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COMPACTIFICATIONS OF SPLITTING MODELS

OF PEL-TYPE SHIMURA VARIETIES

KAI-WEN LAN

Abstract. We construct toroidal and minimal compactifications, with ex-
pected properties concerning stratifications and formal local structures, for all
integral models of PEL-type Shimura varieties defined by taking normaliza-
tions over the splitting models considered by Pappas and Rapoport. (These
include, in particular, all the normal flat splitting models they considered.)
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1. Introduction

In the article [13], we constructed normal flat integral models for all PEL-type
Shimura varieties and their toroidal and minimal compactifications constructed by
taking normalizations over certain auxiliary choices of good reduction models, with
no assumption on the level, ramification, and residue characteristics involved, and
showed that such integral models still enjoy many features of the good reduction
theory studied as in [5] and [12]. In the article [15], we extended the construction
of toroidal compactifications in [13] to allow general projective cone decomposi-
tions which are not necessarily induced by the auxiliary choices. When the local
model M loc for the PEL-type Shimura variety in question is known to be flat over
Spec(Z(p)) and normal, the integral model constructed in [13] coincides with the

A loc
Cp as in [17, (15.4)], which can be interpreted as being constructed by taking

normalizations over certain naive models. Thus, the constructions in [13] and [15]
provide good toroidal and minimal compactifications for all such integral models.

One naturally also considers the moduli problem A spl
Cp in the same diagram

[17, (15.4)], which corresponds to the splitting model M spl = M introduced in ear-
lier sections of [17], which are built over A loc

Cp (over some more naive models) as the
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relative moduli of certain filtrations on the first de Rham homology of multichains
of abelian schemes. For simplicity, let us also call such moduli problems the splitting
models of the PEL-type Shimura variety. Although they are defined over base rings
that are often more ramified, their local properties are often nicer—they do not
admit singularities due to restrictions of scalars from ramified extensions. Already
in the Hilbert modular case—where the constructions are simple-minded because
the splitting models and naive models coincide over the Rapoport loci (see [18] and
[4]), which are all that are needed for the gluing of boundary charts—the compacti-
fications for splitting models are known to have useful arithmetic applications (see,
for example, [22] and [21]).

Our goal is to give a uniform construction, based on [12], [11], [13], and [15], of
toroidal and minimal compactifications of all integral models of PEL-type Shimura
varieties defined by taking normalizations over such splitting models. These in-
clude, in particular, all the normal flat splitting models considered in [17]. But we
shall also allow the levels at p to be arbitrarily higher than the stabilizers of the
multichains of p-adic lattices used in the definitions of the splitting models.

For the construction of toroidal compactifications of splitting models, the idea
is to realize them as splitting models of toroidal compactifications. We consider
certain filtrations on the canonical extensions (over toroidal compactifications of
naive models) of the first de Rham homology of multichains of abelian schemes,
extending the ones over splitting models. We can show that, over the boundary
strata, the normalizations of the relative moduli of such filtrations depend only on
the abelian parts of the semi-abelian degenerations, and that their formal boundary
charts can be directly built over the formal toroidal boundary charts of the naive
models. This allows us to prove a long list of nice properties of such normalizations,
including precise descriptions of their stratifications and formal local structures,
which allows us to call them toroidal compactifications of splitting models.

For the construction of minimal compactifications of splitting models, the con-
ventional approach would be to introduce some variants of the Hodge invertible
sheaves, and to consider the projective spectra of the graded algebra formed by
sections of their powers. However, there is some subtlety in the choices of such
variants. For the projective spectra to define compactifications of our splitting
models and admit canonical morphisms from the toroidal compactifications, we
need the variants to be ample over the splitting models and (at least) semiample
over the toroidal compactifications; yet we have no a priori knowledge of such vari-
ants, except in very special cases. Rather, we will obtain the existence of them as
a byproduct of our argument, which is based on a tricky analysis over the formal
boundary charts. We will also obtain a long list of nice properties of the corre-
sponding projective spectra, with precise descriptions of their stratifications and of
their relation with toroidal compactifications, which allows us to call them minimal
compactifications of splitting models.

Here is an outline of this article.
Section 2 is devoted to the construction of splitting models of our PEL-type

Shimura varieties. In Section 2.1, we review the linear algebraic data for defining
multichains of lattices, which are required for the remainder of the article. In
Section 2.2, we review the notion of multichains of isogenies of abelian schemes
with additional structures; we also introduce their moduli, and relate them to the
integral models of PEL-type Shimura varieties constructed by taking normalizations
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(over certain naive moduli) as in [13]. In Section 2.3, we define the notion of splitting
structures, and introduce the relative moduli problems for them. In Section 2.4, we
study the splitting structures over the naive moduli and over the integral models of
PEL-type Shimura defined by taking normalizations, and introduce their splitting
models.

Section 3 is devoted to the construction of toroidal compactifications of the
splitting models constructed in Section 2. In Section 3.1, we introduce the splitting
models over the toroidal compactifications constructed by taking normalizations
as in [13] and by normalizations of blowups as in [15], and define the boundary
stratification on them. We will consider these the toroidal compactifications of the
splitting models. In Sections 3.2 and 3.3, we introduce splitting models over simpler
objects over integral models of smaller PEL-type moduli problems associated with
the boundary strata, and use them to describe the formal completions of the toroidal
compactifications of splitting models along their boundary strata. Theorem 3.3.1
can be considered the technical heart of this article. In Section 3.4, we summarize
our main results for toroidal compactifications in Theorem 3.4.1, in a format similar
to the one of [12, Theorem 6.4.1.1]. The theorem is rather long, but has the
advantage of collecting all relevant information at a single place. We also record
some byproducts concerning local properties along the boundary.

Section 4 is devoted to the construction of minimal compactifications of the
splitting models constructed in Section 2. In Sections 4.1 and 4.2, we construct them
as certain birational contractions of the toroidal compactifications constructed in
Section 3, overcoming the difficulty mentioned above. In Section 4.3, we summarize
our main results for minimal compactifications in Theorem 4.3.1, in a format similar
to the one of [12, Theorem 7.2.4.1].

We shall follow [12, Notation and Conventions] unless otherwise specified. While
for practical reasons we cannot explain everything we need from [12], we recommend
the reader to make use of the reasonably detailed index and table of contents there,
when looking for the numerous definitions. It is not necessary to have completely
mastered the techniques in [12], [13], and [15] before reading this article. (Readers
who are willing to work with less precise collections of cone decompositions induced
by certain auxiliary ones, as in [13, Section 7], can ignore most references to [15].)

2. Splitting models

2.1. Multichains of p-adic lattices. Suppose we have an integral PEL datum
(O, �, L, 〈 · , · 〉, h0), where O is an order in a semisimple algebra finite-dimensional
over Q, together with a positive involution �, and where (L, 〈 · , · 〉, h0) is a PEL-type
O-lattice as in [12, Definition 1.2.1.3], which defines a group functor G over Spec(Z)
as in [12, Definition 1.2.1.6]. Let us denote the center of O⊗

Z
Q by F , and denote

by F+ the subalgebra of F consisting of elements invariant under �. Suppose that
L satisfies [12, Condition 1.4.3.10]. (This is harmless in practice, as explained in
[12, Remark 1.4.3.9].)

Let F0 denote the reflex field defined by (O⊗
Z
R, 〈 · , · 〉, h0) as in [12, Defini-

tion 1.2.5.4], which is a subfield of C. Let V0 (resp. V c
0 ) denote the maximal

sub-O⊗
Z
C-module of L⊗

Z
C on which h0(z) acts as 1⊗ z (resp. 1⊗ zc), where c de-

notes the complex conjugation. Then V0 and V c
0 are maximal totally isotropic with



2466 KAI-WEN LAN

respect to the pairing 〈 · , · 〉 ⊗
Z
C, and we have the Hodge decomposition L⊗

Z
C ∼=

V0 ⊕V c
0
∼= V0 ⊕V ∨

0 .
By [12, Definition 1.4.1.4] (with � = ∅ there), for each open compact subgroup H

of G(Ẑ), we have a moduli problem MH over S0 = Spec(F0), defined as the category
fibered in groupoids over (Sch /S0) whose fiber over each scheme S is the groupoid
MH(S) described as follows: The objects of MH(S) are tuples (A, λ, i, αH), where:

(1) A → S is an abelian scheme.
(2) λ : A → A∨ is a polarization.
(3) i : O → EndS(A) is an O-endomorphism structure for (A, λ) as in [12,

Definition 1.3.3.1].
(4) LieA/S with itsO⊗

Z
Q-module structure given naturally by i satisfies the de-

terminantal condition in [12, Definition 1.3.4.1] given by (L⊗
Z
R, 〈 · , · 〉, h0).

(5) αH is an (integral) level-H structure of (A, λ, i) of type (L⊗
Z
Ẑ, 〈 · , · 〉) as in

[12, Definition 1.3.7.6].

The morphisms of MH(S) are the naive ones induced by isomorphisms between
abelian schemes, respecting all the additional structures.

Let p > 0 be a rational prime number. For simplicity, and for consistency with
[17, Section 15], we shall make the following:

Assumption 2.1.1. The order O is maximal at p (see [12, Definition 1.1.1.11]).

Let v denote a place of F0 above p, and let F0,v denote the v-adic completion of
F0. Let Q̄ denote the algebraic closure of F0 in C, and let Q̄p denote an algebraic
closure of F0,v, with a lifting Q̄ → Q̄p of the canonical morphism F0 → F0,v. Let
Υ denote the set of homomorphisms τ : F → Q̄p. For each τ ∈ Υ, let Fτ (resp.
F+
τ ) denote the composite of Qp and τ (F ) (resp. τ (F+)) in Q̄p. We define two

τ : F → Fτ and τ ′ : F → Fτ ′ to be equivalent, denoted τ ∼ τ ′, if there exists an
isomorphism σ : F+

τ
∼→ F+

τ ′ over Qp such that τ ′|F+ = σ ◦ (τ |F+). In other words,
they are equivalent if their restrictions to F+ are in the same Gal(Q̄p/Qp)-orbit.
For each equivalence class [τ ] ∈ Υ/ ∼, let us fix the choice of some representative
τ of [τ ], and abusively write [τ ] : F → F[τ ] and [τ ] : F+ → F+

[τ ], where F+
[τ ] := F+

τ

and F[τ ] := F ⊗
F+

F+
τ . Then we have a factorization

(2.1.2) F ⊗
Q
Qp

∼=
∏

[τ ]∈Υ/∼
F[τ ],

which induces and is induced by a factorization

(2.1.3) F+⊗
Q
Qp

∼=
∏

[τ ]∈Υ/∼
F+
[τ ]

(cf. [12, Section 1.1.2]). These factorizations induce the corresponding factorizations
of rings of integers. Since O is maximal at p by Assumption 2.1.1, it contains the
ring OF (resp. OF+) of integers in F (resp. F+). (We shall always denote by O? the
ring of integers in any ? that is a product of local or global fields.) Consequently,
the identity elements of the rings OF[τ ]

define idempotent elements of O⊗
Z
Zp, and

we have a factorization

(2.1.4) O⊗
Z
Zp

∼=
∏

[τ ]∈Υ/∼
O[τ ],
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inducing for each O⊗
Z
Zp-module M a canonical decomposition

(2.1.5) M ∼=
⊕

[τ ]∈Υ/∼
M[τ ],

where each M[τ ] is the maximal submodule of M on which the action of O⊗
Z
Zp

(resp. OF ) factors through O[τ ] (resp. OF[τ ]
). In particular, we have a canonical

decomposition

(2.1.6) L⊗
Z
Zp

∼=
⊕

[τ ]∈Υ/∼
L[τ ],

Let L be a set of O⊗
Z
Qp-lattices in L⊗

Z
Qp that is a product of sets L[τ ] of

O[τ ]-lattices in L[τ ] ⊗
Z
Q in the sense that, for each Λ ∈ L , there exist Λ[τ ] ∈ L[τ ],

for all [τ ] ∈ Υ/ ∼, such that

(2.1.7) Λ =
⊕

[τ ]∈Υ/∼
Λ[τ ]

as subsets of

(2.1.8) L⊗
Z
Qp

∼=
⊕

[τ ]∈Υ/∼
(L[τ ] ⊗

Z
Q).

For simplicity, we shall assume that Λ0 = L⊗
Z
Zp ∈ L .

We shall assume moreover that each L[τ ] is a chain in that it satisfies the fol-
lowing two conditions, as in [19, Definition 3.1]:

(1) If Λ[τ ] and Λ′
[τ ] are two distinct elements in L[τ ], then either Λ[τ ] � Λ′

[τ ] or

Λ′
[τ ] � Λ[τ ].

(2) If b is a unit of O⊗
Z
Qp which normalizes O⊗

Z
Zp, then bΛ[τ ] ∈ L[τ ] for each

Λ[τ ] ∈ L[τ ].

Then L is a multichain as in [19, Definition 3.4]. We shall assume that L is
self-dual in the sense that, for each Λ ∈ L , the dual lattice

(2.1.9) Λ# := {x ∈ L⊗
Z
Qp : 〈x, y〉 ∈ Zp(1), ∀y ∈ Λ}

is also contained in L (see [19, Definition 3.13]). As in [19], we shall consider L
as a category with morphisms given by inclusions of lattices.

Definition 2.1.10. Up(L ) is the subgroup of G(Qp) consisting of elements stabi-
lizing all lattices Λ in L .

Remark 2.1.11. By the explanation in [19, 3.2], under the assumption that Λ0 =
L⊗

Z
Zp ∈ L , we have Up(p) := ker(G(Zp) → G(Fp)) ⊂ Up(L ) ⊂ G(Zp). In

particular, Up(L ) is an open compact subgroup of G(Zp). (The assumption that
Λ0 = L⊗

Z
Zp ∈ L is only made for the sake of simplicity. It is practically harmless

for our purpose, thanks to [12, Corollary 1.4.3.8].)
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Definition 2.1.12. Suppose S is a scheme over Spec(OF0,v
). An L -set of polarized

O⊗
Z

OS-modules is a triple (H ,F , j), where:

(1) H : Λ → HΛ and F : Λ → FΛ are functors from the category L (with
morphisms being inclusions of lattices) to the category of O⊗

Z
OS-modules.

(2) j : F → H is an injective morphism, whose value at each Λ is denoted by
jΛ : FΛ → HΛ (which is a morphism of O⊗

Z
OS-modules).

(3) For each Λ ∈ L , let us identify FΛ with an O⊗
Z

OS-submodule of HΛ,

which is its image under the injective morphism jΛ. Then we require that
both FΛ and HΛ/FΛ are finite locally free OS-modules, and that HΛ/FΛ

satisfies the determinantal condition in [12, Definition 1.3.4.1] given by
(L⊗

Z
R, 〈 · , · 〉, h0).

(4) For each Λ ∈ L and each unit b of O⊗
Z
Qp which normalizes O⊗

Z
Zp, there

are periodicity isomorphisms θbHΛ
: H b

Λ
∼→ HbΛ and θbFΛ

: F b
Λ

∼→ FbΛ of

O⊗
Z

OS-modules satisfying jbΛ ◦θbFΛ
= θbHΛ

◦jΛ, where the superscript b on
any O⊗

Z
OS-module means conjugating the O⊗

Z
Zp-structure by b−1 (i.e.,

each element a ∈ O⊗
Z
Zp acts by b−1ab).

(5) For each Λ ∈ L , there exists a perfect pairing

(2.1.13) ( · , · )Λ : HΛ ×HΛ# → OS(1),

inducing an isomorphism

(2.1.14) ( · , · )∗Λ : HΛ
∼→ H ∨

Λ#(1).

Moreover, for each inclusion Λ ⊂ Λ′ in L , we have the natural compatibility

(H ((Λ′)# → Λ#))
∨ ◦ ( · , · )∗Λ = ( · , · )∗Λ′ ◦ H (Λ → Λ′).

(6) For each Λ ∈ L , the orthogonal complement F⊥
Λ of FΛ with respect to

the pairing ( · , · )Λ in (2.1.13) coincides with FΛ# as submodules of HΛ# .
Therefore, the isomorphism (2.1.14) canonically induces an isomorphism

(2.1.15) FΛ
∼→ (HΛ#/FΛ#)

∨(1).

By definition, we have the following:

Lemma 2.1.16. Suppose S is a scheme over Spec(OF0,v
), and suppose (H ,F , j)

is an L -set of polarized O⊗
Z

OS-modules as in Definition 2.1.12. Then the pullback

of (H ,F , j) to any scheme T over S is an L -set of polarized O⊗
Z

OT -modules.

For any (H ,F , j) as in Definition 2.1.12, we have compatible canonical decom-
positions

(2.1.17) HΛ
∼=

⊕
[τ ]∈Υ/∼

HΛ,[τ ]

and

(2.1.18) FΛ
∼=

⊕
[τ ]∈Υ/∼

FΛ,[τ ]
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of O⊗
Z

OS-modules, as in (2.1.5), which induces a collection

(2.1.19) {(H [τ ] : Λ → HΛ,[τ ],F [τ ] : Λ → FΛ,[τ ])}[τ ]∈Υ/∼

of functors from the category L to the category of O⊗
Z

OS-modules.

2.2. Multichains of isogenies. For each scheme S, let AV
(p)
O (S) denote the cat-

egory of abelian schemes A over S equipped with homomorphisms i : O⊗
Z
Z(p) →

EndS(A)⊗
Z
(Z(p))S , whose morphisms are generated by the homomorphisms and

all Z×
(p)-isogenies (see [12, Definition 1.3.1.17] and [19, 6.3]) that are compatible

with the O⊗
Z
Z(p)-structures. As usual, for each abelian scheme A in AV

(p)
O (S), we

consider the dual abelian scheme A∨ as an object of AV
(p)
O (S), equipped with the

homomorphism i∨ : O⊗
Z
Z(p) → EndS(A

∨)⊗
Z
(Z(p))S defined by b → i(b�)∨.

Definition 2.2.1. Given any multichain L as in Section 2.1, an L -set of abelian

schemes A over S is a functor A : L → AV
(p)
O (S) : Λ → AΛ, equipped with a

Q×-isogeny fΛ,Λ′ : AΛ → AΛ′ for each inclusion Λ ⊂ Λ′, which is a (Z×
(p))S-multiple

of an isogeny, compatible with the O⊗
Z
Z(p)-structures, satisfying the following two

conditions (see [19, Definition 6.5]):

(1) For each inclusion Λ ⊂ Λ′ in L , consider ker(fΛ,Λ′ [p∞]) ⊂ AΛ[p
∞] (where

fΛ,Λ′ [p∞] : AΛ[p
∞] → AΛ′ [p∞] is defined because fΛ,Λ′ : AΛ → AΛ′ is a

(Z×
(p))S-multiple of an isogeny), which admits an action of O⊗

Z
Zp induced

by the action of O⊗
Z
Z(p) on AΛ, and factorizes as a fiber product

ker(fΛ,Λ′ [p∞]) ∼=
∏

[τ ]∈Υ/∼
(ker(fΛ,Λ′ [p∞]))[τ ]

of finite locally free group schemes over S. On the other hand, the inclusion
Λ ⊂ Λ′ induces an inclusion Λ[τ ] ⊂ Λ′

[τ ]. Then the condition is that

rkOS
((ker(fΛ,Λ′ [p∞]))[τ ]) = [Λ′

[τ ] : Λ[τ ]].

(2) For each O⊗
Z
Z(p)-structure iΛ on AΛ, and for each unit b of O⊗

Z
Q which

normalizes O⊗
Z
Z(p), we define a twisted structure ibΛ by ibΛ(a) = iΛ(b

−1ab)

for all a ∈ O⊗
Z
Z(p), and we denote abusively Ab

Λ for AΛ with such a twisted

O⊗
Z
Z(p)-structure, so that iΛ(b) induces a Q×-isogeny [b] : Ab

Λ → AΛ in

AV
(p)
O (S). Then the condition is that, for each b ∈ (O⊗

Z
Q)

× ∩(O⊗
Z
Z(p))

that normalizes O⊗
Z
Z(p), there are periodicity isomorphisms θbAΛ

: Ab
Λ

∼→
AbΛ such that [b] = fΛ,bΛ ◦ θbAΛ

.
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Lemma 2.2.2. For any such A, to define a Q-homogeneous principal polarization
λ as in [19, Definitions 6.6 and 6.7], it suffices to give the following (less canonical)
data:

(1) A lattice Λ0 ∈ L such that Λ0 is contained in its dual lattice Λ#
0 (with

respect to 〈 · , · 〉 ⊗
Z
Qp). (Such a Λ0 ∈ L always exists, by scaling any

Λ ∈ L by a sufficiently large power of p.) We may and we shall just take
Λ0 to be the same Λ0 = L⊗

Z
Zp introduced above.

(2) A polarization λΛ0
: AΛ0

→ A∨
Λ0

respecting the O⊗
Z
Z(p)-structures of AΛ0

and A∨
Λ0

such that, for each Λ ⊂ Λ0, so that Λ0 ⊂ Λ#
0 ⊂ Λ#, we have

ker(fΛ0,Λ# [p∞]) = ker((f∨
Λ,Λ0

◦ λΛ0
)[p∞])

in AΛ0
[p∞] (where fΛ0,Λ# [p∞] and (f∨

Λ,Λ0
◦ λΛ0

)[p∞] are defined because

fΛ0,Λ# and f∨
Λ,Λ0

are (Z×
(p))S-multiples of isogenies), so that

(2.2.3) f∨
Λ,Λ0

◦ λΛ0
◦ f−1

Λ0,Λ# : AΛ# → A∨
Λ

is a Z×
(p)-isogeny (i.e., an isomorphism in the category AV

(p)
O (S)).

Remark 2.2.4. The notation system in Lemma 2.2.2 slightly differs from that in
[19, Definitions 6.6 and 6.7]—we reserve the symbol λ for the polarizations, rather
than for the induced Z×

(p)-isogenies such as AΛ → A∨
Λ# .

Definition 2.2.5. Let Hp be an open compact subgroup of G(A∞,p). The moduli
problem Mnaive

Hp over Spec(OF0,v
) is defined as the category fibered in groupoids

over (Sch / Spec(OF0,v
)) whose fiber over each scheme S is the groupoid Mnaive

Hp (S)

described as follows: The objects of Mnaive
Hp (S) are tuples (A, λ, i, αHp), where:

(1) A is an L -set of abelian schemes over S as in Definition 2.2.1.
(2) λ is a Q-homogeneous principal polarization as in [19, Definitions 6.6 and

6.7], which can be less canonically defined as in Lemma 2.2.2.
(3) i = {iΛ}Λ∈L is a collection of O⊗

Z
Q-structures such that each iΛ gives the

O⊗
Z
Z(p)-structure on AΛ (as an object of AV

(p)
O (S)), so that iΛ satisfies the

Rosati condition defined by the Q×-polarization f∨
prΛ,Λ0

◦ λΛ0
◦ fprΛ,Λ0

(cf.

