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COMPACTIFICATIONS OF SPLITTING MODELS
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KAI-WEN LAN

ABSTRACT. We construct toroidal and minimal compactifications, with ex-
pected properties concerning stratifications and formal local structures, for all
integral models of PEL-type Shimura varieties defined by taking normaliza-
tions over the splitting models considered by Pappas and Rapoport. (These
include, in particular, all the normal flat splitting models they considered.)
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1. INTRODUCTION

In the article [I3], we constructed normal flat integral models for all PEL-type
Shimura varieties and their toroidal and minimal compactifications constructed by
taking normalizations over certain auxiliary choices of good reduction models, with
no assumption on the level, ramification, and residue characteristics involved, and
showed that such integral models still enjoy many features of the good reduction
theory studied as in [5] and [I2]. In the article [15], we extended the construction
of toroidal compactifications in [I3] to allow general projective cone decomposi-
tions which are not necessarily induced by the auxiliary choices. When the local
model M'"¢ for the PEL-type Shimura variety in question is known to be flat over
Spec(Z(y)) and normal, the integral model constructed in [I3] coincides with the
k¢ as in [I7, (15.4)], which can be interpreted as being constructed by taking
normalizations over certain naive models. Thus, the constructions in [I3] and [15]
provide good toroidal and minimal compactifications for all such integral models.

One naturally also considers the moduli problem ,dgp,,] in the same diagram
[T7, (15.4)], which corresponds to the splitting model M*P' = .4 introduced in ear-

lier sections of [17], which are built over #7/° (over some more naive models) as the
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relative moduli of certain filtrations on the first de Rham homology of multichains
of abelian schemes. For simplicity, let us also call such moduli problems the splitting
models of the PEL-type Shimura variety. Although they are defined over base rings
that are often more ramified, their local properties are often nicer—they do not
admit singularities due to restrictions of scalars from ramified extensions. Already
in the Hilbert modular case—where the constructions are simple-minded because
the splitting models and naive models coincide over the Rapoport loci (see [I8] and
[]), which are all that are needed for the gluing of boundary charts—the compacti-
fications for splitting models are known to have useful arithmetic applications (see,
for example, [22] and [21]).

Our goal is to give a uniform construction, based on [12], [I1], [13], and [I5], of
toroidal and minimal compactifications of all integral models of PEL-type Shimura
varieties defined by taking normalizations over such splitting models. These in-
clude, in particular, all the normal flat splitting models considered in [I7]. But we
shall also allow the levels at p to be arbitrarily higher than the stabilizers of the
multichains of p-adic lattices used in the definitions of the splitting models.

For the construction of toroidal compactifications of splitting models, the idea
is to realize them as splitting models of toroidal compactifications. We consider
certain filtrations on the canonical extensions (over toroidal compactifications of
naive models) of the first de Rham homology of multichains of abelian schemes,
extending the ones over splitting models. We can show that, over the boundary
strata, the normalizations of the relative moduli of such filtrations depend only on
the abelian parts of the semi-abelian degenerations, and that their formal boundary
charts can be directly built over the formal toroidal boundary charts of the naive
models. This allows us to prove a long list of nice properties of such normalizations,
including precise descriptions of their stratifications and formal local structures,
which allows us to call them toroidal compactifications of splitting models.

For the construction of minimal compactifications of splitting models, the con-
ventional approach would be to introduce some variants of the Hodge invertible
sheaves, and to consider the projective spectra of the graded algebra formed by
sections of their powers. However, there is some subtlety in the choices of such
variants. For the projective spectra to define compactifications of our splitting
models and admit canonical morphisms from the toroidal compactifications, we
need the variants to be ample over the splitting models and (at least) semiample
over the toroidal compactifications; yet we have no a priori knowledge of such vari-
ants, except in very special cases. Rather, we will obtain the existence of them as
a byproduct of our argument, which is based on a tricky analysis over the formal
boundary charts. We will also obtain a long list of nice properties of the corre-
sponding projective spectra, with precise descriptions of their stratifications and of
their relation with toroidal compactifications, which allows us to call them minimal
compactifications of splitting models.

Here is an outline of this article.

Section [ is devoted to the construction of splitting models of our PEL-type
Shimura varieties. In Section . we review the linear algebraic data for defining
multichains of lattices, which are required for the remainder of the article. In
Section 2.2 we review the notion of multichains of isogenies of abelian schemes
with additional structures; we also introduce their moduli, and relate them to the
integral models of PEL-type Shimura varieties constructed by taking normalizations
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(over certain naive moduli) as in [I3]. In Section[2.3] we define the notion of splitting
structures, and introduce the relative moduli problems for them. In Section 2.4] we
study the splitting structures over the naive moduli and over the integral models of
PEL-type Shimura defined by taking normalizations, and introduce their splitting
models.

Section B is devoted to the construction of toroidal compactifications of the
splitting models constructed in Section[2l In Section Bl we introduce the splitting
models over the toroidal compactifications constructed by taking normalizations
as in [I3] and by normalizations of blowups as in [I5], and define the boundary
stratification on them. We will consider these the toroidal compactifications of the
splitting models. In Sections and [3:3] we introduce splitting models over simpler
objects over integral models of smaller PEL-type moduli problems associated with
the boundary strata, and use them to describe the formal completions of the toroidal
compactifications of splitting models along their boundary strata. Theorem 3.3
can be considered the technical heart of this article. In Section [3.4] we summarize
our main results for toroidal compactifications in Theorem B.4.1] in a format similar
to the one of [12, Theorem 6.4.1.1]. The theorem is rather long, but has the
advantage of collecting all relevant information at a single place. We also record
some byproducts concerning local properties along the boundary.

Section Ml is devoted to the construction of minimal compactifications of the
splitting models constructed in SectionPl In SectionsET]and 2] we construct them
as certain birational contractions of the toroidal compactifications constructed in
Section Bl overcoming the difficulty mentioned above. In Section 3] we summarize
our main results for minimal compactifications in Theorem[£.3] in a format similar
to the one of [12] Theorem 7.2.4.1].

We shall follow [12], Notation and Conventions] unless otherwise specified. While
for practical reasons we cannot explain everything we need from [12], we recommend
the reader to make use of the reasonably detailed index and table of contents there,
when looking for the numerous definitions. It is not necessary to have completely
mastered the techniques in [12], [I3], and [I5] before reading this article. (Readers
who are willing to work with less precise collections of cone decompositions induced
by certain auxiliary ones, as in [I3] Section 7], can ignore most references to [I5].)

2. SPLITTING MODELS

2.1. Multichains of p-adic lattices. Suppose we have an integral PEL datum
(O,%,L,(-, ), ho), where O is an order in a semisimple algebra finite-dimensional
over Q, together with a positive involution x, and where (L, (-, -), ho) is a PEL-type
O-lattice as in [I2] Definition 1.2.1.3], which defines a group functor G over Spec(Z)
as in [I12] Definition 1.2.1.6]. Let us denote the center of O %Q by F, and denote

by F'* the subalgebra of F' consisting of elements invariant under . Suppose that
L satisfies [12, Condition 1.4.3.10]. (This is harmless in practice, as explained in
[12, Remark 1.4.3.9].)

Let Fy denote the reflex field defined by (O%R,(-, Y, hg) as in [12, Defini-

tion 1.2.5.4], which is a subfield of C. Let Vy (resp. V) denote the maximal
sub-O ® C-module of L ® C on which hg(z) acts as 1 ® z (resp. 1 ® z°), where ¢ de-
Z Z

notes the complex conjugation. Then Vj and Vi are maximal totally isotropic with
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respect to the pairing (-, -) ® C, and we have the Hodge decomposition L @ C =
7 V

VodVy=VWod VOV.

By [12], Definition 1.4.1.4] (with O = ) there), for each open compact subgroup H
of G(Z), we have a moduli problem My, over Sy = Spec(Fy), defined as the category
fibered in groupoids over (Sch /Sy) whose fiber over each scheme S is the groupoid
M3 (S) described as follows: The objects of My (.S) are tuples (A4, A, 4, az), where:

(1) A — S is an abelian scheme.

(2) A: A — AV is a polarization.

(3) i : O — Endg(A) is an O-endomorphism structure for (A4, ) as in [12]
Definition 1.3.3.1].

(4) Lie, g withits O %) Q-module structure given naturally by ¢ satisfies the de-

terminantal condition in [12] Definition 1.3.4.1] given by (LQR, (-, -), ho).
Z
(5) a is an (integral) level-H structure of (A4, A, i) of type (L®Z, (-, -)) as in
Z
[12, Definition 1.3.7.6].
The morphisms of My(S) are the naive ones induced by isomorphisms between
abelian schemes, respecting all the additional structures.

Let p > 0 be a rational prime number. For simplicity, and for consistency with
[T7, Section 15], we shall make the following:

Assumption 2.1.1. The order O is mazimal at p (see [12, Definition 1.1.1.11]).

Let v denote a place of Fyy above p, and let F{ ,, denote the v-adic completion of
F,. Let Q denote the algebraic closure of Fyy in C, and let Qp denote an algebraic
closure of Fy ,, with a lifting Q— Qp of the canonical morphism Fy — Fy,. Let
Y denote the set of homomorphisms 7 : F' — Q,. For each 7 € Y, let F, (resp.
F) denote the composite of Q, and 7(F) (resp. 7(F*)) in Q,. We define two
7:F — F.and 7' : F — F,/ to be equivalent, denoted 7 ~ 7/, if there exists an
isomorphism o : FF 5 F, over Q, such that 7/|p+ = 0 o (7|+). In other words,
they are equivalent if their restrictions to F'* are in the same Gal(Q,/Q,)-orbit.
For each equivalence class [7] € T/ ~, let us fix the choice of some representative
7 of [7], and abusively write [7] : F — Fj and [7] : FT — F[JTF]7 where F[JTF] =Fr
and Fi;) := F;?ir F. Then we have a factorization

(2.1.2) FeQ,= [[ F.
° [FleT/~

which induces and is induced by a factorization
(2.1.3) Ft %)Qp ~ I Fj

[T]€Y/~
(cf. [IZ] Section 1.1.2]). These factorizations induce the corresponding factorizations
of rings of integers. Since O is maximal at p by Assumption 2Z.I1] it contains the
ring O (resp. O+ ) of integers in F (resp. F'T). (We shall always denote by O the
ring of integers in any ? that is a product of local or global fields.) Consequently,
the identity elements of the rings Op, define idempotent elements of O %Zp, and

we have a factorization

2.1.4 =
(2.14) OQ Ly I o
(1€ /~
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inducing for each O ® Z,-module M a canonical decomposition
z

(2.1.5) M= P My,
[rleT/~

where each M|, is the maximal submodule of M on which the action of O ®Z,
Z

(resp. OF) factors through Oy, (resp. OF,). In particular, we have a canonical
decomposition

2.1.6 L7, = Li,
(2.1.6) 9Ly P Ly

Let Z be a set of O®@Q)p-lattices in L ®Q, that is a product of sets £, of
Z z
O|--lattices in Lj;; @ Q in the sense that, for each A € &, there exist A, € £,
Z
for all [7] € Y/ ~, such that
(2.1.7) A= P Ay
[rleT/~

as subsets of

1%

(2.1.8) LeQy D @y 2Q).

[r]eY/~
For simplicity, we shall assume that Ag = L®Z, € Z.
Z

We shall assume moreover that each £}, is a chain in that it satisfies the fol-
lowing two conditions, as in [19] Definition 3.1]:

(1) If Af;) and qu-] are two distinct elements in %}, then either Aj;; AET] or
A/[T] C A
(2) If bis a unit of O ® Q, which normalizes O ® Z,, then bA[;} € £}, for each
zZ zZ
Ay € Z7-
Then .Z is a multichain as in [19, Definition 3.4]. We shall assume that £ is
self-dual in the sense that, for each A € £, the dual lattice

(2.1.9) A =z € L<§Z§Qp (z,y) € Z,(1), Yy € A}

is also contained in .Z (see [19, Definition 3.13]). As in [19], we shall consider .Z
as a category with morphisms given by inclusions of lattices.

Definition 2.1.10. U, (%) is the subgroup of G(Q,) consisting of elements stabi-
lizing all lattices A in .Z.

Remark 2.1.11. By the explanation in [19] 3.2], under the assumption that Ay =
L®Z, € £, we have U,(p) = ker(G(Z,) — G(F,)) C Uy(Z) C G(Z,). In
Z

particular, U,(.Z) is an open compact subgroup of G(Z,). (The assumption that
Ao =L ®Z, € £ is only made for the sake of simplicity. It is practically harmless
Z

for our purpose, thanks to [12, Corollary 1.4.3.8].)
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Definition 2.1.12. Suppose S is a scheme over Spec(OF, , ). An Z-set of polarized
O ® Og-modules is a triple (J€,.%,j), where:
2 J

(1) K : A= Iy and F : A — F, are functors from the category £ (with
morphisms being inclusions of lattices) to the category of O ® &s-modules.
Z

(2) j: £ — A is an injective morphism, whose value at each A is denoted by
A+ Fa — I (which is a morphism of O ® Os-modules).
Z

(3) For each A € .Z, let us identify .#, with an O ® Os-submodule of J#,
Z

which is its image under the injective morphism j,. Then we require that
both F, and J#, /%, are finite locally free Og-modules, and that J#, / Fx
satisfies the determinantal condition in [I2] Definition 1.3.4.1] given by
(L(§Rv<'v '>vh0)'

(4) For each A € £ and each unit b of O ® Q, which normalizes O ® Zj,, there

zZ Z
are periodicity isomorphisms 9}’%\ D Y S A and 9?91\ : TS Fpp of
O ® Os-modules satisfying jya 09%«7,\ = Hbm 0ja, where the superscript b on
Z
any O ®@ Os-module means conjugating the O @ Z,-structure by b= (i.e.,
zZ Z
each element a € O ® Z,, acts by b~ 'ab).
Z
(5) For each A € &, there exists a perfect pairing
(2.1.13) (v, )a IO X — Os(1),
inducing an isomorphism
(2.1.14) («, )h I = %),
Moreover, for each inclusion A C A’ in %, we have the natural compatibility
(W) =A%) 0 (- )k = (-, )i 0 (A — N),

(6) For each A € &, the orthogonal complement .Z3 of .#, with respect to
the pairing (-, - ) in (ZII3) coincides with .#,% as submodules of J&, «.
Therefore, the isomorphism (ZI.T4]) canonically induces an isomorphism

(2.1.15) TN (Hw | Far)' (1),
By definition, we have the following:

Lemma 2.1.16. Suppose S is a scheme over Spec(Op, ,), and suppose (H,.Z, j)
1s an L -set of polarized O @ Og-modules as in Definition 2112 Then the pullback
z

of (H,.F,7) to any scheme T over S is an £-set of polarized O @ Or-modules.
= Z

For any (£, %, j) as in Definition 2.1.12, we have compatible canonical decom-
positions

(2.1.17) H= P A
[T/~

and

(2.1.18) I P Fam

[TleT/~



COMPACTIFICATIONS OF SPLITTING MODELS 2469

of O ® Og-modules, as in (Z1.5), which induces a collection
Z

(2119) {(i[‘r] A~ %\1[7]72[7] A~ gA,[T])}[T]GT/N

of functors from the category £ to the category of O ® Os-modules.
Z

2.2. Multichains of isogenies. For each scheme S, let AV%’)(S) denote the cat-
egory of abelian schemes A over S equipped with homomorphisms i : O ® Z(,) —
7

Ends(A) ® (Z))s, whose morphisms are generated by the homomorphisms and
z
all Z(Xp)—isogenies (see [12, Definition 1.3.1.17] and [I9, 6.3]) that are compatible
with the O ® Z,)-structures. As usual, for each abelian scheme A in AVg)(S), we
Z

consider the dual abelian scheme AV as an object of AVg)(S), equipped with the
homomorphism i : O ® Z,y — Endgs(AY) ® (Z(,))s defined by b — i(b*)".
Z z

Definition 2.2.1. Given any multichain . as in Section 2] an .#-set of abelian
schemes A over S is a functor A : & — AVg) (S) : A — Ay, equipped with a
Q*-isogeny fa,ar : Ax — Ay for each inclusion A C A/, which is a (Z(Xp))g—multiple
of an isogeny, compatible with the O % Zp)-structures, satisfying the following two

conditions (see [19, Definition 6.5]):

(1) For each inclusion A C A’ in &, consider ker(fa a/[p>°]) C Aa[p®°] (where
fan[p™®] : Aa[p™] — Aa/[p™] is defined because faar : Ay — Aps is a
(Z(Xp )) s-multiple of an isogeny), which admits an action of O ® Z,, induced

Z

by the action of O ® Z,) on Ax, and factorizes as a fiber product
Z

ker(faup™)) = [T (ker(fanrlp™]))p

[r]eY/~

of finite locally free group schemes over S. On the other hand, the inclusion
A C A’ induces an inclusion Af;) C A’[T]. Then the condition is that

rkﬁs((ker(f/\,/\’ [poo]))[-r]) = [AET] : A[‘r]]

(2) For each O %Z(p)—structure ip on Ay, and for each unit b of O %) Q which
normalizes O @ Z,), we define a twisted structure i} by 4 (a) = ix (b~ ab)
foralla € O ®ZZ(p), and we denote abusively A} for A with such a twisted
O%Z(p)—struiture, so that i (b) induces a Q*-isogeny [b] : A4 — A, in
AVg)(S). Then the condition is that, for each b € (O%Q)X ﬁ(O%Z(p))
that normalizes O%}Z(p), there are periodicity isomorphisms 6% N AL S

App such that [b] = fapa © ‘9?4,\-
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Lemma 2.2.2. For any such A, to define a Q-homogeneous principal polarization
A as in [T9 Definitions 6.6 and 6.7], it suffices to give the following (less canonical)
data:
(1) A lattice Ay € £ such that Ay is contained in its dual lattice A} (with
respect to (-, -YQQp). (Such a Ay € £ always exists, by scaling any
Z
A € Z by a sufficiently large power of p.) We may and we shall just take
Ag to be the same Ao = L ® Z,, introduced above.
Z

(2) A polarization Ay, : Ar, — AXO respecting the O @ Z,)-structures of Ax,
7
and AXO such that, for each A C Ay, so that Ag C A# C A*, we have

ker(fa,,a%[p™]) = ker((fx o, © Ano)[p™])
in Ap, [p™] (where fa, a#[p™] and (f) p, © An,)[p™] are defined because

faoa# and f 5 are (Z(Xp))s-multiples of isogenies), so that

(2.2.3) fX7Ao 0 Ap, © fXOI,A# DAz — AX
is a Z(Xp)-isogeny (i.e., an isomorphism in the category AVg)(S)).

Remark 2.2.4. The notation system in Lemma [2.2.9] slightly differs from that in
[19, Definitions 6.6 and 6.7]—we reserve the symbol X for the polarizations, rather
than for the induced Z(Xp)—isogenies such as Ay — A},.

