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SPECIALIZATION OF NONSYMMETRIC MACDONALD

POLYNOMIALS AT t = ∞ AND DEMAZURE SUBMODULES

OF LEVEL-ZERO EXTREMAL WEIGHT MODULES

SATOSHI NAITO, FUMIHIKO NOMOTO, AND DAISUKE SAGAKI

Abstract. In this paper, we give a representation-theoretic interpretation
of the specialization Ew◦λ(q,∞) of the nonsymmetric Macdonald polynomial

Ew◦λ(q, t) at t = ∞ in terms of the Demazure submodule V −
w◦ (λ) of the

level-zero extremal weight module V (λ) over a quantum affine algebra of an
arbitrary untwisted type. Here, λ is a dominant integral weight, and w◦ de-

notes the longest element in the finite Weyl group W . Also, for each x ∈ W ,
we obtain a combinatorial formula for the specialization Exλ(q,∞) at t = ∞
of the nonsymmetric Macdonald polynomial Exλ(q, t) and also a combinator-

ical formula for the graded character gchV −
x (λ) of the Demazure submodule

V −
x (λ) of V (λ). Both of these formulas are described in terms of quantum

Lakshmibai-Seshadri paths of shape λ.

1. Introduction

Symmetric Macdonald polynomials with two parameters q and t were intro-
duced by Macdonald [M1] as a family of orthogonal symmetric polynomials, which
includes as special or limiting cases almost all the classical families of orthogonal
symmetric polynomials. This family of polynomials is characterized in terms of
the double affine Hecke algebra (DAHA) introduced by Cherednik ([Ch1], [Ch2]).
In fact, there exists another family of orthogonal polynomials, called nonsymmet-
ric Macdonald polynomials, which are simultaneous eigenfunctions of Y -operators
acting on the polynomial representation of the DAHA; by “symmetrizing” nonsym-
metric Macdonald polynomials, we obtain symmetric Macdonald polynomials (see
[M]).

Based on the characterization above of nonsymmetric Macdonald polynomials,
Ram-Yip [RY] obtained a combinatorial formula expressing symmetric or nonsym-
metric Macdonald polynomials associated to an arbitrary untwisted affine root sys-
tem. This formula is described in terms of alcove walks, which are certain strictly
combinatorial objects. In addition, Orr-Shimozono [OS] refined the Ram-Yip for-
mula above and generalized it to an arbitrary affine root system (including the
twisted case). Also, they specialized their formula at t = 0, t = ∞, q = 0, and
q = ∞.

As for representation-theoretic interpretations of the specialization of symmet-
ric or nonsymmetric Macdonald polynomials at t = 0, we know the following.
Ion [I] proved that for a dominant integral weight λ and an element x of a finite
Weyl group W , the specialization Exλ(q, 0) of the nonsymmetric Macdonald poly-
nomial Exλ(q, t) at t = 0 is equal to the graded character of a certain Demazure
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submodule of an integrable, irreducible highest weight module over an affine Lie al-
gebra of untwisted simply-laced type or twisted non-simply-laced type. Afterward,
Lenart-Naito-Sagaki-Schilling-Shimozono [LNSSS2] proved that for a dominant in-
tegral weight λ, the set QLS(λ) of all quantum Lakshmibai-Seshadri (QLS) paths of
shape λ provides a realization of the crystal basis of a special quantum Weyl module
over a quantum affine algebra U ′

v(gaff) (without degree operator) of an arbitrary
untwisted type, and also proved that its graded character equals the specialization
Ew◦λ(q, 0) at t = 0, where w◦ denotes the longest element of W . Here a QLS
path is obtained from an affine level-zero Lakshmibai-Seshadri (LS) path through
the projection R ⊗Z Paff → R ⊗Z P , which factors the null root δ of an affine Lie
algebra gaff , and is described in terms of (the parabolic version of) the quantum
Bruhat graph, introduced by Brenti-Fomin-Postnikov [BFP]. The set of QLS paths
is endowed with an affine crystal structure in a way similar to the one for the set of
ordinary LS paths introduced by Littelmann [L]. Moreover, Lenart-Naito-Sagaki-
Schilling-Shimozono [LNSSS3] obtained a formula for the specialization Exλ(q, 0),
x ∈ W , at t = 0 in an arbitrary untwisted affine type, which is described in terms
of QLS paths of shape λ, and proved that the specialization Exλ(q, 0) is just the
graded character of a certain Demazure-type submodule of the special quantum
Weyl module. The crucial ingredient in the proof of this result is a graded charac-
ter formula obtained in [NS3] for the Demazure submodule V −

e (λ) of the level-zero
extremal weight module V (λ) of extremal weight λ over a quantum affine algebra
Uv(gaff), where e is the identity element of W . More precisely, in [NS3], Naito
and Sagaki proved that the graded character gchV −

e (λ) of V −
e (λ) ⊂ V (λ) is equal

to
(∏

i∈I

∏mi

r=1(1− q−r)
)−1

Ew◦λ(q
−1, 0), where λ =

∑
i∈I mi�i is a dominant in-

tegral weight, with �i, i ∈ I, the fundamental weights. The graded character
gchV −

e (λ) is obtained from the ordinary character of V −
e (λ) by replacing eδ by q,

with δ the null root of the affine Lie algebra gaff .
The purpose of this paper is to give a representation-theoretic interpretation of

the specialization Ew◦λ(q,∞) of the nonsymmetric Macdonald polynomial
Ew◦λ(q, t) at t = ∞ in terms of the Demazure submodule V −

w◦(λ) of V (λ); here
we remark that V −

w◦(λ) ⊂ V −
e (λ). More precisely, we prove the following theorem.

Theorem A (= Theorem 5.1.2). Let λ =
∑

i∈I mi�i be a dominant integral weight.

Then, the graded character gchV −
w◦(λ) of the Demazure submodule V −

w◦(λ) of V (λ)
is equal to (∏

i∈I

mi∏
r=1

(1− q−r)

)−1

Ew◦λ(q,∞).

In order to prove Theorem A, we first rewrite the Orr-Shimozono formula for
the specialization Exλ(q,∞) for x ∈ W (originally described in terms of quantum
alcove walks) in terms of QLS paths by use of an explicit bijection sending quantum
alcove walks to QLS paths that preserves weights and degrees; in some ways, this
bijection generalizes a similar one in [LNSSS2]. In particular, for x = w◦, the
Orr-Shimozono formula rewritten in terms of QLS paths states that

(∗) Ew◦λ(q,∞) =
∑

ψ∈QLS(λ)

ewt(ψ)qdegw◦λ(ψ),
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where QLS(λ) is the set of all QLS paths of shape λ, and for ψ ∈ QLS(λ), degw◦λ(ψ)
is a certain nonpositive integer, which is explicitly described in terms of the quantum
Bruhat graph; see §3.2 for details.

Next, using the explicit realization, obtained in [INS], of the crystal basis B(λ)
of V (λ) by semi-infinite LS paths of shape λ, we compute the graded character
gchV −

x (λ) of the Demazure submodule V −
x (λ) for x ∈ W and prove the following

theorem.

Theorem B (= Theorem 5.1.1). Let λ =
∑

i∈I mi�i be a dominant integral weight
and x an element of the finite Weyl group W . Then, the graded character gchV −

x (λ)
of V −

x (λ) is equal to(∏
i∈I

mi∏
r=1

(1− q−r)

)−1 ∑
ψ∈QLS(λ)

ewt(ψ)qdegxλ(ψ).

The proof of Theorem B is based on the fact that by factoring the null root δ
of gaff , we obtain a surjective strict morphism of crystals from the set of all semi-
infinite LS paths of shape λ onto QLS(λ). By combining the special case x = w◦
of Theorem B with equation (∗) above, we obtain Theorem A.

Finally, for x ∈ W , we define a certain (finite-dimensional) quotient module
V −
x (λ)/X−

x (λ) of V −
x (λ) and prove that its graded character gch (V −

x (λ)/X−
x (λ))

is equal to
∑

ψ∈QLS(λ) e
wt(ψ)qdegxλ(ψ). Hence it follows that under the specializa-

tion eδ = q = 1, all the modules V −
x (λ)/X−

x (λ), x ∈ W , have the same char-
acter; in particular, they have the same dimension. Also, in the case x = w◦,
we have gch

(
V −
w◦(λ)/X

−
w◦(λ)

)
= Ew◦λ(q,∞). Note that in the case x = e, the

quotient module V −
e (λ)/X−

e (λ) is just the one in [NS3, §7.2], and hence we have
gch (V −

e (λ)/X−
e (λ)) = Ew◦λ(q

−1, 0) (see [LNSSS3, §3] and [NS3, §6.4]). Based on
these results together with [Kat, Theorem 5.1] for the classical limit, we can think of
the quotient modules V −

x (λ)/X−
x (λ), x ∈ W , as a quantum analog of “generalized

Weyl modules” introduced in [FM].
This paper is organized as follows. In Section 2, we fix our notation and recall

some basic facts about the (parabolic) quantum Bruhat graph. Also, we briefly
review the Orr-Shimozono formula for the specialization Exλ(q,∞) at t = ∞ for
x ∈ W . In Section 3, we prove equation (∗) above or, more generally, Theorem
3.2.7. This theorem gives the description of the specialization Exλ(q,∞) at t = ∞
for x ∈ W in terms of QLS paths of shape λ. In Section 4, we compute the
graded character gchV −

x (λ) for an arbitrary x ∈ W and prove Theorem B. By
combining the special case x = w◦ of Theorem B with equation (∗), we obtain
Theorem A. Finally, for x ∈ W , we define a certain (finite-dimensional) quotient
module V −

x (λ)/X−
x (λ) of V −

x (λ) and compute its graded character. In the special
case x = w◦, we obtain the equality gch

(
V −
w◦(λ)/X

−
w◦(λ)

)
= Ew◦λ(q,∞).

2. (Parabolic) quantum Bruhat graph and Orr-Shimozono formula

2.1. (Parabolic) quantum Bruhat graph. Let g be a finite-dimensional simple
Lie algebra over C, I the vertex set for the Dynkin diagram of g, {αi}i∈I (resp.,
{α∨

i }i∈I) the set of all simple roots (resp., coroots) of g, h =
⊕

i∈I Cα
∨
i a Cartan

subalgebra of g, h∗ =
⊕

i∈I Cαi the dual space of h, and h∗
R
=
⊕

i∈I Rαi the real
form of h∗. The canonical pairing between h and h∗ is denoted by 〈·, ·〉 : h∗×h → C.
Let Q =

∑
i∈I Zαi ⊂ h∗

R
denote the root lattice of g, Q∨ =

∑
i∈I Zα

∨
i ⊂ hR the



2742 S. NAITO, F. NOMOTO, AND D. SAGAKI

coroot lattice of g, and P =
∑

i∈I Z�i ⊂ h∗
R
the weight lattice of g, where the

�i, i ∈ I, are the fundamental weights for g, i.e., 〈�i, α
∨
j 〉 = δij for i, j ∈ I. We

set P+ :=
∑

i∈I Z≥0�i and call an element λ of P+ a dominant weight. Let us
denote by Δ the set of all roots and by Δ+ (resp., Δ−) the set of all positive (resp.,
negative) roots. Also, let W := 〈si | i ∈ I〉 be the Weyl group of g, where si, i ∈ I,
are the simple reflections acting on h∗ and on h:

siν = ν − 〈ν, α∨
i 〉αi, ν ∈ h

∗,

sih = h− 〈αi, h〉α∨
i , h ∈ h.

We denote the identity element and the longest element of W by e and w◦, respec-
tively. If α ∈ Δ is written as α = wαi for w ∈ W and i ∈ I, then we define α∨ to
be wα∨

i ; note that sα = sα∨ = wsiw
−1. For u ∈ W , the length of u is denoted by

�(u), which equals #(Δ+ ∩ u−1Δ−).

Definition 2.1.1 ([BFP, Definition 6.1]). The quantum Bruhat graph, denoted by
QBG, is the directed graph with vertex set W whose directed edges are labeled by

positive roots as follows. For u, v ∈ W , and β ∈ Δ+, an arrow u
β−→ v is an edge of

QBG if the following hold:

(1) v = usβ, and
(2) either (2a): �(v) = �(u) + 1 or (2b): �(v) = �(u)− 2〈ρ, β∨〉+ 1,

where ρ := 1
2

∑
α∈Δ+ α. An edge satisfying (2a) (resp., (2b)) is called a Bruhat

(resp., quantum) edge.

Remark 2.1.2. The quantum Bruhat graph defined above is a “right-handed” ver-
sion, while the one defined in [BFP] is a “left-handed” version. We remark that
the results of [BFP] used in this paper (such as Proposition 2.1.4) are unaffected
by this difference (cf. [Po]).

For an edge u
β−→ v of QBG, we set

wt(u → v) :=

{
0 if u

β−→ v is a Bruhat edge,

β∨ if u
β−→ v is a quantum edge.

Also, for u, v ∈ W , we take a shortest directed path u = x0
γ1−→ x1

γ2−→ · · · γr−→ xr = v
in QBG and set

wt(u ⇒ v) := wt(x0 → x1) + · · ·+wt(xr−1 → xr) ∈ Q∨.

We know from [Po, Lemma 1 (2),(3)] that this definition does not depend on the
choice of a shortest directed path from u to v in QBG. For a dominant weight
λ ∈ P+, we set wtλ(u ⇒ v) := 〈λ, wt(u ⇒ v)〉 and call it the λ-weight of a directed
path from u to v in QBG.

Lemma 2.1.3. If x
β−→y is a Bruhat (resp., quantum) edge of QBG, then yw◦

−w◦β−−−−→
xw◦ is also a Bruhat (resp., quantum) edge of QBG.

Proof. This follows easily from equalities �(y) − �(x) = �(xw◦) − �(yw◦) and
〈ρ,−w◦β

∨〉 = 〈ρ, β∨〉. �

Let w ∈ W . We take (and fix) reduced expressions w = si1 · · · sip and w◦w
−1 =

si−q
· · · si0 . Note that

w◦ = si−q
· · · si0si1 · · · sip
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is also a reduced expression for the longest element w◦. Now we set

(2.1) βk := sip · · · sik+1
αik , −q ≤ k ≤ p;

we have {β−q, . . . , β0, . . . , βp} = Δ+. Then we define a total order ≺ on Δ+ by

(2.2) β−q ≺ β−q+1 ≺ · · · ≺ βp.

Note that this total order is a weak reflection order in the sense of Definition 3.1.2
below.

Proposition 2.1.4 ([BFP, Theorem 6.4]). Let u and v be elements in W .

(1) There exists a unique directed path from u to v in QBG for which the edge
labels are strictly increasing (resp., strictly decreasing) in the total order ≺
above.

(2) The unique label-increasing (resp., label-decreasing) path

u = u0
γ1−→ u1

γ2−→ · · · γr−→ ur = v

from u to v in QBG is a shortest directed path from u to v. Moreover,
it is lexicographically minimal (resp., lexicographically maximal) among all
shortest directed paths from u to v; namely, for an arbitrary shortest directed
path

u = u′
0

γ′
1−→ u′

1

γ′
2−→ · · · γ′

r−→ u′
r = v

from u to v in QBG, there exists 1 ≤ j ≤ r such that γj ≺ γ′
j (resp.,

γj � γ′
j), and γk = γ′

k for 1 ≤ k ≤ j − 1.

For a subset S ⊂ I, we set WS := 〈si | i ∈ S〉; notice that S may be the empty
set ∅. We denote the longest element of WS by w◦(S). Also, we set ΔS := QS ∩Δ,
where QS :=

∑
i∈S Zαi, and then Δ+

S := ΔS ∩ Δ+, Δ−
S := ΔS ∩ Δ−. Let WS

denote the set of all minimal-length coset representatives for the cosets in W/WS.
For w ∈ W , we denote the minimal-length coset representative of the coset wWS

by �w�, and for a subset U ⊂ W , we set �U� := {�w� | w ∈ U} ⊂ WS .

Definition 2.1.5 ([LNSSS1, §4.3]). The parabolic quantum Bruhat graph, denoted

by QBGS , is the directed graph with vertex setWS whose directed edges are labeled
by positive roots in Δ+ \Δ+

S as follows. For u, v ∈ WS and β ∈ Δ+ \Δ+
S , an arrow

u
β−→ v is an edge of QBGS if the following hold:

(1) v = �usβ�, and
(2) either (2a): �(v) = �(u) + 1 or (2b): �(v) = �(u)− 2〈ρ− ρS , β

∨〉+ 1,

where ρS := 1
2

∑
α∈Δ+

S
α. An edge satisfying (2a) (resp., (2b)) is called a Bruhat

(resp., quantum) edge.

For an edge u
β−→ v in QBGS , we set

wtS(u → v) :=

{
0 if u

β−→ v is a Bruhat edge,

β∨ if u
β−→ v is a quantum edge.

Also, for u, v ∈ WS , we take a shortest directed path p : u = x0
γ1−→ x1

γ2−→ · · · γr−→
xr = v in QBGS (such a path always exists by [LNSSS1, Lemma 6.12]) and set

wtS(p) := wtS(x0 → x1) + · · ·+wtS(xr−1 → xr) ∈ Q∨.
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We know from [LNSSS1, Proposition 8.1] that if q is another shortest directed path

from u to v in QBGS , then wtS(p)− wtS(q) ∈ Q∨
S :=

∑
i∈S Zα∨

i .

Now, we take and fix an arbitrary dominant weight λ ∈ P+ and set

S = Sλ := {i ∈ I | 〈λ, α∨
i 〉 = 0}.

By the remark just above, for u, v ∈ WS , the value 〈λ, wtS(p)〉 does not de-

pend on the choice of a shortest directed path p from u to v in QBGS ; this value
is called the λ-weight of a directed path from u to v in QBGS . Moreover, we
know from [LNSSS2, Lemma 7.2] that the value 〈λ, wtS(p)〉 is equal to the value
wtλ(x ⇒ y) = 〈λ, wt(x ⇒ y)〉 for all x ∈ uWS and y ∈ vWS .

Definition 2.1.6 ([LNSSS2, §3.2]). Let λ ∈ P+ be a dominant weight and σ ∈
Q ∩ [0, 1], and set S = Sλ. We denote by QBGσλ (resp., QBGS

σλ ) the subgraph

of QBG (resp., QBGS) with the same vertex set but having only the edges u
β−→ v

with σ〈λ, β∨〉 ∈ Z.

Lemma 2.1.7 ([LNSSS2, Lemma 6.2]). Let σ ∈ Q∩ [0, 1]; notice that σ may be 1.

If u
β−→ v is an edge of QBGσλ, then there exists a directed path from �u� to �v� in

QBGS
σλ.

Also, for u, v ∈ W , let �(u ⇒ v) denote the length of a shortest directed path in
QBG from u to v. For w ∈ W , as in [BFP], we define the w-tilted Bruhat order
≤w on W as follows: for u, v ∈ W ,

u ≤w v
def⇔ �(w ⇒ v) = �(w ⇒ u) + �(u ⇒ v).

We remark that the w-tilted Bruhat order on W is a partial order with the unique
minimal element w.

Lemma 2.1.8 ([LNSSS1, Theorem 7.1], [LNSSS2, Lemma 6.6]). Let u, v ∈ WS

and w ∈ WS.

(1) There exists a unique minimal element in the coset vWS in the uw-tilted
Bruhat order ≤uw. We denote it by min(vWS ,≤uw).

(2) There exists a unique directed path from uw to some x ∈ vWS in QBG
whose edge labels are increasing in the total order ≺ on Δ+, defined in
(2.2), and lie in Δ+ \Δ+

S . This path ends with min(vWS ,≤uw).
(3) Let σ ∈ Q ∩ [0, 1], and let λ ∈ P be a dominant weight. If there exists a

directed path from u to v in QBGS
σλ, then the directed path in part (2) is in

QBGσλ.

2.2. Orr-Shimozono formula. In this subsection, we review a formula [OS, Prop-
osition 5.4] for the specialization of nonsymmetric Macdonald polynomials at t = ∞.

Let g̃ denote the finite-dimensional simple Lie algebra whose root datum is dual
to that of g; the set of simple roots is {α∨

i }i∈I ⊂ h, and the set of simple coroots

is {αi}i∈I ⊂ h∗. We denote the set of all roots of g̃ by Δ̃ = {α∨ | α ∈ Δ} and the

set of all positive (resp., negative) roots of g̃ by Δ̃+ (resp., Δ̃−). Also, for a subset
S ⊂ I, we set

Q̃S :=
∑
i∈S

Zα∨
i , Δ̃S := Δ̃ ∩ Q̃S , Δ̃+

S = Δ̃S ∩ Δ̃+, Δ̃−
S = Δ̃S ∩ Δ̃−.

