (4) of Lemma 1.1, For general $x \in X$ and $u \in \Lambda, l(X \cap\langle u, x\rangle)=\mu+1 \geq 3$ by (3) of Lemma 1.1. This means $\Lambda \cap \operatorname{Sm} X(\neq \emptyset) \subseteq \mathcal{C}(X)$.

We will prove the second part. The if part follows from (5) of Lemma 1.1 as in Theorem 3. To prove the only if part, suppose that $\bar{X}_{\Lambda}=\nu(Y)$ is a cone with vertex $\Lambda^{\prime \prime} \subseteq \mathbb{P}^{\bar{N}}$. We will show $\Lambda^{\prime}:=\left\langle\Lambda, \Lambda^{\prime \prime}\right\rangle \subseteq \overline{\mathcal{C}}(X)$. For general $x \in X$, $\overline{X \cap\left\langle\Lambda^{\prime}, x\right\rangle \backslash \Lambda^{\prime}}$ is a hypersurface in $\left\langle\Lambda^{\prime}, x\right\rangle$ by Lemma 1.1 and let m be its degree. Then $m \geq l\left(\left(X \cap\left\langle\Lambda^{\prime}, x\right\rangle \backslash \Lambda^{\prime}\right) \cap\langle u, x\rangle\right)=l(X \cap\langle u, x\rangle)-l_{u}(X \cap\langle u, x\rangle)=\mu \geq 2$ for general $u \in \Lambda$ since the local length $l_{u}(X \cap\langle u, x\rangle)$ is one (see Lemma 1.1). If $\Lambda^{\prime} \nsubseteq X$, $m=l(X \cap\langle w, x\rangle)$ for general $w \in \Lambda^{\prime}$ by (2) of Lemma 1.1 and hence $\Lambda^{\prime} \subseteq \overline{\mathcal{B}}(X)$ and $\Lambda \subseteq \Lambda^{\prime} \cap X \subseteq \operatorname{Sing} X$ by (3) of Theorem 3, a contradiction. Consequently $\Lambda^{\prime} \subseteq X$. Hence $m=l(X \cap\langle w, x\rangle)-1$ for general $w \in \Lambda^{\prime}$ by (3) of Lemma 1.1, since $\Lambda^{\prime} \cap \operatorname{Sm} X(\supseteq \Lambda \cap \operatorname{Sm} X) \neq \emptyset$. This means $\Lambda^{\prime} \subseteq \overline{\mathcal{C}}(X)$.

For the remainder of this section, we assume the following conditions.
(2.2). Let $X \subseteq \mathbb{P}^{N}$ be a nondegenerate projective variety of dimension $n>0$ which is a birational-divisor of type $(\mu, \mathcal{L})(\mu \geq 1, \mathcal{L} \in \operatorname{Pic} Y)$ on the conical scroll \mathbf{F}_{Y}^{Λ} with an l-dimensional linear subspace $\Lambda \subseteq \mathbb{P}^{N}(0 \leq l \leq n-1)$ as vertex over an $(n-l)$ dimensional smooth projective variety Y with a birational-embedding $\nu: Y \rightarrow \mathbb{P}^{\bar{N}}$ $(\bar{N}=N-l-1)$. We keep the notation as in Definition 2. Set $\bar{n}=n-l$. Let \bar{X}_{Λ} be the closure of $\pi_{\Lambda}(X \backslash \Lambda)$ for the linear projection $\pi_{\Lambda}: \mathbb{P}^{N} \backslash \Lambda \rightarrow \mathbb{P}^{\bar{N}}$.

Proposition 2.3. Under (2.2), suppose that $\Lambda \subseteq X$ and $\Lambda \cap \operatorname{Sm} X \neq \emptyset$. Then the following hold:
(1) $\left(\mathcal{L}, \mathcal{O}_{Y}(1)^{\bar{n}-1}\right)=1$ and $H^{0}(Y, \mathcal{L}) \neq 0$. Hence $d=\operatorname{deg} X=\mu \cdot \operatorname{deg} \nu(Y)+1$.
(2) The intersection $\tilde{X} \cap \tilde{\Lambda}_{Y}$ is an effective divisor of $\tilde{\Lambda}_{Y}$ containing a prime divisor \tilde{D} whose image by the natural morphism $\tilde{\Lambda}_{Y} \cong \Lambda \times Y \rightarrow \Lambda \times \bar{X}_{\Lambda}$ is the closure of $\amalg_{y \in \Lambda \cap S m} \bar{T}_{y}(X), ~$ where $\bar{T}_{y}(X)_{\Lambda}:=\pi_{\Lambda}\left(T_{y}(X) \backslash \Lambda\right)$.
(3) The divisor \tilde{D} in (2) is a unique irreducible component of $\tilde{X} \cap \tilde{\Lambda}_{Y}$ such that $\varphi_{Y}(\tilde{D})=\Lambda$ and $\operatorname{dim} \nu\left(\tau_{Y}(\tilde{D})\right) \geq \operatorname{dim} \bar{X}_{\Lambda}-1$. Moreover $\operatorname{ord}_{\tilde{D}}\left(\tilde{X} \cap \tilde{\Lambda}_{Y}\right)=1$, where $\operatorname{ord}_{\tilde{D}}(\cdot)$ is the order along \tilde{D}.

To prove Proposition 2.3, we need the following lemma.
Lemma 2.4. Suppose $\Lambda \subseteq X, \Lambda \cap \operatorname{Sm} X \neq \emptyset$, and $\bar{n}=n-l \geq 2$. Let $H \subseteq \mathbb{P}^{N}$ be a general hyperplane containing Λ and let \bar{H}_{Λ} be the hyperplane $\pi_{\Lambda}(H \backslash \Lambda)$ in $\mathbb{P}^{\bar{N}}$. Then $Y_{\bar{H}_{\Lambda}}:=Y \times_{\mathbb{P}^{\bar{N}}} \bar{H}_{\Lambda}$ is smooth and irreducible, $\tilde{X}_{\bar{H}_{\Lambda}}:=\tilde{X} \times_{\mathbb{P}^{\bar{N}}} \bar{H}_{\Lambda}$ is irreducible and reduced, and $X_{\bar{H}_{\Lambda}}:=(X \cap H)_{\text {red }}$ is a nondegenerate projective variety in H with $\Lambda \subseteq X_{\bar{H}_{\Lambda}}$ and $\Lambda \cap \operatorname{Sm} X_{\bar{H}_{\Lambda}} \neq \emptyset$. Consequently $X_{\bar{H}_{\Lambda}}$ is a birational-divisor of type $\left(\mu,\left.\mathcal{L}\right|_{Y_{\bar{H}_{\Lambda}}}\right)$ on the conical scroll $\mathbf{F}_{Y_{\bar{H}_{\Lambda}}}^{\Lambda}$ with vertex Λ over $Y_{\bar{H}_{\Lambda}}$ whose original divisor is $\tilde{X}_{\bar{H}_{\Lambda}}$.
Proof. Since $\bar{H}_{\Lambda} \subseteq \mathbb{P}^{\bar{N}}$ is general, the reducedness and the smoothness of $\mathbb{P}^{\bar{N}}{ }_{-}$ schemes are stable under the pull-back $\bar{H}_{\Lambda} \rightarrow \mathbb{P}^{\bar{N}}$ by Bertini's Theorem in characteristic zero (see [9, (3.4.9)]). Also the irreducibility is stable by the assumption $\operatorname{dim} \bar{X}_{\Lambda}=\bar{n} \geq 2$ (see [9, (3.4.10)]). Hence $Y_{\bar{H}_{\Lambda}}$ is smooth and irreducible, and $\tilde{X}_{\bar{H}_{\Lambda}}$ is irreducible and reduced. Moreover, $Y_{\bar{H}_{\Lambda}} \rightarrow \bar{H}_{\Lambda}$ is a birational-embedding, and $\tilde{X}_{\bar{H}_{\Lambda}}$ is birational to $(X \backslash \Lambda)_{\bar{H}_{\Lambda}}$ by the induced morphism $\varphi_{Y_{\bar{H}_{\Lambda}}}: \mathbf{F}_{Y_{\bar{H}_{\Lambda}}}^{\Lambda} \rightarrow \bar{H}_{\Lambda}$, and hence $X_{\bar{H}_{\Lambda}}=\varphi_{Y_{\bar{H}_{\Lambda}}}\left(\tilde{X}_{\bar{H}_{\Lambda}}\right)$. This means that $X_{\bar{H}_{\Lambda}}$ is a birational-divisor of type ($\mu,\left.\mathcal{L}\right|_{Y_{\bar{H}_{\Lambda}}}$) on the conical scroll $\mathbf{F}_{Y_{\bar{H}_{\Lambda}}}^{1}$ with original divisor $\tilde{X}_{\bar{H}_{\Lambda}}$. To see $\Lambda \cap \operatorname{Sm} X_{\bar{H}_{\Lambda}} \neq \emptyset$, we note, by the generality of H, that $T_{y}(X) \nsubseteq H$ for general $y \in \Lambda \cap \operatorname{Sm} X$, and hence $X \cap H$ is smooth at y. Therefore $\Lambda \cap \operatorname{Sm} X_{\bar{H}_{\Lambda}} \neq \emptyset$, since $X_{\bar{H}_{\Lambda}}$ and $X \cap H$ are equal on the union of $(X \backslash \Lambda) \cap H$ and the locus of points $y \in \Lambda \cap \operatorname{Sm} X$ with $T_{y}(X) \nsubseteq H$.

Proof of Proposition 2.3. First we will prove (2). Since X is birational to \tilde{X} and $\operatorname{dim} \tilde{X}=\operatorname{dim} \tilde{\Lambda}_{Y}, \tilde{X} \neq \tilde{\Lambda}_{Y}$ and $\tilde{X} \cap \tilde{\Lambda}_{Y}$ is a divisor of $\tilde{\Lambda}_{Y}$. Consider the blowingup $\sigma_{X / \Lambda}: \hat{X}_{\Lambda} \rightarrow X$ of X along Λ, which is a closed subset of the blowing-up $\sigma: \hat{\mathbb{P}}_{\Lambda}^{N} \rightarrow \mathbb{P}^{N}$ of \mathbb{P}^{N} along Λ by $\mathcal{I}_{\Lambda / \mathbb{P}^{N}} \otimes \mathcal{O}_{X} \rightarrow \mathcal{I}_{\Lambda / X}$. Here note that $\hat{\mathbb{P}}_{\Lambda}^{N}=\mathbf{F}^{\Lambda}$ as a closed subscheme of $\mathbb{P}^{N} \times \mathbb{P}^{\bar{N}}$ and $\sigma=\varphi$. Moreover \hat{X}_{Λ} is a closed subscheme of the pull-back $\mathbf{F}_{\bar{X}_{\Lambda}}^{\Lambda}:=\mathbf{F}^{\Lambda} \times_{\mathbb{P}_{\bar{N}}} \bar{X}_{\Lambda}$ of $\tau: \mathbf{F}^{\Lambda} \rightarrow \mathbb{P}^{\bar{N}}$ by $\bar{X}_{\Lambda} \rightarrow \mathbb{P}^{\bar{N}}$ since $\tau\left(\hat{X}_{\Lambda}\right)=\bar{X}_{\Lambda}$. Hence \hat{X}_{Λ} is the birational image of \tilde{X} by $\mathbf{F}_{Y}^{\Lambda} \rightarrow \mathbf{F}_{\bar{X}_{\Lambda}}^{\Lambda}$. For $\hat{\Lambda}:=\mathbf{F}_{\bar{X}_{\Lambda}}^{\Lambda} \times_{\mathbb{P}^{N}} \Lambda=\Lambda \times \bar{X}_{\Lambda}$, we have $\hat{\Lambda} \times_{\mathbf{F}_{X_{\Lambda}}^{\Lambda}} \mathbf{F}_{Y}^{\Lambda}=\Lambda \times Y$, and hence the induced morphism $\tilde{X} \cap \tilde{\Lambda}_{Y} \rightarrow \hat{X}_{\Lambda} \cap \hat{\Lambda}$ is surjective. To obtain \tilde{D}, we will show $E_{0}:=\amalg_{y \in \Lambda \cap S m} \bar{T}_{y}(X), ~ i s ~ a ~ s u b s c h e m e ~ o f ~ \hat{X}_{\Lambda} \cap \hat{\Lambda}$. In fact, \tilde{D} is an $(n-1)$ dimensional component of $\tilde{X} \cap \tilde{\Lambda}_{Y}$ dominating E_{0} under the surjection. Since $\hat{X}_{\Lambda} \cap \hat{\Lambda}=\sigma_{X / \Lambda}^{-1}(\Lambda)=\operatorname{Proj} \bigoplus_{k \geq 0} \mathcal{I}_{\Lambda / X}^{k} / \mathcal{I}_{\Lambda / X}^{k+1}$ and since $\mathcal{I}_{\Lambda / X} / \mathcal{I}_{\Lambda / X}^{2}$ is locally free on $\Lambda \cap \operatorname{Sm} X$, we have only to show that $\mathbb{P}_{\Lambda \cap \operatorname{Sm} X}\left(\mathcal{I}_{\Lambda / X} /\left.\mathcal{I}_{\Lambda / X}^{2}\right|_{\Lambda \cap S m X}\right)$ is E_{0}.

Set $V:=H^{0}\left(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(1)\right)$ and $W:=H^{0}\left(\mathbb{P}^{N}, \mathcal{I}_{\Lambda / \mathbb{P}^{N}}(1)\right)$. Then $\mathbb{P}^{N}=\mathbb{P}(V)$ and $\mathbb{P}^{\bar{N}}=\mathbb{P}(W)$, and π_{Λ} is defined by the evaluation $\varepsilon: W \otimes \mathcal{O}_{\mathbb{P}^{N}}(1) \rightarrow \mathcal{I}_{\Lambda / \mathbb{P}^{N}}(1)$. Recall that the tangent bundle $\amalg_{x \in X} T_{x}(X) \subseteq X \times \mathbb{P}^{N}$ corresponds to the surjection from $V \otimes \mathcal{O}_{X}$ to the bundle $P_{X}^{1}\left(\mathcal{O}_{X}(1)\right)$ of the principal part (see [19, Ch. IV.A], [13, Ch. IV, §16]). Hence $\overline{T_{y}(X)} \subseteq \mathbb{P}^{\bar{N}}$ for each $y \in \Lambda \cap \operatorname{Sm} X$ corresponds to the image of $W \rightarrow V \rightarrow P_{X}^{1}\left(\mathcal{O}_{X}(1)\right) \otimes \mathbb{k}(y)$. Thus we have to show that the image of $\left.W \otimes \mathcal{O}_{\Lambda} \rightarrow P_{X}^{1}\left(\mathcal{O}_{X}(1)\right)\right|_{\Lambda}$ is $\left(\mathcal{I}_{\Lambda / X} / \mathcal{I}_{\Lambda / X}^{2}\right)(1)$. This follows by comparing two of the exact sequences $\left.0 \rightarrow\left(\mathcal{I}_{\Lambda / X} / \mathcal{I}_{\Lambda / X}^{2}\right)(1) \rightarrow P_{X}^{1}\left(\mathcal{O}_{X}(1)\right)\right|_{\Lambda} \rightarrow P_{\Lambda}^{1}\left(\mathcal{O}_{\Lambda}(1)\right) \rightarrow 0$ on $\Lambda \cap \operatorname{Sm} X$ and $0 \rightarrow W \otimes \mathcal{O}_{\Lambda} \rightarrow V \otimes \mathcal{O}_{\Lambda} \rightarrow V / W \otimes \mathcal{O}_{\Lambda} \rightarrow 0$, since $V / W \otimes \mathcal{O}_{\Lambda} \rightarrow$ $P_{\Lambda}^{1}\left(\mathcal{O}_{\Lambda}(1)\right)$ is isomorphic.