Definition 2.2.5. Let HP be an open compact subgroup of G(A*?). The moduli
problem M2¥¢ over Spec(Op, ,) is defined as the category fibered in groupoids
over (Sch /Spec(Op, ,)) whose fiber over each scheme S is the groupoid M35ve(S)
described as follows: The objects of I\/I“Ha,f"e(S) are tuples (4, A, i, ayp ), Where:
(1) Ais an .Z-set of abelian schemes over S as in Definition 2.2.1]
(2) A is a Q-homogeneous principal polarization as in [19, Definitions 6.6 and
6.7], which can be less canonically defined as in Lemma [222]
(3) i = {ian}ac.e is a collection of O QZ@ Q-structures such that each i gives the

O ® Zp)-structure on A, (as an object of AVg))(S)), so that i, satisfies the
Z

Rosati condition defined by the Q*-polarization f. 5 x, © A, © fpran, (cf.
[12, Definition 1.3.3.1]) whenever p"A C A in .Z for some r € Z.
(4) For each A € 2, Liey, /s with its O ® Z)-module structure given by iy
Z

satisfies the determinantal condition as in [I2], Definition 1.3.4.1] given by
(L%Rv<'v '>vh0)'

(5) gy is a rational level-HP structure for (A, A, i), which can be defined by
a rational level-H structure [é,|ur for (Any, Ang,ia,) as in [12] Definition
1.3.8.7] (with O = {p} there, ignoring the requirement of self-duality of
pairings at p). (Since the Q*-isogenies fa as : Ay — Aas induce canonical
isomorphisms VP A, 5 5 VP Ans 5 of w1 (S, 5)-modules at every geometric
point 5, we might as well define a,,, as a collection {[&a]xr}ace whose
members are all canonically identified with each other.)

naive

The morphisms of M}{5V¢(S) are the naive ones induced by isomorphisms in the
category AV(SP) (which are induced by Za)—isogenies between abelian schemes).



COMPACTIFICATIONS OF SPLITTING MODELS 2471

Remark 2.2.6. The moduli problem M2V is the same as the ones in [19, Chapter 6]
and [I7, Section 15], although the formulations are slightly different. It generalizes
the moduli problem M43} in [I2], Definition 1.4.2.1], or rather the one in [10} Section
5] (which was in the good reduction case, without the consideration of multichains
of isogenies).

Lemma 2.2.7. Let S be any scheme over Spec(Ok), and let (A, A, i, ) be an
object of M33ive(S). Consider the assignments

K N A = HR(AL)S)

and

T . — TiaY

F N Ty = EAX/S’
and the morphism j : F — A whose value at each A € £ is the canonical
embedding jp : @XX/S — H®(Ax/S) dual to the last morphism in the canonical
short exact sequence 0 — @XA/S — Hiz(Ap/S) — Lieyy /g — 0 (see [2, Lemma
2.5.3]). Then (K, F,j) is an ZL-set of polarized O ® Os-modules as in Definition

= Z

ZTT2 (The level structure ay,» is not used in the construction of (K, %, j).)

Proof. For each A € &, the desired perfect pairing as in (ZII3)) is induced by
the canonical perfect pairing H{™(Ax/S) x HI®(AY/S) — Os(1) (see [, 1.5]),
and by the canonical isomorphism H{®(Ayx/S) = HI®(AY/S) induced by A (or,
concretely, by ([22233)). The other conditions in Definition then follow from
the various conditions in Definitions Z22] and O

Remark 2.2.8. Since H{®(A,/S) is canonically isomorphic to the relative Lie alge-
bra of the universal vectorial extension of Ap over S (see [16, Chapter 1, Section 4]),
the s, and %, in Lemma[22 T are the M) and F, in [I7, Section 15], respectively.

Choices 2.2.9. By the explanation in [19] 3.2], there exists a finite subset .&; =
{Aj}jes of £ such that an O ® Z,-lattice A in L ®Q, belongs to .Z if and only
z zZ

if there exist some r € Z and j € J such that A = p"A;. Take any r9 € Z

such that A; C p™Ag for all j € J. Then there exists a set {L;j}jcs of O-lattices

in L& Q such that L; C p™L, such that the canonical morphism (p™L)/L; —
Z

(pP°L®Z,)/(L; @ Zy) is an isomorphism of O-modules, and such that L; ® Z,, = A;
z zZ z
in LoQ,, for all j € J. Let g; = 1, and let (-, - ); be the restriction of p=27 (-, -)
Z

to Lj, for each j € J. For each j € J, since O is maximal at p by Assumption ZTT]
and since Lj ® ZP = L ®ZP, the lattice L; satisfies [I12, Condition 1.4.3.10] as L
Z Z

does. Moreover, if HP is any subgroup of G(Z”), whose action stabilizes L ® ZP by
zZ

definition, then it also stabilizes L; ®ZP. From now on, we shall fix the choices of
/
J and fJ = {Aj}jEJ-

Choices 2.2.10. Let us take H to be any open compact subgroup of G(A*) such
that its image H? under the canonical homomorphism G(Z) — G(ZP) is a neat (see
[12] Definition 1.4.1.8]) open compact subgroup of G(ZP), in which case H is also

neat, and such that the image H,, of H under the canonical homomorphism G(Z) —
G(Z,) is contained in U, (.Z) as in Definition 2.1.10] (see also Remark 2Z-T.1T]). Then
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the collection {(1,L;, (-, -);)}jes satisfies the requirements in [13, Section 2], and

we can define My as in [13, Proposition 6.1] (by taking normalization over a product
of minimal compactifications of auxiliary good reduction integral models indexed

by j).

Proposition 2.2.11. Let H and HP be as in Choices 2.2I0. Then there is a
canonical finite étale morphism

(2.2.12) My @ Fy, — MBS 2Q
F, Z

over Spec(Fp.,), which is an open and closed immersion when H is of the form
HPU, (L), which extends to a canonical finite morphism

(2.2.13) My ©® Op,, — M
OFOY(P) '

over Spec(Op, , ).

Proof. Since the canonical morphism My — M3y () is finite étale, and since the

induced canonical morphism |\7IH — |\7|Hpup( ) is finite (essentially by definition),
we may and we shall assume that % = HPU,(Z) in the remainder of the proof.
Consider the pullback to S := My ® Fy, of the tautological tuple over My,
Fy

which we abusively denote by (A, i,ay). For each j € J, we also have the
pullback to S of the tautological tuple over My, via the canonical isomorphism
My = My, given by [13, (2.1)], which we abusively denote by (4j, Ay, 4j, gy, ).
By [13, Proposition 6.1], for each j € J, the triple (Aj, Aj,4;) over S extends to
a triple (A3, j,4j) over S := My ® Op,,. By [T, IV-2, 6.8.2 and 7.8.3], S is
Fo,(p)
noetherian normal, because |\7IH is of finite type over Spec(Op, (p)) and normal.
By the proof of [13] (2.1)] based on [I2| Proposition 1.4.3.4 and Corollary 1.4.3.8],
for any two j,j’ € J, there canonically exists a Q*-isogeny fjy : 4; — Aj over
S. By [12, Proposition 3.3.1.5] and the noetherian normality of S, it (uniquely)
extends to a Q*-isogeny E,j’ : A'j — f_l‘j/ over S. Hence, for each A € % such that
A=p'L; %Zp for some r € Z and j € J as in Choices 2.2.9) we can define Ap to

be the abelian scheme f_fj over S. For any two A, A’ € £ such that A = p"L; ®Z,
Z
and A’ = pT/Lj/ ® Zy for some 7,7’ € Z and j,j’ € J, and such that A C A/, we
z

define faar @ Ay — Ans to be the Q*-isogeny given by the composition of ﬁj/

with multiplication by P~ on Ajy. At any geometric point 5 — S, the level

structures agy; and o, compatibly match the submodules p”L; ® Z and p"/Lj/ Q7L
‘ Z z

of L ®A*> with the submodules p" T A; s and pT/ T Aj 5 of V Ag, respectively, so
Z

that the conditions in Definition 221 hold over the open dense subscheme S of S ,
and therefore also over the whole S. Thus, the assignments above define an Z-set
A of abelian schemes over S, as in Definition 2211

For any choice of Ay as in Lemma such that Ag = p™°L;, %ZP, we can

define Ay, : Ay, — AY, to be the composition of N Ay, — A']VO with the mul-

tiplication by p?™ on fflvo Since the level structure ay;; matches the submodules
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L;, ®7 and L;‘f ®7 of L ®A>® with the submodules T A5 and T AY of V Az, re-
7 Z 7

spectively, for each geometric point 5 — S, if Ay C A# as in Lemma 22,2 then

the Q*-isogeny on defined above is a Z(Xp )—multiple of an isogeny over S, and

hence is also a Z(Xp)—multiple of an isogeny over g, again by [12] Proposition 3.3.1.5]

and the noetherian normality of S. By Lemma 222 we have also obtained a
Q-homogeneous principal polarization A for A as in [I9] Definitions 6.6 and 6.7].
The O ® Zy)-structure i = {ir}acy for (4,]) is compatibly induced by the
z

O-endomorphism structures 5; for (/Tj, Xj), for all j € J.
For each A € .Z, the O ® Og-module Lie An/§ satisfies the determinantal condi-
Z

tion as in [I2] Definition 1.3.4.1] defined by the data (L®R, (-, - ), hg) because the
zZ

O ® Os-modules Liey, /g do, for all j € J, over the open dense subscheme S of 5*'7
7 J

and because the determinantal condition is a closed condition by definition.
Finally, by forgetting the factors at p, the level structures as; over S compat-

ibly induce the level structures ay» away from p, realized by compatible collec-
J

tions of subschemes «;, of Homg((L;/nL;)s, Aj[n]) . Homg (((Z/nZ)(1))s, Hy.s)

finite étale over S, which are étale-locally-defined orbits of symplectic isomor-

phisms, for sufficiently divisible integers n prime to p. Since S is noetherian

and normal, they uniquely extend to compatible collections of subschemes ;.

of Homg((L;/nL;)g, Aj[n]) x Homg(((Z/nZ)(1))g, i, g) finite étale over S, which
3 ;

define level structures diyy» away from p and induce the desired level-H? structure
J

ayyp for (A4, A, 4) (by the same argument as in [I2] Construction 1.3.8.4 and Remark

1.3.8.9]).

Thus we have obtained a tuple (G, A, i, agy») over S which is parameterized by
M3aive which induces a morphism S — M3V as in ([2:2.13)). Since the construction
of the canonical finite morphism S — [[ My

jed
level structures away from p, by rewriting the objects of M‘;ﬁ"e represented by
Z(Xp)—isogeny classes in terms of isomorphism classes by the same argument as in

given by [I3, (6.3)] only uses

j,aux

the proof of [12, Proposition 1.4.3.3], it factors as a composition S = Myaive —
[1 My, ..., where the first morphism S — M32ve is (Z2ZI3). This shows that
jed

@213) is also finite.

By restriction to S, we obtain a finite morphism S — M3aive %Q as in (22.12).

By comparing their universal properties, both sides of [22Z12) admit compatible

morphisms to S := My» & Fp,. By assumption, U,(-Z) (see Definition [ZT10)
Or,(p)

is the subgroup of G(Q,,) consisting of elements stabilizing all lattices A in .2, which

is also the subgroup of G(Q,) consisting of elements stabilizing all the submodules

Lj of p"°L®Z,, for all j € J (see Choices 2Z29). Take any r; € Z such that
Z
PL®Zy C Li®Z, C p°L®Zy, for all j € J. Since the morphism S — S? is
Z Z Z
the pullback of the canonical morphism My — My» ®  Fp, which is defined by

OFry, ()
forgetting the level structures at p, it parameterizes étale-locally-defined orbits of
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symplectic isomorphisms of the form ((p™L)/(p™L))s — A[p™*~"°] over S, under
which the images of (L;j/(p"™*L ® Zp))s determine some isogenies A — A;, satisfy-
Z

ing some additional conditions which are open and closed. On the other hand, the
morphism M}5Y¢ ® Q — SP parameterizes exactly such isogenies A — A; satisfying
Z

some other closed conditions. Hence, by comparing the relative universal proper-
ties, the morphism (ZZT2)) is an open and closed immersion (under the simplified
assumption that H = HPU, (L)), as desired. O

2.3. Splitting structures and their relative moduli.

Choices 2.3.1. For each equivalence class [r] € T/ ~, let us order the elements
T[7],00 T[], 15 -+ = s T[r]yin - - in [7’], where the index ¢ satisfies 0 <1 < d[T] = [F[T] : Qp],
in a way such that any two elements with the same restriction to F'™ are successive.
Let K be any finite extension of @Q, in Qp that contains the composite of F in @p
for all 7 € T, namely the composite of Q, and the Galois closure of F' in Qp. Then
Fy,, C K (cf. the proof of [12] Corollary 1.2.5.7]). We shall fix the choices of K
and of the orderings 7(+) 0, 7[7],1, - - -, T[r],i» - - -» frOM NOW on.

Let {r;}-cx be integers such that, for every b € F, we have

(2.3.2) det(T — b-Tdyy [Vy) = [ (T = (b))
TeY

in Q,[T7], as in [I7, Section 14]. (As explained in [I7, Section 14], for every 7 € T,
the Fj;j-module Lj;; ® Q is necessarily free of rank r; + 7704.)
z

Definition 2.3.3. Suppose that S is a scheme over Spec(Of), and that (2, .Z, j)
is an .Z-set of polarized O ® Os-modules as in Definition 2-T.12] which induces as

Z
in ZI.19) the collection {(H,1, Z ()} rjex/~- A splitting structure for (K, Z, j)
is a collection

(2.3.4) ‘Kifr]aifﬂ)}[r]er/~,0§i<dm7

where each & fT] t A= T (-] is a functor from the category Z to the category
i

7l _
whose value at each A is denoted by j} (] e
following conditions:

(1) For each A € .Z, let us identify .Z | 7] with an O ® Og-submodule of H#} (7,
i Z

of O ® Og-modules, and where each j* . : F fT] - K 7] is an injective morphism,
7 J

)= ) [7), which satisfies the

[T

which is its image under the injective morphism jj\ (] Then we require that
both ﬂj\ (7] and %7[T]/ﬁ7\ (r] are finite locally free &s-modules.
(2) For each A € .Z, we have

_ g
0= EMT

as O ® Og-submodule of J#, |, where #, ;) is as in ([2.LIS). For each
- ;

dir—1 1 0
] C LgZ.AE[j_] [GIEERNE yA,[T] C LQZ.A’[T] = yA’[T]

integer i satisfying 0 < i < d|,}, the quotient Fi (7] / flﬁi] is a locally free

Os-module of rank 7, annihilated by b®1—1® 71, ;(b) for all b € Op, .
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(3) For each A € &, each [r] € T/ ~, each integer i satisfying 0 < i < d|,
and each unit b of O ®Q, which normalizes O ® Z,,, there are periodic-
Z Z

~

ity isomorphisms 6%, i (F} [T])b = Fi (] of O® Os-modules sat-
Alr] ' ' Z
isfying j["ﬂ pa © 0%,
’ Al
O ® Os-module means conjugating the O @ Z,-structure by b=, as in Def-
Z 7
inition 2.T.12]).

(4) For each A € £ and each integer i satisfying 0 < i < df;, let (‘gﬂi\,[r])J—
denote the orthogonal complement of ﬁf\’[ﬂ in H)# ) with respect to the
perfect pairing S, ;) X #)# ;) — Os(1) induced by the perfect pairing
(2I13), which satisfies .7, ] C Fas ] = ﬁlﬂ-m c (7} [T])J-. Then

[T 6811970 Fh )" © Fho g
0<k<i

for all b € Op,,, for every 0 < i < d|;) divisible by [F]) : F[':]].

= HngT] o jjwﬂ (where the superscript b on an

Definition 2.3.5. Two splitting structures

{(if}]’iff])}[r]er/~,03i<dm
and o

{(zf;—lpl.f;./])}[T]ET/N,OSi<d[T]
as in Definition 233 are isomorphic to each other if there exist isomorphisms
Pyt T = ZET'] such that lfr/] o Pl = ZET] for all [7] € T/ ~ and 0 <i < dj,).

By definition, we have the following;:
Lemma 2.3.6. Suppose that S is a scheme over Spec(Ok), that (€, .7, j) is an
&L-set of polarized O ® Os-modules as in Definition 2112, and that
Z

{(ZE}]’Zfﬂ)}[f]er/~,ogi<d[ﬂ
is a splitting structure for (A, F,j) as in Definition 3.3l Then the pullback of

{(sz]aZfT])}[T]GT/MOSKd[T] to any scheme T over S is a splitting structure for the
pullback of (H,.F,j) to T (cf. Lemma RI.IG).

Proposition 2.3.7. Consider the (contravariant) functor
Spliw,z 5)s ¢+ (Sch /S) — (Sets)
defined by assigning to each scheme T over S the set of isomorphism classes of split-

tings structures for the pullback of (€, %, j) to T. Then the functor Sploe .z .5)/s

is representable by a scheme over S, which we abusively denote by the same sym-
bols. This scheme is locally over S projective, with a relatively ample invertible
sheaf given by the relative Hodge invertible sheaf

top Ol (1=K ()
039 sy @ ( ® | ® (Ao
1

AeZ; \[r]eY/~ \0<i<d(,

(with the convention that /‘Xl[r} = 0), where £ is the subset of £ as in Choices
2.2.9, and where the tensor and exterior products are over ﬁspl(” P for each
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triply indexed collection of integers p = {uj\ [T]}Aec.%,[r]eT/N,ogkd[T] that is posi-
tive in the sense that uf([lﬂ > ph i forall A€ Zy, [r] € X/ ~, and 0 < i <dp.

