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ADDITIVE UNITS OF PRODUCT SYSTEMS

B. V. RAJARAMA BHAT, J. MARTIN LINDSAY, AND MITHUN MUKHERJEE

Abstract. We introduce the notion of additive units, or “addits”, of a pointed
Arveson system and demonstrate their usefulness through several applications.
By a pointed Arveson system we mean a spatial Arveson system with a fixed
normalised reference unit. We show that the addits form a Hilbert space whose
codimension-one subspace of “roots” is isomorphic to the index space of the
Arveson system and that the addits generate the type I part of the Arveson
system. Consequently the isomorphism class of the Hilbert space of addits is
independent of the reference unit. The addits of a pointed inclusion system
are shown to be in natural correspondence with the addits of the generated
pointed product system. The theory of amalgamated products is developed us-
ing addits and roots, and an explicit formula for the amalgamation of pointed
Arveson systems is given, providing a new proof of its independence of the
particular reference units. (This independence justifies the terminology “spa-
tial product” of spatial Arveson systems.) Finally a cluster construction for
inclusion subsystems of an Arveson system is introduced, and we demonstrate
its correspondence with the action of the Cantor–Bendixson derivative in the
context of the random closed set approach to product systems due to Tsirelson

and Liebscher.

Introduction

A basic goal of the study of quantum dynamics is the classification of E0-
semigroups, that is, suitably continuous one-parameter semigroups of unital *-
endomorphisms of B(H), the algebra of bounded operators on a separable Hilbert
space H ([3]). Each E0-semigroup is associated to an Arveson system, that is, a
suitably measurable one-parameter family of separable Hilbert spaces E = (Et)t>0

enjoying associative identifications Es+t � Es ⊗ Et via unitary operators, and con-
versely, to each such Arveson system there is an associated E0-semigroup. If co-
cycle conjugate E0-semigroups are identified and isomorphic Arveson systems are
too, then these associations are rendered mutually inverse ([1], [2]; see also [14]
and [29]).

A unit of an Arveson system is a nonzero measurable section (us)s>0, which
has the continuous factorisation property: us+t = us⊗ut, and Arveson systems are
classified into type I, type II and (nonspatial or) type III, according to whether their
set of units, respectively, generates the system, is nonempty but fails to generate
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the system, or is empty. Spatial Arveson systems have an associated index space;
this is a separable Hilbert space constructed from the set of units whose dimension
is called the index of the system. The index is an isomorphism invariant and is
additive under the tensor product operation on Arveson systems.

For type I Arveson systems the index is a complete invariant ([1]) and, for each
separable Hilbert space k, there is a paradigm type I system with index equal to
dim k, namely the Fock Arveson system Fk ([1]); this is described in the appendix.
The isomorphism classes of type II and type III systems are both known to be
uncountable ([23], [24], [37], [36]). There is currently a lack of good invariants to
distinguish these, and their classification is far from complete. Tsirelson has shown
measure types of random sets, and generalised Gaussian processes, to be fertile
sources of type II systems ([35], [34]); Liebscher has made a systematic study of
Tsirelson’s examples. To every product subsystem of an Arveson system E there
corresponds a commuting family of orthogonal projections satisfying evolution and
adaptedness relations, and the von Neumann algebra generated by them uniquely
determines a (probability) measure type of random closed subsets of the unit inter-
val. The measure types are stationary and factorising over disjoint intervals, and
they provide an isomorphism invariant for the Arveson system ([14]).

Completely positive contraction semigroups on operator *-algebras are called
quantum dynamical semigroups. For a separable Hilbert space H, every unital
quantum dynamical semigroup on B(H) dilates to an E0-semigroup, and the min-
imal dilation is unique up to cocycle conjugacy; this provides an approach to the
understanding of quantum dynamics ([4]). For E0-semigroups on C∗- and W ∗-
algebras, one may associate product systems of Hilbert modules ([20], [26], [27]).
Much of the theory of Arveson systems and E0-semigroups on B(H) carries over to
product systems of Hilbert modules and E0-semigroups on Ba(E), the algebra of
adjointable operators on a Hilbert module E. However there is no tensor product
operation for product systems of Hilbert modules. For pointed product systems
of Hilbert modules, that is, systems with a fixed normalised reference unit, Skeide
overcame this by introducing a notion of spatial product ([30]). In the spatial
product, units are identified and the index is again additive.

By a pointed Arveson system we mean a spatial Arveson system together with
a fixed normalised reference unit. For pointed Arveson systems (E , u) and (F , v),
Skeide’s spatial product may be identified with E⊗v∨u⊗F , the product subsystem
of the tensor product Arveson system E ⊗ F generated by E ⊗ v and u ⊗ F . This
raises the natural question, is this necessarily all of E ⊗F? Powers answered this in
the negative, by solving the corresponding equivalent problem for E0-semigroups
using his “sum construction” ([25]; see also [28], [7] and [31]). Motivated by this
question, the amalgamated product via a contractive morphism of Arveson systems
(which are not necessarily spatial) was introduced in [8] (see Section 5). This
generalises the spatial product of pointed Arveson systems since the latter may
be viewed as the amalgamated product via the morphism defined through Dirac
dyads of the normalized units. (It also answers Powers’ problem for the Powers
sum arising from not-necessarily-isometric intertwining semigroups.) A priori the
spatial product may depend on the reference units. Since, as Tsirelson has shown,
the automorphism group of an Arveson system may not act transitively on its set of
units ([38]), the answer to this dependency question is not obvious. It was settled
in the negative in [5]; see also [15]. Our work yields another proof of this fact.
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In this paper we introduce and systematically exploit the notions of addit and
root, for pointed Arveson systems. We also introduce a cluster construction for
product subsystems of an Arveson system; on the one hand the construction pro-
vides a new way of obtaining the type I part of a spatial Arveson system (The-
orem 6.8), and on the other hand it reflects the extraction of the derived sets of
random closed subsets of the unit interval in Liebscher’s correspondence (Theo-
rem 6.14). Whereas Liebscher’s work heavily relies on direct integral constructions
and the measure theory of random sets, by contrast our cluster construction (Def-
inition 6.2 et seq.) is done explicitly by elementary Hilbert space means, via an
inclusion subsystem.

The structure of this paper is as follows. In Sections 1 and 2, we give a brief
overview of the basic theory of product systems, Arveson systems and inclusion
systems, and set out the notation and terminology used in the paper. This in-
cludes an important implication of Liebscher’s work (Theorem 1.4). The appendix
describes the paradigm case of Fock Arveson systems Fk, for a separable Hilbert
space k, and introduces the “Guichardet picture” for these. In Section 3 addits and
roots are defined. These are additive counterparts to units; roots are addits which
are orthogonal to the reference unit. Addits comprise a Hilbert space with roots
occupying a codimension-one subspace. The roots of the pointed Arveson systems
(Fk,Ωk), in which Ωk is the vacuum unit, are shown to be indexed by the elements
of k itself, via an isometric isomorphism (Proposition 3.3). From this we show that,
for any normalised unit, the type I part of a spatial Arveson system is generated
by the unit together with its roots, and the dimension of the Hilbert space of roots
equals the index of the Arveson system (Theorem 3.7). Thus the isomorphism class
of the Hilbert space of addits of a pointed Arveson system (E , u) is independent of
the choice of unit u of the spatial Arveson system E . In Section 4, we extend the
notions of addit and root to pointed inclusion systems (E, u), and we establish a
natural bijection between the addits of such a system and the addits of (E , û), where
E is the generated (algebraic) product system and û is the normalised unit obtained
from u by “lifting” (Proposition 4.2). The behaviour of roots under amalgamated
products of both spatial and pointed Arveson systems is studied in Section 5. In
that section we give an explicit formula for the amalgamated product of pointed
Arveson systems (Theorem 5.6) which provides another proof of its independence of
the reference units, and thus also of the fact that, up to cocycle conjugacy, the Pow-
ers sum of E0-semigroups is independent of the choice of intertwining isometries.
In Section 6 we describe our cluster construction for subsystems F of an Arveson
system E ; we also summarise the relevant theory of hyperspaces. When E is spatial
and F is generated by a normalised unit, the cluster is shown to be the type I part
of E (Theorem 6.8). Finally, extending part of Proposition 3.33 of [14], we show
that the measure type corresponding to a subsystem and the measure type of its
cluster are precisely related via the Cantor–Bendixson derivative (Theorem 6.14).

Some notational conventions. For Hilbert space vectors u ∈ H and x ∈ K, |x〉〈u|
denotes the bounded operator H → K, v 	→ 〈u, v〉x (inner products being linear in
their second argument). For a subset A of the domain of a vector-valued function
g, gA denotes the function which equals g except that it takes the value 0 outside A
(cf. indicator function notation). We use P to denote power set, and � for subset
of finite cardinality.
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1. Product systems

In this section we briefly recall the basic concepts of continuous product systems
of Hilbert spaces and thereby establish our basic notation. Key references are
Arveson’s monograph ([3]) and Liebscher’s memoir ([14]).

Definition 1.1. An (algebraic) product system E consists of a family of Hilbert
spaces (Et)t>0 with associated unitary structure maps

BE
s,t : Es+t → Es ⊗ Et, (s, t > 0),

satisfying the natural consistency conditions

(IEr ⊗BE
s,t)B

E
r,s+t = (BE

r,s ⊗ IEt )B
E
r+s,t, (r, s, t > 0),

where IEs := IEs
(s > 0). It is called an Arveson system if each fibre Et is separable

and the system is endowed with measurable structure: the families (Et)t>0 and
(BE

s,t)s,t>0 are both “measurable”.

Remarks.
(i) In the literature, the structure maps are usually taken to be the adjoints

W E
s,t = (BE

s,t)
∗ : Es ⊗Et → Es+t. Here we use the equivalent B’s instead in order to

maintain consistency with inclusion systems (defined below).
(ii) For the precise meaning of measurability meant here, we refer to [3] and the

essentially equivalent formulation given in [14].
(iii) Frequently one supresses the structure maps and identifies Es+t and Es⊗Et,

or writes x·y for the preimage in Es+t of x⊗ y when x ∈ Es and y ∈ Et.
(iv) If dim Et = 1 for each t > 0, then a choice of unit vector ut ∈ Et for each

t > 0 reduces the consistency condition to the multiplier relation

m(s, t)m(r, s+ t) = m(r, s)m(r + s, t)

for the map m : R>0 × R>0 → T given by m(s, t)us ⊗ ut = BE
s,tus+t.

Definition 1.2. Let E be a product system and let T > 0. The family of unitary

operators UE,T = (UE,T
t )t∈R on ET defined by periodic extension of the prescription

UE,T
t =

{
IET if t = 0,
(BE

t,T−t)
∗ΠT

t B
E
T−t,t if 0 < t < T,

in which ΠT
t denotes the tensor flip ET−t ⊗ Et → Et ⊗ ET−t, is called the unitary

flip group on ET .

It is easily verified that UE,T = (UE,T
t )t∈R forms a one-parameter group.

Theorem 1.3 ([14], Theorem 7.7). Let E be a product system and let τ > 0. Then
the following are equivalent :

(i) E is an Arveson system with respect to some measurable structure.
(ii) For all t > 0, Et is separable, and for all T ∈ ]0, τ [ , UE,T is strongly con-

tinuous.

Let E be a product system and suppose that, for each t > 0, Ft is a closed
subspace of Et and that, for each s, t > 0, BE

s,t(Fs+t) = Fs⊗Ft. Then F = (Ft)t>0

is a product system with structure maps BF
s,t : Fs+t → Fs ⊗Ft (s, t > 0) given by

compression of the structure maps of E . Such systems are called product subsystems
of E .
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The following automatic measurability result is a significant consequence of Lieb-
scher’s approach to product systems. Note that in his approach the parameter set
of an Arveson system E is extended to R+, with E0 = C.

Theorem 1.4. Let F be a product subsystem of an Arveson system E . Then F
is an Arveson subsystem; in other words the measurable structure of E induces
measurable structure on F .

Proof. Let (en)n�1 be a family of sections of E determining its measurable structure.
We must show that

(a) the sections
(
Pte

n
t

)
n�1

are measurable and

(b) the family of operators
(
WF

s,t := V ∗
s+tW

E
s,t(Vs ⊗ Vt)

)
s,t�0

is measurable

for the inclusion operators Vt : Ft → Et and orthogonal projections Pt := VtV
∗
t =

PFt
. Without loss of generality we may suppose that (ent )n�1 is an orthonormal

basis of Et for all t > 0; moreover it suffices to prove (a) and (b) for these for s and
t ranging over ]0, 1[ (see [14]).

