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EXPLICIT DETERMINATION OF ROOT NUMBERS
OF ABELIAN VARIETIES

ARMAND BRUMER, KENNETH KRAMER, AND MARIA SABITOVA

ABSTRACT. Let A be an abelian variety over a nonarchimedean local field
of definition K and let W(A) be the root number of A. Let F be a Galois
extension of K over which A has semistable reduction, allowing F = K. We
analyze W(A) in terms of contributions from the toric and abelian variety
components of the closed fibers of the Néron models of A over the ring of
integers of K and of F. In particular, our results can be used to calculate W (A)
in two main instances: first, for abelian varieties with additive reduction over K
and totally toroidal reduction over F', provided that the residue characteristic
of K is odd; second, for the Jacobian A = J(C) of a stable curve C over K.

1. INTRODUCTION

The root number W (A) associated to an abelian variety A over a number field
L is the sign in the (conjectural) functional equation of its L-function, and so the
conjectures of Birch and Swinnerton-Dyer imply that the rank of the Mordell-Weil
group A(L) satisfies
W(A) _ (_1)rankA(L)'
For each place v of L, let L, denote the completion of L with respect to v. Let
W (A,) be the local root number associated to A, = A x, L,. By definition,

W(A) =]]W (A,

where v runs through all the places of L. If v|oo, then W(A,) = (—1)4m4 (see
[Ro93, Prop. 1] or [SO7T, Lemma 2.1)). If v is finite, then W(A,) is defined as
follows. Let L, be a fixed algebraic closure of L,. For a rational prime [ different
from the residue characteristic of L,, let T;(A,) be the l-adic Tate module of A4,
and let V;(A,) = T;(A,) ®z, Q. Let 0}, = 0, 4 denote a (complex) representation
of the Weil-Deligne group W'(L,/L,) of L, associated to V;(4,) via the Deligne—
Grothendieck construction (see for example [Ro94]). Then W(A,) = W (o).

We assume from now on a nonarchimedean local field of definition K of A and
we let F//K be a (possibly trivial) Galois extension such that A has semistable re-
duction over F. Denote by Ap,. and Ap, the Néron models over the corresponding
rings of integers and write I(F/K) for the inertia group inside Gal(F/K). We ana-
lyze W(A) in terms of contributions from the toric and abelian variety components
of the closed fibers of these Néron models. In particular, our results can be used
to calculate local root numbers of abelian varieties in two main instances: first,
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for abelian varieties with additive reduction over K and totally toroidal reduction
over I, provided that the residue characteristic of K is odd, and second, for the
Jacobian J(C') of a stable curve C over K. More precisely, in the first case

W(A) = x(~1)",

where x is any ramified quadratic character of K* and n is the number of irre-
ducible components of the complex representation of I(F/K) associated to (the

toric part of) the closed fiber of Ap,. (see (22210), Z211]), Proposition 22217 and

Proposition B.4] below). In the second case,

W(J(C) = ()t I ma,
[2]€Zk

where k is the residue field of K, ¥y is the set of the singular k-points of the
reduction C,,. of C over k, ny, = |Xg|, sk is the number of irreducible k-components
of Cyy, and 7,) = %1 is defined in Proposition (.41 below.

For a somewhat different viewpoint on epsilon factors associated to abelian vari-
eties which acquire semistable reduction over a tamely ramified extension of a local
field, see [Sa93l Lemma 1]. Additional information about root numbers, including
their behavior under twisting, can be found in [DD09] §3.5].

The paper is organized as follows. Section ] contains general facts and notation
concerning root numbers and abelian varieties. In Section ] we find the contribu-
tion to the local root number W (A) from the toric parts of the closed fibers of Ao,
and Ao, when the residue characteristic of K is odd. In Section ], we analyze the
delta factor of W(A) (cf. (ZZI0)) in terms of the action of the Frobenius auto-
morphism of an algebraic closure of k£ on the character group of the toric part of
the closed fiber of Ap,.. We calculate the root number of the Jacobian of a stable
curve C over K in terms of the reduction of C over K in Section[Bl Finally, Section
provides several examples of hyperelliptic curves C' of genus 2 over Q for which
the global root number of J(C') can be determined by our results.

2. GENERAL FACTS AND NOTATION

2.1. Representations of the Weil-Deligne group. Let K be a local non-
archimedean field with ring of integers Ok and residue field k of characteristic
p. Fix a separable closure K of K and the coresponding algebraic closure k of k.
Let ¢ be the inverse of the Frobenius automorphism of G, = Gal(k/k) and let ®
denote a preimage of ¢ in Gx = Gal(K/K). Write Ix = Gal(K/K"") for the in-
ertia group of K, where K™ C K denotes the maximal unramified extension of K
contained in K. By definition, the Weil group Wy = W(K/K) of K is a subgroup
of Gk equal to Iy x (®), where (®) denotes the infinite cyclic group generated by
®. The group W(K /K) is a topological group (see, e.g., [Ro94]). A (multiplicative)
character of K* is a continuous homomorphism g : K* — C*. Throughout the
paper we will identify one-dimensional complex continuous representations of Wy
with characters of K* via local class field theory, assuming that a uniformizer of
K corresponds to a geometric Frobenius ® € G as above. Let w: Wg — C* be
the one-dimensional representation of Wy given by