We will prove (1) and (3) in case $\operatorname{dim} Y=\bar{n}=1$. Since $\tilde{X} \cap \tilde{\Lambda}_{Y}$ is a divisor on $\tilde{\Lambda}_{Y}$, the birational morphism $\tilde{X} \rightarrow X$ is quasi-finite at general points of Λ and hence scheme-theoretically one-to-one at general points of $\Lambda \cap \operatorname{Sm} X \neq \emptyset$ by Zariski's Main Theorem ([15, III.11.4]). Consequently $\tilde{X} \cap \tilde{\Lambda}_{Y} \rightarrow \Lambda$ is generically isomorphic. Since $\tilde{X} \cap \tilde{\Lambda}_{Y} \in\left|\mathcal{O}_{\tilde{\Lambda}_{Y}}(\mu) \otimes \bar{\tau}_{Y}^{*} \mathcal{L}\right|$, this means that $\operatorname{deg} \mathcal{L}=1$ and $H^{0}(Y, \mathcal{L}) \neq 0$, which proves (1), and also the uniqueness of the component \tilde{D} in (2), which proves (3).

Now we prove (1) and (3) in case $\operatorname{dim} Y=\bar{n} \geq 2$ by the induction on \bar{n}. For a general hyperplane $H \subseteq \mathbb{P}^{N}$ containing Λ and for $\bar{H}_{\Lambda}:=\pi_{\Lambda}(H \backslash \Lambda)$, by (2.4), $X_{\bar{H}_{\Lambda}}:=$ $(X \cap H)_{\text {red }}$ is a nondegenerate projective variety in H with $\Lambda \cap \operatorname{Sm} X_{\bar{H}_{\Lambda}} \neq \emptyset$ which is a birational-divisor of type $\left(\mu,\left.\mathcal{L}\right|_{Y_{\bar{H}_{\Lambda}}}\right)$ on the conical scroll $\mathbf{F}_{Y_{\bar{H}_{\Lambda}}}^{\Lambda}$ with vertex Λ over the $(\bar{n}-1)$-dimensional smooth projective variety $Y_{\bar{H}_{\Lambda}}:=Y \times_{\mathbb{P}^{\bar{N}}} \bar{H}_{\Lambda}$. By the induction, $X_{\bar{H}_{\Lambda}}$ satisfies (1) and (3). Hence $\left(\mathcal{L}, \mathcal{O}_{Y}(1)^{\bar{n}-1}\right)=\left(\left.\mathcal{L}\right|_{Y_{\bar{H}_{\Lambda}}}, \mathcal{O}_{Y_{\bar{H}_{\Lambda}}}(1)^{\bar{n}-2}\right)=1$. Since $\tilde{X} \cap \tilde{\Lambda}_{Y} \in\left|\mathcal{O}_{\tilde{\Lambda}_{Y}}(\mu) \otimes \bar{\tau}_{Y}^{*} \mathcal{L}\right|$ is a nonzero effective divisor, \mathcal{L} has a nonzero global section, which proves (1).

To prove (3) in case $\bar{n} \geq 2$, note that if D is an irreducible component of $\tilde{X} \cap \tilde{\Lambda}_{Y}$ with $\operatorname{dim} \nu\left(\tau_{Y}(D)\right) \geq \operatorname{dim} \bar{X}_{\Lambda}-1=\bar{n}-1 \geq 1$, then the pull-back $D_{\bar{H}_{\Lambda}}:=D \times_{\mathbb{P}^{\bar{N}}} \bar{H}_{\Lambda}$ is irreducible and reduced. Indeed, by Bertini's Theorem ([9, (3.4.9) and (3.4.10)]), $D_{\bar{H}_{\Lambda}}$ is irreducible and reduced unless $\operatorname{dim} \nu\left(\tau_{Y}(D)\right)=1$. If $\operatorname{dim} \nu\left(\tau_{Y}(D)\right)=1$, then $\bar{n}=2$ and $D \cong \tau_{Y}(D) \times \Lambda$, and consequently $D_{\bar{H}_{\Lambda}} \cong \tau_{Y}(D)_{\bar{H}_{\Lambda}} \times \Lambda$ for $\tau_{Y}(D)_{\bar{H}_{\Lambda}}:=$ $\tau_{Y}(D) \times_{\mathbb{P}^{\bar{N}}} \bar{H}_{\Lambda}$, which is reduced by the generality of \bar{H}_{Λ}; hence $\operatorname{deg} \tau_{Y}(D)_{\bar{H}_{\Lambda}}=1$ by (3) in case $\bar{n}=1$. This implies the irreducibility of $D_{\bar{H}_{\Lambda}}$ for $\operatorname{dim} \nu\left(\tau_{Y}(D)\right)=1$. To prove the uniqueness of \tilde{D} for $\bar{n} \geq 2$, by the contradiction, we assume that $\tilde{D}^{\prime}(\neq \tilde{D})$ is another irreducible component of $\tilde{X} \cap \tilde{\Lambda}_{Y}$ such that $\operatorname{dim} \nu\left(\tau_{Y}\left(\tilde{D}^{\prime}\right)\right) \geq \operatorname{dim} \bar{X}_{\Lambda}-1$ and $\varphi_{Y}\left(\tilde{D}^{\prime}\right)=\Lambda$. Then $\tilde{D}_{\bar{H}_{\Lambda}}^{\prime} \neq \tilde{D}_{\bar{H}_{\Lambda}}$ satisfy the same property, which contradicts the uniqueness of $\tilde{D}_{\bar{H}_{\Lambda}}$. The second part is clear since if $\operatorname{ord}_{\tilde{D}}\left(\tilde{X} \cap \tilde{\Lambda}_{Y}\right)>1$, then $\operatorname{ord}_{\tilde{D}_{\bar{H}_{\Lambda}}}\left(\tilde{X}_{\bar{H}_{\Lambda}} \cap\left(\tilde{\Lambda}_{Y}\right)_{\bar{H}_{\Lambda}}\right)>1$ for $\left(\tilde{\Lambda}_{Y}\right)_{\bar{H}_{\Lambda}}:=\left(\tilde{\Lambda}_{Y}\right) \times_{\mathbb{P}^{\bar{N}}} \bar{H}_{\Lambda}$.

We conclude this section by proving the following lemma about the singular locus of X on Λ.

Lemma 2.5. Under (2.2), assume that $\bar{n} \geq 1$ and $l \geq 1$. If $u \in \Lambda$ is a point such that $\{u\} \times Y \subseteq \tilde{X} \cap \tilde{\Lambda}_{Y}$ in $\tilde{\Lambda}_{Y}$, then $u \in \Lambda \cap \operatorname{Sing} X$.

Proof. To the contrary, suppose $u \in \operatorname{Sm} X$. Take a general hyperplane H containing Λ and set $\bar{H}_{\Lambda}:=\pi_{\Lambda}(H \backslash \Lambda)$. We may assume $T_{u}(X) \nsubseteq H$ and $X \cap H$ is smooth at u, and hence $X_{\bar{H}_{\Lambda}}:=(X \cap H)_{\text {red }}$ is smooth at u. If $\bar{n} \geq 2$, replacing X by
$X_{\bar{H}_{\Lambda}}$ by Lemma 2.4 we may assume $\bar{n}=1$, since $\tilde{X}_{\bar{H}_{\Lambda}}=\tilde{X} \times_{\mathbb{P}^{\bar{N}}} \bar{H}_{\Lambda}$ contains $\{u\} \times Y_{\bar{H}_{\Lambda}}$. Then H contains a general point $x \in X$ so that, by (1.1), the closure $\overline{(X \cap\langle\Lambda, x\rangle) \backslash \Lambda}$ is a hypersurface in $\langle\Lambda, x\rangle$ not containing Λ, isomorphic to $\tilde{X} \cap$ $\tau_{Y}^{-1}\left(\nu^{-1}\left(\pi_{\Lambda}(x)\right)\right)$ by φ_{Y}. Hence it passes through u by assumption $\{u\} \times Y \subseteq \tilde{X} \cap$ $\tilde{\Lambda}_{Y}$. Thus $X \cap H$ has two distinct components through u, Λ, and $\overline{(X \cap\langle\Lambda, x\rangle) \backslash \Lambda}$. This contradicts the smoothness of $X \cap H$ at u.

3. The structure of projective varieties with nonbirational inner centers of constant partial Gauss maps: Proof of Theorem 4

Proof of Theorem 4. By Proposition 2.1, X is a birational-divisor of type (μ, \mathcal{L}) $(\mu \geq 2, \mathcal{L} \in \operatorname{Pic} Y)$ on the conical scroll \mathbf{F}_{Y}^{Λ} with vertex Λ over a smooth $(n-l)$ dimensional projective variety Y such that (6) holds. Moreover, (1) and (4) hold by Proposition 2.3 and Lemma 1.1.
(2) If an irreducible component of $\tilde{X} \cap \tilde{\Lambda}_{Y} \in\left|\mathcal{O}_{\tilde{\Lambda}_{Y}}(\mu) \otimes \bar{\tau}_{Y}^{*} \mathcal{L}\right|$ dominates both Y and Λ, then it must be the unique divisor \tilde{D} in (3) of Proposition 2.3, but \tilde{D} does not dominate Y by our assumption that $\left.\gamma\right|_{\Lambda}$ is constant and (2) of Proposition 2.3. a contradiction. Hence each irreducible component D of $\tilde{X} \cap \tilde{\Lambda}_{Y}$ is of the form $D=\varphi_{Y}(D) \times Y$ or $D=\Lambda \times \tau_{Y}(D)$. This means (2).
(3) For the decomposition $(w)_{0}=\sum_{i=0}^{r} D_{i}$ into prime divisors D_{i} on Y, we may assume that the unique divisor \tilde{D} in (3) of Proposition 2.3 is $\bar{\tau}_{Y}^{*}\left(D_{0}\right)\left(=\Lambda \times D_{0}\right)$ with $\operatorname{dim} \nu\left(D_{0}\right)=\operatorname{dim} \bar{X}_{\Lambda}-1$. It follows from $\left(\mathcal{L}, \mathcal{O}_{Y}(1)^{n-l-1}\right)=1$ that $\operatorname{dim} \nu\left(D_{i}\right)<$ $\operatorname{dim} \nu\left(D_{0}\right)$ for $i \geq 1$ if $r \geq 1$. Thus we have only to show that $\nu\left(D_{i}\right) \subseteq \nu\left(D_{0}\right)$ for every $i \geq 1$. By contradiction, we assume that $\nu\left(D_{i}\right) \nsubseteq \nu\left(D_{0}\right)$ for some $i \geq 1$. Set $s:=\max \left\{\operatorname{dim} \nu\left(D_{i}\right) \mid \nu\left(D_{i}\right) \nsubseteq \nu\left(D_{0}\right), i \geq 1\right\}$. By taking general hyperplane sections of $\bar{X}_{\Lambda} \subseteq \mathbb{P}^{\bar{N}}$ in s-times as in Lemma 2.4, and by (possibly) replacing the decomposition of $(w)_{0} \in|\mathcal{L}|$, we may assume that there exists a prime divisor $D_{i_{0}}$ ($i_{0}>0$) such that $D_{i_{0}} \cap D_{0}=\emptyset$ and $\nu\left(D_{i_{0}}\right)$ is a point which is not contained in $\nu\left(D_{0}\right)$. Hence $\left(\Lambda \times D_{0}\right) \cap\left(\Lambda \times D_{i_{0}}\right)=\emptyset$ in $\tilde{\Lambda}_{Y}$, and the birational projective morphism $\tilde{X} \rightarrow X$ has non-connected fibres at general points of $\Lambda \cap \operatorname{Sm} X$. This is a contradiction by Zariski's Main Theorem ([15, III.11.4]).
(5) If $l=0$, the assertion is clear since $\Lambda \cap \operatorname{Sing} X=(g)_{0}=\emptyset$. If $l \geq 1$, then $(g)_{0} \subseteq \Lambda \cap \operatorname{Sing} X$ by Lemma 2.5. Hence $\operatorname{dim} \operatorname{Sing} X \geq \operatorname{dim} \Lambda \cap \operatorname{Sing} X \geq \operatorname{dim}(g)_{0}=$ $\operatorname{dim} \Lambda-1$.

4. The construction of projective varieties with nonbirational inner centers of constant partial Gauss maps: Proof of Theorem 5

First we describe the section rings of a conical scroll and its birational-divisor.
(4.1). Keep the notation and assumption as in (2.2). Let T_{0}, \ldots, T_{N} be the homogeneous coordinates of \mathbb{P}^{N}. Let $S=\mathbb{k}\left[T_{0}, \ldots, T_{N}\right]$ be the homogeneous coordinate ring of \mathbb{P}^{N}. Since we consider the target $\mathbb{P}^{\bar{N}}$ of the linear projection $\pi_{\Lambda}: \mathbb{P}^{N} \backslash \Lambda \rightarrow \mathbb{P}^{\bar{N}}$ from Λ to be a subspace of \mathbb{P}^{N} disjoint from Λ, we may assume that $H^{0}\left(\mathcal{I}_{\mathbb{P}^{\mathbb{N}}}(1)\right)$ is spanned by T_{0}, \ldots, T_{l} and $H^{0}\left(\mathcal{I}_{\Lambda}(1)\right)$ is spanned by T_{l+1}, \ldots, T_{N}. We may consider that $Z_{i}:=\left.T_{i}\right|_{\Lambda}(i=0, \ldots, l)$ are the homogeneous coordinates of Λ and that $\left.T_{i}\right|_{\Lambda}=0(i \geq l+1)$. Also we may consider that $\left.T_{i}\right|_{\mathbb{P}^{\bar{N}}}(i=l+1, \ldots, N)$ are the homogeneous coordinates of $\mathbb{P}^{\bar{N}}$ and that $\left.T_{i}\right|_{\mathbb{P}_{\bar{N}}}=0(i \leq l)$. The surjection

$$
H^{0}\left(\mathcal{O}_{\mathbb{P}^{N}}(1)\right) \otimes \mathcal{O}_{\mathbb{P}^{\bar{N}}} \rightarrow H^{0}\left(\mathcal{O}_{\Lambda}(1)\right) \otimes \mathcal{O}_{\mathbb{P}^{\bar{N}}} \oplus \mathcal{O}_{\mathbb{P}^{\bar{N}}}(1)=: \mathcal{F}
$$

induced from the isomorphism $H^{0}\left(\mathcal{O}_{\mathbb{P}^{N}}(1)\right) \xrightarrow{\sim} H^{0}\left(\mathcal{O}_{\Lambda}(1)\right) \oplus H^{0}\left(\mathcal{O}_{\mathbb{P}^{N}}(1)\right)$ corresponds to $\mathbf{F}^{\Lambda} \subseteq \mathbb{P}^{N} \times \mathbb{P}^{\bar{N}}$. Let Z_{l+1} be the formal basis of the subbundle $\mathcal{O}_{\mathbb{P}^{\bar{N}}}(1)$ of \mathcal{F} so that $\mathcal{O}_{\mathbb{R}^{\tilde{N}}}(1)=\mathcal{O}_{\mathbb{P}^{\tilde{N}}}(1) Z_{l+1}$. Let $\mathcal{F}_{Y}=H^{0}\left(\mathcal{O}_{\Lambda}(1)\right) \otimes \mathcal{O}_{Y} \oplus \mathcal{O}_{Y}(1) Z_{l+1}$ be the pull-back of \mathcal{F} to Y. Hence $\mathbf{F}_{Y}^{\Lambda}=\mathbb{P}_{Y}\left(\mathcal{F}_{Y}\right)$ and $\mathcal{O}_{\mathbf{F}_{Y}^{\Lambda}}(1)=\varphi_{Y}^{*} \mathcal{O}_{\mathbb{P}^{N}}(1)$. Let $K(Y)$ be the function field of Y. The section ring $S_{\mathbf{F}_{Y}^{A}}=\bigoplus_{m \geq 0}\left(S_{\mathbf{F}_{Y}^{A}}\right)_{m}$ is the graded subring of $K(Y)\left[Z_{0}, \ldots, Z_{l+1}\right]$ with $\operatorname{deg}\left(Z_{i}\right)=1(i=0, \ldots, l+1)$ such that

$$
\left(S_{\mathbf{F}_{\hat{Y}}^{\hat{~}}}\right)_{m}=H^{0}\left(\mathbf{F}_{Y}^{\Lambda}, \mathcal{O}_{\mathbf{F}_{\hat{Y}}^{\lambda}}(m)\right)=H^{0}\left(Y, \operatorname{Sym}^{m}\left(\mathcal{F}_{Y}\right)\right)
$$