[12, Definition 1.3.3.1]) whenever prΛ ⊂ Λ0 in L for some r ∈ Z.
(4) For each Λ ∈ L , LieAΛ/S with its O⊗

Z
Z(p)-module structure given by iΛ

satisfies the determinantal condition as in [12, Definition 1.3.4.1] given by
(L⊗

Z
R, 〈 · , · 〉, h0).

(5) αHp is a rational level-Hp structure for (A, λ, i), which can be defined by
a rational level-H structure [α̂Λ0

]Hp for (AΛ0
, λΛ0

, iΛ0
) as in [12, Definition

1.3.8.7] (with � = {p} there, ignoring the requirement of self-duality of
pairings at p). (Since the Q×-isogenies fΛ,Λ′ : AΛ → AΛ′ induce canonical

isomorphisms Vp AΛ,s̄
∼→ Vp AΛ′,s̄ of π1(S, s̄)-modules at every geometric

point s̄, we might as well define αHp as a collection {[α̂Λ]Hp}Λ∈L whose
members are all canonically identified with each other.)

The morphisms of Mnaive
Hp (S) are the naive ones induced by isomorphisms in the

category AV
(p)
S (which are induced by Z×

(p)-isogenies between abelian schemes).
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Remark 2.2.6. The moduli problemMnaive
Hp is the same as the ones in [19, Chapter 6]

and [17, Section 15], although the formulations are slightly different. It generalizes
the moduli problem Mrat

Hp in [12, Definition 1.4.2.1], or rather the one in [10, Section
5] (which was in the good reduction case, without the consideration of multichains
of isogenies).

Lemma 2.2.7. Let S be any scheme over Spec(OK), and let (A, λ, i, αHp) be an
object of Mnaive

Hp (S). Consider the assignments

H : Λ → HΛ := HdR
1 (AΛ/S)

and

F : Λ → FΛ := Lie∨A∨
Λ/S ,

and the morphism j : F → H whose value at each Λ ∈ L is the canonical

embedding jΛ : Lie∨A∨
Λ/S → HdR

1 (AΛ/S) dual to the last morphism in the canonical

short exact sequence 0 → Lie∨AΛ/S → H1
dR(AΛ/S) → LieA∨

Λ/S → 0 (see [2, Lemma

2.5.3]). Then (H ,F , j) is an L -set of polarized O⊗
Z

OS-modules as in Definition

2.1.12. (The level structure αHp is not used in the construction of (H ,F , j).)

Proof. For each Λ ∈ L , the desired perfect pairing as in (2.1.13) is induced by

the canonical perfect pairing HdR
1 (AΛ/S)×HdR

1 (A∨
Λ/S) → OS(1) (see [4, 1.5]),

and by the canonical isomorphism HdR
1 (AΛ#/S)

∼→ HdR
1 (A∨

Λ/S) induced by λ (or,
concretely, by (2.2.3)). The other conditions in Definition 2.1.12 then follow from
the various conditions in Definitions 2.2.1 and 2.2.5. �

Remark 2.2.8. Since HdR
1 (AΛ/S) is canonically isomorphic to the relative Lie alge-

bra of the universal vectorial extension of AΛ over S (see [16, Chapter 1, Section 4]),
the HΛ and FΛ in Lemma 2.2.7 are the MΛ and FΛ in [17, Section 15], respectively.

Choices 2.2.9. By the explanation in [19, 3.2], there exists a finite subset LJ =
{Λj}j∈J of L such that an O⊗

Z
Zp-lattice Λ in L⊗

Z
Qp belongs to L if and only

if there exist some r ∈ Z and j ∈ J such that Λ = prΛj. Take any r0 ∈ Z

such that Λj ⊂ pr0Λ0 for all j ∈ J. Then there exists a set {Lj}j∈J of O-lattices
in L⊗

Z
Q such that Lj ⊂ pr0L, such that the canonical morphism (pr0L)/Lj →

(pp0L⊗
Z
Zp)/(Lj⊗

Z
Zp) is an isomorphism of O-modules, and such that Lj ⊗

Z
Zp = Λj

in L⊗
Z
Qp, for all j ∈ J. Let gj = 1, and let 〈 · , · 〉j be the restriction of p−2r0〈 · , · 〉

to Lj, for each j ∈ J. For each j ∈ J, since O is maximal at p by Assumption 2.1.1,

and since Lj ⊗
Z
Ẑp = L⊗

Z
Ẑp, the lattice Lj satisfies [12, Condition 1.4.3.10] as L

does. Moreover, if Hp is any subgroup of G(Ẑp), whose action stabilizes L⊗
Z
Ẑp by

definition, then it also stabilizes Lj ⊗
Z
Ẑp. From now on, we shall fix the choices of

J and LJ = {Λj}j∈J.

Choices 2.2.10. Let us take H to be any open compact subgroup of G(A∞) such

that its image Hp under the canonical homomorphism G(Ẑ) → G(Ẑp) is a neat (see

[12, Definition 1.4.1.8]) open compact subgroup of G(Ẑp), in which case H is also

neat, and such that the image Hp of H under the canonical homomorphism G(Ẑ) →
G(Zp) is contained in Up(L ) as in Definition 2.1.10 (see also Remark 2.1.11). Then
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the collection {(1, Lj, 〈 · , · 〉j)}j∈J satisfies the requirements in [13, Section 2], and

we can define 	MH as in [13, Proposition 6.1] (by taking normalization over a product
of minimal compactifications of auxiliary good reduction integral models indexed
by j).

Proposition 2.2.11. Let H and Hp be as in Choices 2.2.10. Then there is a
canonical finite étale morphism

(2.2.12) MH ⊗
F0

F0,v → Mnaive
Hp ⊗

Z
Q

over Spec(F0,v), which is an open and closed immersion when H is of the form
HpUp(L ), which extends to a canonical finite morphism

(2.2.13) 	MH ⊗
OF0,(p)

OF0,v
→ Mnaive

Hp

over Spec(OF0,v
).

Proof. Since the canonical morphism MH → MHpUp(L ) is finite étale, and since the

induced canonical morphism 	MH → 	MHpUp(L ) is finite (essentially by definition),
we may and we shall assume that H = HpUp(L ) in the remainder of the proof.

Consider the pullback to S := MH ⊗
F0

F0,v of the tautological tuple over MH,

which we abusively denote by (A, λ, i, αH). For each j ∈ J, we also have the
pullback to S of the tautological tuple over MHj

, via the canonical isomorphism

MH
∼→ MHj

given by [13, (2.1)], which we abusively denote by (Aj, λj, ij, αHj
).

By [13, Proposition 6.1], for each j ∈ J, the triple (Aj, λj, ij) over S extends to

a triple ( 	Aj, 	λj,	ij) over 	S := 	MH ⊗
OF0,(p)

OF0,v
. By [7, IV-2, 6.8.2 and 7.8.3], 	S is

noetherian normal, because 	MH is of finite type over Spec(OF0,(p)) and normal.
By the proof of [13, (2.1)] based on [12, Proposition 1.4.3.4 and Corollary 1.4.3.8],
for any two j, j′ ∈ J, there canonically exists a Q×-isogeny fj,j′ : Aj → Aj′ over

S. By [12, Proposition 3.3.1.5] and the noetherian normality of 	S, it (uniquely)

extends to a Q×-isogeny 	fj,j′ : 	Aj → 	Aj′ over 	S. Hence, for each Λ ∈ L such that
Λ = prLj ⊗

Z
Zp for some r ∈ Z and j ∈ J as in Choices 2.2.9, we can define AΛ to

be the abelian scheme 	Aj over 	S. For any two Λ,Λ′ ∈ L such that Λ = prLj ⊗
Z
Zp

and Λ′ = pr
′
Lj′ ⊗

Z
Zp for some r, r′ ∈ Z and j, j′ ∈ J, and such that Λ ⊂ Λ′, we

define fΛ,Λ′ : AΛ → AΛ′ to be the Q×-isogeny given by the composition of 	fj,j′

with multiplication by pr−r′ on 	Aj′ . At any geometric point s̄ → S, the level

structures αHj
and αHj′ compatibly match the submodules prLj ⊗

Z
Ẑ and pr

′
Lj′ ⊗

Z
Ẑ

of L⊗
Z
A∞ with the submodules pr TAj,s̄ and pr

′
TAj′,s̄ of VAs̄, respectively, so

that the conditions in Definition 2.2.1 hold over the open dense subscheme S of 	S,

and therefore also over the whole 	S. Thus, the assignments above define an L -set

A of abelian schemes over 	S, as in Definition 2.2.1.
For any choice of Λ0 as in Lemma 2.2.2 such that Λ0 = pr0Lj0 ⊗

Z
Zp, we can

define λΛ0
: AΛ0

→ A∨
Λ0

to be the composition of 	λj0 : 	Aj0 → 	A∨
j0

with the mul-

tiplication by p2r0 on 	A∨
j0
. Since the level structure αHj0

matches the submodules
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Lj0 ⊗
Z
Ẑ and L#

j0
⊗
Z
Ẑ of L⊗

Z
A∞ with the submodules TAs̄ and TA∨

s̄ of VAs̄, re-

spectively, for each geometric point s̄ → S, if Λ0 ⊂ Λ#
0 as in Lemma 2.2.2, then

the Q×-isogeny 	λj0 defined above is a Z×
(p)-multiple of an isogeny over S, and

hence is also a Z×
(p)-multiple of an isogeny over 	S, again by [12, Proposition 3.3.1.5]

and the noetherian normality of 	S. By Lemma 2.2.2, we have also obtained a
Q-homogeneous principal polarization λ for A as in [19, Definitions 6.6 and 6.7].

The O⊗
Z
Z(p)-structure i = {iΛ}Λ∈L for (A, λ) is compatibly induced by the

O-endomorphism structures 	ij for ( 	Aj, 	λj), for all j ∈ J.
For each Λ ∈ L , the O⊗

Z
O�S-module LieAΛ/�S satisfies the determinantal condi-

tion as in [12, Definition 1.3.4.1] defined by the data (L⊗
Z
R, 〈 · , · 〉, h0) because the

O⊗
Z

OS-modules LieAj/S
do, for all j ∈ J, over the open dense subscheme S of 	S,

and because the determinantal condition is a closed condition by definition.
Finally, by forgetting the factors at p, the level structures αHj

over S compat-
ibly induce the level structures αHp

j
away from p, realized by compatible collec-

tions of subschemes αj,n of HomS((Lj/nLj)S, Aj[n])×
S
HomS(((Z/nZ)(1))S,μn,S)

finite étale over S, which are étale-locally-defined orbits of symplectic isomor-

phisms, for sufficiently divisible integers n prime to p. Since 	S is noetherian
and normal, they uniquely extend to compatible collections of subschemes 	αj,n

of Hom�S((Lj/nLj)�S,
	Aj[n])×

�S

Hom�S(((Z/nZ)(1))�S,μn,�S) finite étale over 	S, which

define level structures 	αHp
j
away from p and induce the desired level-Hp structure

αHp for (A, λ, i) (by the same argument as in [12, Construction 1.3.8.4 and Remark
1.3.8.9]).

Thus we have obtained a tuple (G, λ, i, αHp) over 	S which is parameterized by

Mnaive
Hp , which induces a morphism 	S → Mnaive

Hp as in (2.2.13). Since the construction

of the canonical finite morphism 	S →
∏
j∈J

MHj,aux
given by [13, (6.3)] only uses

level structures away from p, by rewriting the objects of Mnaive
Hp represented by

Z×
(p)-isogeny classes in terms of isomorphism classes by the same argument as in

the proof of [12, Proposition 1.4.3.3], it factors as a composition 	S → Mnaive
Hp →∏

j∈J

MHj,aux
, where the first morphism 	S → Mnaive

Hp is (2.2.13). This shows that

(2.2.13) is also finite.
By restriction to S, we obtain a finite morphism S → Mnaive

Hp ⊗
Z
Q as in (2.2.12).

By comparing their universal properties, both sides of (2.2.12) admit compatible
morphisms to Sp := MHp ⊗

OF0,(p)

F0,v. By assumption, Up(L ) (see Definition 2.1.10)

is the subgroup of G(Qp) consisting of elements stabilizing all lattices Λ in L , which
is also the subgroup of G(Qp) consisting of elements stabilizing all the submodules
Lj of pr0L⊗

Z
Zp, for all j ∈ J (see Choices 2.2.9). Take any r1 ∈ Z such that

pr1L⊗
Z
Zp ⊂ Lj ⊗

Z
Zp ⊂ pr0L⊗

Z
Zp for all j ∈ J. Since the morphism S → Sp is

the pullback of the canonical morphism MH → MHp ⊗
OF0,(p)

F0, which is defined by

forgetting the level structures at p, it parameterizes étale-locally-defined orbits of
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symplectic isomorphisms of the form ((pr0L)/(pr1L))S
∼→ A[pr1−r0 ] over S, under

which the images of (Lj/(p
r1L⊗

Z
Zp))S determine some isogenies A → Aj, satisfy-

ing some additional conditions which are open and closed. On the other hand, the
morphism Mnaive

Hp ⊗
Z
Q → Sp parameterizes exactly such isogenies A → Aj satisfying

some other closed conditions. Hence, by comparing the relative universal proper-
ties, the morphism (2.2.12) is an open and closed immersion (under the simplified
assumption that H = HpUp(L )), as desired. �

2.3. Splitting structures and their relative moduli.

Choices 2.3.1. For each equivalence class [τ ] ∈ Υ/ ∼, let us order the elements
τ[τ ],0, τ[τ ],1, . . . , τ[τ ],i, . . . in [τ ], where the index i satisfies 0 ≤ i < d[τ ] := [F[τ ] : Qp],

in a way such that any two elements with the same restriction to F+ are successive.
Let K be any finite extension of Qp in Q̄p that contains the composite of Fτ in Q̄p

for all τ ∈ Υ, namely the composite of Qp and the Galois closure of F in Q̄p. Then
F0,v ⊂ K (cf. the proof of [12, Corollary 1.2.5.7]). We shall fix the choices of K
and of the orderings τ[τ ],0, τ[τ ],1, . . . , τ[τ ],i, . . ., from now on.

Let {rτ}τ∈Υ be integers such that, for every b ∈ F , we have

(2.3.2) det(T − b · IdV ∨
0
|V ∨

0 ) =
∏
τ∈Υ

(T − τ (b))rτ

in Q̄p[T ], as in [17, Section 14]. (As explained in [17, Section 14], for every τ ∈ Υ,
the F[τ ]-module L[τ ] ⊗

Z
Q is necessarily free of rank rτ + rτ◦�.)

Definition 2.3.3. Suppose that S is a scheme over Spec(OK), and that (H ,F , j)
is an L -set of polarized O⊗

Z
OS-modules as in Definition 2.1.12, which induces as

in (2.1.19) the collection {(H [τ ],F [τ ])}[τ ]∈Υ/∼. A splitting structure for (H ,F , j)
is a collection

(2.3.4) {(F i
[τ ], j

i
[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

,

where each F i
[τ ] : Λ → F i

Λ,[τ ] is a functor from the category L to the category

of O⊗
Z

OS-modules, and where each ji
[τ ]

: F i
[τ ] → H [τ ] is an injective morphism,

whose value at each Λ is denoted by jiΛ,[τ ] : F i
Λ,[τ ] → HΛ,[τ ], which satisfies the

following conditions:

(1) For each Λ ∈ L , let us identify F i
Λ,[τ ] with an O⊗

Z
OS-submodule of HΛ,[τ ],

which is its image under the injective morphism jiΛ,[τ ]. Then we require that

both F i
Λ,[τ ] and HΛ,[τ ]/F

i
Λ,[τ ] are finite locally free OS-modules.

(2) For each Λ ∈ L , we have

0 = F
d[τ ]

Λ,[τ ] ⊂ F
d[τ ]−1

Λ,[τ ] ⊂ · · · ⊂ F 1
Λ,[τ ] ⊂ F 0

Λ,[τ ] = FΛ,[τ ]

as O⊗
Z

OS-submodule of HΛ,[τ ], where FΛ,[τ ] is as in (2.1.18). For each

integer i satisfying 0 ≤ i < d[τ ], the quotient F i
Λ,[τ ]/F

i+1
Λ,[τ ] is a locally free

OS-module of rank rτ[τ ],i
annihilated by b⊗ 1−1⊗ τ[τ ],i(b) for all b ∈ OF[τ ]

.
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(3) For each Λ ∈ L , each [τ ] ∈ Υ/ ∼, each integer i satisfying 0 ≤ i < d[τ ],
and each unit b of O⊗

Z
Qp which normalizes O⊗

Z
Zp, there are periodic-

ity isomorphisms θb
F i

Λ,[τ ]

: (F i
Λ,[τ ])

b ∼→ F i
bΛ,[τ ] of O⊗

Z
OS-modules sat-

isfying ji[τ ],bΛ ◦ θb
F i

Λ,[τ ]

= θbHΛ,[τ ]
◦ jiΛ,[τ ] (where the superscript b on an

O⊗
Z

OS-module means conjugating the O⊗
Z
Zp-structure by b−1, as in Def-

inition 2.1.12).
(4) For each Λ ∈ L and each integer i satisfying 0 ≤ i < d[τ ], let (F i

Λ,[τ ])
⊥

denote the orthogonal complement of F i
Λ,[τ ] in HΛ#,[τ ] with respect to the

perfect pairing HΛ,[τ ] ×HΛ#,[τ ] → OS(1) induced by the perfect pairing

(2.1.13), which satisfies F i
Λ#,[τ ] ⊂ FΛ#,[τ ] = F⊥

Λ,[τ ] ⊂ (F i
Λ,[τ ])

⊥. Then∏
0≤k<i

(b⊗ 1− 1⊗ τ[τ ],k(b))((F
i
Λ,[τ ])

⊥) ⊂ F i
Λ#,[τ ]

for all b ∈ OF[τ ]
, for every 0 < i ≤ d[τ ] divisible by [F[τ ] : F

+
[τ ]].

Definition 2.3.5. Two splitting structures

{(F i
[τ ], j

i
[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

and
{(F i,′

[τ ], j
i,′
[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

as in Definition 2.3.3 are isomorphic to each other if there exist isomorphisms
ρi[τ ] : F i

[τ ]
∼→ F i,′

[τ ] such that ji,′
[τ ]

◦ ρi[τ ] = ji
[τ ]

for all [τ ] ∈ Υ/ ∼ and 0 ≤ i < d[τ ].

By definition, we have the following:

Lemma 2.3.6. Suppose that S is a scheme over Spec(OK), that (H ,F , j) is an
L -set of polarized O⊗

Z
OS-modules as in Definition 2.1.12, and that

{(F i
[τ ], j

i
[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

is a splitting structure for (H ,F , j) as in Definition 2.3.3. Then the pullback of

{(F i
[τ ], j

i
[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

to any scheme T over S is a splitting structure for the

pullback of (H ,F , j) to T (cf. Lemma 2.1.16).

Proposition 2.3.7. Consider the (contravariant) functor

Spl(H ,F ,j)/S : (Sch /S) → (Sets)

defined by assigning to each scheme T over S the set of isomorphism classes of split-
tings structures for the pullback of (H ,F , j) to T . Then the functor Spl(H ,F ,j)/S

is representable by a scheme over S, which we abusively denote by the same sym-
bols. This scheme is locally over S projective, with a relatively ample invertible
sheaf given by the relative Hodge invertible sheaf

(2.3.8) ω
μ

(H ,F ,j)/S :=
⊗
Λ∈LJ

⎛
⎝ ⊗

[τ ]∈Υ/∼

⎛
⎝ ⊗

0≤i<d[τ ]

(
top∧

(F i
Λ,[τ ])

)⊗(μi
Λ,[τ ]−μi−1

Λ,[τ ]
)
⎞
⎠
⎞
⎠

(with the convention that μ−1
Λ,[τ ] = 0), where LJ is the subset of L as in Choices

2.2.9, and where the tensor and exterior products are over OSpl(H ,F,j)/S
, for each
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triply indexed collection of integers μ = {μi
Λ,[τ ]}Λ∈LJ,[τ ]∈Υ/∼,0≤i<d[τ ]

that is posi-

tive in the sense that μi−1
Λ,[τ ] > μi

Λ,[τ ] for all Λ ∈ LJ, [τ ] ∈ Υ/ ∼, and 0 < i < d[τ ].

Proof. For simplicity, let us abusively denote by the same symbols the pullback of
(H ,F , j) to any scheme T over S. Let {(F i

[τ ], j
i
[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

be a splitting

structure for (H ,F , j). As in Definitions 2.1.12 and 2.3.3, let us identify FΛ,[τ ]

with a submodule of HΛ,[τ ] via jΛ,[τ ], and identify F i
Λ,[τ ] with a submodule of FΛ,[τ ]

via jiΛ,[τ ], for all Λ ∈ L , [τ ] ∈ Υ/ ∼, and 0 ≤ i < d[τ ]. Then the splitting structure

is uniquely determined by the filtrations defined by {F i
Λ,[τ ]}0≤i<d[τ ]

on HΛ,[τ ], for

all Λ ∈ L and [τ ] ∈ Υ/ ∼, satisfying the additional conditions in Definition 2.3.3.
By the periodicity condition (3) in Definition 2.3.3, and by the same explanation
as in [19, 3.2], it suffices to consider the indices Λ ∈ LJ, as in Choices 2.2.9.

Locally over the base scheme S, the filtered pieces F i
Λ,[τ ] of HΛ,[τ ], which

are OS-module local direct summands by assumption, are parameterized by some
Grassmannians; and the inclusion relations F i+1

Λ,[τ ] ⊂ F i
Λ,[τ ] are given by the vanish-

ing of the canonical morphisms F i+1
Λ,[τ ] → FΛ,[τ ]/F

i
Λ,[τ ], which are closed conditions.

Similarly, the additional conditions in Definition 2.3.3, given by the containment
of images of certain morphisms, are also closed conditions. Hence, Spl(H ,F ,j)/S is

locally over S representable by a closed subscheme in the fiber product of Grass-
mannians triply indexed by the finitely many Λ ∈ LJ, [τ ] ∈ Υ/ ∼, and 0 < i < d[τ ].
As explained in, for example, [6, Section 5.1.6], the Grassmannian triply indexed
by Λ, [τ ], and i has an ample invertible sheaf whose pullback to Spl(H ,F ,j)/S

is tautologically dual to
∧top

(F i
Λ,[τ ]), the top exterior power of the locally free

sheaf F i
Λ,[τ ] over OSpl(H ,F,j)/S

. Since each such
∧top

(F i
Λ,[τ ]) is globally defined

over Spl(H ,F ,j)/S , and since
∧top

(F 0
Λ,[τ ]) descends to S because F 0

Λ,[τ ] = FΛ,[τ ]

does, the scheme Spl(H ,F ,j)/S is locally over S projective, with a relatively ample

invertible sheaf ω
μ

(H ,F ,j)/S given by (2.3.8) for each positive μ. �

Lemma 2.3.9. Suppose that S is a scheme over Spec(K), and that (H ,F , j) is
an L -set of polarized O⊗

Z
OS-modules as in Definition 2.1.12. Then the structural

morphism Spl(H ,F ,j)/S → S is an isomorphism. Equivalently, for each scheme T

over S, there is up to isomorphism a unique splitting structure for the pullback of
(H ,F , j) to T . Moreover, the condition (4) in Definition 2.3.3 is redundant.

