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REMOVABLE SINGULARITIES

FOR DEGENERATE ELLIPTIC EQUATIONS

WITHOUT CONDITIONS ON THE GROWTH

OF THE SOLUTION

ANTONIO VITOLO

Abstract. The aim of the paper is to state removable singularities results for
solutions of fully nonlinear degenerate elliptic equations without any knowledge
of the behaviour of the solution approaching the singular set and to obtain
unconditional results of Brezis–Veron type for operators defined as the partial
sum of the eigenvalues of the Hessian matrix.

1. Introduction and principal results

We will consider a class of second-order elliptic equations including

(1.1) P+
p (D2u)− |u|s−1u = f(x)

and its dual

(1.2) P−
p (D2u)− |u|s−1u = f(x)

in a domain of Rn with n > 2 for a positive integer p ∈ [3, n] and a real number
s > 1. Here

P+
p (X) =λn−p+1(X) + · · ·+ λn(X),

P−
p (X) =λ1(X) + · · ·+ λp(X) ,

(1.3)

where λi(X), i = 1, . . . , n, are the eigenvalues of X ∈ Sn, the set of the n× n real
symmetric matrix, arranged in increasing order: λ1 ≤ λ2 ≤ · · · ≤ λn. Note that
P±
p (D2u) are degenerate elliptic, according to the definition which will be given

below in Section 2, but not uniformly elliptic, except for the case p = n, when
P±
n (D2u) = Δu is the Laplace operator.
Throughout this paper, for a C2-function u in an open set of Rn, we will denote

by Du = (Diu) its gradient and by D2u = [Diju] its Hessian matrix.
More generally, if u is a continuous function, equations (1.1) and (1.2) will be

intended in the viscosity sense, which will be specified in the sequel.
The operators P±

p arise in the characterization of manifolds with partially pos-
itive curvature; see Wu [56] and Sha [53], [54]. They have been largely studied by
Harvey and Lawson [28], [29], [30], [31], [32], [34] in the framework of their theory
of subequations with respect to existence, uniqueness, removable, and prescribed
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singularities, which have also been considered by Caffarelli, Y. Y. Li, and Niren-
berg [11], [12], [13], and recently with respect to the existence of entire subsolutions
related to Keller–Osserman conditions by Capuzzo Dolcetta, Leoni and Vitolo [14],
[15].

It is well known that, also in the case of uniformly elliptic operators and for an
isolated singularity, we need conditions on the growth of the solution, related to
fundamental solutions; see for instance Gilbarg and Serrin [26] and the subsequent
papers by Serrin [48], [50], [51], [52]. In the case of the Laplace equation Δu = 0,
the fundamental solution

(1.4) E(x) =
(

1

|x|

)n−2

provides a smooth positive superharmonic function in (Rn)∗ = {x ∈ R
n : x �= 0}

such that E(x) → ∞ as x → 0.
Consequently, if u is any harmonic function in the punctured ball B∗

ρ = {0 <
|x| < ρ} for some ρ > 0 and if u(x) = o(E(x)) as x → 0, then uε(x) ≡ u(x)−εE(x) is
in turn a subharmonic function in B∗

ρ such that uε(x) → −∞ as x → 0. Therefore,
if v is the solution of the Dirichlet problem

(1.5)

{
Δv = 0 in Br,
v = u on ∂Br

for any r < ρ, by the comparison principle we have u ≤ v+ εE in B∗
r and therefore,

letting ε → 0+, we get u ≤ v in B∗
ρ . In a similar manner, by comparison we also

get u ≥ v in B∗
ρ so that v(x) = u(x) in B∗

ρ provides the harmonic extension of u to
Bρ; in other words, the origin is a removable singularity for the Laplace equation.

The same argument can be carried out in the case of fully nonlinear uniformly
elliptic operators with ellipticity constants 0 < λ ≤ Λ such that n > 1 + Λ

λ , using
the corresponding fundamental solutions

(1.6) E(x) =
(

1

|x|

) λ
Λ (n−1)−1

,

for which we refer to Labutin [39]. For Hessian and curvature equations see Labutin
[41], Takimoto [55], and the references therein.

For isolated singularities of nonnegative solutions of the p-Laplace operator and
∞-Laplace operator we refer to Serrin [49], Manfredi [45], and Savin, Wang, and
Yu [47], respectively. See also Cı̂rstea and Du [17], Brandolini, Chiacchio, Cı̂rstea,
and Trombetti [7], Cı̂rstea [16] for nonnegative solutions of semilinear equations,
and Y. Y. Li [43] for conformally invariant fully nonlinear equations.

Here we are interested in unconditional removability results which do not require
any condition on the solution when approaching the singularity.

The issue under consideration goes back to the well-known result of Brezis and
Véron [9], who proved that equation

(1.7) Δu− |u|s−1u = 0

with s ≥ n
n−2 has the property that any isolated singularity is removable, provided

n ≥ 3. This result was already known as a consequence of a theorem of Loewner
and Nirenberg [44] in the case s = n+2

n−2 and has been generalized by Labutin [38]
to general fully nonlinear uniformly elliptic equations

(1.8) F (D2u)− |u|s−1u = 0
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with s ≥ λ(n−1)+Λ
λ(n−1)−Λ . If F (D2u) in (1.8) is the Laplace operator Δu = P+

n (D2u),

then λ = Λ = 1 and we recover the aforementioned removability condition s ≥ n
n−2

for equation (1.7).
Note that no condition is assumed on the solution u. That u(x) = o(E(x)) as

x → 0 can be deduced from the fact that u is a solution of the equation, and a
function u(x) 	 E(x) cannot be a solution of equation (1.7) as soon as s = n

n−2 .
Results of this kind for other classes of fully nonlinear uniformly elliptic operators
are obtained by Felmer and Quaas [22].

Our aim is to extend this result to equations (1.8) having a degenerate elliptic
principal part Fp(D

2u) such that

(1.9) P−
p (X) ≤ Fp(X) ≤ P+

p (X), X ∈ Sn .

For this purpose we prove an extended comparison principle in punctured domains
between upper semicontinuous (usc) subsolutions and lower semicontinuous (lsc)
supersolutions of equation

(1.10) Fp(D
2u)− |u|s−1u = f(x)

in viscosity sense, also admitting a moderate singularity of f(x).
The natural functions to be compared with are the so-called fundamental so-

lutions of the operator Fp. Here we use the fundamental solutions u = Ep, for
2 < p ≤ n, of the equations P+

p (D2u) = 0, corresponding to the maximal operator
in the considered class:

(1.11) Ep(x) =
(

1

|x|

)p−2

, x �= 0.

For p = n, the definition (1.11) returns the harmonic function En (see (1.4)), which
is the fundamental solution of the Laplace operator.

Let us recall that the fundamental solutions of the Laplace originate from the
solution of the Poisson equation

Δu = δ

in distributional sense with the Dirac unit mass distribution concentrated at the
origin such that u(x) → 0 as |x| → ∞, with the physical meaning that the effects
from a point disappear far away from it. By linearity, the knowledge of E allows us
to construct solutions with a different distribution f by superposition (convolution).

Since the Bôcher theorem [6], every solution u, bounded from below or above,
of the Laplace equation Δu = 0 in the punctured ball Br = {x ∈ R

n : 0 < |x| < r},
satisfies the inequalities

γEn − C ≤ u ≤ γEn + C

with γ > 0, if u cannot be extended to a harmonic function in Br.
In the fully nonlinear setting, due to by Labutin [39], the same conclusion holds

true when the Laplace equation is replaced by the maximal Pucci equation with
ellipticity constants λ > 0 and Λ ≥ λ,

Mλ,Λ(D
2u) := Λ

n∑
i=1

λ+
i − λ

n∑
i=1

λ−
i = 0,

and the fundamental solution En by E(n−1) λ
Λ+1. For general uniformly elliptic equa-

tions we refer to Armstrong, Sirakov, and Smart [4] for a detailed discussion and
more recent results about fundamental solutions. See also [22].
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Roughly speaking, since the Bôcher theorem, the fundamental solutions go to
infinity at the origin with a typical growth order, which is in turn a limiting growth
for the removability of isolated singularities, as in the previous examples.

In this sense, since P+(D2Ep(x)) = 0 for x �= 0, the functions Ep defined in (1.11)
are the fundamental solutions for the operator P+

p .
We will set, for s > 1,

(1.12) ps =
2s

s− 1
(> 2),

observing that ps ≤ p if and only if s ≥ p
p−2 , as in the assumption of the following

result.

Theorem 1.1. Let n and p be positive integers such that 2 < p ≤ n, and let
s ≥ p

p−2 . Suppose f is a continuous function in some punctured ball of Rn, say B∗
ρ

with ρ > 0, such that

(1.13) lim
x→0

|x|(p−2)sf(x) = 0 .

