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EXPLICIT DETERMINATION OF ROOT NUMBERS

OF ABELIAN VARIETIES

ARMAND BRUMER, KENNETH KRAMER, AND MARIA SABITOVA

Abstract. Let A be an abelian variety over a nonarchimedean local field
of definition K and let W (A) be the root number of A. Let F be a Galois
extension of K over which A has semistable reduction, allowing F = K. We
analyze W (A) in terms of contributions from the toric and abelian variety
components of the closed fibers of the Néron models of A over the ring of
integers ofK and of F . In particular, our results can be used to calculateW (A)
in two main instances: first, for abelian varieties with additive reduction overK
and totally toroidal reduction over F , provided that the residue characteristic
of K is odd; second, for the Jacobian A = J(C) of a stable curve C over K.

1. Introduction

The root number W (A) associated to an abelian variety A over a number field
L is the sign in the (conjectural) functional equation of its L-function, and so the
conjectures of Birch and Swinnerton-Dyer imply that the rank of the Mordell–Weil
group A(L) satisfies

W (A) = (−1)rankA(L).

For each place v of L, let Lv denote the completion of L with respect to v. Let
W (Av) be the local root number associated to Av = A×L Lv. By definition,

W (A) =
∏
v

W (Av),

where v runs through all the places of L. If v|∞, then W (Av) = (−1)dimA (see
[Ro93, Prop. 1] or [S07, Lemma 2.1]). If v is finite, then W (Av) is defined as
follows. Let Lv be a fixed algebraic closure of Lv. For a rational prime l different
from the residue characteristic of Lv, let Tl(Av) be the l-adic Tate module of Av

and let Vl(Av) = Tl(Av)⊗Zl
Ql. Let σ

′
v = σ′

v,A denote a (complex) representation

of the Weil–Deligne group W ′(Lv/Lv) of Lv associated to Vl(Av) via the Deligne–
Grothendieck construction (see for example [Ro94]). Then W (Av) = W (σ′

v).
We assume from now on a nonarchimedean local field of definition K of A and

we let F/K be a (possibly trivial) Galois extension such that A has semistable re-
duction over F . Denote by AOK

and AOF
the Néron models over the corresponding

rings of integers and write I(F/K) for the inertia group inside Gal(F/K). We ana-
lyze W (A) in terms of contributions from the toric and abelian variety components
of the closed fibers of these Néron models. In particular, our results can be used
to calculate local root numbers of abelian varieties in two main instances: first,
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for abelian varieties with additive reduction over K and totally toroidal reduction
over F , provided that the residue characteristic of K is odd, and second, for the
Jacobian J(C) of a stable curve C over K. More precisely, in the first case

W (A) = χ(−1)n,

where χ is any ramified quadratic character of K× and n is the number of irre-
ducible components of the complex representation of I(F/K) associated to (the
toric part of) the closed fiber of AOF

(see (2.2.10), (2.2.11), Proposition 2.2.17, and
Proposition 3.4 below). In the second case,

W (J(C)) = (−1)nk+sk+1
∏

[z]∈Σk

τ[z],

where k is the residue field of K, Σk is the set of the singular k-points of the
reduction CvK of C over k, nk = |Σk|, sk is the number of irreducible k-components
of CvK , and τ[z] = ±1 is defined in Proposition 5.4 below.

For a somewhat different viewpoint on epsilon factors associated to abelian vari-
eties which acquire semistable reduction over a tamely ramified extension of a local
field, see [Sa93, Lemma 1]. Additional information about root numbers, including
their behavior under twisting, can be found in [DD09, §3.5].

The paper is organized as follows. Section 2 contains general facts and notation
concerning root numbers and abelian varieties. In Section 3, we find the contribu-
tion to the local root number W (A) from the toric parts of the closed fibers of AOK

and AOF
when the residue characteristic of K is odd. In Section 4, we analyze the

delta factor of W (A) (cf. (2.2.10)) in terms of the action of the Frobenius auto-
morphism of an algebraic closure of k on the character group of the toric part of
the closed fiber of AOK

. We calculate the root number of the Jacobian of a stable
curve C over K in terms of the reduction of C over K in Section 5. Finally, Section
6 provides several examples of hyperelliptic curves C of genus 2 over Q for which
the global root number of J(C) can be determined by our results.