W =1, w(®)= ¢l g= ||
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Let Wi = W/(K/K) denote the Weil-Deligne group of K. A representation
p' of Wy is a continuous homomorphism p’: Wy — GL(U), where U is a finite-
dimensional complex vector space and the restriction of p’ to the subgroup C of
Wi is complex analytic. There is a bijection between representations of Wi, and
pairs (p, N), where p: Wx — GL(U) is a continuous complex representation of Wy
and N is a nilpotent endomorphism on U such that p(g)Np(g)~! = w(g)N for all
g € Wgk. We identify p’ with the corresponding pair (p, N) and write p’ = (p, N).
Furthermore, a representation p of Wy is identified with the representation (p,0)
of Wi, (see, e.g., [Ro94l §81-3]).

2.2. Abelian varieties. Let A be an abelian variety over K. For a rational prime
[ different from p = char(k), let T;(A) be the l-adic Tate module of A, a free
Z;-module of rank 2g, where g = dim A. Put V =V (A) = T;(4) ®z, Q; and let

ﬁl : GK — GL(V)

denote the natural [-adic representation of Gx on V. The Weil pairing together
with an isogeny from A to the dual abelian variety of A induces a nondegenerate,
skew-symmetric, G i-equivariant pairing

(2.2.1) (== VXV —Qouw,

where wy is the l-adic cyclotomic character of Gk (see, e.g., [S07] for more details).

Let F/K C K/K be a finite Galois extension over which A acquires semistable
reduction ([G67, Thm. 6.1]) and let kr be the residue field of F'. A crucial role is
played by the fized and essentially fized G g-submodules of V, namely

Vi=VI® and V,=VIr,

Clearly V7 C V5.

Let A denote the Néron model of A. Let A,,, = Axo, k and A, = Axp, kr
be the closed fibers of A over k and kg, respectively, with corresponding connected
components A% and A9 . Let 7, and Ty, be the maximal tori of AS_ and A _,
respectively. As an algebraic group, .A?}K has a natural decomposition

(2.2.2) 0—>U— A /Towe — Buy =0,

in which U is a unipotent algebraic group over k and 5, is an abelian variety over
k. Since A acquires semistable reduction over F,

(2.2.3) A Tow = By,

where B,,. is an abelian variety over k.
The reduction map 7 : O — k induces isomorphisms

(2.2.4) Vi 2T (A )®z, Q and Vo 2Ty(AY)®z Qi

as follows from [ST68, Lemma 2]. We endow T;(A9 ) and T;(A9 ) with the ac-
tion of Gk via the isomorphisms ([2:24]). The Igusa—Grothendieck orthogonality
theorem [G67, Thm. 2.4] implies that 7 induces an isomorphism of G x-modules

(2.2.5) VinVit = Ty(Toy) ©z, Qi

where Vi is the orthogonal complement to V; in V under the pairing (Z2.1)).
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Proposition 2.2.6. We have V; N V- C V58 C Vs,

Proof. This follows from [G67, Prop. 3.5] and [E95], Equation (2.7)]. O

Note that 222) and [223) induce exact sequences

0 — Ty(Toy) — Ti(AY, ) — Ty(By,) — 0
and
0 — Ty(Top) — Ti(A),) — Ty(By,) — 0.

Indeed, 7 (k) is a divisible group for a torus 7 over k, so taking inverse limit is
an exact functor. Moreover, T;(U) is trivial. To simplify notation, we use V; for
the Tate vector space obtained by tensoring the Tate module with Q;. By (221)
and Proposition [Z.2.6] the following diagrams, in which the arrows are inclusions,
correspond to each other via the reduction map:

Vin Vll E— ‘/QL Vl(’];x) — Vl(’];F)
(2.2.7) J J l l
Vi — T Vi(A9,) —— Vi(A9))

Since V;NV5- = ViNV;E by Proposition 22,6, we have the G x-module isomorphisms
Vi/(VinVi) = Vi(By,) and Va/Vsh = Vi(B,,),

as well as an injection of G g-modules

Vi(A0 )/ Vi(Tore) = Vi(Bug) 2% vy (B,,) 2 Vi(A2, ) /Vi(Toy )

We are interested in the complex representation p’ = (p, N') of W}, associated to
pi- Fix an embedding ¢: Q; < C and recall the standard procedure ([R0o94, §4] or
[T79, Thm. 4.2.1]) for transforming an l-adic representation \; of Gx on a finite-
dimensional vector space U over Q into a complex representation A’ of Wi on
U®,C. If t;: Ix — Q; is a nontrivial continuous homomorphism, then there
exists a unique nilpotent endomorphism M; € Endg, (U) such that

)\l(h) = exp(tl(h)Ml),

for all h in an open subgroup of Ix. Fix a Frobenius ® as in Section 2.1 and define
AW — GL(U) by

)\l(g) = )\l(g) exp(—tl(h)Ml)7 g = d™"h € Wk, m e Z, he€ k.