We consider the untwisted affinization of the root datum of g̃. Let us denote by

Δ̃aff the set of all real roots and by Δ̃+
aff (resp., Δ̃−

aff) the set of all positive (resp.,
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negative) real roots. Then we have Δ̃aff = {α∨+aδ̃ | α ∈ Δ, a ∈ Z}, with δ̃ the null

root. We set α∨
0 := δ̃ − ϕ∨, where ϕ ∈ Δ denotes the highest short root, and set

Iaff := I � {0}. Then, {α∨
i }i∈Iaff is the set of all simple roots. Also, for β ∈ h⊕Cδ̃,

we define deg(β) ∈ C and β ∈ h by

(2.3) β = β + deg(β)δ̃.

We denote the Weyl group of g̃ by W̃ ; we identify W̃ and W through the identi-
fication of the simple reflections of the same index for each i ∈ I. For ν ∈ h∗,
let t(ν) denote the translation in h∗: t(ν)γ = γ + ν for γ ∈ h∗. The corre-
sponding affine Weyl group and the extended affine Weyl group are defined by

W̃aff := t(Q)�W and W̃ext := t(P )�W , respectively. Also, we define s0 : h∗ → h∗

by ν �→ ν − (〈ν, ϕ∨〉 − 1)ϕ. Then, W̃aff = 〈si | i ∈ Iaff〉; note that s0 = t(ϕ)sϕ. The

extended affine Weyl group W̃ext acts on h ⊕ Cδ̃ as linear transformations and on
h∗ as affine transformations: for v ∈ W , t(ν) ∈ t(P ),

vt(ν)(β + rδ̃) = vβ + (r − 〈ν, β〉)δ̃, β ∈ h, r ∈ C,

vt(ν)γ = vν + vγ, γ ∈ h∗.

An element u ∈ W̃ext can be written as

(2.4) u = t(wt(u))dir(u),

where wt(u) ∈ P and dir(u) ∈ W , according to the decomposition W̃ext = t(P )�W .

For w ∈ W̃ext, we denote the length of w by �(w), which equals #
(
Δ̃+

aff ∩ w−1Δ̃−
aff

)
.

Also, we set Ω := {w ∈ W̃ext | �(w) = 0}.
For μ ∈ P , we denote the shortest element in the coset t(μ)W by mμ ∈ W̃ext.

In the following, we fix μ ∈ P and take a reduced expression mμ = us
1 · · · s
L ∈
W̃ext = Ω� W̃aff , where u ∈ Ω and �1, . . . , �L ∈ Iaff .

For each J = {j1 < j2 < j3 < · · · < jr} ⊂ {1, . . . , L}, we define an alcove
path pOS

J =
(
mμ = zOS

0 , zOS
1 , . . . , zOS

r ;βOS
j1

, . . . , βOS
jr

)
as follows: we set βOS

k :=

s
L · · · s
k+1
α∨

k

∈ Δ̃+
aff for 1 ≤ k ≤ L, and set

zOS
0 := mμ,

zOS
1 := mμsβOS

j1
,

zOS
2 := mμsβOS

j1
sβOS

j2
,

...

zOS
r := mμsβOS

j1
· · · sβOS

jr
.

Also, following [OS, §3.3], we set B(e;mμ) :=
{
pOS
J | J ⊂ {1, . . . , L}

}
and end(pOS

J )

:= zOS
r ∈ W̃ext. Then we define

←−
QB(e;mμ) to be the following subset of B(e;mμ):

(2.5)

{
pOS
J ∈ B(e;mμ)

∣∣∣∣∣ dir(zOS
i )

−
(
βOS
ji+1

)∨

←−−−−−−− dir(zOS
i+1) is an edge of QBG,

0 ≤ i ≤ r − 1

}
.
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Remark 2.2.1 ([M, (2.4.7)]). If j ∈ {1, . . . , L}, then −
(
βOS
j

)∨
∈ Δ+.

For pOS
J ∈ ←−

QB(e;mμ), we define qwt∗(pOS
J ) as follows. Let J+ ⊂ J denote the

set of all indices ji ∈ J for which dir(zOS
i−1)

−
(
βOS
ji

)∨

←−−−−−− dir(zOS
i ) is a quantum edge.

Then we set

qwt∗(pOS
J ) :=

∑
j∈J+

βOS
j .

For μ ∈ P , we denote by Eμ(q, t) the nonsymmetric Macdonald polynomial
and by Eμ(q,∞) the specialization limt→∞ Eμ(q, t) at t = ∞. This specialization
is studied in [CO] in untwisted simply-laced types and twisted non-simply-laced
types.

We know the following formula for the specialization Eμ(q,∞) at t = ∞.

Proposition 2.2.2 ([OS, Proposition 5.4]). Let μ ∈ P . Then,

Eμ(q,∞) =
∑

pOS
J ∈←−

QB(e;mμ)

q−deg(qwt∗(pOS
J ))ewt(end(pOS

J )).

3. Orr-Shimozono formula in terms of qls paths

3.1. Weak reflection orders. Let λ ∈ P+ be a dominant weight, μ ∈ Wλ, and
set S := Sλ = {i ∈ I | 〈λ, α∨

i 〉 = 0}. We denote by v(μ) ∈ WS the minimal-
length coset representative for the coset {w ∈ W | wλ = μ} in W/WS . We have
�(v(μ)w) = �(v(μ)) + �(w) for all w ∈ WS . In particular, we have �(v(μ)w◦(S)) =
�(v(μ))+�(w◦(S)). When μ = λ− := w◦λ, it is clear that w◦ ∈ {w ∈ W | wλ = λ−}.
Since w◦ is the longest element of W , we have

(3.1) w◦ = v(λ−)w◦(S)

and �(v(λ−)w◦(S)) = �(v(λ−)) + �(w◦(S)); note that v(λ−) = w◦w◦(S) = �w◦�.
The following lemma follows from [M, Chap. 2].

Lemma 3.1.1.

(1) dir(mμ) = v(μ)v(λ−)
−1 and �(dir(mμ)) + �(v(μ)) = �(v(λ−)); hence

(3.2) mμ = t(μ)v(μ)v(λ−)
−1.

(2) v(μ)v(λ−)
−1w◦ = v(μ)w◦(S).

(3)
(
v(λ−)v(μ)

−1
)
mμ = mλ− , and �(v(λ−)v(μ)

−1) + �(mμ) = �(mλ−).

(4) �(v(λ−)v(μ)
−1) + �(v(μ)) = �(v(λ−)).

In this subsection, we give a particular reduced expression for mλ− (= t(λ−) by
(3.2)) and then study some of its properties.

First of all, we recall the notion of a weak reflection order on Δ+.

Definition 3.1.2. A total order ≺ on Δ+ is called a weak reflection order on Δ+

if it satisfies the following condition: if α, β, γ ∈ Δ+ with γ∨ = α∨ + β∨, then
α ≺ γ ≺ β or β ≺ γ ≺ α.

The following result is well-known (see [Pa, Theorem on p. 662] for example).
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Proposition 3.1.3. For a total order ≺ on Δ+, the following are equivalent:

(1) the order ≺ is a weak reflection order ;
(2) there exists a (unique) reduced expression w◦ = si1 · · · siN for w◦ such that

siN · · · sik+1
αik ≺ siN · · · sij+1

αij for 1 ≤ k < j ≤ N .

Next, we recall from [Pa, pp. 661–662] the notion and some properties of a weak

reflection order on a finite subset of Δ̃+
aff . We remark that arguments in [Pa] also

work in the general setting of Kac-Moody algebras.

Definition 3.1.4. Let T be a finite subset of Δ̃+
aff and ≺′ a total order on T . We

say that the order ≺′ is a weak reflection order on T if it satisfies the following
conditions:

(1) if θ1, θ2 ∈ T satisfy θ1 ≺′ θ2 and θ1 + θ2 ∈ Δ̃+
aff , then θ1 + θ2 ∈ T and

θ1 ≺′ θ1 + θ2 ≺′ θ2;

(2) if θ1, θ2 ∈ Δ̃+
aff satisfy θ1+ θ2 ∈ T , then θ1 ∈ T and θ1+ θ2 ≺′ θ1, or θ2 ∈ T

and θ1 + θ2 ≺′ θ2.

We remark that there does not necessarily exist a weak reflection order on an

arbitrary finite subset of Δ̃+
aff .

Proposition 3.1.5. Let T be a finite subset of Δ̃+
aff and ≺′ a weak reflection order

on T . We write T as {γ1 ≺′ γ2 ≺′ · · · ≺′ γp}. Then there exists w ∈ W̃aff such

that Δ̃+
aff ∩ w−1Δ̃−

aff = T . Moreover, there exists a (unique) reduced expression
w = s
1 · · · s
p for w such that s
p · · · s
j+1

α∨

j

= γj for 1 ≤ j ≤ p.

The converse of Proposition 3.1.5 also holds.

Proposition 3.1.6. Let w ∈ W̃aff , and let w = s
1 · · · s
p be a reduced expression.
We set a γj := s
p · · · s
j+1

α∨

j

for 1 ≤ j ≤ p, and define a total order ≺′ on

Δ̃+
aff ∩ w−1Δ̃−

aff as follows: for 1 ≤ j, k ≤ p, γj ≺′ γk
def⇔ j < k. Then, the total

order ≺′ is a weak reflection order on Δ̃+
aff ∩ w−1Δ̃−

aff .

Remark 3.1.7. Let

v(λ−) = si1 · · · siM ,

w◦(S) = siM+1
· · · siN ,

w◦ = si1 · · · siM siM+1
· · · siN

be reduced expressions for v(λ−), w◦(S), and w◦ = v(λ−)w◦(S), respectively, where
S = Sλ = {i ∈ I | 〈λ, α∨

i 〉 = 0}. Recall that w◦(S) is the longest element of
WS . We set βj := siN · · · sij+1

αij , 1 ≤ j ≤ N . By Proposition 3.1.3, we have

Δ+ \Δ+
S = {β1 ≺ β2 ≺ · · · ≺ βM} and Δ+

S = {βM+1 ≺ βM+2 ≺ · · · ≺ βN}, where
≺ is the weak reflection order on Δ+ determined by the reduced expression above
for w◦. In particular, we have

(3.3) θ1 ≺ θ2 for θ1 ∈ Δ+ \Δ+
S and θ2 ∈ Δ+

S .

Conversely, if a weak reflection order on Δ+ satisfies (3.3), then the reduced expres-
sion w◦ = s
1 · · · s
N for w◦ corresponding to this weak reflection order is given by
concatenating a reduced expression for v(λ−) with a reduced expression for w◦(S).
Moreover, if we alter a reduced expression for w◦(S) with a reduced expression for
v(λ−) unchanged, then the restriction to Δ+ \Δ+

S of the weak reflection order on
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Δ+ does not change. Thus, the restriction to Δ+ \Δ+
S of the weak reflection order

on Δ+ satisfying (3.3) depends only on a reduced expression for v(λ−).

First let us take a reduced expression v(λ−) = si1 · · · siM and a weak reflection
order ≺ on Δ+ such that the restriction to Δ+ \Δ+

S of this weak reflection order
≺ is determined by the reduced expression v(λ−) = si1 · · · siM as in Remark 3.1.7.
Also, we define an injective map Φ by

Φ : Δ̃+
aff ∩m−1

λ−
Δ̃−

aff → Q≥0 × (Δ+ \Δ+
S ),

β = β + deg(β)δ̃ �→
(
〈λ−, β〉 − deg(β)

〈λ−, β〉
, w◦β

∨
)
.

Note that 〈λ−, β〉 > 0, 〈λ−, β〉 − deg(β) ≥ 0, and w◦β
∨ ∈ Δ+ \Δ+

S since we know
from [M, (2.4.7) (i)] that

(3.4) Δ̃+
aff ∩m−1

λ−
Δ̃−

aff = {α∨ + aδ̃ | α ∈ Δ−, 0 < a ≤ 〈λ−, α
∨〉}.

We now consider the lexicographic order < on Q≥0 × (Δ+ \ Δ+
S ) induced by the

usual total order on Q≥0 and the restriction to Δ+ \Δ+
S of the weak reflection order

≺ on Δ+; that is, for (a, α), (b, β) ∈ Q≥0 × (Δ+ \Δ+
S ),

(a, α) < (b, β) if and only if a < b, or a = b and α ≺ β.

Then we denote by≺′ the total order on Δ̃+
aff∩m

−1
λ−

Δ̃−
aff induced by the lexicographic

order on Q≥0 × (Δ+ \ Δ+
S ) through the map Φ, and write Δ̃+

aff ∩ m−1
λ−

Δ̃−
aff as

{γ1 ≺′ · · · ≺′ γL}.

Proposition 3.1.8. Keep the notation and setting above. Then, there exists a
unique reduced expression mλ− = us
1 · · · s
L for mλ− , u ∈ Ω, {�1, . . . , �L} ⊂ Iaff ,

such that βOS
j

(
= s
L · · · s
j+1

α∨

j

)
= γj for 1 ≤ j ≤ L.

Proof. We will show that the total order ≺′ is a weak reflection order on Δ̃+
aff ∩

m−1
λ−

Δ̃−
aff .

We check condition (1) in Definition 3.1.4. Assume that θ1, θ2 ∈ Δ̃+
aff ∩m−1

λ−
Δ̃−

aff

satisfy θ1 ≺′ θ2 and θ1 + θ2 ∈ Δ̃+
aff . Then it is clear that θ1 + θ2 ∈ Δ̃+

aff ∩m−1
λ−

Δ̃−
aff .

Consider the case that the first component of Φ(θ1) is less than that of Φ(θ2) (i.e.,
〈λ−,θ1〉−deg(θ1)

〈λ−,θ1〉
< 〈λ−,θ2〉−deg(θ2)

〈λ−,θ2〉
). In this case, the first component of Φ(θ1 + θ2)

is equal to 〈λ−,θ1+θ2〉−deg(θ1+θ2)

〈λ−,θ1+θ2〉
, which lies between the first components of Φ(θ1)

and Φ(θ2). Hence we have Φ(θ1) < Φ(θ1 + θ2) < Φ(θ2).
Consider the case that the first component of Φ(θ1) is equal to that of Φ(θ2). In

this case, we have w◦θ1
∨ ≺ w◦θ2

∨
, where ≺ is the restriction to Δ+ \ Δ+

S of the
weak reflection order on Δ+. Note that the first component of Φ(θ1 + θ2) is equal

to 〈λ−,θ1+θ2〉−deg(θ1+θ2)

〈λ−,θ1+θ2〉
, which is equal to both of the first components of Φ(θ1) and

Φ(θ2). Moreover, since θ1+θ2 ∈ Δ̃+
aff ∩m−1

λ−
Δ̃−

aff , we have w◦
(
θ1 + θ2

)∨ ∈ Δ+ \Δ+
S .

It follows from the definition of the weak reflection order ≺ on Δ+ that w◦θ1
∨ ≺

w◦
(
θ1 + θ2

)∨ ≺ w◦θ2
∨
. Hence we have Φ(θ1) < Φ(θ1 + θ2) < Φ(θ2). Thus, the

total order ≺′ satisfies condition (1).
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We check condition (2) in Definition 3.1.4. If θ1, θ2 ∈ Δ̃+
aff \m

−1
λ−

Δ̃−
aff and θ1+θ2 ∈

Δ̃+
aff , then it is clear that θ1 + θ2 ∈ Δ̃+

aff \ m−1
λ−

Δ̃−
aff . Hence we may assume that

θ1 ∈ Δ̃+
aff∩m

−1
λ−

Δ̃−
aff and θ2 ∈ Δ̃+

aff\m
−1
λ−

Δ̃−
aff ; indeed, if θ1, θ2 ∈ Δ̃+

aff∩m
−1
λ−

Δ̃−
aff , then

the assertion is obvious by condition (1). Since Δ̃+
aff ∩m−1

λ−
Δ̃−

aff = {α∨ + aδ̃ | α ∈
Δ−, 0 < a ≤ 〈λ−, α

∨〉}, we have 0 < deg(θ1) ≤ 〈λ−, θ1〉 and 0 < deg(θ1 + θ2) ≤
〈λ−, θ1 + θ2〉. Also, since θ2 ∈ Δ̃+

aff \m−1
λ−

Δ̃−
aff , we find that 〈λ−, θ2〉 < 0 ≤ deg(θ2),

deg(θ2) > 〈λ−, θ2〉 ≥ 0, or 〈λ−, θ2〉 = deg(θ2) = 0. If 0 > deg(θ2), then we have

θ2 ∈ Δ̃−
aff , a contradiction.

In the case that 〈λ−, θ2〉 < 0 ≤ deg(θ2), the first component of Φ(θ1+θ2), which

is 〈λ−,θ1+θ2〉−deg(θ1+θ2)

〈λ−,θ1+θ2〉
, satisfies the inequalities

〈λ−, θ1 + θ2〉 − deg(θ1 + θ2)

〈λ−, θ1 + θ2〉
≤ 〈λ−, θ1 + θ2〉 − deg(θ1)

〈λ−, θ1 + θ2〉

= 1− deg(θ1)

〈λ−, θ1 + θ2〉
< 1− deg(θ1)

〈λ−, θ1〉

=
〈λ−, θ1〉 − deg(θ1)

〈λ−, θ1〉
.

Therefore, we deduce that the first component of Φ(θ1 + θ2) is less than that of
Φ(θ1), and hence Φ(θ1 + θ2) < Φ(θ1).

In the case that deg(θ2) > 〈λ−, θ2〉 ≥ 0, the first component of Φ(θ1+θ2) satisfies
the inequalities

〈λ−, θ1 + θ2〉 − deg(θ1 + θ2)

〈λ−, θ1 + θ2〉
=

(
〈λ−, θ1〉 − deg(θ1)

)
+
(
〈λ−, θ2〉 − deg(θ2)

)
〈λ−, θ1 + θ2〉

<

(
〈λ−, θ1〉 − deg(θ1)

)
〈λ−, θ1 + θ2〉

≤ 〈λ−, θ1〉 − deg(θ1)

〈λ−, θ1〉
.

Therefore, we deduce that the first component of Φ(θ1 + θ2) is less than that of
Φ(θ1), and hence that Φ(θ1 + θ2) < Φ(θ1).

In the case that 〈λ−, θ2〉 = deg(θ2) = 0, the first component of Φ(θ1+θ2) is equal

to that of Φ(θ1). Moreover, since 〈λ−, θ2〉 = 〈λ,w◦θ2〉 = 0, we have w◦θ2
∨ ∈ Δ+

S .

Therefore, by (3.3), we see that w◦(θ1 + θ2)
∨ ≺ w◦θ2

∨
. It follows from the definition

of the weak reflection order on Δ+ that w◦θ1
∨ ≺ w◦(θ1 + θ2)

∨ ≺ w◦θ2
∨
, and hence

that Φ(θ1 + θ2) < Φ(θ1).
Thus, we conclude that ≺′ satisfies condition (2), and the total order ≺′ is a

weak reflection order on Δ̃+
aff ∩m−1

λ−
Δ̃−

aff .

Now, by Proposition 3.1.5, there exists w ∈ W̃aff such that Δ̃+
aff ∩ m−1

λ−
Δ̃−

aff =

Δ̃+
aff∩w−1Δ̃−

aff , and there exists a reduced expression w = s
1 · · · s
L , {�1, . . . , �L} ⊂
Iaff for w such that γj = s
L · · · s
j+1

α∨

j

for 1 ≤ j ≤ L. Since Δ̃+
aff ∩ m−1

λ−
Δ̃−

aff =

Δ̃+
aff ∩ w−1Δ̃−

aff , it follows from [M, (2.2.6)] that there exists u ∈ Ω such that
uw = mλ− . Thus, we obtain a reduced expression mλ− = us
1 · · · s
L for mλ− ,

with γj = s
L · · · s
j+1
α∨

j

= βOS
j for 1 ≤ j ≤ L. This completes the proof of the

proposition. �
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By Remark 3.1.7, the restriction to Δ+ \Δ+
S of a weak reflection order on Δ+

satisfying (3.3) corresponds bijectively to a reduced expression v(λ−) = si1 · · · siM
for v(λ−). Hence, by Proposition 3.1.8, we can take a reduced expression mλ− =
us
1 · · · s
L for mλ− corresponding to each reduced expression v(λ−) = si1 · · · siM
for v(λ−). Conversely, as seen in Lemma 3.1.10, from the reduced expressionmλ− =
us
1 · · · s
L for mλ− , we obtain a reduced expression for v(λ−), which is identical
to the original reduced expression v(λ−) = si1 · · · siM (see Lemma 3.1.10 below).