Proof. For simplicity, let us abusively denote by the same symbols the pullback of
(,.Z,j) to any scheme T over S. Let {(fo]’ZfT])}[T]ET/~7OSi<d[T] be a splitting
structure for (JZ,.%,j). As in Definitions and 233 let us identify .7,
with a submodule of 77} ;] via ja [7], and identify 9]\7[7] with a submodule of 7 (]
via ij, forall A € Z, [r] € T/ ~, and 0 < i < d[;). Then the splitting structure
is uniquely determined by the filtrations defined by {‘%Z\,[T]}Oﬁkdm on J, (7], for
all A € .Z and [1] € T/ ~, satistying the additional conditions in Definition 2.3.31
By the periodicity condition (B in Definition 233l and by the same explanation
as in [19] 3.2], it suffices to consider the indices A € £}, as in Choices
Locally over the base scheme S, the filtered pieces f}x’m of A} ), which
are Og-module local direct summands by assumption, are parameterized by some

Grassmannians; and the inclusion relations ﬁ}\"’[}_] C ﬂf\’[ﬂ are given by the vanish-

ing of the canonical morphisms ﬁf\*ﬁ] — Fa i/ ﬁj\ (7]’ which are closed conditions.
Similarly, the additional conditions in Definition 2.3.3] given by the containment
of images of certain morphisms, are also closed conditions. Hence, Spl(ﬁ,z,j)/s is
locally over S representable by a closed subscheme in the fiber product of Grass-
mannians triply indexed by the finitely many A € £, [7] € T/ ~, and 0 < i < dj.
As explained in, for example, [6, Section 5.1.6], the Grassmannian triply indexed
by A, [7], and ¢ has an ample invertible sheaf whose pullback to Sl e,z .5)/s
is tautologically dual to A"P(ZFi -)), the top exterior power of the locally free
Since each such \"P(Z} (-]) s globally defined

over Spl ¢ # j)/s, and since /\mp(ﬂg’m) descends to S because yg’m = F\ 7

i
sheaf ﬁA}[T] over ﬁSpl(i,z,p/S‘

does, the scheme Spl 4 # j)/g is locally over S projective, with a relatively ample

invertible sheaf w?—%p F.)/8 given by (2.3.8) for each positive p. a

Lemma 2.3.9. Suppose that S is a scheme over Spec(K), and that (,.Z,j) is
an £ -set of polarized O ® Os-modules as in Definition 22112l Then the structural
Z

morphism Spl e z jy/s = S is an isomorphism. Equivalently, for each scheme T

over S, there is up to isomorphism a unique splitting structure for the pullback of
(A, .Z,j) toT. Moreover, the condition @) in Definition 233 is redundant.

Proof. Let us proceed as in the proof of Proposition 2:3.7) with the addition as-

sumption that 7' = Spec(R) is affine; it suffices to show that there uniquely exist fil-

trations {9&7[71}0§i<d[7] on J} [ satisfying the additional conditions in Definition

233 for all A € £ and [7] € T/ ~. Since Fly @ K = [[ K, = [] K, .,
Qp TE[T] 0<i<d

where F' acts on K, = K via the homomorphism 7 : F — K, we have canon-

ical decompositions F ;] = ®0§i<dm I\ and A (1)) T ) = QX#{T} =
\ ~ 3

@O§i<d[r] ‘%\A#,T[T],i of OF, %@p R = Iy g; R-modules, which are (up to permuta-

tion) independent of the ordering 7,10, 7(;,1,... of elements in [r]. Hence, the

desired filtration {F} [T]}0§i<d , on 4 ] uniquely exists and is given by Fi ] =

[T
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®i§k<dm FAriry.» Which satisfies (fi#ﬁh])l/f&m = Bocie fX#J[TM for all
0 <4 < dp. In particular, the condition () in Definition 2Z.3.3]is redundant. [

Proposition 2.3.10. Consider also the functor Spll(ﬂ,z’j)/s defined by assigning
to each scheme T over S the set of isomorphism classes of splittings structures for
the pullback of (,.Z,j) to T, but without the last condition ). By the proof
of Proposition 2.3.7, Spl/(ﬁﬁz,j)/s is representable by a scheme over S, which is
locally over S projective, and the canonical forgetful morphism

is a closed immersion, under which the invertible sheaf w(ﬁ%yj)/s defined over
SPlr.2 )8 (see 23R)) is the pullback of a similarly defined invertible sheaf

fﬁp Z.4)/s Over Spl(;f Z.4)/8 which is also relatively ample over S, for each pos-

itive (.
Suppose moreover that S ® Q is reduced. By Lemma 239, the morphisms
Z

canonically induced by 2311 are both isomorphisms. Therefore, if we denote

by Splzrjﬁy’j)/s (resp. Spll(’;f P j)/s) the normalization of the (necessarily reduced)

schematic closure of S®Q in S];;l(%; 7.j)/s (resp. Spl’(% #.j)/8) via such canonical
7 Z=Z o = Z o]

isomorphisms, then 2311 canonically induces an isomorphism

+ ~ Lt
(2.3.13) SPlie 2 5)1s = SPlw 7 4y/s -

We shall denote the pullback of wé—;f Z.0)/S (or w(ﬁj; ﬁj)/s) to Spltf Z.0)/S by

wﬁ;;y §)/8? which is relatively ample over S because the canonical normalization

morphism Spl(% Z.0)s Spl e z.j)/s 18 finite, for each positive p.
Proof. The statements are self-explanatory. |
2.4. Splitting models for PEL moduli. Let # and H? be as in Choices 2.2.101

Definition 2.4.1 (cf. [I7, the end of Section 15]). Let HP be an open compact
subgroup of G(A*?). The moduli problem Mjf; over Spec(Of) is defined as the
category fibered in groupoids over (Sch /Spec(Ok)) whose fiber over each scheme
S is the groupoid M32L(S) described as follows: The objects of M3b,(S) are tuples

(A,A7£7QHp7{(i[T],l PYrle/~0<i<dy)s
where (A, ),4,a3,) is an object of M33¥°(S) as in Definition 2223 and where

{(# [T ’lf ) Hrex/~, 0<i<dp, is a splitting structure (as in Definition 2:33)) for the
L-set (% Z,j) of polarized O ® &'s-modules associated with (A, A, 4) as in Lemma
Z

227 The morphisms of ME_ZI,(S) are the naive ones induced by isomorphisms

in the category AVg))(S) (given by Z(Xp )-isogenies between abelian schemes with

O @ Zp)-structures) and by the isomorphisms between splitting structures as in
Z

Definition 2.3.5]
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Then Proposition 2.3.7] implies the following.
Lemma 2.4.2. The canonical morphism

(2.4.3) MDD — MEAve @ O

Fo,v

defined by forgetting splitting structures is relatively representable and projective.
If we abusively denote by (A, \,i) the pullback to M3iv® @ Ok of (part of) the
OFO,’U
tautological object over MB2Ve and denote by (A, 7, J) the associated £ -set of po-
larized O @ Os-modules as in Lemma 227, then we have a canonical isomorphism
zZ

spl ~
(2.4.4) M = SPle.z ) joue © 0x) -

Fo v

Definition 2.4.5. Let (A4, A, 1) abusively denote the pullback to I\7IH ® Ok of
OFo, )
the tautological object over M3 under the morphism (Z2.I3), and let (A, Z, j)
denote the associated -Z-set of polarized O ® Og-modules as in Lemmal[2Z2.7 Then
Z

we define (as in Proposition [Z3.10])

5Pl . +
(2.4.6) My = Spl(izg)/(ﬁln ® Ox)°
Fop,(p)

Lemma 2.4.7. The canonical morphism |\7|3_E’1®Q — |\7|H ®@ K =2 MyeK
VA Fy

Ory.(p)

induced by the structural morphism l\_)lifl — |\7|H ® Ok is an isomorphism.
Fo.(p)

Proof. This follows from Lemma 2.3.91 a

Corollary 2.4.8. Let Ml;_ﬁ denote the schematic image of the canonical morphism
Mjf,l) — M32ve induced by ZA3). Then the morphism 22.13) factors through the

structural closed immersion I\/I%fﬁ. — M3V¢ and induces a canonical finite morphism

(2.4.9) My ® Op,, — M

Ory.(p)

over Spec(Op, ,), extending the finite étale morphism (Z2Z12)) over Spec(Fo,y). If
2212) is an open and closed immersion, and if MYS is known to be flat over
Spec(Or, ) and normal, then [249) is an open and closed immersion.

Corollary 2.4.10. Suppose that the morphism (ZZ9) induced by Z2I3) is an
open and closed immersion, and that Mj_lle, is known to be flat over Spec(Ok) and
normal. Then we have a canonical isomorphism

(2.4.11) M S My ® Og,,) x M,
Ory,(») M3

inducing an open and closed immersion
(2.4.12) MSP! s M3P)
compatible with ZZ9). If (Z49) is an isomorphism, then so is (Z412).
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Remark 2.4.13. To summarize, we have a commutative diagram:

(2.4.14) My ® K€ M3 M3P)
F(] l l
My @ Foo"—— My ® Og,, Mloe Myaive
Fo OFO»(P)

By Proposition 3.7 and Lemma 2.4.2] and by their definitions, the vertical mor-
phisms are all projective and surjective—the left-most one is finite étale (and is
just the base change morphism). The two horizontal arrows at the left-hand side
are open immersions with schematically dense images, by definition. By Corollaries
248 and 2410 if (22.12)) is an open and closed immersion (which is the case when
H = HPU,(.Z), by Proposition ZZIT), and if M{$ and Mj_lz,lj are known to be flat
over Spec(Op, ,) and Spec(Of), respectively, and are both known to be normal,
then the horizontal arrows between the two middle columns are open and closed
immersions. By definition, the bottom-right arrow is a closed immersion.

Remark 2.4.15. The Mi_‘z,]), Mys, and M3ve in ([2.4.14) are what were denoted Mgppl,
k¢, and B3V in [17, (15.4)], respectively, where the latter three objects have
the same singularities as the splitting model ., the local model M'°¢, and the
naive local model M"*Ve, respectively, defined and studied there. While they will
play no role in the remaining constructions of this article, they are important for
practical applications of the results in this article.

Remark 2.4.16. The normality of M'}$ and M;_}Z,lj, and their flatness over Spec(OF, , )
and Spec(Of ), respectively, are known in many cases. See, for example, [17].

Proposition 2.4.17 (cf. [I3, Propositions 13.1 and 13.15]). Suppose that H and H’
are two open compact subgroups of G(Z) such that their images under the canonical
homomorphism G(Z) — G(Z,) are contained in U,(Z) as in Definition EII0;
that g € G(A>) is an element such that the multiplication by the image g, of g
under the canonical homomorphism G(A>) — G(Q,) preserves the multichain £ ;
and that H C gH'g~'. Then we have a canonical projective morphism

(2.4.18) 9] : My — My

extending the canonical finite morphism My, = My-149 — My defined by g, whose
pullback from Op, () to Ok lifts to a canonical projective morphism

(2.4.19) o™ N s N

Proof. In this proof, as in [I3] Section 13] and [I5] Section 7], for the sake of
clarity, let us temporarily (and abusively) denote all objects constructed using
{(1,L;, (-, - )j) }jes (see Choices and [ZZT0) by an additional subscript J.
Since multiplication by g, preserves the multichain ., by [13} (2.1)] (or rather by
its proof based on [I2], Proposition 1.4.3.4 and Corollary 1.4.3.8]), the tautological
objects over I\_/I’%{O?l} « 3 (as in [13] Example 13.14]) differ from those over '\_/"7.[7J
by repeating some of the latter by Hecke twists by the image ¢? of g under the
canonical homomorphism G(A*®) — G(A>?), realized by Z(Xp )—isogenies, up to

~

shifting the indices. Therefore, we have '\_/l”H’J = My 01y <3 = '\_/l’gfl’Hgﬁ], and
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the composition of these with the canonical morphism l\_/‘lg_lﬂgJ — I\_/'IH/VJ gives

the desired (Z4I8). Moreover, the pullback under ([ZZI]]) of the tautological

Z-set of polarized O ® Os-modules over My j can be identified (up to shifting the
7

indices) with the one over |\7IH, J via an isomorphism canonically induced by g, and
so ([ZZI8) induces the desired ([Z419), because the two sides of (Z4TI9) are the
respective normalizations of relative moduli for splitting structures over the base
changes of the two sides of [24I8) from Op, () to Ok (and by Zariski’s main
theorem; see [7), 111-1, 4.4.3, 4.4.11]). O

3. TOROIDAL COMPACTIFICATIONS

3.1. Splitting models for toroidal compactifications. Let H be as in Choices
m and let My, — M5y, be any toroidal compactification as in either [13} (7.10)]
r [I5, Theorem 6.1]. Let (A,A,4) abusively denote the pullback to My of the

tautologlcal object over M32v¢, under the morphism 22I3), and let (#,.Z, j)
denote the associated .Z-set of polarized O ® ﬁmﬂ-modules as in Lemma 2.2.7]
Z

Lemma 3.1.1. For each A € &£, the abelian scheme Ap (resp. AY) over My
(necessarily uniquely) extends to a semi-abelian scheme A (resp. AY™MY) over
I\7I§_‘ZrE (¢f. [12, Theorem 3.4.3.2 and Proposition 3.3.1.5]). Consequently, by [12|
Proposition 3.3.1.5], for each inclusion A C A’ in L, the Q* -isogeny fa nr : Ax —

Apr over I\_/IH, which is a Z(Xp)—multiple of an isogeny (necessarily uniquely), extends

to a Q* -isogeny f,e\xjt\/ A — ASEE over M%_‘Z,rz, which is also a Zz;)—multiple of an
isogeny.

Proof. By Choices 220 for each A € £, there exist some r € Z and j € J such
that A = p"Aj = p" L; ® Zy, so that there exists some Z(X )—1sogeny A; = Ax X My
Mo
over My, where A4; abuswely denotes the pullback to My of the tautological abelian
scheme over My, (see [13] (2.1)]). By [12} Lemma 3.4.3.1 and Proposition 3.3.1.5],
this Z(X) -isogeny of abelian schemes over My, (uniquely) extends to a Z(X )—isogeny of
semi-abelian schemes over I\/I%_‘ZrE as soon as the source extends. Hence, the lemma
follows from [I3, Theorem 11.2] and [I5, Theorem 6.1] O

Proposition 3.1.2. The L-set (€,.F,j) of polarized O ® ﬁ’MH -modules intro-
= Z

duced above (necessarily uniquely) extends to an L-set (A, F, j&)

ized O ® ﬁMm i

and %"Xt/ﬁe"t = Lie jeur giter (of O ® Ofjuor_-modules) extending the canonical
H, 7 H,S

and Hp | Fp = @AA/M’H (of (’)% ﬁﬁm -modules),

of polar-
-modules inducing compatible isomorphisms F gt = LleAth,v
A

isomorphisms Fy = LleAV/M

respectively, for all A € Z.

Proof. By [12, Proposition 3.3.1.5], any Z(Xp)—isogeny Aj = Ax X My as in the
My

proof of Lemma[3. T Tluniquely extends to a Z(Xp)—isogeny /Yj — Aj over My, where A

is as in [I3, Proposition 6.1}, and hence the proposition follows from [15, Proposition

7.15] (which was based on a reduction first to the case where ¥ is induced by
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auxiliary choices as in [I3] Section 7], and then to the good reduction case as in
[T, Proposition 6.9]). O

Definition 3.1.3. Let (ie"t,ze"t,f"t) be as in Proposition B.I.21 Then we
define

\aspl,tor | +
(314) MH,E = Spl(iexc )zextiexc)/(,\]%_czfz ® OK)’
©Fg.(»)
=+ . . ol
where Spl(iem7Zext O 8 0) is defined as in Proposition 22310
Fo,(p)

By comparing the universal properties (see Definitions 2:4.0] and B13]), we have
a canonical morphism

(315) Spl(i7£7l)/(mn ® Ox) — Spl(icxt ,zcxtiext)/(,\]g{z’rz ® Ok)

Fo.(p) OFg,(p)

over Spec(Of). By Proposition 2310, (B.LH) induces a canonical morphism
(3.1.6) Ve Vi

over Spec(Ok ), which covers the canonical morphism My, < I\7I§_‘ZrE (see [13], (7.10)]
and [I5, Theorem 6.1]).

Remark 3.1.7. We would like to view Mj_‘;l’ztor as the toroidal compactification of

I\ﬁ;};’l associated with the compatible collection ¥ of cone decompositions. However,
to justify this, we need to show that it satisfies some reasonable properties as in
12| Theorem 6.4.1.1] (and in the corresponding theorems in [13] and [15]).

g

Definition 3.1.8. For each (locally closed) stratum Z[@H,gw)} of I\_/'Igi’rE as in

[13|, Theorem 9.13] and [I5, Theorem 6.1(3)], we denote by Z?(pql)%é%g)] the reduced

subscheme of the preimage of Z[(qm’(;%a)] under the canonical morphism M%}gor —
|\7|tor
H,5-

Then M;f}’ztor is a disjoint union of locally closed subschemes

\pspl,tor __ 7spl
(3.1.9) Mys = H Z((@ 10,6000
[(@9¢,03¢,0)]

as in [I3, Theorem 9.13] and [I5], Theorem 6.1(3)], except that we still have to show
that it is a stratification. (As in [12] Theorem 6.4.1.1(2)], the notation “J[” only
means a set-theoretic disjoint union. The algebro-geometric structure is still that
of M)

Our next goal will be to understand Zf(pqlm 53,07 and the formal completion
7 spl,tor spl, tor spl .
(M;%Zto )/Zq\?(l);%é%v)] of M%,EO along Zf(pq,%g%a)], for each [(Py,d3,0)]. (As in

[12, Theorem 6.4.1.1(5)], to form the formal completion along a given locally closed
subscheme, we first remove the complement of it in its closure in the total space,
and then form the formal completion of the remaining space along this stratum.)
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3.2. Toroidal boundary charts and formal completions. Suppose we have a
representative (®q, 03, 0) of [(Py, 0%, 0)] as in [12] Definition 6.2.6.1], where the
underlying (Zz;, @3, d%) is a representative of cusp label for My, as in [I2] Definition
5.4.2.4] (where Z4 is often suppressed in the notation, by [12], Convention 5.4.2.5]),

and where o € ¥p,, € X is a cone such that o C P;fﬂ. Consider the schemes Mi’*,

M;{;’*, 6¢H,5H, écp%(;w éqmﬁ,{ (o), and éqm,g%a, and the formal scheme f%qmy(;%g,
defined as in [I3] Proposition 7.4 and Section 8] and [I5, Construction 4.5].

Definition 3.2.1. As in Definition 2.4.5] let us set

\Z#ospl +

(3.2.2) M3] = Spl(ﬁiﬁzﬁi)/(ﬁlﬁf ® Ox)
OFg.(p)

where we denote by (22, *.Z, ﬁl) the analogue of (2, .7, j) associated with the

tautological tuple (B, Ag,ip) over I\7I§_[”, as in Lemma [2.2.7] and abusively denote

by the same symbols its pullbacks to schemes and formal schemes over l\_)li”, such as

l\_)li” ® Ok. (Note that the splitting structures here are defined by Lie algebra
OFr, )

conditions and rank sizes adjusted to the tautological tuple (B, Ag,ig) over M%_z*,
using the boundary PEL-type O-lattice (L**, (-, -)?* h%*) as in [I2, Definition
5.4.2.6].)

. . . S Ds,spl Aspl

Definition 3.2.3. With the same setting as above, we define My**", Cg’ ;.

=spl =spl =spl yspl . . .

By, 537 Sy 60 (o), Sty 6,00 and Xg, 5. to be the respective normalizations of
2D, A = = =2 Z

the fiber products of My, Ca,, 5,00 s .60 202,61 (0); Edsy,60,0, a0d Xay 550

. =7 1 - R . .
with M37°P" over MfZH”, via the canonical structural morphisms.