2. General facts and notation

2.1. Representations of the Weil–Deligne group. Let K be a local non-
archimedean field with ring of integers OK and residue field k of characteristic
p. Fix a separable closure K of K and the coresponding algebraic closure k of k.
Let ϕ be the inverse of the Frobenius automorphism of Gk = Gal(k/k) and let Φ
denote a preimage of ϕ in GK = Gal(K/K). Write IK = Gal(K/Knr) for the in-
ertia group of K, where Knr ⊂ K denotes the maximal unramified extension of K
contained in K. By definition, the Weil group WK = W(K/K) of K is a subgroup
of GK equal to IK � 〈Φ〉, where 〈Φ〉 denotes the infinite cyclic group generated by
Φ. The group W(K/K) is a topological group (see, e.g., [Ro94]). A (multiplicative)
character of K× is a continuous homomorphism μ : K× → C×. Throughout the
paper we will identify one-dimensional complex continuous representations of WK

with characters of K× via local class field theory, assuming that a uniformizer of
K corresponds to a geometric Frobenius Φ ∈ GK as above. Let ω : WK → C× be
the one-dimensional representation of WK given by

ω|IK = 1, ω(Φ) = q−1, q = |k|.
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Let W ′
K = W ′(K/K) denote the Weil–Deligne group of K. A representation

ρ′ of W ′
K is a continuous homomorphism ρ′ : W ′

K → GL(U), where U is a finite-
dimensional complex vector space and the restriction of ρ′ to the subgroup C of
W ′

K is complex analytic. There is a bijection between representations of W ′
K and

pairs (ρ,N), where ρ : WK → GL(U) is a continuous complex representation of WK

and N is a nilpotent endomorphism on U such that ρ(g)Nρ(g)−1 = ω(g)N for all
g ∈ WK . We identify ρ′ with the corresponding pair (ρ,N) and write ρ′ = (ρ,N).
Furthermore, a representation ρ of WK is identified with the representation (ρ, 0)
of W ′

K (see, e.g., [Ro94, §§1–3]).

2.2. Abelian varieties. Let A be an abelian variety over K. For a rational prime
l different from p = char(k), let Tl(A) be the l-adic Tate module of A, a free
Zl-module of rank 2g, where g = dimA. Put V = Vl(A) = Tl(A)⊗Zl

Ql and let

ρ̃l : GK −→ GL(V )

denote the natural l-adic representation of GK on V . The Weil pairing together
with an isogeny from A to the dual abelian variety of A induces a nondegenerate,
skew-symmetric, GK-equivariant pairing

(2.2.1) 〈−,−〉 : V × V −→ Ql ⊗ ωl,

where ωl is the l-adic cyclotomic character of GK (see, e.g., [S07] for more details).
Let F/K ⊂ K/K be a finite Galois extension over which A acquires semistable

reduction ([G67, Thm. 6.1]) and let kF be the residue field of F . A crucial role is
played by the fixed and essentially fixed GK-submodules of V, namely

V1 = V IK and V2 = V IF .

Clearly V1 ⊆ V2.
Let A denote the Néron model of A. Let AvK = A×OK

k and AvF = A×OK
kF

be the closed fibers of A over k and kF , respectively, with corresponding connected
components A0

vK and A0
vF . Let TvK and TvF be the maximal tori of A0

vK and A0
vF ,

respectively. As an algebraic group, A0
vK has a natural decomposition

(2.2.2) 0 → U → A0
vK/TvK → BvK → 0,

in which U is a unipotent algebraic group over k and BvK is an abelian variety over
k. Since A acquires semistable reduction over F ,

(2.2.3) A0
vF /TvF ∼= BvF ,

where BvF is an abelian variety over kF .
The reduction map π : O � k induces isomorphisms

(2.2.4) V1
∼= Tl(A0

vK )⊗Zl
Ql and V2

∼= Tl(A0
vF )⊗Zl

Ql,

as follows from [ST68, Lemma 2]. We endow Tl(A0
vK ) and Tl(A0

vF ) with the ac-
tion of GK via the isomorphisms (2.2.4). The Igusa–Grothendieck orthogonality
theorem [G67, Thm. 2.4] implies that π induces an isomorphism of GK-modules

(2.2.5) V1 ∩ V ⊥
1

∼= Tl(TvK )⊗Zl
Ql,

where V ⊥
1 is the orthogonal complement to V1 in V under the pairing (2.2.1).
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Proposition 2.2.6. We have V1 ∩ V ⊥
1 ⊆ V ⊥

2 ⊆ V2.