In the remainder of this subsection, we fix reduced expressions v(λ−) = si1 · · · siM
and w◦(S) = siM+1

· · · siN , and use the weak reflection order ≺ on Δ+ (which
satisfies (3.3)) determined by these reduced expressions for v(λ−) and w◦(S). Also,

we use the total order ≺′ on Δ̃+
aff ∩m−1

λ−
Δ̃−

aff defined just before Proposition 3.1.8,

and take a reduced expression mλ− = us
1 · · · s
L for mλ− given by Proposition
3.1.8.

Recall that βOS
k = s
L · · · s
k+1

α∨

k

for 1 ≤ k ≤ L. We set ak := deg(βOS
k ) ∈ Z>0.

Since Δ̃+
aff ∩m−1

λ−
Δ̃−

aff = {βOS
1 , . . . , βOS

L }, we see by (3.4) that 0 < ak ≤ 〈λ−, βOS
k 〉.

Also, for 1 ≤ j ≤ L, we set βL
k := us
1 · · · s
k−1

α∨

k

and bk := deg(βL
k ) ∈ Z≥0. Then

we have {βL
k | 1 ≤ k ≤ L} = Δ̃+

aff ∩ mλ−Δ̃
−
aff = {α∨ + aδ̃ | α ∈ Δ+, 0 ≤ a <

−〈λ−, α
∨〉} (see [M, (2.4.7) (ii)]).

Remark 3.1.9. For 1 ≤ k ≤ L, we have

−t(λ−)β
OS
k = −(us
1 · · · s
L)(s
L · · · s
k+1

α∨

k
) = −us
1 · · · s
k−1

s
kα
∨

k

= −us
1 · · · s
k−1
(−α∨


k
) = us
1 · · · s
k−1

α∨

k

= βL
k = βL

k + bk δ̃.

From this, together with −t(λ−)β
OS
k = −βOS

k − (ak − 〈λ−, βOS
k 〉)δ̃, we obtain βL

k =

−βOS
k and 〈λ−, βOS

k 〉 − ak = bk.

Lemma 3.1.10. Keep the notation and setting above. Since us
k = si′ku for some

i′k ∈ Iaff , 1 ≤ k ≤ M , we can rewrite the reduced expression us
1 · · · s
L for mλ−

as si′1 · · · si′Mus
M+1
· · · s
L . Then, si′1 · · · si′M is a reduced expression for v(λ−), and

us
M+1
· · · s
L is a reduced expression for mλ. Moreover, ik = i′k for 1 ≤ k ≤ M .

Proof. First we show that {βL
k | 1 ≤ k ≤ M} = −w◦

(
Δ̃+ \ Δ̃+

S

)
. Since {βOS

j | 1 ≤
j ≤ L} = {α∨+aδ̃ | α ∈ Δ−, 0 < a ≤ 〈λ−, α

∨〉}, we see that the minimum value of

the first components of Φ(βOS
k ), i.e.,

〈λ−,βOS
k 〉−ak

〈λ−,βOS
k 〉

for 1 ≤ k ≤ L, is equal to 0. Since

Φ(βOS
1 ) < Φ(βOS

2 ) < · · · < Φ(βOS
L ), where < denotes the lexicographic order on

Q≥0 × (Δ+ \Δ+
S ), there exists a positive integer M ′ such that the first component

of Φ(βOS
k ) is equal to 0 for 1 ≤ k ≤ M ′ and greater than 0 for M ′ + 1 ≤ k ≤ L.

Since βL
k = βL

k + bk δ̃ and 〈λ−, βOS
k 〉 − ak = bk by Remark 3.1.9, we deduce that

the first component of Φ(βOS
k ) is equal to 0 if and only if βL

k = βL
k ∈ Δ̃+. In

this case, we have 〈λ,−w◦β
L
k 〉 = 〈λ−,−βL

k 〉
Remark 3.1.9

= 〈λ−, βOS
k 〉 > 0, and hence

βL
k ∈ −w◦(Δ̃

+ \ Δ̃+
S ). Therefore, we obtain {βL

k | 1 ≤ k ≤ L} ∩ −w◦(Δ̃
+ \ Δ̃+

S ) =

{βL
k | 1 ≤ k ≤ M ′} ⊂ −w◦(Δ̃

+ \ Δ̃+
S ). Also, because {βL

k | 1 ≤ k ≤ L} =

Δ̃+
aff ∩mλ−Δ̃

−
aff = {α∨ + aδ̃ | α ∈ Δ+, 0 ≤ a < −〈λ−, α

∨〉} ⊃ −w◦(Δ̃
+ \ Δ̃+

S ), we

deduce that {βL
k | 1 ≤ k ≤ M ′} = −w◦(Δ̃

+ \ Δ̃+
S ). Since #(Δ̃+ \ Δ̃+

S ) = M , it

follows that M = M ′, and hence {βL
k | 1 ≤ k ≤ M} = −w◦(Δ̃

+ \ Δ̃+
S ).
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We show that i′k ∈ I for 1 ≤ k ≤ M . We set ζ∨k := si′1 · · · si′k−1
α∨
i′k

for 1 ≤ k ≤ M .

Since uα∨

k

= α∨
i′k
, we have

βL
k = us
1 · · · s
k−1

α∨

k

= si′1 · · · si′k−1
uα∨


k
= si′1 · · · si′k−1

α∨
i′k

= ζ∨k .

Hence it follows that {ζ∨k | 1 ≤ k ≤ M} = {βL
k | 1 ≤ k ≤ M} = −w◦(Δ̃

+ \ Δ̃+
S ).

If there exists k ∈ {1, . . . ,M} such that i′k = 0, then, by choosing the minimum of

such k’s, we obtain ζ∨k = si′1 · · · si′k−1
α∨
i′k

/∈ Δ̃+, contrary to the equality {ζ∨k | 1 ≤
k ≤ M} = −w◦(Δ̃

+ \ Δ̃+
S ). Therefore, we have i′k ∈ I for 1 ≤ k ≤ M .

Next, we show that si′1 · · · si′M is a reduced expression for v(λ−) and us
M+1
· · · s
L

is a reduced expression for mλ. Since s
1 · · · s
M is a reduced expression, so is
si′1 · · · si′M . Therefore, there exist i′M+1, . . . , i

′
N ∈ I such that w◦ = si′1 · · · si′M si′M+1

· · · si′N is a reduced expression for w◦. Because si′N · · · si′M+1
si′M · · · si′k+1

α∨
i′k

=

−w◦β
L
k , 1 ≤ k ≤ M , by using the reduced expression above for w◦, we obtain

Δ̃+ = {−w◦β
L
1 , . . . ,−w◦β

L
M , si′N · · · si′M+2

α∨
i′M+1

, . . . , α∨
i′N
}.

Here, {βL
k | 1 ≤ k ≤ M} = −w◦(Δ̃

+ \ Δ̃+
S ) implies {si′N · · · si′M+2

α∨
i′M+1

, . . . , α∨
i′N
} =

Δ̃+
S . From this by descending induction on M + 1 ≤ k ≤ N , we deduce that

i′M+1, . . . , i
′
N ∈ S and si′M+1

· · · si′N is an element of WS ; note that the length of this

element is equal to N −M , which is the cardinality of Δ̃+
S . Therefore, si′M+1

· · · si′N
is the longest element w◦(S) of WS , and hence si′1 · · · si′M = w◦w◦(S) = v(λ−),
which is a reduced expression for v(λ−). Moreover, because mλ− = v(λ−)mλ

with �(mλ−) = �(v(λ−)) + �(mλ) by Lemma 3.1.1(3) for the case μ = λ, mλ =
v(λ−)

−1mλ− = us
M+1
· · · s
L is a reduced expression for mλ.

Finally, we show that ik = i′k for 1 ≤ k ≤ M . Since M = M ′ as shown above,

Φ(βOS
k ) =

(
〈λ−, βOS

k 〉 − ak

〈λ−, βOS
k 〉

, w◦
(
βOS
k

)∨)
=

(
0, w◦

(
βOS
k

)∨)
for 1 ≤ k ≤ M by the definition of Φ, and

w◦
(
βOS
k

)∨
= −w◦

(
βL
k

)∨
= −w◦ζk = −si′N · · · si′M+1

si′M · · · si′1si′1 · · · si′k−1
αi′k

= si′N · · · si′M+1
si′M · · · si′k+1

αi′k

by Remark 3.1.9. Thus, for 1 ≤ k < j ≤ M , we have si′N · · · si′M+1
si′M · · · si′k+1

αi′k
≺

si′N · · · si′M+1
si′M · · · si′j+1

αi′j
, where the order ≺ is the fixed weak reflection order on

Δ+ defined just before Proposition 3.1.8. Here we recall from Remark 3.1.7 that
βk = siN · · · sik+1

αik , 1 ≤ k ≤ N . Because

{βk | 1 ≤ k ≤ M} = {si′N · · · si′M+1
si′M · · · si′k+1

αi′k
| 1 ≤ k ≤ M} = Δ+ \Δ+

S ,

it follows from the definition of the weak reflection order ≺ on Δ+ together with
(3.3) that

{β1 ≺ · · · ≺ βM} =
{
si′N · · · si′M+1

si′M · · · si′2αi′1
≺ · · · ≺ si′N · · · si′M+1

αi′M

}
= Δ+ \Δ+

S .

Therefore, noting that βk = siN · · · sik+1
αik for 1 ≤ k ≤ N , we obtain

(3.5) siN · · · sik+1
αik = si′N · · · si′M+1

si′M · · · si′k+1
αi′k

, for 1 ≤ k ≤ M.
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By substituting the equalities siM+1
· · · siN = w◦(S) = si′M+1

· · · si′N into (3.5), we

have siM · · · sik+1
αik = si′M · · · si′k+1

αi′k
for 1 ≤ k ≤ M . In particular, when k = M ,

we have αiM = αi′M
, which implies that iM = i′M . If ij = i′j for k+1 ≤ j ≤ M , then

it follows from siM · · · sik+1
αik = si′M · · · si′k+1

αi′k
that αik = αi′k

, and hence ik= i′k.

Thus, by descending induction on k, we deduce that ik = i′k for 1 ≤ k ≤ M . �

Remark 3.1.11 ([LNSSS2, §6.1]). For 1 ≤ k ≤ L, we set

dk :=
〈λ−, βOS

k 〉 − ak

〈λ−, βOS
k 〉

=
bk

〈−λ−, βL
k 〉

;

the second equality follows from Remark 3.1.9; here dk is just the first component
of Φ(βOS

k ) ∈ Q≥0 × (Δ+ \Δ+
S ). For 1 ≤ k, j ≤ L, Φ(βOS

k ) < Φ(βOS
j ) if and only if

k < j, and hence we have

(3.6) 0 ≤ d1 ≤ · · · ≤ dL � 1.

Lemma 3.1.12. If 1 ≤ k < j ≤ L and dk = dj , then w◦
(
βOS
k

)∨
≺ w◦

(
βOS
j

)∨
.

Proof. By the definitions, we obtain Φ(βOS
k ) =

(
dk, w◦

(
βOS
k

)∨)
and Φ(βOS

j ) =(
dj , w◦

(
βOS
j

)∨)
. Since dk = dj and Φ(βOS

k ) < Φ(βOS
j ), we have w◦

(
βOS
k

)∨
≺

w◦
(
βOS
j

)∨
. �

3.2. Orr-Shimozono formula in terms of QLS paths. Let λ ∈ P+ be a dom-
inant weight, and set S = Sλ = {i ∈ I | 〈λ, α∨

i 〉 = 0}.

Definition 3.2.1 ([LNSSS2, Definition 3.1]). A pair ψ = (w1, w2, . . . , ws;
σ0, σ1, . . . , σs) of a sequence w1, . . . , ws of elements in WS such that wk �= wk+1

for 1 ≤ k ≤ s − 1 and an increasing sequence 0 = σ0 < · · · < σs = 1 of rational
numbers is called a quantum Lakshmibai-Seshadri (QLS) path of shape λ if

(C) for every 1 ≤ i ≤ s − 1, there exists a directed path from wi+1 to wi in

QBGS
σiλ.

Let QLS(λ) denote the set of all QLS paths of shape λ.

Remark 3.2.2. We know from [LNSSS4, Definition 3.2.2 and Theorem 4.1.1] that
condition (C) can be replaced by

(C)’ for every 1 ≤ i ≤ s − 1, there exists a directed path from wi+1 to wi in

QBGS
σiλ that is also a shortest directed path from wi+1 to wi in QBGS .

For ψ = (w1, w2, . . . , ws;σ0, σ1, . . . , σs) ∈ QLS(λ), we set

wt(ψ) :=
s−1∑
i=0

(σi+1 − σi)wi+1λ,

and we define a map κ : QLS(λ) → WS by κ(ψ) := ws. Also, for μ ∈ Wλ, we
define the degree of ψ at μ by

degμ(ψ) := −
s∑

i=1

σiwtλ(wi+1 ⇒ wi);
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here we set ws+1 := v(μ). Note that by Remark 3.2.2, σiwtλ(wi+1 ⇒ wi) ∈ Z≥0

for 1 ≤ i ≤ s− 1. Also, σs = 1 for i = s by the definition of a QLS path. Hence it
follows that degμ(ψ) ∈ Z≤0.

Now, we define a subset EQB(w) of W for each w ∈ W . Let w = si1 · · · sip be a
reduced expression for w. For each J = {j1 < j2 < j3 < · · · < jr} ⊂ {1, . . . , p}, we
define

pJ := (w = z0, . . . , zr;βj1 , . . . , βjr)

as follows: we set βk := sip · · · sik+1
(αik) ∈ Δ+ for 1 ≤ k ≤ p, and set

z0 :=w = si1 · · · sip ,
z1 :=wsβj1

= si1 · · · sij1−1
sij1+1

· · · sip = si1 · · ·

(sij1 · · · sip ,
z2 :=wsβj1

sβj2
= si1 · · · sij1−1

sij1+1
· · · sij2−1

sij2+1
· · · sip = si1 · · ·

(sij1 · · ·

(sij2 · · · sip ,
...

zr :=wsβj1
· · · sβjr

= si1 · · ·

(sij1 · · ·

(sijr · · · sip ,

where the symbol (· indicates a term to be omitted; also, we set end(pJ) := zr.
Then we define B(w) := {pJ | J ⊂ {1, . . . , p}} and

QB(w) := {pJ ∈ B(w) | zi
βji+1−−−→ zi+1 is an edge of QBG for all 0 ≤ i ≤ r − 1}.

We remark that J may be the empty set ∅; in this case, end(p∅) = w.

Remark 3.2.3. We identify elements in QB(w) with directed paths in QBG. More
precisely, for pJ = (w = z0, . . . , zr;βj1 , . . . βjr) ∈ QB(w), we write

pJ = (w = z0, . . . , zr;βj1 , . . . βjr) =

(
w = z0

βj1−−→ · · · βjr−−→ zr

)
.

Remark 3.2.4. Let w = z0
βj1−−→ z1

βj2−−→ · · · βjr−−→ zr = z be a directed path in QBG.
Then we see that

1 ≤ j1 < j2 < · · · < jr ≤ p ⇔
(
w = z0

βj1−−→ z1
βj2−−→ · · · βjr−−→ zr = z

)
∈ QB(w).

Also, it follows from Proposition 2.1.4(1) that the map end : QB(w) → W is
injective.

By using the map end : B(w)→W defined above, we set EQB(w) :=end(QB(w)).

Proposition 3.2.5. The set EQB(w) is independent of the choice of a reduced
expression for w.

Proof. Let us take two reduced expressions for w:

I : w = si1 · · · sip and K : w = sk1
· · · skp

.

In this proof, let EQB(w)I (resp., EQB(w)K) denote the set EQB(w) associated to
I (resp., K).

It suffices to show that EQB(w)I ⊂ EQB(w)K. From the two reduced expressions
above for w, we obtain the following two reduced expressions for w◦:

w◦ = si−q
· · · si0si1 · · · sip ,(3.7)

w◦ = si−q
· · · si0sk1

· · · skp
.(3.8)
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Using the reduced expression (3.7) (resp., (3.8)), we define βm (resp., γm), −q ≤
m ≤ p, as in (2.1). Then we have

{β−q, . . . , βp} = {γ−q, . . . , γp} = Δ+,(3.9)

{β1, . . . , βp} = {γ1, . . . , γp} = Δ+ ∩ w−1Δ−.(3.10)

Let z ∈ EQB(w)I, and

(3.11) pJ =

(
w = z0

βj1−−→ z1
βj2−−→ · · · βjr−−→ zr = z

)
∈ QB(w)I.

Recall from Remark 3.2.4 that 1 ≤ j1 ≤ · · · ≤ jr ≤ p. It follows from Proposition
2.1.4(1) that there exists a unique shortest directed path in QBG,

(3.12) w = y0
γn1−−→ y1

γn2−−→ · · · γnr−−→ yr = z,

with −q ≤ n1 < n2 < · · · < nr ≤ p; this is a label-increasing directed path with
respect to the weak reflection order defined by γ−q ≺ · · · ≺ γp. To prove that
z ∈ EQB(w)K, it suffices to show that 1 ≤ n1. It follows from (3.9) that for
1 ≤ u ≤ r, there exists −q ≤ tu ≤ p such that βtu = γnu

. Therefore, by (3.12),

w = y0
βt1−−→ y1

βt2−−→ · · · βtr−−→ yr = z

is a directed path in QBG. We see from Proposition 2.1.4(2) that this path is
greater than or equal to the path (3.11) in the lexicographic order with respect to
the edge labels. In particular, we have t1 ≥ j1 ≥ 1. Since γn1

= βt1 ∈ Δ+∩w−1Δ−,
we deduce that n1 ≥ 1 by (3.10). This implies that EQB(w)I ⊂ EQB(w)K. �

Let μ ∈ Wλ. Recall that v(μ) ∈ WS is the minimal-length coset representative
for the coset {w ∈ W | wλ = μ}. We set

QLSμ,∞(λ) := {ψ ∈ QLS(λ) | κ(ψ) ∈ �EQB(v(μ)w◦(S))�}.

Remark 3.2.6. If w = w◦, then we have EQB(w◦) = W by Proposition 2.1.4(1),
since in this case, we can use all the positive roots as an edge label. If μ = λ− = w◦λ,
then v(μ)w◦(S) = w◦ by (3.1), and hence �EQB(v(μ)w◦(S))� = WS . Therefore,

we have QLSw◦λ,∞(λ) = QLS(λ).

With the notation above, we set

gchμQLSμ,∞(λ) :=
∑

ψ∈QLSμ,∞(λ)

ewt(ψ)qdegμ(ψ).

The following is the main result of this section.

Theorem 3.2.7. Let λ ∈ P+ be a dominant weight, and μ ∈ Wλ. Then,

Eμ(q,∞) = gchμQLSμ,∞(λ).

3.3. Proof of Theorem 3.2.7. Let λ ∈ P+ be a dominant weight, μ ∈ Wλ,
and set S := Sλ = {i ∈ I | 〈λ, α∨

i 〉 = 0}. In this subsection, in order to prove
Theorem 3.2.7, we give a bijection

Ξ :
←−
QB(e;mμ) → QLSμ,∞(λ)

that preserves weights and degrees.
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We fix reduced expressions

v(λ−)v(μ)
−1 = si1 · · · siK ,

v(μ) = siK+1
· · · siM ,(3.13)

w◦(S) = siM+1
· · · siN(3.14)

for v(λ−)v(μ)
−1, v(μ), and w◦(S), respectively; recall that λ− = w◦λ. Then,

by Lemma 3.1.1(4), v(λ−) = si1 · · · siM is a reduced expression for v(λ−). As
in §3.1, we use the weak reflection order ≺ on Δ+ introduced in Remark 3.1.7
(which satisfies (3.3)) determined by the reduced expressions above for v(λ−) and

w◦(S). Also, we use the total order ≺′ on Δ̃+
aff ∩ m−1

λ−
Δ̃−

aff defined just before

Proposition 3.1.8 and take the reduced expression mλ− = us
1 · · · s
L for mλ− given
by Proposition 3.1.8; recall that us
k = siku for 1 ≤ k ≤ M . It follows from Lemma
3.1.1(3) that

(
v(μ)v(λ−)

−1
)
mλ− = mμ and −�(v(μ)v(λ−)

−1) + �(mλ−) = �(mμ).
Moreover, we see that(

v(μ)v(λ−)
−1
)
mλ− = (siK · · · si1)us
1 · · · s
L

Lemma 3.1.10
= us
K · · · s
1s
1 · · · s
L = us
K+1

· · · s
L ,

and hence mμ = us
K+1
· · · s
L is a reduced expression for mμ. In particular, when

μ = λ (note that v(λ) = e), mλ = us
M+1
· · · s
L is a reduced expression for mλ.