(Note that A; generally is not the restriction of A\ to Wk.) Let A = A ®, C
be the (continuous) representation of Wy on U ®, C obtained from A; via the
extension-of-scalars inclusion GL(U) — GL(U ®, C) and let M = M; ®, C be the
endomorphism of U ®, C obtained from M; by extending scalars via . Then by
definition, A’ = (A, M). It is known that A’ does not depend on the choice of .
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Remark 2.2.8. Given Q;[Gkl-submodules 0 C U; C Uy C U, consider the l-adic
representation 4;: Gg — GL(Uy/Up) obtained from M. Let o/ = (m®,C,M;®,C)
be the complex representation of Wi, associated to 4;, where v,: Wx — GL(U2/Uy)
is a homomorphism and M; € Endg, (Uz/U;) is nilpotent. If M;(Us) C Uy, then
M; = 0 and ~; is the restriction of 4, to Wg. These observations follow from
uniqueness of the nilpotent endomorphism in the above procedure.

In the case of p; the procedure can be made more explicit. The inertia group
Ir acts on V through its maximal pro-l quotient Ir(I) = Gal(F!/F"") = Z,, where
F! ¢ K denotes the maximal pro-l extension of F™". Fix an element op € Ig
whose restriction to Ir(l) is a topological generator and define an endomorphism
N;:V =V by

Nl = ﬁl(UF) —1.
Then ker N; = V; and the image of N, is contained in Vi-. By Proposition 2.2.6]
Vit C Vo, 80 N2 =0 and pi(oF) = 1+ N; = exp(V;). Let e be the power of [ in
the ramification degree of F//K. Then the image of Ir(l) in I (1) is a subgroup of
index e. In view of the diagram

Ir 5 Ip(l) —=— 7

inclusionl l linclusion

I —=— Ig(l) —— 17

in which op — 1 in the top row, we may choose an element ox € Ix whose

restriction to Ik (l) is a topological generator and such that op = 0¢ on K'. Let

t;: Ix — Q be the composition of arrows in the bottom row so that ¢;(cx) = 1/e.
Define a representation p;: Wx — GL(V') by

(2.2.9) pi(9) = pi(g) exp(=t;(R)Ny), g=P"h e Wk, meZ, helg.

Note that Ir C kerp;. Finally, let p = p; ®, C and let N = N; ®, C. Then as
above p' = (p, N) is a representation of Wi, on V ®, C. In our context, p’ does not
depend on the choice of [ # p or ¢ (see, e.g., [SOT]).

For the definition and properties of the root number W (p) associated to p, see
[T79, §3] or [Ro94, §11, §12]. An additional contribution to W(A) comes from the
delta factor, given by

(2.2.10) 3(p") = det (_¢|(V®LC)P(1K>/(kerN)p(1K>> .
By definition,
(2.2.11) W(A) =W(p) =W(p)-5(p).

To proceed further, we introduce various representations of Wy, which are re-
strictions to Wk of the induced Gg-action (via p;) on subquotients of the l-adic
representation space V = V;(A). The indicated isomorphisms follow from (Z2.7).
Thus

(2.2.12) P Wi — GL(V(To,)) = GL(V5),
and we obtain

(2.2.13)  pt": Wi — GL(U4or) on Usor = Vi(To,) /Vi(Toy ) 2 V5 /(Vi N V).
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Similarly, we have

(2.2.14) P Wi = GL(VI(B,,)) = GL (Va/ Vi) |

and we obtain

(2.2.15)  pf¥: Wi = GL(Uaw) on Uaw = Vi(Buo,.)/Vi(Bu,) = Va/ (Vi + V5H).

Since Image N; C V- C Vi and ker N; = V,, Remark Z22.8 implies that the follow-
ing are the continuous complex representations of Wy arising from the standard
construction of representations of Wi, over C associated to the corresponding l-adic
G g-modules:

ptor — p;ﬁor ®L (C, ﬁtor — ﬁ;ﬁor ®L (C, pa'u — plav ®L (C, ﬁav — ﬁ;zv ®L (C

Remark 2.2.16. By Proposition[Z.2.6] I acts trivially on Uy,,., and so the action of
Irc on Uy factors through H = I /I = Gal(F™ /K""). Moreover, Ug,, = {0}.
Denote the restriction of p'°" to H by p'"|y. According to |[G67, p. 360], the
representation p'°"|y is realizable over Q.

Proposition 2.2.17. Let p = p; ®, C with p; as in 229). Then
W(p) = W(p*) - (det p")(~1).
In particular, if A already is semistable over K, then W(p) = 1.

Proof. By additivity, W (p) is the product of the root numbers of the complex
representations of Wy arising from the successive quotients in

(2.2.18) 0CV;-CVLCV.