If u is both a viscosity subsolution of equation (1.1) and a viscosity supersolution of
equation (1.2) in B∗

ρ , then

(1.14) lim
x→0

u(x)

Ep(x)
= 0 .

Remark 1.2. If instead 1 < s < p
p−2 , i.e., p < ps, then u(x) = C|x|−(ps−2), with

Cs−1 = (ps−2) (ps − p), is a solution of equation P+
p (D2u)−|u|s−1u = 0 in Rn\{0}.

Hence the conclusion of Theorem 1.1 fails to hold.
Note also that condition (1.13) on the growth of f(x) cannot be relaxed. In fact,

if s = p
p−2 , i.e., p = ps = (p− 2)s, then u(x) = Ep(x) is a solution of equation

P+
p (D2u)− |u|s−1u = −

(
1

|x|

)p

. �

Since p > 2, the conclusion of Theorem 1.1 is obviously true when f(x) is bounded.
If this is the case, the following corollary shows that the solution u is bounded.

Corollary 1.3. Suppose that assumptions of Theorem 1.1 are fulfilled with f(x)
bounded in B∗

ρ. If u ∈ C(B∗
ρ) is both a subsolution of equation (1.1) and a super-

solution of equation (1.2) in the viscosity sense, then u is bounded in B∗
r for all

r ∈ (0, ρ).

As a consequence of Corollary 1.3, we get the following result of unconditional
removability.

Theorem 1.4. Let n and p be positive integers such that 2 < p ≤ n. Let Ω be a
domain (open connected set) of Rn, and set Ω∗ = {x ∈ Ω : x �= x0}. Suppose Fp is
a continuous degenerate elliptic operator satisfying

(1.9)′ P−
p (Y ) ≤ Fp(X + Y )− Fp(X) ≤ P+

p (Y ), X ∈ Sn ,

and f is a continuous function in Ω.
If u is a continuous viscosity solution of equation (1.10) in Ω∗ with s ≥ p

p−2 ,

then u can be extended to a solution in all Ω.
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Remark 1.5. As in [38], the result can be furthermore generalized to the equation

(1.15) Fp(D
2u)− g(u) = f(x),

where g is a continuous real function such that

(1.16) lim sup
t→−∞

g(t)

|t|
p

p−2

< 0 < lim inf
t→∞

g(t)

|t|
p

p−2

.

In fact, by the first one, we have g(u+(x)) ≥ ε(u+)s−1−C for s = p
p−2 and positive

constants ε, C so that u = u+ satisfies the differential inequality

P+
p (D2u)− ε|u|s−1u ≥ −f−(x)− C,

and therefore u+ satisfies assumptions (4.1) and (4.2), with −f−(x)−C instead of
f(x), which imply (4.3).

On the other side, we also have g(−u−(x)) ≤ −ε(u−)
p

p−2 + C, from which u =
−u− satisfies the differential inequality

P−
p (D2u)− ε|u|s−1u ≤ f+(x) + C,

and therefore −u− satisfies assumptions (4.4) and (4.5), with f+(x)+C instead of
f(x), which imply (4.6).

This shows that Lemma 4.1, and therefore Theorem 1.1, which is the basic result,
continuous to hold when |u|s−1u is replaced with a function g(u) satisfying (1.16).

Example 1.6. Theorem 1.1 and Corollary 1.3 hold true, for instance, for all op-
erators which are partial sums of p eigenvalues such as

(1.17) Fp(X) = λi1(X) + · · ·+ λip(X),

for every choice of p positive integers less than n. Theorem 1.4 holds in particular
in the extremal cases (i1, . . . , ip) = (1, . . . , p) and (i1, . . . , ip) = (n − p + 1, . . . , n),
corresponding to P−

p (X) and to P+
p (X), respectively.

Unconditional results of this kind hold true, for instance, in the case of isolated
singularities of minimal surface equation; see Bers [5] in the two-dimensional case
and De Giorgi and Stampacchia [20] in higher dimensions.

On the other hand, we can equally find in literature many results about noniso-
lated removable singular sets, generally assuming that the solutions are bounded.
For instance, it is well known that the sets E such that all bounded harmonic
functions outside E can be extended across E are characterized by having zero ca-
pacity; see [35]. For generalizations of this result we refer to Brezis and Nirenberg
[8], Labutin [39], [40], [41], and to recent works of Caffarelli, Y.Y. Li, and Nirenberg
[11], [12], [13], as well as of Harvey and Lawson [32]; see also Amendola, Galise,
and Vitolo [3], and Galise and Vitolo [25].

There are also cases in the literature of unconditional removable singularities
which are not isolated. For instance, see [8], where Brezis and Nirenberg show that
sets of Newtonian capacity Cn−2(E) = 0 are removable for a class of equations
including Δu − u|Du|2 = f(x) with a smooth f(x). More recently, in Section 6
of [32] Harvey and Lawson, using the restriction theorem of [33], proved that sets
E with a suitable Hausdorff measure equal to zero are removable singularities for
subsolutions of the p-th branch of Monge-Ampère equation λp(D

2u) = 0.
In spite of this, we attack the problem to find how large the removable singular

sets can be for our equation (1.10) in the viscosity sense assuming no condition on
the size of the solution.
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To deal with this issue, we consider a compact subset E ⊂ Ω and set dE(x) =
dist(x,E). For sufficiently small r > 0 the set {dE(x) ≤ r} is still contained in Ω
and, for a function f(x) defined in Ω\E, we set

(1.18) lim sup
x→E

f(x) = lim
r→0

sup
0<dE(x)<r

f(x); lim inf
x→E

f(x) = lim
r→0

inf
0<dE(x)<r

f(x).

Using the estimates on the distance function by Ambrosio and Soner [2], we can
state the following theorem.

Theorem 1.7. Let n and p be positive integers such that 3 ≤ p ≤ n. Let k ∈
{1, . . . , n} be such that n− k < p− 2 and define

(1.19) α := (p− 2)− (n− k) > 0 .

Suppose that Γ is a smooth embedded manifold in R
n of codimension k < n, and

set

(1.20) δ(x) = dist(x,Γ) .

Let s be a real number such that s ≥ α+2
α and let f be a continuous function in

Ω\E, where E is a compact subset of Ω such that E � Γ in the relative topology
and all points of E are limit points for Ω\Γ. Suppose also that

(1.21) lim sup
x→E

dαsE (x)|f(x)| = 0 .

If u is both a viscosity subsolution of equation (1.1) and a viscosity supersolution of
equation (1.2), then

(1.22) lim sup
x→E

u(x)

δ−α(x)
= 0 = lim inf

x→E

u(x)

δ−α(x)
.

Since p > n+ 2− k, in Theorem 1.7 we can plainly take f bounded in a neigh-
bourhood of E. In this the case we can show the following corollary.

Corollary 1.8. Suppose that assumptions of Theorem 1.7 are fulfilled with f(x)
bounded in a neighborhood of E. If u ∈ C(Ω\E) is both a viscosity subsolution
of equation (1.1) and a viscosity supersolution of equation (1.2) in Ω\E, then u is
bounded across E, namely in all domains Ω′\E such that Ω′ � Ω.

As a consequence of Corollary 1.8, we get the following generalization of Theorem
1.4.

Theorem 1.9. Suppose that assumptions of Theorem 1.7 are fulfilled with Fp sat-
isfying (1.9)′ and f continuous in Ω.

If u is a continuous viscosity solution of equation (1.10) in Ω\E with

(1.23) s ≥ p− (n− k)

p− 2− (n− k)
,

then u can be extended to a solution in all Ω.

We point out that the results of Theorem 1.7, Corollary 1.8, and Theorem 1.9
for k = n return Theorem 1.1, Corollary 1.3, and Theorem 1.4, respectively.

The paper is organized as follows. In Section 2 we recall the principal notions
about elliptic operators and viscosity solutions, introducing the degenerate elliptic
operator P+

p and its dual P−
p , defined as partial sum of eigenvalues. In Section 3 we

deduce from the comparison principles of Section 2 useful bounds for subsolutions
and supersolutions. Sections 4 and 5 contain the proof of the main results of
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the paper for isolated and not isolated singularities, respectively, starting from
the necessary conditions of Lemma 4.1 and Subsection 5.2. We also add for the
convenience of the reader Section 6, devoted to the existence and uniqueness of
equations involving degenerate elliptic operators Fp ∈ (P−

p ,P+
p ).

2. Notation and preliminary results

In this section we briefly recall the notions of ellipticity and viscosity solutions
with the properties mostly used in this paper. For a deeper knowledge we refer to
[19], [10], [18], [37].