Proof. This follows from [G67, Prop. 3.5] and [E95, Equation (2.7)]. �

Note that (2.2.2) and (2.2.3) induce exact sequences

0 −→ Tl(TvK ) −→ Tl(A0
vK ) −→ Tl(BvK ) −→ 0

and

0 −→ Tl(TvF ) −→ Tl(A0
vF ) −→ Tl(BvF ) −→ 0.

Indeed, T (k) is a divisible group for a torus T over k, so taking inverse limit is
an exact functor. Moreover, Tl(U) is trivial. To simplify notation, we use Vl for
the Tate vector space obtained by tensoring the Tate module with Ql. By (2.2.5)
and Proposition 2.2.6, the following diagrams, in which the arrows are inclusions,
correspond to each other via the reduction map:

(2.2.7)

V1 ∩ V ⊥
1 −−−−→ V ⊥

2⏐⏐� ⏐⏐�
V1 −−−−→ V2

Vl(TvK ) −−−−→ Vl(TvF )⏐⏐� ⏐⏐�
Vl(A0

vK ) −−−−→ Vl(A0
vF )

Since V1∩V ⊥
2 = V1∩V ⊥

1 by Proposition 2.2.6, we have theGK-module isomorphisms

V1/(V1 ∩ V ⊥
1 ) ∼= Vl(BvK ) and V2/V

⊥
2

∼= Vl(BvF ),

as well as an injection of GK-modules

Vl(A0
vK )/Vl(TvK ) ∼= Vl(BvK )

injection−−−−−→ Vl(BvF )
∼= Vl(A0

vF )/Vl(TvF ).

We are interested in the complex representation ρ′ = (ρ,N) of W ′
K associated to

ρ̃l. Fix an embedding ι : Ql ↪→ C and recall the standard procedure ([Ro94, §4] or
[T79, Thm. 4.2.1]) for transforming an l-adic representation λ̃l of GK on a finite-
dimensional vector space U over Ql into a complex representation λ′ of W ′

K on
U ⊗ι C. If tl : IK −→ Ql is a nontrivial continuous homomorphism, then there
exists a unique nilpotent endomorphism Ml ∈ EndQl

(U) such that

λ̃l(h) = exp(tl(h)Ml),

for all h in an open subgroup of IK . Fix a Frobenius Φ as in Section 2.1 and define
λl : WK −→ GL(U) by

λl(g) = λ̃l(g) exp(−tl(h)Ml), g = Φmh ∈ WK , m ∈ Z, h ∈ IK .

(Note that λl generally is not the restriction of λ̃l to WK .) Let λ = λl ⊗ι C
be the (continuous) representation of WK on U ⊗ι C obtained from λl via the
extension-of-scalars inclusion GL(U) ↪→ GL(U ⊗ι C) and let M = Ml ⊗ι C be the
endomorphism of U ⊗ι C obtained from Ml by extending scalars via ι. Then by
definition, λ′ = (λ,M). It is known that λ′ does not depend on the choice of tl.
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Remark 2.2.8. Given Ql[GK ]-submodules 0 ⊆ U1 ⊆ U2 ⊆ U , consider the l-adic

representation γ̃l : GK → GL(U2/U1) obtained from λ̃l. Let γ
′ = (γl⊗ιC,M l⊗ιC)

be the complex representation ofW ′
K associated to γ̃l, where γl : WK → GL(U2/U1)

is a homomorphism and M l ∈ EndQl
(U2/U1) is nilpotent. If Ml(U2) ⊆ U1, then

M l = 0 and γl is the restriction of γ̃l to WK . These observations follow from
uniqueness of the nilpotent endomorphism in the above procedure.