Since N} acts as zero on each of these successive quotients, p;(Wyg) and p;(Wk)
agree on them. The first piece V- affords the representation p{°" in (ZZI2)) and
the second piece Va/Vs- affords the representation pf¥ in (ZZI4). The perfect
G k-equivariant pairing

VzL x (V/Va) = Qi @w

induced by ([22]) shows that the representation v of Wy afforded by the third
piece (V/V2) ®, C satisfies v = (p"")* ® w, where (p'")* is the contragredient
representation of p?°". Hence, W (p!°" @ v) = (det p°")(—1). But any lift 7 € Wi
of -1 ¢ K* W?(b is in I, so T acts trivially on V; = VIx. It follows that
(det p'°7)(—1) = (det 77) (—1).

Since the subrepresentation pg: W — GL(V;(By, ) ®, C) of p® is unramified,
W {(po) = 1 by standard properties of root numbers. Hence W (p®) = W(p*). O

3. CALCULATION OF det pt°"(—1) FOR ODD p

Let p'" = pi°" ®, C be the representation associated with the toric component
of the special fiber of the abelian variety A, as above. According to Remark 2.2.16]
p'°" factors through H = Gal(F™"/K™") and the restriction p'°" | is realizable over
Q. When p is odd, the ramification of 2-power degree in F™" /K™ is tame, so the
2-Sylow subgroups of H are cyclic. We have the following group-theoretic lemma.
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Lemma 3.1.

(i) An irreducible complex representation of a group of odd order with real-valued
character is trivial.

(ii) Let o be a nontrivial irreducible orthogonal representation of a finite group
G over C and assume that a 2-Sylow subgroup C = (c¢) of G is cyclic. Then
deto(c) = —1.

Proof. Item (i) follows from [Se77, Prop. 3.9]. In (ii), a standard induction ar-
gument shows that there is a normal complement B of C, i.e., G = B x C is
a semidirect product in which C' acts on the normal subgroup B, with |B]| odd.
(Note that writing G = | | Cg; as a union of distinct right cosets shows that the
image of ¢ in the left regular permutation representation of G is a product of [G: C]
cycles of length |C|]. Hence ¢ is an odd permutation, the sign gives a surjective map
G — {£1}, and the even permutations in G form an index 2 normal subgroup of
G.)

If the restriction Res$ o of o to B is trivial, then o(c¢) = —1 and (ii) is obvious.
Hence we assume from now on that Resg o is nontrivial.

Using the Mackey method of small subgroups, o can be constructed from an
irreducible representation ¢ of B in the following way. For g € G, let 1), denote the
representation of B given by t,(b) = ¢(g~'bg) for all b € B. Denote the stabilizer
of Y in Gby Gy ={g € G|¢y = 9y}. Then Gy, = B x(c”) for some positive integer
x, which we can choose to divide e = |C]|.

It turns out that ¢ can be extended to a representation of G. Let m be the
degree of 1. From .= = 1), one can easily show that there exists some M € GL,,,(C)
such that

(3.2) Y(c™bc”) = M~ *p(b)M Vb € B,

and by Schur’s Lemma we can arrange that M¢/® = I,,,. where I,,, is m x m identity.
Then 1 can be extended to an (irreducible) representation of Gy via ¢(c*) = M.
We will denote the extension of ¥ to G also by 9 so that

PY(be™) =) MY, be B, ye{0,1,...,(e/x)—1}.

Mackey guarantees that there is a choice of ¢ and M for which o =2 Indgww. (See
[S14] for more details.)

The restriction Resg c=Z2YVDY. D DYoo is orthogonal because o is or-
thogonal. But by assumption, ¢ and so also v, is not trivial on B. Hence v is
not equivalent to its contragredient representation ¢* by (i). Since each . is ir-
reducible, we have * = 1; for some j. Then one can easily check that x is even
and ¢Y* = a2,

Since o is orthogonal, there is a nondegenerate, symmetric G-equivariant pairing
(', ): VxV — C on the representation space V of o. Let W be an m-dimensional
subspace of V' affording the representation v of G and let eq,..., e, be a basis
for W. We have V=W @ cW @& W @ --- ® ¢“ W as modules over R = C[Gy).
If0<j<z-—1andj#x/2, irreducibility of W implies that

Hompg(W ®g W, C) = Homg(W, (¢W)*) = 0.

But ( , ) is nondegenerate, so its restriction to W x ¢*/2W must be nondegenerate.
Thus the matrix D = (d;;) with d;; = (e;, ¢®/?e;) for 1 < i,j < m is nonsingular.
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Since multiplication by ¢® on W is given by the matrix M = (a;;), we have

z
di; = <ei,c%ej> e <c%ej,ei> ¢ 2 dovar (cxej,c%ei> = <Mej,c%ei>

m m m
z z
= <E Qrjér,C2e;) = g arjer,c2e;) = g Apjidy;.
r=1 r=1 r=1

Hence D = D'M and we find that det M = 1.