Let Ω be a domain (open connected set) of Rn. We denote by Sn the linear
spaces of n × n real symmetric matrices with the partial ordering induced by the
semidefinite positiveness. Let F : Sn → R be a continuous map. We say that F is
degenerate elliptic if

(2.1) F (X) ≤ F (Y )

for all X,Y ∈ Sn such that X ≤ Y . The operators P+
p and P−

p defined in (1.3) are
degenerate elliptic for all positive integers p ≤ n. They can also be represented in
the form

P+
p (X) = sup

S∈Gp

TrS(X),

P−
p (X) = inf

S∈Gp

TrS(X),
X ∈ Sn,(2.2)

where Gp is the Grassmanian of all linear p-dimensional subspaces S of Rn and
where TrS is the trace of the quadratic form associated to X restricted to S. In
particular P+

p is subadditive and P−
p is superadditive:

P+
p (X + Y ) ≤P+

p (X) + P+
p (Y );

P−
p (X + Y ) ≥P−

p (X) + P−
p (Y ) .

(2.3)

Moreover,

(2.4) P+
p (−X) = −P−

p (X) .

Let λ and Λ ≥ λ be positive real numbers. We say that F : Sn → R is uniformly
elliptic with ellipticity constants λ and Λ if

(2.5) X ≤ Y ⇒ λTr(Y −X) ≤ F (Y )− F (X) ≤ ΛTr(Y −X)

If p = n, then P±
n (X) = TrRn(X) ≡ Tr(X) is uniformly elliptic with ellipticity

constants λ = 1 = Λ and, acting on Hessian matrices, yields the Laplace operator
Δu = Tr(D2u).

Let F be a degenerate elliptic operator and let f(x) be a continuous function in
a domain Ω of Rn. We recall that an usc (upper semicontinuous) function u in Ω,
for short u ∈ USC(Ω), is a (viscosity) subsolution of equation F (D2u) = f(x) in Ω,
equivalently u is a solution of the elliptic differential inequality F (D2u) ≥ f(x): if
for all x0 ∈ Ω and all C2 (test) functions ϕ such that ϕ(x0) = u(x0) and ϕ(x) ≥ u(x)
in a neighbourhood of x0, we have

(2.6) F (D2ϕ(x0)) ≥ f(x0) .

Similarly, a function v ∈ LSC(Ω), i.e., a lsc (lower semicontinuous) function v in Ω,
is a (viscosity) supersolution of equation F (D2v) = f(x) in Ω, equivalently v is a
solution of the elliptic differential inequality F (D2v) ≤ f(x) if: for all x0 ∈ Ω and all
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C2 (test) functions ϕ such that ϕ(x0) = u(x0) and ϕ(x) ≤ u(x) in a neighbourhood
of x0, we have

(2.7) F (D2ϕ(x0)) ≤ f(x0) .

In both cases the test is intended to be satisfied if there is no test function.
A continuous function u is a (viscosity) solution of F (D2u) = f(x) if it is both

a subsolution and a supersolution.
It is worth recalling that the supremum (resp. infimum) of a finite family of

subsolutions (resp. supersolutions) is still a subsolution (resp. a supersolution).
In particular, supposing F (0) = 0 and setting u± = max(±u, 0), we have:
i) if F (D2u) ≥ f(x), then F (D2u+) ≥ −f−(x);

ii) if F (D2u) ≤ f(x), then F̃ (D2u−) ≥ −f+(x), where F̃ (X) = −F (−X).
If instead {uj} is an arbitrary family of subsolutions (resp. supersolutions), we

can apply Lemma 4.2 of [19] to infer that the usc envelope of u = supj uj (resp.
the lsc envelope of u = infj uj) is still a subsolution (resp. a supersolution); see
also Theorem 2.6 (E) of [28].

In this respect, we recall that the usc envelope of u in Ω, i.e., the smallest usc
function above u, and the lsc envelope of u, i.e., the largest lsc function below u,
are given respectively by

(2.8)
u∗(x) = lim

r→0+
sup {u(y) : y ∈ Ω, |y − x| < r},

u∗(x) = lim
r→0+

inf {u(y) : y ∈ Ω, |y − x| < r}.

Suppose now that u is an usc function in Ω\E, which is locally bounded above at
points of E, a closed subset of Ω. Following [32, Section 3], such a function u has a
canonical usc extension U across E to all of Ω defined as follows: if E has interior
Int(E) = ∅, then we set

(2.9) U(x) = lim sup
z→x, z �∈E

u(z) ≡ lim
r→0+

sup
z∈Br(x)\E

u(z);

if Int(E) �= ∅, we put U(x) = −∞ on Int(E); then U(x) = ũ∗(x), the usc envelope
of the function

(2.10) ũ(x) = u(x), x ∈ Ω\E; ũ(x) = −∞, x ∈ E .

Analogously, we can consider an lsc function v in Ω\E, which is locally bounded
below at points of E, and define the canonical lsc extension V across E to all of Ω
as follows: if Int(E) = ∅, then we set

(2.11) V (x) = lim inf
z→x, z �∈E

v(z) ≡ lim
r→0+

inf
z∈Br(x)\E

v(z);

if Int(E) �= ∅, we put V (x) = +∞ on Int(E) and V (x) = ṽ∗(x), the lsc envelope
ṽ∗ of the function

(2.12) ṽ(x) = v(x), x ∈ Ω\E; ṽ(x) = ∞, x ∈ E .

The solutions (resp., subsolutions, supersolutions) of equation P±
p (D2u) = 0 will

be called p±-harmonic (resp. subharmonic, superharmonic) functions.
We notice that the maximum principle holds true for p+-subharmonic functions

in all bounded domains Ω ⊂ R
n, as checked in [13] and [3], and this allows us,

by subadditivity of P+
p and viscosity notion, to compare p+-subharmonic and p+-

superharmonic functions when at least one of them is C2. The same can be said
comparing p−-subharmonic and p−-superharmonic functions.
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More generally, to compare usc subsolutions and lsc supersolutions of equation
(1.10), we will use Theorem 3.3 of [19] considering the operator

(2.13) F (x, t,X) = Fp(X)− |t|s−1t− f(x), (x, t,X) ∈ Ω× R× Sn .

Lemma 2.1. Let Ω be a bounded domain of R
n, let Fp be a degenerate elliptic

operator satisfying (1.9) for a positive integer p ≤ n, and let f ∈ C(Ω). If u ∈
USC(Ω) and v ∈ LSC(Ω) are viscosity solutions in Ω of the differential inequalities

(2.14) Fp(D
2v)− |v|s−1v ≤ f(x) ≤ Fp(D

2u)− |u|s−1u

for s ≥ 1, such that u ≤ v on ∂Ω, then u ≤ v in Ω.

Proof. We check the assumptions of Theorem 3.3 of [19] with F (x, t,X) as in (2.13).
First of all, the degenerate ellipticity assumption is satisfied, being Fp degenerate

elliptic.
Next, since

(2.15) u ≥ v ⇒ |u|s−1u− |v|s−1v ≥ γ(u− v)s,

with γ = γ(s) > 0, we get for any δ > 0

u− v ≥ δ ⇒ F (x, u,X)− F (x, v,X) ≤ −γ δs,(2.16)

which plays the role of (3.13) of [19], being just that for s = 1. Moreover, by the
degenerate ellipticity of Fp we also get

X ≤ Y ⇒ F (x, t,X)− F (y, t, Y ) = Fp(X)− Fp(Y )− f(x) + f(y)

≤− f(x) + f(y) ≤ ω(|x− y|),(2.17)

where ω is the continuity modulus of f , which plays the role of (3.14) of [19] (see
also Example 3.6 therein).

Following the proof of Theorem 3.3 of [19], assume u ≤ v on ∂Ω but suppose by
contradiction that

(2.18) max
x∈Ω

(u(x)− v(x)) = δ > 0.

In view of (3.11) and (3.12) of [19], from this we deduce that there exist sequences
of points xα, yα ∈ Ω such that |xα − yα| → 0 as α → ∞ but

(2.19) u(xα)− v(yα) ≥ δ,

and sequences of matrices Xα, Yα ∈ Sn such that Xα ≤ Yα such that

(2.20) F (yα, v(yα), Yα) ≤ 0 ≤ F (xα, u(xα), Xα).