Proof. Let us proceed as in the proof of Proposition 2.3.7, with the addition as-
sumption that T = Spec(R) is affine; it suffices to show that there uniquely exist fil-
trations {F i

Λ,[τ ]}0≤i<d[τ ]
on HΛ,[τ ] satisfying the additional conditions in Definition

2.3.3, for all Λ ∈ L and [τ ] ∈ Υ/ ∼. Since F[τ ] ⊗
Qp

K ∼=
∏

τ∈[τ ]

Kτ =
∏

0≤i<d[τ ]

Kτ[τ ],i
,

where F acts on Kτ = K via the homomorphism τ : F → K, we have canon-
ical decompositions FΛ,[τ ]

∼=
⊕

0≤i<d[τ ]
FΛ,τ[τ ],i

and HΛ,[τ ]/FΛ,[τ ]
∼= F∨

Λ#,[τ ]
∼=⊕

0≤i<d[τ ]
F∨

Λ#,τ[τ ],i
of OF[τ ]

⊗
Zp

R ∼= F[τ ] ⊗
Qp

R-modules, which are (up to permuta-

tion) independent of the ordering τ[τ ],0, τ[τ ],1, . . . of elements in [τ ]. Hence, the

desired filtration {F i
Λ,[τ ]}0≤i<d[τ ]

on FΛ,[τ ] uniquely exists and is given by F i
Λ,[τ ]

∼=
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⊕
i≤k<d[τ ]

FΛ,τ[τ ],k
, which satisfies (F i

Λ#,[τ ])
⊥/FΛ,[τ ]

∼=
⊕

0≤k<i F
∨
Λ#,τ[τ ],k

for all

0 ≤ i < d[τ ]. In particular, the condition (4) in Definition 2.3.3 is redundant. �

Proposition 2.3.10. Consider also the functor Spl′(H ,F ,j)/S defined by assigning

to each scheme T over S the set of isomorphism classes of splittings structures for
the pullback of (H ,F , j) to T , but without the last condition (4). By the proof

of Proposition 2.3.7, Spl′(H ,F ,j)/S is representable by a scheme over S, which is

locally over S projective, and the canonical forgetful morphism

(2.3.11) Spl(H ,F ,j)/S → Spl′(H ,F ,j)/S

is a closed immersion, under which the invertible sheaf ω
μ

(H ,F ,j)/S defined over

Spl(H ,F ,j)/S (see (2.3.8)) is the pullback of a similarly defined invertible sheaf

ω
μ,′
(H ,F ,j)/S over Spl′(H ,F ,j)/S , which is also relatively ample over S, for each pos-

itive μ.
Suppose moreover that S⊗

Z
Q is reduced. By Lemma 2.3.9, the morphisms

(2.3.12) Spl(H ,F ,j)/S ⊗
Z
Q → Spl′(H ,F ,j)/S ⊗

Z
Q → S⊗

Z
Q

canonically induced by (2.3.11) are both isomorphisms. Therefore, if we denote

by Spl+(H ,F ,j)/S (resp. Spl′,+(H ,F ,j)/S) the normalization of the (necessarily reduced)

schematic closure of S⊗
Z
Q in Spl(H ,F ,j)/S (resp. Spl′(H ,F ,j)/S) via such canonical

isomorphisms, then (2.3.11) canonically induces an isomorphism

(2.3.13) Spl+(H ,F ,j)/S

∼→ Spl′,+(H ,F ,j)/S .

We shall denote the pullback of ω
μ

(H ,F ,j)/S (or ω
μ,′
(H ,F ,j)/S) to Spl+(H ,F ,j)/S by

ω
μ,+

(H ,F ,j)/S, which is relatively ample over S because the canonical normalization

morphism Spl+(H ,F ,j)/S → Spl(H ,F ,j)/S is finite, for each positive μ.

Proof. The statements are self-explanatory. �

2.4. Splitting models for PEL moduli. Let H and Hp be as in Choices 2.2.10.

Definition 2.4.1 (cf. [17, the end of Section 15]). Let Hp be an open compact

subgroup of G(A∞,p). The moduli problem Mspl
Hp over Spec(OK) is defined as the

category fibered in groupoids over (Sch / Spec(OK)) whose fiber over each scheme

S is the groupoid Mspl
Hp(S) described as follows: The objects of Mspl

Hp(S) are tuples

(A, λ, i, αHp , {(F i
[τ ], j

i
[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

),

where (A, λ, i, αHp) is an object of Mnaive
Hp (S) as in Definition 2.2.5, and where

{(F i
[τ ], j

i
[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

is a splitting structure (as in Definition 2.3.3) for the

L -set (H ,F , j) of polarizedO⊗
Z

OS-modules associated with (A, λ, i) as in Lemma

2.2.7. The morphisms of Mspl
Hp(S) are the naive ones induced by isomorphisms

in the category AV
(p)
O (S) (given by Z×

(p)-isogenies between abelian schemes with

O⊗
Z
Z(p)-structures) and by the isomorphisms between splitting structures as in

Definition 2.3.5.
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Then Proposition 2.3.7 implies the following.

Lemma 2.4.2. The canonical morphism

(2.4.3) Mspl
Hp → Mnaive

Hp ⊗
OF0,v

OK

defined by forgetting splitting structures is relatively representable and projective.
If we abusively denote by (A, λ, i) the pullback to Mnaive

Hp ⊗
OF0,v

OK of (part of) the

tautological object over Mnaive
Hp , and denote by (H ,F , j) the associated L -set of po-

larized O⊗
Z

OS-modules as in Lemma 2.2.7, then we have a canonical isomorphism

(2.4.4) Mspl
Hp

∼→ Spl(H ,F ,j)/(Mnaive
Hp ⊗

OF0,v

OK) .

Definition 2.4.5. Let (A, λ, i) abusively denote the pullback to 	MH ⊗
OF0,(p)

OK of

the tautological object over Mnaive
Hp under the morphism (2.2.13), and let (H ,F , j)

denote the associated L -set of polarized O⊗
Z

OS-modules as in Lemma 2.2.7. Then

we define (as in Proposition 2.3.10)

(2.4.6) 	Mspl
H := Spl+

(H ,F ,j)/(�MH ⊗
OF0,(p)

OK)
.

Lemma 2.4.7. The canonical morphism 	Mspl
H ⊗

Z
Q → 	MH ⊗

OF0,(p)

K ∼= MH ⊗
F0

K

induced by the structural morphism 	Mspl
H → 	MH ⊗

OF0,(p)

OK is an isomorphism.

Proof. This follows from Lemma 2.3.9. �

Corollary 2.4.8. Let Mloc
Hp denote the schematic image of the canonical morphism

Mspl
Hp → Mnaive

Hp induced by (2.4.3). Then the morphism (2.2.13) factors through the
structural closed immersion Mloc

Hp ↪→ Mnaive
Hp and induces a canonical finite morphism

(2.4.9) 	MH ⊗
OF0,(p)

OF0,v
→ Mloc

Hp

over Spec(OF0,v
), extending the finite étale morphism (2.2.12) over Spec(F0,v). If

(2.2.12) is an open and closed immersion, and if Mloc
Hp is known to be flat over

Spec(OF0,v
) and normal, then (2.4.9) is an open and closed immersion.

Corollary 2.4.10. Suppose that the morphism (2.4.9) induced by (2.2.13) is an

open and closed immersion, and that Mspl
Hp is known to be flat over Spec(OK) and

normal. Then we have a canonical isomorphism

(2.4.11) 	Mspl
H

∼→ (	MH ⊗
OF0,(p)

OF0,v
) ×
Mnaive

Hp

Mspl
Hp ,

inducing an open and closed immersion

(2.4.12) 	Mspl
H ↪→ Mspl

Hp

compatible with (2.4.9). If (2.4.9) is an isomorphism, then so is (2.4.12).
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Remark 2.4.13. To summarize, we have a commutative diagram:

(2.4.14) MH ⊗
F0

K � � ��

����

	Mspl
H

��

����

Mspl
Hp

����

MH ⊗
F0

F0,v
� � �� 	MH ⊗

OF0,(p)

OF0,v
�� Mloc

Hp
� � �� Mnaive

Hp

By Proposition 2.3.7 and Lemma 2.4.2, and by their definitions, the vertical mor-
phisms are all projective and surjective—the left-most one is finite étale (and is
just the base change morphism). The two horizontal arrows at the left-hand side
are open immersions with schematically dense images, by definition. By Corollaries
2.4.8 and 2.4.10, if (2.2.12) is an open and closed immersion (which is the case when

H = HpUp(L ), by Proposition 2.2.11), and if Mloc
Hp and Mspl

Hp are known to be flat
over Spec(OF0,v

) and Spec(OK), respectively, and are both known to be normal,
then the horizontal arrows between the two middle columns are open and closed
immersions. By definition, the bottom-right arrow is a closed immersion.

Remark 2.4.15. The Mspl
Hp , Mloc

Hp , and Mnaive
Hp in (2.4.14) are what were denoted A spl

Cp ,
A loc

Cp , and A naive
Cp in [17, (15.4)], respectively, where the latter three objects have

the same singularities as the splitting model M , the local model M loc, and the
naive local model Mnaive, respectively, defined and studied there. While they will
play no role in the remaining constructions of this article, they are important for
practical applications of the results in this article.

Remark 2.4.16. The normality ofMloc
Hp andMspl

Hp , and their flatness over Spec(OF0,v
)

and Spec(OK), respectively, are known in many cases. See, for example, [17].

Proposition 2.4.17 (cf. [13, Propositions 13.1 and 13.15]). Suppose that H and H′

are two open compact subgroups of G(Ẑ) such that their images under the canonical

homomorphism G(Ẑ) → G(Zp) are contained in Up(L ) as in Definition 2.1.10;
that g ∈ G(A∞) is an element such that the multiplication by the image gp of g
under the canonical homomorphism G(A∞) → G(Qp) preserves the multichain L ;
and that H ⊂ gH′g−1. Then we have a canonical projective morphism

(2.4.18) 	[g] : 	MH → 	MH′

extending the canonical finite morphism MH
∼→ Mg−1Hg → MH′ defined by g, whose

pullback from OF0,(p) to OK lifts to a canonical projective morphism

(2.4.19) 	[g]
spl

: 	Mspl
H → 	Mspl

H′ .

Proof. In this proof, as in [13, Section 13] and [15, Section 7], for the sake of
clarity, let us temporarily (and abusively) denote all objects constructed using
{(1, Lj, 〈 · , · 〉j)}j∈J (see Choices 2.2.9 and 2.2.10) by an additional subscript J.
Since multiplication by gp preserves the multichain L , by [13, (2.1)] (or rather by
its proof based on [12, Proposition 1.4.3.4 and Corollary 1.4.3.8]), the tautological

objects over 	MH,{0,1}× J (as in [13, Example 13.14]) differ from those over 	MH,J

by repeating some of the latter by Hecke twists by the image gp of g under the
canonical homomorphism G(A∞) → G(A∞,p), realized by Z×

(p)-isogenies, up to

shifting the indices. Therefore, we have 	MH,J
∼= 	MH,{0,1}× J

∼= 	Mg−1Hg,J, and
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the composition of these with the canonical morphism 	Mg−1Hg,J → 	MH′,J gives
the desired (2.4.18). Moreover, the pullback under (2.4.18) of the tautological

L -set of polarized O⊗
Z

OS-modules over 	MH′,J can be identified (up to shifting the

indices) with the one over 	MH,J via an isomorphism canonically induced by g, and
so (2.4.18) induces the desired (2.4.19), because the two sides of (2.4.19) are the
respective normalizations of relative moduli for splitting structures over the base
changes of the two sides of (2.4.18) from OF0,(p) to OK (and by Zariski’s main
theorem; see [7, III-1, 4.4.3, 4.4.11]). �

3. Toroidal compactifications

3.1. Splitting models for toroidal compactifications. Let H be as in Choices

2.2.10, and let 	MH ↪→ 	Mtor
H,Σ be any toroidal compactification as in either [13, (7.10)]

or [15, Theorem 6.1]. Let (A, λ, i) abusively denote the pullback to 	MH of the
tautological object over Mnaive

Hp , under the morphism (2.2.13), and let (H ,F , j)
denote the associated L -set of polarized O⊗

Z
O�MH

-modules as in Lemma 2.2.7.

Lemma 3.1.1. For each Λ ∈ L , the abelian scheme AΛ (resp. A∨
Λ) over 	MH

(necessarily uniquely) extends to a semi-abelian scheme Aext
Λ (resp. Aext,∨

Λ ) over
	Mtor

H,Σ (cf. [12, Theorem 3.4.3.2 and Proposition 3.3.1.5]). Consequently, by [12,

Proposition 3.3.1.5], for each inclusion Λ ⊂ Λ′ in L , the Q×-isogeny fΛ,Λ′ : AΛ →
AΛ′ over 	MH, which is a Z×

(p)-multiple of an isogeny (necessarily uniquely), extends

to a Q×-isogeny f ext
Λ,Λ′ : Aext

Λ → Aext
Λ′ over 	Mtor

H,Σ, which is also a Z×
(p)-multiple of an

isogeny.

Proof. By Choices 2.2.9, for each Λ ∈ L , there exist some r ∈ Z and j ∈ J such
that Λ = prΛj = prLj ⊗

Z
Zp, so that there exists some Z×

(p)-isogeny Aj → AΛ ×
�MH

MH

over MH, where Aj abusively denotes the pullback to MH of the tautological abelian
scheme over MHj

(see [13, (2.1)]). By [12, Lemma 3.4.3.1 and Proposition 3.3.1.5],

this Z×
(p)-isogeny of abelian schemes over MH (uniquely) extends to a Z×

(p)-isogeny of

semi-abelian schemes over 	Mtor
H,Σ as soon as the source extends. Hence, the lemma

follows from [13, Theorem 11.2] and [15, Theorem 6.1] �

Proposition 3.1.2. The L -set (H ,F , j) of polarized O⊗
Z

O�MH
-modules intro-

duced above (necessarily uniquely) extends to an L -set (H ext,F ext, jext) of polar-

ized O⊗
Z

O�Mtor
H,Σ

-modules inducing compatible isomorphisms F ext
Λ

∼= Lie∨
Aext,∨

Λ /�Mtor
H,Σ

and H ext
Λ /F ext

Λ
∼= LieAext

Λ /�Mtor
H,Σ

(of O⊗
Z

O�Mtor
H,Σ

-modules) extending the canonical

isomorphisms FΛ
∼= Lie∨

A∨
Λ/�MH

and HΛ/FΛ
∼= LieAΛ/�MH

(of O⊗
Z

O�MH
-modules),

respectively, for all Λ ∈ L .

Proof. By [12, Proposition 3.3.1.5], any Z×
(p)-isogeny Aj → AΛ ×

�MH

MH as in the

proof of Lemma 3.1.1 uniquely extends to a Z×
(p)-isogeny

	Aj → AΛ over 	MH, where 	A

is as in [13, Proposition 6.1], and hence the proposition follows from [15, Proposition
7.15] (which was based on a reduction first to the case where Σ is induced by
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auxiliary choices as in [13, Section 7], and then to the good reduction case as in
[11, Proposition 6.9]). �

Definition 3.1.3. Let (H ext,F ext, jext) be as in Proposition 3.1.2. Then we
define

(3.1.4) 	Mspl,tor
H,Σ := Spl+

(H ext,Fext,jext)/(�Mtor
H,Σ ⊗

OF0,(p)

OK)
,

where Spl+
(H ext,Fext,jext)/(�Mtor

H,Σ ⊗
OF0,(p)

OK)
is defined as in Proposition 2.3.10.

By comparing the universal properties (see Definitions 2.4.5 and 3.1.3), we have
a canonical morphism

(3.1.5) Spl(H ,F ,j)/(�MH ⊗
OF0,(p)

OK) ↪→ Spl(H ext,Fext,jext)/(�Mtor
H,Σ ⊗

OF0,(p)

OK)

over Spec(OK). By Proposition 2.3.10, (3.1.5) induces a canonical morphism

(3.1.6) 	Mspl
H ↪→ 	Mspl,tor

H,Σ

over Spec(OK), which covers the canonical morphism 	MH ↪→ 	Mtor
H,Σ (see [13, (7.10)]

and [15, Theorem 6.1]).

Remark 3.1.7. We would like to view 	Mspl,tor
H,Σ as the toroidal compactification of

	Mspl
H associated with the compatible collection Σ of cone decompositions. However,

to justify this, we need to show that it satisfies some reasonable properties as in
[12, Theorem 6.4.1.1] (and in the corresponding theorems in [13] and [15]).

Definition 3.1.8. For each (locally closed) stratum 	Z[(ΦH,δH,σ)] of 	Mtor
H,Σ as in

[13, Theorem 9.13] and [15, Theorem 6.1(3)], we denote by 	Zspl
[(ΦH,δH,σ)] the reduced

subscheme of the preimage of 	Z[(ΦH,δH,σ)] under the canonical morphism 	Mspl,tor
H,Σ →

	Mtor
H,Σ.

Then 	Mspl,tor
H,Σ is a disjoint union of locally closed subschemes

(3.1.9) 	Mspl,tor
H,Σ =

∐
[(ΦH,δH,σ)]

	Zspl
[(ΦH,δH,σ)],

as in [13, Theorem 9.13] and [15, Theorem 6.1(3)], except that we still have to show
that it is a stratification. (As in [12, Theorem 6.4.1.1(2)], the notation “

∐
” only

means a set-theoretic disjoint union. The algebro-geometric structure is still that

of 	Mspl,tor
H,Σ .)

Our next goal will be to understand 	Zspl
[(ΦH,δH,σ)] and the formal completion

(	Mspl,tor
H,Σ )∧�Zspl

[(ΦH,δH,σ)]

of 	Mspl,tor
H,Σ along 	Zspl

[(ΦH,δH,σ)], for each [(ΦH, δH, σ)]. (As in

[12, Theorem 6.4.1.1(5)], to form the formal completion along a given locally closed
subscheme, we first remove the complement of it in its closure in the total space,
and then form the formal completion of the remaining space along this stratum.)
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3.2. Toroidal boundary charts and formal completions. Suppose we have a
representative (ΦH, δH, σ) of [(ΦH, δH, σ)] as in [12, Definition 6.2.6.1], where the
underlying (ZH,ΦH, δH) is a representative of cusp label forMH as in [12, Definition
5.4.2.4] (where ZH is often suppressed in the notation, by [12, Convention 5.4.2.5]),

and where σ ∈ ΣΦH ∈ Σ is a cone such that σ ⊂ P+
ΦH

. Consider the schemes 	MZH
H ,

	MΦH
H , 	CΦH,δH , 	ΞΦH,δH , 	ΞΦH,δH(σ), and 	ΞΦH,δH,σ, and the formal scheme 	XΦH,δH,σ,

defined as in [13, Proposition 7.4 and Section 8] and [15, Construction 4.5].

Definition 3.2.1. As in Definition 2.4.5, let us set

(3.2.2) 	MZH,spl
H := Spl+

( �H , �F , �j)/(�M
ZH
H ⊗

OF0,(p)

OK)
,

where we denote by ( �H , �F , �j) the analogue of (H ,F , j) associated with the

tautological tuple (B, λB, iB) over 	MZH
H , as in Lemma 2.2.7, and abusively denote

by the same symbols its pullbacks to schemes and formal schemes over 	MZH
H , such as

	MZH
H ⊗

OF0,(p)

OK . (Note that the splitting structures here are defined by Lie algebra

conditions and rank sizes adjusted to the tautological tuple (B, λB , iB) over
	MZH

H ,

using the boundary PEL-type O-lattice (LZH , 〈 · , · 〉ZH , hZH0 ) as in [12, Definition
5.4.2.6].)

Definition 3.2.3. With the same setting as above, we define 	MΦH,spl
H , 	Cspl

ΦH,δH
,

	Ξspl
ΦH,δH

, 	Ξspl
ΦH,δH

(σ), 	Ξspl
ΦH,δH,σ, and

	Xspl
ΦH,δH,σ to be the respective normalizations of

the fiber products of 	MΦH
H , 	CΦH,δH , 	ΞΦH,δH , 	ΞΦH,δH(σ), 	ΞΦH,δH,σ, and 	XΦH,δH,σ

with 	MZH,spl
H over 	MZH

H , via the canonical structural morphisms.

Lemma 3.2.4. We have the following canonical isomorphisms:

(3.2.5) 	MΦH,spl
H

∼= Spl+
( �H , �F , �j)/(�M

ΦH
H ⊗

OF0,(p)

OK)
,

(3.2.6) 	Cspl
ΦH,δH

∼= Spl+
( �H , �F , �j)/(�CΦH,δH ⊗

OF0,(p)

OK)
,

(3.2.7) 	Ξspl
ΦH,δH

∼= Spl+
( �H , �F , �j)/(�ΞΦH,δH ⊗

OF0,(p)

OK)
,

(3.2.8) 	Ξspl
ΦH,δH

(σ) ∼= Spl+
( �H , �F , �j)/(�ΞΦH,δH (σ) ⊗

OF0,(p)

OK)
,

(3.2.9) 	Ξspl
ΦH,δH,σ

∼= Spl+
( �H , �F , �j)/(�ΞΦH,δH,σ ⊗

OF0,(p)

OK)
,

and

(3.2.10) 	Xspl
ΦH,δH,σ

∼= Spl+
( �H , �F , �j)/(�XΦH,δH,σ ⊗

OF0,(p)

OK)
,

where

Spl+
( �H , �F , �j)/(�XΦH,δH,σ ⊗

OF0,(p)

OK)
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is a relative scheme over 	XΦH,δH,σ ⊗
OF0,(p)

OK (see [8]), which compatibly assigns

to affine open formal subschemes Spf(R) of 	XΦH,δH,σ ⊗
OF0,(p)

OK the corresponding

schemes Spl+( �H , �F , �j)/ Spec(R) over Spec(R).