In the case of ρ̃l the procedure can be made more explicit. The inertia group
IF acts on V through its maximal pro-l quotient IF (l) = Gal(F l/Fnr) ∼= Zl, where
F l ⊂ K denotes the maximal pro-l extension of Fnr. Fix an element σF ∈ IF
whose restriction to IF (l) is a topological generator and define an endomorphism
Nl : V → V by

Nl = ρ̃l(σF )− 1.

Then kerNl = V2 and the image of Nl is contained in V ⊥
2 . By Proposition 2.2.6,

V ⊥
2 ⊆ V2, so N2

l = 0 and ρ̃l(σF ) = 1 + Nl = exp(Nl). Let e be the power of l in
the ramification degree of F/K. Then the image of IF (l) in IK(l) is a subgroup of
index e. In view of the diagram

IF
res−−−−→ IF (l)

≈−−−−→ Zl

inclusion

⏐⏐� ⏐⏐� ⏐⏐�inclusion

IK
res−−−−→ IK(l)

≈−−−−→ 1
e Zl

in which σF �→ 1 in the top row, we may choose an element σK ∈ IK whose
restriction to IK(l) is a topological generator and such that σF = σe

K on Kl. Let
tl : IK → Ql be the composition of arrows in the bottom row so that tl(σK) = 1/e.

Define a representation ρl : WK → GL(V ) by

(2.2.9) ρl(g) = ρ̃l(g) exp(−tl(h)Nl), g = Φmh ∈ WK , m ∈ Z, h ∈ IK .

Note that IF ⊆ ker ρl. Finally, let ρ = ρl ⊗ι C and let N = Nl ⊗ι C. Then as
above ρ′ = (ρ,N) is a representation of W ′

K on V ⊗ι C. In our context, ρ′ does not
depend on the choice of l 
= p or ι (see, e.g., [S07]).

For the definition and properties of the root number W (ρ) associated to ρ, see
[T79, §3] or [Ro94, §11, §12]. An additional contribution to W (A) comes from the
delta factor, given by

(2.2.10) δ(ρ′) = det
(
−Φ|(V ⊗ιC)ρ(IK )/(kerN)ρ(IK )

)
.

By definition,

(2.2.11) W (A) = W (ρ′) = W (ρ) · δ(ρ′).

To proceed further, we introduce various representations of WK , which are re-
strictions to WK of the induced GK-action (via ρ̃l) on subquotients of the l-adic
representation space V = Vl(A). The indicated isomorphisms follow from (2.2.7).
Thus

(2.2.12) ρtorl : WK → GL(Vl(TvF )) ∼= GL(V ⊥
2 ),

and we obtain

(2.2.13) ρ̄torl : WK → GL(U tor) on U tor = Vl(TvF )/Vl(TvK ) ∼= V ⊥
2 /(V1 ∩ V ⊥

1 ).
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Similarly, we have

(2.2.14) ρavl : WK → GL(Vl(BvF ))
∼= GL

(
V2/V

⊥
2

)
,

and we obtain

(2.2.15) ρ̄avl : WK → GL(Uav) on Uav = Vl(BvF )/Vl(BvK ) ∼= V2/(V1 + V ⊥
2 ).

Since ImageNl ⊆ V ⊥
2 ⊆ V2 and kerNl = V2, Remark 2.2.8 implies that the follow-

ing are the continuous complex representations of WK arising from the standard
construction of representations of W ′

K over C associated to the corresponding l-adic
GK-modules:

ρtor = ρtorl ⊗ι C, ρ̄tor = ρ̄torl ⊗ι C, ρav = ρavl ⊗ι C, ρ̄av = ρ̄avl ⊗ι C.

Remark 2.2.16. By Proposition 2.2.6, IF acts trivially on U tor, and so the action of

IK on U tor factors through H = IK/IF = Gal(Fnr/Knr). Moreover, U
H

tor = {0}.
Denote the restriction of ρ̄tor to H by ρ̄tor|H . According to [G67, p. 360], the
representation ρ̄tor|H is realizable over Q.