From this, using (2.16) and (2.17), we get

0 ≤F (xα, u(xα), Xα)− F (yα, v(yα), Yα)

≤F (xα, u(xα), Xα)− F (xα, v(yα), Xα)

+F (xα, v(yα), Xα)− F (yα, v(yα), Yα)

≤ − γ δs + ω(|xα − yα|),

(2.21)

a contradiction, since ω|xα − yα| → 0 as α → ∞, and we conclude that u ≤ v in
Ω. �

We will also make use, in the sequel, of the following result on the sum of
supersolutions.
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Lemma 2.2. Let vi ∈ LSC(Ω), i = 1, 2, be non-negative viscosity solutions in a
domain Ω of Rn of the differential inequalities

(2.22) P+
p (D2vi)− |vi|s−1vi ≤ fi(x)

for a positive integer p ≤ n and a real number s ≥ 1 and where fi(x), i = 1, 2, are
continuous functions. Suppose at least one between vi, i = 1, 2, is a C2-function in
Ω.

Then v = v1 + v2 is a viscosity supersolution of equation

(2.23) P+
p (D2v)− |v|s−1v = f(x)

with f(x) = f1(x) + f2(x).

The proof is based on subadditivity of P+
p , inequality

(2.24) vs1 + vs2 ≤ (v1 + v2)
s

for vi ≥ 0, and on the fact that we may formally handle equations using the classical
derivatives when at least one of the functions v1 and v2 is C2.

3. Basic estimates

Here we deduce a basic estimate on the behaviour of a solution when approaching
the singular set. This will be done by comparison with supersolutions v of Osserman
type; see [9] (or also [21], [24] and [23]). We recall that ps =

2s
s−1 > 2. Actually, we

will search for a supersolution v of the form

(3.1) v(x) = c1v1(x) + c2,

where

v1(x) =
ρps−2

(ρ2 − |x− x0|2)ps−2
(3.2)

is a positive function in Bρ(x0) and ci, i = 1, 2, are positive constants.
Let f± = max(±f, 0). Taking positive numbers ci large enough in order that

cs−1
1 ≥ 4 (ps − 1) (ps − 2) + 2 p (ps − 2),

cs2 ≥ max
|x−x0|≤ρ

f−(x) ,
(3.3)

we obtain positive C2 and constant supersolutions, c1v1 and c2, respectively, such
that

(3.4)
P+
p (D2c1v1)− (c1v1)

s ≤ 0,

P+
p (D2c2)− (c2)

s ≤ −f−(x)

in the ball of radius ρ centered at x0. Using Lemma 2.2 we conclude that v =
c1v1 + c2 is a C2 supersolution of (2.23) in Bρ(x0), as claimed.

From this we can deduce an upper bound for subsolutions around the singular
set. Suppose that Ω is a domain in R

n and E is a compact subset of Ω. Recall that
ps =

2s
s−1 .

Lemma 3.1. Let s > 1 and let f ∈ C(Ω\E). Suppose that

(3.5) P+
p (D2u)− |u|s−1u ≥ f(x) in Ω\E .
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There exists a positive constant A = A(p, s) such that

u(x) ≤ A

dps−2
E (x)

+ max
|z−x|≤ 1

2 dE(x)
{f−(z)} 1

s in Ω\E .(3.6)

Analogously, if

(3.7) P−
p (D2u)− |u|s−1u ≤ f(x) in Ω\E ,

then

u(x) ≥ − A

dps−2
E (x)

− max
|z−x|≤ 1

2 dE(x)
{f+(z)} 1

s in Ω\E .(3.8)

Proof. Consider the case of subsolutions (3.5). Let us fix x0 ∈ Ω\E and set ρ =
1
2 dE(x0). Using (3.1), (3.2), and (3.3), we construct a supersolution v(x) = c1v(x)+

c2 of equation P+
p (D2v) − |v|s−1v = −f−(x) in Bρ(x0). Using the comparison

principle of Lemma 2.1, since v(x) → ∞ as |x| → ρ−, we get u(x) ≤ v(x) in Bρ(x0)
and in particular u(x0) ≤ v(x0), which yields (3.6). The case (3.7) of supersolutions
can be treated by applying the result just proved for subsolutions by replacing u
and f with −u and −f in (3.5), respectively. �

4. Removability of isolated singularities

In this section, using the comparison principles and the estimates of previous
sections, we will show that a solution u of equation (1.1) in B∗

ρ = Bρ\{0} with
s ≥ p

p−2 must have growth of order strictly less than the fundamental solution

Ep(x) as x → 0. In order to show this, we borrow some ideas from [38] arguing by
contradiction and using a sequence of Dirichlet problems approaching the singu-
larity together with the scale invariance of the equation to compare the solutions
with the fundamental solution; see ii) and iii) below. The ending parts iv) and v)
are developed in a pure viscosity setting, since a regularity theory is actually not
available for the degenerate elliptic equations under consideration.

Lemma 4.1. Let n and p be positive integers such that 2 < p ≤ n, and let s ≥ p
p−2 .

A) Suppose that f(x) is a function in B∗
ρ, for some ρ > 0, such that f−(x) is

continuous and

(4.1) lim sup
x→0

|x|(p−2)sf−(x) = 0.

If u ∈ USC(B∗
ρ) satisfies

(4.2) P+
p (D2u)− |u|s−1u ≥ f(x)

in B∗
ρ , then

(4.3) lim sup
x→0

u+(x)

Ep(x)
= 0.

B) Analogously, assuming f+(x) to be a continuous function such that

(4.4) lim sup
x→0

|x|(p−2)sf+(x) = 0,

if u ∈ LSC(B∗
ρ) satisfies

(4.5) P−
p (D2u)− |u|s−1u ≤ f(x) ,
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then

(4.6) lim sup
x→0

u−(x)

Ep(x)
= 0.

Proof. As in Lemma 3.1, it is sufficient to consider the case A) of subsolutions. In
fact, if u is a supersolution, which satisfies (4.5), then (4.2) holds true by substi-
tuting u with −u and f with −f . Then we get (4.3) with −u instead of u, namely
(4.6).

Therefore, focusing on subsolutions, we observe that by viscosity

(4.7) P+
p (D2u+)− |u+|s−1u+ ≥ −f−(x) .

We note that the proof is immediate if s > p
p−2 , that is, ps < p. If this is the case,

indeed, using estimate (3.6) and recalling that Ep(x) = |x|−(p−2), we get

lim
x→0

u+(x)

Ep(x)
≤ A lim

x→0
|x|p−ps + lim

x→0
|x|p−2 max

|z−x|≤ 1
2 |x|

{f−(z)} 1
s

≤ 2p−2 lim
x→0

max
|z−x|≤ 1

2 |x|

{
|z|(p−2)sf−(z)

} 1
s

= 0

by assumption (4.1), and we are done.
Now we consider the remaining case s = p

p−2 , in which ps ≡ 2s
s−1 = p. Here we

argue by contradiction, supposing that

(4.8) lim sup
x→0

u+(x)

Ep(x)
= l > 0

and noticing that, since ps = p, Lemma 3.1 implies l < ∞.
i) Firstly, we show that then there exists r0 ∈ (0, 1) such that

(4.9) u+(x) ≤ M + l Ep(x) as 0 < |x| ≤ r0

for some positive constant M . It is sufficient, by virtue of assumption (4.1), to take
r0 ∈ (0, ρ) such that

(4.10) f−(x) ≤ ls

|x|(p−2)s
in B∗

r0

and to set

(4.11) M = max
|x|=r0

u+(x) .

From (4.8) we find decreasing sequences of positive numbers rj → 0 and εj → 0 as
j → ∞ such that

(4.12) l (1− εj) ≤
u+(xj)

Ep(xj)
= max

|x|=rj

u+(x)

Ep(x)
≤ l (1 + εj).

By (4.11) and (4.12), we therefore get the inequality

(4.13) u+(x) ≤ M + l (1 + εj) Ep(x)
on the boundary of the annular region {rj < |x| < r0}. The latter inequality
(4.13) can be extended to all the annular regions by using the comparison principle
between u+(x), which is a subsolution by (4.7), and v = M + l (1+ εj) Ep, which is
a supersolution by the following computation, based on (4.10):

P+
p

(
D2v

)
− vs ≤ − ls(1 + εj)

s

|x|(p−2)s
≤ −f−(x) in B∗

r0 .(4.14)
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Finally, each fixed x ∈ B∗
r0 can be included in any annular region {rj < |x| < r0}

for j large enough, and therefore (4.13) still holds at x in the limit as j → ∞, which
shows (4.9).

ii) Next, we construct a sequence of functions uj(x) such that

(4.15) u+(x) ≤ uj(x) ≤ M + l Ep(x) in Bρj
(xj) ,

where xj are the maximum points of (4.12) and ρj = rj(1− εj). This is obtained
by solving the Dirichlet problem (see Section 6 below)

(DP )j

{
P+
p (D2uj)− |uj |s−1uj = −f−(x) in Bρj

(xj),
uj = u+ on ∂Bρj

(xj).