Proof. Since Spl
( �H , �F , �j)/(�M

ZH
H ⊗

OF0,(p)

OK)
represents the functor assigning to each

scheme the isomorphism classes of splitting structures for pullbacks of ( �H , �F , �j)
(see Proposition 2.3.7), and since the various objects on the right-hand sides are
defined by taking normalizations (see Proposition 2.3.10), these follow from the
definitions of the various objects on the left-hand sides (see Definition 3.2.3). �

Proposition 3.2.11 (cf. [12, Proposition 6.2.4.7 and (6.2.4.8); see also the errata],
[13, Propositions 8.7, 8.14, and 8.20], and [15, Construction 4.5]). The canonical

morphism 	Ξspl
ΦH,δH

→ 	Cspl
ΦH,δH

is a torsor under the split torus EΦH with character

group SΦH , the canonical morphism 	Ξspl
ΦH,δH,σ → 	Cspl

ΦH,δH
is a torsor under the

split torus EΦH,σ with character group σ⊥ := {� ∈ SΦH : 〈�, y〉 = 0 ∀y ∈ σ} (see

[12, Definition 6.1.2.5]), and the canonical morphism 	Ξspl
ΦH,δH

→ 	Ξspl
ΦH,δH

(σ) over
	Cspl
ΦH,δH

is an open immersion defining an affine toroidal embedding associated with
the cone σ ∈ ΣΦH ∈ Σ. Moreover, the canonical morphisms

(3.2.12) 	Ξspl
ΦH,δH

→ 	ΞΦH,δH ×
�CΦH,δH

	Cspl
ΦH,δH

,

(3.2.13) 	Ξspl
ΦH,δH

(σ) → 	ΞΦH,δH(σ) ×
�CΦH,δH

	Cspl
ΦH,δH

,

and

(3.2.14) 	Ξspl
ΦH,δH,σ → 	ΞΦH,δH,σ ×

�CΦH,δH

	Cspl
ΦH,δH

are EΦH-equivariant isomorphisms over 	Cspl
ΦH,δH

, which are compatible with each

other. Consequently, the pullback of [13, (8.10)] gives a canonical homomorphism

(3.2.15) SΦH → Pic( 	Cspl
ΦH,δH

) : � → 	Ψspl
ΦH,δH

(�),

giving for each � ∈ SΦH an invertible sheaf 	Ψspl
ΦH,δH

(�) over 	Cspl
ΦH,δH

(up to isomor-

phism), together with isomorphisms

	Δspl,∗
ΦH,δH,�,�′ :

	Ψspl
ΦH,δH

(�) ⊗
O�C

spl
ΦH,δH

	Ψspl
ΦH,δH

(�′)
∼→ 	Ψspl

ΦH,δH
(�+ �′)

for all �, �′ ∈ SΦH , satisfying the necessary compatibilities with each other making⊕
�∈SΦH

	Ψspl
ΦH,δH

(�) an O�Cspl
ΦH,δH

-algebra, such that

(3.2.16) 	Ξspl
ΦH,δH

∼= Spec
O�C

spl
ΦH,δH

⎛
⎝ ⊕

�∈SΦH

	Ψspl
ΦH,δH

(�)

⎞
⎠ ,

(3.2.17) 	Ξspl
ΦH,δH

(σ) ∼= Spec
O

�C
spl
ΦH,δH

(⊕
�∈σ∨

	Ψspl
ΦH,δH

(�)

)
,
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where σ∨ := {� ∈ SΦH : 〈�, y〉 ≥ 0 ∀y ∈ σ} as usual (see [12, Definition 6.1.1.8]),
and

(3.2.18) 	Ξspl
ΦH,δH,σ

∼= Spec
O

�C
spl
ΦH,δH

⎛
⎝⊕

�∈σ⊥

	Ψspl
ΦH,δH

(�)

⎞
⎠ .

Proof. These follow from [13, Propositions 8.7, 8.14, and 8.20] and the arguments

there, because the pullback of the EΦH-torsor 	ΞΦH,δH → 	CΦH,δH under 	Cspl
ΦH,δH

→
	CΦH,δH is necessarily normal, and hence is isomorphic to 	Ξspl

ΦH,δH
via the canonical

morphism (3.2.12), not just as a scheme but also as an EΦH-torsor. �

Remark 3.2.19 (cf. Remark 2.4.13). To summarize, we have a commutative diagram

(3.2.20) ΞΦH,δH,σ ⊗
F0

K � � ��

� �

��

	Ξspl
ΦH,δH,σ

�� ��
� �

��

	ΞΦH,δH,σ ⊗
OF0,(p)

OK

� �

��

XΦH,δH,σ ⊗
F0

K � � ��

��

	Xspl
ΦH,δH,σ

�� ��

��

	XΦH,δH,σ ⊗
OF0,(p)

OK

��

ΞΦH,δH(σ)⊗
F0

K � � �� 	Ξspl
ΦH,δH

(σ) �� �� 	ΞΦH,δH(σ) ⊗
OF0,(p)

OK

ΞΦH,δH ⊗
F0

K � � ��

����

��

��

	Ξspl
ΦH,δH

�� ��

����

��

��

	ΞΦH,δH ⊗
OF0,(p)

OK

����

��

��

CΦH,δH ⊗
F0

K � � ��

����

	Cspl
ΦH,δH

�� ��

����

	CΦH,δH ⊗
OF0,(p)

OK

����

MΦH
H ⊗

F0

K � � ��

����

	MΦH,spl
H

�� ��

����

	MΦH
H ⊗

OF0,(p)

OK

����

MZH
H ⊗

F0

K � � �� 	MZH,spl
H

�� �� 	MZH
H ⊗

OF0,(p)

OK

in which all squares not involving 	MΦH
H ⊗

OF0,(p)

OK and 	MZH
H ⊗

OF0,(p)

OK are Cartesian.

The horizontal arrows at the left-hand sides are open immersions with schematically
dense images, because the bottom one is so by definition. The horizontal arrows at
the right-hand sides are projective (which are the Spl+ over the respective bases,
as in Proposition 2.3.10) and surjective, whose pre-composition with the horizon-
tal arrows at the left-hand sides in the same rows are still open immersions with
schematically dense images. The (vertical) arrows between the top two rows are
closed immersions, while the arrows between the second and third rows are formal
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completions. The arrows between the third and fourth rows are given by affine
toroidal embeddings associated with the cone σ. The arrows between the fourth
and fifth rows are (smooth) torsors under the same split torus EΦH . The arrows
between the fifth and sixth rows are all proper and surjective with the left-most one
being an abelian scheme torsor. The arrows between the bottom two rows are all
finite and surjective with the left-most one being étale. The commutative diagram
can be further expanded by adding vertical arrows from the first row to the fifth
row, which are (smooth) torsors under the same split torus EΦH,σ.

By [13, Theorem 10.13] and [15, Theorem 6.1(4)], there is a canonical isomor-
phism

(3.2.21) (	Mtor
H,Σ)

∧
�Z[(ΦH,δH,σ)]

∼→ 	XΦH,δH,σ.

Lemma 3.2.22. For each Λ ∈ L , there exist split tori TΛ and T∨
Λ , with character

groups some O-lattices XΛ and YΛ, such that we have short exact sequences

(3.2.23) 1 → TΛ → Aext
Λ → BΛ → 1

and

(3.2.24) 1 → T∨
Λ → Aext,∨

Λ → B∨
Λ → 1

of (relative) group schemes over (	Mtor
H,Σ)

∧
�Z[(ΦH,δH,σ)]

, where Aext
Λ and Aext,∨

Λ abusively

denote (by the same symbols) the pullbacks to (	Mtor
H,Σ)

∧
�Z[(ΦH,δH,σ)]

of the semi-abelian

schemes Aext
Λ and Aext,∨

Λ over 	Mtor
H,Σ, respectively. Moreover, we have a commutative

diagram

(3.2.25) 1 �� TΛ
��


��

Aext
Λ

��


��

BΛ
��


��

1

1 �� T∨
Λ#

�� Aext,∨
Λ#

�� B∨
Λ#

�� 1

in which the left-most vertical arrow is dual to a canonical isomorphism YΛ#
∼→ XΛ;

the middle vertical arrow is the pullback to (	Mtor
H,Σ)

∧
�Z[(ΦH,δH,σ)]

of the unique extension

over the noetherian normal scheme 	Mtor
H,Σ of the isomorphism AΛ

∼→ A∨
Λ# over

	MH (see [12, Proposition 3.3.1.5]), which is part of the data of (A, λ, i) over 	MH;

and where the right-most vertical arrow is the pullback to (	Mtor
H,Σ)

∧
�Z[(ΦH,δH,σ)]

of the

isomorphism BΛ
∼→ B∨

Λ# over 	MZH
H , which is part of the data of (B, λB, iB) over

	MZH
H .

Proof. By the construction of the semi-abelian schemes Aext
Λ and Aext,∨

Λ over 	Mtor
H,Σ,

which was based on [13, Lemma 11.1 and Theorem 11.2] and [15, Theorem 6.1]
(or more precisely [15, Lemma 5.19 and Proposition 5.20]), their pullbacks to

(	Mtor
H,Σ)

∧
�Z[(ΦH,δH,σ)]

are isomorphic to the pullbacks of the Mumford families ♥ 	Gj

and ♥ 	G∨
j over 	XΦH,δH,σ (see [12, Definition 6.2.5.28] and [13, (8.29)]), respectively,

for some j ∈ J such that Λ = prLj ⊗
Z
Zp for some r ∈ Z. Then it follows from
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the constructions of the Mumford families there that we have canonical short exact
sequences

(3.2.26) 1 → Tj → ♥ 	Gj → Bj → 1

and

(3.2.27) 1 → T∨
j → ♥ 	G∨

j → B∨
j → 1

for the split tori Tj and T∨
j with character groups Xj and Yj, respectively, where Xj

and Yj are part of the torus argument ΦHj
= (Xj, Yj, φj, ϕ−2,Hj

, ϕ0,Hj
) associated

with ΦH as in [13, (3.8)]. Then Tj, T
∨
j , (3.2.26), and (3.2.27) give up to (compatible)

Z×
(p)-isogenies the TΛ, T

∨
Λ , (3.2.23), and (3.2.24) we want. As for the commutative

diagram (3.2.25), it suffices to note that for the polarization λΛ0
: AΛ0

→ A∨
Λ0

in
Lemma 2.2.2, and for the j0 ∈ L such that Λ0 = pr0Lj0 ⊗

Z
Zp for some r0 ∈ Z, we

have a commutative diagram

(3.2.28) 1 �� Tj0
��

λTj0

��

♥ 	Gj0
��

♥�λj0

��

Bj0
��

λBj0

��

1

1 �� T∨
j0

�� ♥ 	G∨
j0

�� B∨
j0

�� 1

canonically associated with the Mumford family (♥ 	Gj0 ,
♥	λj0 ,

♥	ij0 ,
♥	αHj0

), which

induces (3.2.25) for all other Λ ∈ L by using the Q×-isogenies f ext
Λ′,Λ′′ : Aext

Λ′ → Aext
Λ′′

associated with all the inclusions Λ′ ⊂ Λ′′ in L (see Lemma 3.1.1). �

3.3. Comparison of formal completions.

Theorem 3.3.1. There is a canonical isomorphism

(3.3.2) (	Mspl,tor
H,Σ )∧�Zspl

[(ΦH,δH,σ)]

∼→ 	Xspl
ΦH,δH,σ,

where (	Mspl,tor
H,Σ )∧�Zspl

[(ΦH,δH,σ)]

is defined as in the end of Section 3.1, covering the

canonical isomorphism (3.2.21). Then (3.3.2) induces a canonical isomorphism

(3.3.3) 	Zspl
[(ΦH,δH,σ)]

∼→ 	Ξspl
ΦH,δH,σ

covering the isomorphism 	Z[(ΦH,δH,σ)]
∼→ 	ΞΦH,δH,σ (see [13, Corollary 10.15] and

[15, Theorem 6.1(5)]).

Remark 3.3.4. Since both sides of (3.3.2) are separated and have schematically
dense characteristic zero fibers isomorphic to those of (3.2.21) by Lemma 2.3.9, the
condition that (3.3.2) covers (3.2.21) forces (3.3.2) to be unique if it exists. Any
isomorphism as in (3.3.2) then canonically induces an isomorphism as in (3.3.3).

The remainder of this section will be devoted to the proof of Theorem 3.3.1. By
Remark 3.3.4, it suffices to construct an isomorphism (3.3.2) covering (3.2.21).

For simplicity of notation, in the remainder of this section, let us write

(3.3.5) X := (	Mtor
H,Σ)

∧
�Z[(ΦH,δH,σ)]

⊗
OF0,(p)

OK

and

(3.3.6) Xspl := (	Mspl,tor
H,Σ )∧�Zspl

[(ΦH,δH,σ)]

.
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As in Definition 3.2.1, let us denote by the same symbols the pullback to X

of the ( �H , �F , �j) over 	MZH
H under the composition X → 	MZH

H of (3.2.21) and

the structural morphism 	XΦH,δH,σ → 	MZH
H (see (3.2.20)); and let us denote by

( 
H , 
F , 
j) the pullback to X of the (H ext,F ext, jext) as in Proposition 3.1.2

under the canonical morphism X → 	Mtor
H,Σ. Then we can abusively write

(3.3.7) X
spl ∼= Spl+( �H , �F , �j)/X

(cf. Proposition 2.3.10 and Remark 3.2.19) and

(3.3.8) 	Xspl
ΦH,δH,σ

∼= Spl+( �H , �F , �j)/X

(cf. (3.2.10)), where the right-hand sides of (3.3.7) and (3.3.8) are relative schemes
over X (see [8]; cf. the explanation in Lemma 3.2.4).

Lemma 3.3.9. For all Λ ∈ L and [τ ] ∈ Υ/ ∼, we have canonical short exact
sequences

(3.3.10) 0 → �FΛ,[τ ] → 
FΛ,[τ ] → �FΛ,[τ ] → 0

of O⊗
Z

OX-modules, where �FΛ,[τ ],

FΛ,[τ ], and

�FΛ,[τ ] can be identified with the

OX-module local direct summands (Lie∨B∨
Λ/X)[τ ], (Lie

∨
Aext,∨

Λ /X
)[τ ], and (Lie∨T∨

Λ /X)[τ ] of

Lie∨B∨
Λ/X, Lie

∨
Aext,∨

Λ /X
, and Lie∨T∨

Λ /X, respectively, defined as in (2.1.5).

Proof. Since F ext
Λ

∼= Lie∨
Aext,∨

Λ /�Mtor
H,Σ

, this follows from the short exact sequence for

duals of relative Lie algebras induced by (3.2.24). �

Lemma 3.3.11. Consider any object

{( 
F i
[τ ],


ji
[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

parameterized by Spl′( �H , �F , �j)/X (cf. (3.3.7)), without condition (4) in Definition

2.3.3. For all Λ ∈ L and [τ ] ∈ Υ/ ∼, and for all integers i satisfying 0 ≤ i < d[τ ],
let

(3.3.12) �F i
Λ,[τ ] :=


F i
Λ,[τ ] ∩ �FΛ,[τ ]

and

(3.3.13) �F i
Λ,[τ ] :=


F i
Λ,[τ ]/

�F i
Λ,[τ ].

Then the graded pieces �F i
Λ,[τ ]/

�F i+1
Λ,[τ ] and �F i

Λ,[τ ]/
�F i+1

Λ,[τ ] are annihilated by

b⊗ 1−1⊗ τ[τ ],i(b) for all b ∈ OF[τ ]
. Moreover, for each unit b of O⊗

Z
Qp which nor-

malizes O⊗
Z
Zp, the periodicity isomorphism θb�F i

Λ,[τ ]

induces the periodicity iso-

morphisms θb�F i
Λ,[τ ]

: ( �F i
Λ,[τ ])

b ∼→ �F i
bΛ,[τ ] and θb�F i

Λ,[τ ]

: ( �F i
Λ,[τ ])

b ∼→ �F i
bΛ,[τ ]

of O⊗
Z

OX-modules.

Proof. Since (3.3.10) is an exact sequence of O⊗
Z

OX-modules, these follow from

the very definitions of �F i
Λ,[τ ] and

�F i
Λ,[τ ]. �
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Lemma 3.3.14. Let M be any OF[τ ]
-lattice, let S be any scheme or formal scheme

over Spec(OK), and let M := M ⊗
Zp

OS. Then there exists a unique filtration

(3.3.15) 0 = M d[τ ] ⊂ M d[τ ]−1 ⊂ · · · ⊂ M 1 ⊂ M 0 = M

of coherent OS-submodules of M such that, for each integer i satisfying 0 ≤ i < d[τ ],

the quotient M i/M i+1 is annihilated by b⊗ 1 − 1⊗ τ[τ ],i(b) for all b ∈ OF[τ ]
. The

graded pieces M i/M i+1 are automatically locally free OS-modules of finite rank,
and hence both M i and M /M i are locally free OS-modules of finite rank. More-
over, M i is the OS-submodule of M spanned by the images of the endomorphism∏
0≤k<i

(bk ⊗ 1−1⊗ τ[τ ],k(bk)) of M , for all elements b0, b1, . . . , bi−1 ∈ OF[τ ]
; it is also

the intersection of the kernels of the endomorphisms
∏

i≤k<d[τ ]

(bk ⊗ 1− 1⊗ τ[τ ],k(bk))

of M , for all elements bi, bi+1, . . . , bd[τ ]−1 ∈ OF[τ ]
.

Proof. Let K0 denote the maximal unramified extension of Qp in K, so that
F[τ ] ⊗

Qp

K0
∼=

∏
α
Fα for some totally ramified field extensions Fα of K0. Since

OK0
is finite étale over Zp, the canonical morphism OF[τ ]

⊗
Zp

OK0
→

∏
α
OFα

is

an isomorphism, because both sides are normal and have the same total ring
of fractions F[τ ] ⊗

Qp

K0. Accordingly, the OF[τ ]
⊗
Zp

OK0
-module M ⊗

Zp

OK0
and the

sheaf M ∼= (M ⊗
Zp

OK0
) ⊗
OK0

OS compatibly decompose into direct sums, where

OF[τ ]
⊗
Zp

OK0
acts on each summand via some factor OFα

. Thus, in order to prove

the lemma, we may and we shall replace OF[τ ]
with some factor OFα

, and replace M
with the corresponding summand of M ⊗

Zp

OK0
. Now that Fα is a totally ramified

(separable) extension of K0, the lemma follows by writing each M i as both the
image of some Qi(T ) and the kernel of some Qi(T ) as in [17, (2.4)], whose forma-
tion is compatible with arbitrary base changes, and hence must be OS-module local
direct summands of M , as desired. �

Corollary 3.3.16. The sub-O⊗
Z

OX-modules �F i
Λ,[τ ] of

�FΛ,[τ ] in Lemma 3.3.11

are locally free and independent of the filtrations { 
F i
Λ,[τ ]}0≤i<d[τ ]

on 
FΛ,[τ ].

Proof. By Lemma 3.2.22, the character group of the split torus T∨
Λ is an O-lattice

YΛ, and so Lie∨T∨
Λ /X

∼= YΛ ⊗
Z

OX
∼= (YΛ ⊗

Z
Zp)⊗

Zp

OX, where theO⊗
Z
Zp-lattice YΛ ⊗

Z
Zp

is an OF ⊗
Z
Zp-lattice because O is maximal at p, by Assumption 2.1.1. Let us write

YΛ ⊗
Z
Zp

∼=
⊕

[τ ]∈Υ/∼ YΛ,[τ ] as in (2.1.5). Then �FΛ,[τ ]
∼= (Lie∨T∨

Λ /X)[τ ]
∼= YΛ,[τ ] ⊗

Zp

OX

by Lemma 3.3.9, and the corollary follows from Lemma 3.3.14, as desired. �

Proposition 3.3.17. The sub-O⊗
Z

OX-modules �F i
Λ,[τ ] of

�FΛ,[τ ] in Lemma 3.3.11

are locally free OX-modules. Together with the canonical embeddings

�jiΛ,[τ ] :
�F i

Λ,[τ ] → �HΛ,[τ ]
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defined by composing the canonical embeddings �F i
Λ,[τ ] → �FΛ,[τ ] and

�FΛ,[τ ] →
�HΛ,[τ ], we obtain a splitting structure

{( �F i
[τ ],

�ji
[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

for ( �H , �F , �j) over X, parameterized by Spl+( �H , �F , �j)/X. By repeating the same

construction over affine formal schemes over X, we obtain a canonical morphism

(3.3.18) Spl′( �H , �F , �j)/X → Spl′( �H , �F , �j)/X

over X, which induces a canonical morphism

(3.3.19) Spl+( �H , �F , �j)/X → Spl+( �H , �F , �j)/X

over X, by Lemma 2.3.9 and by the second paragraph of Proposition 2.3.10.

Proof. Since we have a short exact sequence

(3.3.20) 0 → �F i
Λ,[τ ] → 
F i

Λ,[τ ] → �F i
Λ,[τ ] → 0

by definition (see Lemma 3.3.11), and since 
F i
Λ,[τ ] and

�F i
Λ,[τ ] are locally free

OX-modules by definition and by Corollary 3.3.16, �F i
Λ,[τ ] is also a locally free

OX-module. Hence, by Lemma 3.3.11, the collection {( �F i
[τ ],

�ji
[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

satisfies all but the last condition (4) in Definition 2.3.3 as a splitting structure for
( �H , �F , �j), and defines an object parameterized by the Spl′( �H , �F , �j)/X as in

Proposition 2.3.10. Since the same construction works for splittings structures
of pullbacks of ( �H , �F , �j) to any affine formal schemes over X, we obtain the
canonical morphism (3.3.18) over X, as desired. �

Proposition 3.3.21. The canonical morphism (3.3.19) is an isomorphism.

Proof. By Zariski’s main theorem (see [7, III-1, 4.4.3, 4.4.11]) and by [7, IV-4,
18.12.6], it suffices to show that the morphism (3.3.18) is a monomorphism. Hence,
it suffices to show that, for each affine formal scheme Spf(R) over X such that R is
noetherian and local, the induced morphism

(3.3.22) Spl′( �H , �F , �j)/ Spec(R) → Spl′( �H , �F , �j)/ Spec(R)

induces an injection between points over R.
For each Λ ∈ L , since Lie∨T∨

Λ / Spec(R)
∼= (YΛ ⊗

Z
Zp)⊗

Zp

R as in the proof of Corollary

3.3.16, Lie∨T∨
Λ / Spec(R) is a projective OF ⊗

Z
R-module. Since R is noetherian and

local, for all Λ ∈ L and [τ ] ∈ Υ/ ∼, there are (noncanonical) splittings

(3.3.23) 
FΛ,[τ ]
∼→ �FΛ,[τ ] ⊕ �FΛ,[τ ]

of the short exact sequences (3.3.10) of OF[τ ]
⊗
Z
R-modules.