Let
(
PF
s,t

)
0�s,t�1

be the strongly continuous family of orthogonal projections in

B(E1) defined in (5.1) below, and set e := e1. By Parseval’s identity, the measur-
ability of t 	→ ept · e

q
1−t (p, q ∈ N), and the strong continuity of t 	→ PF

0,t it follows
that, for all l,m � 1 and t ∈ [0, 1],

〈elt, Pte
m
t 〉 = 〈elt · e1−t, P

F
0,t(e

m
t · e1−t)〉

=
∑
p,q�1

〈elt · e1−t, e
p
1〉 〈PF

0,te
p
1, e

q
1〉 〈e

q
1, e

m
t · e1−t〉,

which is now manifestly measurable in t. This proves (a). By another application
of Parseval’s identity, we see that

〈V ∗
s+te

l
s+t,W

F
s,t(V

∗
s e

m
s ⊗ V ∗

t e
n
t )〉 = 〈els+t,W

E
s,t(Pse

m
s ⊗ Pte

n
t )〉

=
∑
p,q�1

〈els+t,W
E
s,t(e

p
s ⊗ eqt )〉 〈eps, Pse

m
s 〉 〈eqt , Pte

n
t 〉

for l,m, n � 1 and s, t ∈ [0, 1], so (b) follows from (a). �

Given two product subsystems E1 and E2 of a product system E , the smallest
product system of E containing E1 and E2 is denoted E1∨E2. Thus, by Theorem 1.4,
if E is an Arveson system, then E1 ∨ E2 is an Arveson subsystem of E .

Definition 1.5. Let E and F be product systems. A family of bounded operators
φ = (φt : Et → Ft)t>0 is a morphism of product systems if it satisfies

BF
s,t φs+t = (φs ⊗ φt)B

E
s,t, (s, t > 0)

and the quasicontractivity condition e−kt‖φt‖ � 1 (t > 0), for some k ∈ R; it is an
isomorphism if each φt is unitary. Amorphism of Arveson systems is a morphism of
the underlying product systems which consists of a measurable family of operators.

Theorem 1.6 ([14], Corollary 7.16). Let φ : E → F be an isomorphism of prod-
uct systems. Suppose that E and F are Arveson systems. Then φ and φ−1 are
measurable, and thus φ is an isomorphism of Arveson systems.
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Definition 1.7. Let E be an Arveson system. A unit of E is a nonzero measurable
section of E satisfying

us+t = us·ut, (s, t > 0);

it is normalised if it satisfies ‖ut‖ = 1 (t > 0). The collection of units of E ,
respectively, normalised units of E , is denoted UE , respectively UE

1 , and E is called
spatial if UE �= ∅.

The type I part of E , denoted EI , is the smallest product subsystem of E con-
taining all the units of E , and E is said to be of type I if EI is E itself. Thus, for a
spatial Arveson system E ,

EI
T = Lin

{
u1
t1 · · · · ·u

n
tn : n ∈ N, u1, . . . , un ∈ UE , t ∈ J

(n)
T

}
(T > 0),

where J
(n)
T := {t ∈ (R>0)

n :
∑

ti = T}.

Let E be a spatial Arveson system. For each u, v ∈ UE , the function t 	→ 〈ut, vt〉
is measurable and satisfies Cauchy’s multiplicative functional equation f(s + t) =
f(s)f(t), and so there is γ(u, v) ∈ C such that 〈ut, vt〉 = etγ(u,v) (t > 0). The
resulting map γ : UE × UE → C is called the covariance function of E . It is
conditionally positive definite:

∑
λiλjγ(u

i, uj) � 0 for n ∈ N, u1, . . . , un ∈ UE and
λ1, . . . , λn ∈ C satisfying

∑
λi = 0. It follows that the prescription

〈f, g〉 :=
∑

u,v∈UE

γ(u, v)f(u)f(v)

defines a nonnegative sesquilinear form on the vector space

V :=
{
f : UE → C

∣∣∣ supp f � UE ,
∑

u∈UE
f(u) = 0

}
.

Quotienting out by the null space {f ∈ V : 〈f, f〉 = 0} and completing yields a
Hilbert space k(E), called the index space of E ; its dimension, denoted ind E , is
called the index of E .

The index is an isomorphism invariant for Arveson systems: if E1 ∼= E2, then
k(E1) ∼= k(E2).

Example 1.8. Our notation for Fock Arveson systems are given in the appendix.
The covariance function of the Fock Arveson system Fk is given by

γ
(
(eλtεct)t>0, (e

μtεdt )t>0

)
= λ+ μ+ 〈c, d〉 (c, d ∈ k, λ, μ ∈ C).

These Arveson systems are of type I and satisfy

k(Fk) ∼= k.

Thus Fk1 ∼= Fk2 implies k1 ∼= k2. Conversely, EI ∼= Fk(E) for any Arveson system
E .

The following notion plays a central role in this paper from Section 3 onwards.

Definition 1.9. A pointed Arveson system is an ordered pair (E , u) consisting of
a spatial Arveson system E and a fixed normalised unit u, which we refer to as the
reference unit.

Remarks. Our terminology is a refinement of Liebscher’s (in [15]); his is in conflict
with the now-common use of the term spatial Arveson system (as defined above).

There is an obvious notion of isomorphism for pointed Arveson systems.
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By means of Fock–Weyl operators (see the appendix), it is easily seen that, for
a type I Arveson system E , the family of pointed systems {(E , u) : u ∈ UE

1 } are all
isomorphic. However, in view of a theorem of Tsirelson ([38]), this need not be true
for type II Arveson systems.

2. Inclusion systems

In this section we introduce notation for inclusion systems and recall their basic
theory. We also describe the Fock inclusion systems. Inclusion systems are defined
like product systems except that their structure maps are only required to be iso-
metric. They arise very often in quantum dynamics. For instance, the product
system associated with a completely positive semigroup on the algebra of bounded
operators on a separable Hilbert space is in fact the product system generated by
an inclusion system derived from the semigroup ([9], [20], [19], [26], [8]). Our ba-
sic reference is [8], where inclusion systems were introduced. Shalit and Solel also
studied them, in a more abstract setting, under the name subproduct systems ([26]).

Definition 2.1. An inclusion system E is a family of Hilbert spaces (Et)t>0 to-
gether with isometric structure maps βE

s,t : Es+t → Es ⊗ Et (s, t > 0) satisfying

(IEr ⊗ βE
s,t) β

E
r,s+t = (βE

r,s ⊗ IEt ) βE
r+s,t (r, s, t > 0),

where IEs := IEs
(s > 0).

Remark. Thus a product system is an inclusion system whose structure maps are
unitary.

Definition 2.2. Let E be an inclusion system. If, for all t > 0, Ft is a closed
subspace of Et and, for all s, t > 0, βE

s,t(Fs+t) ⊂ Fs ⊗ Ft, then the isometries

βF
s,t : Fs+t → Fs ⊗ Ft (s, t > 0) induced by compression render F an inclusion

system. Such systems are called inclusion subsystems of E.

We now define the product system generated by an inclusion system. It is an
inductive limit construction.

Notation. For T > 0, set

JT :=

∞⋃
n=1

J
(n)
T , where J

(n)
T :=

{
t ∈ (R>0)

n :
∑

ti = T
}
,

and for S, T > 0, m,n ∈ N, s ∈ J
(m)
S and t ∈ J

(n)
T , set

s � t := (s1, . . . , sm, t1, . . . , tn) ∈ J
(m+n)
S+T .

A partial order on JT is defined as follows. For r ∈ J
(m)
T and s ∈ JT ,

s � r if s = r1 � · · · � rm, where ri ∈ Jri for i = 1, . . . ,m.

Thus (T ) � t for all t ∈ JT . The partially ordered set JT is directed:

∀r,s∈JT
∃t∈JT

: t � r and t � s.

Let E be an inclusion system and fix T > 0 for now. For t ∈ J
(n)
T , set Et :=

Et1 ⊗ · · · ⊗ Etn ; thus E(T ) = ET . Define isometries
(
βE
s,t : Es → Et

)
s�t in JT

as
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follows: for p ∈ N and r ∈ J
(p)
R set

βE
R,r =

⎧⎨⎩
IER if r = (R),(
IEr1 ⊗ · · · ⊗ IErp−2

⊗ βE
rp−1,rp

)
· · ·

(
IEr1 ⊗ βE

r2,r3+···+rp

)
βE
r1,r2+···+rp otherwise,

and for s � t with s ∈ J
(m)
T and t = s1 � · · · � sm,

βE
s,t := βE

s1,s1 ⊗ · · · ⊗ βE
sm,sm .

Thus βE
s,s = IEs := IEs

.

For T > 0,
(
(Et)t∈JT

, (βE
r,s)r�s∈JT

)
forms an inductive system of Hilbert spaces:

βE
t,t = IEt (t ∈ JT ) and βE

s,t β
E
r,s = βE

r,t, (r � s � t in JT ).

Let
(
ET , (ıEt : Et → ET )t∈JT

)
denote its inductive limit. For ease of reference, we

list its key properties:

(i) Minimality. ET is a Hilbert space satisfying ET =
∨

t∈JT
Ran ıEt .

(ii) Isometry. ıEt is an isometry (t ∈ JT ) and ıEs ◦ βE
r,s = ıEr (r � s in JT ).

(iii) Subnet property. For any K ⊂ JT such that ∀s∈JT
∃t∈K : t � s, the

inductive limit of
(
(Et)t∈K , (βE

r,s)r�s in K

)
equals

(
ET , (ıEt : Et → ET )t∈K

)
.

(iv) Universal property. For K ⊂ JT as in (iii) and any family of Hilbert space
isometries (jt : Et → H)t∈K satisfying js ◦ βE

r,s = jr (r � s in K), there is

a unique isometry j : ET → H such that jt = j ◦ ıEt (t ∈ K).

Now let R,S > 0 and set JR � JS := {r � s : r ∈ JR, s ∈ JS}. For t ∈ JR+S

there are r ∈ JR and s ∈ JS such that r � s � t. Therefore, by the sub-
net property (iii), the inductive limit of

(
(Et)t∈JR�JS

, (βE
u,v)u�v in JR�JS

)
equals(

ET , (ıEt : Et → ET )t∈JR�JS

)
, where T = R+ S. For r, r′ ∈ JR and s, s′ ∈ JS such

that r � s � r′ � s′, necessarily r � r′ and s � s′, so

(ıEr′ ⊗ ıEs′) ◦ βE
r�s,r′�s′ = (ıEr′ ◦ βE

r,r′)⊗ (ıEs′ ◦ βE
s,s′) = ıEr ⊗ ıEs .

The family
(̃
ıt : Et → ER ⊗ ES)t∈JR�JS

)
, in which ı̃r�s := ıEr ⊗ ıEs , satisfies

ı̃t′ ◦ βE
t,t′ = ı̃t for t � t′ in JR � JS . Therefore, by the universal property (iv),

there is a unique isometry BE
R,S : ER+S → ER ⊗ ES such that ı̃t = BE

R,S ◦ ıEt
(t ∈ JR � JS), equivalently ıEr ⊗ ıEs = BE

R,S ◦ ıEr�s (r ∈ JR, s ∈ JS). It follows

from the minimality property (i) that RanBE
R,S = ER ⊗ ES , so BE

R,S is unitary. It
is now easily verified that, for R,S, T > 0, r ∈ JR, s ∈ JS and t ∈ JT ,

(BE
R,S ⊗ IET )B

E
R+S,T ◦ ıEr�s�t and (IER ⊗BE

S,T )B
E
R,S+T ◦ ıEr�s�t

both equal ıEr ⊗ ıEs ⊗ ıEt . Since
⋃

u∈JR�JS�JT
Ran ıEu is total in ER+S+T , it follows

that (BE
R,S⊗IET )B

E
R+S,T = (IER⊗BE

S,T )B
E
R,S+T (R,S, T > 0). In the above notation,

we have established the following theorem.

Theorem 2.3 ([8], Theorem 5). The family (ET )T>0 defined above forms a product
system with respect to the structure maps (BE

S,T )S,T>0.

As mentioned above, this is called the product system generated by E.

Theorem 2.4. Let E be a product system and let F be an inclusion subsystem.
Then the product system generated by F may be viewed as a product subsystem
of E .
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Proof. Let F be the product system generated by F . We need to obtain an isometric
morphism of product systems j : F → E .

Let T > 0. Consider the isometries (BE
T,t)

∗|Ft
: Ft → ET (t ∈ JT ). For r � s in

JT ,

(BE
T,s)

∗|Fs
◦ βF

r,s = (BE
T,s)

∗BE
r,s|Fr

= (BE
T,r)

∗|Fr
.