Lemma 3.2.4. We have the following canonical isomorphisms:

P2 ,spl ~A +
(325) MH = Spl(nivﬁz7 ﬁl‘)/(l\ﬁ;};”o ® Ok)’
Fo.(p)
~spl ~ +
(3.2.6) Corn = e 12,4 (Carpiry | @ Ok
Fo,(p)
—=spl ~ +
(3.2.7) ST pl(ni,nz7 85)/ By 60 0. @ Ok)’
Fo,(p)
—=spl ~ +
(3.2.8) S0 (0) = SPL 74/ By (0) | ® O
Fo,(p)
=spl ~ +
(3.2.9) Bty 6.0 = Spl( fA T, nl')/(i%{,éﬂya o ® Ok)’
Fo,(p)
and
3ispl ~ +
(3.2.10) Xas br = Spl(nz,ﬁz,u)/(i%awo ® Ox)’
Fo,(p)
where
Spl,

(PHNF,45) ) (Rag 590 ® Ok)
OFg,(p)
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is a relative scheme over §:¢H75H70 ® Ok (see [8]), which compatibly assigns
Fo,(p)

to affine open formal subschemes Spf(R) of %qm’g%g ® Ok the corresponding
Fo.(p)
+
schemes Spl( s 0,82 45)/ Spec(R) OVET Spec(R).
Proof. Since Spl( § A E 1) ) (T L® Ox) represents the functor assigning to each
Fo,(p)
scheme the isomorphism classes of splitting structures for pullbacks of (#.2¢, #.Z, 7)
(see Proposition Z3.7), and since the various objects on the right-hand sides are
defined by taking normalizations (see Proposition 2.3.10), these follow from the
definitions of the various objects on the left-hand sides (see Definition B223). O

Proposition 3.2.11 (cf. [I2] Proposition 6.2.4.7 and (6.2.4.8); see also the errata],
[13, Propositions 8.7, 8.14, and 8.20], and [I5, Construction 4.5]). The canonical

. =spl ~spl . . .

morphism S e Céu,éu s a torsor under the split torus Eg,, with character
spl
Py,6%,0

split torus Eg,, , with character group o+ := {¢ € Sg,, : ({,y) = 0Vy € o} (see

. L= spl .
group Sg,,, the canonical morphism = — C;i 5, 18 a torsor under the

[12] Definition 6.1.2.5]), and the canonical morphism é;p:{’é% — éfbp;éﬂ (o) over

621,6% is an open immersion defining an affine toroidal embedding associated with
the cone 0 € Xg,, € X. Moreover, the canonical morphisms

Zspl = ~spl
(3.2.12) S0 7 SOw0n | X Q9,097
Cayyo

Zspl = ~spl

(3.2.13) Sy, ,00 (0) = Eay.00(0) e C<D9-¢,5H’
Cogqon
and
ESPI E ~spl
(3.2.14) Edyy 5.0 7 SBydu,0 | X Dy ,0n
Cayy6y

are Fg,, -equivariant isomorphisms over C_"Zfi Sy which are compatible with each

other. Consequently, the pullback of [13], (8.10)] gives a canonical homomorphism
. ~spl T spl

(3.2.15) S, — m(C’q};’(SH) A \Ilcl,p%(SH 0),

.o . . 2spl ~spl .
giving for each £ € Sa,, an invertible sheaf \IIZF%(;H (£) over CZ};,(SH (up to isomor-

phism), together with isomorphisms
A spPl, . \spl T spl ~  Zspl
Afbpﬂfén,e,z’ : ‘I’f}i{,éﬂ 0 ® \I/fg)%(sﬁ ) = \Ili'I,p%éH (e+10)

apl
Doy ,59

for all £,0' € So,,, satisfying the necessary compatibilities with each other making

-

spl
@KGS@H Ve, 5, () an ﬁé;;;l{yéﬂ -algebra, such that

—spl ~ J/SP!
(3216) :«q>pH75H = Specﬁaspl @ \Ijq>p7-u57-¢ (f) ’

(3.2.17) EP 5. (0) = Spec,, (@ P (@)) ,

P04 \LECTY
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where 0V = {{ € Sg,, : ({,y) > 0Vy € o} as usual (see [12, Definition 6.1.1.8]),
and

—=spl ~ 5Pl
(3.2.18) B ZS0ec, | P IT, 5,0

P09 \Leot

Proof. These follow from [I3, Propositions 8.7, 8.14, and 8.20] and the arguments
= = Sspl

t_l‘lere, because the pullback of the Eg,, -torsor Zg,, 5, — g'q)%g,_[ under C’;,p% 5

Cs,, .5, is necessarily normal, and hence is isomorphic to Efbp;’ 5,, Via the canonical

morphism [B:2Z12)), not just as a scheme but also as an Eg,,-torsor. O

Remark 3.2.19 (cf. Remark ZZZT3]). To summarize, we have a commutative diagram

e =spl =
(3.2.20) Edy on0 @ K—2EF 5, 0 =P Eay600 @ Ok
- Fo N Fo,(p)
N

Zpl =
Xbs,500,0 %@ K x':bp;{ X1 600 @ Ok
0

Fo,(p)

NEN

Eq’nﬁn (0) ® K—— éf)})l s (U) E— é@uﬁn (U) ® Ok
Fo H50H Ory (n)

/
—_ e =spl =
By QK By, 00 » By © Ok
Fo.(p)

MZ & KO i it o Oy
Fo

Ory.(p)

in which all squares not involving M;};’* ® Ok and M?_L” ® Ok are Cartesian.
Orq,(p) Ory.(p)
The horizontal arrows at the left-hand sides are open immersions with schematically

dense images, because the bottom one is so by definition. The horizontal arrows at
the right-hand sides are projective (which are the Spl™ over the respective bases,
as in Proposition 223310]) and surjective, whose pre-composition with the horizon-
tal arrows at the left-hand sides in the same rows are still open immersions with
schematically dense images. The (vertical) arrows between the top two rows are
closed immersions, while the arrows between the second and third rows are formal
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completions. The arrows between the third and fourth rows are given by affine
toroidal embeddings associated with the cone o. The arrows between the fourth
and fifth rows are (smooth) torsors under the same split torus Fg,,. The arrows
between the fifth and sixth rows are all proper and surjective with the left-most one
being an abelian scheme torsor. The arrows between the bottom two rows are all
finite and surjective with the left-most one being étale. The commutative diagram
can be further expanded by adding vertical arrows from the first row to the fifth
row, which are (smooth) torsors under the same split torus Eg,, -

By [13, Theorem 10.13] and [I5, Theorem 6.1(4)], there is a canonical isomor-
phism

2.21 MEOr.)A 5% .
(3 ) ( H,Z)z[((bwmﬁ)] Xy 60,0

Lemma 3.2.22. For each A € £, there exist split tori Ty and T}, with character
groups some O-lattices X and Yy, such that we have short exact sequences

(3.2.23) 1= Ty — A" — By — 1

and

(3.2.24) 1= Ty = AT —» BY =1

of (relative) group schemes over (Mggfz)%\[(q)ﬁ’éﬁ’a)], where ARt and ATV abusively
denote (by the same symbols) the pullbacks to (M%grz)A of the semi-abelian

6,V - L ((@4,830.0)]
schemes A and AT over MY, respectively. Moreover, we have a commutative
diagram

(3.2.25) 1 Ty Ag B 1
lz | Jz
1——TY, —— A BY, 1

in which the left-most vertical arrow is dual to a canonical isomorphism Yaz = Xa;

the middle vertical arrow is the pullback to (Mgfﬂ%@,{ .

over the noetherian normal scheme I\ﬁg_‘fz of the isomorphism An = A, over
My, (see [12], Proposition 3.3.1.5]), which is part of the data of (A, A, 1) over My, ;

and where the right-most vertical arrow is the pullback to (Mggrz)%\ of the
’ [(@4y,69:0)]

isomorphism By = BX# over |\7|§_Z“‘, which is part of the data of (B, Ap; 1'5) over
iz

of the unique extension
1

Proof. By the construction of the semi-abelian schemes A" and AT over I\_/IErcl’fZ,
which was based on [I3, Lemma 11.1 and Theorem 11.2] and [I5, Theorem 6.1]
(or more precisely [I5, Lemma 5.19 and Proposition 5.20]), their pullbacks to

(Mﬁr‘zrz)/z\ are isomorphic to the pullbacks of the Mumford families Q?éj
’ [(@9¢,69:0)]

and OC_}}/ over Z%q)%(;%g (see [12], Definition 6.2.5.28] and [13] (8.29)]), respectively,
for some j € J such that A = p"Lj®Z, for some r € Z. Then it follows from
z
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the constructions of the Mumford families there that we have canonical short exact
sequences

3.2.26 1T — %G = B —1
J J J

and

(3.2.27) 15TV = YGY - BY -1

for the split tori 7} and ij with character groups Xj and Yj, respectively, where Xj
and Y] are part of the torus argument ®3; = (Xj,Y], ¢, 0_2%;, Po,3;) associated
with @4, as in [13} (3.8)]. Then T}, T}Y, (3.2.28)), and (3.2.27) give up to (compatible)
Z(Xp)—isogenies the T, Ty, 3223), and [B:224) we want. As for the commutative
diagram (B.225), it suffices to note that for the polarization Ay, : Ay, — AY, in
Lemma [Z22] and for the jo € £ such that Ag = p"™°L;, %Zp for some rg € Z, we

have a commutative diagram

(3.2.28) 1—— T, — °Gj, —— Bj, —— 1

l,\TjO l%jo J/\Bjo

L —— T — ¥Gj, —— B —— 1

canonically associated with the Mumford family (Oéjo, @on, O%o, O&HJO), which
induces ([3.2.25) for all other A € . by using the Q*-isogenies f{'y, : AF' — AFH
associated with all the inclusions A’ C A” in .Z (see Lemma B.1.0]). 0

3.3. Comparison of formal completions.

Theorem 3.3.1. There is a canonical isomorphism

\aspl,tory A ~  Aspl
(3.3.2) (S L o
[(®3y,03,0)]
where (M;fl’ztor)gspl is defined as in the end of Section Bl covering the
’ [(@y.59¢0)]

canonical isomorphism B221)). Then B32) induces a canonical isomorphism

—~spl
(3.3.3) Z{(@3.,631,0)]

Oy ,00

~ =spl
T Sy S0
covering the isomorphism z[(q>%5%g)] 3 Eg,.60.0 (see [13, Corollary 10.15] and

[15, Theorem 6.1(5)]).

Remark 3.3.4. Since both sides of [B32]) are separated and have schematically
dense characteristic zero fibers isomorphic to those of (322]]) by Lemma[2.3.9] the
condition that [B32) covers (B2Z21) forces B32) to be unique if it exists. Any
isomorphism as in (33.2]) then canonically induces an isomorphism as in (B3.3)).

The remainder of this section will be devoted to the proof of Theorem 3.3.11 By

Remark B34 it suffices to construct an isomorphism ([B3.2)) covering (B221]).
For simplicity of notation, in the remainder of this section, let us write

(3.3.5) X = (M)0 ® Ok

Z1(® 3083901 Oy ()
and
spl . /nasplitory A
(3.3.6) X% = (MH)E )23p1

[(29¢,6%4,0)]
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As in Definition B.21] let us denote by the same symbols the pullback to X
of the (*22, %7, %j) over M%* under the composition X — M%}* of 3.22I) and
the structural morphism Xg,, 5,0 — M?{” (see (B2.20)); and let us denote by
(52, 8.7, hl) the pullback to X of the (£, .Z" j) as in Proposition B.1.2]

under the canonical morphism X — |\7|§_‘zrE Then we can abusively write
(3.3.7) XSy vz gy

(cf. Proposition 22310 and Remark B2ZT9)) and

—

spl ~
(3.3.8) Xy = S0l 17 15 2

Q3,09 ,0

(cf. B2I0)), where the right-hand sides of (33.71) and (3.3.8) are relative schemes
over X (see [§]; cf. the explanation in Lemma [3.2.4]).

Lemma 3.3.9. For all A € £ and [7] € Y/ ~, we have canonical short exact
sequences

(3.3.10) 0— nyA’[T] — hyA,[T] — byA’[.,-] —0

of O ® Ox-modules, where ﬁﬁA,[T], th’[T], and bﬁ?/\,m can be identified with the
Z

Ox-module local direct summands (@éx/x)m, (@Xixc,v/x)m, and (@}/«Av/x)m of

Lieéx/%, Liexcxt,v/x, and Lie%x/x, respectively, defined as in (21.0]).
A

Proof. Since FgXt = @Xm,v INitor_ > this follows from the short exact sequence for
A H, 2

duals of relative Lie algebras induced by (BZ24). O
Lemma 3.3.11. Consider any object
{( qu}]a hifT])}[T]er/N,osmd[ﬂ

parameterized by Spll(hﬁ,hz’ 1)/ % (¢f. B320), without condition {) in Definition
233l Forall A € £ and [7] € T/ ~, and for all integers i satisfying 0 < i < d;,
let

(3.3.12) *TN i = TR N A
and
(3.3.13) "Fain = Faml P A

Then the graded pieces ﬁfi’m/ﬁfi"’[% and b?ﬁ’[T]/bﬁi‘"{il are annihilated by

b@1=1®73,4(b) for allb € OF,,. Moreover, for each unit b of O @ Q, which nor-
Z
malizes O ® Z,,, the periodicity isomorphism 01;3” induces the periodicity iso-
z Alr]
morphisms 9’;46}}-\ o (ﬁﬂj\’m)b 5 uygA’m and 9’,’,9}-\ o (by}\’m)b = bﬁbzA’[T]
of O ® Ox-modules.
z

Proof. Since B310) is an exact sequence of O ® Ox-modules, these follow from
Z
the very definitions of ﬁﬁfx ] and bﬁi (- |
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Lemma 3.3.14. Let M be any Op,,-lattice, let S be any scheme or formal scheme
over Spec(Ok), and let M := M @ Og. Then there exists a unique filtration
7

(3.3.15) 0= cam=c...catca=.ua

of coherent Os-submodules of A such that, for each integer i satisfying 0 < i < d|),
the quotient M) .#* is annihilated by b 1 — 1®7(7,:(b) for allb € Op,,. The
graded pieces M| M are automatically locally free Os-modules of finite rank,
and hence both A" and M | A" are locally free Os-modules of finite rank. More-
over, M is the Og-submodule of .# spanned by the images of the endomorphism

[I (o @117k (br)) of A, for all elements by, by, ... b1 € Op,,; it is also
0<k<i
the intersection of the kernels of the endomorphisms — [[ (g ® 1 =1 ® 71 1 (by))
i§k<d[.,.]
of M , for all elements b;,b;11,..., bd[f]q S OF[T]'

Proof. Let Ky denote the maximal unramified extension of Q, in K, so that
Fij® Ko = []F, for some totally ramified field extensions F, of Ky. Since
Qp «

Ok, is finite étale over Z,, the canonical morphism OF[T] ® 0k, — [10F, is
Z, o
an isomorphism, because both sides are normal and have the same total ring

of fractions Fj;] @ Ko. Accordingly, the Op,  ® Ok,-module M ® Ok, and the
Qp ZP ZT’
sheaf # =~ (M ® Ok,) ® s compatibly decompose into direct sums, where
Zp OKO
OF[T] ® Ok, acts on each summand via some factor O, . Thus, in order to prove
ZP

the lemma, we may and we shall replace O, with some factor OF,, and replace M
with the corresponding summand of M ® Ok,. Now that Fi, is a totally ramified
ZP

(separable) extension of Ky, the lemma follows by writing each . as both the
image of some Q*(T) and the kernel of some Q;(T) as in [I7, (2.4)], whose forma-
tion is compatible with arbitrary base changes, and hence must be &s-module local
direct summands of .Z, as desired. O

Corollary 3.3.16. The sub-O ® Ox-modules *F} i of bﬂA’[T] in Lemma 3311
7 ,

are locally free and independent of the filtrations {hy/i\,m}ogkd[f] on hﬂA’[T].

Proof. By Lemma [3.2.22] the character group of the split torus T is an O-lattice
Y, and so @}/«X/x XY\ QO0x = (Ya®Zy,) ® Ox, where the O ® Z,,-lattice Y @ Z,,
z zZ Zp zZ z

is an Op ® Z,-lattice because O is maximal at p, by Assumption 2Tl Let us write
z

Ya©@Zy = @prjer/n Yar) as in @LE). Then " Fy () = (Liegy /x)ir) = Var) © Ox

by Lemma 3339 and the corollary follows from Lemma B.3.14] as desired. O

Proposition 3.3.17. The sub-O ® Ox-modules ﬁf}; ] of ﬁfA’[T] in Lemma B.3.11]
7 :

are locally free Ox-modules. Together with the canonical embeddings

uJZJﬂ iﬁégiir]‘* A
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defined by composing the canonical embeddings *.F A[ )~ uﬂ,\,[ﬂ and ﬁﬁmm —

ﬁg%‘j\h], we obtain a splitting structure
{(*Z1,, ﬁifT])}[T]er/N,ongm
for (22, *.F, ﬁl) over X, parameterized by Spl?ﬁ%, FL )X By repeating the same
construction over affine formal schemes over X, we obtain a canonical morphism
(3318) Spl/(”ﬁ,“z,“g)/x — Spll( b, 8, nl)/%
over X, which induces a canonical morphism
+ +
(3.3.19) RUCTRE NIV Il LR TRV
over X, by Lemma [Z3.9] and by the second paragraph of Proposition 2.3.10

Proof. Since we have a short exact sequence

(3.3.20) 0= "7 = "Fh = " Fh = 0

by definition (see Lemma B3.11]), and since %%} Al and T (-] are locally free
Ox-modules by definition and by Corollary B3.16], %% A[ )18 also a locally free

Ox-module. Hence, by Lemma[B.3.11] the collection {( *.% j[T])}[T]eT/N 0<i<dp

satisfies all but the last condition () in Definition 2.3.3] as a sphttmg structure for
(2, ' Z, ﬁl), and defines an object parameterized by the Spll(ﬁi, tg, 1) x @s in
Proposition Z3.10. Since the same construction works for splittings structures
of pullbacks of (!¢, *.Z, ¥j) to any affine formal schemes over X, we obtain the
canonical morphism (33.I8) over X, as desired. O

Proposition 3.3.21. The canonical morphism B3I9) is an isomorphism.

Proof. By Zariski’s main theorem (see [7, III-1, 4.4.3, 4.4.11]) and by [7, IV-4,
18.12.6], it suffices to show that the morphism ([B.3I8]) is a monomorphism. Hence,
it suffices to show that, for each affine formal scheme Spf(R) over X such that R is
noetherian and local, the induced morphism
(3.3.22) SPl( e, .2, 15)/ Spec(r) = SPso,2.2,1)/ Spec(r)
induces an injection between points over R.