Suppose that the filtration { 
F i
Λ,[τ ]}0≤i<d[τ ]

on 
FΛ,[τ ] induces the filtrations

{ �F i
Λ,[τ ]}0≤i<d[τ ]

and { �F i
Λ,[τ ]}0≤i<d[τ ]

on �FΛ,[τ ] and �FΛ,[τ ], respectively, by

the assignments as in (3.3.12) and (3.3.13). By the last assertion in Lemma 3.3.14,
�F i

Λ,[τ ] is the R-submodule of �FΛ,[τ ] spanned by the images of the endomorphisms∏
0≤k<i

(bk ⊗ 1 − 1⊗ τ[τ ],k(bk)), for all elements b0, b1, . . . , bi−1 ∈ OF[τ ]
. Since the

splitting (3.3.23) is OF[τ ]
⊗
Z
R-equivariant, by condition (2) of Definition 2.3.3, it
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canonically induces a splitting 
F i
Λ,[τ ]

∼→ �F i
Λ,[τ ] ⊕ �F i

Λ,[τ ]. Hence, by Corollary

3.3.16, 
F i
Λ,[τ ] is uniquely determined by �F i

Λ,[τ ]. Since this holds for all [τ ] and i,

the morphism (3.3.22) induces an injection between points over R, as desired. �

Proof of Theorem 3.3.1. By Remark 3.3.4, it suffices to take (3.3.2) to be the com-
position of the isomorphisms (3.3.7), (3.3.19), and the inverse of (3.3.8). �

3.4. Main theorem for toroidal compactifications.

Theorem 3.4.1 (cf. [12, Theorem 6.4.1.1]). For each H as in Choices 2.2.10, and
for each compatible collection Σ = {ΣΦH}[(ΦH,δH)] of admissible rational polyhedral
cone decomposition data that is projective as in [15, Definitions 2.1 and 2.7] (sat-
isfying [12, Condition 6.2.5.25] by assumption; which includes the ones induced by
auxiliary choices as in [13, Section 7], as explained in [15, Remarks 2.3 and 2.9]),

there is a normal scheme 	Mspl,tor
H,Σ projective and flat over Spec(OK), containing

the scheme 	Mspl
H in Definition 2.4.5 as an open fiberwise dense subscheme, together

with:

• a tautological degenerating family

( 	Gj, 	λj,	ij, 	αHj
)

of type MHj
over 	Mspl,tor

H,Σ (see [12, Definition 5.3.2.1]), for each j ∈ J, where

	αHj
is defined only over the open dense subscheme MH ⊗

F0

K of 	Mspl,tor
H,Σ ;

• a tautological L -set

(H ext,F ext, jext)

of polarized O⊗
Z

O�Mspl,tor
H,Σ

-modules extending the L -set (H ,F , j) of polar-

ized O⊗
Z

O�Mspl
H
-modules associated with the tautological (A, λ, i, αHp) over

	Mspl
H (see Definition 2.4.1 and Lemma 2.2.7) that induces compatible iso-

morphisms F ext
Λ

∼= Lie∨
Aext,∨

Λ /�Mtor
H,Σ

and H ext
Λ /F ext

Λ
∼= LieAext

Λ /�Mtor
H,Σ

extend-

ing the canonical isomorphisms FΛ
∼= Lie∨

A∨
Λ/�MH

and HΛ/FΛ
∼= LieAΛ/�MH

,

respectively, for all Λ ∈ L (see Proposition 3.1.2); and
• a tautological splitting structure

{(F ext,i
[τ ] , jext,i

[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

for (H ext,F ext, jext) over 	Mspl,tor
H,Σ , which extends the tautological splitting

structure {(F i
[τ ], j

i
[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

for (H ,F , j) over 	Mspl
H (see Defini-

tion 2.4.1);

such that we have the following:

(1) We have a commutative diagram

(3.4.2) MH ⊗
F0

K � � ��

� �

��

	Mspl
H

�� ��
� �

��

	MH ⊗
OF0,(p)

OK

� �

��

Mtor
H,Σ ⊗

F0

K � � �� 	Mspl,tor
H,Σ

�� �� 	Mtor
H,Σ ⊗

OF0,(p)

OK
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of noetherian normal schemes flat over Spec(OK) and of canonical mor-
phisms (over Spec(OK)), in which all squares are Cartesian, all vertical
arrows are open immersions with fiberwise dense image over Spec(OK),
the two horizontal arrows at the left-hand side are open immersions with
schematically dense images, the two horizontal arrows at the right-hand side
are projective and surjective, and the compositions of horizontal arrows in
the same rows are also open immersions with schematically dense images.

(2) 	Mspl,tor
H,Σ has a stratification by locally closed subschemes

(3.4.3) 	Mspl,tor
H,Σ =

∐
[(ΦH,δH,σ)]

	Zspl
[(ΦH,δH,σ)],

with [(ΦH, δH, σ)] running through a complete set of equivalence classes of
(ΦH, δH, σ) (as in [12, Definition 6.2.6.1]) with σ ⊂ P+

ΦH
and σ ∈ ΣΦH ∈ Σ

(see (3.1.9)). (Here ZH is suppressed in the notation by [12, Convention
5.4.2.5].) In this stratification, the [(Φ′

H, δ′H, σ′)]-stratum Z[(Φ′
H,δ′H,σ′)] is

contained in the closure of the [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] if and only
if [(ΦH, δH, σ)] is a face of [(Φ′

H, δ′H, σ′)] as in [12, Theorem 6.3.2.14 and
Remark 6.3.2.15]. The analogous assertion holds after pullback to fibers
over Spec(OK).

The [(ΦH, δH, σ)]-stratum 	Zspl
[(ΦH,δH,σ)] is flat over Spec(OK) and normal,

and is isomorphic to the support of the formal scheme 	Xspl
ΦH,δH,σ for any

representative (ΦH, δH, σ) of [(ΦH, δH, σ)]. The formal scheme 	Xspl
ΦH,δH,σ

admits a canonical structure as the completion of an affine toroidal embed-

ding 	Ξspl
ΦH,δH

(σ) (along its σ-stratum 	Ξspl
ΦH,δH,σ) of a torus torsor 	Ξspl

ΦH,δH

over a normal scheme 	Cspl
ΦH,δH

flat over Spec(OK). The scheme 	Cspl
ΦH,δH

is proper (and surjective) over a finite cover 	MΦH,spl
H of the boundary ver-

sion 	MZH,spl
H of 	Mspl

H (cf. Definitions 2.4.5 and 3.2.1, and the summary in

Remark 3.2.19). (Note that ZH and the isomorphism class of 	MZH,spl
H de-

pend only on the cusp label [(ZH,ΦH, δH)], but not on the choice of the
representative (ZH,ΦH, δH).)

In particular, 	Mspl
H = 	Zspl

[(0,0,{0})] is an open fiberwise dense stratum in

this stratification.

The stratification (3.4.3) is compatible with the stratification of 	Mtor
H,Σ as

in [13, Theorem 9.13] and [15, Theorem 6.1(3)], and we have a commutative
diagram

(3.4.4) ΞΦH,δH,σ ⊗
F0

K � � ��


��

	Ξspl
ΦH,δH,σ

�� ��



��

	ΞΦH,δH,σ ⊗
OF0,(p)

OK


��

Z[(ΦH,δH,σ)] ⊗
F0

K � � ��

� �

��

	Zspl
[(ΦH,δH,σ)]

�� ��
� �

��

	Z[(ΦH,δH,σ)] ⊗
OF0,(p)

OK

� �

��

Mtor
H,Σ ⊗

F0

K � � �� 	Mspl,tor
H,Σ

�� �� 	Mtor
H,Σ ⊗

OF0,(p)

OK
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of canonical morphisms, in which all squares not involving 	Mtor
H,Σ ⊗

OF0,(p)

OK

are Cartesian, the vertical arrows in the upper-half are isomorphisms, the
vertical arrows in the bottom-half are locally closed immersions, the hori-
zontal arrows at the left-hand sides are open immersions with schematically
dense images, the horizontal arrows at the right-hand sides are projective
and surjective, and the compositions of horizontal arrows in the same rows
are also open immersions with schematically dense images.

(3) The formal completion (	Mspl,tor
H,Σ )∧�Zspl

[(ΦH,δH,σ)]

of the scheme 	Mspl,tor
H,Σ along

its (locally closed) [(ΦH, δH, σ)]-stratum 	Zspl
[(ΦH,δH,σ)] is canonically isomor-

phic to the formal scheme 	Xspl
ΦH,δH,σ for any representative (ΦH, δH, σ) of

[(ΦH, δH, σ)]. (See the isomorphism (3.3.2) in Theorem 3.3.1.)

For any open immersion Spf(R, I) → 	Xspl
ΦH,δH,σ inducing morphisms

Spec(R) → 	Ξspl
ΦH,δH

(σ) and Spec(R) → 	Mspl,tor
H,Σ (via the structural mor-

phisms and the inverse of the above-mentioned isomorphism (3.3.2)), the

preimage of 	Ξspl
ΦH,δH

under Spec(R) → 	Ξspl
ΦH,δH

(σ) coincides with the preim-

age of 	Mspl
H under Spec(R) → 	Mspl,tor

H,Σ .

For each j ∈ J, the pullback to (	Mspl,tor
H,Σ )∧�Zspl

[(ΦH,δH,σ)]

of the degenerating

family ( 	Gj, 	λj,	ij, 	αHj
) over 	Mspl,tor

H,Σ is canonically isomorphic to the pullback

to 	Xspl
ΦH,δH,σ of the Mumford family (♥ 	Gj,

♥	λj,
♥	ij,

♥	αHj
) over 	XΦH,δH,σ

(see [12, Definition 6.2.5.28] and [13, (8.29)]), after we identify the bases
using the above-mentioned canonical isomorphism (3.3.2).

Then we have a commutative diagram
(3.4.5)

XΦH,δH,σ ⊗
F0

K � � ��


��

	Xspl
ΦH,δH,σ

�� ��



��

	XΦH,δH,σ ⊗
OF0,(p)

OK


��

(Mtor
H,Σ)

∧
Z[(ΦH,δH,σ)]

⊗
F0

K � � ��

��

(	Mspl,tor
H,Σ )∧�Zspl

[(ΦH,δH,σ)]

�� ��

��

(	Mtor
H,Σ)

∧
�Z[(ΦH,δH,σ)]

⊗
OF0,(p)

OK

��

Mtor
H,Σ ⊗

F0

K � � �� 	Mspl,tor
H,Σ

�� �� 	Mtor
H,Σ ⊗

OF0,(p)

OK

of canonical morphisms compatibly extending those in (3.4.4), in which all
squares are Cartesian, the vertical arrows in the upper-half are isomor-
phisms, the vertical arrows in the bottom-half are formal completions along
locally closed subschemes, the horizontal arrows at the left-hand sides are
open immersions with schematically dense images, the horizontal arrows at
the right-hand sides are projective and surjective, and the compositions of
horizontal arrows in the same rows are also open immersions with schemat-
ically dense images. This commutative diagram (3.4.5) is compatible with
the commutative diagrams (3.2.20) and (3.4.4) along their common arrows.
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(4) Let S be an irreducible noetherian normal scheme over Spec(OK), with
generic point η, which is equipped with a morphism

(3.4.6) η → MH ⊗
F0

K.

Let (Aη, λη, iη, αH,η) denote the pullback of the tautological object of MH to
η under (3.4.6). Suppose that, for each j ∈ J, we have a degenerating family

(G†
j , λ

†
j , i

†
j , α

†
Hj

) of type MHj
over S, whose pullback (Gj,η, λj,η, ij,η, αHj,η)

to η defines a morphism

(3.4.7) η → MHj
⊗
F0

K

by the universal property of MHj
, which we assume to coincide with the

composition of (3.4.6) with the canonical isomorphism MH ∼= MHj
given

by [13, (2.1)]. Suppose moreover that there exists an L -set (H †,F †, j†)
of polarized O⊗

Z
OS-modules extending the pullback (H η,F η, jη) of the

(H ,F , j) over 	Mspl
H (see Definition 2.4.1 and Lemma 2.2.7) and inducing

compatible isomorphisms F †
Λj

∼= Lie∨
G†,∨

j /S
and H †

Λj
/F †

Λj

∼= LieG†
j /S

ex-

tending the canonical isomorphisms FΛj,η
∼= Lie∨G∨

j,η/η
and HΛj,η/FΛj,η

∼=
LieGj,η/η, respectively, where Λj is as in Choices 2.2.9, for all j ∈ J;

and that there exists a splitting structure {(F †,i
[τ ], j

†,i
[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

for

(H †,F †, j†).
Then (3.4.6) (necessarily uniquely) extends to a morphism

(3.4.8) S → 	Mspl,tor
H,Σ

(over Spec(OK)), under which the above two tuples, (H †,F †, j†) and

{(F †,i
[τ ], j

†,i
[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

), are isomorphic to the pullbacks of the tauto-

logical tuples (H ext,F ext, jext) and {(F ext,i
[τ ] , jext,i

[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

) over

	Mspl,tor
H,Σ , respectively, if and only if the following condition is satisfied at

each geometric point s̄ of S:
Consider any dominant morphism Spec(V ) → S centered at s̄, where

V is a complete discrete valuation ring with fraction field K, algebraically
closed residue field k, and discrete valuation υ. By the semistable reduction
theorem (see, for example, [5, Chapter I, Theorem 2.6] or [12, Theorem
3.3.2.4]), up to replacing K with a finite extension field and replacing V
accordingly, we may assume that the pullback of Aη to Spec(K) extends to
a semi-abelian scheme G‡ over Spec(V ). By the theory of Néron models
(see [3]; cf. [20, IX, 1.4], [5, Chapter I, Proposition 2.7], or [12, Propo-
sition 3.3.1.5]), the pullback of (Aη, λη, iη, αH,η) to Spec(K) extends to a

degenerating family (G‡, λ‡, i‡, α‡
H) of type MH over Spec(V ), where α‡

H
is defined only over Spec(K), which defines an object of DEGPEL,MH(V )
corresponding to a tuple

(B‡, λB‡ , iB‡ , X‡, Y ‡, φ‡, c‡, c∨,‡, τ ‡, [α
,‡
H ])

in DDPEL,MH(V ) under [12, Theorem 5.3.1.19]. Then [α
,‡
H ] determines a

fully symplectic-liftable admissible filtration Z
‡
H. Moreover, the étale sheaves
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X‡ and Y ‡ are necessarily constant, because the base ring V is strict local.
Hence, it makes sense to say we also have a uniquely determined torus ar-

gument Φ‡
H at level H for Z‡H. On the other hand, we have objects ΦH(G‡),

SΦH(G‡), and B(G‡) (see [12, Construction 6.3.1.1]), which define objects

Φ‡
H, SΦ‡

H
, and in particular B‡ : SΦ‡

H
→ Inv(V ) over the special fiber.

Then υ ◦ B‡ : SΦ‡
H
→ Z defines an element of S∨

Φ‡
H
, where υ : Inv(V ) → Z

is the homomorphism induced by the discrete valuation of V .
Then the condition is that, for each Spec(V ) → S as above (centered at

s̄), and for some (and hence every) choice of δ‡H, there is a cone σ‡ in the

cone decomposition ΣΦ‡
H

of PΦ‡
H

such that σ‡ contains all υ ◦ B‡ obtained

in this way. (As explained in the proof of [12, Proposition 6.3.3.11], we
may assume that σ‡ is minimal among such choices; also, it follows from
the positivity of τ ‡ that σ‡ ⊂ P+

Φ‡
H
. Then the extended morphism (3.4.8)

maps s̄ to a geometric point over 	Zspl

[(Φ‡
H,δ‡H,σ‡)]

; conversely, this property

also characterizes the stratum 	Zspl

[(Φ‡
H,δ‡H,σ‡)]

of 	Mspl,tor
H,Σ .)

In particular, since this condition involves only H, Σ, and the linear
algebraic data in Section 2.1 (such as L ) and Choices 2.3.1, the scheme
	Mspl,tor

H,Σ depends (up to canonical isomorphism) only on these, but not on

any auxiliary choices made in [13, Section 7] or any compatible collection
pol of polarization function as in [15, Section 2].

Proof. By its very construction in Definition 3.1.3, we know 	Mspl,tor
H,Σ as a normal

scheme flat over Spec(OK) and projective over 	Mtor
H,Σ, with the tautological struc-

tures as described in the beginning of this theorem, which satisfies assertion (1).
The assertions (2) and (3) then follow from [13, Propositions 7.4, 8.1, 8.4, 8.7, 8.14,
and 8.20; Theorems 9.13, 10.13, and 11.2; and Corollaries 10.16, 10.18, and 11.9],
[15, Theorem 6.1 (3) and (4)], the constructions summarized in Remark 3.2.19, and
Theorem 3.3.1.

It remains to justify assertion (4). By [13, Theorem 11.4] and [15, Theorem
6.1(6)], the condition there is necessary and sufficient for (3.4.6) to extend to a
morphism

(3.4.9) S → 	Mtor
H,Σ ⊗

OF0,(p)

OK .

By Proposition 3.1.2, the tautological tuple (H ext,F ext, jext) over 	Mspl,tor
H,Σ canon-

ically descends to 	Mtor
H,Σ ⊗

OF0,(p)

OK , whose pullback under (3.4.9) must be isomor-

phic to the (H †,F †, j†) over S, by the density of η in S, and by the assump-

tion that (H ext,F ext, jext) induces compatible isomorphisms F †
Λj

∼= Lie∨
G†,∨

j /S

and H †
Λj
/F †

Λj

∼= LieG†
j /S

extending the canonical isomorphisms FΛj,η
∼= Lie∨G∨

j,η/η

and HΛj,η/FΛj,η
∼= LieGj,η/η

, respectively, for all j ∈ J. Thus, the morphism

(3.4.9) lifts to a morphism S → 	Mspl,tor
H,Σ as in (3.4.8) by the universal property of

	Mspl,tor
H,Σ = Spl+

(H ext,Fext,jext)/(�Mtor
H,Σ ⊗

OF0,(p)

OK)
(see (3.1.4)), as desired. �
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Proposition 3.4.10 (cf. [13, Propositions 13.7, 13.9, and 13.15] and [15, Proposi-
tions 7.3 and 7.5]). With the same setting as in Proposition 2.4.17, suppose more-
over that Σ and Σ′ are compatible collections of projective admissible rational poly-
hedral cone decomposition data for MH and MH′ , respectively, as in [15, Definitions
2.1 and 2.7], such that Σ is a g-refinement of Σ′ as in [12, Definition 6.4.3.3]. Then
the morphism (2.4.18) extends to a canonical projective morphism

(3.4.11) 	[g]
tor

: 	Mtor
H,Σ → 	Mtor

H′,Σ′ ,

whose pullback from OF0,(p) to OK lifts to a canonical projective morphism

(3.4.12) 	[g]
spl,tor

: 	Mspl,tor
H,Σ → 	Mspl,tor

H′,Σ′

extending the morphism (2.4.19). The morphism (3.4.11) (resp. (3.4.12)) maps the

[(ΦH, δH, σ)]-stratum 	Z[(ΦH,δH,σ)] (resp. 	Z
spl
[(ΦH,δH,σ)]) of

	Mtor
H,Σ (resp. 	Mspl,tor

H,Σ ) to the

[(Φ′
H′ , δH′ , σ′)]-stratum 	Z[(Φ′

H′ ,δH′ ,σ′)] (resp. 	Z
spl
[(Φ′

H′ ,δH′ ,σ′)]) of
	Mtor

H′,Σ′ (resp. 	M
spl,tor
H′,Σ′ )

if and only if there are (ΦH, δH, σ) and (Φ′
H′ , δ′H′ , σ′) representing [(ΦH, δH, σ)] and

[(Φ′
H′ , δ′H′ , σ′)], respectively, such that (ΦH, δH, σ) is a g-refinement of (Φ′

H′ , δ′H′ , σ′)
as in [12, Definition 6.4.3.1]. Also, the analogues of [15, Proposition 7.5] for (3.4.11)
and (3.4.12) are true.

Proof. The existence of the canonical morphisms (3.4.11) and (3.4.12) (with the
desired properties) follows from Proposition 2.4.17 and its proof, and from compar-
isons of the universal properties of objects involved, using [13, Theorem 11.4] and
[15, Theorem 6.1(6)], and using (4) of Theorem 3.4.1. As for the last statement, it
follows from the same argument as in the proof of [15, Proposition 7.5], by showing
that the formal completions of the toroidal compactifications along the pullbacks
of strata of the corresponding minimal compactifications have the desired forms,
using [13, Theorems 7.14 and 11.4], [15, Theorem 6.1], and Theorem 3.4.1. �

By the same arguments as in the proofs of [13, Propositions 14.1 and 14.2], using
the fact that the squares in the commutative diagrams (3.2.20) and (3.4.5) are all
Cartesian, we obtain the following two propositions:

Proposition 3.4.13 (cf. [13, Proposition 14.1]). Suppose Σ is smooth as in [12,

Definition 6.3.3.4]. Then 	Mspl
H is regular if and only if 	Mspl,tor

H,Σ is.

Proposition 3.4.14 (cf. [13, Proposition 14.2]). Let P be the property of be-
ing one of the following: reduced, geometrically reduced, normal, geometrically
normal, Cohen–Macaulay, (R0), geometric (R0), (R1), geometric (R1), and (Si),
one property for each i ≥ 0 (see [7, IV-2, 5.7.2 and 5.8.2]). Then the fiber of
	Mspl,tor

H,Σ → Spec(OK) over some point s of Spec(OK) satisfies property P if and

only if the corresponding fiber of the open subscheme 	Mspl
H → Spec(OK) over s

does. If Σ is smooth as in [12, Definition 6.3.3.4], then P can also be the property of
being one of the following: regular, geometrically regular, (Ri), and geometrically
(Ri), one property for each i ≥ 0.

Corollary 3.4.15 (cf. [13, Corollary 14.4]). Suppose that the geometric fibers of
	Mspl

H → Spec(OK) are reduced (resp. have integral local rings). Then all geometric

fibers of 	Mspl,tor
H,Σ → Spec(OK) have the same number of connected (resp. irreducible)

components, and the same is true for 	Mspl
H → Spec(OK).
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Proof. By Proposition 3.4.14, the proper flat morphism 	Mspl,tor
H,Σ → Spec(OK) has

geometric fibers with reduced (resp. integral) local rings. So, by [6, Proposition

8.5.16], in its Stein factorization 	Mspl,tor
H,Σ → (	Mspl,tor

H,Σ )st → Spec(OK) (see [7, III-1,

4.3.3 and 4.3.4]), the second morphism is étale, while the first has connected and

hence reduced (resp. integral) geometric fibers. Thus, the assertions for 	Mspl,tor
H,Σ

follow.
The assertion for 	Mspl

H concerning irreducible components then follows from the

fiberwise density of 	Mspl
H in 	Mspl,tor

H,Σ over Spec(OK) (see (2) of Theorem 3.4.1).