Therefore, by the universal property (iv), there is a unique isometry jT : FT → ET
such that jT ◦ ıFt = (BE

T,t)
∗|Ft

for the canonical maps ıFt : Ft → FT (t ∈ JT ).
Now fix S, T > 0. In view of the identity

BE
S+T,s�t = (BE

S,s ⊗BE
T,t)B

E
S,T , (s ∈ JS , t ∈ JT ),

which is not hard to verify,

BE
S,T ◦ jS+T ◦ ıFs�t = BE

S,T ◦ (BE
S+T,s�t)

∗|Fs�t
= (BE

S,s ⊗BE
T,t)

∗|Fs⊗Ft
,

and so, since

(jS ⊗ jT ) ◦BF
S,T ◦ ıFs�t = (jS ⊗ jT ) ◦ (ıFs ⊗ ıFt ) = (BE

S,s)
∗|Fs

⊗ (BE
T,t)

∗|Ft
,

the operators BE
S,T ◦ jS+T and (jS ⊗ jT ) ◦BF

S,T agree on the set
⋃

u∈JS�JT
Ran ıFu

which is total in FS+T . It follows that the family of isometries (jT : FT → ET )T>0

forms a morphism of product systems, as required. �

Definition 2.5. Let E and F be inclusion systems. A morphism E → F is a
family of bounded operators A = (At : Et → Ft)t>0 satisfying the compatibility
condition

(2.1) As+t = (βF
s,t)

∗(As ⊗At)β
F
s,t (s, t > 0),

and the quasicontractivity condition e−kt‖At‖ � 1 (t > 0) for some k ∈ R. It
is called a strong morphism if (2.1) is strengthened to βF

s,tAs+t = (As ⊗ At)β
F
s,t

(s, t > 0).
A unit of E is a nonzero quasicontractive section u of E satisfying

us+t = (βE
s,t)

∗us ⊗ ut (s, t > 0);

it is called a strong unit if this is strengthened to βE
s,tus+t = us ⊗ ut (s, t > 0).

Remark. A section x of an inclusion system E may be thought of as a family of
bounded operators X = (Xt := |xt〉〈1| : Ct → Et)t>0, where (Ct)t>0 is the one-
dimensional inclusion system with Ct = C (t > 0) and βC

s,t : λ 	→ λ ⊗ 1 = λ
(s, t > 0). Then x is a (strong) unit if and only if X is a (strong) morphism.

Theorem 2.6 ([8], Theorem 10). Let E be the product system generated by the
inclusion system E. Then the family of canonical maps ıE := (ıEt : Et → Et)t>0

forms a strong isometric morphism of inclusion systems. Moreover (ıE)∗ := ((ıEt )
∗ :

Et → Et)t>0 restricts to a bijection from the set of units of E to the set of units of
E, whose inverse is denoted by u 	→ û.

Remarks. (i) The quasicontractivity condition on units is crucial for the above
result.

(ii) The unit û of E is called the lift of the unit u of E; u = (ıE)∗(û).
(iii) For units u and v of E and T > 0,

〈ûT , v̂T 〉 = lim
t∈JT

〈ut, vt〉



2614 RAJARAMA BHAT, MARTIN LINDSAY AND MITHUN MUKHERJEE

where, for n ∈ N and t ∈ J
(n)
T , ut := ut1 ⊗ · · · ⊗ utn . In particular, û is normalised

if u is normalised.
(iv) Similarly (see [8], Theorem 11), every morphism of inclusion systems A :

E → F lifts to a unique morphism Â : E → F of the generated product systems.

In terms of the corresponding canonical morphisms, At = (ıFt )
∗Ât ı

E
t (t > 0). The

map A → Â is a bijection between the corresponding spaces of morphisms which
respects both isometry and unitarity.

We end this section with a key example.

Example 2.7 (Fock inclusion systems.). Let k be a separable Hilbert space. The
Fock Arveson system over k, denoted Fk, is defined in the appendix, where the
Guichardet picture of it is also described. In the notation used there, the Fock
inclusion system over k, denoted F k, is defined as follows:

F k
t = K̂t := C⊕ Kt

⊂ Γ(Kt) = Fk
t , (t > 0)

and, in terms of the canonical identifications

K̂s ⊗ K̂t = C⊕ Ks ⊕ Kt ⊕ (Ks ⊗ Kt) and

K̂r ⊗ K̂s ⊗ K̂t = C⊕ Kr ⊕ Ks ⊕ Kt ⊕ Kr,s,t, where

Kr,s,t := (Kr ⊗ Ks ⊕ Kr ⊗ Kt ⊕ Ks ⊗ Kt)⊕ (Kr ⊗ Ks ⊗ Kt), (r, s, t > 0),

its structure maps are defined as follows: for s, t > 0 and (λ, g) ∈ F k
s+t,

βF,k
s,t (λ, g) =

(
λ, g[0,s[, (S

k
s)

∗g[s,s+t[, 0
)
∈ C⊕ Ks ⊕ Kt ⊕ (Ks ⊗ Kt)

or, in the notation Ωt = (1, 0) ∈ K̂t,

βF,k
s,t (λ, g) = λΩs ⊗ Ωt +

(
0, g[0,s[

)
⊗ Ωt +Ωs ⊗

(
0, (Sk

s)
∗g[s,s+t[

)
∈ K̂s ⊗ K̂t.

For r, s, t > 0 and (λ, g) ∈ F k
r+s+t,(

λ, g[0,r[, (S
k
r)

∗g[r,r+s[, (S
k
r+s)

∗g[r+s,r+s+t[, 0
)
∈ C⊕ Kr ⊕ Ks ⊕ Kt ⊕ Kr,s,t

is a common expression for

(βF,k
r,s ⊗ I)βF,k

r+s,t(λ, g) and (I ⊗ βF,k
s,t )β

F,k
r,s+t(λ, g).

In terms of the subspace inclusions jkt : F
k
t → Fk

t (t > 0), the structure maps of the
inclusion system F k and Arveson system Fk are related by

BF ,k
s,t ◦ jks+t = (jks ⊗ jkt) ◦ β

F,k
s,t , (s, t > 0).

Thus F k is an inclusion subsystem of Fk.
In Corollary 3.6 below, we verify that F k generates the Fock Arveson system Fk.

Remark. The failure of the Fock inclusion system F k to be a product system is
already clearly seen through the identity

K̂s ⊗ K̂t � RanβF,k
s,t = Ks ⊗ Kt, (s, t > 0).
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3. Addits of pointed Arveson systems

In this section we introduce the additive counterpart to the multiplicative notion
of unit. This requires the fixing of a reference unit of the Arveson system and so is
relevant to spatial Arveson systems. We show that the space of addits then has a
natural Hilbert space structure with a one-dimensional subspace of ‘trivial’ addits.
Elements of the orthogonal complement of this subspace are called roots and, when
the reference unit is normalised, the subspace of roots is shown to be isomorphic
to the index space of the Arveson system. This isomorphism is established by first
revealing the root space of a Fock Arveson system with respect to the vacuum unit.

Definition 3.1. Let (E , u) be an Arveson system with (not necessarily normalised)
unit. An addit of (E , u) is a measurable section a of E satisfying

as+t = as·ut + us·at, (s, t > 0);

a root of (E , u) is an addit a satisfying

ut ⊥ at, (t > 0).

Remarks.
(i) The set of addits of (E , u) forms a subspace, denoted AE

u, of the space of
measurable sections of E , as does the set of roots, denoted RE

u.
(ii) Normalisation. Let a ∈ AE

u and λ ∈ C. Then

b := (eλtat)t>0 ∈ AE
v for the unit v := (eλtut)t>0.

(iii) Trivial addits. For λ ∈ C, (λtut)t>0 ∈ AE
u. We refer to these as trivial addits

of (E , u) and write T E
u for the space of these. Note that

T E
u ∩RE

u = {0}
and, for a, b ∈ T E

u ,

〈at, bt〉 = t2〈a1, b1〉‖ut‖2/‖u1‖2.
(iv) Direct sum decomposition. For a ∈ AE

u, define

aTriv :=
( 〈ut, at〉

‖ut‖2
ut

)
t>0

and aRoot := a− aTriv.

Claim. aTriv ∈ T E
u and aRoot ∈ RE

u, so AE
u = T E

u ⊕ RE
u.

Since

〈ut, a
Root
t 〉 = 〈ut, at〉 − 〈ut, at〉 = 0, (t > 0),

it remains to show that aTriv is a trivial addit of (E , u). Since
〈us+t, as+t〉
‖us+t‖2

=
〈us, as〉
‖us‖2

+
〈ut, at〉
‖ut‖2

, (s, t > 0),

the measurable function fa : R>0 → C, t 	→ 〈ut, at〉/‖ut‖2 satisfies Cauchy’s addi-
tive functional equation, and so fa(t) = fa(1)t. In other words aTriv = (λtut)t>0,
where λ = ‖u1‖−2〈u1, a1〉. In particular aTriv ∈ T E

u .
(v) Let a, b ∈ RE

u, and suppose that u is normalised. Then

〈as+t, bs+t〉 = 〈as, bs〉〈ut, ut〉+ 〈us, us〉〈at, bt〉
= 〈as, bs〉+ 〈at, bt〉, (s, t > 0).
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Therefore, appealing to measurability once more,

〈at, bt〉 = t〈a1, b1〉, (t > 0).

(Cf. (iii).)

The above remarks indicate the usefulness of the notion of a pointed Arveson
system (Definition 1.9).

Notation. To a pointed Arveson system (E , u) we associate the family of bounded

operators (θE,ut )t>0 defined by

θE,ut := tPCu1
+

√
tP⊥

Cu1
∈ B(E1), (t > 0).

Remarks. Let a, b ∈ AE
u for a pointed Arveson system (E , u). For all t > 0,

aTrivt = taTriv1 = t〈u1, a1〉u1 = tPCu1
a1,

〈ut, b
Root
t 〉 = 〈ut, bt〉 − 〈ut, b

Triv
t 〉 = 0, so aTrivt ⊥ bRoot

t ,

〈at, bt〉 = 〈aTrivt , bTrivt 〉+ 〈aRoot
t , bRoot

t 〉
= t2〈aTriv1 , bTriv1 〉+ t〈aRoot

1 , bRoot
1 〉 = 〈θta1, θtb1〉, where θt := θE,ut .

Proposition 3.2. Let (E , u) be a pointed Arveson system. Then the prescription

(3.1) 〈a, b〉 := 〈a1, b1〉E1

endows the vector space AE
u with the structure of a Hilbert space for which the direct

sum decomposition
AE

u = T E
u ⊕RE

u

is an orthogonal decomposition.

Proof. Set θt := θE,ut (t > 0).
Clearly (3.1) defines a nonnegative sesquilinear form on AE

u. Suppose that a ∈ AE
u

satisfies 〈a, a〉 = 0. Then a1 = 0 and thus ‖at‖ = ‖θta1‖ = 0 (t > 0), so a = 0.
Thus (3.1) defines an inner product on AE

u. Suppose next that (a(n)) is a Cauchy
sequence with respect to the induced metric on AE

u. Then, for all t > 0,

‖a(n)t − a
(m)
t ‖ = ‖θta(n)1 − θta

(m)
1 ‖E1

� ‖θt‖‖a(n)1 − a
(m)
1 ‖E1

= max{t,
√
t}‖a(n)1 − a

(m)
1 ‖E1

(n,m ∈ N), so (a
(n)
t ) is Cauchy, and thus convergent, in Et. Set at := limn→∞ a

(n)
t ∈

Et (t > 0). Then a is a measurable section of E satisfying

as+t = lim
n→∞

a
(n)
s+t = lim

n→∞

(
a(n)s ·ut + us·a(n)t

)
= as·ut + us·at, (s, t > 0),

so a ∈ AE
u. Moreover

‖a(n) − a‖ = ‖a(n)1 − a1‖E1
→ 0 as n → ∞.

Therefore AE
u is complete and is thus a Hilbert space with respect to the inner

product (3.1).
It remains to show that (T E

u )
⊥ = RE

u. It follows from the remarks above that
RE

u ⊂ (T E
u )

⊥; the reverse inclusions follow since

a ∈ (T E
u )

⊥ =⇒ aTriv1 =
〈u1, a1〉
‖u1‖2

u1 = 0 =⇒ aTriv = 0 =⇒ a ∈ RE
u.