For each A € .Z, since LleT\// spec(r) = (Y ® Zy) ® R as in the proof of Corollary

B.3.16, ETX /Spec(R) 18 @ projective OF%R—module. Since R is noetherian and
local, for all A € £ and [r] € T/ ~, there are (noncanonical) splittings

(3.3.23) T S Tam ® " P

of the short exact sequences (3.3.10) of O, % R-modules.

Suppose that the filtration {° 9}\ }0§i<d[r] on hﬁ,\)[f] induces the filtrations
{*.7] [T]}0<z<d and {° Fi [T]}0<1<d o on ﬁ§A7[T] and bﬁA’[T], respectively, by
the assignments as in (8312) and B3I3). By the last assertion in Lemma B314]
b?ﬁ is the R-submodule of *.Z, A,[-] spanned by the images of the endomorphisms

11 (bk®1 — 1@ 77 1(bk)), for all elements bo,by,...,bi—1 € Op, . Since the
0<k<i
splitting (8.3.23) is O, ® R-equivariant, by condition (2) of Definition 2Z3.3] it
Z
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canonically induces a splitting hﬁf\[ ] = ﬁﬁﬁ[ 1@ bﬁﬁ[ E Hence, by Corollary
3314 hJA 1] is uniquely determined by ﬁﬁf\ . Since this holds for all [7] and 4,
the morphism (3:3.22) induces an injection between points over R, as desired. [

Proof of Theorem B3l By Remark B34 it suffices to take ([B:3.2)) to be the com-
position of the isomorphisms [B.37), (33.19)), and the inverse of (B3J). O

3.4. Main theorem for toroidal compactifications.

Theorem 3.4.1 (cf. [12], Theorem 6.4.1.1]). For each H as in Choices Z210], and
for each compatible collection ¥ = {Ea,, }[(0,,5,,)) 0f admissible rational polyhedral
cone decomposition data that is projective as in [I5], Definitions 2.1 and 2.7] (sat-
isfying [12, Condition 6.2.5.25] by assumption; which includes the ones induced by

auziliary choices as in [13], Section 7], as explained in [I5] Remarks 2.3 and 2.9)),

there is a normal scheme Mi_‘zlgor projective and flat over Spec(Ok), containing

the scheme I\_/»I;‘f1 in Definition 2.4.5] as an open fiberwise dense subscheme, together
with:

e q tautological degenerating family
(G, Ay i, Oy )

of type My, over Mlel L% (see [12), Definition 5.3.2.1]), for each j € J, where

dy; is defined only over the open dense subscheme My ® K of MSpl o

e a tautological L -set
(zcxt ZCXtviGXt)

of polarized O ® ﬁM&.pl wor-modules extending the £ -set (A

,Z,3) of polar-
ALy

») over

ized O ® ﬁmsm modules associated with the tautological (
zZ
Mj_lzl (see Definition 24T and Lemma 227) that induces compatible iso-
morphisms F Xt = Liexext Rt and A | FXE Lie yext yjeor €xtend-
A H,Z
ing the canonical isomorphisms Fp = LleAV/M and F | Fp = @AA/IVIH’
respectively, for all A € £ (see Proposition B1.2); and
e a tautological splitting structure

{(Zef]t’i, i?;t7i)}[r]€'l“/~,0§i<d[f]

for (£, F lCXt) over M;flgor, which extends the tautological splitting
structure {(F lf ])}[ JeT /~0<i<dy, for (. Z, j) over l\_/l'ifzl (see Defini-
tion 2Z47));

such that we have the following:

(1) We have a commutative diagram

(3.4.2) MH;@KC MEP! My ® Ok
0

\[ OFo,(P)

Mtorz ® KC Mbpl tor I\_;Igf[)fg ® OK

Fo.(p)
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of noetherian normal schemes flat over Spec(Ok) and of canonical mor-
phisms (over Spec(Ok)), in which all squares are Cartesian, all vertical
arrows are open immersions with fiberwise dense image over Spec(Ok),
the two horizontal arrows at the left-hand side are open immersions with
schematically dense images, the two horizontal arrows at the right-hand side
are projective and surjective, and the compositions of horizontal arrows in
the same rows are also open immersions with schematically dense images.
M%’}gor has a stratification by locally closed subschemes

\aspl,tor Zspl
MEs = I Zlson
[(P3,094,0)]

with [(Py, Iy, 0)] running through a complete set of equivalence classes of
(Py, 0y, 0) (as in [12] Definition 6.2.6.1]) with o C Pth and o € Xg,, € X
(see BI9)). (Here Zy is suppressed in the notation by [12, Convention
5.4.2.5].) In this stratification, the [(®%,0,0")|-stratum Zya; s, o1y S
contained in the closure of the [(®y, 03, 0)|-stratum Zys,, 5,0y if and only
if (P, 09, 0)] is a face of [(PY,,84,0")] as in [12, Theorem 6.3.2.14 and
Remark 6.3.2.15]. The analogous assertion holds after pullback to fibers
over Spec(Ok).

The [(®Py, 0x, 0)]-stratum Zf(pql)%é%a)] is flat over Spec(Ok) and normal,

spl

By 50,0 for any

and is isomorphic to the support of the formal scheme X
representative (P, d%,0) of [(Py,02,0)]. The formal scheme f;p:h(;%’a
admits a canonical structure as the completion of an affine toroidal embed-

. 2spl . Zspl Zspl
ding =3, 5,,(0) (along its o-stratum EF s ) of a torus torsor =g s

~spl ~spl
over a normal scheme Cg 5 = flat over Spec(Ok). The scheme Cq, 5.

is proper (and surjective) over a finite cover l\_/l’;I:f*’Spl of the boundary ver-
sion M%’*’Spl of I\_/’Iifzl (cf. Definitions A5 and B21), and the summary in
Remark BZI9). (Note that Zy and the isomorphism class of Ma™' de-
pend only on the cusp label [(Z3, Py, 04)], but not on the choice of the
representative (Zgy, Py, 094).)

In particular, |\7|§31 = Zf&l’ov{o})] is an open fiberwise dense stratum in
this stratification.

The stratification BA3) is compatible with the stratification of M, as
in [13, Theorem 9.13] and [I5, Theorem 6.1(3)], and we have a commutative
diagram

—
—
fl

= C y 5Pl 5
=03,09,0 ? K —®yy,09,0 D3¢,07¢,0 . ® Ok
0

Fo,(p)

2 t ?

—

Zspl
Zi@rsro) K Z[ | = Zjar,on0)] @ Ok

Dq,09,0
[( H d’H ) OFO,(;D)
~

tor C 5Pl tor \/jtor
Fo Org.(p)
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of canonical morphisms, in which all squares not involving I\_/'Ig_‘zrE ® Ok
" Org,(m)

are Cartesian, the vertical arrows in the upper-half are isomorphisms, the
vertical arrows in the bottom-half are locally closed immersions, the hori-
zontal arrows at the left-hand sides are open immersions with schematically
dense images, the horizontal arrows at the right-hand sides are projective
and surjective, and the compositions of horizontal arrows in the same rows
are also open immersions with schematically dense images.

The formal completion (M;_}letor)/zl[g - of the scheme M’S}-It),l’gtor along

HOH T
its (locally closed) [(Pyy, 03, 0)]-stratum Z?(pqi%é%g)] is canonically isomor-

phic to the formal scheme ffg;{ S0 for any representative (P, 09,0) of
[(®Py, d%,0)]. (See the isomorphism [B3.2) in Theorem B3I1)

For any open immersion Spf(R,I) — ifbp:{ s inducing morphisms

H O
Spec(R) — EEPL75H(0) and Spec(R) — Mjf}’ztor (via the structural mor-
phisms and the inverse of the above-mentioned isomorphism [B32)), the

preimage of Efg’:{ 5, under Spec(R) — Efg’:{ 5,,(0) coincides with the preim-

age of l\_/l'ffz1 under Spec(R) — M;ﬁ’}gor.
For each j € J, the pullback to (Mzglgor)A of the degenerating

Zspl
Z[(®gq.63,0)]

family (éj, Xj, i, ;) over l\_)lif}gor is canonically isomorphic to the pullback
to ifl,piﬁ%g of the Mumford family (Uéj, (?va %, “dy;) over fqm,g%g
(see [12, Definition 6.2.5.28] and [13 (8.29)]), after we identify the bases
using the above-mentioned canonical isomorphism [B.32]).

Then we have a commutative diagram

(3.4.5)
Zspl -
X000 O K %‘1)%,67{70' Xop 000 @ Ok
Fo Fo,(p)
! t !
\7spl,tor 7
(Mtor )/\ ®K( \ (MbIM )/_} (Mtor )i\ ® O
H,2)Z - = 1 ” H,D K
[(®9y:694,0)] F, H Z?(plpr,éfH,o)] Z[(‘PH’JH’U)] OFU‘(p)

t \7spl,tor 7t
Mil's @ K PMy s Myl 02 Ok
0

of canonical morphisms compatibly extending those in (B.44), in which all
squares are Cartesian, the vertical arrows in the upper-half are isomor-
phisms, the vertical arrows in the bottom-half are formal completions along
locally closed subschemes, the horizontal arrows at the left-hand sides are
open immersions with schematically dense images, the horizontal arrows at
the right-hand sides are projective and surjective, and the compositions of
horizontal arrows in the same rows are also open immersions with schemat-
ically dense images. This commutative diagram D) is compatible with
the commutative diagrams B220) and A4 along their common arrows.
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(4) Let S be an irreducible noetherian normal scheme over Spec(Ok), with

(3.4.6)

(3.4.7)

(3.4.8)

generic point n, which is equipped with a morphism

Fo

Let (Ay, Ay, iy, oqy,) denote the pullback of the tautological object of My to

n under (BEI) Suppose that, for eachj € J, we have a degenerating family
(G‘L )\}L, }L, ) of type My, over S, whose pullback (Gj ), Njy 5., ;)
to n defines a morphism

n— My, @ K
i B

by the universal property of My, which we assume to coincide with the
composition of [B.A8) with the canonical isomorphism My, = My, given
by [13, (2.1)]. Suppose moreover that there exists an £ -set (ﬂ*,ﬁtf)

of polarized O ® Og-modules extending the pullback (KU,Zn,jn) of the
o J

(A,.F,j) over MSPI (see Definition [Z41] and Lemma Z2.7) and inducing

compatible isomorphisms L?T ~ LieY and %”T /9}; = LieGT/S ex-

==clv/s
tending the canonical zsomorphzsms Ty = Ller I/ and %\J,n/t%\w ~
Lieg, /s Tespectively, where A;j is as in Choices ), for all j € J;

and that there exists a splitting structure {(zmvZ[T])}[T]GT/MOSKCI[T] for
!, 71, ).
Then B4AL) (necessarily uniquely) extends to a morphism

5 - N
(over Spec(Ok)), under which the above two tuples, (ﬁT,ZT,f) and
{( ff’] ][T])}[T]GT/~,0§i<d[T])7 are isomorphic to the pullbacks of the tauto-
logical tuples (™, F, j) and {(FE5, J25) et /m0icar,) over

=[]

, respectively, if and only if the following condition is satisfied at
each geometric point 5 of S':

Consider any dominant morphism Spec(V) — S centered at 5, where
V is a complete discrete valuation ring with fraction field K, algebraically
closed residue field k, and discrete valuation v. By the semistable reduction
theorem (see, for example, [B, Chapter I, Theorem 2.6] or [12, Theorem
3.3.2.4]), up to replacing K with a finite extension field and replacing V
accordingly, we may assume that the pullback of A, to Spec(K) extends to
a semi-abelian scheme G* over Spec(V). By the theory of Néron models
(see [B]; ¢f. |20, IX, 1.4], [Bl Chapter I, Proposition 2.7], or [12, Propo-
sition 3.3.1.5]), the pullback of (Ay, Ay, in,03.y) to Spec(K) extends to a
degenerating family (Gi,)\i,ii,a%) of type My, over Spec(V), where a%_[
is defined only over Spec(K), which defines an object of DEGpgL M, (V)
corresponding to a tuple

(Bia )‘Bi,iBiviiaxia ¢17 Cia CV7ia Tia [agf])

in DDpgr,my, (V) under [12, Theorem 5.3.1.19]. Then [ag_’f] determines a
fully symplectic-liftable admissible filtration Z;t_t. Moreover, the étale sheaves

\7spl,tor
MH,Z
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Xt and Y are necessarily constant, because the base ring V' is strict local.
Hence, it makes sense to say we also have a uniquely determined torus ar-
gument @3_[ at level H for Zé[_[. On the other hand, we have objects ®;,(G4),
Sg,, (at), and B(G*) (see [12, Construction 6.3.1.1]), which define objects
‘Iﬁ_l, Sq):;{, and in particular BY - S@% — Inv(V) over the special fiber.
Then vo B : Sy: — Z defines an element of Séx , where v : Inv(V) = Z
H H

is the homomorphism induced by the discrete valuation of V.

Then the condition is that, for each Spec(V) — S as above (centered at
5), and for some (and hence every) choice of 62_[, there is a cone ot in the
cone decomposition Ly: of Pyt such that &t contains all v o Bt obtained

in this way. (As explained in the proof of [12, Proposition 6.3.3.11], we
may assume that ot is minimal among such choices; also, it follows from
the positivity of T+ that ot C P%{. Then the extended morphism ([B.43)

Z?(pq])i 5t oty conversely, this property
HIVH

. —spl \aspl,tor
also characterizes the stratum Z[(<I>§1,5§{,a¢)] of My 5 2

maps 8§ to a geometric point over

In particular, since this condition involves only H, ¥, and the linear
algebraic data in Section 21 (such as &) and Choices 23], the scheme
Mi_‘;}gor depends (up to canonical isomorphism) only on these, but not on
any auxiliary choices made in [I3, Section 7] or any compatible collection
pol of polarization function as in [15, Section 2].

. . .. —spl, b
Proof. By its very construction in Definition we know ML as a normal
Yy Yy H,E

scheme flat over Spec(Of) and projective over Mgﬁl’fg, with the tautological struc-
tures as described in the beginning of this theorem, which satisfies assertion ().
The assertions ([2]) and [B]) then follow from [I3] Propositions 7.4, 8.1, 8.4, 8.7, 8.14,
and 8.20; Theorems 9.13, 10.13, and 11.2; and Corollaries 10.16, 10.18, and 11.9],
[15, Theorem 6.1 (3) and (4)], the constructions summarized in Remark B:22.T9] and
Theorem 3311

It remains to justify assertion (#)). By [I3, Theorem 11.4] and [I5] Theorem
6.1(6)], the condition there is necessary and sufficient for (3.4.6]) to extend to a
morphism

(3.4.9) S— MYy © Ok.
OFow(p)

By Proposition B2} the tautological tuple (£, Z", j) over M%’}gor canon-

ically descends to |\_/|'5_<ZYE ® Og, whose pullback under ([B:49) must be isomor-

Fy.(p)
phic to the (KT,ZT,J‘L) over S, by the density of n in S, and by the assump-
tion that (£, Z, l'e"t) induces compatible isomorphisms 35); = @é;,v /s
and %”ATJ_ / 9};3_ = @G; /s extending the canonical isomorphisms %y , = @éjvm /n
and )/ Fn;y = Lieg, , /n» respectively, for all j € J. Thus, the morphism
3Z49) lifts to a morphism S — I\_)Iif,lgor as in (B.48) by the universal property of
I\-/'lgzl,ztor = Spl&e’“,zﬁ“f’“)/(méirz & Ox) (see BI4)), as desired. O

OFg.(p)
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Proposition 3.4.10 (cf. [I3 Propositions 13.7, 13.9, and 13.15] and [I5] Proposi-
tions 7.3 and 7.5]). With the same setting as in Proposition AT, suppose more-
over that ¥ and ¥’ are compatible collections of projective admissible rational poly-
hedral cone decomposition data for My and My, respectively, as in [15], Definitions
2.1 and 2.7], such that ¥ is a g-refinement of ¥’ as in [12, Definition 6.4.3.3]. Then
the morphism [24I8]) extends to a canonical projective morphism

- tor

(3.4.11) g : M%i’fz N “7'53{2/,

whose pullback from Op, () to Ok lifts to a canonical projective morphism
~spltor o

(3.4.12) [g]bp o . M;_I[)}’Ztm Mj-I[)/l gr

extending the morphism 2419). The morphism (BID]) (resp. BAI2)) maps the
(P, O3, 0)]-stratum Zya,, 5,,,0)) (resp. Z[(qm 5% ) fl\/ltor (resp. l\/lSpl L°%) to the

(@, 037, 0)]-stratum Z'[(%VC;H, oy (resp. Z[(‘I”H/ﬁnua’)]) of MH’,E' (resp. M;ﬁ’}gr)

if and only if there are (Pyy, 64, 0) and (P, 0%,,,0") representing [(Py, 63, 0)] and
(D, 0%, 0")], respectively, such that (Py, 09, 0) is a g-refinement of (Y, 64, 0")
as in [12], Definition 6.4.3.1]. Also, the analogues of [I5] Proposition 7.5] for (B-411)
and B4AI2) are true.

Proof. The existence of the canonical morphisms (B.4I1)) and B4I2) (with the
desired properties) follows from Proposition 2.4.17 and its proof, and from compar-
isons of the universal properties of objects involved, using [13, Theorem 11.4] and
[15, Theorem 6.1(6)], and using (@) of Theorem B4l As for the last statement, it
follows from the same argument as in the proof of [I5, Proposition 7.5], by showing
that the formal completions of the toroidal compactifications along the pullbacks
of strata of the corresponding minimal compactifications have the desired forms,
using [13, Theorems 7.14 and 11.4], [15, Theorem 6.1], and Theorem B.Z.T1 O

By the same arguments as in the proofs of [13] Propositions 14.1 and 14.2], using
the fact that the squares in the commutative diagrams B220) and [BLH) are all
Cartesian, we obtain the following two propositions:

Proposition 3.4.13 (cf. [13 Proposition 14.1]). Suppose ¥ is smooth as in [12]
Definition 6.3.3.4]. Then l\/IifZ is reqular if and only if l\/IsPl tor s,

Proposition 3.4.14 (cf. [13] Proposition 14.2]). Let P be the property of be-
ing one of the following: reduced, geometrically reduced, normal, geometrically
normal, Cohen—Macaulay, (Ro), geometric (Ry), (Ry), geometric (Ry), and (S;),
one property for each i > 0 (see [7, TV-2, 5.7.2 and 5.8.2]). Then the fiber of
I\_/’ISp’]’EtOr — Spec(Ok) over some point s of Spec(Ok) satisfies property P if and
only if the corresponding fiber of the open subscheme I\_/’Iifzl — Spec(Ok) over s
does. If ¥ is smooth as in [12] Definition 6.3.3.4], then P can also be the property of
being one of the following: regular, geometrically reqular, (R;), and geometrically
(R;), one property for each i > 0.