For the morphism $\nu: Y \rightarrow \mathbb{P}^{\bar{N}}$, we set $\left.f_{i}:=\nu^{*}\left(\left.T_{i}\right|_{\mathbb{P}^{\bar{N}}}\right) \in H^{0}\left(\mathcal{O}_{Y}(1)\right)\right)(i=l+$ $1, \ldots, N)$. Then the birational-embedding $\varphi_{Y}: \mathbf{F}_{Y}^{\Lambda} \rightarrow \mathbb{P}^{N}$ is defined by

$$
\begin{equation*}
\varphi_{Y}^{*}\left[T_{0}, \ldots, T_{N}\right]=\left[Z_{0}, \ldots, Z_{l}, f_{l+1} Z_{l+1}, \ldots, f_{N} Z_{l+1}\right] \tag{4.1.1}
\end{equation*}
$$

and the graded homomorphism $\varphi_{Y}^{*}: S \rightarrow S_{\mathbf{F}_{\hat{Y}}^{\wedge}}$ is given by (4.1.1). Thus the homogenous coordinate ring R of the cone Cone $(\Lambda, \nu(Y))$ over $\nu(Y)$ with vertex Λ is given by

$$
R=\operatorname{Im}\left(\varphi_{Y}^{*}\right)=\mathbb{k}\left[Z_{0}, \ldots, Z_{l}, f_{l+1} Z_{l+1}, \ldots, f_{N} Z_{l+1}\right] \subseteq S_{\mathbf{F}_{\hat{Y}}^{A}}
$$

since $\operatorname{Cone}(\Lambda, \nu(Y))=\varphi_{Y}\left(\mathbf{F}_{Y}^{\Lambda}\right)$. Note that $S_{\mathbf{F}_{Y}^{\Lambda}}$ is a finitely generated R-module since $\varphi_{Y *} \mathcal{O}_{S_{\mathbf{F}_{\hat{Y}}}}$ is a coherent $\mathcal{O}_{\operatorname{Cone}\left(\Lambda, \bar{X}_{\Lambda}\right)}$-module. For each element

$$
F \in K(Y)\left[Z_{0}, \ldots, Z_{l+1}\right]
$$

we define the Z_{l+1}-order of F by

$$
\operatorname{ord}_{Z_{l+1}}(F):=\max \left\{m \geq 0 \mid F=Z_{l+1}^{m} \cdot Q \text { for some } Q \in K(Y)\left[Z_{0}, \ldots, Z_{l+1}\right]\right\}
$$

In particular, $\operatorname{ord}_{Z_{l+1}}(0)=+\infty$. If we set

$$
M:=Z_{l+1}^{2} K(Y)\left[Z_{0}, \ldots, Z_{l+1}\right] \cap R
$$

and consider it a graded submodule by $M_{m}=M \cap R_{m}$, then M is the pull-back of the ideal $\left(T_{l+1}, \ldots, T_{N}\right)^{2}$ of S by φ_{Y}^{*}. For nonnegative integers m and e with $m \geq e \geq 0$, set

$$
\begin{aligned}
\left(S_{\mathbf{F}_{\hat{Y}}^{\hat{Y}}}\right)_{m, e} & :=Z_{l+1}^{e} H^{0}\left(Y, \mathcal{O}_{Y}(e)\right) \otimes_{\mathbb{k}} \mathbb{k}\left[Z_{0}, \ldots, Z_{l}\right]_{m-e} \\
R_{m, e} & :=\mathbb{k}\left[f_{l+1} Z_{l+1}, \ldots, f_{N} Z_{l+1}\right]_{e} \otimes_{\mathbb{k}} \mathbb{k}\left[Z_{0}, \ldots, Z_{l}\right]_{m-e} .
\end{aligned}
$$

Hence $\left(S_{\mathbf{F}_{\hat{Y}}}\right)_{m}=\bigoplus_{e=0}^{m}\left(S_{\mathbf{F}_{\hat{Y}}}\right)_{m, e}, R_{m}=\bigoplus_{e=0}^{m} R_{m, e}$, and $M_{m}=\bigoplus_{e=2}^{m} R_{m, e}$. For a nonzero element $p \in\left(S_{\mathbf{F}_{\hat{Y}}^{\wedge}}\right)_{m}$, by p^{*} we denote the component of p in $\left(S_{\mathbf{F}_{\hat{Y}}}\right)_{m, e}$ for $e=\operatorname{ord}_{Z_{l+1}}(p)$.

Let $G_{\tilde{X}} \in H^{0}\left(\mathbf{F}_{Y}^{\Lambda}, \mathcal{O}_{\mathbf{F}_{\hat{Y}}}(\mu) \otimes \tau_{Y}^{*} \mathcal{L}\right)$ be a section with $\left(G_{\tilde{X}}\right)_{0}=\tilde{X}$. For the dual \mathcal{L}^{\vee} of \mathcal{L}, we set

$$
J_{\tilde{X}}:=\bigoplus_{m \geq 0} B_{m-\mu} \cdot G_{\tilde{X}} \subseteq S_{\mathbf{F}_{Y}^{\hat{Y}}} \quad \text { for } \quad B_{m}:=H^{0}\left(\mathbf{F}_{Y}^{\Lambda}, \mathcal{O}_{\mathbf{F}_{\hat{Y}}^{\hat{~}}}(m) \otimes \tau_{Y}^{*} \mathcal{L}^{\vee}\right)
$$

which have the decompositions $B_{m}=\bigoplus_{e=0}^{m} B_{m, e}$ for

$$
B_{m, e}:=Z_{l+1}^{e} H^{0}\left(Y, \mathcal{O}_{Y}(e) \otimes \mathcal{L}^{\vee}\right) \otimes_{\mathbb{k}} \mathbb{k}\left[Z_{0}, \ldots, Z_{l}\right]_{m-e}
$$

Let $S_{\tilde{X}}=\bigoplus_{m \geq 0} H^{0}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}(m)\right)$ be the section ring of \tilde{X}. Then $0 \rightarrow J_{\tilde{X}} \rightarrow$ $S_{\mathbf{F}_{\hat{Y}}} \rightarrow S_{\tilde{X}}$ is exact. The homogeneous ideal I_{X} of $X\left(=\varphi_{Y}(\tilde{X})\right) \subseteq \mathbb{P}^{N}$ is given by $I_{X}=\left(\varphi_{Y}^{*}\right)^{-1}\left(J_{\tilde{X}}\right)$, since the ideal sheaf \mathcal{I}_{X} of X is the kernel of $\mathcal{O}_{\mathbb{P}^{N}} \rightarrow \varphi_{Y *} \mathcal{O}_{\tilde{X}}$.

Proof of Theorem [5. By the assumption (2) in Theorem4 we have $\left.G_{\tilde{X}}\right|_{\tilde{\Lambda}}=g w$ for $g \in H^{0}\left(\Lambda, \mathcal{O}_{\Lambda}(\mu)\right)=\mathbb{k}\left[Z_{0}, \ldots, Z_{l}\right]_{\mu}$ and $w \in H^{0}(Y, \mathcal{L})$, and hence

$$
\begin{equation*}
G_{\tilde{X}}=g w-h \tag{4.1.2}
\end{equation*}
$$

for some $h \in H^{0}\left(\mathbf{F}_{Y}^{\Lambda}, \mathcal{O}_{\mathbf{F}_{\hat{Y}}^{\wedge}}(\mu) \otimes \tau_{Y}^{*} \mathcal{L}\right)$ with $\operatorname{ord}_{Z_{l+1}}(h) \geq 1$. To prove Theorem 5, assuming the divisor $D_{0}:=(w)_{0} \in|\mathcal{L}|$ is irreducible, we have only to show that

$$
\begin{equation*}
\Lambda \cap \operatorname{Sm} X \supseteq \Lambda \backslash(g)_{0} \quad(\neq \emptyset) . \tag{4.1.3}
\end{equation*}
$$

In fact, from (4.1.3) it follows that $\Lambda \cap \operatorname{Sm} X=\Lambda \backslash(g)_{0}$ since $(g)_{0} \subseteq \Lambda \cap \operatorname{Sing} X$ by Lemma 2.5, and hence if $\mu \geq 2$ furthermore, then $\Lambda \backslash(g)_{0} \subseteq \mathcal{C}(X)$ by Proposition 2.1 and $\left.\gamma\right|_{\Lambda}$ is constant since the prime divisor $\tilde{D}\left(\subseteq \tilde{X} \cap \tilde{\Lambda}_{Y}\right)$ in Proposition 2.3 is $D_{0} \times \Lambda\left(\subseteq \tilde{\Lambda}_{Y}\right)$. To prove (4.1.3), we will find homogeneous polynomials defining X which show the smoothness of X along $\Lambda \backslash(g)_{0}$.

Before starting the proof, for $\mathcal{O}_{D_{0}}(k):=\left.\mathcal{O}_{Y}(k)\right|_{D_{0}}$, we claim that $H^{0}\left(\mathcal{O}_{D_{0}}(k)\right) \cong$ $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}-1}(k)\right)(\bar{n}=n-l)$ for every $k \geq 0$. Indeed, $\nu\left(D_{0}\right) \cong \mathbb{P}^{\bar{n}-1}$ and $\bar{\nu}: D_{0} \rightarrow$ $\nu\left(D_{0}\right)$ is birational since $\left(\mathcal{L}, \mathcal{O}_{Y}(1)^{\bar{n}-1}\right)=1$ and D_{0} is irreducible. Hence $\bar{\nu}_{*} \mathcal{O}_{D_{0}} \cong$ $\mathcal{O}_{\mathbb{P}^{n}-1}$ by Zariski's Main Theorem ([15, III.11.4]). Consequently $H^{0}\left(\mathcal{O}_{D_{0}}(k)\right) \cong$ $H^{0}\left(\bar{\nu}_{*} \mathcal{O}_{D_{0}}(k)\right) \cong H^{0}\left(\mathcal{O}_{\mathbb{P}_{\bar{n}-1}}(k)\right)$ by the projection formula. Thus we may assume that $\left.f_{l+1}\right|_{D_{0}}, \ldots,\left.f_{n}\right|_{D_{0}}$ consist of a basis of $H^{0}\left(D_{0}, \mathcal{O}_{D_{0}}(1)\right) \cong H^{0}\left(\mathcal{O}_{\mathbb{P}^{\bar{n}}-1}(1)\right)$ and that $\left.f_{n+1}\right|_{D_{0}}=\cdots=\left.f_{N}\right|_{D_{0}}=0$ after a change of the basis. Let $\mathbb{k}\left[f_{l+1}, \ldots, f_{n}\right]$ be the graded \mathbb{k}-subalgebra of the section ring $\bigoplus_{k \geq 0} H^{0}\left(Y, \mathcal{O}_{Y}(k)\right)$ generated by f_{l+1}, \ldots, f_{n}, which is the polynomial ring with $n-l$ variables. From the exact sequence

$$
0 \rightarrow H^{0}\left(Y, \mathcal{O}_{Y}(e) \otimes \mathcal{L}^{\vee}\right) \xrightarrow{\times w} H^{0}\left(Y, \mathcal{O}_{Y}(e)\right) \xrightarrow{\left.\right|_{D_{0}}} H^{0}\left(D_{0}, \mathcal{O}_{D_{0}}(e)\right)
$$

in which the subspace $\mathbb{k}\left[f_{l+1}, \ldots, f_{n}\right]_{e} \subseteq H^{0}\left(Y, \mathcal{O}_{Y}(e)\right)$ spanned by monomials of degree e in f_{l+1}, \ldots, f_{n} is mapped isomorphically onto $H^{0}\left(\mathcal{O}_{D_{0}}(e)\right)$ by $\left.\right|_{D_{0}}$, we have decompositions $H^{0}\left(Y, \mathcal{O}_{Y}(e)\right)=H^{0}\left(Y, \mathcal{O}_{Y}(e) \otimes \mathcal{L}^{\vee}\right) w \oplus \mathbb{k}\left[f_{l+1}, \ldots, f_{n}\right]_{e}$ and consequently

$$
\begin{equation*}
\left(S_{\mathbf{F}_{\hat{Y}}}\right)_{m, e}=B_{m, e} w \oplus\left(Z_{l+1}^{e} \mathbb{k}\left[f_{l+1}, \ldots, f_{n}\right]_{e} \otimes_{\mathbb{k}} \mathbb{k}\left[Z_{0}, \ldots, Z_{l}\right]_{m-e}\right), \tag{4.1.4}
\end{equation*}
$$

where the second summand is a subspace of $R_{m, e}$.
To prove (4.1.3), for each $j=n+1, \ldots, N$, we will find a homogenous polynomial

$$
\begin{equation*}
T_{j} g^{k_{j}}\left(T_{0}, \ldots, T_{l}\right)+F_{j} \in I_{X} \tag{4.1.5}
\end{equation*}
$$

for some integer $k_{j}>0$ and $F_{j} \in\left(T_{l+1}, \ldots, T_{N}\right)^{2} \subseteq S$. In fact, (4.1.5) implies that $T_{j}(j=n+1, \ldots, N)$ are defining equations of the tangent space $T_{y}(X) \subseteq \mathbb{P}^{N}$ at every $y \in \Lambda \backslash(g)_{0}$, and hence $\operatorname{dim} T_{y}(X) \leq n$, which means X is smooth at y.