Proposition 2.2.17. Let ρ = ρl ⊗ι C with ρl as in (2.2.9). Then

W (ρ) = W (ρav) · (det ρtor)(−1).

In particular, if A already is semistable over K, then W (ρ) = 1.

Proof. By additivity, W (ρ) is the product of the root numbers of the complex
representations of WK arising from the successive quotients in

(2.2.18) 0 ⊆ V ⊥
2 ⊆ V2 ⊆ V.

Since Nl acts as zero on each of these successive quotients, ρl(WK) and ρ̃l(WK)
agree on them. The first piece V ⊥

2 affords the representation ρtorl in (2.2.12) and
the second piece V2/V

⊥
2 affords the representation ρavl in (2.2.14). The perfect

GK-equivariant pairing

V ⊥
2 × (V/V2) → Ql ⊗ ωl

induced by (2.2.1) shows that the representation ν of WK afforded by the third
piece (V/V2) ⊗ι C satisfies ν ∼= (ρtor)∗ ⊗ ω, where (ρtor)∗ is the contragredient
representation of ρtor. Hence, W (ρtor ⊕ ν) = (det ρtor)(−1). But any lift τ ∈ WK

of −1 ∈ K× ∼= Wab
K is in IK , so τ acts trivially on V1 = V IK . It follows that

(det ρtor)(−1) = (det ρ̄tor)(−1).
Since the subrepresentation ρ0 : WK → GL(Vl(BvK )⊗ι C) of ρ

av is unramified,
W (ρ0) = 1 by standard properties of root numbers. Hence W (ρav) = W (ρ̄av). �

3. Calculation of det ρ̄tor(−1) for odd p

Let ρ̄tor = ρ̄torl ⊗ι C be the representation associated with the toric component
of the special fiber of the abelian variety A, as above. According to Remark 2.2.16,
ρ̄tor factors through H = Gal(Fnr/Knr) and the restriction ρ̄tor|H is realizable over
Q. When p is odd, the ramification of 2-power degree in Fnr/Knr is tame, so the
2-Sylow subgroups of H are cyclic. We have the following group-theoretic lemma.
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Lemma 3.1.
(i) An irreducible complex representation of a group of odd order with real-valued

character is trivial.

(ii) Let σ be a nontrivial irreducible orthogonal representation of a finite group
G over C and assume that a 2-Sylow subgroup C = 〈c〉 of G is cyclic. Then
detσ(c) = −1.

Proof. Item (i) follows from [Se77, Prop. 3.9]. In (ii), a standard induction ar-
gument shows that there is a normal complement B of C, i.e., G = B � C is
a semidirect product in which C acts on the normal subgroup B, with |B| odd.
(Note that writing G =

⊔
Cgi as a union of distinct right cosets shows that the

image of c in the left regular permutation representation of G is a product of [G :C]
cycles of length |C|. Hence c is an odd permutation, the sign gives a surjective map
G → {±1}, and the even permutations in G form an index 2 normal subgroup of
G.)

If the restriction ResGB σ of σ to B is trivial, then σ(c) = −1 and (ii) is obvious.

Hence we assume from now on that ResGB σ is nontrivial.
Using the Mackey method of small subgroups, σ can be constructed from an

irreducible representation ψ of B in the following way. For g ∈ G, let ψg denote the
representation of B given by ψg(b) = ψ(g−1bg) for all b ∈ B. Denote the stabilizer
of ψ in G by Gψ = {g ∈ G |ψg

∼= ψ}. Then Gψ = B� 〈cx〉 for some positive integer
x, which we can choose to divide e = |C|.

It turns out that ψ can be extended to a representation of Gψ. Let m be the
degree of ψ. From ψcx

∼= ψ, one can easily show that there exists someM ∈ GLm(C)
such that

(3.2) ψ(c−xbcx) = M−1ψ(b)M ∀b ∈ B,

and by Schur’s Lemma we can arrange that Me/x = Im, where Im is m×m identity.
Then ψ can be extended to an (irreducible) representation of Gψ via ψ(cx) = M .
We will denote the extension of ψ to Gψ also by ψ so that

ψ(bcxy) = ψ(b)My, b ∈ B, y ∈ {0, 1, . . . , (e/x)− 1}.