Also, recall from Remark 3.1.7 and the beginning of §3.1 that βk=siN · · · sik+1
αik ,

1 ≤ k ≤ N , and βOS
k = s
L · · · s
k+1

α∨

k
, 1 ≤ k ≤ L.

Remark 3.3.1. Keep the notation above. We have

Δ̃+
aff ∩m−1

λ−
Δ̃−

aff = {βOS
1 , . . . , βOS

L },

Δ̃+
aff ∩m−1

μ Δ̃−
aff = {βOS

K+1, . . . , β
OS
L },

Δ̃+
aff ∩m−1

λ Δ̃−
aff = {βOS

M+1, . . . , β
OS
L }.

In particular, we have Δ̃+
aff ∩m−1

λ Δ̃−
aff ⊂ Δ̃+

aff ∩m−1
μ Δ̃−

aff ⊂ Δ̃+
aff ∩m−1

λ−
Δ̃−

aff .

Lemma 3.3.2 ([M, (2.4.7) (i)]). If we denote by ς the characteristic function of
Δ−, i.e.,

ς(γ) :=

{
0 if γ ∈ Δ+,
1 if γ ∈ Δ−,

then

Δ̃+
aff ∩m−1

μ Δ̃−
aff = {α∨ + aδ̃ | α ∈ Δ−, 0 < a < ς(v(μ)v(λ−)

−1α) + 〈λ,w◦α
∨〉}.

Remark 3.3.3. Let γ1, γ2, . . . , γr ∈ Δ̃+
aff ∩ m−1

μ Δ̃−
aff , and define a sequence(

y0, y1, . . . , yr; γ1, γ2, . . . , γr
)
by y0 = mμ, and yi = yi−1sγi

for 1 ≤ i ≤ r. Then,

the sequence (y0, y1, . . . , yr; γ1, γ2, . . . , γr) is an element of
←−
QB(e;mμ) if and only if

the following conditions hold:

(1) γ1 ≺′ γ2 ≺′ · · · ≺′ γr, where the order ≺′ is the weak reflection order on

Δ̃+
aff ∩m−1

μ Δ̃−
aff introduced at the beginning of §3.3;

(2) dir(yi−1)
−(γi)

∨

←−−−− dir(yi) is an edge of QBG for 1 ≤ i ≤ r.
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In the following, we define a map Ξ :
←−
QB(e;mμ) → QLSμ,∞(λ). Let pOS

J be an

arbitrary element of
←−
QB(e;mμ) of the form

pOS
J =

(
mμ = zOS

0 , zOS
1 , . . . , zOS

r ;βOS
j1 , βOS

j2 , . . . , βOS
jr

)
∈ ←−
QB(e;mμ),

with J = {j1 < · · · < jr} ⊂ {K + 1, . . . , L}. We set xk := dir(zOS
k ), 0 ≤ k ≤ r.

Then, by the definition of
←−
QB(e;mμ),

(3.15) v(μ)v(λ−)
−1 Lemma 3.1.1

= x0

−
(
βOS
j1

)∨

←−−−−−− x1

−
(
βOS
j2

)∨

←−−−−−− · · ·
−
(
βOS
jr

)∨

←−−−−−− xr

is a directed path in QBG. We take 0 = u0 ≤ u1 < · · · < us−1 < us = r and
0 = σ0 < σ1 < · · · < σs−1 < 1 = σs in such a way that (see (3.6))
(3.16)
0 = dj1 = · · · = dju1︸ ︷︷ ︸

=σ0

< dju1+1
= · · · = dju2︸ ︷︷ ︸
=σ1

< · · · < djus−1+1
= · · · = djr︸ ︷︷ ︸

=σs−1

< 1 = σs;

note that dj1 > 0 if and only if u1 = 0. We set w′
p := xup

for 0 ≤ p ≤ s − 1 and
w′

s := xr. Then, by taking a subsequence of (3.15), we obtain the following directed
path in QBG for each 0 ≤ p ≤ s− 1:

w′
p = xup

−
(
βOS
jup+1

)∨

←−−−−−−−−− xup+1

−
(
βOS
jup+2

)∨

←−−−−−−−−− · · ·
−
(
βOS
jup+1

)∨

←−−−−−−−−− xup+1
= w′

p+1.

Multiplying the vertices in this directed path on the right by w◦, we obtain the
following directed path in QBG for each 0 ≤ p ≤ s− 1 (see Lemma 2.1.3):
(3.17)

wp =: w′
pw◦ = xup

w◦

w◦

(
βOS
jup+1

)∨

−−−−−−−−−→ · · ·
w◦

(
βOS
jup+1

)∨

−−−−−−−−−→ xup+1
w◦ = w′

p+1w◦ := wp+1.

Note that the edge labels of this directed path are increasing in the weak reflection
order ≺ on Δ+ introduced at the beginning of §3.3 (see Lemma 3.1.12), and lie in
Δ+ \Δ+

S ; this property will be used to give the inverse to Ξ. Because

(1− σp)〈λ,w◦βOS
ju

〉 = (1− dju)〈λ,w◦βOS
ju

〉 = − aju

〈λ−,−βOS
ju

〉
〈λ−, βOS

ju
〉 = aju ∈ Z

for up + 1 ≤ u ≤ up+1, 0 ≤ p ≤ s − 1, we find that (3.17) is a directed path in
QBG(1−σp)λ for 0 ≤ p ≤ s− 1. Therefore, by Lemma 2.1.7, there exists a directed

path in QBGS
(1−σp)λ from �wp� to �wp+1�, where S = {i ∈ I | 〈λ, α∨

i 〉 = 0}. Also,

we claim that �wp� �= �wp+1� for 1 ≤ p ≤ s− 1. Suppose, for a contradiction, that
�wp� = �wp+1� for some p. Then, wpWS = wp+1WS , and hence min(wp+1WS ,≤wp

) = min(wpWS ,≤wp
) = wp. Recall that the directed path (3.17) is a path in

QBG from wp to wp+1 whose edge labels are increasing and lie in Δ+ \ Δ+
S . By

Lemma 2.1.8(1), (2), the directed path (3.17) is a shortest path in QBG from wp

to min(wp+1WS ,≤wp
) = min(wpWS ,≤wp

) = wp, which implies that the length of
the directed path (3.17) is equal to 0. Therefore, {jup+1, . . . , jup+1

} = ∅, and hence
up = up+1, which contradicts the fact that up < up+1.

Thus we obtain

(3.18) ψ := (�ws�, �ws−1�, . . . , �w1�; 1− σs, . . . , 1− σ0) ∈ QLS(λ).

We now define Ξ(pOS
J ) := ψ.
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Lemma 3.3.4. Keep the notation and setting above, and let siK+1
· · · siM siM+1

· · · siN be a reduced expression for v(μ)w◦(S) obtained by concatenating (3.13) and

(3.14). Then, �w1� ∈ �EQB(v(μ)w◦(S))�. Hence we obtain a map Ξ :
←−
QB(e;mμ) →

QLSμ,∞(λ).

Proof. Since it is clear that v(μ) ∈ �EQB(v(μ)w◦(S))�, we may assume that �w1� �=
v(μ).

Since zOS
0 = mμ, we have w′

0 = x0 = dir(zOS
0 ) = v(μ)v(λ−)

−1. It follows that

w0 = w′
0w◦ =

(
v(μ)v(λ−)

−1
)
w◦

Lemma 3.1.1(2)
= v(μ)w◦(S). If u1 = 0, then we obtain

w1 = w0 = v(μ)w◦(S), contrary to the assumption that �w1� �= v(μ). Hence it
follows that u1 ≥ 1. This implies that ju1

≤ M by the definition of u1 in (3.16)
and the proof of Lemma 3.1.10. Thus, we obtain K+1 ≤ j1 < j2 < · · · < ju1

≤ M .
Now, consider the directed path (3.17) in the case p = 0. This is a (nontrivial)

directed path in QBG from w0 = v(μ)w◦(S) to w1 whose edge labels are increasing
in the weak reflection order ≺ on Δ+ introduced at the beginning of §3.3. Because
these edge labels are w◦

(
βOS
jk

)∨
= βjk = siN · · · sijk+1

αijk
for 1 ≤ k ≤ u1 (the

first equality follows from the proof of Lemma 3.1.10), it follows from the fact that
K + 1 ≤ j1 < j2 < · · · < ju1

≤ M and Remark 3.2.4 (recall that we take a reduced
expression for w◦ given by concatenating the reduced expressions for v(λ−)v(μ)

−1

and v(μ)w◦(S)) that w1 ∈ EQB(v(μ)w◦(S)). Hence �w1� ∈ �EQB(v(μ)w◦(S))�.
�

Proposition 3.3.5. The map Ξ :
←−
QB(e;mμ) → QLSμ,∞(λ) is bijective.

Proof. Let us give the inverse to Ξ. Take an arbitrary ψ = (y1, . . . , ys; τ0, . . . , τs) ∈
QLSμ,∞(λ). By convention, we set ys+1 = v(μ) ∈ WS . We define the elements vp,
1 ≤ p ≤ s+ 1, by vs+1 = v(μ)w◦(S) and vp = min(ypWS ,≤vp+1

) for 1 ≤ p ≤ s.

Because there exists a directed path in QBGS
τpλ from yp+1 to yp for 1 ≤ p ≤ s−1,

we see from Lemma 2.1.8(2), (3) that there exists a unique directed path

(3.19) vp
−w◦γp,1←−−−−− · · ·

−w◦γp,tp←−−−−−− vp+1

in QBGτpλ from vp+1 to vp whose edge labels −w◦γp,tp , . . . ,−w◦γp,1 are increasing

in the weak reflection order ≺ and lie in Δ+ \Δ+
S for 1 ≤ p ≤ s−1. We remark that

this is also true for p = s, since τs = 1. Multiplying the vertices in this directed
path on the right by w◦, we obtain by Lemma 2.1.3 the following directed paths:

vp,0 =: vpw◦
γp,1−−→ vp,1

γp,2−−→ · · ·
γp,tp−−−→ vp+1w◦ := vp,tp , 1 ≤ p ≤ s.

Concatenating these paths for 1 ≤ p ≤ s, we obtain the following directed path:

v1,0
γ1,1−−→ · · ·

γ1,t1−−−→ v1,t1 = v2,0
γ2,1−−→ · · ·

γs−2,ts−2−−−−−−→ vs−2,ts−2
= vs−1,0

γs−1,1−−−−→(3.20)

· · ·
γs−1,ts−1−−−−−−→ vs−1,ts−1

= vs,0
γs,1−−→ · · · γs,ts−−−→ vs,ts = vs+1,0 = v(μ)v(λ−)

−1

in QBG. Now, for 1 ≤ p ≤ s and 1 ≤ m ≤ tp, we set dp,m := 1 − τp ∈ Q ∩ [0, 1),

ap,m := (dp,m − 1)〈λ−, γ
∨
p,m〉, and γ̃p,m := ap,mδ̃ − γ∨

p,m.

Claim 1. γ̃p,m ∈ Δ̃+
aff ∩m−1

μ Δ̃−
aff .

Proof of Claim 1. Since τp > 0, and since the path (3.19) is a directed path in
QBGτpλ whose edge labels are increasing and lie in Δ+ \ Δ+

S , we obtain ap,m =

−τp〈λ−, γ
∨
p,m〉 = τp〈λ,−w◦γ

∨
p,m〉 ∈ Z>0.



2758 S. NAITO, F. NOMOTO, AND D. SAGAKI

We will show that ap,m < ς(v(μ)v(λ−)
−1(−γp,m)) + 〈λ,w◦

(
−γ∨

p,m

)
〉. Here we

note that the inequality 〈λ,w◦
(
−γ∨

p,m

)
〉 = −〈λ−, γ

∨
p,m〉 ≥ −τp〈λ−, γ

∨
p,m〉 = ap,m

holds, with equality if and only if p = s. Hence it suffices to consider the case
p = s. In the case p = s, the path (3.19) is the unique directed path in QBG
from v(μ)w◦(S) = vs+1 to vs whose edge labels are increasing and lie in Δ+ \Δ+

S .
Also, since ψ ∈ QLSμ,∞(λ) and κ(ψ) = ys = �vs�, we find that there exists v′s ∈
EQB(v(μ)w◦(S)) such that �v′s� = ys. By the definition of EQB(v(μ)w◦(S)), there
exists a unique directed path in QBG from v(μ)w◦(S) to v′s whose edge labels are
increasing; we see from (3.3) that this directed path is obtained as the concatenation
of the following two directed paths: the one whose edge labels lie in Δ+\Δ+

S , and the

one whose edge labels lie in Δ+
S . Therefore, by removing all the edges whose labels

lie in Δ+
S from the path above, we obtain a directed path in QBG from v(μ)w◦(S)

to some v′′s ∈ ysWS ∩ EQB(v(μ)w◦(S)) whose edge labels are increasing and lie in
Δ+\Δ+

S . Here, since �vs� = �v′′s � and vs = min(ysWS ,≤v(μ)w◦(S)), Lemma 2.1.8(2)
shows that vs = v′′s . Hence we have vs ∈ EQB(v(μ)w◦(S)). Moreover, by the defini-
tion of EQB(v(μ)w◦(S)), the edge labels−w◦γs,1, . . . ,−w◦γs,ts in the given directed
path in QBG from v(μ)w◦(S) = vs+1 to vs are elements of Δ+∩ (v(μ)w◦(S))

−1Δ−,

and hence v(μ)w◦(S) (−w◦γs,m)
Lemma 3.1.1(2)

= v(μ)v(λ−)
−1(−γs,m) ∈ Δ−. There-

fore, in the case p = s, we have ς(v(μ)v(λ−)
−1(−γs,m)) = 1. Thus we have shown

that as,m = 〈λ,w◦
(
−γ∨

s,m

)
〉 < ς(v(μ)v(λ−)

−1(−γs,m)) + 〈λ,w◦
(
−γ∨

s,m

)
〉. Hence

we conclude that γ̃p,m ∈ Δ̃+
aff ∩m−1

μ Δ̃−
aff by Lemma 3.3.2. This proves Claim 1.

Claim 2.

(1) We have

γ̃s,ts ≺′ · · · ≺′ γ̃s,1 ≺′ γ̃s−1,ts−1
≺′ · · · ≺′ γ̃1,1,

where ≺′ denotes the weak reflection order on Δ̃+
aff ∩ m−1

λ−
Δ̃−

aff introduced

at the beginning of §3.3; hence we can choose J ′ = {j′1, . . . , j′r′} ⊂ {K +
1, . . . , L} in such a way that(

βOS
j′1

, . . . , βOS
j′
r′

)
=
(
γ̃s,ts , . . . , γ̃s,1, γ̃s−1,ts−1

, . . . , γ̃1,1
)
.

(2) Let 1 ≤ k ≤ r′, and take 1 ≤ p ≤ s, 0 < m ≤ tp such that(
βOS
j′1

≺′ · · · ≺′ βOS
j′k

)
= (γ̃s,ts ≺′ · · · ≺′ γ̃p,m) .

Then, dir(zOS
k ) = vp,m−1. Moreover, dir(zOS

k−1)
−
(
βOS
j′
k

)∨

←−−−−−−− dir(zOS
k ) is an

edge of QBG.

Proof of Claim 2. (1) It suffices to show the following:
(i) for 1 ≤ p ≤ s and 1 < m ≤ tp, we have γ̃p,m ≺′ γ̃p,m−1;
(ii) for 2 ≤ p ≤ s, we have γ̃p,1 ≺′ γ̃p−1,tp−1

.

(i) Because
〈λ−,−γ∨

p,m〉−ap,m

〈λ−,−γ∨
p,m〉 = dp,m and

〈λ−,−γ∨
p,m−1〉−ap,m−1

〈λ−,−γ∨
p,m−1〉

= dp,m−1, we have

Φ(γ̃p,m) = (dp,m,−w◦γp,m),

Φ(γ̃p,m−1) = (dp,m−1,−w◦γp,m−1).
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Therefore, the first component of Φ(γ̃p,m) is equal to that of Φ(γ̃p,m−1) since dp,m =
1 − τp = dp,m−1. Moreover, since −w◦γp,m ≺ −w◦γp,m−1, we have Φ(γ̃p,m) <
Φ(γ̃p,m−1). This implies that γ̃p,m ≺′ γ̃p,m−1 by Proposition 3.1.8.

(ii) The proof of (ii) is similar to that of (i). The first components of Φ(γ̃p,1) and
Φ(γ̃p−1,tp−1

) are dp,1 and dp−1,tp−1
, respectively. Since dp,1 = 1 − τp < 1− τp−1 =

dp−1,tp−1
, we have Φ(γ̃p,1) < Φ(γ̃p−1,tp−1

). This implies that γ̃p,1 ≺′ γ̃p−1,tp−1
.

(2) We proceed by induction on k. Since dir(zOS
0 ) = dir(mμ) = v(μ)v(λ−)

−1

and βOS
j′1

= γ̃s,ts , we have dir(zOS
1 ) = dir(zOS

0 )s−βOS
j′1

= v(μ)v(λ−)
−1sγs,ts

= vs,ts−1.

Hence the assertion holds in the case k = 1.
Assume that dir(zOS

k−1) = vp,m for 0 � m ≤ tp. Here we remark that vp,m−1 is
the predecessor of vp,m in the directed path (3.20) since 0 ≤ m− 1 ≤ tp−1. Hence

we have dir(zOS
k ) = dir(zOS

k−1)s−βOS
j′
k

= vp,msγp,m

(3.20)
= vp,m−1. Also, since (3.20) is

a directed path in QBG, vp,m = dir(zOS
k−1)

−
(
βOS
j′
k

)∨

←−−−−−−− dir(zOS
k ) = vp,m−1 is an edge

of QBG. This proves Claim 2.

Since J ′ = {j1, . . . , j′r′} ⊂ {K + 1, . . . , L}, we can define an element pOS
J′ to be(

mμ = zOS
0 , zOS

1 , . . . , zOS
r′ ;βOS

j′1
, βOS

j′2
, . . . , βOS

j′
r′

)
, where zOS

0 = mμ, z
OS
k = zOS

k−1sβOS
j′
k

for 1 ≤ k ≤ r′. It follows from Remark 3.3.3 and Claim 2 that pOS
J′ ∈ ←−

QB(e;mμ).

Hence we can define a map Θ : QLSμ,∞(λ) → ←−
QB(e;mμ) by Θ(ψ) := pOS

J′ .
It remains to show that the map Θ is the inverse to the map Ξ, i.e., the following

two claims.

Claim 3. For ψ = (y1, . . . , ys; τ0, . . . , τs) ∈ QLS(λ), we have Ξ ◦Θ(ψ) = ψ.

Claim 4. For pOS
J =

(
mμ = zOS

0 , zOS
1 , . . . , zOS

r ;βOS
j1

, βOS
j2

, . . . , βOS
jr

)
∈ ←−

QB(e;mμ),

we have Θ ◦ Ξ(pOS
J ) = pOS

J .

Proof of Claim 3. We set Θ(ψ) = pOS
J′ , with J ′ = {j′1, . . . , j′r}. In the following

description of Θ(ψ) = pOS
J′ , we employ the notation up, σp, w

′
p, and wp used in the

definition of Ξ(pOS
J ).

For 1 ≤ k ≤ r′, if we set βOS
j′k

= γ̃p,m with m > 0, then we have dj′k = 1 +

deg(βOS
j′
k
)

〈λ−,−βOS
j′
k
〉
= 1 +

deg(γ̃p,m)

〈λ−,−γ̃p,m〉 = 1 +
ap,m

〈λ−,γ∨
p,m〉 = dp,m. Therefore, the sequence (3.16)

determined by Θ(ψ) = pOS
J′ is

0 = ds,ts = · · · = ds,1︸ ︷︷ ︸
=1−τs

< ds−1,ts−1
= · · · = ds−1,1︸ ︷︷ ︸

=1−τs−1

< · · · < d1,t1 = · · · = d1,1︸ ︷︷ ︸
=1−τ1

< 1 = 1− τ0.