From now on, we fix $j(j=n+1, \ldots, N)$. To obtain (4.1.5), it suffices to show that for some integer $k_{j}>0$, there exist $u \in\left(J_{\tilde{X}}\right)_{k_{j} \mu+1}$ and $v \in M_{k_{j} \mu+1}$ such that

$$
\begin{equation*}
f_{j} Z_{l+1} g^{k_{j}}+u+v=0 \quad \in\left(S_{\mathbf{F}_{\hat{Y}}^{\hat{Y}}}\right)_{k_{j} \mu+1} . \tag{4.1.6}
\end{equation*}
$$

In fact, if so, we have $f_{j} Z_{l+1} g^{k_{j}}+v=-u \in J_{\tilde{X}} \cap R$ and $F_{j} \in\left(T_{l+1}, \ldots, T_{N}\right)^{2}(\subseteq S)$ such that $v=\varphi_{Y}^{*}\left(F_{j}\right)$ and hence (4.1.5) holds since $f_{j} Z_{l+1} g^{k_{j}}=\varphi_{Y}^{*}\left(T_{j} g^{k_{j}}\left(T_{0}, \ldots, T_{l}\right)\right)$.

To obtain (4.1.6), noting that there exists $q \in B_{1,1}$ such that $f_{j} Z_{l+1}=q w \in$ $\left(S_{\mathbf{F}_{\hat{Y}}^{\wedge}}\right)_{1,1}$ since $\left.f_{j}\right|_{D_{0}}=0$, and setting $p:=q w$, we start with $q G_{\tilde{X}}=p g-q h$ obtained from (4.1.2). Since $q h \in\left(S_{\mathbf{F}_{\hat{Y}}}\right)_{\mu+1}$ in the left-hand side has the decomposition $q h=-v_{1}+q_{1} w$ for $v_{1} \in M_{\mu+1}$ and $q_{1} \in B_{\mu+1}$ with $\operatorname{ord}_{Z_{l+1}}\left(q_{1}\right) \geq \operatorname{ord}_{Z_{l+1}}(q h) \geq 2$ by (4.1.4), setting $p_{1}:=q_{1} w \in\left(S_{\mathbf{F}_{\hat{Y}}^{A}}\right)_{\mu+1}$ and $u_{1}:=-q G_{\tilde{X}} \in\left(J_{\tilde{X}}\right)_{\mu+1}$, we have
$p_{1}=p g+u_{1}+v_{1}$. If $p_{1}=0$, we have (4.1.6). If $p_{1} \neq 0$, our argument proceeds by the following induction.

Claim. For a positive integer k, suppose that there exist nonzero $p_{i} \in\left(S_{\mathbf{F}_{\hat{Y}}}\right)_{i \mu+1}$ $(i=1, \ldots, k)$ such that $p_{i}=q_{i} w=p g^{i}+u_{i}+v_{i}$ with $u_{i} \in\left(J_{\tilde{X}}\right)_{i \mu+1}, v_{i} \in M_{i \mu+1}$, $q_{i} \in B_{i \mu+1}$, and with $\operatorname{ord}_{Z_{l+1}}\left(p_{1}\right)<\operatorname{ord}_{Z_{l+1}}\left(p_{2}\right)<\cdots<\operatorname{ord}_{Z_{l+1}}\left(p_{k}\right)$. Then there exists $p_{k+1} \in\left(S_{\mathbf{F}_{\hat{Y}}^{\Lambda}}\right)_{(k+1) \mu+1}$ such that
(1) $p_{k+1}=q_{k+1} w=p g^{k+1}+u_{k+1}+v_{k+1}$ for some $q_{k+1} \in B_{(k+1) \mu+1}, u_{k+1} \in$ $\left(J_{\tilde{X}}\right)_{(k+1) \mu+1}$, and $v_{k+1} \in M_{(k+1) \mu+1}$;
(2) $\operatorname{ord}_{Z_{l+1}}\left(p_{k+1}\right)>\operatorname{ord}_{Z_{l+1}}\left(p_{k}\right)$; and
(3) each nonzero homogeneous part of p_{k+1} with respect to the Z_{l+1}-order is not contained in $R+R p_{1}^{*}+\cdots+R p_{k}^{*}$.

If the claim is proved, we must have $p_{k_{j}}=0$ for some integer $k_{j}>0$, i.e., we have $u_{k_{j}} \in\left(J_{\tilde{X}}\right)_{\left(k_{j}\right) \mu+1}, v_{k_{j}} \in M_{k_{j} \mu+1}$, and $q_{k_{j}} \in B_{k_{j} \mu+1}$ such that $p g^{k_{j}}+u_{k_{j}}+v_{k_{j}}=0$, and hence (4.1.6) holds; otherwise, there exists a strictly increasing sequence

$$
R \subsetneq R+R p_{1}^{*} \subsetneq R+R p_{1}^{*}+R p_{2}^{*} \subsetneq \cdots
$$

of R-submodules of the finite R-module $S_{\mathbf{F}_{\hat{Y}}}$, which is impossible.
Now we will prove the Claim. From (4.1.2) and $q_{k} w=p_{k}$ we have

$$
\begin{equation*}
q_{k} G_{\tilde{X}}=p_{k} g-q_{k} h \tag{4.1.7}
\end{equation*}
$$

We make a division of $q_{k} h \in\left(S_{\mathbf{F}_{\hat{Y}}}\right)_{(k+1) \mu+1}$ by $\left\{p_{1}, \ldots, p_{k}\right\}$: There exist $b_{0} \in$ $R_{(k+1) \mu+1}, b_{i} \in R_{(k+1-i) \mu}(i=1, \ldots, k)$, and $q_{k+1} \in B_{(k+1) \mu+1}$ such that
(i) $q_{k} h=b_{0}+b_{1} p_{1}+b_{2} p_{2}+\cdots+b_{k} p_{k}+q_{k+1} w$;
(ii) each nonzero homogeneous part of $q_{k+1} w$ with respect to the Z_{l+1}-order is not contained in $R+R p_{1}^{*}+\cdots+R p_{k}^{*}$;
(iii) $\operatorname{ord}_{Z_{l+1}}\left(b_{0}\right), \operatorname{ord}_{Z_{l+1}}\left(q_{k+1} w\right) \geq \operatorname{ord}_{Z_{l+1}}\left(q_{k} h\right)$, and $\operatorname{ord}_{Z_{l+1}}\left(b_{i}\right) \geq 1(1 \leq i \leq$ $k)$.
Once we have the division with (i)-(iii), setting $p_{k+1}:=q_{k+1} w$, from (4.1.7) and (i) we obtain

$$
p_{k+1}\left(=q_{k+1} w\right)=p_{k} g-q_{k} G_{\tilde{X}}-\left(b_{0}+b_{1} p_{1}+b_{2} p_{2}+\cdots+b_{k} p_{k}\right)
$$

with (2) and (3). Taking into account that $p_{i}=p g^{i}+u_{i}+v_{i}$ and setting

$$
\begin{aligned}
& u_{k+1}:=u_{k} g-q_{k} G_{\tilde{X}}-\left(b_{1} u_{1}+b_{2} u_{2}+\cdots+b_{k} u_{k}\right) \in\left(J_{\tilde{X}}\right)_{(k+1) \mu+1} \quad \text { and } \\
& v_{k+1}:=v_{k} g-b_{0}-b_{1}\left(p g+v_{1}\right)-b_{2}\left(p g^{2}+v_{2}\right)-\cdots-b_{k}\left(p g^{k}+v_{k}\right) \in R_{(k+1) \mu+1}
\end{aligned}
$$

we have $p_{k+1}=p g^{k+1}+u_{k+1}+v_{k+1}$. Moreover $v_{k+1} \in M_{(k+1) \mu+1}$ by looking at the Z_{l+1}-order from (iii) and the assumption. Consequently we have the Claim.

To obtain the division, first set $b_{0}:=0, b_{1}:=0, \ldots, b_{k}:=0, q_{k+1}:=0, r:=q_{k} h$, and $e_{i}:=\operatorname{ord}_{Z_{l+1}}\left(p_{i}\right)(i=1, \ldots, k)$. While $r \neq 0$, for $e=\operatorname{ord}_{Z_{l+1}}(r)$, do the following process: If $r^{*}=a_{0}+a_{1} p_{1}^{*}+\cdots+a_{k} p_{k}^{*}$ for some $a_{0} \in R_{(k+1) \mu+1, e}$ and $a_{i} \in R_{(k+1-i) \mu, e-e_{i}}(i=1, \ldots, k)$, then add a_{i} to $b_{i}(i=0, \ldots, k)$ and $-\left(a_{0}+a_{1} p_{1}+\right.$ $\cdots+a_{k} p_{k}$) to r; else (i.e., $r^{*} \notin R_{(k+1) \mu+1, e}+R_{k \mu, e-e_{1}} p_{1}^{*}+\cdots+R_{\mu, e-e_{k}} p_{k}^{*}$) take $a_{0} \in R_{(k+1) \mu+1, e}$ and $c \in B_{(k+1) \mu+1, e}$ such that $r^{*}=a_{0}+c w$ by (4.1.4) and add a_{0} to b_{0}, c to q_{k+1}, and $-r^{*}$ to r. This process will stop in finite steps, since $\operatorname{ord}_{Z_{l+1}}(r)$ $(\leq(k+1) \mu+1)$ increases after this process. Then (i) and (ii) hold by the choice of b_{i} and q_{k+1}. Moreover, the Z_{l+1}-orders of $b_{0}, b_{i} p_{i}(i=1, \ldots, k)$, and $q_{k+1} w$ are at
least that of $q_{k} h$, and hence $\operatorname{ord}_{Z_{l+1}}\left(b_{i}\right) \geq \operatorname{ord}_{Z_{l+1}}\left(q_{k}\right)-\operatorname{ord}_{Z_{l+1}}\left(p_{i}\right)+\operatorname{ord}_{Z_{l+1}}(h) \geq 1$ $(i=1, \ldots, k)$, which means (iii). This completes the proof of Theorem 5.

Example 4.2. For an integer $\bar{n} \geq 1$, we will give two examples of \bar{n}-dimensional varieties Y and line bundles \mathcal{L} on Y with birational-embedding $\nu: Y \rightarrow \mathbb{P}^{\bar{N}}$ for some \bar{N}. For an integer $l \geq 0$ with $n:=\bar{n}+l \geq 2$ and $N:=\bar{N}+l+1$, consider \mathbb{P}^{N} to be a linear subspace of \mathbb{P}^{N} and let $\Lambda \subseteq \mathbb{P}^{N}$ be an l-dimensional linear subspace disjoint from $\mathbb{P}^{\bar{N}}$. Consider the conical scroll \mathbf{F}_{Y}^{Λ} with birational-embedding φ_{Y} : $\mathbf{F}_{Y}^{\Lambda} \rightarrow \mathbb{P}^{N}$. In the both cases, $\operatorname{dim}_{\mathfrak{k}} H^{0}(Y, \mathcal{L})=1$ and $\left|\mathcal{O}_{\mathbf{F}_{\hat{Y}}}(\mu) \otimes \tau_{Y}^{*} \mathcal{L}\right|$ for $\mu \geq 2$ is not a composite with pencil whose base locus is of codimension ≥ 2. A general member $\tilde{X} \in\left|\mathcal{O}_{\mathbf{F}_{\hat{Y}}^{A}}(\mu) \otimes \tau_{Y}^{*} \mathcal{L}\right|$ is irreducible and reduced by Bertini's Theorem (see [9, (3.4.10)]) satisfying (1) and (2) in Theorem 4, and $X=\varphi_{Y}(\tilde{X})$ satisfies $\mathcal{C}(X) \neq \emptyset$.
(1) Let Y^{\prime} be an \bar{n}-dimensional nondegenerate smooth projective variety in $\mathbb{P}^{\bar{N}+1}$ $(\bar{n} \geq 2)$. Let $\sigma: Y \rightarrow Y^{\prime}$ be the blowing up of Y^{\prime} at a smooth point y not in $\mathcal{C}\left(Y^{\prime}\right)$. The linear projection of Y^{\prime} from y to $\mathbb{P}^{\bar{N}}$ induces a nondegenerate birationalembedding $\nu: Y \rightarrow \mathbb{P}^{\bar{N}}$. Let \mathcal{L} be the line bundle on Y of the exceptional divisor of σ. Then $\left(\mathcal{L}, \mathcal{O}_{Y}(1)^{\bar{n}-1}\right)=1$ and $\operatorname{dim}_{\mathfrak{k}} H^{0}(Y, \mathcal{L})=1$.
(2) Let Y be an \bar{n}-dimensional projective bundle over a smooth projective curve C of genus $g \geq 1$ whose tautological line bundle defines a nondegenerate birationalembedding $\nu: Y \rightarrow \mathbb{P}^{\bar{N}}$. Let \mathcal{L} be the line bundle on Y associated with a fibre. Then $\left(\mathcal{L}, \mathcal{O}_{Y}(1)^{\bar{n}-1}\right)=1$ and $\operatorname{dim}_{\mathbb{k}} H^{0}(Y, \mathcal{L})=1$. A simple case is $Y=C$ and \mathcal{L} to be a line bundle of a point of C.

5. Divisors of conical rational scrolls

In this section, we assume the following conditions and study a prime divisor of a conical rational scroll to be a nondegenerate birational-divisor and to have the nonempty smooth locus on the vertex.
(5.1). Let N, n, l be integers with $e:=N-n \geq 2, \bar{n}:=n-l \geq 1$, and $l \geq 0$. Let $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ be the conical rational scroll with an l-dimensional linear subspace $\Lambda \subseteq \mathbb{P}^{N}$ as vertex and with a birational-embedding $\psi: \mathbf{E}_{\mathcal{E}}^{\Lambda} \rightarrow \mathbb{P}^{N}$ for an ample vector bundle \mathcal{E} of rank \bar{n} over \mathbb{P}^{1}. Keep the notation as in Definition 6. We assume that $\mathcal{E}=$ $\bigoplus_{i=l+1}^{n} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)$ for some positive integers $0<a_{l+1} \leq \cdots \leq a_{n}$ and fix formal basis W_{i} of $\mathcal{O}_{\mathbb{P}^{1}}^{\oplus l+1} \oplus \mathcal{E}$ so that $\mathcal{O}_{\mathbb{P}^{1}}^{\oplus l+1} \oplus \mathcal{E}=\left(\bigoplus_{i=0}^{l} \mathcal{O}_{\mathbb{P}^{1}} W_{i}\right) \oplus\left(\bigoplus_{i=l+1}^{n} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right) W_{i}\right)$. Let s, t be homogeneous coordinates of \mathbb{P}^{1}. Let T_{0}, \ldots, T_{N} be homogeneous coordinates of \mathbb{P}^{N}. Assume that $\Lambda \subseteq \mathbb{P}^{N}$ is defined by $T_{l+1}=\cdots=T_{N}=0$. Since $\Lambda=\psi\left(\tilde{\Lambda}_{\mathbb{P}^{1}}\right)$ for $\tilde{\Lambda}_{\mathbb{P}^{1}}=\mathbb{P}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}}^{\oplus l+1}\right) \cong \Lambda \times \mathbb{P}^{1}$, after change of the basis W_{0}, \ldots, W_{l}, we may assume that $\psi^{*}\left(T_{0}\right)=W_{0}, \ldots, \psi^{*}\left(T_{l}\right)=W_{l}$, which can be seen as homogeneous coordinates of Λ. Hence the image $\psi(Y)$ of $Y:=\mathbb{P}_{\mathbb{P}^{1}}(\mathcal{E})\left(\subseteq \mathbf{E}_{\mathcal{E}}^{\Lambda}\right)$ is contained in $\mathbb{P}^{\bar{N}}:=V_{+}\left(T_{0}, \ldots, T_{l}\right)(\bar{N}=N-l-1)$. Note that $\nu:=\left.\psi\right|_{Y}: Y \rightarrow \mathbb{P}^{\bar{N}}$ is a birational-embedding since ν is a birational-embedding if and only if so is ψ. Also ν is nondegenerate since ψ is defined by a subsystem of $\left|\mathcal{O}_{\mathbf{E}_{\hat{\varepsilon}}^{\lambda}}(1)\right|$, and hence ψ is nondegenerate.