Corollary 3.4.15 (cf. [13] Corollary 14.4]). Suppose that the geometric fibers of
|\7|Spl — Spec(Ok) are reduced (resp. have integral local rings). Then all geometric
fibers of MSpl " s Spec(Ok) have the same number of connected (resp. irreducible)

. ispl
components, and the same is true for M3} — Spec(Ok).



2496 KAI-WEN LAN

Proof. By Proposition B.4.14] the proper flat morphism I\_/Ii_‘zfgor — Spec(Ok) has
geometric fibers with reduced (resp. integral) local rings. So, by [6, Proposition
8.5.16], in its Stein factorization M;f}gm — (Mjf}gor)“ — Spec(Ok) (see [7, III-1,
4.3.3 and 4.3.4]), the second morphism is étale, while the first has connected and
hence reduced (resp. integral) geometric fibers. Thus, the assertions for l\_/lif}gor
follow.

The assertion for |\7|3_121 concerning irreducible components then follows from the
fiberwise density of |\7|§_IZ1 in M;_}z}gor over Spec(Ok) (see @) of Theorem BAT]).

The assertion for I\_/»Iz_lf1 concerning connected components does not follow as eas-
ily, because an open dense subset of a connected set is not necessarily connected.
Nevertheless, we have the following subtler argument: By (@) and (@) of Theorem
BZ1 and by Artin’s approximation (see [I, Theorem 1.12 and the proof of the
corollaries in Section 2]), for each geometric point § — Spec(Ok), and for each

—

x € (Mjf}gor)g, there exist an étale neighborhood z — U — (M;_}z}gor)g and an étale
morphism U — (éfgi’éﬂ (0))s (see Proposition B2ZTT), for some (P4, d3,0), such
that (by also approximating closed subschemes defining the boundary) the (open)
preimages of (Mj_?l)g and (éfﬁi 5, )5 in U coincide with each other, and such that
(up to replacing U with an open neighborhood of z) these étale morphisms have

. o Zspl Zspl . .
connected geometric fibers. Since =3 — =4 s (o) is fiberwise dense between
Pay,0n Pay,0n

schemes with geometrically irreducible fibers over 6;11’ 55, Since the formation of

closures commutes with any flat base change (see [7, IV-2, 2.3.10]), and since z is
arbitrary, the connected components of (M54 )5 are exactly the closures of those

of (M;_IL’I) 5. Since 5 is also arbitrary, the desired assertion still follows. 0

4. MINIMAL COMPACTIFICATIONS

4.1. Variants of Hodge invertible sheaves. Unless otherwise specified, all ten-
sor products of quasi-coherent sheaves in this section will be over their respective
base schemes.

Definition 4.1.1. The invertible sheaf wgsm ; over |\7I,S7,_If1 is the pullback of the
o

J
ample invertible sheaf wy; ; over My, (see [13, Proposition 6.1]) under the canonical

morphism Mifl — My. Similarly, the invertible sheaf Wrgspior y OVer I\_/’If;falgor is the
pullback of the invertible sheaf Weiger_ 3 OVer M;‘ZYZ (cf. [13, Proposition 7.11] and

[15], Theorem 6.1(2)]) under the canonical morphism M;f}gor — |\7|§|le“E

Remark 4.1.2. Since Wiitgr,. 3 and Wjsplyor 5 are (by definition) the pullbacks of

the ample invertible sheaf wymin ; over Mﬁin (see [I3], Proposition 6.4]), they are
H

semiample in the sense that both wgé\i " and ”gggm , are generated by their

global sections (over their respective base schemes) for all sufficiently large N.
Definition 4.1.3. Consider the invertible sheaf

1 L &H’
(4.14) Nt T Yoz /0y ®  Ok)
OFp.(p)
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over Mj_lfl, which extends to the invertible sheaf

lat Myt
41. B §
( 5) WM?ZI,Ztor w((ﬂext’zext ’jext)/(M;{zlgor ® Ox)
1 N ' OFg,(p)

over Mi_‘z}’ztor7 defined as in (2.3.8)) and Proposition 2:3.10 (see also Definitions 245
and [3.1.3)) for each positive pu. For each integer k, consider the invertible sheaf

®(k,u) ok

(4.1.6) gy =

"
w"s 1 ®w:s 1
MER! g T NP

over MS!, which extends to the invertible sheaf

®(k 1) Rk I
Mbpl tor 3¢ : wm ltur J ®WMsp1 tor

(4.1.7)

over MSp1 ' For simplicity, for each integer N, we shall abusively denote the N-th

®(k n)N ®(k,p)N .
tensor powers of (LI.0) and ([@LI7) by MDPI and Wiepltor 1> respectively.
H,E

Lemma 4.1.8. For each positive p, there exists some constant ko(p) > 0 such that

wsgze) is ample for all k > ko(u). Consequently, there also exists some constant
b Iad
No(p) > 0 such that qu(fl’l;)N is very ample for all k > ko(p) and N > No(p)

Proof. This is because wﬁspl is relatively ample over |\7|§_IZ1 (see Proposition 2310,
H
and because wyjsp ; is (by definition) the pullback of the ample invertible sheaf
Pl
wyz,, 5 over My (see Definition ELI.Tland [13| Proposition 6.1]). O

Definition 4.1.9. For each cusp label [(®y,d%)], and for integers k and N, we

2 ®(k,p)
define as in Definition .1.3] the invertible sheaves wgzll o 37 Wigzneenty Wiy spt 3o
H H ’
®(k,p) N 1Z#,Spl __
and w_ r M7} =S 1t see .
%HHWIJ p(ﬁ%”ﬁ?ﬁ)/(MZ’HO@ OK)( (m))

Fo,(p)
For each triple (P4, d3;, 0) such that its equivalence class [(Py, 034, 0)] defines a

stratum Z°P! of M%’lgor, consider the structural morphisms

[((P'H-vé-"ﬂvo')]
Zspl 7 Z0,5pl
(4.1.10) XL 5,0 = M3P
and
—=spl 7Z7,5pl
(4.1.11) SHAE S Vi
(see Definition B.2:3] and Remark B:2.19)), which are compatible with the structural

morphism =5 — P! )
‘1’% 57-{ [ea @'H 57-{ o

Lemma 4.1.12. For each A € Z, each [7] € T/ ~, and each integer i satisfying
0 <i < d[5, consider the invertible sheaf
top

i L xt,i xt,i+1
(4113) WA7[T]7|\7|§_FZ}SO’“ T /\(yli,[T /QX i[7] )

Mspl,tor

over , where

{(ze}(t 7I7j )}[T]GT/N 0<i<d
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is the tautological splitting structure over MSpl % (see Theorem BAT); and consider
the invertible sheaf

top
i — i +1
(4.1.14) Wi o e = ANCZi /700

=24 5pl
over M37*°P" where

{( uﬁf}], ﬁifT])}[r]eT/N,ongm

123 ,Spl
is the tautological splitting structure over My] = Spl(u% L7 4) (i Lo 0n)
Fo,(p)

(see Definition B2T)). Then the pullback of W' under the canonical mor-

AT 5P
phism Z%fg’:{ P M;ﬁ’}gor induced by the inverse of B32l) is isomorphic to the
pullback of wj\ (o i under the morphism (EI1I0).

LTV

Proof. Consider the pullback %.7; i of ﬂzx[t ]l o XsPl = (Mbp’1 N4 , as in

Fspl
Z oy 53,00

Section B3l By assigning ﬁﬁﬁ[ j and bJA[  to hJA[ ] as in B312) and B3I3),
we have a short exact sequence 0 — F.%? A b A ﬁ w0 of locally
free Oxsm-modules as in ([3320), which induces an 1somorph1sm AP ( “35}'\)[71) =
AP ( ﬁﬁ};m) @ A"P( bﬁ};ﬁ[ﬂ) of invertible sheaves over X*P!. By Corollary
and its proof, A\"P( bff\’m) = A*P(Y) 1] ® Oxsm) = ( tOp(YA 1)) ® O'xsm 18 triv-
ial. Then it suffices to note that, by the c!:)nstruction of B32) (seg the proof of
Theorem B371]), the ﬁg‘\}'\’[ﬂ over X%P! is canonically isomorphic to the pullback of
the uﬁfx’w over M%’{’SPI under the composition of (3.3.2) and (ZII0). O

Corollary 4.1.15. For each p, and for any mtegers k and N, the pullback of

k
:.pl tors TESP- w“ ”u) ®( #) ) to

the invertible sheaf wqifl cor 3 (resp. wh ispheer ) resp. w isplor 3

NSP
%:I)pl 5n.0 Via the canonical morphism %2’1 5H . — M;f}ztor induced by the inverse

k
of (m is isomorphic to the pullback of w®F resp. we resp WS
R(k,u)N

“Z’H spl ( 23 Spl7 . Z34,8pl 17

J M%7} NZH P!

TESP. W oo J) under the morphism ([@I1I0).
e

Proof. The case for w®F follows from [12, Lemma 7.1.2.1, and the proof of

Mspl tor J
Theorem 7 2.4.1], and from the definitions (see Definitions Tl and IZEZI) The
case for wmwlgor follows from Lemma [£.1.12] and from the definition of WMSPI tor (s€E

[23.3)). The remaining cases then follow from these two cases, by deﬁnltlon O

Corollary 4.1.16. For each positive u, and for each cusp label [(®4y,d%)], there
exists some constant k(a,,.5,,) (1) > 0 such that, for each triple [(®4y, 634, 0)] defining
a stratum Z[({)H’é%g)] of M;_}Z}Emr above the stratum Z[(q)%[;ﬂ)] of |\7|min (see Defini-

tion B8, [I3, Theorem 12.1], and [15, Theorem 6.1]), the pullback ofw?ffl i)) to

J
Z?(pqlm 53:0)] is semiample for all k > ks, 5,,) (1), and is isomorphic to the pullback
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®(k
of an ample invertible sheaf w OEL) under the structural morphism (E1I1)). Con-

ﬂzH Dpl
sequently, there also exists some constant N(@,,,5,0) (1) > 0 such that the pullback of
®(k»/4)N Zspl
Chigp'ser, [(®7.67.0)]
and N > N@,,,5,0) (1) (see Remark BL2)), and is isomorphic to the pullback of a

®(k,
2N inder the structural morphism ([@IIT).

*ZrH_ spl

is generated by its global sections for all k > ks, s5,,) (1)

very ample invertible sheaf w

Proof. This follows from Corollary LT3l and from the same argument as in the
proof of Lemma [£T.8 O

Lemma 4.1.17. For each A € £, each [7] € T/ ~, and each integer i satisfying
0 <i < dp5, the pullback wA (7], M9 ® K ofw [ ispter (see (AII3) to M%‘Zfz % K

(see BZ2D)) descends to an mvertzble sheaf w' g g K

Mmin ® K.
over MY; ®
Proof As in the proof of [12, Theorem 7.2.4.1], it suffices to note that the pullback
of wt, to Xa,,,60,0 ® K descends to M,ZHH ® K, by Lemma O
F[) FO

M<p1 tor A [ ] 67{,

Corollary 4.1.18. For each p, and for all k and N, the pullback wfjt(fr’ﬁ)gKJ
® K,
k:,p,)[;\l

N
of w & (k,p) to Mgf[’fz %K (see B4A2)) descends to an invertible sheaf mem ® K.

Mspl ,tor J
over M%m ® K. Consequently, for all sufficiently large integer k (depending on ,u),
Fy -

®(k,p) N

the invertible sheaf Wipmin @ .y OVET l\/|7“{lin ® K is ample, and so that its pullback
o Fo

®(k,u)N

Wit 8 K to MYy, @ K is semiample.
=5

Proof. By Definitions T Tland 413l and by the definition of w%splrm (see (23.9)),
H, 2
this follows from Lemma LTT7 O

Corollary 4.1.19. For ecach positive u, there exist integers ki(p) > ko(p) and
Ni(p) > No(p) such that, for all integers k > ki(p) and N > Ny(u), the pullback

of the invertible sheaf wéi(pl /;2 to Mlel (Mw1 jLor ® Q) I\_/'Iﬁ_li’1 UMY, @ K) (glued
5

over their common open subscheme Mg_‘[)l %)Q >~ MH ;@ K) is generated by its global
0

sections and descends to a very ample invertible sheaf over |\7|§_Izl U(M%in ? K).
0

Proof. This follows from Corollary LT.18 and the same argument as in the proof
of Lemma [4.1.8 O

Remark 4.1.20. The constants in Lemma [£.1.8 and in Corollaries £.1.16] and [£.1.19
depend on the integral PEL datum (O, *, (-, -), ho), on the choices of J and .&;
(see Choices Z2Z9]), on the level H (see Choices [Z2ZT0]), on the choices of the in-
tegers {aj}jes as in [I3] Lemma 5.30], on the choices of K and the ordering of
(71,00 T 1s - - - Tlrludyy—1 i [7] for all [7] € T/ ~ (see Choices Z.3.)), and on p.
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Lemma 4.1.21. The canonical restriction map

Gspltor  ®(k,u)N
F(M%Z w

®(k,p) N
bl M;}L)’I,Etor7j )

Tspl,tor
Mis™d

) = TV UM S ©Q), w
is bijective for all p, k, and N.

Proof. Since l\_/l'ﬁf}’ztor is noetherian and normal by construction, which is (S3) at all
points of codimension at least two by Serre’s criterion (see 7, IV-2, 5.8.6]), and

. spl spl,tor . aspl,tor . .
since the complement of M3y" UMy 5 %Q) in My 5" has codimension at least

two (because |\7|3_121 is fiberwise dense in M;flgor, by Theorem [B4T]), this follows
from [9 Proposition 1.11 and Theorem 3.8]. O

Proposition 4.1.22. For each positive i, given any integers k > ki(p) and N >
Ni(p), the canonical morphism

\2spl \7spl,tor \7spl,tor ®(k7>ﬁ)N
(4.1.23) M3 UM <§@) = Pspec(o,0) (M8 7“’@1;02”
induces a canonical open immersion
\ 5Pl min Zsplitor  ®(k,u)N
(4.1.24) MY UMY, ©K) = Pspec(os) T (M55 W por )
o o

whose pre-composition with the canonical morphism

(4.1.25) MsE! U(M3P 5" ® Q) — ME UMy ® K)
0

is @I23). Let us define l\_/’lzfl(zlz)]v to be the normalization of the closure of the

. . Tsplt ®(k,u)N .

image of [EI124) in ]P)SpeC(OK)(F(Mz-}L) ’Eor,mepljor J)) Then we have a canonical
’ H,E

open 1mmersion

\spl min \/spl,min
(4.1.26) M3} UM% %%K) — M'?-z(k,g)N’

with schematically dense image (by definition of M;_IZI&ZIZI)N), whose pre-composition

with @L28) defines a canonical morphism

—spl,pre

(4.1.27) fﬂv(k,g)N :

spl aspl,tor \7spl,min
Mz UMy s QZ@Q) — MH,(k,H)N

with schematically dense image. The pullback of O BN ), (1) to
Msp‘lgor)‘]
®(k,p)

—spl,min ;
M3, ey

PSpec(OK ) (F(M%’}gor,w

= i . . Q(k,p) N
M;E}EEZ)N’ which we abusively denote by wmipl‘;)in

H,(k,p)N’

; (before defining w

is an ample invertible sheaf, whose further pullback to M;ﬁlu(Mﬁinl@K) under
0
EI28) is the very ample invertible sheaf in Corollary L1191

Proof. The existence of the canonical morphism ([4.I1.23) and the induced open
immersion (£I1.24]) follows from Lemma [L1.8 Corollaries LTI and ET.T9] and
Lemma [LT.2T] The rest of the assertions are self-explanatory. O

Choices 4.1.28. From now on, for each positive p, we shall fix the choices of some
integers ka(p) > ki(p) and Na(p) > Ni(p) such that ko(p) > k.5, (@) and
Na(p) > Nw,, 5,,) (1) for all cusp labels [(®4,0%)] (see Corollary ET.T6].
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We will show in the next section that, when k > ka(p) and N > No(pu), the

—spl . o .
morphism (@I27) extends to a morphism §,, : M;f’l’;:or — M;_E’l’mm, whose target
is (up to unique isomorphism) independent of the choices of k and N.

4.2. Semiampleness and projective spectra. Throughout this section, we shall

fix the choice of a positive u, and assume that k > ko(u) and N > Na(u), where

ko(p) and Na(p) are as in Choices B B

—spl,pre .
H, (k)N

. . - Do
(LI27), which we view as a locally closed subscheme of M5} ’Ztor x  MmeRhmne
H, Spec(Ox) H,(k,p) N

« I

. .. . \7spl \1spl,tor spl,tor _ .
which is isomorphic to the open dense subscheme My UMy & %) Q) of My, 5™ via

—spl,pre
Let Graph( ﬁ:’(iw ) denote the graph of the canonical morphism

the first projection, and has schematically dense image via the second projection
(see Proposition A T22]). Let us denote by

\2spl,tor
MH,E,(kﬂ)N

—spl,pre
the normalization of the necessarily reduced schematic closure of Graph(§ H, (o) ~)

. naspl,tor \7spl,min . . \aspl,tor aspl,min
inM x M . Then the projections from M x M
H,E H ) H
E Gpec(0g) | HolmN HE g oy kN

to its two factors induce canonical proper surjections

Aspl . naspltor \2spl,tor
(4.2.1) Dt kv Mag s ey = Mags
and
—spl o = .
. pl,tor spl,min
(4.2.2) kN M N = Mag (e
Lemma 4.2.3. The canonical morphisms
Sspl
4.24 ﬁ*s l,tor —7 8sp ﬁ"s 1,tor
( ) M3PS ( H,(k,g)N)* va,zt,(k,ﬁ)zv
and
425 o o Z
/N 7spl,min — aspl,tor
( ) M?s,(k,ﬁ)N (fﬂv(k’&)N)* M?f,zt,(k,ﬁ)zv

induced by @EZT) and @22]), respectively, are isomorphisms. Consequently, the
morphisms [A2.1) and [@22)) are their own Stein factorizations (see [7, 111I-1, 4.3.3
and 4.3.4]), by abuse of language, and their geometric fibers are all connected.

Proof. Since ([21)) is proper, it induces a Stein factorization

spl,tor Aspl \1spl,tor
4.2.6) MY — Spec (@ Ogismcor ) = NS
( ) H.2,(k,u) N p ﬁM%’i’lg‘“ ( H7(k7ﬁ)N)* M?-lz,):,(k,ﬁ)N HE
. . . . . \7spl,tor
and we need the second (finite) morphism to be an isomorphism. Since M s, (k)N

is normal, the second scheme in (@.2.6)) is normal. Since (£21]) induces the identity
morphism over the open dense subscheme Mj_}zl, the second morphism in (@206 is

an isomorphism by Zariski’s main theorem (see [7) III-1, 4.4.3, 4.4.11]). This shows
that (£24) is an isomorphism. The argument for (21 is similar. O
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For each (locally closed) stratum Z:P!