(3.21)

Because the sequence (3.21) of rational numbers is just the sequence (3.16) for
Θ(ψ) = pOS

J′ , we deduce that βOS
j′up

= γ̃s−p+1,1 for 1 ≤ p ≤ s, and σp = 1 −
τs−p for 0 ≤ p ≤ s. Therefore, we have w′

p = dir(zOS
up

) = vs−p+1,0 and wp =

vs−p+1,0w◦ = vs−p+1. Since �wp� = �vs−p+1� = ys−p+1, we conclude that Ξ ◦
Θ(ψ) = (�ws�, . . . , �w1�; 1 − σs, . . . , 1 − σ0) = (y1, . . . , ys; τ0, . . . , τs) = ψ. This
proves Claim 3.
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Proof of Claim 4. We set ψ := Ξ(pOS
J ),and write it as ψ = (y1, . . . , ys; τ0, . . . , τs),

where yp = �ws+1−p� for 1 ≤ p ≤ s and τp = 1−σs−p for 0 ≤ p ≤ s in the notation
of (3.18) (and the comment preceding it). Also, in the following description of
Ξ(pOS

J ) = ψ, we employ the notation vp,m, dp,m, ap,m, γp,m, γ̃p,m, and J ′ used in
the definition of Θ(ψ).

Recall that w0 = v(μ)w◦(S) = vs+1. For 0 ≤ p ≤ s− 1,

vs−p+1

−w◦γs−p,ts−p−−−−−−−−−→ · · · −w◦γs−p,1−−−−−−−→ vs−p

is a directed path in QBG whose edge labels are increasing and lie in Δ+ \ Δ+
S

(see (3.19)). Now we can show by induction on p that wp = vs−p+1 for 1 ≤ p ≤ s.
Indeed, if wp = vs−p+1, then both of the paths above and the path (3.17) start from
wp and end with some element in wp+1WS = vs−pWS (this equality follows from
the definition of vs−p) and have increasing edge labels lying in Δ+ \Δ+

S . Therefore,
by Lemma 2.1.8 (2), we deduce that the ends of these two paths are identical, and
hence that wp+1 = vs−p. Moreover, since these two paths are identical, so are the
edge labels of them:(

w◦
(
βOS
jup+1

)∨
≺ · · · ≺ w◦

(
βOS
jup+1

)∨)
=
(
−w◦γs−p,ts−p

≺ · · · ≺ −w◦γs−p,1

)
for 0 ≤ p ≤ s− 1. From the above, we have up+1 − up = ts−p and −

(
βOS
jup+k

)∨
=

γs−p,ts−p−k+1 for 0 ≤ p ≤ s− 1, 1 ≤ k ≤ ts−p. Because σp = djup+1
= · · · = djup+1

for 0 ≤ p ≤ s−1, 1−σp = τs−p for 0 ≤ p ≤ s, and 1−τs−p = ds−p,1 = · · · = ds−p,ts−p

for 0 ≤ p ≤ s− 1, we see that for 1 ≤ k ≤ ts−p,

βOS
jup+k

= βOS
jup+k

+ ajup+k
δ̃

= βOS
jup+k

− (djup+k
− 1)〈λ−, βOS

jup+k
〉δ̃

= −γ∨
s−p,ts−p−k+1 + (ds−p,ts−p−k+1 − 1)〈λ−, γ

∨
s−p,ts−p−k+1〉δ̃

= −γ∨
s−p,ts−p−k+1 + as−p,ts−p−k+1δ̃

= γ̃s−p,ts−p−k+1.

Therefore, we have(
βOS
jup+1

≺′ · · · ≺′ βOS
jup+1

)
=
(
γ̃s−p,ts−p

≺′ · · · ≺′ γ̃s−p,1

)
, 0 ≤ p ≤ s− 1.

Concatenating the sequences above for 0 ≤ p ≤ s− 1, we obtain(
βOS
j1

≺′ · · · ≺′ βOS
jr

)
=
(
γ̃s,ts ≺′ · · · ≺′ γ̃s,1 ≺′ γ̃s−1,ts−1

≺′ · · · ≺′ γ̃1,1
)

=
(
βOS
j′1

≺′ · · · ≺′ βOS
j′
r′

)
.

Hence the set J ′ determined by Ξ(pOS
J ) = ψ is identical to J . Thus we conclude

that Θ ◦ Ξ(pOS
J ) = pOS

J′ = pOS
J . This proves Claim 4.

This completes the proof of Proposition 3.3.5. �

We recall from (2.3) and (2.4) that deg(β) is defined by β = β + deg(β)δ̃ for

β ∈ h ⊕ Cδ̃, and wt(u) ∈ P and dir(u) are defined by u = t(wt(u))dir(u) for

u ∈ W̃ext = t(P )�W .
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Proposition 3.3.6. The bijection Ξ :
←−
QB(e;mμ) → QLSμ,∞(λ) satisfies the fol-

lowing:

(1) wt(end(pOS
J )) = wt(Ξ(pOS

J ));
(2) deg(qwt∗(pOS

J )) = −degμ(Ξ(p
OS
J )).

Proof. We proceed by induction on #J .
If J = ∅, then it is obvious that deg(qwt∗(pOS

J )) = degμ(Ξ(p
OS
J )) = 0 and

wt(end(pOS
J ))

= wt(Ξ(pOS
J )) = μ, since Ξ(pOS

J ) = (v(μ)w◦(S); 0, 1).
Let J = {j1 < j2 < · · · < jr}, and set K := J \ {jr}; assume that Ξ(pOS

K ) is of
the form: Ξ(pOS

K ) = (�ws�, �ws−1�, . . . , �w1�; 1−σs, . . . , 1−σ0). In the following, we
employ the notation wp, 0 ≤ p ≤ s, used in the definition of the map Ξ. Note that
dir(pOS

K ) = wsw◦ and w0 = v(μ)w◦(S) by the definition of Ξ. Also, observe that if
djr = djr−1

= σs−1, then {dj1 ≤ · · · ≤ djr−1
≤ djr} = {dj1 ≤ · · · ≤ djr−1

}, and if
djr > djr−1

= σs−1, then {dj1 ≤ · · · ≤ djr−1
≤ djr} = {dj1 ≤ · · · ≤ djr−1

< djr}.
From these, we deduce that

Ξ(pOS
J ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(�wssw◦βOS
jr

�, �ws−1�, . . . , �w1�; 1− σs, 1− σs−1, . . . , 1− σ0)

if djr = djr−1
= σs−1,

(�wssw◦βOS
jr

�, �ws�, �ws−1�, . . . , �w1�; 1− σs, 1− djr ,

1− σs−1, . . . , 1− σ0) if djr > djr−1
= σs−1.

For the induction step, it suffices to show the following claims.

Claim 1.

(1) We have

wt(Ξ(pOS
J )) = wt(Ξ(pOS

K )) + ajrwsw◦
(
−βOS

jr

)∨
.

(2) We have

degμ(Ξ(p
OS
J )) = degμ(Ξ(p

OS
K ))− χrajr ,

where χr := 0 (resp., χr := 1) if wssw◦βOS
jr

← ws is a Bruhat (resp.,

quantum) edge.

Claim 2.

(1) We have

wt(end(pOS
J )) = wt(end(pOS

K )) + ajrwsw◦
(
−βOS

jr

)∨
.

(2) We have

deg(qwt∗(pOS
J )) = deg(qwt∗(pOS

K )) + χrajr .
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Proof of Claim 1. (1) If djr = djr−1
= σs−1, then we compute:

wt(Ξ(pOS
J )) = (σs − σs−1)�wssw◦βOS

jr

�λ+
s−1∑
p=1

(σp − σp−1)�wp�λ

= (σs − σs−1)wssw◦βOS
jr

λ+

s−1∑
p=1

(σp − σp−1)wpλ

=
s∑

p=1

(σp − σp−1)wpλ+ (σs − σs−1)wssw◦βOS
jr

λ− (σs − σs−1)wsλ

djr=σs−1, σs=1
=

s∑
p=1

(σp − σp−1)wpλ+ (1− djr )wssw◦βOS
jr

λ− (1− djr )wsλ.

If djr > djr−1
= σs−1, then we compute:

wt(Ξ(pOS
J )) = (σs − djr )�wssw◦βOS

jr

�λ+ (djr − σs−1)�ws�λ+

s−1∑
p=1

(σp − σp−1)�wp�λ

= (σs − djr )wssw◦βOS
jr

λ+ (djr − σs−1)wsλ+
s−1∑
p=1

(σp − σp−1)wpλ

=
s∑

p=1

(σp − σp−1)wpλ− (σs − σs−1)wsλ

+ (σs − djr)wssw◦βOS
jr

λ+ (djr − σs−1)wsλ

=

s∑
p=1

(σp − σp−1)wpλ+ (σs − djr)wssw◦βOS
jr

λ− (σs − djr )wsλ

σs=1
=

s∑
p=1

(σp − σp−1)wpλ+ (1− djr )wssw◦βOS
jr

λ− (1− djr )wsλ.

In both cases above, since

wt(Ξ(pOS
K )) =

s∑
p=1

(σp − σp−1)�wp�λ =
s∑

p=1

(σp − σp−1)wpλ,

and since

(1− djr )wssw◦βOS
jr

λ− (1− djr )wsλ

= −(1− djr)ws〈λ,w◦βOS
jr

〉w◦
(
βOS
jr

)∨
Remark 3.1.11

= − ajr

〈λ−, βOS
jr

〉
〈λ−, βOS

jr
〉wsw◦

(
βOS
jr

)∨
= ajrwsw◦

(
−βOS

jr

)∨
,
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it follows that

wt(Ξ(pOS
J )) =

s∑
p=1

(σp − σp−1)wpλ+ (1− djr)wssw◦βOS
jr

λ− (1− djr )wsλ

= wt(Ξ(pOS
K )) + ajrwsw◦

(
−βOS

jr

)∨
.

(2) From the relation between pOS
J and pOS

K , and from the definition of
←−
QB(e;mμ),

we find that wsw◦s−βOS
jr

−
(
βOS
jr

)∨

−−−−−−→ wsw◦ is an edge of QBG. Hence, by Lemma

2.1.3, wssw◦βOS
jr

w◦
(
βOS
jr

)∨

←−−−−−−− ws is an edge of QBG.

If djr = djr−1
= σs−1, then by the definition of degμ (along with [LNSSS2,

Lemma 7.2]), we see that

degμ(Ξ(p
OS
J )) = −

s−2∑
p=0

(1− σp)wtλ(�wp+1� ⇐ �wp�)

(3.22)

− (1− djr)wtλ(�wssw◦βOS
jr

� ⇐ �ws−1�)

= −
s−2∑
p=0

(1− σp)wtλ(wp+1 ⇐ wp)− (1− djr)wtλ(wssw◦βOS
jr

⇐ ws−1).

Here, w0 = v(μ)w◦(S) as mentioned in the proof of Lemma 3.3.4, so that �w0� =

v(μ). Since djr = djr−1
= σs−1, we have w◦

(
βOS
jr−1

)∨
≺ w◦

(
βOS
jr

)∨
by Lemma

3.1.12. Because the (unique) label-increasing directed path in QBG from ws−1

to ws has the final edge label w◦
(
βOS
jr−1

)∨
, by concatenating this directed path

from ws−1 to ws with ws

w◦
(
βOS
jr

)∨

−−−−−−−→ wssw◦βOS
jr

, we obtain a label-increasing (hence

shortest) directed path from ws−1 to wssw◦βOS
jr

passing through ws. Therefore, we

deduce that

(3.23) wtλ(wssw◦βOS
jr

⇐ ws−1) = wtλ(wssw◦βOS
jr

← ws) + wtλ(ws ⇐ ws−1).

It follows from (3.22) and (3.23) that

degμ(Ξ(p
OS
J )) = −

s−1∑
p=0

(1− σp)wtλ(wp+1 ⇐ wp)− (1− djr)wtλ(wssw◦βOS
jr

← ws).

If djr > djr−1
= σs−1, then by the definition of degμ (along with [LNSSS2,

Lemma 7.2]), we see that

degμ(Ξ(p
OS
J )) = −

s−1∑
p=0

(1− σp)wtλ(wp+1 ⇐ wp)− (1− djr)wtλ(wssw◦βOS
jr

← ws),
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where w0 = v(μ)w◦(S). Also, by the definition of degμ (along with [LNSSS2,
Lemma 7.2]), we have

degμ(Ξ(p
OS
K )) = −

s−1∑
p=0

(1− σp)wtλ(wp+1 ⇐ wp),

where w0 = v(μ)w◦(S).
In both cases above, we deduce that

degμ(Ξ(p
OS
J )) = degμ(Ξ(p

OS
K ))− (1− djr )wtλ(wssw◦βOS

jr

← ws).

If wssw◦βOS
jr

← ws is a Bruhat edge, then we have wtλ(wssw◦βOS
jr

← ws) = 0.

If wssw◦βOS
jr

← ws is a quantum edge, then we have wtλ(wssw◦βOS
jr

← ws) =

〈λ,w◦βOS
jr

〉. Note that

(1− djr)〈λ,w◦βOS
jr

〉 Remark 3.1.11
=

ajr

〈λ−, βOS
jr

〉
〈λ−, βOS

jr
〉 = ajr .

Therefore, in both cases, we have degμ(Ξ(p
OS
J )) = degμ(Ξ(p

OS
K ))−χrajr , and Claim

1(2) is proved.

Proof of Claim 2. Let us prove part (1). Note that end(pOS
J ) = end(pOS

K )sβOS
jr

and

that

end(pOS
K ) = t(wt(end(pOS

K )))dir(end(pOS
K )) = t(wt(end(pOS

K )))wsw◦;

the second equality follows from the comment at the beginning of the proof of

Proposition 3.3.6. Also, we have sβOS
jr

= s
ajr δ̃+βOS

jr

= t

(
ajr

(
−βOS

jr

)∨)
s
βOS
jr

. Com-

bining these, we obtain

end(pOS
J ) =

(
t(wt(end(pOS

K )))wsw◦
)(

t

(
ajr

(
−βOS

jr

)∨)
s
βOS
jr

)
= t

(
wt(end(pOS

K )) + ajrwsw◦
(
−βOS

jr

)∨)
wsw◦sβOS

jr

,

and hence

wt(end(pOS
J )) = wt(end(pOS

K )) + ajrwsw◦

(
−βOS

jr

)∨
.

Let us prove part (2). Since dir(end(pOS
K )) = wsw◦, we have dir(end(pOS

J )) =

wsw◦sβOS
jr

. If wssw◦βOS
jr

w◦
(
βOS
jr

)∨

←−−−−−−− ws is a Bruhat edge, then it follows from Lemma

2.1.3 that wsw◦s−βOS
jr

−
(
βOS
jr

)∨

−−−−−−→ wsw◦ is also a Bruhat edge. Hence we obtain J+ =

K+. This implies that deg(qwt∗(pOS
J )) = deg(qwt∗(pOS

K )). If wssw◦βOS
jr

w◦
(
βOS
jr

)∨

←−−−−−−−

ws is a quantum edge, then it follows from Lemma 2.1.3 that wsw◦s−βOS
jr

−
(
βOS
jr

)∨

−−−−−−→
wsw◦ is also a quantum edge. Hence we obtain J+ = K+ �{jr}. This implies that
deg(qwt∗(pOS

J )) = deg(qwt∗(pOS
K )) + deg(βOS

jr
) = deg(qwt∗(pOS

K )) + ajr . Therefore,

in both cases, we have deg(qwt∗(pOS
J )) = deg(qwt∗(pOS

K )) + χrajr , and Claim 2(2)
is proved.
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This completes the proof of Proposition 3.3.6. �

Proof of Theorem 3.2.7. We know from Proposition 2.2.2 that

Eμ(q,∞) =
∑

pOS
J ∈←−

QB(e;mμ)

ewt(end(pOS
J ))q−deg(qwt∗(pOS

J )).

Therefore, it follows from Propositions 3.3.5 and 3.3.6 that

Eμ(q,∞) =
∑

ψ∈QLSμ,∞(λ)

ewt(ψ)qdegμ(ψ).

Hence we conclude that Eμ(q,∞) = gchμ QLSμ,∞(λ), as desired. �

4. Demazure submodules of level-zero extremal weight modules

4.1. Untwisted affine root data. Let gaff be the untwisted affine Lie algebra
over C associated to the finite-dimensional simple Lie algebra g, and let haff =(⊕

j∈Iaff
Cα∨

j

)
⊕ CD be its Cartan subalgebra, where

{
α∨
j

}
j∈Iaff

⊂ haff is the set

of simple coroots, with Iaff = I � {0}, and D ∈ haff is the degree operator. We
denote by

{
αj

}
j∈Iaff

⊂ h∗aff the set of simple roots, and by Λj ∈ h∗aff , j ∈ Iaff ,

the fundamental weights. Note that 〈αj , D〉 = δj,0 and 〈Λj , D〉 = 0 for j ∈ Iaff ,
where 〈· , ·〉 : h∗aff × haff → C denotes the canonical pairing between haff and h∗aff :=
HomC(haff , C). Also, let δ =

∑
j∈Iaff

ajαj ∈ h∗aff and c =
∑

j∈Iaff
a∨j α

∨
j ∈ haff

denote the null root and the canonical central element of gaff , respectively. Here
we note that haff = h ⊕ Cc ⊕ CD. If we regard an element λ ∈ h∗ as an element
of h∗aff by 〈λ, c〉 = 〈λ, D〉 = 0, then we have �i = Λi − a∨i Λ0 for i ∈ I. We take
a weight lattice Paff for gaff as follows: Paff =

(⊕
j∈Iaff

ZΛj

)
⊕ Zδ ⊂ h∗aff , and set

Qaff :=
⊕

j∈Iaff
Zαj .

Remark 4.1.1. We should warn the reader that the root datum of the affine Lie
algebra gaff is not necessarily dual to that of the untwisted affine Lie algebra asso-
ciated to g̃ in §2.2, though the root datum of g̃ is dual to that of g. In particular,
for the index 0 ∈ Iaff , the simple coroot α∨

0 = c− θ∨, with θ ∈ Δ+ the highest root

of g, does not agree with the simple root δ̃ − ϕ∨ in §2.2, which is denoted by α∨
0

there.

The Weyl group Waff of gaff is defined to be the subgroup 〈sj | j ∈ Iaff〉 ⊂
GL(h∗aff) generated by the simple reflections sj associated to αj for j ∈ Iaff , with
length function � : Waff → Z≥0 and identity element e ∈ Waff . For ξ ∈ Q∨ =⊕

i∈I Zα
∨
i , let t(ξ) ∈ Waff denote the translation in h∗aff by ξ (see [Kac, §6.5]). Then

we know from [Kac, Proposition 6.5] that
{
t(ξ) | ξ ∈ Q∨} forms an abelian normal

subgroup ofWaff such that t(ξ)t(ζ) = t(ξ+ζ), ξ, ζ ∈ Q∨, andWaff = W�
{
t(ξ) | ξ ∈

Q∨}. We denote by Δaff the set of real roots, i.e., Δaff :=
{
xαj | x ∈ Waff , j ∈ Iaff

}
,

and by Δ+
aff ⊂ Δaff the set of positive real roots. We know from [Kac, Proposition

6.3] that

Δaff =
{
α+ nδ | α ∈ Δ, n ∈ Z

}
,

Δ+
aff = Δ+ �

{
α+ nδ | α ∈ Δ, n ∈ Z>0

}
.

For β ∈ Δaff , we denote by β∨ ∈ haff the dual root of β and by sβ ∈ Waff the
reflection with respect to β. Note that if β ∈ Δaff is of the form β = α + nδ with
α ∈ Δ and n ∈ Z, then sβ = sαt(nα

∨).
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4.2. Peterson’s coset representatives. Let S be a subset of I. Following [Pe]
(see also [LS, §10]), we set:

Q∨
S :=

∑
i∈S

Zα∨
i ,(4.1)

(ΔS)aff :=
{
α+ nδ | α ∈ ΔS , n ∈ Z

}
⊂ Δaff ,(4.2)

(ΔS)
+
aff := (ΔS)aff ∩Δ+

aff = Δ+
S �

{
α+ nδ | α ∈ ΔS , n ∈ Z>0

}
,(4.3)

(WS)aff := WS �
{
t(ξ) | ξ ∈ Q∨

S

}
= 〈sβ | β ∈ (ΔS)

+
aff〉,(4.4)

(WS)aff :=
{
x ∈ Waff | xβ ∈ Δ+

aff for all β ∈ (ΔS)
+
aff

}
.(4.5)

Then we know the following from [Pe] (see also [LS, Lemma 10.6]).