The left-hand inequality of (4.15) follows by comparing uj(x) with the subso-
lution u+(x), while the right-hand inequality is deduced by comparing it with the
supersolution v = M + l Ep by virtue of (4.9).

iii) Let νj =
xj

rj
be the direction of xj and yj = r0νj . Using the linear mapping

(4.16) y = r0

(
νj +

x− xj

ρj

)
, x ∈ Bρj

(xj) ,

with ρj =
ρj

r0
we construct the rescaled function

(4.17) wj(y) := ρp−2
j uj(x) = ρp−2

j uj(xj + ρj (
y
r0

− νj)), y ∈ Br0(yj) ,

which is by (DP)j a solution of equation

P+
p (D2wj(y))− |wj(y)|s−1wj(y) = −ρpjf

−
j (y) in Br0(yj)(4.18)

with f−
j (y) = f−(xj + ρj (

y
r0

− νj)).

Since |yj | = r0 for all j ∈ N, we may suppose, up to a subsequence, that yj → y0,
where |y0| = r0, and also that B r0

2
(y0) ⊂ Br0(yj), taking j ∈ N large enough. We

infer that there exists a sequence ηj ↘ 0 such that

wj(y)

1 + ηj
≤ lEp(y) in B r0

2
(y0) ;

wj(yj)

1 + ηj
≥ lEp(y0)

(1 + ηj)2
.

(4.19)

To show this, from the right-hand inequality of (4.15) we get

wj(y) = ρp−2
j uj(xj + ρj (

y
r0

− νj))

≤ ρp−2
j (M + l Ep(xj + ρj (

y
r0

− νj)))

= ρp−2
j M + rp−2

0

l

|xj

ρj
+ y

r0
− νj |p−2

.

(4.20)

Since ρj = rj(1 − εj) with εj → 0, then
xj

ρj
− νj → 0 and the latter sequence in

(4.20) converges uniformly for y ∈ B r0
2
(y0) as j → ∞, and thus the first inequality

in (4.19) is proved.
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On the other side, using the left-hand inequality in (4.15), we obtain

wj(yj) = ρp−2
j uj(xj)

≥ ρp−2
j u+(xj) =

u+(xj)

Ep(xj)

(
ρj
rj

)p−2

≥ l (1− εj)

(
ρj
rj

)p−2

= l rp−2
0 Ep(y0) (1− εj)

(
ρj
rj

)p−2

,

(4.21)

and this also proves the second inequality in (4.19).
Moreover,

(4.22) P+
p

(
D2 wj(y)

1 + ηj

)
−
(
wj(y)

1 + ηj

)s

≥ −ρpjf
−
j (y) in B r0

2
(y0) .

In fact, by (4.18) we have

(1 + ηj)

(
P+
p

(
D2 wj(y)

1 + ηj

)
−
(
wj(y)

1 + ηj

)s)

≥ (1 + ηj)

(
P+
p

(
D2 wj(y)

1 + ηj

)
− (1 + ηj)

s−1

(
wj(y)

1 + ηj

)s)
=P+

p

(
D2wj(y)

)
− ws

j (y) = −ρpjf
−
j (y)

≥ − (1 + ηj) ρ
p
jf

−
j (y).

(4.23)

iv) Hence, for all j0 ∈ N the usc envelope w∗ (see Section 2) of the function

(4.24) w(y) = sup
j≥j0

wj(y)

1 + ηj
, y ∈ B r0

2
(y0) ,

is a subsolution of the equation

(4.25) P+
p (D2w∗(y))− |w∗(y)|s−1w∗(y) = − sup

j≥j0

ρpjf
−
j (y) in B r0

2
(y0).

Moreover, from inequalities (4.19) it follows that

(4.26) w∗(y) ≤ lEp(y), y ∈ B r0
2
(y0),

and

(4.27) w∗(y0) ≥ lim sup
j→∞

wj(yj)

1 + ηj
= lEp(y0) .

v) Conclusion. By (4.26) and (4.27) the function defined as ϕ(y) = l Ep(y)
touches from above w∗(y) at y0 and can be used as a test function for equation
(4.25) at y = y0 obtaining

(4.28) P+
p (D2ϕ(y0))− (ϕ(y0))

s ≥ − sup
j≥j0

ρpjf
−(x′

j),

from which

(4.29) ls ≤ sup
j≥j0

ρpjf
−(x′

j),

where x′
j = xj + ( y0

r0
− νj) → 0 and

|x′
j |

ρj
→ 1 as j → ∞.

But letting j0 → ∞, since (p− 2)s = p and therefore |x′
j |pf−(x′

j) → 0 as j → ∞
by assumption, we should have l = 0. This yields a contradiction with our starting
assumption l > 0 and proves the assertion. �
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Proof of Theorem 1.1. The proof of Theorem 1.1 follows at once by gathering to-
gether (4.3) and (4.6) of Lemma 4.1. �

Let 2 < p ≤ n and s ≥ p
p−2 . The next corollary shows that when f is bounded

below, the subsolutions u of equation P+
p (D2u)− |u|s−1u = f(x) in the punctured

ball B∗
ρ are bounded above. Similarly, when f is bounded above, supersolutions of

equation P−
p (D2u)− |u|s−1u = f(x) are bounded from below.

Corollary 4.2. A) Suppose that assumptions of Lemma 4.1(A) are fullfilled with
f(x) bounded below. If u ∈ C(B∗

ρ) is a viscosity subsolution of equation (1.1), then
u is bounded above in B∗

r for all r < ρ.
B) On the other side, if the assumptions of Lemma 4.1(B) are fullfilled with f(x)

bounded above and if u ∈ C(B∗
ρ) is a viscosity supersolution of equation (1.2), then

u is bounded below in B∗
r for all r < ρ.

Proof. We treat case A), since case B) is similar.
Suppose f ≥ −F− with F− ≥ 0 and set ϕ(x) = εEp(x) +K(r2 − |x|2). Then for

all ε > 0

(4.30) P+
p (D2ϕ)− |ϕ|s−1ϕ ≤ −2Kp ≤ −f−(x)

in the punctured ball B∗
r , provided K ≥ F−

2p .

Next, set u0(x) = u+(x)−max∂Br
u+. We have

(4.31) P+
p (D2u0)− |u0|s−1 u0 ≥ −f−(x),

so that we can compare u0 and ϕ with Lemma 2.1 in any annular region B∗
r .

Since u+(x) = o(ϕ(x)) as x → 0 by (4.3), then u0(x) ≤ ϕ(x) in a sufficiently
small neighbourhood of the origin; moreover, u0(x) ≤ 0 ≤ ϕ(x) on ∂Br. So by
comparison u0(x) ≤ ϕ(x) in B∗

r , namely

(4.32) u(x) ≤ εEp(x) +Kr2 +max
∂Br

u+

in B∗
r . Letting ε → 0+, we conclude that u is bounded above in B∗

r , as claimed. �

Proof of Corollary 1.3. This is an immediate consequence of Corollary 4.2. �

Proof of Theorem 1.4. Let u be a viscosity solution of equation Fp(D
2u)−|u|s−1u =

f(x) in Ω∗, and suppose that x0 = 0. Then, by condition (1.9) on Fp, the solution
u satisfies the assumptions of Corollary 1.3 and therefore is bounded in a punctured
ball B∗

r ⊂ Br ⊂ Ω with a sufficiently small radius r > 0.
We consider the viscosity solution w(x) of the Dirichlet problem (see Section 6)

(4.33)

{
Fp(D

2w)− |w|s−1w = f(x) in Br,
w = u on ∂Br.

Note that for all ε > 0, using the structure condition (1.9)′, the fundamental solution
Ep, and the increasing monotonicity of the function g(t) = |t|s−1t, we have

Fp(D
2(w + εEp))− |w + εEp|s−1(w + εEp)

≤Fp(D
2w)− |w|s−1w

≤ f(x)

≤Fp(D
2u)− |u|s−1u.

(4.34)
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Since u is bounded in B∗
r , we have u(x) ≤ w(x)+ εEp(x) in a neighbourhood of the

origin as well as on ∂Br. Therefore the comparison principle of Lemma 2.1 yields

(4.35) u(x) ≤ w(x) + εEp(x)
in Br. Letting ε → 0+, we obtain u(x) ≤ w(x) in B∗

r . Since w(x) is bounded, too,
interchanging the role of u and w, we also get the reverse inequality w(x) ≤ u(x)
in B∗

r , so that w is a continuous extension of u to Br, concluding the proof. �

5. Removability of nonisolated singular sets

In this section, we suppose that the singular set E is a compact subset of a domain
Ω of Rn and is contained in a smooth (C2) embedded manifold Γ of codimension k
such that n− p+ 2 < k < n with 3 ≤ p ≤ n.