Mackey guarantees that there is a choice of ψ and M for which σ ∼= IndGGψ
ψ. (See

[S14] for more details.)

The restriction ResGB σ ∼= ψ ⊕ ψc ⊕ · · · ⊕ ψcx−1 is orthogonal because σ is or-
thogonal. But by assumption, σ and so also ψ, is not trivial on B. Hence ψ is
not equivalent to its contragredient representation ψ∗ by (i). Since each ψci is ir-
reducible, we have ψ∗ ∼= ψcj for some j. Then one can easily check that x is even
and ψ∗ ∼= ψcx/2 .

Since σ is orthogonal, there is a nondegenerate, symmetric G-equivariant pairing
〈 , 〉 : V ×V → C on the representation space V of σ. Let W be an m-dimensional
subspace of V affording the representation ψ of Gψ and let e1, . . . , em be a basis
for W . We have V = W ⊕ cW ⊕ c2W ⊕ · · · ⊕ cx−1W as modules over R = C[Gψ].
If 0 ≤ j ≤ x− 1 and j 
= x/2, irreducibility of W implies that

HomR(W ⊗R cjW,C) ∼= HomR(W, (cjW )∗) = 0.

But 〈 , 〉 is nondegenerate, so its restriction to W ×cx/2W must be nondegenerate.
Thus the matrix D = (dij) with dij = 〈ei, cx/2ej〉 for 1 ≤ i, j ≤ m is nonsingular.
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Since multiplication by cx on W is given by the matrix M = (aij), we have

dij = 〈ei, c
x
2 ej〉

sym
= 〈c x

2 ej , ei〉 c
x
2 -invar
= 〈cxej , c

x
2 ei〉 = 〈Mej , c

x
2 ei〉

= 〈
m∑
r=1

arjer, c
x
2 ei〉 =

m∑
r=1

arj〈er, c
x
2 ei〉 =

m∑
r=1

arjdri.

Hence D = DtM and we find that detM = 1.
To conclude the computation, we use the Frobenius formula for the determinant

of an induced representation, which we review for the convenience of the reader.
Let T be a complete set of representatives for the right cosets of Gψ in G and
let sign(g) be the sign of the permutation of these right cosets induced by right
multiplication by g ∈ G. Then

(3.3) detσ(g) = det(IndGGψ
ψ)(g) = (sign(g))

degψ
∏

(s,t)∈Δ(T )

det(ψ(sgt−1)),

where Δ(T ) = {(s, t) ∈ T × T | sgt−1 ∈ Gψ}. Take T = {1, c, . . . , cx−1} and g = c.
Then g acts as a cycle of length x on the right cosets of Gψ and sign(g) = −1, since
x is even. Moreover, sgt−1 is in Gψ if and only if it is in 〈cx〉. But ψ(cx) = M
and detM = 1, so the product term in (3.3) is 1. Finally, m = degψ is odd, so
detσ(c) = −1. �

Proposition 3.4. Assume that p is odd. Let χ be any ramified quadratic character
of K× and let n be the number of irreducible components of ρ̄tor|H . Then

(3.5) (det ρ̄tor)(−1) = χ(−1)n.

Proof. Since the ratio of the two different ramified quadratic characters of K× is
the unramified quadratic character of K×, which vanishes on the units UK , the
right side of (3.5) is well defined.

Suppose α ∈ IK maps to −1 under class field theory homomorphism WK → K×

and let h ∈ H be the image of α under the natural projection IK → H. Then
det ρ̄tor(−1) means det ρ̄tor|H(h), independent of the choice of α. By raising to a
suitable odd power, we can choose h in a 2-Sylow subgroup of H.

If |H| is odd, the left side of (3.5) therefore is 1. By Remark 2.2.16, ρ̄tor|H can
be realized over Q and the trivial representation does not appear in ρ̄tor|H . Then
Lemma 3.1(i) implies that ρ̄tor|H ∼= μ⊕ μ∗ for some representation μ of H. Hence
n is even and the right side of (3.5) is also 1.