To conclude the computation, we use the Frobenius formula for the determinant
of an induced representation, which we review for the convenience of the reader.
Let T be a complete set of representatives for the right cosets of Gy in G and
let sign(g) be the sign of the permutation of these right cosets induced by right
multiplication by g € G. Then

(33)  deto(g) = det(Indg, ¥)(9) = (sign(9)™*”  [[ det(s(sgt™)),
(s,t)EA(T)

where A(T) = {(s,t) € T x T'|sgt™' € Gy}. Take T = {l,¢,...,c* '} and g = .
Then g acts as a cycle of length « on the right cosets of G, and sign(g) = —1, since
z is even. Moreover, sgt~! is in Gy if and only if it is in (c®). But ¢(c®) = M
and det M = 1, so the product term in [B3) is 1. Finally, m = deg is odd, so
deto(c) = —1. O

Proposition 3.4. Assume that p is odd. Let x be any ramified quadratic character
of K* and let n be the number of irreducible components of p'°"|g. Then

(3.5) (det p"7)(~1) = x(~1)".

Proof. Since the ratio of the two different ramified quadratic characters of K* is
the unramified quadratic character of K*, which vanishes on the units Uy, the
right side of [B.3]) is well defined.

Suppose « € I maps to —1 under class field theory homomorphism Wx — K*
and let h € H be the image of o under the natural projection Iy — H. Then
det p'°"(—1) means det p'" |y (h), independent of the choice of a. By raising to a
suitable odd power, we can choose h in a 2-Sylow subgroup of H.

If |H| is odd, the left side of ([B.H) therefore is 1. By Remark 2.2.16] p'°"|g can
be realized over Q and the trivial representation does not appear in p'°"|y. Then
Lemma [3)i) implies that p'°"| g = p @ p* for some representation p of H. Hence
n is even and the right side of (B3] is also 1.

Assume for the rest of the proof that |H| is even and let ¢ generate the 2-Sylow
subgroup of H that contains h. We can write

Pl E D BN DD Ay BV,

where i is a representation of H, each ); is an irreducible orthogonal representation
of H with dim A; > 2 and v is the one-dimensional representation of H of order
2. Thus v(c) = —1 and, by Lemma B} det A\;(¢) = —1 for all i. Furthermore,

n=m+q (mod 2). Hence
1 if 2
(3.6) (det §*7) (~1) = (det "] ) () = ih & (e,
(=1)™  otherwise.

Let L be a ramified quadratic extension of K contained in F' and let x be the
corresponding character of K. Then LK™ is the unique quadratic extension of
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K™ in F"". Thus h is in (¢?) if and only if h is trivial on LK™ if and only if
Xx(—1) =1, by the choice of h. This completes the verification of ([B1). O

4. CALCULATION OF §(p')

We keep the notation of Section 222t A is an abelian variety defined over K which
acquires semistable reduction over the finite Galois extension F' of K. The action
of G on V =V,(A), V} = VI& V, = VIF is given by the l-adic representation p;.
We also have an action of Wy on V ®, C via the complex representation p = p;®, C
with p; defined in ([Z229). By construction, p(Ir) = 1, so p|r, factors through the
finite group H = I /Ip = Gal(F™" /K™"). If N; is the nilpotent endomorphism of
V described in Section 2.2, then ker N; = V5.

Recall that N = N; ®, C and that ® € G is a preimage of ¢ € G, where ¢ is
the inverse of the Frobenius automorphism.

Proposition 4.1. There is a perfect Wi -equivariant pairing

(V& €t er NYI) x (Vi(To) ©.€) = Co o

with the action of ® on (V ®, C)PUx)/ (ker N)p(IK) corresponding to that of ¢ on
Vl(%x)'

Proof. Since p| g is semisimple, we find the p(Ix )-invariants of V®,C by considering
successive quotients corresponding to the filtration V 2 Vit + V5, D V5 D 0, i.e.,

(4.2) V/(VE 4+ W) @ (Vi + Vo)V @ V.

Then N; is 0 on each piece, so p;(Ix) and p;(Ix) have the same invariants.

By virtue of the pairing ZZI), (p;(h) — 1)(V) C Vi for all h € Ix. Hence
pi(Ix) acts trivially on the first piece V/(Vit + Va).

We say that the action of a group on a vector space is fized point free if the only
fixed point is 0. To verify that the action of j;(Ix) on (Vi+ + Va)/ V4 is fixed point
free, it suffices check on the dual space. Via the pairing (Z21), we have

(Vi +V2) Vo) 2 Vi (V5 N ).

But the latter injects into Va/Vi, where 0 is the only p;(Ix)-invariant point.