Let $X \subseteq \mathbb{P}^{N}$ be the image $\psi(\tilde{X})$ of a prime divisor $\tilde{X} \in\left|\mathcal{O}_{\mathbf{E}_{\tilde{\varepsilon}}^{\lambda}}(\mu) \otimes p^{*} \mathcal{O}_{\mathbb{P}^{1}}(b)\right|$ $(\mu \geq 0, b \in \mathbb{Z})$ of $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ defined by

$$
G_{\tilde{X}}=\sum_{\substack{\mu_{0}, \ldots, n_{n} \geq 0 \\ \mu_{0}+\ldots+\mu_{n}=\mu}} g_{\mu_{0}, \ldots, \mu_{n}} W_{0}^{\mu_{0}} \cdots W_{n}^{\mu_{n}} \in H^{0}\left(\mathbf{E}_{\mathcal{E}}^{\Lambda}, \mathcal{O}_{\mathbf{E}_{\tilde{\mathcal{E}}}^{\hat{A}}}(\mu) \otimes p^{*} \mathcal{O}_{\mathbb{P}^{1}}(b)\right)
$$

for homogeneous polynomials $g_{\mu_{0}, \ldots, \mu_{n}} \in \mathbb{k}[s, t]$ of degree $\mu_{l+1} a_{l+1}+\cdots+\mu_{n} a_{n}+b$. Set

$$
m_{0}:=\min \left\{\mu_{l+1}+\cdots+\mu_{n} \mid g_{\mu_{0}, \ldots, \mu_{n}} \neq 0 \text { for some } \mu_{0}, \ldots, \mu_{l} \geq 0\right\}
$$

Note that $\tilde{\Lambda}_{\mathbb{P}^{1}} \subseteq \tilde{X}$, namely $\left.G_{\tilde{X}}\right|_{\tilde{\Lambda}_{\mathrm{P} 1}}=0$, if and only if m_{0} is positive. Let l_{0} be the length $l(X \cap\langle u, x\rangle)$ for general $u \in \Lambda$ and general $x \in X$.

Proposition 5.2. Keep the notation and the assumption as in (5.1).
(1) Assume X is nondegenerate and birational to \tilde{X} with $\Lambda \cap \operatorname{Sm} X \neq \emptyset$. Then
(a) $\tilde{\Lambda}_{\mathbb{P}^{1}} \nsubseteq \tilde{X}, m_{0}=0, b=1$, and $\mu \geq 1$; or
(b) $\tilde{\Lambda}_{\mathbb{P}^{1}} \subseteq \tilde{X}, m_{0}=1, l=n-2, a_{n-1}=1, b=-a_{n}$, and $\mu \geq 2$.
(2) Assume (a) in (1) holds. Hence $\left.G_{\tilde{X}}\right|_{\tilde{\Lambda}_{\mathbb{P}^{1}}}$ is linear in s, t and we may write

$$
\left.G_{\tilde{X}}\right|_{\tilde{\Lambda}_{\mathbb{P} 1}}=G_{1}\left(W_{0}, \ldots, W_{l}\right) s+G_{2}\left(W_{0}, \ldots, W_{l}\right) t \neq 0
$$

Then X is nondegenerate in \mathbb{P}^{N} and birational to \tilde{X} such that $\Lambda \cap \operatorname{Sm} X=$ $\Lambda \backslash V_{+}\left(G_{1}, G_{2}\right) \neq \emptyset, \mu=l_{0}-1$, and $\operatorname{deg} X=\mu \cdot c_{1}(\mathcal{E})+1$. If we suppose furthermore that $\mu \geq 2$, then Λ is an irreducible component of $\overline{\mathcal{C}}(X)$. Moreover,
(i) if $\operatorname{deg} \operatorname{GCD}\left(G_{1}, G_{2}\right)=\mu$, then the partial Gauss map $\left.\gamma\right|_{\Lambda}$ is constant;
(ii) if $\operatorname{deg} \operatorname{GCD}\left(G_{1}, G_{2}\right)<\mu$, then the partial Gauss map $\left.\gamma\right|_{\Lambda}$ is nonconstant and $\operatorname{dim} \operatorname{Sing} X \geq \operatorname{dim} \Lambda \cap \operatorname{Sing} X=\operatorname{dim} V_{+}\left(G_{1}, G_{2}\right) \geq \operatorname{dim} \Lambda-2$.
(3) Assume (b) in (1) holds. Then X is nondegenerate in \mathbb{P}^{N} and birational to \tilde{X} such that $\Lambda \cap \operatorname{Sm} X \neq \emptyset$ and $\mu=l_{0}$. Hence Λ is an irreducible component of $\overline{\mathcal{C}}(X)$ if $\mu \geq 3$. Moreover,
(i) if $a_{n}>1$, then the partial Gauss map $\left.\gamma\right|_{\Lambda}$ is constant;
(ii) if $a_{n}=1$, then X is the birational image of another prime divisor $\tilde{X}_{1} \in$ $H^{0}\left(\left(\mathbf{E}_{\mathcal{E}}^{\Lambda}\right)_{1}, \mathcal{O}_{\left(\mathbf{E}_{\mathcal{\varepsilon}}^{\Lambda}\right)_{1}}(\mu-1) \otimes p^{*} \mathcal{O}_{\mathbb{P}^{1}}(1)\right)$ on another conical rational scroll $\left(\mathbf{E}_{\mathcal{E}}^{\Lambda}\right)_{1}$ with the same vertex Λ and \mathcal{E} but with different $\psi^{\prime}:\left(\mathbf{E}_{\mathcal{E}}^{\Lambda}\right)_{1} \rightarrow \mathbb{P}^{N}$ such that m_{0} for $G_{\tilde{X}_{1}}$ is 0 (equivalently $\tilde{X}_{1} \not \supset \tilde{\Lambda}_{\mathbb{P}^{1}}\left(\subseteq\left(\mathbf{E}_{\mathcal{E}}^{\Lambda}\right)_{1}\right)$).

To prove (5.2), we consider the conical scroll \mathbf{F}_{Y}^{Λ} for $\Lambda, \mathbb{P}^{\bar{N}}, Y=\mathbb{P}_{\mathbb{P}^{1}}(\mathcal{E})$, and $\nu=\left.\psi\right|_{Y}: Y \rightarrow \mathbb{P}^{\bar{N}}$, and we will relate $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ to \mathbf{F}_{Y}^{Λ}. Keep the notation as in Definition 2 and (4.1) for \mathbf{F}_{Y}^{Λ}. Let $\bar{p}: Y \rightarrow \mathbb{P}^{1}$ be the projection. We fix basis Z_{i} for the bundle \mathcal{F}_{Y} as in (4.1).

Lemma 5.3. Under the assumption (5.1), there exists a birational morphism σ : \mathbf{F}_{Y}^{Λ}
$\rightarrow \mathbf{E}_{\mathcal{E}}^{\Lambda}$ such that $\varphi_{Y}=\psi \circ \sigma, \sigma^{*} \mathcal{O}_{\mathbf{E}_{\tilde{\mathcal{E}}}^{\lambda}}(1)=\mathcal{O}_{\mathbf{F}_{\hat{Y}}^{\Lambda}}(1)$,

$$
\begin{equation*}
\sigma^{*} W_{0}=Z_{0}, \ldots, \sigma^{*} W_{l}=Z_{l}, \sigma^{*} W_{l+1}=Z_{l+1} W_{l+1}, \ldots, \sigma^{*} W_{n}=Z_{l+1} W_{n} \tag{5.3.1}
\end{equation*}
$$

If $n-l=1$, then $Y \cong \mathbb{P}^{1}$ and σ is an isomorphism. If $n-l \geq 2$, then the exceptional set of σ is $\tilde{\Lambda}_{Y}$ which is mapped onto $\tilde{\Lambda}_{\mathbb{P}^{1}}$, and the strict transform \tilde{X}^{\prime} of \tilde{X} by σ is defined by $G_{\tilde{X}^{\prime}} \in H^{0}\left(\mathcal{O}_{\mathbf{F}_{\hat{Y}}^{\wedge}}\left(\mu-m_{0}\right) \otimes \tau_{Y}^{*}\left(\mathcal{O}_{Y}\left(m_{0}\right) \otimes \bar{p}^{*} \mathcal{O}_{\mathbb{P}^{1}}(b)\right)\right)$ such that $\sigma^{*} G_{\tilde{X}}=Z_{l+1}^{m_{0}} G_{\tilde{X}}$,

Proof. The natural homomorphism $\bar{p}^{*} \mathcal{E} \rightarrow \mathcal{O}_{Y}(1)$ and the isomorphism $\bar{p}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}^{\oplus l+1}\right)$ $\cong \mathcal{O}_{Y}^{\oplus l+1}$ induce the surjection $\varepsilon: \bar{p}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}^{\oplus+1} \oplus \mathcal{E}\right) \rightarrow \mathcal{O}_{Y}^{\oplus l+1} \oplus \mathcal{O}_{Y}(1)$. Thus we have the corresponding inclusion

$$
\mathbf{F}_{Y}^{\Lambda}=\mathbb{P}_{Y}\left(\mathcal{O}_{Y}^{\oplus l+1} \oplus \mathcal{O}_{Y}(1)\right) \subseteq \mathbb{P}_{Y}\left(\bar{p}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}^{\oplus l+1} \oplus \mathcal{E}\right)\right)=Y \times_{\mathbb{P}^{1}} \mathbb{P}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}}^{\oplus+1} \oplus \mathcal{E}\right)
$$

From this and the second projection, we have the required morphism σ. By the construction of ε, we have (5.3.1). If $n-l=1$, then $Y=\mathbb{P}^{1}$, and hence σ is isomorphic. Suppose $n-l \geq 2$. By looking at each fibre over \mathbb{P}^{1}, we see that σ is a birational morphism and the exceptional set of σ is $\tilde{\Lambda}_{Y}$. From (5.3.1), we obtain

$$
\sigma^{*} G_{\tilde{X}}=\sum_{\mu_{0}, \ldots, \mu_{n}} g_{\mu_{0} \ldots \mu_{n}} W_{l+1}^{\mu_{l+1}} \cdots W_{n}^{\mu_{n}} Z_{0}^{\mu_{0}} \cdots Z_{l}^{\mu_{l}} Z_{l+1}^{\mu_{l+1}+\cdots+\mu_{n}}
$$

Moreover we recover $G_{\tilde{X}}$ from $\sigma^{*} G_{\tilde{X}}$ by substituting $W_{0}, \ldots, W_{l}, 1$ for Z_{0}, \ldots, Z_{l}, Z_{l+1}. Hence if $\sigma^{*} G_{\tilde{X}}$ is reducible, then $G_{\tilde{X}}$ is reducible or $\sigma^{*} G_{\tilde{X}}$ is divisible by Z_{l+1}. Since $G_{\tilde{X}}$ is irreducible, $\sigma^{*} G_{\tilde{X}} / Z_{l+1}^{m_{0}}$ is irreducible and $\sigma^{*} G_{\tilde{X}}=Z_{l+1}^{m_{0}} G_{\tilde{X}^{\prime}}$.

Proof of Proposition 5.2. Let \tilde{X}^{\prime} be the strict transform of \tilde{X} by σ in Lemma 5.3.
(1) By the assumption, X is the birational image of $\tilde{X}^{\prime} \subseteq \mathbf{F}_{Y}^{\Lambda}$ by $\varphi_{Y}=\psi \circ \sigma$. Note that $\mu-m_{0} \geq 1$. In fact, if $\mu-m_{0}=0$, then X is a cone with vertex Λ, which contradicts the assumption that X is nondegenerate of codimension $e \geq 2$ with $\Lambda \cap \operatorname{Sm} X \neq \emptyset$. By (1) of Proposition 2.3 and our assumption,

$$
\left(\mathcal{O}_{Y}\left(m_{0}\right) \otimes \bar{p}^{*} \mathcal{O}_{\mathbb{P}^{1}}(b), \mathcal{O}_{Y}(1)^{\bar{n}-1}\right)=m_{0} c_{1}(\mathcal{E})+b=1
$$

and $H^{0}\left(\mathcal{O}_{Y}\left(m_{0}\right) \otimes \bar{p}^{*} \mathcal{O}_{\mathbb{P}^{1}}(b)\right) \neq 0$. From the latter, we obtain that $m_{0} a_{n}+b \geq 0$. Hence $m_{0}\left(c_{1}(\mathcal{E})-a_{n}\right) \leq 1$. We divide into three cases. When $m_{0}=0$, we have $b=1$, which is (a). When $m_{0}=1$ and $c_{1}(\mathcal{E})=a_{n}+1$, we have $a_{n-1}=1, l=n-2$, $b=-a_{n}$, and $\mu \geq m_{0}+1=2$, which is (b). When $m_{0} \geq 1$ and $c_{1}(\mathcal{E})=a_{n}$, we have $l=n-1$ and $\tilde{\Lambda}_{\mathbb{P}^{1}} \subseteq \tilde{X}$, hence $\tilde{\Lambda}_{\mathbb{P}^{1}}=\tilde{X}$, which contradicts our assumption.
(2) First we will prove that X is nondegenerate in \mathbb{P}^{N} and birational to \tilde{X}. Since ψ is defined a base-point-free subspace of $H^{0}\left(\mathcal{O}_{\mathbf{E}_{\tilde{\varepsilon}}}(1)\right)$ and since $H^{0}\left(\mathcal{O}_{\mathbf{E}_{\tilde{\varepsilon}}}(1-\right.$ $\left.\mu) \otimes p^{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)=0$, the pull-back $H^{0}\left(\mathcal{O}_{\mathbb{P}^{N}}(1)\right) \rightarrow H^{0}\left(\mathcal{O}_{\tilde{X}}(1)\right)$ is injective, and hence the image $X=\psi(\tilde{X})$ is nondegenerate in \mathbb{P}^{N}. To prove that X is birational to \tilde{X}, we have to show that X is birational to $\tilde{X}^{\prime}\left(\subseteq \mathbf{F}_{Y}^{\Lambda}\right)$. Note that \mathbf{F}_{Y}^{Λ} and $\varphi_{Y}\left(\mathbf{F}_{Y}^{\Lambda}\right)$ are isomorphic except for the union of $\tilde{\Lambda}_{Y}$ and the fibres over the nonisomorphic locus of $Y \rightarrow \nu(Y)$. Since the strict transform \tilde{X}^{\prime} of \tilde{X} by σ is not contained in the exceptional set $\tilde{\Lambda}_{Y}$ and since \tilde{X}^{\prime} dominates Y because of $\tilde{X}^{\prime} \in\left|\mathcal{O}_{\mathbf{F}_{\hat{Y}}}(\mu) \otimes \tau_{Y}^{*} \bar{p}^{*} \mathcal{O}_{\mathbb{P}^{1}}(b)\right|, \tilde{X}^{\prime}$ meets the embedding locus of φ_{Y}, and hence X and \tilde{X}^{\prime} are birational. Consequently X is a birational-divisor on \mathbf{F}_{Y}^{Λ} of type $\left(\mu, \tau_{Y}^{*} \bar{p}^{*} \mathcal{O}_{\mathbb{P}^{1}}(1)\right)$ and also X is a birational-divisor on $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ of type $(\mu, 1)$. Hence $\operatorname{deg} X=\left(\mathcal{O}_{\mathbf{E}_{\hat{\varepsilon}}^{\lambda}}(1)^{n}, \mathcal{O}_{\mathbf{E}_{\hat{\varepsilon}}^{\lambda}}(\mu) \otimes p^{*} \mathcal{O}_{\mathbb{P}^{1}}(1)\right)=\mu \cdot c_{1}(\mathcal{E})+1$.