As already anticipated in Section 1, we will consider the distance function δ(x) =
dist(x,Γ) and we refer to Ambrosio and Soner [2] for the properties that will be
used here; see also Ambrosio and Mantegazza [1].

We will follow the track of Section 4 with suitable modifications, substituting
p and |x|, respectively, with the integer p − (n − k) > 2 and the function δ(x).
This essentially amounts to substituting the fundamental solution Ep(x) with the
function

(5.1) Vp(x) = δ−α(x) , δ(x) = dist(x,Γ) ,

where α = (p− 2)− (n− k) is a positive integer, as in the Introduction.
However, differently from Ep(x), which is p+-harmonic, the function Vp(x) =

δ−α(x) is neither p+-harmonic nor p+-superharmonic, in general. Nonetheless, this
will be seen as not invalidating the argument of the proofs.

We also notice that the case that E is a point can be assimilated to co-dimension
k = n.

5.1. Supersolutions via distance function. It will be convenient to use the
function η(x) = 1

2 δ
2(x), which, by Theorem 3.1 of [2], is a smooth function in the

tubular neighbourhood Tσ(Γ) = {x ∈ R
n : δ(x) ≡ dist(x,Γ) < σ} for some σ > 0. If

x ∈ Tσ(Γ), then Dη(x) = δ(x)νP , where νP is the unit normal vector to Γ from the
point P ∈ Γ such that |x−P | = δ(x). Moreover, by Theorem 3.2 of [2], the Hessian
matrix D2η(x) represents the orthogonal projections on the normal space NP to
Γ at P and has k eigenvalues equal to 1 with the remaining λ1 ≤ · · · ≤ λn−k < 1
such that

(5.2) |λi(D
2η(x))| ≤ Cδ(x), i = 1, . . . , n− k,

where C = C(σ) is a positive constant. Next, we compute

D2Vp =2−
α
2 D2η−

α
2 = −2−

1
α 2 α

2 D(η−(α
2 +1)Dη)

=α δ−(α+2)
[
(α+ 2)νP ⊗ νP −D2η

]
.

(5.3)

We notice that νP ⊗ νP is a rank-one matrix with non-zero eigenvalue 1 associated
to the eigenvector νP ∈ NP , so that

P+
p ((α+ 2)νP ⊗ νP −D2η) ≤ (α+ 2)P+

p (νP ⊗ νP )− P−
p (D2η)

≤ (α+ 2)−
n−k∑
i=1

λi(D
2η)− p+ n− k

≤α− (p− 2) + (n− k) + (n− k)Cδ,

(5.4)
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and hence, choosing α = (p− 2)− (n− k), we have

(5.5) P+
p (D2Vp) ≤ C1 δ

−(α+1)

in the tubular neighbourhood Tσ(Γ)\Γ, for some positive constant C1.
As already observed above, in this case the function Vp(x) will play the role of

the fundamental solution Ep(x) for punctured domains. But the right term of (5.5)
cannot in general be taken to be equal to zero, unless Γ is flat, i.e., Γ = {x1 = · · · =
xk = 0}.

Nevertheless, if l is a positive constant and s = α+2
α , we have

(5.6) P+
p (D2lVp)− (lVp)

s ≤ l δ−(α+2)(C1δ − ls−1) ≤ 0

if we take δ(x) ≤ C−1
1 ls−1, namely in a suitable tubular neighbourhood Tσl

(Γ)\Γ,
and this will be seen as sufficient to show that solutions u of Lemma 3.1 are in fact
o(Vp(x)) as x → E.

5.2. Behaviour near singular sets. We are going to establish the counterpart
of Lemma 4.1.

Lemma 5.1. Let n and p be positive integers such that 3 ≤ p ≤ n. Let k ∈ N be
such that α := (p−2)− (n−k) > 0. Suppose that Γ is a smooth embedded manifold
in R

n of codimension k < n and that E is a compact subset of Ω such that E � Γ
in the relative topology and all points of E are limit points for Ω\Γ. Let s be a real
number such that

(5.7) s ≥ α+ 2

α
≡ p− (n− k)

(p− 2)− (n− k)
,

i.e., p ≥ ps + (n− k).
A) Suppose f− is a continuous function in Ω\E such that

(5.8) lim sup
x→E

dαsE (x) f−(x) = 0 .

If u ∈ USC(Ω\E) is a viscosity subsolution of equation

(5.9) P+
p (D2u)− |u|s−1u = f(x)

in Ω\E, then

(5.10) lim sup
x→E

u+(x)

Vp(x)
= 0 .

B) Suppose that f+ is a continuous function in Ω\E such that

(5.11) lim sup
x→E

dαsE (x) f+(x) = 0 .

If u ∈ LSC(Ω\E) is a viscosity supersolution of equation

(5.12) P−
p (D2u)− |u|s−1u = f(x)

in Ω\E, then

(5.13) lim sup
x→E

u−(x)

Vp(x)
= 0 .
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Proof. As in the case of punctured domains of Lemma 4.1, part B) for a supersolu-
tion u can be deduced from part A) by passing to the subsolution −u, and therefore
it is enough to prove part A).

In order to do this, we argue as in the proof of Lemma 4.1, recalling that Vp(x) =
δ−α(x), where δ(x) = dist(x,Γ) and α = (p− 2)− (n− k) ∈ N.

Firstly, supposing s > α+2
α , i.e., p > ps+(n−k), and observing that dist(x,Γ) ≤

dist(x,E) ≡ dE(x), then estimate (3.6) yields, for a viscosity subsolution of equation
(5.9),

u+(x)

Vp(x)
≤ AdE(x)

p−(ps+n−k)

+ 2p−2 max
|z−x|≤ 1

2dE(x)
dαE(z)

{
f−(z)

} 1
s

which, by assumption on f−, proves (5.10) in the present case, letting x → E.

We are left with the case s = α+2
α ≡ p−(n−k)

(p−2)−(n−k) , i.e., p = ps + n − k ≡
2s
s−1 + (n− k).

Arguing by contradiction, we suppose

(5.14) lim sup
x→E

u+(x)

Vp(x)
= l > 0

and notice that, since p = ps + n− k, Lemma 3.1 implies l < ∞.
Then we will adapt the proof of Lemma 4.1.
i) Firstly, we find d0 > 0 and a neighbourhood Ω0 = {x ∈ Ω : dE(x) < d0} of E

such that Ω0 ⊂ Ω and

(5.15) u+(x) ≤ M + l Vp(x) in Ω∗
0 ≡ Ω0\E

with

(5.16) M = max
dE(x)=d0

u+(x) ,

and

(5.17) f−(x) ≤ ls

2δαs(x)
in Ω∗

0 ,

using assumption (5.8). Note that Ω∗
0 contains points x ∈ Γ where Vp(x) = ∞,

and we still denote by Vp(x) the canonical lsc extension (Vp)∗(x) of Vp(x) across Γ,
namely

(5.18) (Vp)∗(x) =

{
δ−α(x) x �∈ Γ,
∞ x ∈ Γ.

We will also suppose that Ω0 ⊂ Tσ, the tubular neighbourhood of Γ where the
distance function δ(x) is smooth.

To show (5.15), from (5.14) we take decreasing sequences of positive numbers
dj → 0 and εj → 0 as j → ∞, and points xj ∈ Ω0\Γ such that

(5.19) l (1− εj) ≤
u+(xj)

Vp(xj)
= max

dE(x)=dj

u+(x)

Vp(x)
≤ l (1 + εj).

By (5.16) and (5.19), we obtain, on the boundary of the “annular region” {dj <
dE(x) < d0}, the inequality

(5.20) u+(x) ≤ M + l (1 + εj)Vp(x) ,
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which can be extended to all the annular regions by comparing the subsolution
u+(x) with the supersolution M + l (1+εj)Vp(x) of equation P+

p (D2u)−|u|s−1u =

−f−(x) in Ω∗
0. That M + l (1 + εj)Vp(x) is a supersolution deserves some expla-

nation: we suppose, as we may, that Ω∗
0 is contained in the tubular neighbourhood

Tσl
and δ(x) ≤ ls−1

2C1
in Ω∗

0, where C1 is the constant in the estimate (5.6), which

we can use at points x ∈ Ω0\Γ under the assumption (5.17), while there are no test
functions at points x ∈ Γ.