�
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We next find the roots of the pointed Fock Arveson system (Fk,Ωk), for a sep-
arable Hilbert space k, by working in the Guichardet picture (described in the
appendix). Thus

Ωk
t = δ∅ ∈ Fk

t , (t > 0)

and, for c ∈ k, we define the measurable section χc := (c[0,t[)t>0 of Fk in which

c[0,t[(σ) =

{
c if σ ∈ Γ

(1)
[0,t[,

0 otherwise.

Remark. Both Ωk and each χc are actually sections of the Fock inclusion system
F k.

Proposition 3.3. Let k be a separable Hilbert space. The prescription

(3.2) c 	→ χc, (c ∈ k)

defines an isometric isomorphism from k to RF ,k
Ω , the space of roots of the pointed

Arveson system (Fk,Ωk).

Proof. Abbreviate (Fk,Ωk) to (F ,Ω) and RF ,k
Ω to RΩ, and let Kt be as in the

appendix.

Claim 1. χc ∈ RΩ (c ∈ k).

Fix c ∈ k. Let s, t > 0; then for a.a. σ

(χc
s·Ωt +Ωs·χc

t)(σ)

= χc
s

(
σ ∩ [0, s[

)
δ∅
(
σ ∩ [s, s+ t[

)
+ δ∅

(
σ ∩ [0, s[

)
χc
t

(
(σ ∩ [s, s+ t[)− s

)
=

{
c if σ ∈ Γ(1), and either σ ⊂ [0, s[ or σ ⊂ [s, s+ t[,
0 otherwise

=

{
c if σ ∈ Γ

(1)
s+t,

0 otherwise

= χc
s+t(σ),

so χc
s+t = χc

s·Ωt +Ωs·χc
t (s, t > 0). Since χc

t ⊥ Ωt (t > 0), it follows that χc ∈ RΩ.

Now let a ∈ RΩ and set c = V ∗a1 ∈ k, where V is the isometry k → K1 ⊂ F1,
c 	→ χc

1.

Claim 2. ess-supp at ⊂ Γ
(1)
t (t > 0).

Fix t > 0. For q ∈ Q∩ ]0, t[, at = aq·Ωt−q +Ωq· at−q so, for a.a. σ,

at(σ) = 1Γ[0,t[
(σ)

[
aq
(
σ∩ [0, q[

)
δ∅
(
(σ∩ [q, t[)−q

)
+δ∅

(
σ∩ [0, q[

)
at−q

(
(σ∩ [q, t[)−q

)]
,

and therefore
at(σ) = 0 unless either σ ⊂ [0, q[ or σ ⊂ [q, t[.

Thus, by the countability of Q, there is a null set N of Γ[0,t[ such that

∀σ∈Γ[0,t[\N ∀q∈Q∩ ]0,t[ : at(σ) = 0 unless σ ⊂ [0, q[ or σ ⊂ [q, t[.

For σ = {s1 < · · · < sn} ∈ Γ
(�2)
[0,t[ \ N , choosing q ∈ Q such that s1 < q < s2, we

have σ �⊂ [0, q[ and σ �⊂ [q, t[ so at(σ) = 0. Thus ess-supp at ⊂ Γ
(�1)
[0,t[ . Since a is a

root of (F ,Ω), 0 = 〈Ωt, at〉 = at(∅), thus ess-supp at ⊂ Γ
(1)
[0,t[.
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Claim 3. a = χc.

Fix t > 0. By the proven Claims 2 and 1, at, χ
c
t ∈ Kt ⊂ Ft and a, χc ∈ RΩ. It

follows that, for each e ∈ k and s ∈]0, t[,

〈at, e[0,s[〉 = 〈as·Ωt−s +Ωs· at−s, χ
e
s·Ωt−s〉

= 〈as, χe
s〉

= s〈a1, χe
1〉 = s〈c, e〉 = 〈c[0,t[, e[0,s[〉 = 〈χc

t , e[0,s[〉.

Therefore, since at, χ
c
t ∈ Kt and the set {e[0,s[ : e ∈ k, 0 < s < t} is total in Kt,

at = χc
t . Thus a = χc.

The prescription (3.2) therefore defines a bijection k → RΩ. The bijection is
manifestly linear and, since ‖χc‖RΩ

= ‖χc
1‖ = ‖c[0,1[‖ = ‖c‖k (c ∈ k), it is isometric

too and thus an isometric isomorphism. �

Corollary 3.4. Let (E , u) =
(
Fk1 ⊗Fk2 ,Ωk1 ⊗Ωk2

)
for separable Hilbert spaces k1

and k2. Then, in the above notation,

RE
u =

(
RF ,k1

Ω ⊗ Ωk2
)
⊕
(
Ωk1 ⊗RF ,k2

Ω

)
.

Proof. Set k = k1 ⊕ k2.
Under the natural isomorphism of pointed Arveson systems (Fk,Ωk) → (E , u),

the unit εe of Fk maps to the unit εe1 ⊗ εe2 of E , for e = (e1, e2) ∈ k. Therefore,
for c = (c1, c2) ∈ k, the root χc of (Fk,Ωk) maps to the root χc1,c2 of (E , u) given
by

χc1,c2
t = lim

λ→0
λ−1

(
ελc1t ⊗ ελc2t − Ωk1 ⊗ Ωk2

)
= χc1

t ⊗ Ωk2
t +Ωk1

t ⊗ χc2
t , (t > 0).

In view of the orthogonality relation

χc1
t ⊗ Ωk2

t ⊥ Ωk1
t ⊗ χc2

t , (c1 ∈ k1, c2 ∈ k2, t > 0),

the result follows. �

Our goal now is to show that the addits of a pointed Arveson system generate
the type I part of the Arveson system. We first show this for type I systems.

Lemma 3.5. Let k be separable Hilbert space. Then the vacuum unit and its roots
generate the Fock Arveson system Fk.

Proof. Since the set of roots of (Fk,Ωk) is {χc : c ∈ k}, and Fk is generated by its
units {(eλtεct)t>0 : c ∈ k, λ ∈ C}, it suffices to prove that

(
Ωk

2−nt + χc
2−nt

)· 2n → εct as n → ∞ (c ∈ k, t > 0).

Thus fix c ∈ k and t > 0, and set xn := Ωk
2−nt +χc

2−nt (n ∈ N). Since ‖(xn)
· 2n‖2 =

(1 + 2−nt‖c‖2)2n � et‖c‖
2

= ‖εct‖2 (n ∈ N), it suffices to prove that

〈
ε(g), (xn)

· 2n〉 → 〈ε(g), εct〉 as n → ∞
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for all right continuous step functions g ∈ Kt whose discontinuities lie in the set
{j2−N t : j,N ∈ N}. Thus fix such a step function g =

∑p
i=1 d

i−1
[si−1,si[

in which

s0 = 0 and sp = t. Then, for sufficiently large n,

si = 2−nki(n)t for some ki(n) ∈ N (i = 1, . . . , p).

It therefore follows, by Euler’s exponential formula, that

〈ε(g), (xn)
· 2n〉 =

p∏
i=1

〈
ε(di−1

[0,si−si−1[
), (xn)

· (ki(n)−ki−1(n))
〉

=

p∏
i=1

(
1 + 2−nt 〈di−1, c〉

)ki(n)−ki−1(n)

=

p∏
i=1

(
1 +

si − si−1

ki(n)− ki−1(n)
〈di−1, c〉

)ki(n)−ki−1(n)

→
p∏

i=1

e(si−si−1)〈di−1,c〉 = 〈ε(g), εct〉 as n → ∞,

as required. �

Corollary 3.6. Let k be a separable Hilbert space. Then the product system gen-
erated by the Fock inclusion system F k is the Fock Arveson system Fk.

Proof. In view of the remark which precedes Proposition 3.3, this follows from
Lemma 3.5. �

Theorem 3.7. Let E be a spatial Arveson system. Let u ∈ UE
1 and let F be the

product subsystem of E generated by u and all its roots. Then the following hold:

(a) F = EI .

(b) RE
u = REI

u .
(c) ind E = dimRE

u.

Proof. Let k and h be the Hilbert spaces k(E) and RE
u, respectively, and let F be the

inclusion subsystem of E generated by u and all of its roots. Thus dim k = ind E ,
Fk ∼= EI , and F is the product subsystem of E generated by F . Recall that, by
Theorem 1.4, F is an Arveson subsystem of E .

(a) We first show that F is a product subsystem of EI . By Proposition 3.3, the
following prescription defines unitary operators:

At : F
h
t → Ft, λΩh

t + χa
t 	→ λut + at, (λ ∈ C, a ∈ h = RE

u, t > 0),

and it is easily seen that A = (At)t>0 is an isomorphism of inclusion systems.
By Corollary 3.6, the product system generated by F h is Fh. By Remark (iv)

after Theorem 2.6, A lifts to an isomorphism of product systems Â : Fh → F .

Theorem 1.6, together with the remark following it, imply that Â is an isomorphism
of Arveson systems, and so F is of type I. It follows that F is a product subsystem
of EI .

We next show that EI is a product subsystem of F , equivalently that, for
any normalised unit v of E , vt ∈ Ft (t > 0). To this end, let v ∈ UE

1 and
fix an isomorphism of pointed Arveson systems ψ : (Fk,Ωk) → (EI , u). Then
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(eixtvt)t>0 = ψ(�c) for some c ∈ k and x ∈ R. Set a := ψ(χc) ∈ REI

u . Since any
root of (EI , u) is a root of (E , u), as ∈ Fs (s > 0) and

ψt(ε
c
t) = lim

n→∞
ψt

(
Ωk

2−nt + χc
2−nt

)· 2n
= lim

n→∞

(
u2−nt + a2−nt

)· 2n ∈ Ft,

so vt = e−ixte−t‖c‖2/2 ψt(ε
c
t) ∈ Ft (t > 0), as required.

Therefore F = EI , so (a) holds. (b) follows from (a).
(c) By (a) we have isomorphisms of Arveson systems

Fh ∼= F = EI ∼= Fk.

This implies that h ∼= k, and so ind E = dim k = dim h = dimRE
u. �

4. Addits of pointed inclusion systems

In this section we extend notions of the previous section to inclusion systems,
and show that, as with units, addits of an inclusion system lift to addits of the
generated product system.

We call an ordered pair (E, u), consisting of an inclusion system E and a nor-
malised unit u of E, a pointed inclusion system.

Definition 4.1 ([8]). Let (E, u) be a pointed inclusion system. An addit of (E, u)
is a section a of E satisfying the additivity condition

as+t = (βE
s,t)

∗(as ⊗ ut + us ⊗ at) (s, t > 0),

and the following boundedness condition: there is k ∈ R+ such that

‖at‖2 � k(t+ t2) (t > 0).

An addit a of (E, u) is a root if it satisfies

at ⊥ ut (t > 0).

We now establish the additive counterpart to (the second part of) Theorem 2.6,
whose notation we continue to adopt.

Proposition 4.2. Let (E, u) be a pointed inclusion system. Let E be the product
system generated by E, and let û be the lift of u. Then the following hold:

(a) The map (ıE)∗ :
(
(ıEt )

∗ : Et → Et

)
t>0

restricts to a bijection from the set

of addits of (E , û) to the set of addits of (E, u), whose inverse is denoted by
a 	→ â.

(b) If a is a root of (E, u), then â is a root of (E , û).

Proof. Let us drop the superscripts on βE , BE , and ıE .
(a) First let b be an addit of (E , û). Then ı∗(b) is an addit of (E, u) since

β∗
s,t

(
ı∗sbs ⊗ ut + us ⊗ ı∗t bt

)
=
(
(ıs ⊗ ıt) ◦ βs,t

)∗(
bs ⊗ ût + ûs ⊗ bt

)
=
(
Bs,t ◦ ıs+t

)∗(
bs ⊗ ût + ûs ⊗ bt

)
= ı∗s+tbs+t (s, t > 0).

Let α denote the resulting map from addits of (E , û) to addits of (E, u). Suppose
that addits b1 and b2 of (E , û) satisfy α(b1) = α(b2). Fix T > 0. An induction on



ADDITS 2621

n confirms that, for any addit b of (E , û),

BT,t bT =
n∑

j=1

ût1 ⊗ · · · ⊗ ûtj−1
⊗ btj ⊗ ûtj+1

⊗ · · · ⊗ ûtn and

BT,t ◦ ıt = ıt1 ⊗ · · · ⊗ ıtn , (n ∈ N, t ∈ J
(n)
T ).

Therefore, for any addit b of (E , û),
ı∗tbT =

(
(ı∗t1 ⊗ · · · ⊗ ı∗tn) ◦BT,t

)
bT

=

n∑
j=1

ut1 ⊗ · · · ⊗ utj−1
⊗ ı∗tjbtj ⊗ utj+1

⊗ · · · ⊗ utn , (n ∈ N, t ∈ J
(n)
T ).