To prove $\Lambda \cap \operatorname{Sm} X=\Lambda \backslash \Lambda_{0}$ for $\Lambda_{0}:=V_{+}\left(G_{1}, G_{2}\right) \subseteq \Lambda$, first we will show $\operatorname{Sm} X \supseteq \Lambda \backslash \Lambda_{0}$ by looking at $\tilde{X} \subseteq \mathbf{E}_{\tilde{\mathcal{E}}}^{\Lambda}$. Since $G_{\tilde{X}} \mid \tilde{\Lambda}_{\mathbb{P}^{1}}=G_{1} s+G_{2} t$, we see that \tilde{X} is smooth at each point of $\tilde{X} \cap\left(\tilde{\Lambda}_{\mathbb{P}^{1}} \backslash \Lambda_{0} \times \mathbb{P}^{1}\right)$ and that $\tilde{X} \cap \tilde{\Lambda}_{\mathbb{P}^{1}} \rightarrow \Lambda$ is schemetheoretically one-to-one on $\Lambda \backslash \Lambda_{0}$. From the latter, we obtain that $\left.\psi\right|_{\tilde{X}}: \tilde{X} \rightarrow \mathbb{P}^{N}$ is finite and scheme-theoretically one-to-one on $\Lambda \backslash \Lambda_{0}$ since $\left(\left.\psi\right|_{\tilde{X}}\right)^{-1}(\Lambda)=\tilde{X} \cap \tilde{\Lambda}_{\mathbb{P}^{1}}$. Hence X is isomorphic to \tilde{X} along $\Lambda \backslash \Lambda_{0}$, and therefore $\operatorname{Sm} X \supseteq \Lambda \backslash \Lambda_{0}$. Next we will prove Sing $X \supseteq \Lambda_{0}$. When $l=0$, since $G_{1} \neq 0$ or $G_{2} \neq 0$ by $m_{0}=0$, we have $\Lambda_{0}=\emptyset$. When $l \geq 1$, considering X as a birational-divisor on \mathbf{F}_{Y}^{Λ} of type
$\left(\mu, \tau_{Y}^{*} \bar{p}^{*} \mathcal{O}_{\mathbb{P}^{1}}(1)\right)$ and noting that $G_{\tilde{X}} \mid \tilde{\Lambda}_{Y}=G_{1}\left(Z_{0}, \ldots, Z_{l}\right) s+G_{2}\left(Z_{0}, \ldots, Z_{l}\right) t$ by Lemma 5.3 and assumption $m_{0}=0$, we have $\Lambda_{0} \subseteq \Lambda \cap \operatorname{Sing} X$ by Lemma 2.5.

Since X is a birational-divisor on \mathbf{F}_{Y}^{Λ} such that $\Lambda \cap \operatorname{Sm} X=\Lambda \backslash \Lambda_{0} \neq \emptyset$, by Lemma 1.1. we have $\mu=l_{0}-1$. Hence, if $\mu \geq 2$, then $\Lambda \subseteq \overline{\mathcal{C}}(X)$ and Λ is an irreducible component of $\overline{\mathcal{C}}(X)$ by Proposition 2.1, since the image $\nu(Y)$ of the finite morphism ν is not cone. To prove the last part of (2), set $G_{0}:=\operatorname{GCD}\left(G_{1}, G_{2}\right)$. When $l=0$, Λ is a one-point set, and hence $\operatorname{deg} G_{0}=\mu$ and $\left.\gamma\right|_{\Lambda}$ is constant. Suppose $l \geq 1$. The unique component \tilde{D} of $\tilde{X}^{\prime} \cap \tilde{\Lambda}_{Y}$ dominating Λ in Proposition 2.3 is defined by $\sigma^{*}\left(\left(G_{1} / G_{0}\right) s+\left(G_{2} / G_{0}\right) t\right)$ on $\tilde{\Lambda}_{Y}$ in this case, since $\left.\sigma^{*}\left(\left(G_{1} / G_{0}\right) s+\left(G_{2} / G_{0}\right) t\right)\right|_{\{x\} \times Y}$ defines the nonempty subset of Y for any point $x \in \Lambda$. Thus $\operatorname{deg} G_{0} \neq \mu$ if and only if \tilde{D} dominates Y, namely $\left.\sigma^{*}\left(\left(G_{1} / G_{0}\right) s+\left(G_{2} / G_{0}\right) t\right)\right|_{\Lambda \times\{y\}}$ for general $y \in Y$ defines the nonempty subset of Λ. On the other hand, by (2) of Proposition 2.3, \tilde{D} dominates Y if and only if $\left.\gamma\right|_{\Lambda}$ is nonconstant. Therefore $\operatorname{deg} G_{0} \neq \mu$ if and only if $\left.\gamma\right|_{\Lambda}$ is nonconstant. The last inequality in (ii) is clear from $\Lambda \cap \operatorname{Sm} X=\Lambda \backslash \Lambda_{0}$.
(3) By the same way as in (2), we obtain that X is nondegenerate in \mathbb{P}^{N} and birational to \tilde{X} in this case. Consequently X is a birational-divisor on \mathbf{F}_{Y}^{Λ} of type $\left(\mu-1, \mathcal{O}_{Y}(1) \otimes \bar{p}^{*} \mathcal{O}_{\mathbb{P}^{1}}\left(-a_{n}\right)\right)$ by Lemma 5.3 since $m_{0}=1$. Moreover

$$
G_{\tilde{X}^{\prime}}=\sigma^{*} G_{\tilde{X}} / Z_{n-1}=\sum_{\mu_{0}, \ldots, \mu_{n}} g_{\mu_{0} \cdots \mu_{n}} W_{n-1}^{\mu_{n-1}} W_{n}^{\mu_{n}} Z_{0}^{\mu_{0}} \cdots Z_{n-2}^{\mu_{n-2}} Z_{n-1}^{\mu_{n-1}+\mu_{n}-1}
$$

for homogeneous polynomials $g_{\mu_{0} \cdots \mu_{n}} \in \mathbb{k}[s, t]$ of degree $\mu_{n-1}+\mu_{n} a_{n}-a_{n}$ and $\tilde{X}^{\prime} \cap \tilde{\Lambda}_{Y} \in\left|\mathcal{O}_{\tilde{\Lambda}_{Y}}(\mu-1) \otimes \bar{\tau}_{Y}^{*}\left(\mathcal{O}_{Y}(1) \otimes \bar{p}^{*} \mathcal{O}_{\mathbb{P}^{1}}\left(-a_{n}\right)\right)\right|$ with

$$
G_{\tilde{X}} \mid \tilde{\Lambda}_{Y}=\sum_{\substack{\mu_{0}, \ldots, \mu_{n-2} \geq 0 \\ \mu_{0}+\cdots+\mu_{n-2}=\mu-1}}\left(g_{\mu_{0} \cdots \mu_{n-2} 01} W_{n}+g_{\mu_{0} \cdots \mu_{n-2} 10} W_{n-1}\right) Z_{0}^{\mu_{0}} \cdots Z_{n-2}^{\mu_{n-2}}(\neq 0) .
$$

Here $\operatorname{deg}\left(g_{\mu_{0} \cdots \mu_{n-2} 01}\right)=0$ and $\operatorname{deg}\left(g_{\mu_{0} \cdots \mu_{n-2} 10}\right)=1-a_{n}$ if these are nonzero. Thus, to prove the remaining part, we divide into two cases, $a_{n}>1$ or $a_{n}=1$.

Suppose $a_{n}>1$. Then $G_{\tilde{X}} \mid \tilde{\Lambda}_{Y}=g W_{n}$ for

$$
g=\sum_{\substack{\mu_{0}, \ldots, \mu_{n-2} \geq 0 \\ \mu_{0}+\cdots+\mu_{n-2}=\mu-1}} g_{\mu_{0} \cdots \mu_{n-2} 01} Z_{0}^{\mu_{0}} \cdots Z_{n-2}^{\mu_{n-2}} \in H^{0}\left(\mathcal{O}_{\Lambda}(\mu-1)\right) .
$$

Since the zero of $W_{n} \in H^{0}\left(\mathcal{O}_{Y}(1) \otimes \bar{p}^{*} \mathcal{O}_{\mathbb{P}^{1}}\left(-a_{n}\right)\right)$ is a prime divisor $\mathbb{P}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}}(1) W_{n-1}\right)$ of $Y=\mathbb{P}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}}(1) W_{n-1} \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(a_{n}\right) W_{n}\right)$, from Theorem 5, we obtain that $\Lambda \cap \operatorname{Sm} X=$ $\Lambda \backslash(g)_{0} \neq \emptyset, \Lambda \subseteq \overline{\mathcal{C}}(X)$, and $\left.\gamma\right|_{\Lambda}$ is constant. By (3) of Lemma 1.1, we have $\mu=l_{0}$. By Proposition [2.1, Λ is an irreducible component of $\overline{\mathcal{C}}(X)$ if $\mu \geq 3$.

Suppose $a_{n}=1$. Then we have $Y \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ with projections $p_{i}: Y \rightarrow \mathbb{P}^{1}$ and $\mathcal{O}_{Y}(1)=p_{1}^{*} \mathcal{O}_{\mathbb{P}^{1}}(1) \otimes p_{2}^{*} \mathcal{O}_{\mathbb{P}^{1}}(1)$. Note that the morphism ψ must be defined by the complete linear system $\left|\mathcal{O}_{\mathbf{E}_{\hat{\varepsilon}}}(1)\right|$ in this case. We consider $\bar{p}=p_{2}$; namely, the homogeneous coordinates of the second \mathbb{P}^{1} are s, t and those of the first \mathbb{P}^{1} are W_{n-1}, W_{n}. Then $\tilde{X}^{\prime} \in\left|\mathcal{O}_{\mathbf{F}_{\hat{Y}}^{\wedge}}(\mu-1) \otimes \tau_{Y}^{*}\left(p_{1}^{*} \mathcal{O}_{\mathbb{P}^{1}}(1)\right)\right|$. We take another conical rational scroll $\left(\mathbf{E}_{\mathcal{E}}^{\Lambda}\right)_{1}$ with the same vertex Λ and the same ample bundle $\mathcal{E}=\mathcal{O}_{\mathbb{P}^{1}}(1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)$ over different \mathbb{P}^{1} whose homogeneous coordinates are W_{n-1} and W_{n}, and with different basis $\left(\bigoplus_{i=0}^{n-2} \mathcal{O}_{\mathbb{P}^{1}} W_{i}\right) \oplus\left(\mathcal{O}_{\mathbb{P}^{1}}(1) s \oplus \mathcal{O}_{\mathbb{P}^{1}}(1) t\right)$ and different projection $p^{\prime}:\left(\mathbf{E}_{\mathcal{E}}^{\Lambda}\right)_{1} \rightarrow \mathbb{P}^{1}$. The morphism $\psi^{\prime}:\left(\mathbf{E}_{\mathcal{E}}^{\Lambda}\right)_{1} \rightarrow \mathbb{P}^{N}$ is defined by $\left|\mathcal{O}_{\left(\mathbf{E}_{\mathcal{E}}\right)_{1}}(1)\right|$ as ψ. By Lemma [5.3, there is a birational morphism $\sigma^{\prime}: \mathbf{F}_{Y}^{\Lambda} \rightarrow\left(\mathbf{E}_{\mathcal{E}}^{\Lambda}\right)_{1}$ such that $\sigma^{\prime *} W_{0}=Z_{0}, \ldots, \sigma^{\prime *} W_{n-2}=Z_{n-2}, \sigma^{\prime *} s=Z_{n-1} s, \sigma^{\prime *} t=Z_{n-1} t$. Then $\psi^{\prime} \circ \sigma^{\prime}=\psi \circ \sigma$
and there is a prime divisor \tilde{X}_{1} on $\left(\mathbf{E}_{\mathcal{E}}^{\Lambda}\right)_{1}$ such that $\sigma^{\prime *} \tilde{X}_{1}=\tilde{X}^{\prime}$. Actually, if we consider $G_{\tilde{X}^{\prime}}$ as a polynomial $G_{\tilde{X}^{\prime}}\left(Z_{0}, \ldots, Z_{n-1}\right)$, then $G_{\tilde{X}_{1}}=G_{\tilde{X}^{\prime}}\left(W_{0}, \ldots, W_{n-2}, 1\right) \in$ $H^{0}\left(\left(\mathbf{E}_{\mathcal{E}}^{\Lambda}\right)_{1}, \mathcal{O}_{\left(\mathbf{E}_{\mathcal{E}}^{\lambda}\right)_{1}}(\mu-1) \otimes{p^{\prime *}}^{\prime *} \mathcal{O}_{\mathbb{P}^{1}}(1)\right)$. Consequently m_{0} for $G_{\tilde{X}_{1}}$ is 0 . Hence by (2), we have $\Lambda \cap \operatorname{Sm} X \neq \emptyset$.