Then we obtain (5.20) in the annular region {dj < dE(x) < d0}. As in (i) in
the proof of Lemma 4.1, each fixed x ∈ Ω∗

0 will be included in any annular region
{dj < dE(x) < d0} for j large enough, and therefore (5.20) still holds at x in the
limit as j → ∞, yielding (5.15).

ii) Taking the sequence of maximum points xj ∈ Ω\Γ, j ∈ N, of (5.19), we put

(5.21) rj = δ(xj) ≡ dist(xj ,Γ)

and we solve the Dirichlet problem (DP)j as in (ii) in the proof of Lemma 4.1 with
ρj = rj (1− εj). Thus we construct a sequence of functions uj(x) such that

(5.22) u+(x) ≤ uj(x) ≤ M + l Vp(x) in Bρj
(xj) .

The left-hand inequality follows by comparing the solution uj with the subsolution
u = u+ of equation P+

p (D2u) − |u|s−1u = −f−(x). Concerning the right-hand
inequality, we notice that Bρj

⊂ Ω0\Γ and use (5.15) to compare uj with the

supersolution M + l Vp(x) on the boundary of Bρj
.

iii) Next, let Pj ∈ Γ such that |xj − Pj | = rj ≡ δ(xj) and let νj be the unit
normal vector to Γ from Pj to xj , so that xj = Pj + δ(xj) νj .

Setting yj = Pj + r0νj for a suitable small r0 > 0, independent of j ∈ N, the
distance of yj from Γ is still realized along νj : δ(yj) = |yj − Pj |. Then we consider
the linear mapping (4.16), which sends xj into yj = Pj + r0νj and Bρj

(xj) into

Br0(yj). Following the proof of Lemma 4.1, with ρj =
ρj

r0
we construct the rescaled

function

(5.23) wj(y) = ραj uj(x) = ραj uj(xj + ρj
y−yj

r0
)

in Br0(yj), which satisfies the equation

P+
p (D2wj(y))− |wj(y)|s−1wj(y) = −ρα+2

j f−
j (y) in Br0(yj) ,(5.24)

where f−
j (y) = f−(xj + ρj

y−yj

r0
).

Since the yj ’s are bounded, we may suppose, up to a subsequence, that yj → y0
and, up to a translation, that the distance of y0 from Γ is realized at the origin
0 ∈ E; therefore y0 = r0ν0. Moreover, B r0

2
(y0) ⊂ Br0(yj) for j ∈ N large enough.

Then we can find a sequence ηj ↘ 0 such that

wj(y)

1 + ηj
≤ lVp(y) in B r0

2
(y0) ;

wj(yj)

1 + ηj
≥ lVp(y0)

(1 + ηj)2
.

(5.25)
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To show this, we observe that from the right-hand inequality of (5.22) we obtain

wj(y) = ραj uj(xj + ρj
y−yj

r0
)

≤ ραj (M + l Vp(xj + ρj
y−yj

r0
))

= ραj M +
ραj l

δα(ρj (
y
r0

+
xj

ρj
− yj

r0
))

.

(5.26)

Since ρj = rj(1 − εj) < 1, and as we may suppose, Pj → 0 and νj → ν0, then
xj

ρj
− yj

r0
→ 0 and the latter sequence in (5.26) converges to lδ−α(y) uniformly for

y ∈ B r0
2
(y0) as j → ∞. Thus the first inequality in (5.25) is proved.

On the other side, using the left-hand inequality in (5.22), we get

wj(yj) = ραj uj(xj)

≥ ραj u
+(xj) =

u+(xj)

Vp(xj)

(
ρj
rj

)α

≥ l (1− εj)

(
ρj
rj

)α

= l rα0 Vp(y0) (1− εj)

(
ρj
rj

)α

,

(5.27)

and this also proves the second inequality in (5.25).
Moreover, starting from (5.24) and reasoning as in the proof of Lemma 4.1, we

also get

(5.28) P+
p

(
D2 wj(y)

1 + ηj

)
−
(
wj(y)

1 + ηj

)s

≥ −ρα+2
j f−

j (y) in B r0
2
(y0) ,

where f−
j (y) = f−(xj + ρj

y−yj

r0
).

iv) Observe, again as in the proof of Lemma 4.1, that for all j0 ∈ N the usc

envelope w∗ of function w(y) = sup
j≥j0

wj(y)
1+ηj

is a subsolution of equation

(5.29) P+
p (D2w∗(y))− |w∗(y)|s−1w∗(y) = − sup

j≥j0

ρα+2
j f−

j (y) in B r0
2
(y0) .

Moreover, from inequalities (5.25) it follows that

(5.30) w∗(y) ≤ lVp(y), y ∈ B r0
2
(y0) ,

and

(5.31) w∗(y0) ≥ lVp(y0) .

v) Conclusion. By (5.30) and (5.31) the function ϕ(y) = lVp(y) touches from
above w∗(y) at y0 and can be used as a test function in equation (5.29) obtaining

(5.32) P+
p (D2ϕ(y0))− (ϕ(y0))

s ≥ − sup
j≥j0

ρα+2
j f−(x′

j),

where x′
j = xj + ρj

y0−yj

r0
.

We will get a contradiction, but we have to be a little bit more careful with
respect to Lemma 4.1. By (5.5), it follows from (5.32) that

(5.33) lC1r
−α−1
0 − lsr−αs

0 ≥ − sup
j≥j0

ρα+2
j f−(xj + ρj

y0−yj

r0
).
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Now, letting j0 → ∞, since αs = α + 2 and δα+2(x′
j)f

−(x′
j) → 0 by assumption,

as well as
ρj

δ(x′
j)

→ 1 when j → ∞, we should have

(5.34) ls r−2
0 − l C1 r

−1
0 ≤ 0 .

Here we observe that the argument works with any sufficiently small r0 > 0, and
(5.34) yields a contradiction for r0 small enough, thereby proving the assertion. �
Proof of Theorem 1.7. The proof of Theorem 1.7 follows at once by gathering to-
gether (5.10) and (5.13) of the above Lemma 5.1. �

5.3. Boundedness across the singular set. As in the case of punctured domains
(Corollary 1.3), we will see that solutions are bounded across Γ if we assume that
f(x) is bounded.

Lemma 5.2. A) Suppose that assumptions of Lemma 5.1, part A), are fulfilled
with f(x) bounded below. If u ∈ USC(Ω\E) is a viscosity subsolution of equation
(1.1), then u is bounded above across E, namely bounded above in any open set
Ω′\E such that Ω′ � Ω.

B) Suppose that assumptions of Lemma 5.1, part B), are fulfilled with f(x)
bounded above. If u ∈ LSC(Ω\E) is a viscosity supersolution of equation (1.1),
then u is bounded below across E, namely bounded below in any open set Ω′\E such
that Ω′ � Ω.

Proof. We will give the proof for subsolutions of part A), the counterpart for su-
persolutions of part B) being similar, based on part B) of Lemma 5.1.

We follow the lines of the proof Corollary 4.2 (A), but we cannot simply use Vp(x)
in place of Ep(x), because in general Vp(x) ≡ δ−α(x) is not p+-superharmonic in
any tubular neighbourhood of Γ, unless Γ is flat. We take instead vp(x), the lsc
canonical extension across Γ of

(5.35) Vp(x) + δ−α+ 1
2 (x) ≡ δ−α(x) + δ−α+ 1

2 (x) ,

such that vp(x) → ∞ as x → Γ and the boundary limits (5.10) and (5.13) continue
to hold with vp(x) instead of Vp(x). Following the computations leading to (5.5),
we get

P+
p (D2vp(x)) ≤P+

p (D2Vp(x)) + P+
p (D2δ−α+ 1

2 (x))

≤C1 δ
−α−1(x)− C2 δ

−α−3
2 (x) + C3 δ

−α− 1
2 (x) ,

(5.36)

where Ci, i = 1, 2, 3, are positive constants, and so we can find a tubular neighbor-
hood Td of Γ such that

(5.37) P+
p (D2vp(x)) ≤ 0 in Td ;

then we take a neighbourhood Ω0 of E such that E ⊂ Ω0 � Td.
Now, we argue as in the proof of Corollary 4.2, taking F− ≥ 0 such that f ≥

−F−, K ≥ F−

2p , and r > 0 such that Ω0 � Br. For all ε > 0 we construct the

function ϕ(x) = ε vp(x) + K(r2 − |x|2) in order to have a supersolution in Ω0,
namely

(5.38) P+
p (D2ϕ)− |ϕ|s−1ϕ ≤ −f−(x) .