Proposition 4.2.1. For each x ∈ Waff , there exist a unique x1 ∈ (WS)aff and a
unique x2 ∈ (WS)aff such that x = x1x2.

We define a (surjective) map ΠS : Waff → (WS)aff by ΠS(x) := x1 if x = x1x2

with x1 ∈ (WS)aff and x2 ∈ (WS)aff .

Lemma 4.2.2 ([Pe]; see also [LS, Proposition 10.10]).

(1) ΠS(w) = �w� for every w ∈ W .
(2) ΠS(xt(ξ)) = ΠS(x)ΠS(t(ξ)) for every x ∈ Waff and ξ ∈ Q∨.

An element ξ ∈ Q∨ is said to be S-adjusted if 〈γ, ξ〉 ∈
{
−1, 0

}
for all γ ∈ Δ+

S

(see [LNSSS1, Lemma 3.8]). Let Q∨, S-ad denote the set of S-adjusted elements.

Lemma 4.2.3 ([INS, Lemma 2.3.5]).

(1) For each ξ ∈ Q∨, there exists a unique φS(ξ) ∈ Q∨
S such that ξ + φS(ξ) ∈

Q∨, S-ad. In particular, ξ ∈ Q∨, S-ad if and only if φS(ξ) = 0.
(2) For each ξ ∈ Q∨, the element ΠS(t(ξ)) ∈ (WS)aff is of the form ΠS(t(ξ)) =

zξt(ξ + φS(ξ)) for a specific element zξ ∈ WS. Also, ΠS(wt(ξ)) =
�w�zξt(ξ + φS(ξ)) for every w ∈ W and ξ ∈ Q∨.

(3) We have

(4.6) (WS)aff =
{
wzξt(ξ) | w ∈ WS , ξ ∈ Q∨, S-ad

}
.

Remark 4.2.4. (1) Let ξ, ζ ∈ Q∨. If ξ ≡ ζ mod Q∨
S , i.e., ξ − ζ ∈ Q∨

S , then
ΠS(t(ξ)) = ΠS(t(ζ)) since t(ξ − ζ) ∈ (WS)aff . Hence we see by Lemma 4.2.3 (2)
that ξ + φS(ξ) = ζ + φS(ζ) and zξ = zζ . In particular, zξ+φS(ξ) = zξ for every
ξ ∈ Q∨.

(2) Let x = wzξt(ξ) ∈ (WS)aff , with w ∈ WS and ξ ∈ Q∨, S-ad; note that
ΠS(x) = x. Then it follows from Lemma 4.2.2 (2) that for every ζ ∈ Q∨,

(4.7) xΠS(t(ζ)) = ΠS(x)ΠS(t(ζ)) = ΠS(xt(ζ)) ∈ (WS)aff .

4.3. Parabolic semi-infinite Bruhat graph. In this subsection, we prove some
technical lemmas, which we use later.

Definition 4.3.1 ([Pe]). Let x ∈ Waff , and write it as x = wt(ξ) for w ∈ W and ξ ∈
Q∨. Then we define the semi-infinite length �

∞
2 (x) of x by �

∞
2 (x) := �(w)+2〈ρ, ξ〉,

where ρ = (1/2)
∑

α∈Δ+ α.

Let us fix a subset S of I.
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Definition 4.3.2. (1) We define the (parabolic) semi-infinite Bruhat graph SiBGS

to be the Δ+
aff -labeled, directed graph with vertex set (WS)aff and Δ+

aff -labeled,

directed edges of the following form: x
β−−→ sβx for x ∈ (WS)aff and β ∈ Δ+

aff ,

where sβx ∈ (WS)aff and �
∞
2 (sβx) = �

∞
2 (x) + 1.

(2) The semi-infinite Bruhat order is a partial order � on (WS)aff defined as
follows: for x, y ∈ (WS)aff , we write x � y if there exists a directed path from x to

y in SiBGS ; also, we write x ≺ y if x � y and x �= y.

Let [ · ] = [ · ]I\S : Q∨ � Q∨
I\S denote the projection from Q∨ onto Q∨

I\S with

kernel Q∨
S . Also, for ξ, ζ ∈ Q∨, we write

(4.8) ξ ≥ ζ if ξ − ζ ∈ Q∨,+ :=
∑
i∈I

Z≥0α
∨
i .

The next lemma follows from [NS3, Remark 2.3.3].

Lemma 4.3.3. Let u, v ∈ WS, ξ, ζ ∈ Q∨, S-ad, and β ∈ Δ+
aff . If uzζt(ζ)

β−−→
vzξt(ξ) in SiBGS, then [ξ] ≥ [ζ].

Lemma 4.3.4. Let x ∈ WS, and ξ, ζ ∈ Q∨, S-ad. Then, xzξt(ξ) � xzζt(ζ) if and
only if [ξ] ≥ [ζ].

Proof. The “only if” part is obvious by Lemma 4.3.3. We show the “if” part by
induction on �(x). If �(x) = 0, i.e., x = e, then the assertion zξt(ξ) � zζt(ζ) follows
from [INS, Lemma 6.2.1] (with a = 1, and J replaced by S). Assume now that
�(x) > 0, and take i ∈ I such that �(six) = �(x) − 1; note that six ∈ WS and
−x−1αi ∈ Δ+ \Δ+

S . By the induction hypothesis, we have sixzξt(ξ) � sixzζt(ζ).
If we take a dominant weight λ ∈ P+ such that Sλ =

{
i ∈ I | 〈λ, α∨

i 〉 = 0
}
= S,

then we see that

〈sixzξt(ξ)λ, α∨
i 〉 = 〈sixzζt(ζ)λ, α∨

i 〉 = 〈sixλ, α∨
i 〉 > 0.

Therefore, we deduce from [NS3, Lemma 2.3.6 (3)] that xzξt(ξ) � xzζt(ζ), as de-
sired. �

Lemma 4.3.5. Let x, y ∈ (WS)aff and β ∈ Δ+
aff be such that x

β−−→ y in SiBGS.

Then, ΠS(xt(ξ))
β−−→ ΠS(yt(ξ)) in SiBGS for every ξ ∈ Q∨. Therefore, if x, y ∈

(WS)aff satisfy x � y, then ΠS(xt(ξ)) � ΠS(yt(ξ)).

Proof. We see from (4.7) that ΠS(xt(ξ)) = xΠS(t(ξ)) and ΠS(yt(ξ)) = yΠS(t(ξ)).
Since y = sβx by the assumption, we obtain ΠS(yt(ξ)) = sβΠ

S(xt(ξ)). Hence it
suffices to show that

(4.9) �
∞
2 (ΠS(yt(ξ))) = �

∞
2 (ΠS(xt(ξ))) + 1.

We write x ∈ (WS)aff as x = wzζt(ζ), with w ∈ WS and ζ ∈ Q∨, S-ad (see (4.6)).
Then we see from [INS, Lemma A.2.1 and (A.2.1)] that

�
∞
2 (ΠS(xt(ξ))) = �(w) + 2〈ρ− ρS , ζ + ξ〉

= �(w) + 2〈ρ− ρS , ζ〉+ 2〈ρ− ρS , ξ〉
= �

∞
2 (ΠS(x)) + 2〈ρ− ρS , ξ〉

= �
∞
2 (x) + 2〈ρ− ρS , ξ〉.

Similarly, we see that �
∞
2 (ΠS(yt(ξ))) = �

∞
2 (y) + 2〈ρ − ρS , ξ〉. Since �

∞
2 (y) =

�
∞
2 (x) + 1 by the assumption, we obtain (4.9), as desired. �
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Let x, y ∈ WS , and take a shortest directed path

p : x = x0
γ1−−→ x1

γ2−−→ x2
γ3−−→ · · · γp−−→ xp = y

from x to y in QBGS . Recall from §2.1 that the weight wtS(p) of this directed
path is defined to be

wtS(p) =
∑

1≤k≤p

xk−1

γk−−−→ xk is

a quantum edge

γ∨
k ∈ Q∨,+.

We set

(4.10) ξx,y := wtS(p) + φS(wt
S(p)) ∈ Q∨, S-ad

in the notation of Lemma 4.2.3 (1). We now claim that ξx,y does not depend on the

choice of a shortest directed path p from x to y in QBGS . Indeed, let p′ be another
directed path from x to y in QBGS . We know from [LNSSS1, Proposition 8.1] that
wtS(p) = wtS(p′) mod Q∨

S . Therefore, by Remark 4.2.4(1), we obtain wtS(p) +
φS(wt

S(p)) = wtS(p′) + φS(wt
S(p′)). This proves the claim.

Lemma 4.3.6. Let x, y ∈ WS. Then we have yzξx,y
t(ξx,y) � x.

Proof. We proceed by induction on the length p of a shortest directed path from x to
y in QBGS . If p = 0, i.e., x = y, then ξx,y = ξx,x = 0, and hence zξx,y

= t(ξx,y) = e.
Thus the assertion of the lemma is obvious. Assume now that p > 0, and let

p : x = x0
γ1−−→ x1

γ2−−→ · · · γp−−→ xp = y

be a shortest directed path from x to y in QBGS . Then we deduce from [INS,

Proposition A.1.2] that x
β−−→ sβx in SiBGS (in particular, sβx � x), where

β :=

{
x0γ1 if x = x0

γ1−−→ x1 is a Bruhat edge,

x0γ1 + δ if x = x0
γ1−−→ x1 is a quantum edge.

Note that

sβx = sβx0 =

{
x1 if x = x0

γ1−−→ x1 is a Bruhat edge,

x1t(γ
∨
1 ) if x = x0

γ1−−→ x1 is a quantum edge.

In the case that x = x0
γ1−−→ x1 is a quantum edge, we have x1t(γ

∨
1 ) = sβx ∈

(WS)aff , which implies, by (4.6) and the fact that x1 ∈ WS , that

(4.11) γ∨
1 ∈ Q∨, S-ad and zγ∨

1
= e.

Assume first that x = x0
γ1−−→ x1 is a Bruhat edge. Note that p′ : x1

γ2−−→
· · · γp−−→ xp = y is a shortest directed path from x1 to y in QBGS . Since wtS(p) =
wtS(p′) by the definition, we deduce that ξx,y = ξx1,y. Also, by the induction hy-
pothesis, we have yzξx1,y

t(ξx1,y) � x1. Combining these, we obtain yzξx,y
t(ξx,y) =

yzξx1,y
t(ξx1,y) � x1 = sβx � x, as desired.
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Next, assume that x = x0
γ1−−→ x1 is a quantum edge; we have wtS(p) =

wtS(p′) + γ∨
1 , which implies that ξx,y ≡ ξx1,y + γ∨

1 mod Q∨
S . We compute

yzξx,y
t(ξx,y) = yΠS(t(ξx,y)) by Lemma 4.2.3 (2)

= yΠS(t(ξx1,y)t(ξx,y − ξx1,y))

= yΠS(t(ξx1,y))Π
S(t(ξx,y − ξx1,y)) by Lemma 4.2.2 (2)

= yzξx1,y
t(ξx1,y)Π

S(t(ξx,y − ξx1,y)).

Since ξx,y ≡ ξx1,y + γ∨
1 mod Q∨

S , we see from Remark 4.2.4 (1) and (4.11) that
ΠS(t(ξx,y−ξx1,y)) = t(γ∨

1 ). Therefore, using the induction hypothesis yzξx1,y
t(ξx1,y)

� x1 and Lemma 4.3.5, we deduce that

yzξx,y
t(ξx,y)︸ ︷︷ ︸

∈(WS)aff

=
(
yzξx1,y

t(ξx1,y)
)
t(γ∨

1 ) = ΠS
((
yzξx1,y

t(ξx1,y)
)
t(γ∨

1 )
)
� ΠS(x1t(γ

∨
1 ))

= ΠS(sβx) = sβx � x.

This proves the lemma. �

Lemma 4.3.7. Let x, y ∈ WS and ζ ∈ Q∨, S-ad. If yzζt(ζ) � x, then [ζ] ≥ [ξx,y].

Proof. We set

s̃j :=

{
sj if j �= 0,

sθ if j = 0,
and α̃j :=

{
αj if j �= 0,

−θ if j = 0.

We know from [LNSSS1, Lemma 6.12] that there exist a sequence x = x0, x1, . . . ,
xn = e of elements of WS and a sequence i1, . . . , in ∈ Iaff = I � {0} such that

x = x0

x−1
0 α̃i1−−−−−−→ x1

x−1
1 α̃i2−−−−−−→ · · ·

x−1
n−1α̃in−−−−−−−→ xn = e in QBGS .

Note that x−1
k−1α̃ik ∈ Δ+ \ Δ+

S for all 1 ≤ k ≤ n. We prove the assertion of the
lemma by induction on n.

Assume first that n = 0, i.e., x = e. Because y ∈ WS is greater than or equal to e
in the (ordinary) Bruhat order, there exists a directed path p from e to y in QBGS

whose edges are all Bruhat edges (see, e.g., [BB, Theorem 2.5.5]). Since wtS(p) = 0,
we obtain ξe,y = wtS(p) + φS(wt

S(p)) = 0. Also, if yzζt(ζ) � x = e = ez0t(0),
then it follows from Lemma 4.3.3 that [ζ] ≥ [0] = [ξe,y], which proves the assertion
in the case n = 0.

Assume next that n > 0; we set i := i1 for simplicity of notation. Then,
x−1α̃i = x−1

0 α̃i ∈ Δ+\Δ+
S , and the assertion of the lemma holds for x1 = s̃ix0 = s̃ix

by the induction hypothesis.

Case 1. Assume that y−1α̃i ∈ (−Δ+) ∪ Δ+
S . We deduce by [LNSSS1, Lemma

7.7 (3)] that

(4.12) ξs̃ix,y ≡ ξx,y − δi,0x
−1α̃∨

i mod Q∨
S .

Assume first that i �= 0. Let ζ ∈ Q∨, S-ad be such that yzζt(ζ) � x. Because

x−1αi ∈ Δ+ \Δ+
S and y−1αi ∈ (−Δ+) ∪Δ+

S , we see from [INS, Lemma 4.1.6 (2)]
that yzζt(ζ) � six = s̃ix. Therefore, by the induction hypothesis, we obtain

[ζ] ≥ [ξs̃ix,y]
(4.12)
= [ξx,y].
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Assume next that i = 0. Let ζ ∈ Q∨ be such that yzζt(ζ) � x. Because x−1α̃0 =

−x−1θ (= the finite part x−1α0 of x−1α0) ∈ Δ+ \Δ+
S and y−1α̃0 = −y−1θ (= the

finite part y−1α0 of y−1α0) ∈ (−Δ+) ∪ Δ+
S , we see from [INS, Lemma 4.1.6 (2)]

that

yzζt(ζ) � s0x = sθxt(−x−1θ∨) = s̃0x︸︷︷︸
=x1

t(x−1α̃∨
0 ).

Therefore, by Lemma 4.3.5,

ΠS(yzζt(ζ − x−1α̃∨
0 )) = ΠS

(
(yzζt(ζ))t(−x−1α̃∨

0 )
)

� ΠS(s̃0xt(x
−1α̃∨

0 )t(−x−1α̃∨
0 )) = ΠS(s̃0x)

= ΠS(x1) = x1 = s̃0x.

If we write the left-hand side of this inequality as ΠS(yzζt(ζ − x−1α̃∨
0 )) = yzζ′t(ζ ′)

for some ζ ′ ∈ Q∨, S-ad (see Lemma 4.2.3 (2)), then we have ζ ′ ≡ ζ − x−1α̃∨
0 mod

Q∨
S . Also, by the induction hypothesis, we have [ζ ′] ≥ [ξs̃0x,y]. Combining these,

we obtain

[ζ] = [ζ ′ + x−1α̃∨
0 ] ≥ [ξs̃0x,y + x−1α̃∨

0 ]
(4.12)
= [ξx,y],

as desired.

Case 2. Assume that y−1α̃i ∈ Δ+ \Δ+
S . By [LNSSS1, Lemma 7.7 (4)], we have

(4.13) ξs̃ix,�s̃iy� ≡ ξx,y − δi,0x
−1α̃∨

i + δi,0y
−1α̃∨

i mod Q∨
S .

Assume first that i �= 0; note that s̃iy = siy ∈ WS (see, e.g., [LNSSS1, Proposi-
tion 5.10]). Let ζ ∈ Q∨ be such that yzζt(ζ) � x. Because x−1αi ∈ Δ+ \Δ+

S and

y−1αi ∈ Δ+ \Δ+
S , we see that

s̃iyzζt(ζ) = siyzζt(ζ) � six = s̃ix by [NS3, Lemma 2.3.6 (3)].

Therefore, by the induction hypothesis, we obtain [ζ] ≥ [ξs̃ix,s̃iy]
(4.13)
= [ξx,y].

Assume next that i = 0. Let ζ ∈ Q∨ be such that yzζt(ζ) � x. Because

x−1α̃0 = −x−1θ (= the finite part x−1α0 of x−1α0) ∈ Δ+\Δ+
S and y−1α̃0 = −y−1θ

(= the finite part y−1α0 of y−1α0) ∈ Δ+ \Δ+
S , we see from [NS3, Lemma 2.3.6 (3)]

that s0yzζt(ζ) � s0x. Therefore, by Lemma 4.3.5, we have

ΠS
(
(s0yzζt(ζ))t(−x−1α̃∨

0 )
)
� ΠS

(
(s0x)t(−x−1α̃∨

0 )
)
.

Here we have

ΠS
(
(s0x)t(−x−1α̃∨

0 )
)
= ΠS

(
(s̃0xt(x

−1α̃∨
0 ))t(−x−1α̃∨

0 )
)
= s̃0x = x1.

Also, using Lemma 4.2.3 (2), we compute

ΠS
(
(s0yzζt(ζ))t(−x−1α̃∨

0 )
)
= ΠS(s0yzζt(ζ − x−1α̃∨

0 ))

= ΠS(s0yzζ)Π
S(t(ζ − x−1α̃∨

0 )) = ΠS(s0y)Π
S(t(ζ − x−1α̃∨

0 ))

= ΠS(s̃0yt(y
−1α̃∨

0 ))Π
S(t(ζ − x−1α̃∨

0 )) = ΠS(s̃0yt(y
−1α̃∨

0 )t(ζ − x−1α̃∨
0 ))

= ΠS(s̃0yt(ζ + y−1α̃∨
0 − x−1α̃∨

0 )).

If we write this element as ΠS
(
(s0yzζt(ζ))t(−x−1α̃∨

0 )
)
= �s0y�zζ′′t(ζ ′′) for some

ζ ′′ ∈ Q∨, S-ad (see Lemma 4.2.3 (2)), we see that ζ ′′ ≡ ζ+ y−1α̃∨
0 −x−1α̃∨

0 mod Q∨
S .
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In addition, by the induction hypothesis, we have [ζ ′′] ≥ [ξs̃0x,�s̃0y�]. Combining
these, we obtain

[ζ] = [ζ ′′ − y−1α̃∨
0 + x−1α̃∨

0 ]

≥ [ξs̃0x,�s̃0y� − y−1α̃∨
0 + x−1α̃∨

0 ]
(4.13)
= [ξx,y],

as desired. This completes the proof of the lemma.

�

4.4. Semi-infinite Lakshmibai-Seshadri paths. Let λ ∈ P+ be a dominant
weight; we set S := Sλ =

{
i ∈ I | 〈λ, α∨

i 〉 = 0
}
⊂ I.

Definition 4.4.1. For a rational number 0 < σ ≤ 1, define SiBG(λ ; σ) to be the

subgraph of SiBGS with the same vertex set but having only the edges of the form

x
β−−→ y with σ〈xλ, β∨〉 ∈ Z; note that SiBG(λ ; 1) = SiBGS .

Definition 4.4.2. A semi-infinite Lakshmibai-Seshadri (SiLS for short) path of
shape λ is, by definition, a pair η = (x1 � · · · � xs ; 0 = σ0 < σ1 < · · · < σs = 1)
of a (strictly) decreasing sequence x1 � · · · � xs of elements in (WS)aff and an
increasing sequence 0 = σ0 < σ1 < · · · < σs = 1 of rational numbers such that there
exists a directed path from xu+1 to xu in SiBG(λ ; σu) for all u = 1, 2, . . . , s− 1.
We denote by B

∞
2 (λ) the set of all SiLS paths of shape λ.