Now the RHS is the same for b = b1 and b = b2, therefore ı∗tb
1
T = ı∗tb

2
T (t ∈ JT ).

Since the net
(
ıtı

∗
t

)
t∈JT

converges strongly to IET , it follows that b
1
T = b2T . Unfixing

T we conclude that b1 = b2, and so α is injective.
Since the trivial addits of (E , û) are clearly mapped by α onto the trivial addits

of (E, u), in order to establish the surjectivity of α it suffices to fix a root a of (E, u)
and find a root, â say, of (E , û) such that ı∗(â) = a. Accordingly, let a be a root of
(E, u), with boundedness constant k and fix T > 0.

Claim 1. Setting at :=
∑n

j=1 ut1⊗· · ·⊗utj−1
⊗atj⊗utj+1

⊗· · ·⊗utn (n ∈ N, t ∈ J
(n)
T ),

the net
(
ıtat

)
t∈JT

converges.

First note that the net is bounded since at ⊥ ut (t > 0), so

‖ıtat‖2 = ‖at‖2 =

n∑
j=1

‖atj‖2 � k

n∑
j=1

(tj + t2j) � k(T + T 2), (n ∈ N, t ∈ J
(n)
T ).

Next note the identity

ı∗s ıtat = β∗
s,tat = as, (s � t in JT ).

Fix x ∈ ET and ε > 0. Choose r ∈ JT such that ‖x− ırı
∗
rx‖ < ε. Then, for t � r,

|〈ıtat − ırar, x〉|2 = |〈ıtat, (I − ırı
∗
r)x〉|2 � k(T + T 2)ε2.

It follows that
(
ıtat

)
t∈JT

is weakly Cauchy. Set âT := weak-limt∈JT
ıtat. Now

ısı
∗
s ıtat = ısas, (s � t in JT ),

therefore ısı
∗
s âT = ısas (s ∈ JT ). It follows that ısas → âT (in norm), as claimed.

Claim 2. Setting â := (âT )T>0, â is an addit of (E , û) such that ı∗(â) = a.

Let S, T > 0. Write ut for
∑n

j=1 ut1 ⊗ · · · ⊗ utn (n ∈ N, t ∈ J
(n)
T ). Then, for

s ∈ JS and t ∈ JT ,

(ıs ⊗ ıt)(as ⊗ ut + us ⊗ at) = (ıs ⊗ ıt)as�t = BS,T ıs�tas�t.

Taking limits and using the fact that the net (ırur)r∈JR
converges to ûR (R > 0),

we see that
âS ⊗ ûT + ûS ⊗ âT = BS,T âS+T .

Thus â is an addit of û. Now, since

ı∗T ıtat = β∗
T,tat = aT , (t ∈ JT ),

it follows that ı∗T âT = aT , and Claim 2 is established.
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Therefore α is also surjective, and so (a) follows.
(b) Let a be a root of (E, u). Then

〈ıtat, ıtut〉 = 〈at, ut〉 = 0, (T > 0, t ∈ JT ).

Taking limits we see that 〈âT , ûT 〉 = 0 (T > 0), so â is a root of û. The proof is
now complete. �

5. Amalgamation

The amalgamation of Arveson systems, via a contractive morphism, was intro-
duced in [8]. This generalised a construction of Skeide which corresponds to the
case where the morphism is given by Dirac dyads from normalised units ([30]). A
formula for its index, in terms of that of the constituent systems, was given in [21].
In this section we first show how the root space of an amalgamated product of
pointed Arveson systems (defined to be that given by the corresponding morphism
of Dirac dyads) may be expressed in terms of the root spaces of its constituent
systems, when the morphism is partially isometric. The amalgamated product of
pointed Arveson systems may be realised as a product subsystem of the tensor
product Arveson system ([21], Theorem 2.7). We give an explicit formula for the
subsystem which shows, in particular, that it is independent of the fixed normalised
units and so depends only on the underlying Arveson systems. The latter fact may
alternatively be proved using random sets ([15]), or directly ([5]); see also [6]. The
section ends with a new formula for the space of roots of the tensor product of two
pointed Arveson systems.

To begin we quote a basic result.

Theorem 5.1 ([8], Section 3; [21], Theorem 2.7). Let C : E2 → E1 be a contractive
morphism between Arveson systems. Then there is a triple (E , J1, J2), unique up to
isomorphism, consisting of a product system E and isometric morphisms of product
systems J i : E i → E (i = 1, 2) such that

(i) (J1
t )

∗J2
t = Ct (t > 0) and

(ii) E = J1(E1) ∨ J2(E2).

Notation: E1 ⊗C E2. Terminology : the amalgamated product of E1 and E2 via C.
Conversely, let E1 and E2 be product subsystems of an Arveson system F with

inclusion morphisms J i : E i → F (i = 1, 2). Then E1 ∨ E2 = E1 ⊗C E2, where
C =

(
(J1

t )
∗J2

t

)
t>0

.

Remarks. The construction of E1 ⊗C E2 is via an inclusion system. In case E1 and
E2 are product subsystems of an Arveson system F , E1 ⊗C E2 may be realised as
the product subsystem of F generated by the inclusion subsystem (E1

t ∨ E2
t )t>0, in

particular it is an Arveson system, by Theorem 1.4.
When C takes the form

(
|u1

t 〉〈u2
t |
)
t>0

for normalised units ui of E i (i = 1, 2), the

case treated in [30], E1 ⊗C E2 is denoted E1 ⊗u1,u2 E2.

The following proposition is a straightforward consequence of Theorem 5.1.

Proposition 5.2. Let (E , u) and (F , v) be pointed Arveson systems. Then

E ⊗u,v F ∼= (E ⊗ v) ∨ (u⊗F).

Notation. For a pointed Arveson system (E , u), we set

RE
u := {a1 : a ∈ RE

u}.
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Thus RE
u is a closed subspace of the Hilbert space E1; by definition, RE

u
∼= RE

u.

Theorem 5.3. Let E = E1 ⊗C E2 for spatial Arveson systems E1 and E2 and a

partially isometric morphism C : E2 → E1, and let u2 ∈ UE2

1 . Suppose that E is an
Arveson system and that u2 lies in the initial space of C: C∗

t Ctu
2
t = u2

t (t > 0).
Then u1 := Cu2 is a unit which is identified with u2 in E and, denoting the common
unit in E by u,

RE
u = RE1

u1 ⊕C1
RE2

u2 .

Proof. It follows from Theorem 5.1 that we may identify E1 and E2 with subsystems
of E , and C with ((J1

t )
∗J2

t )t>0 where J1 and J2 are the corresponding inclusion
morphisms. By Proposition 2.10 of [21], the projections PE1

t
and PE2

t
commute, so

PE1
t ∩E2

t
= PE1

t
PE2

t
(t > 0). Thus E1 ∩ E2 :=

(
E1
t ∩ E2

t

)
t>0

is a product subsystem of

E . Under this identification u2 and u1 are identified, and RE1

u1 ⊕C1
RE2

u2 coincides

with RE1

u1 ∨ RE2

u2 in RE
u. The theorem is therefore proved once it is shown that

RE1

u1 ∨RE2

u2 = RE
u.

Let a ∈ RE
u and set c :=

(
J1
t b

1
t+J2

t b
2
t−Jtbt

)
t>0

, where b1t = (J1
t )

∗at, b
2
t = (J2

t )
∗at

and bt = (Jt)
∗at (t > 0), and J denotes the inclusion morphism E1∩E2 → E . Thus
ct =

(
PE1

t
+ PE2

t
− PE1

t ∩E2
t

)
at = PE1

t ∨E2
t
at (t > 0).

Claim. c ∈ RE
u.

First note that

b1s ⊗ u1
t + u1

s ⊗ b1t = (J1
s ⊗ J1

t )
∗(as ⊗ ut + us ⊗ at)

= (J1
s ⊗ J1

t )
∗BE

s,tas+t = BE1

s,t(J
1
s+t)

∗as+t = BE1

s,tb
1
s+t, (s, t>0),

so b1 ∈ RE1

u1 . Similarly, b2 ∈ RE2

u2 and b ∈ RE1∩E2

u . Thus J1b1, J2b2, Jb ∈ RE
u, so

c ∈ RE
u.

Now E :=
(
E1
t ∨ E2

t

)
t>0

is an inclusion subsystem which generates the Arveson
system E , and

0 = PE1
t ∨E2

t
(at − ct) = PE

t (at − ct) = ıEt (ı
E
t )

∗(at − ct), (t > 0),

so (ıE)∗(a−c) = 0. Since (a−c) ∈ RE
u, it follows from Proposition 4.2 that a−c = 0.

Thus

a1 = c1 = J1
1 b

1
1 + J2

1 b
2
1 − J1b1 ∈ RE1

u +RE2

u ⊂ RE1

u ∨RE2

u .

The result follows. �

Corollary 5.4. Let (E1, u1) and (E2, u2) be pointed Arveson systems. Then, iden-
tifying E = E1⊗u1,u2 E2 with (E1⊗u2)∨(u1⊗E2), and letting u denote u2 identified
with u1,

RE
u = RE1

u1 ⊕C1
RE2

u2 ,

for the partially isometric morphism C :=
(
|u1

t 〉〈u2
t |
)
t>0

: E2 → E1.

Note that, in this case, we directly see the orthogonality

〈a11, a21〉C1
= 〈a11, C1a

2
1〉 = 〈a11, u1

1〉 〈u2
1, a

2
1〉 = 0, (a1 ∈ RE1

u1 , a2 ∈ RE2

u2 ).

Remark. Root spaces need not behave well under amalgamation over contractive
morphisms that are not partially isometric.
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Example 5.5. Fix λ �= 0. Set E = E1 ⊗C E2, where E1 = E2 = Fk for the
trivial Hilbert space k = {0}, and set C =

(
|u1

t 〉〈u2
t |
)
t>0

for the units u1 := Ω{0}

and u2 :=
(
e−tλ2/2Ω

{0}
t

)
t>0

. Theorem 2.7 of [21] implies that E is isomorphic to

the product system generated by the normalised units ΩC and �λ of FC; in other
words, E is isomorphic to the Fock Arveson system FC itself. Thus

RE1

u1 = {0} = RE2

u2 , but, for any unit u of E , RE
u
∼= C.

For an inclusion subsystem F of an Arveson system E , consider the following
family of orthogonal projections in B(E1):

(5.1) PF
r,t :=

⎧⎪⎪⎨⎪⎪⎩
PFt

⊗ IE1−t if 0 = r < t < 1,
PF1

if 0 = r and t = 1,
IEr ⊗ PFt−r

⊗ IE1−t if 0 < r < t < 1,
IEr ⊗ PF1−r

if 0 < r < t = 1.

It follows from Theorem 6.12 below, and the first remark following it, that, for a
product subsystem F of E ,

PF
s,t → IE1 as (t− s) → 0.

Theorem 5.6. Let E and F be spatial Arveson systems. Then, for any normalised
units u and v of E and F , respectively,

E ⊗u,v F ∼= (E ⊗ FI) ∨ (EI ⊗F).

Proof. Let u ∈ UE
1 and v ∈ UF

1 . Set G := (E ⊗ v) ∨ (u ⊗ F) and, for n ∈ N

and i ∈ {1, . . . , n}, set Pn
i := PCu

s,t where Cu denotes the product subsystem of E
generated by u, and (s, t) = ((i − 1)/n, i/n). By Proposition 5.2, G ∼= E ⊗u,v F ,
and so, by symmetry, it suffices to show that E ⊗ FI is a product subsystem of G.
By Theorem 3.7 it suffices to show that z ⊗ at ∈ Gt for t > 0, z ∈ Et, and a ∈ RF

v .
The argument we give for the case t = 1 easily adjusts to deal with general t > 0.
Thus let z ∈ E1 and a ∈ RF

v with ‖a‖ = 1.
Let ε > 0. Choose n ∈ N such that ‖z − PCu

s,t z‖ � ε for (t − s) � 1/n and take
the root decomposition

a1 =
n∑

i=1

xi, where xi = (v1/n)
· (i−1)· a1/n· (v1/n)

· (n−i)
(i = 1, . . . , n).

Thus ‖xi‖ = ‖a1/n‖ = 1/
√
n for each i and, since xi ⊥ xj for i �= j,∥∥z ⊗ a1 −

∑n

i=1
Pn
i z ⊗ xi

∥∥2 =
∥∥∑n

i=1
(z − Pn

i z)⊗ xi
∥∥2 =

1

n

n∑
i=1

‖z − Pn
i z‖2 � ε2.