As for the third term in ([@2]), we have VZﬁL(IK) = Vi, and hence (V ®, C)PUx)
is isomorphic to the complexification of V/(Vi- + V2) @ V4. Since ker N = Vs, we
have (ker N)?Ux) = V; ®, C. Hence (V ®, C)?Ux)/ (ker N)p(IK) is isomorphic to
the complex1ﬁcatlon of V/(Vit + V). The latter pairs perfectly with Vst N'V; =
Vi-nVy 2 V(T,,) by @2Z35). Finally, compatibility of the Galois actions of ® and
@ is immediate. |

Corollary 4.3. Let H(T,,) = Homg (T, (k) , £ be the character group of the
torus To, and let Ho,(Tox ) = H(Tox ) Rz, Ql Then

(p') = det (_<P|H@L (TUK)®LC> -

Proof. Since the natural G-equivariant pairing Ty, (k) x H (T, ) — k" induces a
perfect pairing V;(7y, ) x Ha, (To, ) = Qi®wy, the proposition implies the claim. [
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5. ROOT NUMBERS OF SEMISTABLE JACOBIANS

Let A = J(C) be the Jacobian of a smooth geometrically irreducible proper
curve C' over K such that the reduction C,, of C is a stable curve over k in the
sense of [DM69, Def. 1.1]. By [DM69, Thm. 2.4], A has semistable reduction over
K, so F = K in our notation above. We have W (p) = 1 by Proposition 22217
Hence the definition (2Z2.11]) and Corollary [£.3] give

(5.1) W (A) = 8(p) = det (~lag, (2.6 -

It is known that the connected component of the reduction of J(C') over k is the
Jacobian of the reduction of C, ie., A) = J(Cyy) = Pic’(C,, ) by the results in
[R70]. To simplify the notation, throughout this subsection we will write C and T
instead of C,, and 7, , respectively. Let 7 : C — C be the normalization of C, let
Ci,...,Cs be irreducible components of C, and let . be the set of singular points of

C over k, with n = |£|. We have the exact sequence ([BLRI0, p. 247])
(5.2) 15k — ek — ek -7k - L

In particular, dim7 =n — s+ 1.

The character group H(T) = HomZ(T(E),EX) can be described by construct-
ing a directed graph T, as follows. The set of vertices V is the set of irreducible
components of C. For each node of C, say z € X, fix an ordering, say (z,y) for the
pair of points over z on C. Suppose that z and y lie on the components C; and éj,
respectively. Let there be a directed edge e, of T' from the vertex C; to the vertex
C~j. We allow the possibility of a loop if ¢ = j. Denote the set of edges of I" by £.
Let Co(T',Z) and C;(T', Z) be the free abelian groups on V and &, respectively, and
define the boundary map v by v(e.) = C; — C;. It follows from [BLR90, p. 247]
that by dualizing (5.2)), we obtain the exact sequence of Gi-modules:

(5.3) 0— H(T) = C(T,Z) S Co(T,Z) S Z — 0,

in which a is the augmentation map induced by a((fi) =1 for all i. Here G} acts
trivially on Z, the Galois action on Cy(T', Z) is induced from the Galois action on the
set of irreducible components {Ci, . ..,Cs}, the Galois action on C (I, Z) is induced
from the action on ordered pairs (z,y) — (g(x), g(y)) for g € G, and we have the
canonical action of G on H(T).

It is convenient to consider the set of singular k-points ¥ of C. Thus each
element of X is an orbit, denoted [z], of a node z € ¥ under the action of Gj.
Similarly, define Ci, the set of irreducible k-components of C. Let z and y be the
points over z in C and let d be the size of the orbit [2]. Define a sign 77.] to be +1
if ¢? fixes = and y, while T = —1if % switches  and .

Proposition 5.4. Let ny = |Xk| be the number of singular k-points of C and let
sk = |Ck| be the number of irreducible k-components of C. Then

W(A) = (-t T s

[2]€Zk
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Proof. By (B.])) it is enough to show that
(5.5) det (—@la(rye.q) = (—1)™Fortt H 2]
[]€Xk

We tensor (5.3) with Q over Z and compute det(—¢) on each term in the exact
sequence, beginning on the right side, where ¢ acts trivially on Z. Hence

(5.6) det (—¢|g) = —1.

Consider the orbit © of a vertex of I' under ¢. Let S be the Gp-invariant
submodule of Cy(I',Z) generated by the elements of O and let ¢ = |O|. Then ¢
acts on O as a cyclic permutation of length ¢ and sign (—1)'~!, so we have

det(—¢|sg,0) = (—1) sign ¢ = (=1)" (=1)"! = —1.