Following [INS, §3.1] (see also [NS3, §2.4]), we endow the set B
∞
2 (λ) with a

crystal structure with weights in Paff by the root operators ei, fi, i ∈ Iaff , and the
map wt : B

∞
2 (λ) → Paff defined by

wt(η) :=
s∑

u=1

(σu − σu−1)xuλ ∈ Paff

for η = (x1, . . . , xs ; σ0, σ1, . . . , σs) ∈ B
∞
2 (λ).

(4.14)

Let Conn(B
∞
2 (λ)) denote the set of all connected components of B

∞
2 (λ), and let

B
∞
2
0 (λ) ∈ Conn(B

∞
2 (λ)) denote the connected component of B

∞
2 (λ) containing

ηe := (e ; 0, 1) ∈ B
∞
2 (λ).

Also, we define a surjective map cl : (WS)aff � WS by

cl(x) = w if x = wzξt(ξ), with w ∈ WS and ξ ∈ Q∨, S-ad,

and for η = (x1, . . . , xs ; σ0, σ1, . . . , σs) ∈ B
∞
2 (λ), we set

cl(η) := (cl(x1), . . . , cl(xs) ; σ0, σ1, . . . , σs),

where, for each 1 ≤ p < q ≤ s such that cl(xp) = · · · = cl(xq), we drop cl(xp), . . . ,
cl(xq−1) and σp, . . . , σq−1. We know from [NS3, §6.2] that cl(η) ∈ QLS(λ). Thus
we obtain a map cl : B

∞
2 (λ) → QLS(λ).

Remark 4.4.3. Recall that ψe := (e ; 0, 1) ∈ QLS(λ). We see from the definition
that an element in cl−1(ψe) is of the form

(4.15) (zξ1t(ξ1), zξ2t(ξ2), . . . , zξs−1
t(ξs−1), zξst(ξs) ; σ0, σ1, . . . , σs−1, σs)

for some s ≥ 1 and ξ1, ξ2, . . . , ξs ∈ Q∨, S-ad.
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The final direction of η ∈ B
∞
2 (λ) is defined to be

(4.16) κ(η) := xs ∈ (WS)aff if η = (x1, . . . , xs ; σ0, σ1, . . . , σs).

Then, for x ∈ (WS)aff , we set

(4.17) B
∞
2

�x(λ) :=
{
η ∈ B

∞
2 (λ) | κ(η) � x

}
.

The next lemma follows from [INS, Lemma 7.1.4].

Lemma 4.4.4. Let η ∈ B
∞
2
0 (λ), and let X be a monomial in root operators such

that η = Xηe. Assume that η0 ∈ B
∞
2 (λ) is of the form (4.15). Then, κ(Xη0) =

κ(η)κ(η0).

Now, we recall from §3.2 the degree function degλ : QLS(λ) → Z≤0 for the case
μ = λ. We know the following lemma from [NS3, Lemma 6.2.3].

Lemma 4.4.5. For each ψ ∈ QLS(λ), there exists a unique ηψ ∈ B
∞
2
0 (λ) such that

cl(ηψ) = ψ and κ(ηψ) ∈ WS.

Let ψ ∈ QLS(λ). We know from [NS3, (6.2.5)] that wt(ηψ) is of the form

(4.18) wt(ηψ) = λ− γ︸ ︷︷ ︸
=wt(ψ)

+Kδ for some γ ∈ Q+ and K ∈ Z≤0.

Also, we know from [LNSSS2, Corollary 4.8] (see also the comment after [NS3,
(6.2.5)]) that

(4.19) K = −
s−1∑
u=1

σuwtλ(wu+1 ⇒ wu) = degλ(ψ)

for ψ = (w1, . . . , ws ; σ0, σ1, . . . , σs) ∈ QLS(λ). Here we should note that in
the definition of degλ(ψ), ws+1 = v(λ) = e, and hence that wtλ(ws+1 ⇒ ws) =
wtλ(e ⇒ ws) = 0.

Let us write a dominant weight λ ∈ P+ as λ =
∑

i∈I mi�i with mi ∈ Z≥0 for

i ∈ I, and define Par(λ) (resp., Par(λ)) to be the set of I-tuples ρ = (ρ(i))i∈I of
partitions such that ρ(i) is a partition of length less than or equal to mi (resp.,
strictly less than mi) for each i ∈ I. A partition of length less than 0 is understood

to be the empty partition ∅; note that Par(λ) ⊂ Par(λ). Also, for ρ = (ρ(i))i∈I ∈
Par(λ), we set |ρ| :=

∑
i∈I |ρ(i)|, where for a partition χ = (χ1 ≥ χ2 ≥ · · · ≥ χm),

we set |χ| := χ1 + · · ·+χm. Following [INS, (3.2.2)], we endow the set Par(λ) with
a crystal structure with weights in Paff ; note that wt(ρ) = −|ρ|δ.
Proposition 4.4.6. Keep the notation above.

(1) Each connected component C ∈ Conn(B
∞
2 (λ)) of B

∞
2 (λ) contains a unique

element of the form

(4.20) ηC = (zξ1t(ξ1), zξ2t(ξ2), . . . , zξs−1
t(ξs−1), e ; σ0, σ1, . . . , σs−1, σs)

for some s≥1 and ξ1, ξ2, . . . , ξs−1 ∈ Q∨, S-ad (see [INS, Proposition 7.1.2]).
(2) There exists a bijection Θ : Conn(B

∞
2 (λ)) → Par(λ) such that wt(ηC) =

λ− |Θ(C)|δ (see [INS, Proposition 7.2.1 and its proof]).

(3) Let C ∈ Conn(B
∞
2 (λ). Then, there exists an isomorphism C

∼→
{
Θ(C)

}
⊗

B
∞
2
0 (λ) of crystals that maps ηC to Θ(C) ⊗ ηe. Consequently, B

∞
2 (λ) is

isomorphic as a crystal to Par(λ)⊗B
∞
2
0 (λ) (see [INS, Proposition 3.2.4 and

its proof]).
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4.5. Extremal weight modules. In this and the next subsection, we mainly fol-
low the notation of [NS3, §4 and §5]; we use the symbol “v” for the quantum
parameter in order to distinguish it from q = eδ. Let λ ∈ P+ be a dominant
weight. We denote by V (λ) the extremal weight module of extremal weight λ
over a quantum affine algebra Uv(gaff). This is the integrable Uv(gaff)-module gen-
erated by a single element vλ with the defining relation that vλ is an “extremal
weight vector” of weight λ (for details, see [Kas1, §8] and [Kas2, §3]). We know
from [Kas1, Proposition 8.2.2] that V (λ) has a crystal basis (L(λ), B(λ)) with
global basis

{
G(b) | b ∈ B(λ)

}
. Denote by uλ the element of B(λ) such that

G(uλ) = vλ ∈ V (λ), and by B0(λ) the connected component of B(λ) containing uλ.
Let U ′

v(gaff) ⊂ Uv(gaff) denote a quantum affine algebra without the degree
operator. We know the following from [Kas2] (see also [NS3, §5.2]):

(i) for each i ∈ I, there exists a U ′
v(gaff)-module automorphism zi : V (�i) →

V (�i) that maps v�i
to v

[1]
�i := G(u

[1]
�i), where u

[1]
�i ∈ B(�i) is a (unique)

element of weight �i + δ;
(ii) the map zi : V (�i) → V (�i) induces a bijection zi : B(�i) → B(�i) that

maps u�i
to u

[1]
�i ; this map commutes with the Kashiwara operators ej , fj ,

j ∈ Iaff , on B(�i).

Let us write a dominant weight λ ∈ P+ as λ =
∑

i∈I mi�i, withmi ∈ Z≥0 for i ∈
I. We fix an arbitrary total ordering on I, and then set Ṽ (λ) :=

⊗
i∈I V (�i)

⊗mi .
By [BN, eq. (4.8) and Corollary 4.15], there exists a Uv(gaff)-module embedding

Φλ : V (λ) ↪→ Ṽ (λ) that maps vλ to ṽλ :=
⊗

i∈I v
⊗mi
�i

. Also, for each i ∈ I and

1 ≤ k ≤ mi, we define zi,k to be the U ′
v(gaff)-module automorphism of Ṽ (λ) that

acts as zi only on the k-th factor of V (�i)
⊗mi in Ṽ (λ) and as the identity map on

the other factors of Ṽ (λ); these zi,k’s, i ∈ I, 1 ≤ k ≤ mi, commute with each other.

Now, for ρ = (ρ(i))i∈I ∈ Par(λ), we set

(4.21) sρ(z
−1) :=

∏
i∈I

sρ(i)(z−1
i,1 , . . . , z

−1
i,mi

).

Here, for a partition ρ = (ρ1 ≥ · · · ≥ ρm−1 ≥ 0) of length less than m ∈ Z≥1,
sρ(x) = sρ(x1, . . . , xm) denotes the Schur polynomial in the variables x1, . . . , xm

corresponding to the partition ρ. We can easily show (see [NS3, §7.3]) that

sρ(z
−1)(ImgΦλ) ⊂ ImgΦλ for each ρ = (ρ(i))i∈I ∈ Par(λ). Hence we can de-

fine a U ′
v(gaff)-module homomorphism zρ : V (λ) → V (λ) in such a way that the

following diagram commutes:

(4.22)

V (λ)
Φλ−−−−→ Ṽ (λ)

zρ

⏐⏐# ⏐⏐#sρ(z
−1)

V (λ)
Φλ−−−−→ Ṽ (λ).

Note that zρvλ = S−
ρ vλ in the notation of [BN] (and [NS3]). The map zρ : V (λ) →

V (λ) induces a C-linear map zρ : L(λ)/vL(λ) → L(λ)/vL(λ); this map commutes
with Kashiwara operators. It follows from [BN, p. 371] that

(4.23) B(λ) =
{
zρb | ρ ∈ Par(λ), b ∈ B0(λ)

}
;

for ρ ∈ Par(λ), we set

(4.24) uρ := zρuλ ∈ B(λ).
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Remark 4.5.1. We see from [BN, Theorem 4.16 (ii)] (see also the argument after

[NS3, (7.3.8)]) that zρG(b) = G(zρb) for b ∈ B0(λ) and ρ ∈ Par(λ).

4.6. Demazure submodules. Let λ ∈ P+ be a dominant weight. For each x ∈
Waff , we set

(4.25) V −
x (λ) := U−

v (gaff)S
norm
x vλ ⊂ V (λ),

where Snorm
x vλ denotes the extremal weight vector of weight xλ (see, e.g., [NS3,

(3.2.1)]), and U−
v (gaff) is the negative part of Uv(gaff). Since V

−
x (λ) = V −

ΠS(x)
(λ) for

x ∈ Waff by [NS3, Lemma 4.1.2], we consider Demazure submodules V −
x (λ) only

for x ∈ (WS)aff in what follows. We know from [Kas3, §2.8] and [NS3, §4.1] that
V −
x (λ) is “compatible” with the global basis of V (λ); namely, there exists a subset

B−
x (λ) ⊂ B(λ) such that

(4.26) V −
x (λ) =

⊕
b∈B−

x (λ)

C(v)G(b) ⊂ V (λ) =
⊕

b∈B(λ)

C(v)G(b).

We know the following theorem from [INS, Theorem 3.2.1] and [NS3, Theo-
rem 4.2.1].

Theorem 4.6.1. Let λ ∈ P+ be a dominant weight. There exists an isomorphism
Ψλ : B(λ) ∼→ B

∞
2 (λ) of crystals such that

(a) Ψλ(u
ρ) = ηΘ

−1(ρ) for all ρ ∈ Par(λ) (in particular, Ψλ(uλ) = ηe);

(b) Ψλ(B−
x (λ)) = B

∞
2

�x(λ) for all x ∈ (WS)aff .

4.7. Affine Weyl group action. Let B be a regular crystal for Uv(gaff) in the
sense of [Kas2, §2.2] (or [Kas1, p. 389]); in particular, as a crystal for Uv(g) ⊂
Uv(gaff), it decomposes into a disjoint union of ordinary highest weight crystals.
By [Kas1, §7], the Weyl group Waff acts on B by

(4.27) sj · b :=
{
fn
j b if n := 〈wtb, α∨

j 〉 ≥ 0,

e−n
j b if n := 〈wtb, α∨

j 〉 ≤ 0

for b ∈ B and j ∈ Iaff . Here we note that B
∞
2 (λ) is a regular crystal for Uv(gaff) for

a dominant weight λ ∈ P+.

Remark 4.7.1 ([NS3, Remark 3.5.2]). Recall from Remark 4.4.3 that every element
η ∈ cl−1(ψe) is of the form (4.15). Then, for each x ∈ Waff ,

(4.28) x · η =
(
ΠS(xzξ1t(ξ1)), . . . , Π

S(xzξst(ξs)) ; σ0, σ1, . . . , σs

)
,

where S = Sλ = {i ∈ I | 〈λ, α∨
i 〉 = 0}. In particular, we see by (4.28) and the

uniqueness of ηC that η = (zξst(ξs)) · ηC , with C ∈ Conn(B
∞
2 (λ)) the connected

component containing the η.

Remark 4.7.2. Let ρ = (ρ(i))i∈I ∈ Par(λ). Denote by ci ∈ Z≥0, i ∈ I, the number

of columns of length mi in the Young diagram corresponding to the partition ρ(i),
and set ξ :=

∑
i∈I ciα

∨
i ∈ Q∨,+; note that ci = 0 for all i ∈ S. Also, for i ∈ I, let

�(i) denote the partition corresponding to the Young diagram obtained from that
of ρ(i) by removing all columns of length mi (i.e., the first ci columns), and set
� := (�(i))i∈I ; note that � ∈ Par(λ). Then we deduce from [BN, Lemma 4.14 and
its proof] that

(4.29) zρuλ = t(ξ) · (z�uλ) = t(ξ) · u�.
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5. Graded character formulas for Demazure submodules

and their certain quotients

5.1. Graded character formula for Demazure submodules. Fix a dominant
weight λ ∈ P+; recall that S = Sλ =

{
i ∈ I | 〈λ, α∨

i 〉 = 0
}
.

Because every weight space of the Demazure submodule V −
x (λ) corresponding to

x ∈ WS = W ∩(WS)aff is finite-dimensional, we can define the (ordinary) character
chV −

x (λ) of V −
x (λ) by

chV −
x (λ) :=

∑
β∈Qaff

dimV −
x (λ)λ−β e

λ−β,

where V −
x (λ)λ−β denotes the (λ − β)-weight space of V −

x (λ). Here we recall that
an element β ∈ Qaff can be written uniquely in the form β = γ + kδ for γ ∈ Q and
k ∈ Z. If we set q := eδ, then eλ−β = eλ−γq−k. Now we define the graded character
gchV −

x (λ) of V −
x (λ) to be

gchV −
x (λ) :=

∑
γ∈Q, k∈Z

dimV −
x (λ)λ−γ−kδ e

λ−γq−k,

which is obtained from the ordinary character chV −
x (λ) by replacing eδ with q.

Theorem 5.1.1. Keep the notation and setting above. Let λ =
∑

i∈I mi�i ∈ P+,

and x ∈ WS. The graded character gchV −
x (λ) of V −

x (λ) can be expressed as

(5.1) gchV −
x (λ) =

(∏
i∈I

mi∏
r=1

(1− q−r)−1

) ∑
ψ∈QLS(λ)

ewt(ψ)qdegxλ(ψ).

By combining the special case x = �w◦� ∈ WS of Theorem 5.1.1 with the special
case μ = w◦λ of Theorem 3.2.7, we obtain the following theorem. Recall from
Remark 3.2.6 that QLSw◦λ,∞(λ) = QLS(λ).

Theorem 5.1.2. Let λ ∈ P+ be a dominant weight of the form λ =
∑

i∈I mi�i,
with mi ∈ Z≥0, i ∈ I. Then, the graded character gchV −

w◦(λ) is equal to(∏
i∈I

mi∏
r=1

(1− q−r)−1

)
Ew◦λ(q,∞).

Remark 5.1.3 ([NS3, Theorem 6.1.1]). We know from [LNSSS2, Theorem 7.9] that

Pλ(q
−1, 0) =

∑
ψ∈QLS(λ)

ewt(ψ)qdegλ(ψ),

where Pλ(q
−1, 0) is the specialization of the symmetric Macdonald polynomial

Pλ(q
−1, t) at t = 0. Also, by [LNSSS2, Lemma 7.7], we have Ew◦λ(q

−1, 0) =
Pλ(q

−1, 0). Therefore, it follows from the special case x = e of Theorem 5.1.1 that
the graded character gchV −

e (λ) is equal to(∏
i∈I

mi∏
r=1

(1− q−r)−1

)
Ew◦λ(q

−1, 0).

Note that we have V −
w◦(λ) ⊂ V −

e (λ) by [NS3, Corollary 5.2.5].
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5.2. Proof of Theorem 5.1.1. We see from Theorem 4.6.1 that

chV −
x (λ) =

∑
η∈B

∞
2

�x
(λ)

ewt(η).

Since

B
∞
2

�x(λ) =
⊔

ψ∈QLS(λ)

(
cl−1(ψ) ∩ B

∞
2

�x(λ)
)
,

we deduce that

(5.2) chV −
x (λ) =

∑
ψ∈QLS(λ)

( ∑
η∈cl−1(ψ)∩B

∞
2

�x
(λ)

ewt(η)

︸ ︷︷ ︸
(∗)

)
.

In order to obtain the graded character formula (5.1) for V −
x (λ), we will compute the

sum (∗) of the terms ewt(η) over all η ∈ cl−1(ψ)∩B
∞
2

�x(λ) for each ψ ∈ QLS(λ). Let

ψ ∈ QLS(λ), and take ηψ ∈ B
∞
2
0 (λ) as in Lemma 4.4.5. LetX be a monomial in root

operators such that ηψ = Xηe, where ηe = (e ; 0, 1). We see by [NS3, Lemma 6.2.2]
that

(5.3) cl−1(ψ) =
{
X(t(ζ) · ηC) | C ∈ Conn(B

∞
2 (λ)), ζ ∈ Q∨};

for the definition of ηC , see (4.20). We claim that

(5.4) cl−1(ψ) ∩ B
∞
2

�x(λ) =

{
X(t(ζ) · ηC)

∣∣∣∣∣ C ∈ Conn(B
∞
2 (λ)),

ζ ∈ Q∨, [ζ] ≥ [ξx,κ(ψ)]

}
.

We first show the inclusion ⊂. Let η ∈ cl−1(ψ) ∩ B
∞
2

�x(λ), and write it as η =

X(t(ζ) · ηC) for some C ∈ Conn(B
∞
2 (λ)) and some ζ ∈ Q∨ (see (5.3)). Also, we

set y := κ(ψ) = κ(ηψ) ∈ WS . We see by (4.28) that t(ζ) · ηC is of the form
(4.15), with κ(t(ζ) · ηC) = ΠS(t(ζ)) = zζt(ζ + φS(ζ)). Therefore, we deduce from
Lemma 4.4.4 that κ(X(t(ζ) · ηC)) = κ(ηψ)κ(t(ζ) · ηC) = yzζt(ζ + φS(ζ)). Since

η = X(t(ζ) · ηC) ∈ B
∞
2

�x(λ) by the assumption, we have yzζt(ζ +φS(ζ)) � x. Hence

it follows from Lemma 4.3.7 that [ζ] = [ζ + φS(ζ)] ≥ [ξx,y] = [ξx,κ(ψ)]. Thus, η is
contained in the set on the right-hand side of (5.4).

For the opposite inclusion ⊃, let C ∈ Conn(B
∞
2 (λ)), and let ζ ∈ Q∨ be such

that [ζ] ≥ [ξx,κ(ψ)]. It is obvious by (5.3) that X(t(ζ) · ηC) ∈ cl−1(ψ). Hence it

suffices to show that X(t(ζ) · ηC) ∈ B
∞
2

�x(λ). The same argument as above shows

that κ(X(t(ζ) · ηC)) = yzζt(ζ + φS(ζ)), with y := κ(ψ) ∈ WS . Therefore, we see
that

κ(X(t(ζ) · ηC)) = yzζt(ζ + φS(ζ)) � yzξx,y
t(ξx,y) by Lemma 4.3.4

� x by Lemma 4.3.6,

which implies that X(t(ζ) · ηC) ∈ B
∞
2

�x(λ). This proves (5.4).