\1spl,tor . .
(B3.600,0y Of My 5™ as in BI19), consider

the locally closed subscheme

Zspl . raspl —1/7spl
(4.2.7) (s 51,0k = Ok iyN) ™ (L@ 600,0)
of M;flg(?% N with its canonical reduced subscheme structure. Then we have a
disjoint union
\7spl,tor _ Zspl
(4.2.8) My s teon = I Zilowsmonimn

[(D3,09¢,0)]
compatible with (8.9, 13} Theorem 9.13], and [I5, Theorem 6.1].
For each stratum Z?(pql)% Srs0)) W€ have an induced proper morphism
(4.2.9)
(G50,

)"spl
BINIZE L 5300

A . '\_/l'spl,tor A \7spl,tory A
. = 1 % M Fspl
( H’Z’(k’ﬁ)N)z?&H,aH,an,(w)N (Myx )ZFF@H,EH,@]

between the formal completions. By Lemma [£.2:3] and [7] III-1, 4.1.5], the isomor-
phism ([@27)) induces a canonical isomorphism
(4.2.10)

~ ~spl A
ﬁ \1spl,tory A — 8sp Zspl ﬁ \71spl,tor A
(ME ") (( H’(k’ﬁ)N)Z[(p@H,m,nﬂ)* (M3 (k) v ) op1

(@389 .0)] [(®9y:09y,0)],(k,u) N

spl,t ®(k,p)N spl,t
So, the pullback of any f € I'(M 5™, wicpror ;) to (I\/IZ_F;Z?(I,C)M)N)%\Spl
HE B (e 8300 (kv
is determined by its pullback to (Mjflg"‘")g?g - which defines the Fourier—
690

Jacobi expansions of f as in [I2], Section 7.1.2] and [I3] Section 12]. By the same
arguments there, we obtain the following:

Proposition 4.2.11 (cf. [I2] Proposition 7.1.2.13] and [I3] Proposition 12.10]).

spltor  ®(k,p)N 7S
The pullback of each f € I‘(Mﬁ}g ’wmii’}’g%’“ﬂ) to the subscheme Z[(})ql,{,aﬂ,g)],(k,ﬁ)N

of l\_/liflzt‘)(rlcﬁ) n s constant along the fibers of the structural morphism

restriction of B33
@21

Zspl ~ =spl 71Z¢,spl
— z — — M3/

Zspl
(4.2.12) Z [(@w,6%,0)] =04,61,0

[(®w,09,0)],(k,u) N

Corollary 4.2.13. The restriction of (L22) to Z?(pdin,én,a)],(k,g)N induces a canon-

spl — l\_/l'smein

ical morphism Z[@H’M,a)}’(kﬂ)N which factors through a morphism

H,(kypu) N7
123 ,5p] 7 spl,mi 1 '7
M3 LS sz(zlz)N. Consequently, the stratum Z?(pq)%éﬂ)] AT %K of
min . . o —spl
M3 %} K is dense in the schematic image of Z[(‘I’H,5H7U)]>(/€7g)N under ([L22]).

Proof. The first assertion follows from Proposition L2111 By [13] Theorem 12.1]
and [I5, Theorem 6.1 (3) and (5)], the restriction of (£Z2) to the stratum

spl — ~ 7spl
Z{(®s, 50,00 = Ll(®.00.0)] %3(’) K =215, 5.0 (k)N @ Q

of M, @ K I\_/I';_lflzto(r,C o~ ©Q (see Definition BT.8 and [.27)) induces a canon-
Ry s (R 7

ical surjection ZP! — 7P Hence, the last assertion follows from the

_ Tl(®n,63,0)] [(®30,090)]
flatness of M2 SPL over Spec(Ox). O
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For each stratum Z?&l) 630)] of Myin ®K as in Corollary E2.13] consider its

closure Z[(q) 6y I M ?; K and its closure Z?(pqlm )l (k)N 1 M;IZI(ZHH)N under

the open immersion ([I26) with schematically dense image. Then we define a

locally closed subscheme

Zspl —»spl v

(42.14) Zig, 50l N = Zi(@n b)) (k)N U Z1(®@%,,54)), (ko) N
Core 53001 L2105

of M3Ph e (el 131 (6.8)).

Proposition 4.2.15 (cf. [I3] Theorem 12.1] and [I5, Theorem 6.1 (3) and (5)]).

The locally closed subschemes ZF(I’(II)H,(SH)] (k)N of I\_/IZ’I(ZIZI)N form a stratification

\7spl,min 7spl
(4.2.16) Mty = I Zlassontmn
[(@n,090)]

with incidence relations similar to those in [12] Theorem 7.2.4.1 (4) and (5)], [I3]
Theorem 12.1], and [I5, Theorem 6. 1(3)]. For each representative (P, 03¢, 0) such
that [(®3, 634, 0)] labels a stratum Z[@H P MSpl % as in (3L9), the restriction

of the canonical morphism [EZ22) to the corresponding stratum Z[((D%M )] (k) N

of Mj}l’lgc}’}“ N induces a canonical surjection
=spl —Zspl
(4.2.17) (@106, (k)N ™ Ll(@30,8300], () N

which is proper when o is top-dimensional in Xa,, .

Proof. By Corollary BEZ.T3] and its proof, the restriction of (@22 to Zf(pqlm 530.0)]

induces a canonical surjection Z[(q) 0] Z?(P’ql) > and Z?({) 5y 18 dense
in the schematic image of Z[(@;{,éﬂ,a)],(k,&)N under [AZ2). Since the morphism

(#Z2) is proper and surjective, and since the disjoint union (IZ:QEI) is the pull-

back of the stratification (L), it follows that Zf(p(ll)H 5y =

as subschemes of M%" @ K = MSPL mm)N®(@, and that ZT(pq) 5y 18 dense in
Fo Z

= £

pl
2l n0) (k€ Q

H,(k,p

Zspl . . .
Z1 (D 11.600)). N Hence, the union in ([@.2.16) defines the desired stratification of
Mbpl(]z“: As for the properness of (£.2.17) when o is top-dimensional in Yg,,, it

follows from that of (£Z2]), because then Z[(@Hvéﬂao-)]v(kvﬁ)N is closed in the preimage

—spl - .
’H,(k,ﬁ)N)71(ZT(p‘il’Hv(SH)]v(kvﬁ)N) by the other assertions we have proved. O

Corollary 4.2.18 (cf. [I2, Corollary 7.2.3.12] and [I3], Corollary 12.12]). The mor-
phism @LZTT) factors through [@2I2) and defines a canonical surjection

72 ,spl Zspl
(4.2.19) M3 Z[(¢H,6H)] (k)N
Under the running assumption that k > ka(p) > Ej@,,.5,, (1) and N > Na(p) >
Ni(@y0,5,0 (1) (see Choices B1.28), this surjection is finite and induces a canonical

spl

isomorphism from Mi{u to the normalization of Z[(q) SrOL(k,

WN-
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Proof. The first assertion follows from Corollary 213l Since the morphisms
@ZT2)), for all possible o, all factor through the same induced morphism (E219)
(by the same argument of relating every two cones by a sequence of inclusions
of closures, as in the paragraph following [12 Remark 7.1.2.5]), by taking o to
be top-dimensional in ¥g,,, which necessarily satisfies o C P;ﬁﬂ, it follows from

Proposition €217 that the induced morphism ([@219) is proper. Since (by Corol-
lary ELTH) the pullback of wyi )" 10 iy, 5, o)) descends to M5

(via ({Z12)), the pullback of wﬂh(fl l:)n 3 (see Proposition [AT.22]) under (ZZT9)

My (k,u)N>

Rk, - \
is isomorphic to the invertible sheaf wMZ(H 52,1 5oV l\/lz’*’bpl

Corollary LT.T6]) under the assumption that & > k:g( 1) > ky(@,,,5,01(1) and N >
Na(p) > Ny@,,,60) (). This shows that the proper morphism (E2.19) is finite,
by [7, II, 5.1.6, and III-1, 4.4.2]. Since [@219) induces in characteristic zero the
canonical isomorphism I\/I " ® K>S Z[(@ o) = = Z{(®4,,5:)] 1(%% K (see [12], Corollary

, which is ample (by

7.2.3.18]), the second assertlon follows from Zariski’s main theorem (see [7, ITI-1,
4.4.3, 4.4.11]), as desired. O

Proposition 4.2.20 (cf. [I2] Proposition 7.2.3.16] and [I3], Proposition 12.14]). Let

T be a geometric point of MSPI(Ikmn)N over the [(P, 0y )]-stratum Zf&l)%&%)]’(

k,u)N*
Let (M;fl(z“;) )2 denote the completion of the strict localization of ,\7'251(7211:)]\] at T,
let B
Zspl AL Zspl \7spl,min A
i@ tkwN)z = L@sr by % M)z
H,(k,p)N
and let
1Z1,SPINA . NAZ#,SpL Zspl A
(MHH P )z = M3 ’ - X (Z[(p<1>7-t d3)],(k, )N)j'

zr
[(@9¢,69)], (k)N

. 1
For each ¢ € Sg,,, let \I/f1>p71“5H (£) be as in B2I5), and let (FJZPH((;L) denote the

pullback of
= spl,(£) ~spl v ,spl spl
g, sn = (Caps, = M3 )«(Ve, 5, (0)

spl)/j\ N M?_[H ,spl )

. . T Z2 .
under the canonical morphism (M3} Then we have a canonical

isomorphism

N - spl, (£) Loy,
(4.2.21) O giommin )0 :( [ @®55, 5. ) :

H (k)N ®
- LePy
H

where Py = {{ € Sa,, : ({,y) > 0Vy € Ps, } as usual, which is adic if we
interpret the product on the right-hand side as the completion of the elements
that are finite sums with respect to the ideal generated by the elements with zero

1,(0
constant terms (i.e., with zero projection to (FJZ{({;L) ). Then the isomorphism
1,(0
#220) induces a homomorphism ((FJZ{%L) )Fq’” — ﬁ(MSpl min ., whose source

k,p)N/T

is canonically isomorphic to ﬁ P A (by Corollary m and Zariski’s main
theorem; see [T, 1II-1, 4.4.3, 4. 4 11]) Thzs homomorphism defines a structural
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morphism (Mj_lzl(zlf)N)%\ — (MZPYA whose pre-composition with the canoni-

cal morphism (ZT%%(;H)L(,C,H)N)%\ — (M;ljl(fzw)g defines a canonical morphism

(Z?(pé,{m)],(k,ﬁ),v)g — (Mi”’Spl)g, which is then an isomorphism because its pre-

composition with the formal completion (M)A — (Z?(pql%é%)],(kﬂ)]\,)g of @2I9)

is the identity morphism on (M,Z,{”’SPI)Q. Consequently, this last completion of
EZI9) is also an isomorphism.

Proof. Using the canonical isomorphisms ([L2I0]), the same argument as in the
proof of [12, Proposition 7.2.3.16] works here. a

Remark 4.2.22. As remarked in the proof of [13, Proposition 12.14], we do not need
to know a priori that (219 induces a bijection on geometric points. Also, by the
same argument as in the proof of Corollary LZ.I8, we may remove the dependence
on the second assertion of [I3] Lemma 12.9] from the proof of [I3, Proposition
12.14).

Corollary 4.2.23 (cf. [I3] Theorem 12.16] and [I5, Theorem 6.1(5)]). In ({ZI6]),

spl spl

=, . . . E 73, .
each stratum Z[(‘i’mtsw)L(k,g)N is canonically isomorphic to My}, The canonical

surjection [LZTIM) can be identified with the composition of the canonical morphism

~

@EZTD) with the above-mentioned isomorphism Ma-™ = z?%nﬁn)]&hg)”

Proof. As in the proof of [I3, Theorem 12.16], it suffices to show that ([LZTI9) is
an isomorphism. Since this can be verified over formal completions of strict local
rings, this follows from Proposition [£.2.20] as desired. O

Corollary 4.2.24. With the same setting as in Proposition L.2.20, let

1,tor A spl,tor A Zy,sPINA

(MSp )— = ((M )~u ) X (M ),

A spl H z
H,2, (k)N HERNIZE ) o

and
\aspl,toryA Spl,tory A 71274 ,SPI\ A
(MH,E )g = ((M’H,E )zspl ) e (M)
(@ 09¢50)] MZHH,spl
The canonical morphism
—spl

aspl,tor 7spl,min
(fy,(kﬂ)]v)a/z\ : (Mf;.lz727(k,ﬁ)1v)g - (M}}z,(k,&)]\r)a/z\

induced by (EZ2) factors as the composition of the canonical morphism

Sipl = spl,t = spl,t
(a;z(k,ﬁ)N)/f\ : (M;ﬁ)’zjj(rk,ﬁ)]v)a/z\ - (Mg-l[),zor)éc\

induced by [ZI) with a canonical morphism

Jspl,t spl,mi
(M35 = (M )7
Proof. By treating all objects as formal schemes over (M%”’SPI)Q, this follows from
the explicit description ({L2.21]) of & gsprmin 1. O
( ’H,(k‘ﬁ)N)i'
Proposition 4.2.25. The proper morphism [@21]) is an isomorphism, and hence
the morphism [LZ2)) descends to a canonical morphism

1spl,tor \7spl,min
(4.2.26) MAE" = M3 (v
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ko) N . . .
extending [EI127), under which wgipl,%o)r ; (see Definition ET3)) is isomorphic to
H,E
ko) N iy
the pullback of wgs(plﬂ) N (see Proposition AL1.22]).
H,(k,p) N>
Proof. Since M;flzt‘)(rlcﬂ)  is by definition the normalization of the schematic closure
2spl,pre . aspl,tor 2spl,min
of Graph(ggH,(kyﬁ)N) in My 5, Spec>(<OK) MH’(k,E)N, Corollary 4.2.24] shows that the
proper morphism ({21]) is an isomorphism after pullback to an fpqc covering of
M;f}’ztor7 which then forces (@21 itself to be an isomorphism. O
®(k,p)

Corollary 4.2.27. The invertible sheaf w over I\_/IfrIZ}gor is semiample.

“ispl,tor
MY 5" d

. . . ®(k»ﬁ)N \7spl,min . .
Proof. Since the invertible sheaf wmif,li'r:ifmﬂ] over MH’(k’E) y is ample, this follows
from Proposition [4.2.25] O

Corollary 4.2.28 (cf. [13 Corollary 12.5]). M;_IL’I QZ@]FP is dense in M;?I(ZIZ)N QZ@]FP.

Proof. Since MSP' @ F,, is dense in I\_/»szlgo(rk o~ @Fp by @) of Theorem BAT] this
7 2, (k)N 5
follows from Proposition |

Lemma 4.2.29. For each A € £, each [T] € T/ ~, and each integer i satisfying
0 < < dpy, the invertible sheaf W' (see @II3) descends to an invertible

Alr] MRS
j\,m,m
Proof. By Lemma [L.T.17 and Corollary £.2.28 and by the same argument as in the
proof of [12] Theorem 7.2.4.1], it suffices to note that the pullback of each of these

- . _ _
sheaf w st OvEr M3P (;Cn n)N via the canonical morphism ([L2.28)).

i
H, (ko) N lad

sheaves to each %;p;{ 5.0 descends to M?_Z*’Spl, by Lemma LT.12 O
Corollary 4.2.30. For all positive ' and all integers k' and N', the invertible
’ - o o ’
RFK I ®(k",p") QK ,u" )N .
sheaf w2l o, (T€SP. Wit tors TESD- Wiol ror c Waoiior - 5 See Definitions
wigigery (7097 Wpngor g v
. . ' w
ETT and EL3) descends to an invertible 5heafw,%j!f,],min s (resp. Wieplmin 5 TESP.
H,(k,p) N H,(k,u) N
QK ,u1") ®(k' ,u' )N’ 7spl,min . -
gieplmin  pr TESP. Wopn i J) over MH’(k’H)N via the morphism (£2.20]).
Ho (k)N Ho (k)N £

Proof. This follows from Lemma [£2.29] as in the proof of Corollary ET.18 O

Proposition 4.2.31. For each positive ' and each integer k' > k(p'), we have
canonical isomorphisms

I\_/I’spl,min ~ PI'Oj @ F('\_/'lspl,min w®(k/»ﬁ/)N, )

== sy W = spl,min
H,(k,u) N o H,(k,u) N M;(k,‘ﬁ)N,J
(4.2.32) B
’ ’ !
. \spl,tor ®(k" 1" )N
= Proj @ Qs s Wigepl.tor )
N'>0 H,E

This shows that I\ﬁ;fl(zlz)]v is (up to canonical isomorphism) independent of the
choices of p and the integers k > ka(p) and N > Na(p). We shall henceforth
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drop the subscript (k,pu)N from the notation of M?ﬁ}{?ﬁw etc., and rewrite the
morphism [@226) as a canonical morphism

—spl

spl,tor \spl,min
(4.2.33) IV VA VS
®(k",p . .
Proof. By Corollary 1227 w Epl mr)J is also semiample. By Corollary 230,
’H DN

Rk, Rk, . .
wﬂf uor) descends to the invertible sheaf w - ( 1mm) . Since the canonical mor-

MY »J va (k, ;L)N’J

’
phism ([2.26]) is proper and surjective, the emptiness of the base locus of stpl ’f:r)J
) ®(k', . .
forces that of w S(pl ,:L,,,) , and hence was(plrmﬁi,,) is also semiample. Therefore,
M"H (k,y)N"] M’H,(k,ﬁ)N"]
bpl tor spl,min "

the canonical morphism M3/ $™" — M3y 17 ) factors as the composition of (L.2.26])

. . . 2spl,min aspl,min :
with a canonical morphism M,; Ho (ko) N — MH (k) By a symmetric argument,

we also obtain a canonical morphism M,S}_IZI(ZH,IH,) — MSp](g”n) ~» Whose pre- and post-

compositions with the previous canonical morphism are identity morphisms by con-
struction. This shows that Mbpl(;;“;) v and Mbpl(zl,lz ) are canonically isomorphic, and

that we have the canonical isomorphisms in [{2:32), as desired. O

Proposition 4.2.34. There is a commutative diagram

- =) L
(4.2.35) MiPhtor MipL i
can.l L?Z_
® Ok <
\1tor " ©Fo.(p) min
My, © Ox —— S MEn ® Og
Ory.(p) OFy.(p)

where the dotted morphism is induced by the composition of canonical morphisms

2spl,min . splmin = ® k bpl tor
M37" = Proj | @M wak, L, ) | = Proj [ D T(MES™, wih e )
E>0 M k>0 "

tor min
~ PI‘OJ @ F M’,L[ 27 Mcor J) ® OK =~ M ® OK
£>0 OFg.(») OF.(»)