Taking u0(x) = u+(x)−max∂Ω0
u+, we also have

(5.39) P+
p (D2u0)− |u0|s−1u0 ≥ −f−(x) ,
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and we can compare u0 and ϕ in Ω∗
0 = Ω0\E, observing that u+ ≤ ϕ in a suitably

small neighbourhood of E by (5.10); moreover u0(x) ≤ 0 ≤ ϕ(x) on ∂Ω0. Then by
comparison we have

(5.40) u(x) ≤ εvp(x) +Kr2 +max
∂Ω0

u+

in Ω∗
0. Letting ε → 0, we conclude that u is bounded above in Ω0\Γ. Therefore

the canonical usc extension U of u across Γ is bounded above, but u(x) = U(x) in
Ω\E, and therefere u is bounded above in Ω0\E. �

Proof of Corollary 1.8. Corollary 1.8 is an immediate consequence of part A) and
B) of this subsection. �
5.4. Removability of the singular set. To show the removability result we will
use Theorem 6.1 of [32], showing that a compact subset E with Hausdorff measure
Hp−2(E) < ∞ is a polar set for the operator P+

p . This means that there exists a

p+-superharmonic function v of equation P+
p (D2v) = 0 in a neighbourhood Ω0 of

E, which is smooth in Ω0\E, such that

(5.41) v(x) = ∞ if x ∈ E, 0 ≤ v(x) < ∞ if x �∈ E .

In fact, since Hp−2(E) < ∞, then E has Riesz capacity Cp−2(E) = 0. Then (see
for instance [3]) there exists a unit positive Borel measure μ on E such that the
potential

(5.42) v(x) =

∫
E

Ep(y − x) dμ

satisfies (5.41) in Ω0 = R
n and is C∞ in R

n\E.
Moreover, as in [3], recalling that Ep(x) = 1

|x|p−2 , by direct computation we get

(5.43) P+
p (D2v) ≤

∫
E

P+
p (D2Ep(y − x)) dμ ≤ 0 , x �∈ E;

on the other hand, since v(x) = ∞ on E, there are no test functions at points
x ∈ E, and therefore v is p+-superharmonic in R

n.

Proof of Theorem 1.9. As a consequence of the above argument, the proof can be
obtained as a straightforward application of Theorem 6.1 of [32]. Since we have
used different terminology, we make it explicit for sake of completeness.

Since E � Γ and m < p − 2, then Hp−2(E) = 0, and from the above it follows
that E is a polar set for the operator P+

p , so there exists a p+-superharmonic
function v satisfying (5.41).

Let U be the canonical usc extension of u across E, which is bounded above in
Ω from the previous subsection; then consider the family {U − ε v : ε > 0}. Using
the structure condition (1.9)′ and the nondecreasing monotonicity of the function
g(t) = |t|s−1t, we get

Fp(D
2(U − εv))− |U − εv|s−1(U − εv)

≥Fp(D
2U)− |U |s−1U

+(|U |s−1U − |U − εv|s−1(U − εv)) ≥ f(x) in Ω∗ ,

(5.44)

while there are no test functions at points x ∈ E, where U(x)− ε v(x) = −∞.
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Hence the usc envelope w(x) = u∗(x) of the function

(5.45) u(x) = sup
ε>0

(U(x)− εv(x)) =

{
u(x) if x ∈ Ω∗,
−∞ if x ∈ E

is in turn a subsolution (see Section 2) of equation Fp(D
2w) − |w|s−1w = f(x) in

Ω.
Analogously, using the canonical lsc extension V of u across E, the lsc envelope

of u∗(x) of the function

(5.46) u(x) = inf
ε>0

(V (x) + εv(x)) =

{
u(x) if x ∈ Ω∗,
+∞ if x ∈ E

will be a supersolution of the same equation in Ω.
Finally, at x0 ∈ E,

(5.47) u∗(x0) ≤ lim inf
x→x0

u(x) ≤ lim sup
x→x0

u(x) ≤ u∗(x0) .

On the other side, since u∗(x) is a subsolution and u∗(x) a supersolution in Ω such
that u∗(x) = u(x) = u∗(x) for x �∈ E, we also get by comparison the opposite
inequality u∗(x0) ≤ u∗(x0). Therefore u∗(x0) = u∗(x0) = ũ(x0), say, for x0 ∈ E,
and actually the function

(5.48) w(x) =

{
u(x) if x ∈ Ω∗

ũ(x) if x ∈ E,

yields a continuous extension of u to a solution in all of Ω. �
Remark 5.3. Note that the smoothness assumption on the manifold Γ � E in
Theorem 1.9 and hence on the distance function δ(x) = dist(x,Γ) is used to show
that a solution u(x) is o(δ(x)) as x → E and ultimately that u is bounded in
Ω\E. If u is assumed to be bounded, then the argument of the above proof shows
that a sufficient condition in order that E be a removable singularity for equation
F (D2u)− |u|s−1u = f(x) with f(x) bounded is that Cp−2(E) = 0.

6. Appendix: Existence of solutions

In this section we recall the existence via Perron’s method of viscosity solutions
of the Dirichlet problem, provided by Theorem 4.1 of Crandall, Ishii and Lions (see
[27] for the classical Perron method and Ishii [36] for other applications to fully
nonlinear second order elliptic equations). Existence results for operators involving
P+
p can be found in [30]. Here we briefly sketch the proof.
We wish to find viscosity solutions of the Dirichlet problem

(DP)

{
Fp(D

2u)− |u|s−1u = f(x) in B,
u = g on ∂B

in a ball B.
According to Theorem 4.1 of [19], we need in particular to find a supersolution

u and a subsolution u of the equation in (DP) such that

(6.1) u∗ = g = u∗ on ∂B.

Lemma 6.1. Suppose that B is a ball in R
n, 1 < p ≤ n, s > 1, and f ∈ C(B).

There exists a function u ∈ lsc(B) such that

(6.2)

{
P+
p (D2u)− |u|s−1u ≤ f(x) in B,

u∗ = g on ∂B.
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Sketch of the proof. Following the scheme of Section 9 of [18], it is sufficient to
find, for all points xb on the boundary ∂B, an equicontinuous family of solutions
Gb ∈ C(B) of the equation

(6.3) P+
p (D2Gb) ≤ −κ in B

with κ > 0 such that Gb(xb) = 0 and Gb(x) > 0 for x ∈ B\{xb}.
Indeed, suppose this has been done. If g = 0, choosing M = max |f |/κ we get

P+
p (D2(MGb))− |MGb|s−1MGb ≤ −κM ≤ f(x) in B

and we can choose

u(x) = inf
xb∈∂B

MGb(x),

which is continuous by equicontinuity and, since the infimum of supersolutions is a
supersolution, satisfies{

P+
p (D2u)− |u|s−1u ≤ f(x) in B,

u = g on ∂B.

In the general case (see Hint 9.3 of [18], Section 7.2 of [46]) we can use as u the lsc
envelope (see Lemma 4.2 of [19]) of the function

u(x) = inf
xb∈∂B1

ε>0

(g(xb) + ε+MεGb(x))

with suitable constants Mε > 0.
Hence we are left with the task of finding the functions Gb for each xb ∈ ∂B. We

notice that unfortunately, by lack of uniform ellipticity, we may not proceed taking
a radial symmetric function. So we need a different construction.

We may assume

B = {x ∈ R
n : x2

1 + · · ·+ x2
n−1 + (xn − 1)2 < 1}.

Setting

G0(x) = xn − (x2
1 + · · ·+ x2

n−1),

we have G0(0) = 0, G0(x) > 0 in B\{0} and

P+
p (D2G0) = −2(p− 1) < 0 .

For a general point xb ∈ ∂B then we can define

Gb(x) = G0(Rb(x− xb)),

where Rb is a suitable rotation matrix, and we notice that the functions Gb(x) have
all the required properties. �

We are in a position to prove the following existence and uniqueness result.

Theorem 6.2. Let B be a ball of Rn, 1 < p ≤ n, s > 1, f ∈ C(B), and g ∈ C(∂B).
There exists a unique continuous viscosity solution of Dirichlet problem (DP).

Proof. According to Theorem 4.1 of [19], we need:
i) the comparison principle between subsolutions and supersolutions;
ii) the existence of subsolutions and supersolutions with continuous boundary

values.
The comparison principle is proved above in Lemma 2.1 and a supersolution u

in the ball B such that u∗ = g on ∂B is provided by the above Lemma 6.1, since
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Fp(X) ≤ P+
p (X), by (1.9). To find a subsolution, it is enough to find with Lemma

6.1 a solution of the problem

(6.4)

{
P+
p (D2w)− |w|s−1v ≤ −f(x) in B,

w∗ = −g on ∂B

in order that v = −w satisfies

(6.5)

{
P−
p (D2v)− |v|s−1w ≥ f(x) in B,

v∗ = g on ∂B,

and therefore v can be used as the subsolution that we needed, since Fp(X) ≥
P−
p (X).
In conclusion, the assumptions of Theorem 4.1 of [19] are fulfilled, and we are

done. �
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