Assume for the rest of the proof that |H| is even and let c generate the 2-Sylow
subgroup of H that contains h. We can write

ρ̄tor|H ∼= μ⊕ μ∗ ⊕ λ1 ⊕ · · · ⊕ λm ⊕ νq,

where μ is a representation of H, each λi is an irreducible orthogonal representation
of H with dimλi ≥ 2 and ν is the one-dimensional representation of H of order
2. Thus ν(c) = −1 and, by Lemma 3.1, detλi(c) = −1 for all i. Furthermore,
n ≡ m+ q (mod 2). Hence

(3.6) (det ρ̄tor)(−1) = (det ρ̄tor|H)(h) =

{
1 if h ∈ 〈c2〉,

(−1)n otherwise.

Let L be a ramified quadratic extension of K contained in F and let χ be the
corresponding character of K×. Then LKnr is the unique quadratic extension of
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Knr in Fnr. Thus h is in 〈c2〉 if and only if h is trivial on LKnr if and only if
χ(−1) = 1, by the choice of h. This completes the verification of (3.5). �

4. Calculation of δ(ρ′)

We keep the notation of Section 2.2: A is an abelian variety defined over K which
acquires semistable reduction over the finite Galois extension F of K. The action
of GK on V = Vl(A), V1 = V IK , V2 = V IF is given by the l-adic representation ρ̃l.
We also have an action of WK on V ⊗ιC via the complex representation ρ = ρl⊗ιC
with ρl defined in (2.2.9). By construction, ρ(IF ) = 1, so ρ|IK factors through the
finite group H = IK/IF = Gal(Fnr/Knr). If Nl is the nilpotent endomorphism of
V described in Section 2.2, then kerNl = V2.

Recall that N = Nl ⊗ι C and that Φ ∈ GK is a preimage of ϕ ∈ Gk, where ϕ is
the inverse of the Frobenius automorphism.

Proposition 4.1. There is a perfect WK-equivariant pairing(
(V ⊗ι C)

ρ(IK)/ (kerN)
ρ(IK)

)
× (Vl(TvK )⊗ι C) → C⊗ ω,

with the action of Φ on (V ⊗ι C)
ρ(IK)/ (kerN)

ρ(IK)
corresponding to that of ϕ on

Vl(TvK ).

Proof. Since ρ|H is semisimple, we find the ρ(IK)-invariants of V ⊗ιC by considering
successive quotients corresponding to the filtration V ⊇ V ⊥

1 + V2 ⊇ V2 ⊇ 0, i.e.,

(4.2) V/(V ⊥
1 + V2) ⊕ (V ⊥

1 + V2)/V2 ⊕ V2.

Then Nl is 0 on each piece, so ρl(IK) and ρ̃l(IK) have the same invariants.
By virtue of the pairing (2.2.1), (ρ̃l(h) − 1)(V ) ⊆ V ⊥

1 for all h ∈ IK . Hence
ρ̃l(IK) acts trivially on the first piece V/(V ⊥

1 + V2).
We say that the action of a group on a vector space is fixed point free if the only

fixed point is 0. To verify that the action of ρ̃l(IK) on (V ⊥
1 + V2)/V2 is fixed point

free, it suffices check on the dual space. Via the pairing (2.2.1), we have(
(V ⊥

1 + V2)/V2

)∗ ∼= V ⊥
2 /(V ⊥

2 ∩ V1).

But the latter injects into V2/V1, where 0 is the only ρ̃l(IK)-invariant point.

As for the third term in (4.2), we have V
ρ̃l(IK)
2 = V1, and hence (V ⊗ι C)

ρ(IK)

is isomorphic to the complexification of V/(V ⊥
1 + V2) ⊕ V1. Since kerNl = V2, we

have (kerN)ρ(IK) = V1 ⊗ι C. Hence (V ⊗ι C)
ρ(IK)/ (kerN)

ρ(IK)
is isomorphic to

the complexification of V/(V ⊥
1 + V2). The latter pairs perfectly with V ⊥

2 ∩ V1 =
V ⊥
1 ∩V1

∼= Vl(TvK ) by (2.2.5). Finally, compatibility of the Galois actions of Φ and
ϕ is immediate. �

Corollary 4.3. Let H(TvK ) = HomZ

(
TvK (k

)
, k

×
) be the character group of the

torus TvK and let HQl
(TvK ) = H(TvK )⊗Zl

Ql. Then

δ(ρ′) = det
(
−ϕ|HQl

(TvK
)⊗ιC

)
.