We must therefore show that Pn
i z ⊗ xi ∈ G1 (n ∈ N, i = 1, . . . , n). Accordingly, fix

n ∈ N and i ∈ {1, . . . , n}. Note that

Pn
i z ∈ Lin

{
c1· · · · · ci−1·u1/n· ci+1· · · · · cn : c1, . . . , cn ∈ E1/n

}
and, for c1, . . . , cn ∈ E1/n,(
c1· · · · · ci−1·u1/n· ci+1· · · · · cn

)
⊗ xi

=(c1 ⊗ v1/n)· · · · · (ci−1⊗v1/n)· (u1/n⊗a1/n)· (ci+1⊗v1/n)· · · · · (cn⊗v1/n),
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whilst

cj ⊗ v1/n ∈ E1/n ⊗ v1/n ⊂ G1/n (j �= i) and u1/n ⊗ a1/n ∈ u1/n ⊗F1/n ⊂ G1/n.

It follows that Pn
i z ⊗ xi ∈

(
G1/n

)·n ⊂ G1, as required. �
Remark. This result reaffirms justification for referring to the above (spatial) Arve-
son system as the spatial product of the spatial Arveson systems E and F .

Corollary 5.7. Let E and F be spatial Arveson systems. Then, for normalised
units u and v of E and F , respectively,

(EI ⊗ v) ∨ (u⊗FI) = EI ⊗FI = (E ⊗ F)I .

Proof. The first identity follows from Proposition 5.2 and Theorem 5.6. The second
is well known; it is a consequence of the following identity (see [3], Corollary 3.7.3):

(5.2) UE⊗F =
{
u⊗ v : u ∈ UE , v ∈ UF}.

�
Our next result is the counterpart for roots of the identity (5.2) for units. It

generalises Corollary 3.4.

Theorem 5.8. Let (E , u) and (F , v) be pointed Arveson systems. Then

RE⊗F
u⊗v = (RE

u ⊗ v)⊕ (u⊗RF
v ).

Proof. First note that, by Theorem 3.7 and the identity (E⊗F)I = EI⊗FI , we may
suppose without loss that E and F are type I Arveson systems. Writing (E1, u1) and
(E2, u2) for (E , u) and (F , v), respectively, and setting ki := k(E i) (i = 1, 2), there
are isomorphisms of pointed Arveson systems φi : (Fki ,Ωki) → (E i, ui) (i = 1, 2).
Since the isomorphism φ1⊗φ2 :

(
Fk1⊗Fk2 ,Ωk1⊗Ωk2

)
→

(
E1⊗E2, u1⊗u2

)
restricts

to a bijection of roots and maps

RF ,k1
Ω ⊗ Ωk2 to RE1

u1 ⊗ u2 and Ωk1 ⊗RF ,k2
Ω to u1 ⊗RE1

u2 ,

the result follows from Corollary 3.4. �

6. Cluster construction

In the first half of this section we develop a cluster construction for product
subsystems of an Arveson system and show how the construction leads to a new
description of the type I part of a spatial Arveson system. In the second half we
relate our construction to the Cantor–Bendixson derivative which sends a closed
subset of the unit interval to its “cluster”, namely the collection of its accumulation
points, via the connection to random sets elaborated in [14].

Notation. For an inclusion subsystem F of an Arveson system E , and t > 0, set

F�⊥
t := Et � F�

t , where F�
t :=

∨
0<r<t

(Er � Fr)⊗ (Et−r � Ft−r).

Proposition 6.1. Let F be an inclusion subsystem of an Arveson system E . Then
F�⊥ :=

(
F�⊥
t

)
t>0

is an inclusion subsystem of E containing F .

The proof of this proposition is no easier than that of its generalisation, Propo-
sition 6.9, which is given there (and does not depend on any of the intervening
theory).
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Definition 6.2. Let F be a product subsystem of an Arveson system E . The
cluster of F in E is the product system generated by the inclusion system F�⊥.
We denote it F .̌

Lemma 6.3. Let F be a product subsystem of an Arveson system E , and let s, t > 0.
Then the following hold:

(a) F�⊥
s ⊗Ft ⊂ F�⊥

s+t and Fs ⊗F�⊥
t ⊂ F�⊥

s+t .

(b) (F�⊥
s �Fs)⊗Ft ⊂ F�⊥

s+t �Fs+t and Fs ⊗ (F�⊥
t �Ft) ⊂ F�⊥

s+t �Fs+t.

Proof. Let s, t > 0.
(a) Let r > 0 satisfy 0 < r < s+ t.
If r < s, then

F⊥
r ⊗F⊥

s+t−r = F⊥
r ⊗ (Fs−r ⊗Ft)

⊥

= F⊥
r ⊗

(
F⊥

s−r ⊗ Ft ⊕ Es−r ⊗F⊥
t

)
⊂ F�

s ⊗Ft ⊕ Es ⊗F⊥
t .

If r = s, then
F⊥

r ⊗ F⊥
s+t−r = F⊥

s ⊗F⊥
t ⊂ Es ⊗F⊥

t .

If r > s, then

F⊥
r ⊗F⊥

s+t−r ⊂ Es ⊗ Er−s ⊗F⊥
s+t−r ⊂ Es ⊗ (Fr−s ⊗Fs+t−r)

⊥ = Es ⊗F⊥
t .

Therefore
F�

s+t ⊂ F�
s ⊗Ft ⊕ Es ⊗F⊥

t = (F�⊥
s ⊗Ft)

⊥.

The first inclusion follows. The second now follows by symmetry.
(b) Since F is a product subsystem of E , the first inclusion in (b) follows from

the first inclusion in (a):

(F�⊥
s �Fs)⊗Ft = F�⊥

s ⊗Ft � Fs ⊗Ft ⊂ F�⊥
s+t �Fs+t.

The second inclusion in (b) follows similarly. �
Corollary 6.4. Let (E , u) be a pointed Arveson system, and set F = Cu. Then,
for s, t > 0,

F�⊥
s ⊗ ut ⊂ F�⊥

s+t and (F�⊥
s �Fs)⊗ ut ⊂ F�⊥

s+t �Fs+t;

us ⊗F�⊥
t ⊂ F�⊥

s+t and us ⊗ (F�⊥
t �Ft) ⊂ F�⊥

s+t �Fs+t.

Notation. For a pointed Arveson system (E , u), set
XE,u

t := (Cut)
�⊥ � Cut, (t > 0)

and define isometries

jE,us,t : XE,u
s → XE,u

t , x 	→ x·ut−s, (0 < s < t).

Then
(
(XE,u

t )t>0, (j
E,u
r,s )0<r<s

)
is easily seen to form an inductive system of Hilbert

spaces. Let
(
XE,u, (jE,ut : XE,u

t → XE,u)t>0

)
denote its inductive limit and write

x·u∞ for jE,ut (x) (t > 0, x ∈ XE,u
t ). Thus

(x·ur)·u∞ = x·u∞ ∈ XE,u, (r, t > 0, x ∈ XE,u
t ).

Finally, define isometries (SE,u
t )t>0 on XE,u by the requirement

SE,u
t (z·u∞) = ut· z·u∞,

(
z ∈

⋃
s>0

XE,u
s

)
,

and set SE,u
0 = IXE,u .
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As usual, when it is expeditious to do so we identify x· y and x⊗ y = BE
s,t(x· y),

for x ∈ Es, y ∈ Et, and s, t > 0.

Lemma 6.5. Let (E , u) be a pointed Arveson system. Then

XE,u
s+t ⊗ u∞ = XE,u

s ⊗ u∞ + SE,u
s (XE,u

t ⊗ u∞) and

XE,u = XE,u
s ⊗ u∞ + SE,u

s XE,u (s, t > 0).

Proof. We drop the superscripts. Let s, t > 0 and set F = Cu. Then, by Proposi-
tion 6.1,

Xs+t = F�⊥
s+t � Cus+t ⊂ (F�⊥

s ⊗F�⊥
t )� C(us ⊗ ut)

= Xs ⊗ ut ⊕ us ⊗Xt ⊕ Xs ⊗Xt,

but

Xs ⊗Xt ⊂ {us}⊥ ⊗ {ut}⊥ ⊂ F�
s+t ⊂ X⊥

s+t,

so Xs+t ⊂ Xs ⊗ ut ⊕ us ⊗Xt. The reverse inclusion also holds since

Xs ⊗ ut ⊕ us ⊗Xt = (F�⊥
s � Cus)⊗ ut ⊕ us ⊗ (F�⊥

t � Cut)

= (F�⊥
s ⊗ ut ⊕ us ⊗F�⊥

t )� Cus+t ⊂ F�⊥
s+t � Cus+t = Xs+t.

The first identity follows. The second follows from the first. �

Lemma 6.6. Let (E , u) be a pointed Arveson system. Then SE,u := (SE,u
t )t�0 is a

strongly continuous one-parameter semigroup of isometries. Moreover it is purely
isometric.

Proof. Clearly SE,u is a one-parameter semigroup of isometries. Let x ∈ XE,u
p and

y ∈ XE,u
q where p, q > 0. Fix T > 0 such that T > max{p, q + 1}. Then, for

0 � t � 1,

〈x⊗ u∞, ut ⊗ y ⊗ u∞〉=〈x⊗ uT−p, ut ⊗ y ⊗ uT−q−t〉=〈x⊗ uT−p, U
E,T
t (y⊗uT−q)〉,

where UE,T = (UE,T
t )t∈R is the unitary flip group on ET defined in Definition 1.2.

Weak continuity of the semigroup SE,u therefore follows from the strong continu-
ity of UE,T . Since weak continuity implies strong continuity for one-parameter
semigroups on Banach spaces, the first part follows.

For the last part, let s, t > 0. Then

ut ⊗ z ⊗ u∞ ⊥ x⊗ us ⊗ u∞ = x⊗ u∞, (z ∈ XE,u
s , x ∈ XE,u

t ).

It follows that RanSE,u
t ⊥ Ran jE,ut (t > 0), so⋂

t>0

RanSE,u
t ⊂

⋂
t>0

(Ran jE,ut )⊥ =
( ⋃

t>0

Ran jE,ut

)⊥
= {0},

and therefore SE,u is purely isometric. �

By Cooper’s Theorem ([10]; see Theorem 9.3, Chapter III of [32]), it follows
from Lemma 6.6 that, for any pointed Arveson system (E , u), there is a Hilbert
space k(E , u) and unitary operator V E,u : XE,u → KE,u := L2(R+; k(E , u)) such

that V E,uSE,u
t = S

k(E,u)
t V E,u (t � 0). Moreover k(E , u) is separable since XE,u is

separable.

Recall our notation KE,u
t :=

{
g ∈ KE,u : ess-supp g ⊂ [0, t]

}
(t > 0).
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Lemma 6.7. Let (E , u) be a pointed Arveson system. Set F E,u = (F�⊥
t )t>0 where

F = Cu. For t > 0, define the operator

φE,u
t : F E,u

t = Ft ⊕XE,u
t → F

k(E,u)
t = C⊕ KE,u

t , λut + x 	→ (λ, J∗
t V

E,ux·u∞),

where Jt denotes the inclusion map KE,u
t → KE,u. Then φE,u = (φE,u

t )t>0 is an
isomorphism of inclusion systems.

Proof. Drop the superscripts from F E,u
r , KE,u

r , XE,u
r , φE,u

r , jE,ur , SE,u
r (r > 0) and

V E,u, and abbreviate k(E , u) to k.
Each operator φt is easily seen to be unitary. Fix s, t > 0. Then(

βF,k
s,t ◦ φs+t

)
(us+t) = βF,k

s,t (1, 0) = (1, 0)⊗ (1, 0)

= φs(us)⊗ φt(ut) = (φs ⊗ φt)(β
F
s,tus+t).

Also, if z = xs·ut + us·xt = j∗s+t

(
js(xs) + Ssjt(xt)

)
where xs ∈ Xs and xt ∈ Xt,

then (
βF,k
s,t ◦ φs+t

)
(z) = βF,k

s,t

(
0, J∗

s+tV (xs·u∞ + Ss(xt·u∞))
)

= βF,k
s,t

(
0, J∗

s+t(V (xs·u∞) + Sk
sV (xt·u∞))

)
= (0, J∗

s V (xs·u∞))⊗ (1, 0) + (1, 0)⊗ (0, J∗
t V (xt·u∞))

= φs(xs)⊗ φt(ut) + φs(us)⊗ φt(xt) = (φs ⊗ φt)(β
F
s,tz).