6. The structure of projective varieties with nonbirational inner centers of nonconstant partial Gauss maps

Theorem 7 is a consequence of Proposition 5.2 and the following theorem.
Theorem 6.1. Let $X \subseteq \mathbb{P}^{N}$ be a nondegenerate projective variety of dimension $n \geq 1$ and codimension $e \geq 2$ such that $\mathcal{C}(X) \neq \emptyset$. Suppose that the partial Gauss map $\left.\gamma\right|_{\Lambda}$ is nonconstant on an l-dimensional irreducible component Λ of $\overline{\mathcal{C}}(X)$, and hence we suppose $n>l \geq 1$. Let l_{0} be the length $l(X \cap\langle u, x\rangle)$ for general $u \in \Lambda$ and general $x \in X$. Then X is a birational-divisor of a conical rational scroll $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ with vertex Λ of type $(\mu, 1)$ for $\mu=l_{0}-1$ such that the original divisor \tilde{X} does not contain $\tilde{\Lambda}_{\mathbb{P}^{1}}$ and $\tilde{X} \cap \tilde{\Lambda}_{\mathbb{P}^{1}}$ contains a prime divisor of $\tilde{\Lambda}_{\mathbb{P}^{1}} \cong \Lambda \times \mathbb{P}^{1}$ dominating both Λ and \mathbb{P}^{1} by its projections. In particular, $\operatorname{dim} \operatorname{Sing} X \geq \operatorname{dim} \Lambda \cap \operatorname{Sing} X \geq \operatorname{dim} \Lambda-2$. Proof. Let $\pi_{\Lambda}: \mathbb{P}^{N} \backslash \Lambda \rightarrow \mathbb{P}^{\bar{N}}(\bar{N}:=N-l-1)$ be the linear projection of \mathbb{P}^{N} from Λ. We consider the target $\mathbb{P}^{\bar{N}}$ to be a subspace of \mathbb{P}^{N} disjoint from Λ. By our assumption and by counting the dimension, together with (2) of Proposition [2.3, the closure \bar{X}_{Λ} of the image $\pi_{\Lambda}(X \backslash \Lambda)$ is the closure of the union $\bigcup_{y \in \Lambda \cap S m X} \bar{T}_{y}(X){ }_{\Lambda}$ of the images $\bar{T}_{y}(X){ }_{\Lambda}:=\pi_{\Lambda}\left(T_{y}(X) \backslash \Lambda\right)$ of the tangent spaces to X at $y \in \Lambda \cap \operatorname{Sm} X$. Hence $\operatorname{Cone}\left(\Lambda, \bar{X}_{\Lambda}\right)$ is the closure of $\bigcup_{y \in \Lambda \cap S m} T_{y}(X)$. We will construct the desingularization of \bar{X}_{Λ} and $\operatorname{Cone}\left(\Lambda, \bar{X}_{\Lambda}\right)$ as projective bundles over \mathbb{P}^{1}. Let $\rho: \Lambda \cap$ $\operatorname{Sm} X \rightarrow \mathbb{G}:=\mathbb{G}\left(n-l-1, \mathbb{P}^{\bar{N}}\right)$ be the morphism to the Grassmannian of $(n-l-1)$ planes of $\mathbb{P}^{\bar{N}}$ defined by $y \mapsto{\overline{T_{y}(X)}}_{\Lambda}$. By assumption, $\operatorname{dim} \rho(\Lambda \cap \operatorname{Sm} X) \geq 1$. Let L be a general line in Λ so that the closure of $\rho(L \cap \operatorname{Sm} X)$ is a rational curve, say $C \subseteq \mathbb{G}$. Let $\eta: \tilde{C}\left(\cong \mathbb{P}^{1}\right) \rightarrow C$ be the normalization and let \mathcal{E} be the pull-back of the universal quotient bundle on \mathbb{G} to \tilde{C}. We claim that \mathcal{E} is ample or, more strongly, $\Lambda^{\prime}:=\bigcap_{y \in L \cap \operatorname{Sm} X} \bar{T}(X)_{\Lambda}$ is empty. Indeed, if $\Lambda^{\prime} \neq \emptyset$, then \bar{X}_{Λ} is a cone with vertex Λ^{\prime}, and hence Λ is a proper subset of an irreducible component of $\overline{\mathcal{C}}(X)$ by Proposition [2.1] which contradicts our assumption. Moreover the natural morphism $\nu: \mathbb{P}_{\mathbb{P}^{1}}(\mathcal{E}) \rightarrow \mathbb{P}^{\bar{N}}$ induces a birational morphism $\mathbb{P}_{\mathbb{P}^{1}}(\mathcal{E}) \rightarrow \bar{X}_{\Lambda}$, since η is birational and $\bar{X}_{\Lambda}=\nu\left(\mathbb{P}_{\mathbb{P}^{1}}(\mathcal{E})\right)$ is nondegenerate in $\mathbb{P}^{\bar{N}}$ (see [17, Lemma 1.1]). Hence we have the conical rational scroll $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ for Λ and \mathcal{E} with birational-embedding $\psi: \mathbf{E}_{\mathcal{E}}^{\Lambda}=\mathbb{P}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}}^{\oplus l+1} \oplus \mathcal{E}\right) \rightarrow \mathbb{P}^{N}$ induced from ν. By the construction, ψ induces a birational morphism $\psi_{\mathbf{E}_{\mathcal{E}}^{\Lambda}}: \mathbf{E}_{\mathcal{E}}^{\Lambda} \rightarrow \operatorname{Cone}\left(\Lambda, \bar{X}_{\Lambda}\right)$. Moreover the isomorphic locus of $\psi_{\mathbf{E}_{\hat{\varepsilon}}^{\wedge}}$ meets X, since $\psi_{\mathbf{E}_{\hat{\varepsilon}}^{\lambda}}$ is isomorphic on $\operatorname{Cone}(\Lambda, U) \backslash \Lambda$ for the isomorphic locus $U \subseteq \bar{X}_{\Lambda}$ of $\mathbb{P}_{\mathbb{P}^{1}}(\mathcal{E}) \rightarrow \bar{X}_{\Lambda}$ (see Lemma [5.3). Let \tilde{X} be the prime divisor on $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ birational to X by ψ. Since $\Lambda \cap \operatorname{Sm} X \neq \emptyset$ and $\left.\gamma\right|_{\Lambda}$ is nonconstant, by Proposition 5.2, possibly after replacing $\tilde{X} \subseteq \mathbf{E}_{\mathcal{E}}^{\Lambda}$ in case (ii) of Proposition 5.2 (3), X is a birational-divisor of type $(\mu, 1)$ on $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ such that $\tilde{X} \nsupseteq \tilde{\Lambda}_{\mathbb{P}^{1}}$ and the divisor $\tilde{X} \cap \tilde{\Lambda}_{\mathbb{P}^{1}}$ of $\tilde{\Lambda}_{\mathbb{P}^{1}} \cong \Lambda \times \mathbb{P}^{1}$ defined by $\left.G_{\tilde{X}}\right|_{\tilde{\Lambda}_{\mathbb{P}^{1}}}$ contains a prime divisor dominating Λ and \mathbb{P}^{1}. In particular, the inequality holds.

Proof of Theorem 7. First suppose (1) holds. By Theorem 6.1 X is a birationaldivisor of a conical rational scroll $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ with vertex Λ of type $(\mu, 1)$ for $\mu=l_{0}-1$ such
that $\tilde{X} \nsupseteq \tilde{\Lambda}_{\mathbb{P}^{1}}$ and $\tilde{X} \cap \tilde{\Lambda}_{\mathbb{P}^{1}}$ contains a prime divisor of $\tilde{\Lambda}_{\mathbb{P}^{1}} \cong \Lambda \times \mathbb{P}^{1}$ dominating both Λ and \mathbb{P}^{1} by its projections. Hence (2) holds. Moreover $\operatorname{deg} X=\mu \cdot c_{1}(\mathcal{E})+1$ and $\operatorname{dim} \Lambda \leq \operatorname{dim} \operatorname{Sing} X+2$. Conversely if (2) holds, by (2) of Proposition 5.2, we have (1).

Corollary 6.2. Let $X \subseteq \mathbb{P}^{N}$ be a nondegenerate projective variety of dimension $n \geq 2$, codimension $e \geq 2$, and degree d. Assume that X is smooth and $\mathcal{C}(X)(=\overline{\mathcal{C}}(X))$ has an irreducible component Λ of $\operatorname{dim} \Lambda \geq 1$. Let l_{0} be the length $l(X \cap\langle u, x\rangle)$ for general $u \in \Lambda$ and general $x \in X$. Then Λ is a line, X is a birational-divisor of type $(\mu, 1)$ for $\mu=l_{0}-1 \geq 2$ on a conical rational scroll $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ with a birational-embedding $\psi: \mathbf{E}_{\mathcal{E}}^{\Lambda} \rightarrow \mathbb{P}^{N}$ and with original divisor \tilde{X}, and X is isomorphic to \tilde{X} by ψ. In particular, $h^{1}\left(\mathcal{O}_{X}\right)=0$, and if $n \geq 3$, $\operatorname{Pic} X \cong \mathbb{Z}^{2}$. Moreover $\left.\left(\mathcal{I}_{X} / \mathcal{I}_{X}^{2}\right)(d-e+1)\right|_{\Lambda}$ is an ample vector bundle on Λ.

Proof. By Theorem 11Λ is linear. By Theorem (4) the partial Gauss map $\left.\gamma\right|_{\Lambda}$ is nonconstant since $\Lambda \cap \operatorname{Sm} X=\Lambda$ and $\operatorname{dim} \Lambda \geq 1$. By Theorem 6.1, Λ is a line and X is a birational-divisor of a conical rational scroll $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ of type $(\mu, 1)$ for $\mu=l_{0}-1 \geq 2$ with the original divisor \tilde{X}. By (2) of Proposition 5.2] $\tilde{X} \cap \tilde{\Lambda}_{\mathbb{P}^{1}} \rightarrow \Lambda$ is isomorphic and $\tilde{X} \rightarrow X$ is finite. Thus \tilde{X} and X are isomorphic by Zariski's Main Theorem ([15, III.11.4]). By a Lefschetz-type Theorem (see for example [10, p. 55]), an ample divisor $\tilde{X} \cong X$ of $\mathbf{E}_{\mathcal{E}}^{\Lambda}$ satisfies the required condition. To see the last part, consider the bundle $P_{X}^{1}\left(\mathcal{O}_{X}(1)\right)$ of principal part of X which fits into the exact sequence

$$
\begin{equation*}
0 \rightarrow\left(\mathcal{I}_{X} / \mathcal{I}_{X}^{2}\right)(1) \rightarrow V \otimes \mathcal{O}_{X} \xrightarrow{\alpha} P_{X}^{1}\left(\mathcal{O}_{X}(1)\right) \rightarrow 0 \tag{6.3.1}
\end{equation*}
$$

for $V:=H^{0}\left(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(1)\right)$ and gives the tangent bundle $\amalg_{x \in X} T_{x}(X)=\mathbb{P}\left(P_{X}^{1}\left(\mathcal{O}_{X}(1)\right)\right)$ $\subseteq \mathbb{P}^{N} \times X$ (see [13, Ch. IV §16], [19, Ch. IV. A)]). As in (6.1), for the linear projection $\pi_{\Lambda}: \mathbb{P}^{N} \backslash \Lambda \rightarrow \mathbb{P}^{N-2}$ from Λ, let $\tilde{\rho}: \Lambda \rightarrow \mathbb{P}^{1}$ be the morphism induced from the morphism $\rho: \Lambda \rightarrow \mathbb{G}:=\mathbb{G}\left(n-2, \mathbb{P}^{N-2}\right), \rho(y)=\left[\pi_{\Lambda}\left(T_{y}(X) \backslash \Lambda\right)\right]$ by taking the normalization $\eta: \mathbb{P}^{1}=\tilde{C} \rightarrow C$ of the image $C=\rho(\Lambda)$, i.e., $\rho=i_{C} \circ \eta \circ \tilde{\rho}$ for the inclusion $i_{C}: C \hookrightarrow \mathbb{G}$. By the construction of $\mathbf{E}_{\mathcal{E}}^{\Lambda}$, the quotient $\beta: V \otimes \mathcal{O}_{\mathbb{P}^{1}} \rightarrow \mathcal{O}_{\mathbb{P}^{1}}^{\oplus 2} \oplus \mathcal{E}$ defining $\psi: \mathbf{E}_{\mathcal{E}}^{\Lambda} \rightarrow \mathbb{P}^{N}$ is obtained from α so that we have $\tilde{\rho}^{*} \beta=\left.\alpha\right|_{\Lambda}$. Hence, for the kernel \mathcal{K} of β, we have $\left.\tilde{\rho}^{*} \mathcal{K} \cong\left(\mathcal{I}_{X} / \mathcal{I}_{X}^{2}\right)(1)\right|_{\Lambda}$. Note that $\mathcal{K}=\bigoplus_{i=1}^{e} \mathcal{O}_{\mathbb{P}^{1}}\left(-b_{i}\right)$ for some $b_{i}>0$ with $\sum_{i=1}^{e} b_{i}=c_{1}(\mathcal{E})$, since ψ is defined by β and $\psi\left(\mathbf{E}_{\mathcal{E}}^{\Lambda}\right)$ is nondegenerate. To see $\tilde{\rho}$, we claim that for each $\tilde{y} \in \tilde{\Lambda}_{\mathbb{P}^{1}} \cap \tilde{X}$ and for $y:=\psi(\tilde{y}) \in \Lambda$, $T_{y}(X) \subseteq \mathbb{P}^{N}$ is the image $\psi(F) \subseteq \mathbb{P}^{N}$ of the fiber $F:=p^{-1}(p(\tilde{y}))$ for the projection $p: \mathbf{E}_{\tilde{\mathcal{E}}}^{\Lambda} \rightarrow \mathbb{P}^{1}$, i.e., $\tilde{\rho}(y)=p(\tilde{y})$ for general $\tilde{y} \in \tilde{\Lambda}_{\mathbb{P}^{1}} \cap \tilde{X}$. This implies that $\tilde{\rho}$ is finite of degree μ since $\tilde{X} \cap \tilde{\Lambda}_{\mathbb{P}^{1}}$ is a divisor of $\tilde{\Lambda}_{\mathbb{P}^{1}}$ of type $(\mu, 1)$. To prove the claim, since both are linear in \mathbb{P}^{N} through $y \in \Lambda$, we will show that the Zariski tangent space $\Theta_{y}(X)\left(\subseteq \Theta_{y}\left(\mathbb{P}^{N}\right)\right)$ is equal to the image of $\Theta_{\tilde{y}}(F)$ by the differential $d \psi_{\tilde{y}}: \Theta_{\tilde{y}}\left(\mathbf{E}_{\mathcal{E}}^{\Lambda}\right) \rightarrow \Theta_{y}\left(\underline{\mathbb{P}^{N}}\right)$ of ψ at \tilde{y}. Since \tilde{X} and X are isomorphic by $\psi, \Theta_{\tilde{y}}(\tilde{X})$ is mapped isomorphically to $\Theta_{y}(X)$ by $d \psi_{\tilde{y}}$. On the other hand, as a vector space, $\Theta_{\tilde{y}}\left(\mathbf{E}_{\mathcal{E}}^{\Lambda}\right)$ is spanned by $\Theta_{\tilde{y}}(F)$ and $\Theta_{\tilde{y}}\left(\psi_{\tilde{\Lambda}_{\mathbb{P}^{1}}^{-1}}^{-1}(y)\right)$ for $\psi_{\tilde{\Lambda}_{\mathbb{P}^{1}}}: \tilde{\Lambda}_{\mathbb{P}^{1}} \rightarrow \Lambda$. Moreover, $\Theta_{\tilde{y}}(F)$ is mapped injectively by $d \psi_{\tilde{y}}$ in $\Theta_{y}\left(\mathbb{P}^{N}\right)$ since F is embedded in \mathbb{P}^{N}, and $\Theta_{\tilde{y}}\left(\psi_{\tilde{\Lambda}_{\mathrm{P} 1}}^{-1}(y)\right)$ is the kernel of $d \psi_{\tilde{y}}$. Therefore $\Theta_{y}(X)=d \psi_{\tilde{y}}\left(\Theta_{\tilde{y}}(F)\right)$.