The assertion for 	Mspl
H concerning connected components does not follow as eas-

ily, because an open dense subset of a connected set is not necessarily connected.
Nevertheless, we have the following subtler argument: By (2) and (3) of Theorem
3.4.1, and by Artin’s approximation (see [1, Theorem 1.12 and the proof of the
corollaries in Section 2]), for each geometric point s̄ → Spec(OK), and for each

x ∈ (	Mspl,tor
H,Σ )s̄, there exist an étale neighborhood x → U → (	Mspl,tor

H,Σ )s̄ and an étale

morphism U → (	Ξspl
ΦH,δH

(σ))s̄ (see Proposition 3.2.11), for some (ΦH, δH, σ), such

that (by also approximating closed subschemes defining the boundary) the (open)

preimages of (	Mspl
H )s̄ and (	Ξspl

ΦH,δH
)s̄ in U coincide with each other, and such that

(up to replacing U with an open neighborhood of x) these étale morphisms have

connected geometric fibers. Since 	Ξspl
ΦH,δH

↪→ 	Ξspl
ΦH,δH

(σ) is fiberwise dense between

schemes with geometrically irreducible fibers over 	Cspl
ΦH,δH

, since the formation of

closures commutes with any flat base change (see [7, IV-2, 2.3.10]), and since x is

arbitrary, the connected components of (	Mspl,tor
H,Σ )s̄ are exactly the closures of those

of (	Mspl
H )s̄. Since s̄ is also arbitrary, the desired assertion still follows. �

4. Minimal compactifications

4.1. Variants of Hodge invertible sheaves. Unless otherwise specified, all ten-
sor products of quasi-coherent sheaves in this section will be over their respective
base schemes.

Definition 4.1.1. The invertible sheaf ω�Mspl
H ,J over 	Mspl

H is the pullback of the

ample invertible sheaf ω�MH,J over
	MH (see [13, Proposition 6.1]) under the canonical

morphism 	Mspl
H → 	MH. Similarly, the invertible sheaf ω�Mspl,tor

H,Σ ,J over 	Mspl,tor
H,Σ is the

pullback of the invertible sheaf ω�Mtor
H,Σ,J over 	Mtor

H,Σ (cf. [13, Proposition 7.11] and

[15, Theorem 6.1(2)]) under the canonical morphism 	Mspl,tor
H,Σ → 	Mtor

H,Σ.

Remark 4.1.2. Since ω�Mtor
H,Σ,J and ω�Mspl,tor

H,Σ ,J are (by definition) the pullbacks of

the ample invertible sheaf ω�Mmin
H ,J over 	Mmin

H (see [13, Proposition 6.4]), they are

semiample in the sense that both ω⊗N
�Mtor

H,Σ,J
and ω⊗N

�Mspl,tor
H,Σ ,J

are generated by their

global sections (over their respective base schemes) for all sufficiently large N .

Definition 4.1.3. Consider the invertible sheaf

(4.1.4) ω
μ

�Mspl
H

:= ω
μ,+

(H ,F ,j)/(�MH ⊗
OF0,(p)

OK)
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over 	Mspl
H , which extends to the invertible sheaf

(4.1.5) ω
μ

�Mspl,tor
H,Σ

:= ω
μ,+

(H ext,Fext,jext)/(�Mspl,tor
H,Σ ⊗

OF0,(p)

OK)

over 	Mspl,tor
H,Σ , defined as in (2.3.8) and Proposition 2.3.10 (see also Definitions 2.4.5

and 3.1.3) for each positive μ. For each integer k, consider the invertible sheaf

(4.1.6) ω
⊗(k,μ)

�Mspl
H ,J

:= ω⊗ k
�Mspl

H ,J
⊗ω

μ

�Mspl
H

over 	Mspl
H , which extends to the invertible sheaf

(4.1.7) ω
⊗(k,μ)

�Mspl,tor
H,Σ ,J

:= ω⊗ k
�Mspl,tor

H,Σ ,J
⊗ω

μ

�Mspl,tor
H,Σ

over 	Mspl,tor
H,Σ . For simplicity, for each integer N , we shall abusively denote the N -th

tensor powers of (4.1.6) and (4.1.7) by ω
⊗(k,μ)N

�Mspl
H ,J

and ω
⊗(k,μ)N

�Mspl,tor
H,Σ ,J

, respectively.

Lemma 4.1.8. For each positive μ, there exists some constant k0(μ) ≥ 0 such that

ω
⊗(k,μ)

�Mspl
H ,J

is ample for all k ≥ k0(μ). Consequently, there also exists some constant

N0(μ) ≥ 0 such that ω
⊗(k,μ)N

�Mspl
H ,J

is very ample for all k ≥ k0(μ) and N ≥ N0(μ) .

Proof. This is because ω
μ

�Mspl
H

is relatively ample over 	Mspl
H (see Proposition 2.3.10),

and because ω�Mspl
H ,J is (by definition) the pullback of the ample invertible sheaf

ω�MH,J over 	MH (see Definition 4.1.1 and [13, Proposition 6.1]). �

Definition 4.1.9. For each cusp label [(ΦH, δH)], and for integers k and N , we

define as in Definition 4.1.3 the invertible sheaves ω⊗ k
�M

ZH,spl

H ,J
, ω

μ

�M
ZH,spl

H
, ω

⊗(k,μ)

�M
ZH,spl

H ,J
,

and ω
⊗(k,μ)N

�M
ZH,spl

H ,J
over 	MZH,spl

H = Spl+
( �H , �F , �j)/(�M

ZH
H ⊗

OF0,(p)

OK)
(see (3.2.2)).

For each triple (ΦH, δH, σ) such that its equivalence class [(ΦH, δH, σ)] defines a

stratum 	Zspl
[(ΦH,δH,σ)] of

	Mspl,tor
H,Σ , consider the structural morphisms

(4.1.10) 	Xspl
ΦH,δH,σ → 	MZH,spl

H

and

(4.1.11) 	Ξspl
ΦH,δH,σ → 	MZH,spl

H

(see Definition 3.2.3 and Remark 3.2.19), which are compatible with the structural

morphism 	Ξspl
ΦH,δH,σ → 	Xspl

ΦH,δH,σ.

Lemma 4.1.12. For each Λ ∈ L , each [τ ] ∈ Υ/ ∼, and each integer i satisfying
0 ≤ i < d[τ ], consider the invertible sheaf

(4.1.13) ωi
Λ,[τ ],�Mspl,tor

H,Σ

:=

top∧
(F ext,i

Λ,[τ ]/F
ext,i+1
Λ,[τ ] )

over 	Mspl,tor
H,Σ , where

{(F ext,i
[τ ] , jext,i

[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]
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is the tautological splitting structure over 	Mspl,tor
H,Σ (see Theorem 3.4.1); and consider

the invertible sheaf

(4.1.14) ωi

Λ,[τ ],�M
ZH,spl

H
:=

top∧
( �F i

Λ,[τ ]/
�F i+1

Λ,[τ ])

over 	MZH,spl
H , where

{( �F i
[τ ],

�ji
[τ ]
)}[τ ]∈Υ/∼,0≤i<d[τ ]

is the tautological splitting structure over 	MZH,spl
H = Spl+

( �H , �F , �j)/(�M
ZH
H ⊗

OF0,(p)

OK)

(see Definition 3.2.1). Then the pullback of ωi
Λ,[τ ],�Mspl,tor

H,Σ

under the canonical mor-

phism 	Xspl
ΦH,δH,σ → 	Mspl,tor

H,Σ induced by the inverse of (3.3.2) is isomorphic to the

pullback of ωi

Λ,[τ ],�M
ZH,spl

H
under the morphism (4.1.10).

Proof. Consider the pullback 
F i
Λ,[τ ] of F ext,i

Λ,[τ ] to Xspl = (	Mspl,tor
H,Σ )∧�Zspl

[(ΦH,δH,σ)]

, as in

Section 3.3. By assigning �F i
Λ,[τ ] and

�F i
Λ,[τ ] to


F i
Λ,[τ ] as in (3.3.12) and (3.3.13),

we have a short exact sequence 0 → �F i
Λ,[τ ] → 
F i

Λ,[τ ] → �F i
Λ,[τ ] → 0 of locally

free OXspl -modules as in (3.3.20), which induces an isomorphism
∧top( 
F i

Λ,[τ ])
∼=∧top( �F i

Λ,[τ ])⊗
∧top( �F i

Λ,[τ ]) of invertible sheaves over Xspl. By Corollary 3.3.16

and its proof,
∧top

( �F i
Λ,[τ ])

∼=
∧top

(YΛ,[τ ] ⊗
Zp

OXspl) ∼= (
∧top

Zp
(YΛ,[τ ]))⊗

Zp

OXspl is triv-

ial. Then it suffices to note that, by the construction of (3.3.2) (see the proof of
Theorem 3.3.1), the �F i

Λ,[τ ] over X
spl is canonically isomorphic to the pullback of

the �F i
Λ,[τ ] over

	MZH,spl
H under the composition of (3.3.2) and (4.1.10). �

Corollary 4.1.15. For each μ, and for any integers k and N , the pullback of

the invertible sheaf ω⊗ k
�Mspl,tor

H,Σ ,J
(resp. ω

μ

�Mspl,tor
H,Σ

, resp. ω
⊗(k,μ)

�Mspl,tor
H,Σ ,J

, resp. ω
⊗(k,μ)N

�Mspl,tor
H,Σ ,J

) to

	Xspl
ΦH,δH,σ via the canonical morphism 	Xspl

ΦH,δH,σ → 	Mspl,tor
H,Σ induced by the inverse

of (3.3.2) is isomorphic to the pullback of ω⊗ k
�M

ZH,spl

H ,J
(resp. ω

μ

�M
ZH,spl

H
, resp. ω

⊗(k,μ)

�M
ZH,spl

H ,J
,

resp. ω
⊗(k,μ)N

�M
ZH,spl

H ,J
) under the morphism (4.1.10).

Proof. The case for ω⊗ k
�Mspl,tor

H,Σ ,J
follows from [12, Lemma 7.1.2.1, and the proof of

Theorem 7.2.4.1], and from the definitions (see Definitions 4.1.1 and 4.1.9). The

case for ω
μ

�Mspl,tor
H,Σ

follows from Lemma 4.1.12, and from the definition of ω
μ

�Mspl,tor
H,Σ

(see

(2.3.8)). The remaining cases then follow from these two cases, by definition. �

Corollary 4.1.16. For each positive μ, and for each cusp label [(ΦH, δH)], there
exists some constant k(ΦH,δH)(μ) ≥ 0 such that, for each triple [(ΦH, δH, σ)] defining

a stratum 	Zspl
[(ΦH,δH,σ)] of

	Mspl,tor
H,Σ above the stratum 	Z[(ΦH,δH)] of 	Mmin

H (see Defini-

tion 3.1.8, [13, Theorem 12.1], and [15, Theorem 6.1]), the pullback of ω
⊗(k,μ)

�Mspl,tor
H,Σ ,J

to

	Zspl
[(ΦH,δH,σ)] is semiample for all k ≥ k(ΦH,δH)(μ), and is isomorphic to the pullback
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of an ample invertible sheaf ω
⊗(k,μ)

�M
ZH,spl

H ,J
under the structural morphism (4.1.11). Con-

sequently, there also exists some constant N(ΦH,δH)(μ) ≥ 0 such that the pullback of

ω
⊗(k,μ)N

�Mspl,tor
H,Σ ,J

to 	Zspl
[(ΦH,δH,σ)] is generated by its global sections for all k ≥ k(ΦH,δH)(μ)

and N ≥ N(ΦH,δH)(μ) (see Remark 4.1.2), and is isomorphic to the pullback of a

very ample invertible sheaf ω
⊗(k,μ)N

�M
ZH,spl

H ,J
under the structural morphism (4.1.11).

Proof. This follows from Corollary 4.1.15, and from the same argument as in the
proof of Lemma 4.1.8. �

Lemma 4.1.17. For each Λ ∈ L , each [τ ] ∈ Υ/ ∼, and each integer i satisfying
0 ≤ i < d[τ ], the pullback ωi

Λ,[τ ],Mtor
H,Σ ⊗

F0

K of ωi
Λ,[τ ],�Mspl,tor

H,Σ

(see (4.1.13)) to Mtor
H,Σ ⊗

F0

K

(see (3.4.2)) descends to an invertible sheaf ωi
Λ,[τ ],Mmin

H ⊗
F0

K
over Mmin

H ⊗
F0

K.

Proof. As in the proof of [12, Theorem 7.2.4.1], it suffices to note that the pullback
of ωi

�Mspl,tor
H,Σ ,Λ,[τ ]

to XΦH,δH,σ ⊗
F0

K descends to MZH
H ⊗

F0

K, by Lemma 4.1.12. �

Corollary 4.1.18. For each μ, and for all k and N , the pullback ω
⊗(k,μ)N

Mtor
H,Σ ⊗

F0

K,J

of ω
⊗(k,μ)N

�Mspl,tor
H,Σ ,J

to Mtor
H,Σ ⊗

F0

K (see (3.4.2)) descends to an invertible sheaf ω
⊗(k,μ)N

Mmin
H ⊗

F0

K,J

over Mmin
H ⊗

F0

K. Consequently, for all sufficiently large integer k (depending on μ),

the invertible sheaf ω
⊗(k,μ)N

Mmin
H ⊗

F0

K,J
over Mmin

H ⊗
F0

K is ample, and so that its pullback

ω
⊗(k,μ)N

Mtor
H,Σ ⊗

F0

K,J
to Mtor

H,Σ ⊗
F0

K is semiample.

Proof. By Definitions 4.1.1 and 4.1.3, and by the definition of ω
μ

�Mspl,tor
H,Σ

(see (2.3.8)),

this follows from Lemma 4.1.17. �

Corollary 4.1.19. For each positive μ, there exist integers k1(μ) ≥ k0(μ) and
N1(μ) ≥ N0(μ) such that, for all integers k ≥ k1(μ) and N ≥ N1(μ), the pullback

of the invertible sheaf ω
⊗(k,μ)N

�Mspl,tor
H,Σ ,J

to 	Mspl
H ∪(	Mspl,tor

H,Σ ⊗
Z
Q) ∼= 	Mspl

H ∪(Mtor
H,Σ ⊗

F0

K) (glued

over their common open subscheme 	Mspl
H ⊗

Z
Q ∼= MH ⊗

F0

K) is generated by its global

sections and descends to a very ample invertible sheaf over 	Mspl
H ∪(Mmin

H ⊗
F0

K).

Proof. This follows from Corollary 4.1.18 and the same argument as in the proof
of Lemma 4.1.8. �

Remark 4.1.20. The constants in Lemma 4.1.8 and in Corollaries 4.1.16 and 4.1.19
depend on the integral PEL datum (O, �, 〈 · , · 〉, h0), on the choices of J and LJ

(see Choices 2.2.9), on the level H (see Choices 2.2.10), on the choices of the in-
tegers {aj}j∈J as in [13, Lemma 5.30], on the choices of K and the ordering of
τ[τ ],0, τ[τ ],1, . . . , τ[τ ],d[τ ]−1 in [τ ] for all [τ ] ∈ Υ/ ∼ (see Choices 2.3.1), and on μ.
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Lemma 4.1.21. The canonical restriction map

Γ(	Mspl,tor
H,Σ , ω

⊗(k,μ)N

�Mspl,tor
H,Σ ,J

) → Γ(	Mspl
H ∪(	Mspl,tor

H,Σ ⊗
Z
Q), ω

⊗(k,μ)N

�Mspl,tor
H,Σ ,J

)

is bijective for all μ, k, and N .

Proof. Since 	Mspl,tor
H,Σ is noetherian and normal by construction, which is (S2) at all

points of codimension at least two by Serre’s criterion (see [7, IV-2, 5.8.6]), and

since the complement of 	Mspl
H ∪(	Mspl,tor

H,Σ ⊗
Z
Q) in 	Mspl,tor

H,Σ has codimension at least

two (because 	Mspl
H is fiberwise dense in 	Mspl,tor

H,Σ , by Theorem 3.4.1), this follows

from [9, Proposition 1.11 and Theorem 3.8]. �

Proposition 4.1.22. For each positive μ, given any integers k ≥ k1(μ) and N ≥
N1(μ), the canonical morphism

(4.1.23) 	Mspl
H ∪(	Mspl,tor

H,Σ ⊗
Z
Q) → PSpec(OK)(Γ(	M

spl,tor
H,Σ , ω

⊗(k,μ)N

�Mspl,tor
H,Σ ,J

))

induces a canonical open immersion

(4.1.24) 	Mspl
H ∪(Mmin

H ⊗
F0

K) ↪→ PSpec(OK)(Γ(	M
spl,tor
H,Σ , ω

⊗(k,μ)N

�Mspl,tor
H,Σ ,J

))

whose pre-composition with the canonical morphism

(4.1.25) 	Mspl
H ∪(	Mspl,tor

H,Σ ⊗
Z
Q) → 	Mspl

H ∪(Mmin
H ⊗

F0

K)

is (4.1.23). Let us define 	Mspl,min
H,(k,μ)N to be the normalization of the closure of the

image of (4.1.24) in PSpec(OK)(Γ(	M
spl,tor
H,Σ , ω

⊗(k,μ)N

�Mspl,tor
H,Σ ,J

)). Then we have a canonical

open immersion

(4.1.26) 	Mspl
H ∪(Mmin

H ⊗
F0

K) ↪→ 	Mspl,min
H,(k,μ)N ,

with schematically dense image (by definition of 	Mspl,min
H,(k,μ)N ), whose pre-composition

with (4.1.25) defines a canonical morphism

(4.1.27) 	∮ spl,pre

H,(k,μ)N
: 	Mspl

H ∪(	Mspl,tor
H,Σ ⊗

Z
Q) → 	Mspl,min

H,(k,μ)N

with schematically dense image. The pullback of O
PSpec(OK )(Γ(�M

spl,tor
H,Σ ,ω

⊗(k,μ)N

�M
spl,tor
H,Σ

,J
))
(1) to

	Mspl,min
H,(k,μ)N , which we abusively denote by ω

⊗(k,μ)N

�Mspl,min
H,(k,μ)N

,J
(before defining ω

⊗(k,μ)

�Mspl,min
H,(k,μ)N

,J
),

is an ample invertible sheaf, whose further pullback to 	Mspl
H ∪(Mmin

H ⊗
F0

K) under

(4.1.26) is the very ample invertible sheaf in Corollary 4.1.19.

Proof. The existence of the canonical morphism (4.1.23) and the induced open
immersion (4.1.24) follows from Lemma 4.1.8, Corollaries 4.1.18 and 4.1.19, and
Lemma 4.1.21. The rest of the assertions are self-explanatory. �

Choices 4.1.28. From now on, for each positive μ, we shall fix the choices of some
integers k2(μ) ≥ k1(μ) and N2(μ) ≥ N1(μ) such that k2(μ) ≥ k(ΦH,δH)(μ) and
N2(μ) ≥ N(ΦH,δH)(μ) for all cusp labels [(ΦH, δH)] (see Corollary 4.1.16).
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We will show in the next section that, when k ≥ k2(μ) and N ≥ N2(μ), the

morphism (4.1.27) extends to a morphism 	∮ spl

H : 	Mspl,tor
H,Σ → 	Mspl,min

H , whose target

is (up to unique isomorphism) independent of the choices of k and N .

4.2. Semiampleness and projective spectra. Throughout this section, we shall
fix the choice of a positive μ, and assume that k ≥ k2(μ) and N ≥ N2(μ), where
k2(μ) and N2(μ) are as in Choices 4.1.28.

Let Graph(	
∮ spl,pre

H,(k,μ)N
) denote the graph of the canonical morphism 	∮ spl,pre

H,(k,μ)N
in

(4.1.27), which we view as a locally closed subscheme of 	Mspl,tor
H,Σ ×

Spec(OK)

	Mspl,min
H,(k,μ)N ,

which is isomorphic to the open dense subscheme 	Mspl
H ∪(	Mspl,tor

H,Σ ⊗
Z
Q) of 	Mspl,tor

H,Σ via

the first projection, and has schematically dense image via the second projection
(see Proposition 4.1.22). Let us denote by

	Mspl,tor
H,Σ,(k,μ)N

the normalization of the necessarily reduced schematic closure of Graph(	
∮ spl,pre

H,(k,μ)N
)

in 	Mspl,tor
H,Σ ×

Spec(OK)

	Mspl,min
H,(k,μ)N . Then the projections from 	Mspl,tor

H,Σ ×
Spec(OK)

	Mspl,min
H,(k,μ)N

to its two factors induce canonical proper surjections

(4.2.1) 	∂spl
H,(k,μ)N : 	Mspl,tor

H,Σ,(k,μ)N → 	Mspl,tor
H,Σ

and

(4.2.2) 	∮ spl

H,(k,μ)N
: 	Mspl,tor

H,Σ,(k,μ)N → 	Mspl,min
H,(k,μ)N .

Lemma 4.2.3. The canonical morphisms

(4.2.4) O�Mspl,tor
H,Σ

→ (	∂spl
H,(k,μ)N )∗O�Mspl,tor

H,Σ,(k,μ)N

and

(4.2.5) O�Mspl,min
H,(k,μ)N

→ (	
∮ spl

H,(k,μ)N
)∗O�Mspl,tor

H,Σ,(k,μ)N

induced by (4.2.1) and (4.2.2), respectively, are isomorphisms. Consequently, the
morphisms (4.2.1) and (4.2.2) are their own Stein factorizations (see [7, III-1, 4.3.3
and 4.3.4]), by abuse of language, and their geometric fibers are all connected.

Proof. Since (4.2.1) is proper, it induces a Stein factorization

(4.2.6) 	Mspl,tor
H,Σ,(k,μ)N → Spec

O�M
spl,tor
H,Σ

(
(	∂spl

H,(k,μ)N )∗O�Mspl,tor
H,Σ,(k,μ)N

)
→ 	Mspl,tor

H,Σ ,

and we need the second (finite) morphism to be an isomorphism. Since 	Mspl,tor
H,Σ,(k,μ)N

is normal, the second scheme in (4.2.6) is normal. Since (4.2.1) induces the identity

morphism over the open dense subscheme 	Mspl
H , the second morphism in (4.2.6) is

an isomorphism by Zariski’s main theorem (see [7, III-1, 4.4.3, 4.4.11]). This shows
that (4.2.4) is an isomorphism. The argument for (4.2.5) is similar. �
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For each (locally closed) stratum 	Zspl
[(ΦH,δH,σ)] of

	Mspl,tor
H,Σ as in (3.1.9), consider

the locally closed subscheme

(4.2.7) 	Zspl
[(ΦH,δH,σ)],(k,μ)N := (	∂spl

H,(k,μ)N )−1(	Zspl
[(ΦH,δH,σ)])

of 	Mspl,tor
H,Σ,(k,μ)N with its canonical reduced subscheme structure. Then we have a

disjoint union

(4.2.8) 	Mspl,tor
H,Σ,(k,μ)N =

∐
[(ΦH,δH,σ)]

	Zspl
[(ΦH,δH,σ)],(k,μ)N

compatible with (3.1.9), [13, Theorem 9.13], and [15, Theorem 6.1].