Since Fs+t = Cus+t ⊕ j∗s+t

(
js(Xs) + Ssjt(Xt)

)
, it follows that βF,k

s,t ◦ φs+t = (φs ⊗
φt) ◦ βF

s,t. Therefore φ is an isomorphism of inclusion systems. �

Theorem 6.8. Let E be a spatial Arveson system. Then, for any normalised unit
u of E ,

(Cu)̌ = EI .

Proof. Let u ∈ UE
1 and set F = Cu.

The isomorphism of inclusion systems φE,u, defined in Lemma 6.7, lifts to an
isomorphism of product systems ψ : Fˇ→ Fk(E,u). Theorems 1.6 and 1.4 imply
that ψ is an isomorphism of Arveson systems. Thus Fˇ is of type I and so is
contained in EI .

Now let a ∈ RE
u and t > 0. Then

at = ar ⊗ ut−r + ur ⊗ at−r ∈ F⊥
r ⊗Ft−r ⊕ Fr ⊗F⊥

t−r ⊂
(
F⊥

r ⊗F⊥
t−r

)⊥
(0 < r < t),

so at ∈ F�⊥
t . By Theorem 3.7, the product subsystem of E generated by u and all

of its roots is EI ; therefore Fˇcontains EI . The result follows. �

Before turning to its connection with the Cantor–Bendixson derivative applied
to random closed sets (in the closed unit interval), we briefly mention a natural gen-
eralisation of our cluster construction. For an ordered pair of inclusion subsystems
F = (F 1, F 2) of an Arveson system E , and t > 0, set

F�⊥
t := Et � F�

t , where F�
t :=

∨
0<r<t

(Er � F 1
r )⊗ (Et−r � F 2

t−r).
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This extends the earlier construction (for a single inclusion subsystem F of E) as
follows:

(F, F )�⊥
t = F�⊥

t , (t > 0).

Proposition 6.9. Let F = (F 1, F 2) be an ordered pair of inclusion subsystems

of an Arveson system E . Then F�⊥ :=
(
F�⊥
t

)
t>0

is an inclusion subsystem of E
containing F 1 and F 2.

Proof. Let s, t > 0. For 0 < r < t,

(F 1
r )

⊥ ⊗ (F 2
t−r)

⊥ ⊂ (F 1
r )

⊥ ⊗ Et−r ⊂ (F 1
r ⊗ F 1

t−r)
⊥ ⊂ (F 1

t )
⊥,

so F�
t ⊂ (F 1

t )
⊥ and thus F 1

t ⊂ F�⊥
t . Also

Es ⊗ (F 1
r )

⊥ ⊂ (F 1
s ⊗ F 1

r )
⊥ ⊂ (F 1

s+r)
⊥,

so
Es ⊗ (F 1

r )
⊥ ⊗ (F 2

t−r)
⊥ ⊂ (F 1

s+r)
⊥ ⊗ (F 2

t−r)
⊥ ⊂ F�

s+t,

and thus Es ⊗ F�
t ⊂ F�

s+t.

By symmetry, F 2
t ⊂ F�⊥

t and F�
s ⊗ Et ⊂ F�

s+t. Therefore

F�⊥
s+t ⊂ (Es ⊗ F�⊥

t ) ∩ (F�⊥
s ⊗ Et) = F�⊥

s ⊗ F�⊥
t .

It follows that F�⊥ is an inclusion system containing F 1 and F 2. �

This completes the treatment of our cluster construction for product subsystems.
In order to relate it to random closed sets we next summarise the basic relevant
properties of hyperspaces. Thus letX be a topological space. The Vietoris topology
on K(X), the collection of compact subsets of X, has {HU : U open in X}∪{MF :
F closed in X} as a sub-base ([12]), with the hit sets and miss sets of K(X) being
defined as follows:

HA :=
{
Z ∈ K(X) : Z∩A �= ∅

}
and MA :=

{
Z ∈ K(X) : Z∩A = ∅

}
, (A ⊂ X).

Note that, for A,B ⊂ X and A ⊂ P(X), the following hold: {Z ∈ K(X) : Z ⊂
A} = MA� ,

MA = (HA)
�, H⋃

A =
⋃

A∈A
HA, H∅ = ∅ and {∅} = MX , so

(6.1a)

A ⊂ B =⇒ HA ⊂ HB, M⋃
A =

⋂
A∈A

MA, M∅ = K(X) and {∅} = (HX)�.

(6.1b)

Thus ∅ is an isolated point of K(X), and a nonempty basic open set of K(X) takes
the form B = MF ∩HU1

∩ · · · ∩HUn
for some set F closed in X, n ∈ N, and sets

U1, · · · , Un open in X such that F � ∩ Ui �= ∅ for i = 1, . . . , n. Note also that, for a
sequence (Fn) of closed sets of X,

(6.2) Fn ↓ F =⇒ MF =
∞⋃

n=1

MFn
.

For any dense subset D of X, K00(X)∩ P(D) is dense in K(X), where K00(X)
denotes the collection of subsets of X having finite cardinality. If X has compatible
metric d (with diameter at most one), then the induced Hausdorff metric dH on
K(X) (for which dH(Z, ∅) = 1 = dH(∅, Z) for all Z ∈ K(X) \ {∅}) is compatible
with the Vietoris topology and is complete if d is complete. If ε > 0 and F � X is
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an ε-net ([33], Definition 7.2.8) with respect to a compatible metric d for X with
diameter at most one, then P(F ) is an ε-net for dH, so K(X) is totally bounded
with respect to dH if X is totally bounded with respect to d. It follows from these
basic facts that K00(X) is dense in K(X), and K(X) is separable, metrisable,
completely metrisable, Polish, or compact metrisable, if X has that property. When
X is compact Hausdorff (so that K(X) equals the collection of closed subsets of
X), the Vietoris topology coincides with another well-known hyperspace topology,
namely the Fell topology.

For a subset A of X we denote by A′ its derived set, consisting of its points of
accumulation, {x ∈ X : x ∈ A \ {x}}. Note that (1) A′ ⊂ A, (2) A′ is closed if A
is closed, (3) if X is a T1-space, then A′ = A ′, in particular A′ is closed. Note the
further elementary properties (assuming, for (5), that X is T1): for A ⊂ B ⊂ X,
C ⊂ X, U open in X, and K ∈ K(X),

(4) (A∩C)′ ⊂ B′∩C ′, (5)A′∩U �= ∅ =⇒ #(A∩U) = ∞, (6)K ′ = ∅ ⇐⇒ #K < ∞.

Thus, for X Hausdorff, the prescription Z 	→ Z ′ defines a map ΔX : K(X) →
K(X), the Cantor–Bendixson derivative (whose study, as an operator, was initiated
by Kuratowski; see [13]).

We now turn to the connection with random closed sets. Set C := K(I), C00 :=
K00(I) and Δ := ΔI, where I denotes the unit interval [0, 1] with its standard
topology. Thus C is compact and metrised by the Hausdorff metric of the standard
metric of I; in particular, it is second countable, with countable dense subset C00 ∩
P(I∩Q), and Δ−1({∅}) = C00 � C. By a random closed subset of I is meant simply
a C-valued random variable; in other words, a measurable map from Ω to C, for a
probability space (Ω,F,P).

Lemma 6.10. Let F,U ⊂ I, with F closed, U open, and F ⊃ U . Then, the
following hold:

(a) Δ−1(MF ) ⊂
{
Z ∈ C : #(Z ∩ F ) < ∞

}
⊂
{
Z ∈ C : #(Z ∩ U) < ∞

}
⊂ Δ−1(MU ) .

(b) Let ∂F denote the topological boundary of F . Then

Δ−1(MF ) ∪H∂F =
{
Z ∈ C : #(Z ∩ F ) < ∞

}
∪H∂F

=
{
Z ∈ C : #(Z ∩ IntF ) < ∞

}
∪H∂F = Δ−1(MIntF ) ∪H∂F .

Proof.
(a) follows from (4), (6) and (5) above.
(b) By part (a), (b) holds with equality replaced by subset in all three places.

Let Z ∈ C \ H∂F = M∂F . Then Z ∩ ∂F = ∅, so Z ∩ F = Z ∩ IntF and so
Z ′∩F = Z ′∩IntF . Thus Z ∈ Δ−1(MF ) if and only if Z ∈ Δ−1(MIntF ). Therefore
the outer sets coincide. The result follows. �

The contents of the following proposition are known; we include their short proofs
since they are instructive and do not seem to be readily available.

Proposition 6.11. The following hold:

(a) Borel(C) = σ
{
MJ : J is a closed subinterval of I

}
.

(b) Δ is Borel measurable.
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Proof.
(a) Denote the RHS σ-algebra by Σ. Let U be open in I and let F be closed in

I. Then U =
⋃
Jn for a sequence (Jn) of closed subintervals of I, and F =

⋂
Fn

for a sequence (Fn) of closed sets of I such that Fn ↓ F and, for each n ∈ N,

Fn =
⋃k(n)

i=1 J i
n for some closed subintervals J1

n, . . . , J
k(n)
n of I. Therefore, using (6.1)

and (6.2),

HU =
∞⋃

n=1

HJn
=

∞⋃
n=1

(
MJn

)� ∈ Σ and MF =
∞⋃

n=1

MFn
=

∞⋃
n=1

k(n)⋂
i=1

MJi
n
∈ Σ.

Since C is second countable it follows from Lindelöf’s Theorem that every open set
of C is a countable union of basic open sets, so Σ ⊃ Borel(C). The reverse inclusion
is clear.

(b) Let J be a closed subinterval of I, say [a, b]. For U open in I and p ∈ N, since
I is Hausdorff, the set {Z ∈ C : #(Z ∩ U) � p} equals the open set⋃{

HV1
∩ · · · ∩HVp

: V1, . . . , Vp disjoint open subsets of U
}
.

It follows from (6.2) that MJ =
⋃∞

n=1 MUn
=
⋃∞

n=1 MUn
, where Un :=]a − 1

n , b +
1
n [∩ I (n ∈ N). Now, by part (a) of Lemma 6.10,

Δ−1
(
MUn

)
⊂
{
Z ∈ C : #(Z∩Un) < ∞

}
⊂
{
Z ∈ C : #(Z∩Un) < ∞

}
⊂ Δ−1

(
MUn

)
for each n ∈ N. It follows that

Δ−1(MJ) =
⋃
n∈N

{
Z ∈ C : #(Z ∩ Un) < ∞

}
=

⋃
n,p∈N

{
Z ∈ C : #(Z ∩ Un) � p

}� ∈ Borel(C).

The Borel measurability of Δ therefore follows from part (a). �

Remark. Δ is not continuous, since {∅} is closed in C but Δ−1({∅}) is not closed
because it equals C00 which is a dense proper subset of C.

For the convenience of the reader we quote the key propositions upon which our
next result depends. Recall that in Liebscher’s approach the parameter set of an
Arveson system E is extended to R+, with E0 := C.

Theorem 6.12 ([14], Theorem 3.16, Proposition 3.18, Corollary 3.21). Let E be
an Arveson system, let P = (Pr,t)0�r<t�1 be a family of nonzero orthogonal projec-
tions in the von Neumann algebra B(E1) satisfying the evolution and bi-adaptedness
conditions

(6.3) Pr,sPs,t = Pr,t and Pr,t ∈ IEr ⊗B(Et−r)⊗ IE1−t (0 � r < s < t � 1),

and let ω and ϕ be faithful normal states on B(E1). Then the following hold :

(a) The map (r, t) 	→ Pr,t is strongly continuous, with Pr,t → IE1 as (r, t) →
(s, s) for 0 < s < 1.

(b) There is a unique Borel probability measure PP
ω on C satisfying

PP
ω

(⋂N

i=1
M[si,ti]

)
= ω

(∏N

i=1
Psi,ti

)
(N ∈ N, 0 � si < ti � 1 for i = 1, . . . , N).

(c) PP
ω (H{a}) = 0 (a ∈ I).
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(d) The correspondence 1M[s,t]
	→ Ps,t (0 � s < t � 1) extends to an injective

normal unital representation πP : L∞(PP
ω ) → B(E1). Moreover,

RanπP = {Ps,t : 0 � s < t � 1}′′.
(e) PP

ϕ ∼ PP
ω .

Remarks.
(i) For a product subsystem F of E , the family PF = (PF

r,t)0�r<t�1, as defined
in (5.1), satisfies (6.3).