By the claim, $\left.\left(\mathcal{I}_{X} / \mathcal{I}_{X}^{2}\right)(1)\right|_{\Lambda} \cong \tilde{\rho}^{*} \mathcal{K} \cong \bigoplus_{i=1}^{e} \mathcal{O}_{\mathbb{P}^{1}}\left(-\mu b_{i}\right)$. To show the ampleness of $\left.\left(\mathcal{I}_{X} / \mathcal{I}_{X}^{2}\right)(d-e+1)\right|_{\Lambda}$, we have to prove $d-e-\mu b_{i} \geq 1$. Since $\sum_{i=1}^{e} \mu b_{i}=$ $\mu c_{1}(\mathcal{E})=d-1$ by Proposition 5.2, and since $\mu b_{i} \geq \mu \geq 2$, we have $\max \left\{\mu b_{i} \mid i=\right.$ $1, \ldots, e\} \leq d-1-2(e-1)$. Hence

$$
d-e-\mu b_{i} \geq d-e-\max \left\{\mu b_{i} \mid i=1, \ldots, e\right\} \geq d-e-(d-2 e+1)=e-1 \geq 1
$$

7. Applications to the Castelnuovo-Mumford regularity:
 Proof of Theorems 8, 9 and 10

Proof of Theorem 8. When $e=1$, the assertion is clear. So we assume $e \geq 2$. Set $\mathcal{L}:=\mathcal{O}_{\hat{\mathbb{P}}^{N}}((d-e+1) A-E)$. Let $\tilde{\varepsilon}: H^{0}\left(\hat{\mathbb{P}}_{X}^{N}, \mathcal{L}\right) \otimes \mathcal{O}_{\hat{\mathbb{P}}^{N}} \rightarrow \mathcal{L}$ and let $\varepsilon: H^{0}\left(\mathbb{P}^{N}, \mathcal{I}_{X}(d-e+1)\right) \otimes \mathcal{O}_{\mathbb{P}^{N}} \rightarrow \mathcal{I}_{X}(d-e+1)$ be the evaluation maps. Since $\tilde{\varepsilon}$ is the composite of $\sigma^{*} \varepsilon$ and the natural surjection $\sigma^{*} \mathcal{I}_{X}(d-e+1) \rightarrow \mathcal{L}$, we have $\operatorname{Supp} \operatorname{Coker}(\tilde{\varepsilon}) \subseteq \sigma^{-1}(\operatorname{Supp} \operatorname{Coker}(\varepsilon))$. On the other hand, by (2) of Theorem 2 in [22] and our assumption, $\operatorname{Supp} \operatorname{Coker}(\varepsilon) \subseteq \mathcal{B}(X) \cup \mathcal{C}(X)$. Hence Supp $\operatorname{Coker}(\tilde{\varepsilon}) \subseteq \sigma^{-1}(\mathcal{B}(X)) \cup \sigma^{-1}(\mathcal{C}(X))$. To see the semiampleness of \mathcal{L}, by Zariski-Fujita's Theorem [11] (see also Remark 2.1.32 [21, I. p. 132]), it is enough to show that \mathcal{L} is ample on each irreducible component of $\sigma^{-1}(\mathcal{C}(X)) \cup \sigma^{-1}(\mathcal{B}(X))$. Each component of $\mathcal{B}(X)$ is a point away from X by (3) of Theorem 3, and hence each irreducible component of $\sigma^{-1}(\mathcal{B}(X))$ is a point of $\hat{\mathbb{P}}_{X}^{N}$ and \mathcal{L} is ample on it. Before looking at the ampleness on each irreducible component of $\sigma^{-1}(\mathcal{C}(X))$, we note that $E=\sigma^{-1}(X)$ is the projective bundle $\mathbb{P}_{X}\left(\mathcal{I}_{X} / \mathcal{I}_{X}^{2}\right)$ with projection $\sigma_{E}:=\left.\sigma\right|_{E}: \mathbb{P}_{X}\left(\mathcal{I}_{X} / \mathcal{I}_{X}^{2}\right) \rightarrow X$ and with $\mathcal{O}_{\mathbb{P}_{X}\left(\mathcal{I}_{X} / \mathcal{I}_{X}^{2}\right)}(1) \cong \mathcal{O}_{\hat{\mathbb{P}}^{N}}(-E) \otimes \mathcal{O}_{E}$ (see [15. Ch. II 8.24]). Hence

$$
\mathcal{L} \otimes \mathcal{O}_{E} \cong \mathcal{O}_{\mathbb{P}_{X}\left(\mathcal{I}_{X} / \mathcal{I}_{X}^{2}\right)}(1) \otimes \sigma_{E}^{*} \mathcal{O}_{X}(d-e+1) \cong \mathcal{O}_{\mathbb{P}_{X}\left(\left(\mathcal{I}_{X} / \mathcal{I}_{X}^{2}\right)(d-e+1)\right)}(1)
$$

If Q is a 0 -dimensional component of $\mathcal{C}(X)$, then $\sigma^{-1}(Q) \cong \mathbb{P}^{e-1}$ and $\mathcal{L} \otimes \mathcal{O}_{\sigma^{-1}(Q)} \cong$ $\mathcal{O}_{\mathbb{P}^{e-1}}(1)$ is ample. If Λ is a positive-dimensional component of $\mathcal{C}(X)$, then Λ is a line and $\left.\left(\mathcal{I}_{X} / \mathcal{I}_{X}^{2}\right)(d-e+1)\right|_{\Lambda}$ is ample by Corollary 6.2, and hence $\mathcal{L} \otimes \mathcal{O}_{\sigma^{-1}(\Lambda)}$ is ample.

Proof of Theorem 9. If $e=1$, the conclusion is clear. Hence we assume $e \geq 2$. By Theorem 8, the proof follows from the argument of [3] as follows (see also [21, I. (4.3.15), p. 259]). Let $\sigma: \hat{\mathbb{P}}_{X}^{N} \rightarrow \mathbb{P}^{N}$ be the blowing-up of \mathbb{P}^{N} along X with exceptional divisor E and let A be the divisor of the pull-back of a hyperplane section of \mathbb{P}^{N}. For each integer $\ell \geq 1, D_{\ell}:=e((d-e+1) A-E)+\ell A$ is a nef and big divisor by Theorem 8 . Since $K_{\hat{\mathbb{P}}_{X}^{N}}+D_{\ell}=(e(d-e+1)+\ell-N-1) A-E$ for the canonical divisor $K_{\hat{\mathbb{P}}_{X}^{N}}$ of $\hat{\mathbb{P}}_{X}^{N}$, by the Kawamata-Viehweg Vanishing Theorem (18 , [23]; see also [21, I. Theorem 4.3.1]), $H^{i}\left(\hat{\mathbb{P}}_{X}^{N}, \mathcal{O}_{\hat{\mathbb{P}}_{X}^{N}}((e(d-e+1)+\ell-N-1) A-E)\right)=0$ for all $i>0$. Hence $H^{i}\left(\mathbb{P}^{N}, \mathcal{I}_{X}(e(d-e+1)-N+(\ell-1))\right)=0$ for all $i>0$ (see for example [21, I (4.3.16), p. 259]). This together with the consequence of the Grothendieck vanishing theorem, $H^{i}\left(\mathbb{P}^{N}, \mathcal{I}_{X}(m)\right)=0$ for all $i \geq n+2$ and $m \geq-N$, implies that X is $(e(d-e)+1)$-regular.

Corollary 7.1. Let $X \subseteq \mathbb{P}^{N}$ be a nondegenerate smooth projective variety of dimension n, codimension e, and degree d. Set

$$
e_{0}:= \begin{cases} & \text { if } e<n+1 \text { or } \\ e & \text { if } e \geq n+1 \text { and }\left|\frac{d}{2}-e\right| \geq\left|\frac{d}{2}-(n+1)\right|, \\ n+1 & \text { if } e \geq n+1 \text { and }\left|\frac{d}{2}-e\right| \leq\left|\frac{d}{2}-(n+1)\right| .\end{cases}
$$

Then X is $\left(e_{0}\left(d-e_{0}\right)+1\right)$-regular.
Proof. We have only to show that if $e \geq n+1$, for each k with $n+1 \leq k \leq e, X$ is $(k(d-k)+1)$-regular. This is because the quadratic function $f(k):=k(d-k)+1$ on $k(n+1 \leq k \leq e)$ has the minimum value $f\left(e_{0}\right)$ at $k=e_{0}$. Assume $e>$ $n+1$. For each k with $n+1 \leq k<e$, by taking a general linear projection $\pi: \mathbb{P}^{N} \longrightarrow \mathbb{P}^{n+k}$ we have $X^{\prime}:=\pi(X) \subseteq \mathbb{P}^{n+k}$, which is isomorphic to X by π. Hence X^{\prime} is $(k(d-k)+1)$-regular for $n+1 \leq k \leq e$. Set $t:=k(d-k)+1$. In this case, $H^{1}\left(\mathcal{I}_{X^{\prime} / \mathbb{P}^{n+k}}(t-1)\right)=0$ implies $H^{1}\left(\mathcal{I}_{X / \mathbb{P}^{N}}(t-1)\right)=0$. This is because if $H^{1}\left(\mathcal{I}_{X^{\prime} / \mathbb{P}^{n+k}}(t-1)\right)=0$, then $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n+k}}(t-1)\right) \rightarrow H^{0}\left(\mathcal{O}_{X^{\prime}}(t-1)\right)$ is surjective, and hence so is $H^{0}\left(\mathcal{O}_{\mathbb{P}^{N}}(t-1)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(t-1)\right)$. Moreover for $2 \leq i \leq n+1, H^{i}\left(\mathcal{I}_{X / \mathbb{P}^{N}}(t-i)\right)=0$ if and only if $H^{i}\left(\mathcal{I}_{X^{\prime} / \mathbb{P}^{n+k}}(t-i)\right)=0$, since $H^{i}\left(\mathcal{I}_{X / \mathbb{P}^{N}}(t-i)\right)=0$ if and only if $H^{i-1}\left(\mathcal{O}_{X}(t-i)\right)=0$, and the same is true for $X^{\prime} \subseteq \mathbb{P}^{n+k}$. Thus X is also $(k(d-k)+1)$-regular for $n+1 \leq k \leq e$, as required.

Remark 7.2. Our result slightly improves [3] (see also [5]): 3] proved under the same assumption as in Theorem 9 that X is $(c(d-1)+1)$-regular for $c:=\min \{e, n+1\}$. It is easy to see that $c(d-1)+1 \geq c(d-c)+1 \geq e_{0}\left(d-e_{0}\right)+1$.
Proof of Theorem 10. Keep the same notation as in the proof of Theorem 9 but for D_{ℓ} we set $D_{\ell}:=(e+a-1)((d-e+1) A-E)+\ell A$ for $\ell \geq 1$ instead. Then D_{ℓ} is nef and big, and $H^{i}\left(\hat{\mathbb{P}}_{X}^{N}, \mathcal{O}_{\hat{\mathbb{P}}_{X}^{N}}\left(K_{\hat{\mathbb{P}}_{X}^{N}}+D_{\ell}\right)\right)=0$ for all $i>0$ by the KawamataViehweg vanishing theorem, and hence $H^{i}\left(\mathbb{P}^{N}, \mathcal{I}_{X}^{a}((e+a-1)(d-e+1)-N+\right.$ $(\ell-1)))=0$ for all $i>0$ and $\ell \geq 1$. By the same way as in Theorem $9, \mathcal{I}_{X}^{a}$ is $\{(d-e)(e+a-1)+a)\}$-regular.

References

[1] E. Ballico, Special inner projections of projective varieties (English, with English and Italian summaries), Ann. Univ. Ferrara Sez. VII (N.S.) 50 (2004), 23-26. MR2159804
[2] Dave Bayer and David Mumford, What can be computed in algebraic geometry?, Computational algebraic geometry and commutative algebra (Cortona, 1991), Sympos. Math., XXXIV, Cambridge Univ. Press, Cambridge, 1993, pp. 1-48. MR 1253986
[3] Aaron Bertram, Lawrence Ein, and Robert Lazarsfeld, Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, J. Amer. Math. Soc. 4 (1991), no. 3, 587-602, DOI 10.2307/2939270. MR 1092845
[4] Alberto Calabri and Ciro Ciliberto, On special projections of varieties: epitome to a theorem of Beniamino Segre, Adv. Geom. 1 (2001), no. 1, 97-106, DOI 10.1515/advg.2001.007. MR 1823955
[5] Marc Chardin and Bernd Ulrich, Liaison and Castelnuovo-Mumford regularity, Amer. J. Math. 124 (2002), no. 6, 1103-1124. MR1939782
[6] Steven Dale Cutkosky, Lawrence Ein, and Robert Lazarsfeld, Positivity and complexity of ideal sheaves, Math. Ann. 321 (2001), no. 2, 213-234, DOI 10.1007/s002080100220. MR1866486
[7] S. Dale Cutkosky, Jürgen Herzog, and Ngô Viêt Trung, Asymptotic behaviour of the Castelnuovo-Mumford regularity, Compositio Math. 118 (1999), no. 3, 243-261, DOI 10.1023/A:1001559912258. MR 1711319
[8] David Eisenbud and Shiro Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), no. 1, 89-133, DOI 10.1016/0021-8693(84)90092-9. MR741934
[9] H. Flenner, L. O'Carroll, and W. Vogel, Joins and intersections, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. MR1724388
[10] Takao Fujita, Classification theories of polarized varieties, London Mathematical Society Lecture Note Series, vol. 155, Cambridge University Press, Cambridge, 1990. MR 1162108
[11] Takao Fujita, Semipositive line bundles, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), no. 2, 353-378. MR722501
[12] Katsuhisa Furukawa, Defining ideal of the Segre locus in arbitrary characteristic, J. Algebra 336 (2011), 84-98, DOI 10.1016/j.jalgebra.2011.04.018. MR2802532
[13] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I (French), Inst. Hautes Études Sci. Publ. Math. 20 (1964), 259. MR0173675
[14] L. Gruson, R. Lazarsfeld, and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), no. 3, 491-506, DOI 10.1007/BF01398398. MR704401
[15] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR0463157
[16] Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109-203; ibid. (2) 79 (1964), 205-326. MR0199184
[17] Hajime Kaji, On the space curves with the same dual variety, J. Reine Angew. Math. 437 (1993), 1-11, DOI 10.1515/crll.1993.437.1. MR 1212250
[18] Yujiro Kawamata, A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann. 261 (1982), no. 1, 43-46, DOI 10.1007/BF01456407. MR675204
[19] Steven L. Kleiman, The enumerative theory of singularities, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 297-396. MR0568897
[20] Vijay Kodiyalam, Asymptotic behaviour of Castelnuovo-Mumford regularity, Proc. Amer. Math. Soc. 128 (2000), no. 2, 407-411, DOI 10.1090/S0002-9939-99-05020-0. MR1621961
[21] Robert Lazarsfeld, Positivity in algebraic geometry. II: Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. MR2095472
[22] Atsushi Noma, Hypersurfaces cutting out a projective variety, Trans. Amer. Math. Soc. 362 (2010), no. 9, 4481-4495, DOI 10.1090/S0002-9947-10-05054-3. MR2645037
[23] B. Segre, On the locus of points from which an algebraic variety is projected multiply, Proceedings of the Phys.-Math. Soc. Japan Ser. III 18 (1936), 425-426.
[24] Eckart Viehweg, Vanishing theorems, J. Reine Angew. Math. 335 (1982), 1-8, DOI 10.1515/crll.1982.335.1. MR667459

Faculty of Engineering Sciences, Department of Mathematics, Yokohama National University, Yokohama 240-8501 Japan

E-mail address: noma@ynu.ac.jp

[^0]: Received by the editors July 1, 2014 and, in revised form, April 28, 2016.
 2010 Mathematics Subject Classification. Primary 14N05, 14N15.
 Key words and phrases. Linear projection, Castelnuovo-Mumford regularity, ideal sheaf.
 This paper was partially supported by Grant-in-Aid for Scientific Research (C), 20540039, 23540043, and 26400041 Japan Society for the Promotion of Science.