Note that each such orbit corresponds to a component of C defined over k. Hence
the number of distinct orbits is si. By decomposing Cy(I',Z) according to these
distinct orbits, we find that

(5.7) det (—¢lcorzy@s0) = (1),

Consider the orbit 9’ = [2] of a node z € ¥ of C, under the action of ¢, and let
d = |9’|. The Galois conjugates of the associated edge e, on the graph I" generate
a Gj-invariant submodule S; of C4 (T, Z) whose rank is d and on which o acts as

multiplication by 71.). Hence det (—¢|s,g,q0) = —7]- Each orbit [z] corresponds to
an element of X, and since there are n; distinct orbits, we have
(5.8) det (—¢ley(rzy@a0) = (=1)™ H (2]

[2]€Xk

Thus (&3] follows from (G.0)—(G3). O

Corollary 5.9. Let k' C k be the quadratic extension of k and let ny = | S| be

the number of singular k'-points of C. Then
det (=@l (m)mg) = (—1)™ el

Proof. For each [z] in 3y, there are one or two elements over it in Xy, corresponding

to whether 7,; = —1 or +1. Hence

I 7= (=)™ 0

6. EXAMPLES

In this section we give examples of genus 2 hyperelliptic curves C over Q for
which we can compute the global root number of the Jacobians A = J(C) using
the results above. Refer to Section for the following notation. In each example,
J(C) has additive reduction at p = 3, i.e., for K = Qg, the connected component
A?,K = U is unipotent. Moreover, A requires a wildly ramified extension F' of Q3
to achieve semistable reduction, which is then totally toroidal. Thus .A?,F = Typ is
a torus. If pf* is the representation in (Z2.I5)), then p* = pf* ®, C is trivial and
its root number W (p*’) = 1. Since Ty, is trivial, Corollary 3 gives §(p’) = 1. By
the definition (ZZTIT]) of the local root number and Proposition 22217 we have

(6.1) W = W(4yq,) = (det p"7)(~1),
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which we evaluate by Proposition B4l At other primes g # 3 the curves C have
stable reduction over Q,, and so A = J(C) is semistable over Q, by [BLRI0,
Example 8]. In that case, we evaluate W, = W(A,q, ) by Proposition (.4 In
particular, W (A4 q,) = 1 for prime ¢ at which A has good reduction.

Next we discuss some polynomials needed to construct the curves C. Let

(6.2) f(z) = 2% + 3ax® + 3bx + 3¢, a,b,c€Z, 3tc.

3, if 310,
Then 37| disc(f), with d = < 4, if 3|band 31a,
5, if3]band3]|a.

Fix an algebraic closure Q of Q, let L C Q be the splitting field of f and factor
f(z) = (x —r1)(x — ro)(x — r3) with r1, 7,73 € L. Since f is Eisenstein at 3, the
inertia subgroup I,,(L/Q) of Gal(L/Q) at a place v over 3 in L contains an element
o of order 3. Furthermore, I,(L/Q) is the cyclic group of order 3 if d is even and
I,(L/Q) is the symmetric group Ss if d is odd.

Thanks to the action of o, the various differences of roots of f have the same
v-adic valuation, say m = v(r; —r;) for all i # j. Since

[T (ri—r)? = disc(f),
1<i<j<3
_Jd if d is odd,
"~ |d/2 ifdis even.
Fix an element ¢ in the ring of integers Oy, such that v(¢) = 1 and write

we find that m = § v(disc(f)) = §v(3)d

ro—ry =t"u and rg3—r =t"u.

Then v and v’ embed as v-adic units in the completion L,,. Furthermore, v and v’
are distinct modulo ¢, since " (v’ — u) = r3 — ro also has v-adic valuation m. By
stretching and translation, we have

(6.3) f(t™X 4+ 1) =t"X{E"X —t"u)(t"X —t"u) = 53" X (X —u)(X — ).

Proposition 6.4. Let g(z) = Z?:o cjzl € Z[z] with 9)co and 3|c1, ca,c3. Given
f(x) asin ©.2), with 34| disc(f), suppose that f(x)24+4-39"1g(z) has distinct roots
in Q. Then the Jacobian A = J(C) of the hyperelliptic genus 2 curve C defined by

C:y? = f(2)* +4-3"g(x)

has additive reduction over Qs and totally toroidal reduction over L, for v|3.
Furthermore, L, is the minimal Galois extension of Q3 over which A becomes
semistable. The local root number is given by Wy = (—1)4.

Proof. By (6.3)), the change of variables x = t™X +rq, y = t3™Y leads to a model
C' of C over L, of the form

(6.5) C Y= X*(X —uw)?(X —u)? +4tG(X),

in which the coefficients of G(X) = 34" 1g(t™X + )/t are v-integral because
of the congruences imposed on the coefficients of g(x). Indeed, let e = 2 if d is odd
and e = 1 if d is even. Then v(3) = 3e and v(t"™) = m > v(r1) = e. For the desired
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integrality, it suffices to choose a; = ords(c;) satisfying t6™+1 | 39=1¢;(ry)7 for all
7. Thus
6m +1— je
% 2 3e
which leads to the congruences stated in the proposition.

Clearly, C’ defines a stable curve [DM69, Def. 1.1] over the ring of integers
Or, of L,, and the reduction C’ of C’ over the residue field k of O, consists of
two projective lines intersecting transversally at three points. We claim that the
connected component A% of the special fiber of the Néron model A at v = v,
is totally toroidal. Indeed, over an algebraic closure k of k, A? is isomorphic to
Pic’(C’/k) (see [R70]). The dimension of the toric part T, of A9 is the first Betti
number of C’, and the dimension of the abelian variety part B, is the sum of the
genera of the irreducible components of C’; cf. [BLR90, Example 8, Cor. 12].