For each stratum 	Zspl
[(ΦH,δH,σ)], we have an induced proper morphism

(4.2.9)

(	∂spl
H,(k,μ)N )∧�Zspl

[(ΦH,δH,σ)]

: (	Mspl,tor
H,Σ,(k,μ)N )∧�Zspl

[(ΦH,δH,σ)],(k,μ)N

→ (	Mspl,tor
H,Σ )∧�Zspl

[(ΦH,δH,σ)]

between the formal completions. By Lemma 4.2.3 and [7, III-1, 4.1.5], the isomor-
phism (4.2.4) induces a canonical isomorphism
(4.2.10)

O(�Mspl,tor
H,Σ )∧

�Z
spl
[(ΦH,δH,σ)]

∼→
(
(	∂spl

H,(k,μ)N )∧�Zspl
[(ΦH,δH,σ)]

)
∗O(�Mspl,tor

H,Σ,(k,μ)N
)∧
�Z
spl
[(ΦH,δH,σ)],(k,μ)N

.

So, the pullback of any f ∈ Γ(	Mspl,tor
H,Σ , ω

⊗(k,μ)N

�Mspl,tor
H,Σ ,J

) to (	Mspl,tor
H,Σ,(k,μ)N )∧�Zspl

[(ΦH,δH,σ)],(k,μ)N

is determined by its pullback to (	Mspl,tor
H,Σ )∧�Zspl

[(ΦH,δH,σ)]

, which defines the Fourier–

Jacobi expansions of f as in [12, Section 7.1.2] and [13, Section 12]. By the same
arguments there, we obtain the following:

Proposition 4.2.11 (cf. [12, Proposition 7.1.2.13] and [13, Proposition 12.10]).

The pullback of each f ∈ Γ(	Mspl,tor
H,Σ , ω

⊗(k,μ)N

�Mspl,tor
H,Σ ,J

) to the subscheme 	Zspl
[(ΦH,δH,σ)],(k,μ)N

of 	Mspl,tor
H,Σ,(k,μ)N is constant along the fibers of the structural morphism

(4.2.12) 	Zspl
[(ΦH,δH,σ)],(k,μ)N

restriction of
(4.2.1)→ 	Zspl

[(ΦH,δH,σ)]

(3.3.3)−1

∼→ 	Ξspl
ΦH,δH,σ → 	MZH,spl

H .

Corollary 4.2.13. The restriction of (4.2.2) to 	Zspl
[(ΦH,δH,σ)],(k,μ)N induces a canon-

ical morphism 	Zspl
[(ΦH,δH,σ)],(k,μ)N → 	Mspl,min

H,(k,μ)N , which factors through a morphism

	MZH,spl
H → 	Mspl,min

H,(k,μ)N . Consequently, the stratum Zspl
[(ΦH,δH)] := Z[(ΦH,δH)] ⊗

F0

K of

Mmin
H ⊗

F0

K is dense in the schematic image of 	Zspl
[(ΦH,δH,σ)],(k,μ)N under (4.2.2).

Proof. The first assertion follows from Proposition 4.2.11. By [13, Theorem 12.1]
and [15, Theorem 6.1 (3) and (5)], the restriction of (4.2.2) to the stratum

Zspl
[(ΦH,δH,σ)] := Z[(ΦH,δH,σ)] ⊗

F0

K ∼= 	Zspl
[(ΦH,δH,σ)],(k,μ)N ⊗

Z
Q

of Mtor
H,Σ ⊗

F0

K ∼= 	Mspl,tor
H,Σ,(k,μ)N ⊗

Z
Q (see Definition 3.1.8 and (4.2.7)) induces a canon-

ical surjection Zspl
[(ΦH,δH,σ)] � Zspl

[(ΦH,δH)]. Hence, the last assertion follows from the

flatness of 	MZH,spl
H over Spec(OK). �
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For each stratum Zspl
[(ΦH,δH)] of Mmin

H ⊗
F0

K as in Corollary 4.2.13, consider its

closure Z
spl

[(ΦH,δH)] in Mmin
H ⊗

F0

K and its closure 	Z
spl

[(ΦH,δH)],(k,μ)N in 	Mspl,min
H,(k,μ)N under

the open immersion (4.1.26) with schematically dense image. Then we define a
locally closed subscheme

(4.2.14) 	Zspl
[(ΦH,δH)],(k,μ)N := 	Z

spl

[(ΦH,δH)],(k,μ)N−
⋃

Zspl
[(ΦH,δH)]

�Z
spl

[(Φ′
H,δ′H)]

	Z
spl

[(Φ′
H,δ′H)],(k,μ)N

of 	Mspl,min
H,(k,μ)N (cf. [13, (6.8)]).

Proposition 4.2.15 (cf. [13, Theorem 12.1] and [15, Theorem 6.1 (3) and (5)]).

The locally closed subschemes 	Zspl
[(ΦH,δH)],(k,μ)N of 	Mspl,min

H,(k,μ)N form a stratification

(4.2.16) 	Mspl,min
H,(k,μ)N =

∐
[(ΦH,δH)]

	Zspl
[(ΦH,δH)],(k,μ)N ,

with incidence relations similar to those in [12, Theorem 7.2.4.1 (4) and (5)], [13,
Theorem 12.1], and [15, Theorem 6.1(3)]. For each representative (ΦH, δH, σ) such

that [(ΦH, δH, σ)] labels a stratum 	Zspl
[(ΦH,δH,σ)] of

	Mspl,tor
H,Σ as in (3.1.9), the restriction

of the canonical morphism (4.2.2) to the corresponding stratum 	Zspl
[(ΦH,δH,σ)],(k,μ)N

of 	Mspl,tor
H,Σ,(k,μ)N induces a canonical surjection

(4.2.17) 	Zspl
[(ΦH,δH,σ)],(k,μ)N � 	Zspl

[(ΦH,δH)],(k,μ)N ,

which is proper when σ is top-dimensional in ΣΦH .

Proof. By Corollary 4.2.13 and its proof, the restriction of (4.2.2) to Zspl
[(ΦH,δH,σ)]

induces a canonical surjection Zspl
[(ΦH,δH,σ)] � Zspl

[(ΦH,δH)], and Zspl
[(ΦH,δH)] is dense

in the schematic image of 	Zspl
[(ΦH,δH,σ)],(k,μ)N under (4.2.2). Since the morphism

(4.2.2) is proper and surjective, and since the disjoint union (4.2.8) is the pull-

back of the stratification (3.1.9), it follows that Zspl
[(ΦH,δH)]

∼= 	Zspl
[(ΦH,δH)],(k,μ)N ⊗

Z
Q

as subschemes of Mmin
H ⊗

F0

K ∼= 	Mspl,min
H,(k,μ)N ⊗

Z
Q, and that Zspl

[(ΦH,δH)] is dense in

	Zspl
[(ΦH,δH)],(k,μ)N . Hence, the union in (4.2.16) defines the desired stratification of

	Mspl,min
H,(k,μ)N . As for the properness of (4.2.17) when σ is top-dimensional in ΣΦH , it

follows from that of (4.2.2), because then 	Zspl
[(ΦH,δH,σ)],(k,μ)N is closed in the preimage

(	
∮ spl

H,(k,μ)N
)−1(	Zspl

[(ΦH,δH)],(k,μ)N ) by the other assertions we have proved. �

Corollary 4.2.18 (cf. [12, Corollary 7.2.3.12] and [13, Corollary 12.12]). The mor-
phism (4.2.17) factors through (4.2.12) and defines a canonical surjection

(4.2.19) 	MZH,spl
H � 	Zspl

[(ΦH,δH)],(k,μ)N .

Under the running assumption that k ≥ k2(μ) ≥ k[(ΦH,δH)](μ) and N ≥ N2(μ) ≥
N[(ΦH,δH)](μ) (see Choices 4.1.28), this surjection is finite and induces a canonical

isomorphism from 	MZH,spl
H to the normalization of 	Zspl

[(ΦH,δH)],(k,μ)N .
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Proof. The first assertion follows from Corollary 4.2.13. Since the morphisms
(4.2.12), for all possible σ, all factor through the same induced morphism (4.2.19)
(by the same argument of relating every two cones by a sequence of inclusions
of closures, as in the paragraph following [12, Remark 7.1.2.5]), by taking σ to
be top-dimensional in ΣΦH , which necessarily satisfies σ ⊂ P+

ΦH
, it follows from

Proposition 4.2.15 that the induced morphism (4.2.19) is proper. Since (by Corol-

lary 4.1.15) the pullback of ω
⊗(k,μ)N

�Mspl,tor
H,Σ ,J

to 	Zspl
[(ΦH,δH,σ)],(k,μ)N descends to 	MZH,spl

H

(via (4.2.12)), the pullback of ω
⊗(k,μ)N

�Mspl,min
H,(k,μ)N

,J
(see Proposition 4.1.22) under (4.2.19)

is isomorphic to the invertible sheaf ω
⊗(k,μ)N

�M
ZH,spl

H ,J
over 	MZH,spl

H , which is ample (by

Corollary 4.1.16) under the assumption that k ≥ k2(μ) ≥ k[(ΦH,δH)](μ) and N ≥
N2(μ) ≥ N[(ΦH,δH)](μ). This shows that the proper morphism (4.2.19) is finite,
by [7, II, 5.1.6, and III-1, 4.4.2]. Since (4.2.19) induces in characteristic zero the

canonical isomorphism MZH
H ⊗

F0

K
∼→ Zspl

[(ΦH,δH)] = Z[(ΦH,δH)] ⊗
F0

K (see [12, Corollary

7.2.3.18]), the second assertion follows from Zariski’s main theorem (see [7, III-1,
4.4.3, 4.4.11]), as desired. �

Proposition 4.2.20 (cf. [12, Proposition 7.2.3.16] and [13, Proposition 12.14]). Let

x̄ be a geometric point of 	Mspl,min
H,(k,μ)N over the [(ΦH, δH)]-stratum 	Zspl

[(ΦH,δH)],(k,μ)N .

Let (	Mspl,min
H,(k,μ)N )∧x̄ denote the completion of the strict localization of 	Mspl,min

H,(k,μ)N at x̄,

let

(	Zspl
[(ΦH,δH)],(k,μ)N )∧x̄ := 	Zspl

[(ΦH,δH)],(k,μ)N ×
�Mspl,min

H,(k,μ)N

(	Mspl,min
H,(k,μ)N )∧x̄ ,

and let

(	MZH,spl
H )∧x̄ := 	MZH,spl

H ×
�Zspl
[(ΦH,δH)],(k,μ)N

(	Zspl
[(ΦH,δH)],(k,μ)N )∧x̄ .

For each � ∈ SΦH , let 	Ψspl
ΦH,δH

(�) be as in (3.2.15), and let ( 	FJ
spl,(�)

ΦH,δH)∧x̄ denote the
pullback of

	FJ
spl,(�)

ΦH,δH := ( 	Cspl
ΦH,δH

→ 	MZH,spl
H )∗(	Ψ

spl
ΦH,δH

(�))

under the canonical morphism (	MZH,spl
H )∧x̄ → 	MZH,spl

H . Then we have a canonical
isomorphism

(4.2.21) O(�Mspl,min
H,(k,μ)N

)∧x̄
∼=

( ∏
�∈P∨

ΦH

( 	FJ
spl,(�)

ΦH,δH)∧x̄

)ΓΦH
,

where P∨
ΦH

:= {� ∈ SΦH : 〈�, y〉 ≥ 0 ∀y ∈ PΦH} as usual, which is adic if we
interpret the product on the right-hand side as the completion of the elements
that are finite sums with respect to the ideal generated by the elements with zero

constant terms (i.e., with zero projection to ( 	FJ
spl,(0)

ΦH,δH)∧x̄ ). Then the isomorphism

(4.2.21) induces a homomorphism
(
( 	FJ

spl,(0)

ΦH,δH)∧x̄
)ΓΦH → O(�Mspl,min

H,(k,μ)N
)∧x̄
, whose source

is canonically isomorphic to O
(�M

ZH,spl

H )∧x̄
(by Corollary 4.2.18 and Zariski’s main

theorem; see [7, III-1, 4.4.3, 4.4.11]). This homomorphism defines a structural
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morphism (	Mspl,min
H,(k,μ)N )∧x̄ → (	MZH,spl

H )∧x̄ , whose pre-composition with the canoni-

cal morphism (	Zspl
[(ΦH,δH)],(k,μ)N )∧x̄ → (	Mspl,min

H,(k,μ)N )∧x̄ defines a canonical morphism

(	Zspl
[(ΦH,δH)],(k,μ)N )∧x̄ → (	MZH,spl

H )∧x̄ , which is then an isomorphism because its pre-

composition with the formal completion (	MZH,spl
H )∧x̄ → (	Zspl

[(ΦH,δH)],(k,μ)N )∧x̄ of (4.2.19)

is the identity morphism on (	MZH,spl
H )∧x̄ . Consequently, this last completion of

(4.2.19) is also an isomorphism.

Proof. Using the canonical isomorphisms (4.2.10), the same argument as in the
proof of [12, Proposition 7.2.3.16] works here. �

Remark 4.2.22. As remarked in the proof of [13, Proposition 12.14], we do not need
to know a priori that (4.2.19) induces a bijection on geometric points. Also, by the
same argument as in the proof of Corollary 4.2.18, we may remove the dependence
on the second assertion of [13, Lemma 12.9] from the proof of [13, Proposition
12.14].

Corollary 4.2.23 (cf. [13, Theorem 12.16] and [15, Theorem 6.1(5)]). In (4.2.16),

each stratum 	Zspl
[(ΦH,δH)],(k,μ)N is canonically isomorphic to 	MZH,spl

H . The canonical

surjection (4.2.17) can be identified with the composition of the canonical morphism

(4.2.12) with the above-mentioned isomorphism 	MZH,spl
H

∼→ 	Zspl
[(ΦH,δH)],(k,μ)N .

Proof. As in the proof of [13, Theorem 12.16], it suffices to show that (4.2.19) is
an isomorphism. Since this can be verified over formal completions of strict local
rings, this follows from Proposition 4.2.20, as desired. �

Corollary 4.2.24. With the same setting as in Proposition 4.2.20, let

(	Mspl,tor
H,Σ,(k,μ)N )∧x̄ :=

(
(	Mspl,tor

H,Σ,(k,μ)N )∧�Zspl
[(ΦH,δH,σ)],(k,μ)N

)
×

�M
ZH,spl

H

(	MZH,spl
H )∧x̄

and

(	Mspl,tor
H,Σ )∧x̄ :=

(
(	Mspl,tor

H,Σ )∧�Zspl
[(ΦH,δH,σ)]

)
×

�M
ZH,spl

H

(	MZH,spl
H )∧x̄ .

The canonical morphism

(	
∮ spl

H,(k,μ)N
)∧x̄ : (	Mspl,tor

H,Σ,(k,μ)N )∧x̄ → (	Mspl,min
H,(k,μ)N )∧x̄

induced by (4.2.2) factors as the composition of the canonical morphism

(	∂spl
H,(k,μ)N )∧x̄ : (	Mspl,tor

H,Σ,(k,μ)N )∧x̄ → (	Mspl,tor
H,Σ )∧x̄

induced by (4.2.9) with a canonical morphism

(	Mspl,tor
H,Σ )∧x̄ → (	Mspl,min

H,(k,μ)N )∧x̄ .

Proof. By treating all objects as formal schemes over (	MZH,spl
H )∧x̄ , this follows from

the explicit description (4.2.21) of O(�Mspl,min
H,(k,μ)N

)∧x̄
. �

Proposition 4.2.25. The proper morphism (4.2.1) is an isomorphism, and hence
the morphism (4.2.2) descends to a canonical morphism

(4.2.26) 	Mspl,tor
H,Σ → 	Mspl,min

H,(k,μ)N
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extending (4.1.27), under which ω
⊗(k,μ)N

�Mspl,tor
H,Σ ,J

(see Definition 4.1.3) is isomorphic to

the pullback of ω
⊗(k,μ)N

�Mspl,min
H,(k,μ)N

,J
(see Proposition 4.1.22).

Proof. Since 	Mspl,tor
H,Σ,(k,μ)N is by definition the normalization of the schematic closure

of Graph(	
∮ spl,pre

H,(k,μ)N
) in 	Mspl,tor

H,Σ ×
Spec(OK)

	Mspl,min
H,(k,μ)N , Corollary 4.2.24 shows that the

proper morphism (4.2.1) is an isomorphism after pullback to an fpqc covering of
	Mspl,tor

H,Σ , which then forces (4.2.1) itself to be an isomorphism. �

Corollary 4.2.27. The invertible sheaf ω
⊗(k,μ)

�Mspl,tor
H,Σ ,J

over 	Mspl,tor
H,Σ is semiample.

Proof. Since the invertible sheaf ω
⊗(k,μ)N

�Mspl,min
H,(k,μ)N

,J
over 	Mspl,min

H,(k,μ)N is ample, this follows

from Proposition 4.2.25. �

Corollary 4.2.28 (cf. [13, Corollary 12.5]). 	Mspl
H ⊗

Z
Fp is dense in 	Mspl,min

H,(k,μ)N ⊗
Z
Fp.

Proof. Since 	Mspl
H ⊗

Z
Fp is dense in 	Mspl,tor

H,Σ,(k,μ)N ⊗
Z
Fp by (2) of Theorem 3.4.1, this

follows from Proposition 4.2.15. �
Lemma 4.2.29. For each Λ ∈ L , each [τ ] ∈ Υ/ ∼, and each integer i satisfying
0 ≤ i < d[τ ], the invertible sheaf ωi

Λ,[τ ],�Mspl,tor
H,Σ

(see (4.1.13)) descends to an invertible

sheaf ωi
Λ,[τ ],�Mspl,min

H,(k,μ)N

over 	Mspl,min
H,(k,μ)N via the canonical morphism (4.2.26).

Proof. By Lemma 4.1.17 and Corollary 4.2.28, and by the same argument as in the
proof of [12, Theorem 7.2.4.1], it suffices to note that the pullback of each of these

sheaves to each 	Xspl
ΦH,δH,σ descends to 	MZH,spl

H , by Lemma 4.1.12. �

Corollary 4.2.30. For all positive μ′ and all integers k′ and N ′, the invertible

sheaf ω⊗ k′

�Mspl,tor
H,Σ ,J

(resp. ω
μ′

�Mspl,tor
H,Σ

, resp. ω
⊗(k′,μ′)

�Mspl,tor
H,Σ ,J

, resp. ω
⊗(k′,μ′)N ′

�Mspl,tor
H,Σ ,J

; see Definitions

4.1.1 and 4.1.3) descends to an invertible sheaf ω⊗ k′

�Mspl,min
H,(k,μ)N

,J
(resp. ω

μ′

�Mspl,min
H,(k,μ)N

, resp.

ω
⊗(k′,μ′)

�Mspl,min
H,(k,μ)N

,J
, resp. ω

⊗(k′,μ′)N ′

�Mspl,min
H,(k,μ)N

,J
) over 	Mspl,min

H,(k,μ)N via the morphism (4.2.26).

Proof. This follows from Lemma 4.2.29, as in the proof of Corollary 4.1.18. �
Proposition 4.2.31. For each positive μ′ and each integer k′ ≥ k(μ′), we have
canonical isomorphisms

	Mspl,min
H,(k,μ)N

∼= Proj

⎛
⎝⊕

N ′≥0

Γ(	Mspl,min
H,(k,μ)N , ω

⊗(k′,μ′)N ′

�Mspl,min
H,(k,μ)N

,J
)

⎞
⎠

∼= Proj

⎛
⎝⊕

N ′≥0

Γ(	Mspl,tor
H,Σ , ω

⊗(k′,μ′)N ′

�Mspl,tor
H,Σ ,J

)

⎞
⎠ .

(4.2.32)

This shows that 	Mspl,min
H,(k,μ)N is (up to canonical isomorphism) independent of the

choices of μ and the integers k ≥ k2(μ) and N ≥ N2(μ). We shall henceforth
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drop the subscript (k, μ)N from the notation of 	Mspl,min
H,(k,μ)N , etc., and rewrite the

morphism (4.2.26) as a canonical morphism

(4.2.33) 	∮ spl

H : 	Mspl,tor
H,Σ → 	Mspl,min

H .

Proof. By Corollary 4.2.27, ω
⊗(k′,μ′)

�Mspl,tor
H,Σ ,J

is also semiample. By Corollary 4.2.30,

ω
⊗(k′,μ′)

�Mspl,tor
H,Σ ,J

descends to the invertible sheaf ω
⊗(k′,μ′)

�Mspl,min
H,(k,μ)N

,J
. Since the canonical mor-

phism (4.2.26) is proper and surjective, the emptiness of the base locus of ω
⊗(k′,μ′)

�Mspl,tor
H,Σ ,J

forces that of ω
⊗(k′,μ′)

�Mspl,min
H,(k,μ)N

,J
, and hence ω

⊗(k′,μ′)

�Mspl,min
H,(k,μ)N

,J
is also semiample. Therefore,

the canonical morphism 	Mspl,tor
H,Σ → 	Mspl,min

H,(k′,μ′) factors as the composition of (4.2.26)

with a canonical morphism 	Mspl,min
H,(k,μ)N → 	Mspl,min

H,(k′,μ′). By a symmetric argument,

we also obtain a canonical morphism 	Mspl,min
H,(k′,μ′) → 	Mspl,min

H,(k,μ)N , whose pre- and post-

compositions with the previous canonical morphism are identity morphisms by con-

struction. This shows that 	Mspl,min
H,(k,μ)N and 	Mspl,min

H,(k′,μ′) are canonically isomorphic, and

that we have the canonical isomorphisms in (4.2.32), as desired. �

Proposition 4.2.34. There is a commutative diagram

(4.2.35) 	Mspl,tor
H,Σ

(4.2.33)
��

can.

��

	Mspl,min
H

��

	Mtor
H,Σ ⊗

OF0,(p)

OK

�∮
H ⊗

OF0,(p)

OK

�� 	Mmin
H ⊗

OF0,(p)

OK

where the dotted morphism is induced by the composition of canonical morphisms

	Mspl,min
H → Proj

⎛
⎝⊕

k≥0

Γ(	Mspl,min
H , ω⊗ k

�Mspl,min
H ,J

)

⎞
⎠ ∼= Proj

⎛
⎝⊕

k≥0

Γ(	Mspl,tor
H,Σ , ω⊗ k

�Mspl,tor
H,Σ ,J

)

⎞
⎠

∼= Proj

⎛
⎝⊕

k≥0

Γ(	Mtor
H,Σ, ω

⊗ k
�Mtor

H,Σ,J
)

⎞
⎠ ⊗

OF0,(p)

OK
∼= 	Mmin

H ⊗
OF0,(p)

OK

(see Corollary 4.2.30, Definition 4.1.1, [13, Proposition 7.11], and [15, Theorem
6.1(2)]), under which ω�Mspl,min

H ,J is isomorphic to the pullback of ω�Mmin
H ,J ⊗

OF0,(p)

OK .
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4.3. Main theorem for minimal compactifications.