(see Corollary 230, Definition 1Tl [13, Proposition 7.11], and [15, Theorem

6.1(2)]), under which wgspr.min ; is isomorphic to the pullback of Wgmin ; ® Of.
H ’ " Oy, ()



2508 KAI-WEN LAN

4.3. Main theorem for minimal compactifications.

Theorem 4.3.1 (cf. [12, Theorem 7.2.4.1]). For each H as in Choices2.2.9], there is
a normal scheme Mj_lfl’mm projective and flat over Spec(Of ), containing the scheme
I\_/Ig_‘[)] in Definition 2.4.5] as an open fiberwise dense subscheme, such that:

(1) We have a commutative diagram

(4.3.2) My @ K€ NPt My ® Ok
0

Jj\ Ory.(p)

ME» ® K— MEPY™ — 5 M © O
Fo Or, ()

of noetherian normal schemes flat over Spec(Ok) and of canonical mor-

phisms (over Spec(Ok)), in which all squares are Cartesian, all vertical

arrows are open immersions with fiberwise dense image over Spec(Of),

the two horizontal arrows at the left-hand side are open immersions with

schematically dense images, the two horizontal arrows at the right-hand side

are projective and surjective, and the compositions of horizontal arrows in

the same rows are also open immersions with schematically dense images.
(2) For each ¥ as in Theorem BAT] the commutative diagrams BA2) and

H32) are compatible with each other and form a commutative diagram

(4.3.3) My, @ KC M;_IEI MH ® Ok
F\O M OFo, (»)

Lo -
ME2's, ® K MPE" — My ® Ok
9

—=spl

@K $2 ¥,

ME» @ K— MY —— M0 ® O
Fo OF(),(:D)

in which all squares not involving M%i“o ® Ok are Cartesian, the ar-
Fo,(p)
rows already showed up in B42) and @32) are as before, the new arrows
between the bottom two rows are all proper and surjective with geometri-
cally connected fibers, and the compositions of vertical arrows in the same
columns are open immersions with fiberwise dense images.
(3) Over I\_/Ig_‘[)] (resp. Mi_‘t’}gor, resp. Mjfl’min), there is a canonical invertible

sheaf w' (resp. wt resp. wl ), for each A € £,

A [r] M50 A[r] NPT A [r] Mg

each [t] € T/ ~, and each integer i satisfying 0 < i < d; and there

are canonical invertible sheaves wgil ; (resp. wgsﬁl’m 4 Tesp. wgilmn ])
H " H,E H "
®(k,pt) ®(k,p) ® (k) .
and W, (TeSP. Woepitor -5 cWoaepimin o), fOr each integer k and each
MEE!, g MEPLter Mphmin

triply indezed collection of integers p = {pi [7_]}Aeij[T]e’r/N)OSi<d[T] that
is positive in the sense that /f;[lﬂ > ph (7] forall A € &, [r] € T/ ~,
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and 0 < i < dj;, so that (cf. 23.8) and (EI1I3))

®k.p) o Qk i ® ué
Lo =ws o ALlT]
gat o[ @ @ [ @ wime o))

ANe; [T]eT/~ \0<i<d[

K & ® ® ® ; @k :
W W= X w . N (7]
VS S ) (@ o) prger) ’

ANe s [rleT/~ \0<i<d[

®(k,p)

lad ®
wm?zl,mm’J WM

k i ® pl
min ¢ & ® ® ® w Tspl,min A7l
by ( A [7],M3E )

AcZy \[r]eY/~ \0<i<d(,

Under the canonical morphisms Mi_‘z] — Mi_‘zlgor as in Theorem B.4.1] and
—spl = - . )
: as in e pullbacks of the sheaves over the
b MEPer — Mg , the pullbacks of the sh th
targets are canonical isomorphic to the corresponding sheaves (with similar

o . = spl,t
indices) over the sources, while the sheaves over M3} 3" descend to the
) spl
. —spl . . X Sp.
corresponding sheaves over M3}"™™" wia the canonical morphism § ., .

For each integer k, the sheaf wg% ; (resp. w%’%lgor 5o Tesp. wg%,mm J)

is canonically isomorphic to the pullback of the sheaf wek (resp. w@tk s
My ,J Migrs,,J

resp. ngm, J) as in [I3] Proposition 6.1 (resp. 7.11, resp. 6.4)] and [15}
H )

Theorem 6.1(2)]. For all k > 0, it is semiample, and has an ample pullback

to the characteristic zero fiber.

For all positive p, and for all sufficiently large k (depending on p), the
(k) ( ® (k) " w®(k’ﬁ)
=0l g l\'/'lzfrlgor’Jf D Nigphmin g
resp. ample). In particular, for all positive i and for all sufficiently large k
(depending on E)’ we have Mj};hmin = Proj (®N20 F(Mjf}gor,wéa(k’&)N ))

Tspl,tor
MY 5T

sheaf wg ) is ample (resp. semiample,

(4) Mi_‘t’l’min has a stratification by locally closed subschemes

\2spl,min ~spl
(4.3.4) My = I Z(@3.500))"

[(@2,0%)]
with [(Py,d%)] running through a complete set of cusp labels as in [12]
Definition 5.4.2.4], such that the [(®},, 0%,)]-stratum Zf(pql),ﬂ 5,y 18 contained

in the closure of the [(Py, oy )]-stratum ZF(I’(II)H,(SH)] if and only if there is a
surjection from the cusp label [(®,,64,)] to the cusp label [(Py,0%)] as in
[12] Definition 5.4.2.13]. The analogous assertion holds after pullback to
fibers over Spec(Ok).

Each [(®3, 6% )]-stratum Z?(pqtn,éw

and is canonically isomorphic to the boundary version l\_/'lg_l“’sPl of I\_/Ii_‘z] (cf.
Definitions 248 and B21), and the summary in Remark B2ZT9). In partic-

ular, M,S;_Ifl = Zf&l 0] 18 an open fiberwise dense stratum in this stratification.

) s flat over Spec(Ok) and normal,
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This stratification [A34]) is compatible with the stratification of I\_/'Iqrﬁin as
in [I3} Theorems 12.1 and 12.16]; and we have a commutative diagram

(4.3.5) M%_LH S? Ko M%{H,Spl M%{” ® Ok
0

Org.(p)

l { ¢

L _
Zi@wnon) @ K L1l 5,0 — Li@ndn)) , © Ox

OFg.(p)
')

ME» ® Ke— MPY™ — s M ®  Og
Fo

Ory.(p)

of canonical morphisms, in which all squares not involving M%in o ® Ok

Fo,(p)
are Cartesian, the vertical arrows in the upper-half are isomorphz'soms, the
vertical arrows in the bottom-half are locally closed immersions, the hori-
zontal arrows at the left-hand sides are open immersions with schematically
dense images, the horizontal arrows at the right-hand sides are projective
and surjective, and the compositions of horizontal arrows in the same rows
are also open immersions with schematically dense images.

—spl
(5) The restriction of the proper surjection §,, in the diagram BE33) to the
stratum Z’T(p‘il,ﬂ sy.00] Of I\_/Ig_?}gor induces a surjection to the stratum Z’T(p‘il,ﬂ 53]

of l\_/l’ifl’min, which can be identified with the composition of the canonical iso-

1 ~ Zspl . :
[(Br.630.0Y] — Dby, 9i0EN by B33) (whose inverse appeared

also in the diagram (3.44)), the structural morphism =5 — I\_/I'i” spl

=Py ,0u,0
. . \1Z#,spl ~ Fspl : ;
and the isomorphism M%] — Z[((P%(;H)] mentioned above in ). In par

morphism Z

ticular, it is proper and surjective if o is top-dimensional in P;ﬁﬂ C (So,, )i
Under such surjections, the commutative diagrams B220) (expanded
version), B44), @33, and [@E33) are all compatible with each others.

Proof. Let us take Mj_?l’min as in Proposition E.2.31] which is a normal scheme pro-
jective and flat over Spec(Ok ) by construction. Then, based on the corresponding
assertions in [I2] Theorem 7.2.4.1], the assertions (IJ) and () follow from [I3] Propo-
sitions 6.1, 6.4, and 7.11] and [I5, Theorem 6.1(2)], and from Propositions
and 234 the assertion () follows from [I3 Propositions 6.1, 6.4, and 7.11] and
[15, Theorem 6.1(2)] (again), from the definitions (see Definitions E.I.1] and 1.3l
and the references made from there), and from Corollary 230} and the assertions
@) and @) follow from [13, Theorem 12.1, Corollary 12.14, and Theorem 12.16]
and [I5, Theorem 6.1(5)], from Proposition and Corollary L2218 and from
the fact that the rather naive definitions [I3, (6.8)] and ([@2I4) are necessarily
compatible with each other. O

Corollary 4.3.6. The canonical proper morphism

\2spl,tor \7spl,min ator
(4.3.7) PRI — M Mg
M%ln
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induced by the diagram ([A33) is finite and induces a canonical isomorphism over
the open dense subscheme I\/Ii_lzl. Consequently, (L37) identifies its source with the
normalization of its target, by Zariski’s main theorem (see [1, 111-1, 4.4.3, 4.4.11]).

Proof. By (@) and (&) of Theorem 3] for each stratum Z’[@H,gw)] of I\ﬁg_‘f% which
is mapped to the stratum Z[(@H’(;H)] of l\_/lﬁin, the morphism

Zspl —Zspl va
(438) Z[(p<I>7.¢,6H,U)] - Z[F@Hﬁn)] = x Z[(¢H>5H>U)]

Zi(@qy.63)]

induced by the pullback of (Z37) can be identified with the canonical morphism

=spl 127 ,Spl =
(4.3.9) Sdyy 6y.0 MH |\7|>Z<’H =Q3,09,0
H

for any representative (®y, 4, 0) of [(Py, %, 0)], which is finite and induces an
isomorphism from its source to the normalization of its target by Definition B.2.3
Then ([A37) is quasi-finite, in particular, and hence must be finite because it is
already known to be proper. When [(®3,d3,0)] = [(0,0,{0}], E3J) is just the
. . . aspl __ Fspl

identity morphism over My," = Z[(0707{0})]. Thus, the corollary follows. (I
Corollary 4.3.10 (cf. [I3, Corollary 14.4]). If the geometric fibers of |\7|3$1 —
Spec(Ok) are reduced (resp. have integral local rings), then all geometric fibers
of Mi_}zl’mm — Spec(Ok) have the same number of connected (resp. irreducible)
components.

Proof. As in the proof of [I3, Corollary 14.4], this follows from Corollary B4T5]
—spl - - .

from the geometric connectedness of the fibers of ¢, : M;’Z}’Emr — M;‘Zl’mm, and

from the fiberwise density of M5! in M;_E’}’Etor and MP"™" (see Theorems 1] and

437). 0

Remark 4.3.11. We can improve [I3, Corollary 14.4] and [I5, Proposition 6.10]
by assuming there that the geometric fibers of My, — Sg are reduced (resp. have

integral local rings), by the same arguments as in the proofs of Corollaries 3.4.15]
and [4.3.10

Proposition 4.3.12 (cf. [13] Propositions 13.4, 13.9, and 13.15]). With the same
setting as in Proposition 2417, the morphism (Z4I8) extends to a canonical pro-
jective morphism

- min o — .
(4.3.13) lg] :ME™ — ME"
compatible with any morphism as in B.ATII), whose pullback from Op, y to Ok
lifts to a canonical projective morphism
(4.3.14) g figphmin _, fsplmin
extending the morphism Z4AI9) and compatible with any morphism as in [B412).
The morphism [I3I3) (resp. @3I) maps the [(Py, oy )]-stratum Z[(@H’(;H)] (resp.

Z?(pq])%ém]) of Mg (resp. MEEV™™) to the [(®%,,, dy)]-stratum Z[(@;{”(;H,)] (resp.
Z?(pql), 57{/)]) of M%in (resp. |\7|§_}z,l’mm) if and only if there are representatives (P, 03¢)
HI7

and (D%, 0%,) of (P, 09)] and [(PY,,0%,)], respectively, such that (P, 8%,) is
g-assigned to (Py,03) as in [12, Definition 5.4.3.9].
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Proof. These follow from the same arguments as in the proofs of Propositions[2.4.17
and 410, and from [I3, Theorems 12.1 and 12.16, and Proposition 13.4], from
[15, Theorem 6.1 (2) and (5)], and from (B]) and (B) of Theorem 3] O

4.4. Vanishing of higher direct images, and Koecher’s principle. By [I5]
Construction 3.12 and Definition 5.13; cf. Remark 2.9 and Corollary 5.11], we have

(4.4.1) MiP's = NBlz (M§™)
for some compatible collection pol of polarization functions and for some integer

d > 1, for some coherent ﬁmmm—ideal j%dpop

Proposition 4.4.2. Let J;[pilpol denote the pullback of jq.[’dpd to l\_/l'fﬁl’min. Then
we have a composition of canonical isomorphisms

(4.4.3) M3P4" — NBI MEPhminy _y MsPhmine o NBI

M"“"

\min
j;s{p’ldpo,( T, dpol (MH )’

inducing canonical isomorphisms over the common open dense subscheme MsPl
which can be identified with the canonical morphism [3), where the first mor-
phism is an isomorphism compatible with A1) (and with the canonical morphisms
in @33), and where the second morphism is finite and identifies its source with
the normalization of its target.

Proof. Since the (coherent ideal) pullback of JH .dpol tO Mﬁz is invertible, the

pullback of 7. Sp;pol to Mj_‘f};or is also invertible. Hence, the proposition follows from

the universal property of normalizations of blowups, and from Corollary £.3.61 [J

Corollary 4.4.4 (cf. [I5, Corollary 6.7]). There exists an effective Carter divisor
D’ over MSpl Lo with D!y = |\/|Spl tor _ M;_Izl (with its canonical reduced closed

subscheme structure) such that ﬁMspl,tur(_Dl) is relative ample over M;_lzl’min, with
H,Z
—spl = - .

respect to the canonical morphism §7—L 5 ¢ M?_}Zlgor — M;_Izl’mm.

Proof. This follows from [I5, Corollary 6.7] and Proposition 4.2 |

As in [12 Section 7.1.2], let f)'zf)l . C_";pl 5. = I\_/'Igf’Sp1 denote the structural
HEH HHOH

morphism. As in [I4], Section 6], let Pé: ={l €Sy, : ({,y) >0,Vy € Py, —{0}}.
(We made similar definitions in [I5, Section 8§].)

Lemma 4.4.5 (cf. [15, Lemma 8.1)). There exist infinitely many integers n prime
to p such that, for each such n, there exists a finite abelian group H, of order prime
to p acting on C;‘:LM via morphisms compatible with f)';p; 2,,» inducing canonical
morphisms Cg‘i oy é;’i,éu JH, = é;,pl 5, OvVer MZ”’SPI, whose composition we
= spl ~ 1 ~ 1 2
denote as [n], such that [n]*¥g ; (¢) = \I/fbpH P %) =~ \I/Z)pH 5, (D€, for each
{ € Sg,,. Moreover, for any Ok -algebra R, the canomcal morphism
= spl Zspl 2
(4.4.6) B (0 8 R = L (8F) 5, (0%0) & R)
K K

defined by adjunction identifies the left-hand side with a direct summand of the
right-hand side, consisting of H,-invariants.
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Proof. This follows from [15, Lemma 8.1] and from repeated applications of Zariski’s
main theorem (see [7, III-1, 4.4.3, 4.4.11]), by considering the action of H, on

C:’:;I;; 5,, induced by that on C’ﬁq),“;w_a and the canonical morphism [n] : 6;27 5y
;,p%(;% induced by [n] : Cs,,.5,, = Cwyy,65- O

By Proposition [3.2.17] \I_)ZPL)(;H (¢) is isomorphic to the pullback of Wg,, s, (€)
under the structural morphism C’;f;lh s~ Cay6,- Therefore, by Lemma EL45]
and by the same arguments as in the proofs of [I5, Propositions 8.3 and 8.4], we

obtain the following two propositions:
Proposition 4.4.7 (cf. [I5, Proposition 8.3]). Suppose £ € P¥’;. Then
RUBE )03

Dq0,Zn Py 0n

/) ® R)=0
( )(’)K )
for all i >0 and all (’)K-algebm R.

Proposition 4.4.8 (cf. [I5, Proposition 8.4]). Suppose that Se,, = Z, that £ € Se,,
is negative, and that the morphism f)?izﬂ has positive-dimensional fibers (which

is the case when the structural morphism Pg,, 7,, C_"@%(;H — |\7|§{” does). Then

(P20 )+ (Tanin (0) | © F) =0

Fo,(p)
for all Op, (,y-algebra R.

Let R be an Og-algebra. Let us define the formally canonical and subcanoni-
cal quasi-coherent sheaves over Mi_‘;}gor by the obvious analogue of [15, Definition
8.5]. By definition, the pullback of a formally canonical (resp. subcanonical) quasi-
coherent sheaf over I\_/’IE:Z’“Z to I\_/’Iifzvl’zwr is formally canonical (resp. subcanonical). By
the same arguments as in the proofs of [I5, Theorems 8.6 and 8.7], with the refer-
ences to [I5] Theorem 6.1, and Propositions 8.3 and 8.4] there replaced with the
references to Theorem [B.4.1] and Propositions [£.4.7] and 4.8 here, we obtain the
following two theorems:

Theorem 4.4.9 (Vanishing of higher direct images; cf. [I4, Theorem 3.9] and
[I5, Theorem 8.6]). Suppose R is an Ok-algebra, and suppose that & is a quasi-
coherent sheaf over M%’}gor that is formally canonical (resp. formally subcanonical)
over R (as above). Let D’ be as in Corollary A4, and let

E(—nD") =& ®  Opsorior(—nD'),
H,Z

wispl, tor

for each integer n. Then
. —spl
Rz(fﬂ’z)*é’(—nD’) =0
for alli >0 and n > 0 (resp. n > 0).

Theorem 4.4.10 (Koecher’s principle; compare with [I4] Theorem 2.3] and [15]
Theorem 8.7]). Suppose O@Q is a simple algebra over Q. Suppose R is an
Z

Og-algebra, and suppose that & is a quasi-coherent sheaf over M;_;Zl,zmr that is for-

mally canonical over R (as above). For each open subset U™™ of I\/ijl’mm, consider
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spl,tor

- —spl
. ) tor - . . . .
its preimage U™ in My ¢ under the canonical morphisms fH,Z’ and its preim-

age

U in Mj}fl under the canonical morphism Mj}fl — Mj}fl’mm. Then the canonical

restriction map

(4.4.11) LU, &|yeor) — T(U, &)

5 a

bijection, except when dim(My) =1 and U™ — U # ().
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