Over Z, the curve C has a model of the form

y2 = (a:3 +ez? +esx + 63)2 +esx’ tesx+eg Ve, €Z

—d+1,

such that 3|les; 3|e1, ea and 9ley, e5,e6. Liu’s algorithm [L.94, pp. 151-152] implies
that 3 divides the degree of the minimal Galois extension of Q3 over which C has
stable reduction. Furthermore, the closed fiber F of a minimal model of C' over
Zs has type [IIIy] for some natural number N (see [NUT3]). In particular, F has
no cycles and its irreducible components are projective lines. As was explained at
the end of the previous paragraph, this implies that the reduction of A,g, must
be additive. Finally, by the Deligne-Mumford theorem ([DM69, Thm. 2.4]) on
stable curves and their Jacobians, L, is the minimal Galois extension over which
A becomes semistable.

If d is odd, the inertia group I,(L/Q) is the symmetric group S3 and p*°" is its
two-dimensional irreducible representation. If d is even, I,,(L/Q) is cyclic of order
3 and p'°" = ;@ u*, where p* is a character of order 3. Hence W3 = (—1)% by (6.1))
and Proposition 3.4l a

tor

Our global examples of genus 2 curves C have the form
(6.6) C: y* +Q)y = Pla), P,QeZ,

with F' = Q? + 4P of degree 6. Then the discriminant of C' is Ag = 2712 disc(F);
cf. [L96, p. 4581].

Lemma 6.7. Suppose that the reduction F of F' at an odd prime q has the form
F(z) = (z —r)*h(z), reF,, h(r)#0inTF,

where h is a separable polynomial of degree 3 or 4 in F,[x]. In terms of the Legendre

symbol, the local root number of A = J(C) is W, = — (EE;«) ) In particular, this

holds when ordy(A¢c) = 1.

Proof. The equation y? = F(z) defines a minimal Weierstrass model of C' over Z,
(see [L96]). The reduction C of C' at g has one ordinary double point, corresponding
tox =r, and r is in k = F; by uniqueness of this node. The blow-up of C at z =r
is a curve of genus 1. This implies that A has semistable reduction at ¢, with
abelian variety and toric parts both of dimension one. The points over x = r on
the normalization are rational or not, according to whether or not the slopes of
the tangents to C at © = r are in k, i.e., whether or not h(r) is a square in k.
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Proposition (4] applies with np = 1 and, since C is irreducible, s = 1. Hence

Wq:—TM:—(@). O

The numerical examples of curves in the tables below have minimal models over
Z of the form (6.8), where P = 3% 1g and Q = f, with f(z), g(z), and d as in
Proposition That proposition and Lemma give the local root numbers.
The global root number Wg(A) is their product. We write G, and I, for the
decomposition and inertia groups in Gal(L/Q) at v|3 in L. Magma [M97] was used
to find the rank of A(Q).

Table 1. Q=f=212%~-322+3, discf=3* G,=1,=27/3

local rank
P Ac root numbers W A(Q)
81z | 321.17-4931 Ws =1, 1 2
Wiz = Wagsz1 = —1
Wi =1
—81 32186201 3T -1 1
* Wge201 = —1
W3 =Ws3 =1
5 22 £q2 | 3 53 ) _
27x 3 53%-73 Wog — —1 1 1
—8125 | 325. 13- 561359 W3 = Wiz =1, ~1 1
Wise1359 = —1

Table2. Q=f=2%-3z-3, discf=-3%-5, G, =1, =53

P Ac root lx(itclillbers W /r&g{)
81| —38.52.13.349 MV/I}: : Eg'i:_i Ly o
81| -3%.13.17-19-23 WE/Z ;,119 2/3{4/:23_:1’_1 Lo
o7 316.97. 491 W?)V:V‘l%; i 1 b2
o 316.19. 733 W19V;3m;7?f1: 8 -1
273 318.132. 251 nguszs_lf : ! !
o743 | 318.7.73.163 % _ %;}3:_11’ 2
—925 | 317.11.23331 ngll_:yﬁfg__lil -l
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Table 3. Q =f=a%—622+9z+3,discf=-3*-7,G, =53, [, =7Z/3

local rank
P Ac root numbers W A(Q)
243 | —323.109-1021 Ws =Wio = 1, -1 1
Wigo1 = —1
W3 = Wigr = 1
—243 | —323.13-71-107 3 107 = 5 1 0
Wiz =Wn =-1
Wi = Wis = 1
—8123 | —323.132.2423 3 1375 1 2
v Wages =1
Ws = Was = 1
272% | 322.37.73-131 3 [ER 1 2
v Wiy = Wiz = —1
Ws =Wy =1
81x° | 325.47-4691 3 = -1 1
v Wieor = —1
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