Theorem 4.3.1 (cf. [12, Theorem 7.2.4.1]). For each H as in Choices 2.2.9, there is

a normal scheme 	Mspl,min
H projective and flat over Spec(OK), containing the scheme

	Mspl
H in Definition 2.4.5 as an open fiberwise dense subscheme, such that:

(1) We have a commutative diagram

(4.3.2) MH ⊗
F0

K � � ��

� �

��

	Mspl
H

�� ��
� �

��

	MH ⊗
OF0,(p)

OK

� �

��

Mmin
H ⊗

F0

K � � �� 	Mspl,min
H

�� �� 	Mmin
H ⊗

OF0,(p)

OK

of noetherian normal schemes flat over Spec(OK) and of canonical mor-
phisms (over Spec(OK)), in which all squares are Cartesian, all vertical
arrows are open immersions with fiberwise dense image over Spec(OK),
the two horizontal arrows at the left-hand side are open immersions with
schematically dense images, the two horizontal arrows at the right-hand side
are projective and surjective, and the compositions of horizontal arrows in
the same rows are also open immersions with schematically dense images.

(2) For each Σ as in Theorem 3.4.1, the commutative diagrams (3.4.2) and
(4.3.2) are compatible with each other and form a commutative diagram

(4.3.3) MH ⊗
F0

K � � ��

� �

��

	Mspl
H

�� ��
� �

��

	MH ⊗
OF0,(p)

OK

� �

��

Mtor
H,Σ ⊗

F0

K � � ��

∮
H ⊗

F0

K

����

	Mspl,tor
H,Σ

�� ��

�∮ spl

H
����

	Mtor
H,Σ ⊗

OF0,(p)

OK

�∮
H
����

Mmin
H ⊗

F0

K � � �� 	Mspl,min
H

�� �� 	Mmin
H ⊗

OF0,(p)

OK

in which all squares not involving 	Mmin
H ⊗

OF0,(p)

OK are Cartesian, the ar-

rows already showed up in (3.4.2) and (4.3.2) are as before, the new arrows
between the bottom two rows are all proper and surjective with geometri-
cally connected fibers, and the compositions of vertical arrows in the same
columns are open immersions with fiberwise dense images.

(3) Over 	Mspl
H (resp. 	Mspl,tor

H,Σ , resp. 	Mspl,min
H ), there is a canonical invertible

sheaf ωi
Λ,[τ ],�Mspl

H
(resp. ωi

Λ,[τ ],�Mspl,tor
H,Σ

, resp. ωi
Λ,[τ ],�Mspl,min

H
), for each Λ ∈ L ,

each [τ ] ∈ Υ/ ∼, and each integer i satisfying 0 ≤ i < d[τ ]; and there

are canonical invertible sheaves ω⊗ k
�Mspl

H ,J
(resp. ω⊗ k

�Mspl,tor
H,Σ ,J

, resp. ω⊗ k
�Mspl,min

H ,J
)

and ω
⊗(k,μ)

�Mspl
H ,J

(resp. ω
⊗(k,μ)

�Mspl,tor
H,Σ ,J

, resp. ω
⊗(k,μ)

�Mspl,min
H ,J

), for each integer k and each

triply indexed collection of integers μ = {μi
Λ,[τ ]}Λ∈LJ,[τ ]∈Υ/∼,0≤i<d[τ ]

that

is positive in the sense that μi−1
Λ,[τ ] > μi

Λ,[τ ] for all Λ ∈ LJ, [τ ] ∈ Υ/ ∼,
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and 0 < i < d[τ ], so that (cf. (2.3.8) and (4.1.13))

ω
⊗(k,μ)

�Mspl
H ,J

∼= ω⊗ k
�Mspl

H ,J
⊗

⎛
⎝ ⊗

Λ∈LJ

⎛
⎝ ⊗

[τ ]∈Υ/∼

⎛
⎝ ⊗

0≤i<d[τ ]

(ωi
Λ,[τ ],�Mspl

H
)⊗μi

Λ,[τ ]

⎞
⎠
⎞
⎠
⎞
⎠ ,

ω
⊗(k,μ)

�Mspl,tor
H,Σ ,J

∼= ω⊗ k
�Mspl,tor

H,Σ ,J
⊗

⎛
⎝ ⊗

Λ∈LJ

⎛
⎝ ⊗

[τ ]∈Υ/∼

⎛
⎝ ⊗

0≤i<d[τ ]

(ωi
Λ,[τ ],�Mspl,tor

H,Σ

)⊗μi
Λ,[τ ]

⎞
⎠
⎞
⎠
⎞
⎠ ,

and

ω
⊗(k,μ)

�Mspl,min
H ,J

∼= ω⊗ k
�Mspl,min

H ,J
⊗

⎛
⎝ ⊗

Λ∈LJ

⎛
⎝ ⊗

[τ ]∈Υ/∼

⎛
⎝ ⊗

0≤i<d[τ ]

(ωi
Λ,[τ ],�Mspl,min

H
)⊗μi

Λ,[τ ]

⎞
⎠
⎞
⎠
⎞
⎠ .

Under the canonical morphisms 	Mspl
H → 	Mspl,tor

H,Σ as in Theorem 3.4.1 and

	∮ spl

H : 	Mspl,tor
H,Σ → 	Mspl,min

H as in (4.3.3), the pullbacks of the sheaves over the

targets are canonical isomorphic to the corresponding sheaves (with similar

indices) over the sources, while the sheaves over 	Mspl,tor
H,Σ descend to the

corresponding sheaves over 	Mspl,min
H via the canonical morphism 	∮ spl

H .

For each integer k, the sheaf ω⊗ k
�Mspl

H ,J
(resp. ω⊗ k

�Mspl,tor
H,Σ ,J

, resp. ω⊗ k
�Mspl,min

H ,J
)

is canonically isomorphic to the pullback of the sheaf ω⊗ k
�MH,J

(resp. ω⊗ k
�Mtor

H,Σ,J
,

resp. ω⊗ k
�Mmin

H ,J
) as in [13, Proposition 6.1 (resp. 7.11, resp. 6.4)] and [15,

Theorem 6.1(2)]. For all k > 0, it is semiample, and has an ample pullback
to the characteristic zero fiber.

For all positive μ, and for all sufficiently large k (depending on μ), the

sheaf ω
⊗(k,μ)

�Mspl
H ,J

(resp. ω
⊗(k,μ)

�Mspl,tor
H,Σ ,J

, resp. ω
⊗(k,μ)

�Mspl,min
H ,J

) is ample (resp. semiample,

resp. ample). In particular, for all positive μ and for all sufficiently large k

(depending on μ), we have 	Mspl,min
H

∼= Proj
(⊕

N≥0 Γ(
	Mspl,tor

H,Σ , ω
⊗(k,μ)N

�Mspl,tor
H,Σ ,J

)
)
.

(4) 	Mspl,min
H has a stratification by locally closed subschemes

(4.3.4) 	Mspl,min
H =

∐
[(ΦH,δH)]

	Zspl
[(ΦH,δH)],

with [(ΦH, δH)] running through a complete set of cusp labels as in [12,

Definition 5.4.2.4], such that the [(Φ′
H, δ′H)]-stratum 	Zspl

[(Φ′
H,δ′H)] is contained

in the closure of the [(ΦH, δH)]-stratum 	Zspl
[(ΦH,δH)] if and only if there is a

surjection from the cusp label [(Φ′
H, δ′H)] to the cusp label [(ΦH, δH)] as in

[12, Definition 5.4.2.13]. The analogous assertion holds after pullback to
fibers over Spec(OK).

Each [(ΦH, δH)]-stratum 	Zspl
[(ΦH,δH)] is flat over Spec(OK) and normal,

and is canonically isomorphic to the boundary version 	MZH,spl
H of 	Mspl

H (cf.
Definitions 2.4.5 and 3.2.1, and the summary in Remark 3.2.19). In partic-

ular, 	Mspl
H = 	Zspl

[(0,0)] is an open fiberwise dense stratum in this stratification.
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This stratification (4.3.4) is compatible with the stratification of 	Mmin
H as

in [13, Theorems 12.1 and 12.16]; and we have a commutative diagram

(4.3.5) MZH
H ⊗

F0

K � � ��


��

	MZH,spl
H

�� ��



��

	MZH
H ⊗

OF0,(p)

OK


��

Z[(ΦH,δH)] ⊗
F0

K � � ��

� �

��

	Zspl
[(ΦH,δH)]

�� ��
� �

��

	Z[(ΦH,δH)] ⊗
OF0,(p)

OK

� �

��

Mmin
H ⊗

F0

K � � �� 	Mspl,min
H

�� �� 	Mmin
H ⊗

OF0,(p)

OK

of canonical morphisms, in which all squares not involving 	Mmin
H ⊗

OF0,(p)

OK

are Cartesian, the vertical arrows in the upper-half are isomorphisms, the
vertical arrows in the bottom-half are locally closed immersions, the hori-
zontal arrows at the left-hand sides are open immersions with schematically
dense images, the horizontal arrows at the right-hand sides are projective
and surjective, and the compositions of horizontal arrows in the same rows
are also open immersions with schematically dense images.

(5) The restriction of the proper surjection 	∮ spl

H in the diagram (4.3.3) to the

stratum 	Zspl
[(ΦH,δH,σ)] of

	Mspl,tor
H,Σ induces a surjection to the stratum 	Zspl

[(ΦH,δH)]

of 	Mspl,min
H , which can be identified with the composition of the canonical iso-

morphism 	Zspl
[(ΦH,δH,σ)]

∼→ 	Ξspl
ΦH,δH,σ given by (3.3.3) (whose inverse appeared

also in the diagram (3.4.4)), the structural morphism 	Ξspl
ΦH,δH,σ → 	MZH,spl

H ,

and the isomorphism 	MZH,spl
H

∼→ 	Zspl
[(ΦH,δH)] mentioned above in (4). In par-

ticular, it is proper and surjective if σ is top-dimensional in P+
ΦH

⊂ (SΦH)∨R.
Under such surjections, the commutative diagrams (3.2.20) (expanded

version), (3.4.4), (4.3.5), and (4.3.3) are all compatible with each others.

Proof. Let us take 	Mspl,min
H as in Proposition 4.2.31, which is a normal scheme pro-

jective and flat over Spec(OK) by construction. Then, based on the corresponding
assertions in [12, Theorem 7.2.4.1], the assertions (1) and (2) follow from [13, Propo-
sitions 6.1, 6.4, and 7.11] and [15, Theorem 6.1(2)], and from Propositions 4.2.25
and 4.2.34; the assertion (3) follows from [13, Propositions 6.1, 6.4, and 7.11] and
[15, Theorem 6.1(2)] (again), from the definitions (see Definitions 4.1.1 and 4.1.3
and the references made from there), and from Corollary 4.2.30; and the assertions
(4) and (5) follow from [13, Theorem 12.1, Corollary 12.14, and Theorem 12.16]
and [15, Theorem 6.1(5)], from Proposition 4.2.15 and Corollary 4.2.18, and from
the fact that the rather naive definitions [13, (6.8)] and (4.2.14) are necessarily
compatible with each other. �

Corollary 4.3.6. The canonical proper morphism

(4.3.7) 	Mspl,tor
H,Σ → 	Mspl,min

H ×
�Mmin

H

	Mtor
H,Σ
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induced by the diagram (4.3.3) is finite and induces a canonical isomorphism over

the open dense subscheme 	Mspl
H . Consequently, (4.3.7) identifies its source with the

normalization of its target, by Zariski’s main theorem (see [7, III-1, 4.4.3, 4.4.11]).

Proof. By (4) and (5) of Theorem 4.3.1, for each stratum 	Z[(ΦH,δH,σ)] of 	M
tor
H,Σ which

is mapped to the stratum 	Z[(ΦH,δH)] of 	M
min
H , the morphism

(4.3.8) 	Zspl
[(ΦH,δH,σ)] → 	Zspl

[(ΦH,δH)] ×
�Z[(ΦH,δH)]

	Z[(ΦH,δH,σ)]

induced by the pullback of (4.3.7) can be identified with the canonical morphism

(4.3.9) 	Ξspl
ΦH,δH,σ → 	MZH,spl

H ×
�M

ZH
H

	ΞΦH,δH,σ

for any representative (ΦH, δH, σ) of [(ΦH, δH, σ)], which is finite and induces an
isomorphism from its source to the normalization of its target by Definition 3.2.3.
Then (4.3.7) is quasi-finite, in particular, and hence must be finite because it is
already known to be proper. When [(ΦH, δH, σ)] = [(0, 0, {0}], (4.3.8) is just the

identity morphism over 	Mspl
H = 	Zspl

[(0,0,{0})]. Thus, the corollary follows. �

Corollary 4.3.10 (cf. [13, Corollary 14.4]). If the geometric fibers of 	Mspl
H →

Spec(OK) are reduced (resp. have integral local rings), then all geometric fibers

of 	Mspl,min
H → Spec(OK) have the same number of connected (resp. irreducible)

components.

Proof. As in the proof of [13, Corollary 14.4], this follows from Corollary 3.4.15,

from the geometric connectedness of the fibers of 	
∮ spl

H : 	Mspl,tor
H,Σ → 	Mspl,min

H , and

from the fiberwise density of 	Mspl
H in 	Mspl,tor

H,Σ and 	Mspl,min
H (see Theorems 3.4.1 and

4.3.1). �

Remark 4.3.11. We can improve [13, Corollary 14.4] and [15, Proposition 6.10]

by assuming there that the geometric fibers of 	MH → 	S0 are reduced (resp. have
integral local rings), by the same arguments as in the proofs of Corollaries 3.4.15
and 4.3.10.

Proposition 4.3.12 (cf. [13, Propositions 13.4, 13.9, and 13.15]). With the same
setting as in Proposition 2.4.17, the morphism (2.4.18) extends to a canonical pro-
jective morphism

(4.3.13) 	[g]
min

: 	Mmin
H → 	Mmin

H′

compatible with any morphism as in (3.4.11), whose pullback from OF0,(p) to OK

lifts to a canonical projective morphism

(4.3.14) 	[g]
spl,min

: 	Mspl,min
H → 	Mspl,min

H′

extending the morphism (2.4.19) and compatible with any morphism as in (3.4.12).

The morphism (4.3.13) (resp. (4.3.14)) maps the [(ΦH, δH)]-stratum 	Z[(ΦH,δH)] (resp.
	Zspl
[(ΦH,δH)]) of 	Mmin

H (resp. 	Mspl,min
H ) to the [(Φ′

H′ , δH′)]-stratum 	Z[(Φ′
H′ ,δH′ )] (resp.

	Zspl
[(Φ′

H′ ,δH′ )]
) of 	Mmin

H′ (resp. 	Mspl,min
H′ ) if and only if there are representatives (ΦH, δH)

and (Φ′
H′ , δ′H′) of [(ΦH, δH)] and [(Φ′

H′ , δ′H′)], respectively, such that (Φ′
H′ , δ′H′) is

g-assigned to (ΦH, δH) as in [12, Definition 5.4.3.9].
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Proof. These follow from the same arguments as in the proofs of Propositions 2.4.17
and 3.4.10, and from [13, Theorems 12.1 and 12.16, and Proposition 13.4], from
[15, Theorem 6.1 (2) and (5)], and from (3) and (5) of Theorem 4.3.1. �

4.4. Vanishing of higher direct images, and Koecher’s principle. By [15,
Construction 3.12 and Definition 5.13; cf. Remark 2.9 and Corollary 5.11], we have

(4.4.1) 	Mtor
H,Σ

∼= NBl �JH,dpol
(	Mmin

H )

for some compatible collection pol of polarization functions and for some integer

d ≥ 1, for some coherent O�Mmin
H

-ideal 	JH,dpol.

Proposition 4.4.2. Let 	J spl
H,dpol denote the pullback of 	JH,dpol to 	Mspl,min

H . Then
we have a composition of canonical isomorphisms

(4.4.3) 	Mspl,tor
H,Σ → NBl �J spl

H,dpol
(	Mspl,min

H ) → 	Mspl,min
H ×

�Mmin
H

NBl �JH,dpol
(	Mmin

H ),

inducing canonical isomorphisms over the common open dense subscheme 	Mspl
H ,

which can be identified with the canonical morphism (4.3.7), where the first mor-
phism is an isomorphism compatible with (4.4.1) (and with the canonical morphisms
in (4.3.3)), and where the second morphism is finite and identifies its source with
the normalization of its target.

Proof. Since the (coherent ideal) pullback of 	JH,dpol to 	Mtor
H,Σ is invertible, the

pullback of 	J spl
H,dpol to

	Mspl,tor
H,Σ is also invertible. Hence, the proposition follows from

the universal property of normalizations of blowups, and from Corollary 4.3.6. �

Corollary 4.4.4 (cf. [15, Corollary 6.7]). There exists an effective Carter divisor

D′ over 	Mspl,tor
H,Σ , with D′

red = 	Mspl,tor
H,Σ − 	Mspl

H (with its canonical reduced closed

subscheme structure) such that O�Mspl,tor
H,Σ

(−D′) is relative ample over 	Mspl,min
H , with

respect to the canonical morphism 	∮ spl

H,Σ
: 	Mspl,tor

H,Σ → 	Mspl,min
H .

Proof. This follows from [15, Corollary 6.7] and Proposition 4.4.2. �

As in [12, Section 7.1.2], let 	psplΦH,ZH
: 	Cspl

ΦH,δH
→ 	MZH,spl

H denote the structural

morphism. As in [14, Section 6], let P∨,+
ΦH

:= {� ∈ SΦH : 〈�, y〉 > 0, ∀y ∈ PΦH−{0}}.
(We made similar definitions in [15, Section 8].)

Lemma 4.4.5 (cf. [15, Lemma 8.1]). There exist infinitely many integers n prime
to p such that, for each such n, there exists a finite abelian group Hn of order prime

to p acting on 	Cspl
ΦH,δH

via morphisms compatible with 	psplΦH,ZH
, inducing canonical

morphisms 	Cspl
ΦH,δH

→ 	Cspl
ΦH,δH

/Hn
∼→ 	Cspl

ΦH,δH
over 	MZH,spl

H , whose composition we

denote as [n], such that [n]∗	Ψspl
ΦH,δH

(�) ∼= 	Ψspl
ΦH,δH

(n2�) ∼= 	Ψspl
ΦH,δH

(�)⊗n2

, for each
� ∈ SΦH . Moreover, for any OK-algebra R, the canonical morphism

(4.4.6) 	Ψspl
ΦH,δH

(�) ⊗
OK

R → [n]∗(	Ψ
spl
ΦH,δH

(n2�) ⊗
OK

R)

defined by adjunction identifies the left-hand side with a direct summand of the
right-hand side, consisting of Hn-invariants.
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Proof. This follows from [15, Lemma 8.1] and from repeated applications of Zariski’s
main theorem (see [7, III-1, 4.4.3, 4.4.11]), by considering the action of Hn on
	Cspl
ΦH,δH

induced by that on 	CΦH,δH , and the canonical morphism [n] : 	Cspl
ΦH,δH

→
	Cspl
ΦH,δH

induced by [n] : 	CΦH,δH → 	CΦH,δH . �

By Proposition 3.2.11, 	Ψspl
ΦH,δH

(�) is isomorphic to the pullback of 	ΨΦH,δH(�)

under the structural morphism 	Cspl
ΦH,δH

→ 	CΦH,δH . Therefore, by Lemma 4.4.5,

and by the same arguments as in the proofs of [15, Propositions 8.3 and 8.4], we
obtain the following two propositions:

Proposition 4.4.7 (cf. [15, Proposition 8.3]). Suppose � ∈ P∨,+
ΦH

. Then

Ri(	psplΦH,ZH
)∗(	Ψ

spl
ΦH,δH

(�) ⊗
OK

R) = 0

for all i > 0 and all OK-algebra R.

Proposition 4.4.8 (cf. [15, Proposition 8.4]). Suppose that SΦH
∼= Z, that � ∈ SΦH

is negative, and that the morphism 	psplΦH,ZH
has positive-dimensional fibers (which

is the case when the structural morphism 	pΦH,ZH : 	CΦH,δH → 	MZH
H does). Then

(	psplΦH,ZH
)∗(	ΨΦH,δH(�) ⊗

OF0,(p)

R) = 0

for all OF0,(p)-algebra R.

Let R be an OK-algebra. Let us define the formally canonical and subcanoni-

cal quasi-coherent sheaves over 	Mspl,tor
H,Σ by the obvious analogue of [15, Definition

8.5]. By definition, the pullback of a formally canonical (resp. subcanonical) quasi-

coherent sheaf over 	Mtor
H,Σ to 	Mspl,tor

H,Σ is formally canonical (resp. subcanonical). By

the same arguments as in the proofs of [15, Theorems 8.6 and 8.7], with the refer-
ences to [15, Theorem 6.1, and Propositions 8.3 and 8.4] there replaced with the
references to Theorem 3.4.1 and Propositions 4.4.7 and 4.4.8 here, we obtain the
following two theorems:

Theorem 4.4.9 (Vanishing of higher direct images; cf. [14, Theorem 3.9] and
[15, Theorem 8.6]). Suppose R is an OK-algebra, and suppose that E is a quasi-

coherent sheaf over 	Mspl,tor
H,Σ that is formally canonical (resp. formally subcanonical)

over R (as above). Let D′ be as in Corollary 4.4.4, and let

E (−nD′) := E ⊗
O�M

spl,tor
H,Σ

O�Mspl,tor
H,Σ

(−nD′),

for each integer n. Then

Ri(	
∮ spl

H,Σ
)∗E (−nD′) = 0

for all i > 0 and n > 0 (resp. n ≥ 0).

Theorem 4.4.10 (Koecher’s principle; compare with [14, Theorem 2.3] and [15,
Theorem 8.7]). Suppose O⊗

Z
Q is a simple algebra over Q. Suppose R is an

OK-algebra, and suppose that E is a quasi-coherent sheaf over 	Mspl,tor
H,Σ that is for-

mally canonical over R (as above). For each open subset Umin of 	Mspl,min
H , consider
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its preimage U tor in 	Mspl,tor
H,Σ under the canonical morphisms 	∮ spl

H,Σ
, and its preim-

age U in 	Mspl
H under the canonical morphism 	Mspl

H → 	Mspl,min
H . Then the canonical

restriction map

(4.4.11) Γ(U tor, E |Utor) → Γ(U,E |U )

is a bijection, except when dim(MH) = 1 and Umin − U �= ∅.
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