(ii) By (e), the space L∞(PP
ω ), and therefore also the representation πP , is inde-

pendent of the choice of faithful normal state ω on B(E1).
(iii) For a faithful normal state ω on B(E1), we write PF

ω and πF respectively
for the Borel probability measure PP

ω and representation πP , when P = PF . By
(e), the probability measure equivalence class of PF

ω is independent of the choice of
faithful normal state ω on B(F1); let us denote it MF .

We need the following extension of [14], Corollary 6.2.

Theorem 6.13. Let F be a product subsystem of an Arveson system E . Then

MF =
{
PF
ω : ω is a faithful normal state on B(E1)

}
.

Proof. The proof in [14], for the case where F is generated by a unit of E , works
equally well for an arbitrary product subsystem. �

We are now ready to give our generalisation of Proposition 3.33 of [14].

Theorem 6.14. Let F be a product subsystem of an Arveson system E . Then the
following hold:

(a) πF(1Δ−1(M[s,t])

)
= PFˇ

s,t (0 � s < t � 1).

(b) PF
ω ◦Δ−1 = PFˇ

ω , for any faithful normal state ω on B(E1).
(c) MF ◦Δ−1 = MFˇ.

Proof. Let 0 � s < t � 1. First note that, by part (b) of Lemma 6.10 and part (c)
of Theorem 6.12,

(6.4) πF(1Δ−1(M[s,t])

)
= πF(1{Z∈C:#(Z∩[s,t])<∞}

)
.

For Z ∈ C,
#
(
Z ∩ [s, t]

)
� 2 ⇐⇒ ∃u∈]s,t[ : Z ∈ H[s,u[ ∩H[u,t],

and for 0 � a < b � 1, πF(1H[a,b[

)
= πF(1H[a,b]

)
and

πF(1H[a,b]

)
= IE1 − PF

a,b = IEa ⊗ PF⊥
b−a

⊗ IE1−a,

so

πF(1H[s,u[∩H[u,t]

)
= IEs ⊗ PF⊥

u−s
⊗ PF⊥

t−u
⊗ IE1−t, (s < u < t).

By the normality of πF , it follows that

πF(1{Z∈C:#(Z∩[s,t])�2}
)
= sup

s<u<t
IEs ⊗ PF⊥

u−s⊗F⊥
t−u

⊗ IE1−t = IEs ⊗ PV ⊗ IE1−t,

where V =
∨

s<u<t

(
F⊥

u−s ⊗F⊥
t−u

)
= F�

t−s. By the evolution property,

P⊥
V =

∧
s<u<t

(
IE1 − (IE1 − PF

s,u)(I
E
1 − PF

u,t)
)
=

∧
s<u<t

(
PF
s,u + PF

u,t − PF
s,t

)
.
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It therefore follows that

(6.5) πF(1{Z∈C:#(Z∩[s,t])�1}
)
= IEs ⊗ PF�⊥

t−s
⊗ IE1−t = PF�⊥

s,t .

Now

(6.6)
{
Z ∈ C : #(Z ∩ [s, t]) < ∞

}
=
⋃

CP ,

where the union is over partitions P = {s = s0 < · · · < sN = t} and CP :=⋂N
i=1

{
Z ∈ C : #(Z ∩ [si−1, si]) � 1

}
. And so, applying (6.5) with [si−1, si] in place

of [s, t],

πF(1CP ) =

N∏
i=1

PF�⊥

si−1,si for P = {s = s0 < · · · < sN = t}.

Therefore, by (6.6), the normality of πF , and the fact that the inclusion system
F�⊥ generates the product system F ,̌

PFˇ
s,t = πF(1{Z∈C:#(Z∩[s,t]<∞}

)
.

Combined with (6.4), this proves (a). Now (a) implies that

ω
(∏N

i=1
PFˇ
si,ti

)
= (ω ◦ πF)

(
1⋂N

i=1 Δ−1(M[si,ti]
)

)
=
(
PF
ω ◦Δ−1

)(⋂N

i=1
M[si,ti]

)
,

for subintervals [s1, t1], . . . , [sN , tN ] of I, so (b) follows from part (b) of Theo-
rem 6.12.

(c) In view of Theorem 6.13, this follows immediately from (b). �

Appendix. Fock Arveson systems and the Guichardet picture

The symmetric Fock space over a Hilbert space H is denoted Γ(H). Its expo-
nential vectors ε(h) :=

(
(n!)−1/2h⊗n

)
n�0

(h ∈ H) form a linearly independent

and total set which witnesses the exponential property of symmetric Fock spaces,
namely Γ(H1⊕H2) = Γ(H1)⊗Γ(H2) via ε(h1, h2) 	→ ε(h1)⊗ε(h2). For any contrac-
tion C ∈ B(H), Γ(C) :=

⊕
n�0 C

⊗n defines a contraction in B(Γ(H)) characterised

by the identity Γ(C)ε(h) = ε(Ch) (h ∈ H). The map C → Γ(C) is a morphism of
involutive semigroups with identity, in particular, Γ(C) is isometric, respectively,
coisometric, if C is isometric. For h ∈ H, the Fock–Weyl operator is the unitary
operator W (h) on Γ(H) characterised by the identity

W (h)�(k) = e−i Im〈h,k〉�(h+ k), where �(k) := e−‖k‖2/2ε(k), (k ∈ H).

Now let k be a separable Hilbert space. Set

K := L2(R+; k) and Kt :=
{
g ∈ K : ess-supp g ⊂ [0, t]

}
, (t > 0),

and let Sk := (Sk
t )t�0 denote the one-parameter semigroup of unilateral shifts on

K. The Fock Arveson system over k, denoted Fk, is defined by

Fk
t := Γ(L2([0, t[; k))⊗ Ωk

[t,∞[ = Lin{ε(g) : g ∈ Kt}, (t > 0),

where Ωk
[t,∞[ denotes the vacuum vector ε(0) in Γ(L2([t,∞[; k)), with structure

maps determined by the prescription

BF ,k
s,t : ε(h) 	→ ε(h[0,s[)⊗ ε((Sk

s)
∗h), for h ∈ Ks+t, (s, t > 0).
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It is an Arveson system consisting of an increasing family of subspaces of the Hilbert
space Fk

∞ = Γ(K). Its set of normalised units is given by {(eiλt�c
t )t>0 : c ∈ k, λ ∈

R}, where

�c :=
(
e−‖c‖2t/2εct = �(c[0,t[)

)
t>0

and εc :=
(
ε(c[0,t[)

)
t>0

.

The vacuum unit �0 = ε0, of the Arveson system Fk, is denoted Ωk.
In order to describe the Guichardet picture of the Fock Arveson system over

k which (only here in this appendix) we denote by Gk, we need to introduce the
symmetric measure space Γt over the Lebesgue space [0, t[, for 0 < t � ∞ ([11]).
As a set,

Γt :=
{
σ ⊂ [0, t[: #σ < ∞

}
.

Thus, denoting {σ ⊂ [0, t[: #σ = n} by Γ
(n)
t ,

⋃
n�0 Γ

(n)
t is a partition of Γt. Since,

for each n ∈ N, the map

Δ
(n)
t :=

{
s ∈ Rn

+ : s1 < · · · < sn < t
}
→ Γ

(n)
t , s 	→ {s1, . . . , sn}

is bijective, Lebesgue measure on Δ
(n)
t induces a measure on Γ

(n)
t and thereby an

isometric isomorphism L2(Δ
(n)
t ) → L2(Γ

(n)
t ), which ampliates to an isometric iso-

morphism L2(Δ
(n)
t ; k⊗n) → L2(Γ

(n)
t ; k⊗n). Therefore, composing with the isometric

isomorphism

L2
sym([0, t]

n; k⊗n) → L2(Δ
(n)
t ; k⊗n), F 	→

√
n!F |

Δ
(n)
t

gives an isometric isomorphism

L2
sym([0, t]

n; k⊗n) → L2(Γ
(n)
t ; k⊗n), (n ∈ N).

By declaring that ∅ ∈ Γ
(0)
t ⊂ Γt is an atom of measure one, we arrive at an isometric

isomorphism

Fk
t
∼= C⊕

∞⊕
n=1

L2
sym([0, t]

n; k⊗n) ∼= C⊕
∞⊕

n=1

L2(Γ
(n)
t ; k⊗n) ∼= Gk

t ,

where Gk
t :=

{
G ∈ Gk

∞ : ess-suppG ⊂ Γt

}
and, in terms of Φ(k), the full Fock space

over k,

Gk
∞ :=

{
G ∈ L2(Γ∞; Φ(k)) : G(σ) ∈ k⊗#σ for a.a. σ

}
.

These isomorphisms are restrictions of a single isomorphism Fk
∞ → Gk

∞, under
which ε(g) maps to πg, for g ∈ K, where

πg(σ) :=

{
1 ∈ C = k⊗0 if σ = ∅,
g(s1)⊗ · · · ⊗ g(sn) ∈ k⊗n if σ = {s1 < · · · < sn};

in particular, ε(0) 	→ δ∅. Moreover, for G ∈ Gk
∞ and t � 0,(

Γ(Sk
t )G

)
(σ) =

{
G(σ − t) if σ ⊂ [t,∞[,
0 otherwise.

The corresponding structure maps in the Guichardet picture are given by the pre-
scription

BG,k
s,t H : (α, β) 	→ H

(
α ∪ (β + s)

)
1Γ[0,s[×Γ[0,t[

(α, β), (H ∈ Gk
s+t).

For further details on Fock space and the Guichardet picture, see [16] and [22].
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Note Added in Proof

Additive units for the coisometric measurable counterpart to inclusion systems
(called super product systems) have been independently introduced and applied in
[17]; see also [18].
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[32] Béla Sz.-Nagy, Ciprian Foias, Hari Bercovici, and László Kérchy, Harmonic analysis of oper-
ators on Hilbert space, Revised and enlarged edition, Universitext, Springer, New York, 2010.
MR2760647

[33] W. A. Sutherland, Introduction to metric and topological spaces, Clarendon Press, Oxford,
1975. MR0442869

[34] B. Tsirelson, Automorphisms of the type II1 Arveson system of Warren’s noise, arXiv :math/
0612303v1.

[35] Boris Tsirelson, From random sets to continuous tensor products: answers to three questions
of W. Arveson, arXiv :math/0001070v1.

[36] Boris Tsirelson, From slightly coloured noises to unitless product systems, arXiv :FA 0006165
vl.

[37] Boris Tsirelson, Non-isomorphic product systems, Advances in quantum dynamics (South
Hadley, MA, 2002), Contemp. Math., vol. 335, Amer. Math. Soc., Providence, RI, 2003,
pp. 273–328, DOI 10.1090/conm/335/06017. MR2029632

[38] Boris Tsirelson, On automorphisms of type II Arveson systems (probabilistic approach), New

York J. Math. 14 (2008), 539–576. MR2448659

http://www.ams.org/mathscinet-getitem?mr=1974096
http://www.ams.org/mathscinet-getitem?mr=1928802
http://www.ams.org/mathscinet-getitem?mr=2738527
http://www.ams.org/mathscinet-getitem?mr=1164866
http://www.ams.org/mathscinet-getitem?mr=935715
http://www.ams.org/mathscinet-getitem?mr=1687149
http://www.ams.org/mathscinet-getitem?mr=2106824
http://www.ams.org/mathscinet-getitem?mr=2608451
http://www.ams.org/mathscinet-getitem?mr=3460113
http://www.ams.org/mathscinet-getitem?mr=2029630
http://www.ams.org/mathscinet-getitem?mr=2235551
http://www.ams.org/mathscinet-getitem?mr=2282723
http://www.ams.org/mathscinet-getitem?mr=2730893
http://www.ams.org/mathscinet-getitem?mr=2760647
http://www.ams.org/mathscinet-getitem?mr=0442869
http://www.ams.org/mathscinet-getitem?mr=2029632
http://www.ams.org/mathscinet-getitem?mr=2448659


ADDITS 2637

Stat-Math Unit, Indian Statistical Institute, R.V. College Post, Bangalore-560059,

India

E-mail address: bhat@isibang.ac.in

Department of Mathematics and Statistics, Lancaster University, Lancaster LA1

4YF, United Kingdom

E-mail address: j.m.lindsay@lancaster.ac.uk

School of Mathematics, IISER Thiruvananthapuram, CET Campus, Kerala - 695016,

India

E-mail address: mithunmukh@iisertvm.ac.in


	Introduction
	1. Product systems
	2. Inclusion systems
	3. Addits of pointed Arveson systems
	4. Addits of pointed inclusion systems
	5. Amalgamation
	6. Cluster construction
	Appendix. Fock Arveson systems and the Guichardet picture
	Acknowledgments
	Note Added in Proof
	References