Let C ∈ Conn(B
∞
2 (λ)), and write Θ(C) ∈ Par(λ) as Θ(C) = (ρ(i))i∈I , with

ρ(i) = (ρ
(i)
1 ≥ · · · ≥ ρ

(i)
mi−1) for each i ∈ I. Also, let ζ ∈ Q∨ be such that [ζ] ≥
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[ξx,κ(ψ)], and write the difference [ζ]− [ξx,κ(ψ)] ∈ Q∨,+ as

[ζ]− [ξx,κ(ψ)] =
∑
i∈I

ciα
∨
i ;

note that ci = 0 for all i ∈ S. Now, for each i ∈ I, we set ci + ρ(i) := (ci + ρ
(i)
1 ≥

· · · ≥ ci + ρ
(i)
mi−1 ≥ ci), which is a partition of length less than or equal to mi, and

then set

(5.5) (ci)i∈I +Θ(C) := (ci + ρ(i))i∈I ∈ Par(λ).

Noting that 〈λ, Q∨
S〉 = {0}, we compute:

wt(t(ζ) · ηC) = t(ζ)(wt(ηC))

= t(ζ)
(
λ− |(ρ(i))i∈I |δ

)
by Proposition 4.4.6 (2)

= λ− 〈λ, ζ〉δ − |(ρ(i))i∈I |δ

= λ− 〈λ, ξx,κ(ψ)〉δ −
〈
λ,
∑
i∈I

ciα
∨
i

〉
δ − |(ρ(i))i∈I |δ

= λ− wtλ
(
x ⇒ κ(ψ)

)
δ −
(∑

i∈I

mici

)
δ − |(ρ(i))i∈I |δ

= wt(ηe)− wtλ
(
x ⇒ κ(ψ)

)
δ − |(ci + ρ(i))i∈I |δ.

From this computation, together with (4.18), we deduce that

wt(X(t(ζ) · ηC)) = wt(Xηe)− wtλ
(
x ⇒ κ(ψ)

)
δ − |(ci + ρ(i))i∈I |δ

= wt(ηψ)− wtλ
(
x ⇒ κ(ψ)

)
δ − |(ci + ρ(i))i∈I |δ

= wt(ψ) +
(
degλ(ψ)− wtλ

(
x ⇒ κ(ψ)

))
δ − |(ci + ρ(i))i∈I |δ.

(5.6)

Because degλ(ψ)− wtλ
(
x ⇒ κ(ψ)

)
= degxλ(ψ) by the definitions of degxλ(ψ) and

degλ(ψ) , we obtain

wt(X(t(ζ) · ηC)) = wt(ψ) +
(
degxλ(ψ)− |(ci + ρ(i))i∈I |

)
δ.

Summarizing, we find that for each ψ ∈ QLS(λ),∑
η∈cl−1(ψ)∩B

∞
2

�x
(λ)

ewt(η) (5.4)
=

∑
C∈Conn(B

∞
2 (λ))

ζ∈Q∨, [ζ]≥[ξx,κ(ψ)]

ewt(X(t(ζ)·ηC))

= ewt(ψ)edegxλ(ψ)δ
∑

ρ∈Par(λ)

x−|ρ|δ eδ=q
= ewt(ψ)qdegxλ(ψ)

∑
ρ∈Par(λ)

q−|ρ|

= ewt(ψ)qdegxλ(ψ)
∏
i∈I

mi∏
r=1

(1− q−r)−1.

Substituting this into (5.2), we finally obtain (5.1). This completes the proof of
Theorem 5.1.1. �
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5.3. Graded character formula for certain quotients of Demazure sub-
modules. Let λ ∈ P+ be a dominant weight; recall that S = Sλ =

{
i ∈ I |

〈λ, α∨
i 〉 = 0

}
.

For each x ∈ WS = W ∩ (WS)aff , we set

(5.7) X−
x (λ) :=

∑
ρ∈Par(λ)

ρ �=(∅)i∈I

U−
v (gaff)S

norm
x zρvλ =

∑
ρ∈Par(λ)

ρ �=(∅)i∈I

zρ

(
V −
x (λ)

)
;

for the definition of zρ : V (λ) → V (λ), see (4.22).
For ψ ∈ QLS(λ), we take and fix a monomial Xψ in root operators such that

Xψηe = ηψ, and set

ηψ · t(ξ) := Xψ(t(ξ) · ηe) for ξ ∈ Q∨.

Remark 5.3.1. Note that t(ξ) · ηe = (ΠS(t(ξ)) ; 0, 1) (see (4.28)). We deduce from
[INS, Lemma 7.1.4] that if ηψ = Xψηe is of the form ηψ = (x1, . . . , xs ; σ0, σ1, . . . ,
σs), then

ηψ · t(ξ) = Xψ(t(ξ) · ηe) = (x1Π
S(t(ξ)), . . . , xsΠ

S(t(ξ)) ; σ0, σ1, . . . , σs).

In particular, the element ηψ · t(ξ) does not depend on the choice of Xψ. Also, since
xuΠ

S(t(ξ))λ = xuλ− 〈λ, ξ〉δ for all 1 ≤ u ≤ s, we see by (4.14) that

wt(ηψ · t(ξ)) = wt(ηψ)− 〈λ, ξ〉δ
(4.18)
= wt(ψ) +

(
degλ(ψ)− 〈λ, ξ〉

)
δ

(5.8)

and that

(5.9) cl(ηψ · t(ξ)) = ψ.

Theorem 5.3.2. Keep the notation and setting above. For each x ∈ WS , there
exists a subset B(X−

x (λ)) of B(λ) such that

(5.10) X−
x (λ) =

⊕
b∈B(X−

x (λ))

C(v)G(b).

Moreover, under the isomorphism Ψλ : B(λ) ∼→ B
∞
2 (λ) of crystals in Theorem 4.6.1,

the subset B(X−
x (λ)) ⊂ B(λ) is mapped to the following subset of B

∞
2 (λ):

(5.11) B
∞
2

�x(λ) \
{
ηψ · t(ξx,κ(ψ)) | ψ ∈ QLS(λ)

}
.

From Theorem 5.3.2, we immediately obtain the following corollary; cf. [NS3,
Theorem 6.1.1 combined with Proposition 6.2.4] for the case x = e.

Corollary 5.3.3. For each x ∈ WS , there holds the equality

(5.12) gch(V −
x (λ)/X−

x (λ)) =
∑

ψ∈QLS(λ)

ewt(ψ)qdegxλ(ψ).

By combining the special case x = �w◦� ∈ WS of Corollary 5.3.3 with the special
case μ = w◦λ of Theorem 3.2.7, we obtain the equality

gch(V −
w◦(λ)/X

−
w◦(λ)) = Ew◦λ(q,∞).



SPECIALIZED NONSYMMETRIC MACDONALD POLYNOMIALS 2779

Remark 5.3.4. We recall from Remark 5.1.3 that

Ew◦λ(q
−1, 0) =

∑
ψ∈QLS(λ)

ewt(ψ)qdegλ(ψ).

Hence it follows from the special case x = e of Corollary 5.3.3 that

gch(V −
e (λ)/X−

e (λ)) = Ew◦λ(q
−1, 0);

cf. [LNSSS3, Theorem 35]. Here we have V −
w◦(λ) ⊂ V −

e (λ), as mentioned in Re-
mark 5.1.3. However, we can easily show thatX−

e (λ)∩V −
w◦(λ) � X−

w◦(λ) (except for
some trivial cases). Therefore, there is no inclusion relation between the quotient
modules V −

w◦(λ)/X
−
w◦(λ) and V −

e (λ)/X−
e (λ). This can also be observed from the

comparison of some explicit computations of Ew◦λ(q
−1, 0) and Ew◦λ(q,∞).

5.4. Proof of Theorem 5.3.2.

Lemma 5.4.1 (cf. (4.23)). Let x ∈ WS. Then, we have

(5.13) B−
x (λ) =

{
zρb | ρ ∈ Par(λ), b ∈ B−

x (λ) ∩ B0(λ)
}
.

Moreover, for every ρ ∈ Par(λ) and b ∈ B−
x (λ)∩B0(λ), the element zρb is contained

in B−
x (λ).

Proof. We first prove the inclusion ⊃. Let b ∈ B−
x (λ) ∩ B0(λ), and write it as

b = Xuλ for a monomial X in Kashiwara operators. For ρ ∈ Par(λ), we have
zρb = Xzρuλ = Xuρ since zρ commutes with Kashiwara operators (see §4.5). Now

we set η := Ψλ(b) and η′ := Ψλ(zρb), where Ψλ : B(λ) ∼→ B
∞
2 (λ) is the isomorphism

of crystals in Theorem 4.6.1. Then, we have η = Xηe and η′ = XΨλ(u
ρ) = XηC ,

with C := Θ−1(ρ) ∈ Conn(B
∞
2 (λ)). Therefore, noting that κ(ηC) = e, we deduce

from Lemma 4.4.4 that κ(η′) = κ(η)κ(ηC) = κ(η). Also, since b ∈ B−
x (λ), it follows

that κ(η) � x, and hence κ(η′) = κ(η) � x. Hence we obtain η′ ∈ B
∞
2

�x(λ), which

implies that zρb ∈ B−
x (λ).

Next we prove the opposite inclusion ⊂. Let b′ ∈ B−
x (λ), and write it as b′ = zρb

for some ρ ∈ Par(λ) and b ∈ B0(λ) (see (4.23)); we need to show that b ∈ B−
x (λ).

We set η := Ψλ(b) ∈ B
∞
2 (λ) and η′ := Ψλ(b

′) ∈ B
∞
2 (λ). Then, the same argument

as above shows that κ(η) = κ(η′) � x. Hence we obtain η ∈ B
∞
2

�x(λ), which implies

that b ∈ B−
x (λ).

For the second assertion, let ρ = (ρ(i))i∈I ∈ Par(λ) and b ∈ B−
x (λ) ∩ B0(λ);

remark that

zρb ∈ B−
x (λ) ⇐⇒ Ψλ(zρb) ∈ B

∞
2

�x(λ) ⇐⇒ κ(Ψλ(zρb)) � x.

We write b as b = Xuλ for a monomial X in Kashiwara operators. Also, define
� := (�(i))i∈I ∈ Par(λ) and ξ :=

∑
i∈I ciα

∨
i ∈ Q∨,+ as in Remark 4.7.2. Then it

follows that zρb = zρXuλ = Xzρuλ
(4.29)
= X(t(ξ) · u�). If we set C := Θ−1(�) ∈

Conn(B
∞
2 (λ)), then we have

Ψλ(zρb) = Ψλ

(
X(t(ξ) · u�)

)
= X

(
t(ξ) ·Ψλ(u

�)
)
= X

(
t(ξ) · ηC

)
.

Note that t(ξ) ·ηC is of the form (4.15) with κ(t(ξ) ·ηC) = ΠS(t(ξ)) by Remark 4.7.1
and the fact that κ(ηC) = e. Therefore, we see from Lemma 4.4.4 that

(5.14) κ(Ψλ(zρb)) = κ(X(t(ξ) · ηC)) = κ(Xηe)Π
S(t(ξ)).
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Here we recall that κ(Xηe) � x since b ∈ B−
x (λ)∩B0(λ). Also, recall that ξ ∈ Q∨,+.

From these, we deduce that

κ(Ψλ(zρb)) = κ(Xηe)Π
S(t(ξ)) � κ(Xηe) by Lemma 4.3.4

� x.

This proves the lemma. �

Proof of Theorem 5.3.2. We will prove that if we set

(5.15) B :=
{
zρb | ρ ∈ Par(λ) \ (∅)i∈I , b ∈ B−

x (λ) ∩ B0(λ)
}
⊂ B(λ),

then

(5.16) X−
x (λ) =

⊕
b∈B

C(v)G(b).

We first show the inclusion ⊃ in (5.16). Let ρ ∈ Par(λ) \ (∅)i∈I and b ∈ B−
x (λ) ∩

B0(λ). We see from Remark 4.5.1 that G(zρb) = zρG(b). Since G(b) ∈ V −
x (λ) and

X−
x (λ) =

∑
ρ∈Par(λ)

ρ �=(∅)i∈I

zρ

(
V −
x (λ)

)

by the definition, we have G(zρb) = zρG(b) ∈ X−
x (λ). Thus we have shown the

inclusion ⊃ in (5.16). Next we show the opposite inclusion ⊂ in (5.16). Since{
G(b) | b ∈ B−

x (λ)
}
is a C(v)-basis of V −

x (λ), we deduce from (5.7) that

(5.17) X−
x (λ) = SpanC(v)

{
zρG(b) | ρ ∈ Par(λ) \ (∅)i∈I , b ∈ B−

x (λ)
}
.

Let ρ ∈ Par(λ) \ (∅)i∈I and b ∈ B−
x (λ). By Lemma 5.4.1, we can write the b as

b = zρ′b′ for some ρ′ ∈ Par(λ) and b′ ∈ B−
x (λ)∩B0(λ). It follows that zρb = zρzρ′b′.

Because zρ and zρ′ are defined to be a certain product of Schur polynomials (see
(4.21)), the element zρzρ′ can be expressed as

zρzρ′ =
∑

ρ′′∈Par(λ)

|ρ′′|=|ρ|+|ρ′|

nρ′′zρ′′ , with nρ′′ ∈ Z;

here we remark that |ρ|+ |ρ′| ≥ 1 since ρ �= (∅)i∈I . Therefore, we deduce that

zρG(b) = zρG(zρ′b′) = zρzρ′G(b′)

=
∑

ρ′′∈Par(λ)

|ρ′′|=|ρ|+|ρ′|

nρ′′G(zρ′′b′) ∈
⊕
b∈B

C(v)G(b).

From this, together with (5.17), we obtain the inclusion X−
x (λ) ⊂

⊕
b∈B C(v)G(b)

in (5.16). Thus, we obtain (5.16), as desired. In what follows, we write B(X−
x (λ))

for the subset B ⊂ B(λ) in (5.15).
Furthermore, we will prove that

Ψλ

(
B(X−

x (λ))
)
= B

∞
2

�x(λ) \
{
ηψ · t(ξx,κ(ψ)) | ψ ∈ QLS(λ)

}
.

For this purpose, it suffices to show that for each ψ ∈ QLS(λ),

(5.18) cl−1(ψ) ∩Ψλ

(
B(X−

x (λ))
)
=
(
cl−1(ψ) ∩ B

∞
2

�x(λ)
)
\
{
ηψ · t(ξx,κ(ψ))

}
.
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Let ψ ∈ QLS(λ); recall that Xψ is a monomial in root operators such that ηψ =
Xψηe. Then we know from (5.4) that

cl−1(ψ) ∩ B
∞
2

�x(λ)

=
{
Xψ(t(ζ) · ηC) | C ∈ Conn(B

∞
2 (λ)), ζ ∈ Q∨, [ζ] ≥ [ξx,κ(ψ)]

}
.

We first show the inclusion ⊃ in (5.18). Let η be an element in the set on the right-
hand side of (5.18), and write it as η = Xψ(t(ζ) · ηC) for some C ∈ Conn(B

∞
2 (λ))

and ζ ∈ Q∨ such that [ζ] ≥ [ξx,κ(ψ)]. We write the difference [ζ]− [ξx,κ(ψ)] ∈ Q∨,+

as [ζ]− [ξx,κ(ψ)] =
∑

i∈I ciα
∨
i with ci ∈ Z≥0 for i ∈ I (note that ci = 0 for all i ∈ S),

and define ρ := (ci)i∈I + Θ(C) ∈ Par(λ) as in (5.5). We claim that ρ �= (∅)i∈I .
Suppose, for a contradiction, that ρ = (∅)i∈I . Then we have Θ(C) = (∅)i∈I and
ci = 0 for all i ∈ I, and hence

η = Xψ(t(ζ) · ηC) = Xψ(t(ζ) · ηe) = Xψ(Π
S(t(ζ)) ; 0, 1)

= Xψ(Π
S(t(ξx,κ(ψ))) ; 0, 1) since [ζ] = [ξx,κ(ψ)]

= Xψ(t(ξx,κ(ψ)) · ηe) = ηψ · t(ξx,κ(ψ)),

which contradicts the assumption that η is an element in the set on the right-hand
side of (5.18). Thus we obtain ρ �= (∅)i∈I . Now, we set

b := Ψ−1
λ (ηψ · t(ξx,κ(ψ))) = Ψ−1

λ

(
Xψ(t(ξx,κ(ψ)) · ηe)

)
∈ B−

x (λ) ∩ B0(λ);

note that ηψ · t(ξx,κ(ψ)) ∈ B
∞
2

�x(λ) by (5.4) and that b = Xψ(t(ξx,κ(ψ)) · uλ). Then

we see by (5.15) that zρb ∈ B(X−
x (λ)). Also, we have

zρb = zρ
(
Xψ(t(ξx,κ(ψ)) · uλ)

)
= Xψ

(
t(ξx,κ(ψ)) · (zρuλ)

)
= Xψ

(
t(ξx,κ(ψ)) · t([ζ]− [ξx,κ(ψ)]) · uΘ(C)

)
by Remark 4.7.2

= Xψ(t(ζ + γ) · uΘ(C)) for some γ ∈ Q∨
S

= Xψ(t(ζ) · uΘ(C)).

Therefore, Ψλ(zρb) = Xψ(t(ζ) · ηC) = η, which implies that η is contained in
Ψλ(B(X−

x (λ))). Thus we have shown the inclusion ⊃ in (5.18).
Next we show the opposite inclusion ⊂ in (5.18). Since B(X−

x (λ)) ⊂ B−
x (λ), it

follows that
cl−1(ψ) ∩Ψλ

(
B(X−

x (λ))
)
⊂ cl−1(ψ) ∩ B

∞
2

�x(λ).

Hence it suffices to show that ηψ · t(ξx,κ(ψ)) �∈ Ψλ

(
B(X−

x (λ))
)
. Suppose, for a

contradiction, that there exists b′ ∈ B(X−
x (λ)) such that Ψλ(b

′) = ηψ ·t(ξx,κ(ψ)). By

(5.15), we can write it as b′ = zρb for some ρ ∈ Par(λ)\(∅)i∈I and b ∈ B−
x (λ)∩B0(λ).

We set η := Ψ−1
λ (b) ∈ B

∞
2

�x(λ)∩B
∞
2
0 (λ) and write κ(η) ∈ (WS)aff as κ(η) = yzξt(ξ)

for some y ∈ WS and ξ ∈ Q∨, S-ad. Then, κ(η) = yzξt(ξ) � x since η ∈ B
∞
2

�x(λ),
and hence

(5.19) [ξ] ≥ [ξx,y] by Lemma 4.3.7.

Let us write b as b = Y uλ for some monomial Y in Kashiwara operators (note that
η = Y ηe), and define ζ =

∑
i∈I ciα

∨
i ∈ Q∨,+ and � = (�(i))i∈I ∈ Par(λ) in such

a way that ρ = (ci)i∈I + � (see Remark 4.7.2 and (5.5)); note that ci = 0 for all
i ∈ S. Then, by (4.29), we have

b′ = zρb = zρY uλ = Y zρuλ = Y (t(ζ) · u�).
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Therefore, we see that

ηψ · t(ξx,κ(ψ)) = Ψλ(b
′) = Ψλ

(
Y (t(ζ) · u�)

)
= Y (t(ζ) · ηC),

with C := Θ−1(�) ∈ Conn(B
∞
2 (λ)).

(5.20)

Since ηψ · t(ξx,κ(ψ)) = Xψ(t(ξx,κ(ψ)) · ηe) ∈ B
∞
2
0 (λ), it follows that ηC = ηe, and

hence � = (∅)i∈I . Hence we obtain ηψ · t(ξx,κ(ψ)) = Y (t(ζ) · ηe). Since t(ζ) · ηe =

(ΠS(t(ζ)) ; 0, 1), we see from Lemma 4.4.4 that κ(Y (t(ζ) · ηe)) = κ(η)κ(t(ζ) · ηe) =
yzξt(ξ)Π

S(t(ζ)). Similarly, we see that κ(ηψ · t(ξx,κ(ψ))) = κ(ψ)ΠS(t(ξx,κ(ψ))).

Combining these equalities, we obtain κ(ψ)ΠS(t(ξx,κ(ψ))) = yzξt(ξ)Π
S(t(ζ)), and

hence (y = κ(ψ) and) [ζ + ξ] = [ξx,κ(ψ)]. Since [ξ] ≥ [ξx,y] by (5.19) and ζ ∈
Q∨,+, it follows that ([ξ] = [ξx,y] and) [ζ] = 0, which implies that ci = 0 for
all i ∈ I \ S. Recall that ci = 0 for all i ∈ S by the definition. Therefore,
we conclude that ρ = (ci)i∈I + � = (∅)i∈I ; this contradicts our assumption that

ρ ∈ Par(λ) \ (∅)i∈I . Thus we have shown the inclusion ⊂ in (5.18). This completes
the proof of Theorem 5.3.2. �
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