Proof. Since the natural Gk-equivariant pairing TvK
(
k
)
×H(TvK ) → k

×
induces a

perfect pairing Vl(TvK )×HQl
(TvK ) → Ql⊗ωl, the proposition implies the claim. �
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5. Root numbers of semistable Jacobians

Let A = J(C) be the Jacobian of a smooth geometrically irreducible proper
curve C over K such that the reduction CvK of C is a stable curve over k in the
sense of [DM69, Def. 1.1]. By [DM69, Thm. 2.4], A has semistable reduction over
K, so F = K in our notation above. We have W (ρ) = 1 by Proposition 2.2.17.
Hence the definition (2.2.11) and Corollary 4.3 give

(5.1) W (A) = δ(ρ′) = det
(
−ϕ|HQl

(TvK
)⊗ιC

)
.

It is known that the connected component of the reduction of J(C) over k is the
Jacobian of the reduction of C, i.e., A0

vK = J(CvK ) = Pic0(CvK ) by the results in
[R70]. To simplify the notation, throughout this subsection we will write C and T
instead of CvK and TvK , respectively. Let η : C̃ → C be the normalization of C, let
C̃1, . . . , C̃s be irreducible components of C̃, and let Σ be the set of singular points of
C over k, with n = |Σ|. We have the exact sequence ([BLR90, p. 247])

(5.2) 1 → k
× −→ ⊕s

i=1k
× −→ ⊕n

i=1k
× → T (k) → 1.

In particular, dim T = n− s+ 1.

The character group H(T ) = HomZ(T (k), k
×
) can be described by construct-

ing a directed graph Γ, as follows. The set of vertices V is the set of irreducible
components of C̃. For each node of C, say z ∈ Σ, fix an ordering, say (x, y) for the

pair of points over z on C̃. Suppose that x and y lie on the components C̃i and C̃j ,
respectively. Let there be a directed edge ez of Γ from the vertex C̃i to the vertex
C̃j . We allow the possibility of a loop if i = j. Denote the set of edges of Γ by E .
Let C0(Γ,Z) and C1(Γ,Z) be the free abelian groups on V and E , respectively, and
define the boundary map γ by γ(ez) = C̃j − C̃i. It follows from [BLR90, p. 247]
that by dualizing (5.2), we obtain the exact sequence of Gk-modules:

(5.3) 0 → H(T ) → C1(Γ,Z)
γ→ C0(Γ,Z)

a→ Z → 0,

in which a is the augmentation map induced by a(C̃i) = 1 for all i. Here Gk acts
trivially on Z, the Galois action on C0(Γ,Z) is induced from the Galois action on the

set of irreducible components {C̃1, . . . , C̃s}, the Galois action on C1(Γ,Z) is induced
from the action on ordered pairs (x, y) �→ (g(x), g(y)) for g ∈ Gk, and we have the
canonical action of Gk on H(T ).

It is convenient to consider the set of singular k-points Σk of C. Thus each
element of Σk is an orbit, denoted [z], of a node z ∈ Σ under the action of Gk.

Similarly, define Ck, the set of irreducible k-components of C̃. Let x and y be the
points over z in C̃ and let d be the size of the orbit [z]. Define a sign τ[z] to be +1

if ϕd fixes x and y, while τ[z] = −1 if ϕd switches x and y.

Proposition 5.4. Let nk = |Σk| be the number of singular k-points of C and let

sk = |Ck| be the number of irreducible k-components of C̃. Then

W (A) = (−1)nk+sk+1
∏

[z]∈Σk

τ[z].
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Proof. By (5.1) it is enough to show that

(5.5) det
(
−ϕ|H(T )⊗ZQ

)
= (−1)nk+sk+1

∏
[z]∈Σk

τ[z].

We tensor (5.3) with Q over Z and compute det(−ϕ) on each term in the exact
sequence, beginning on the right side, where ϕ acts trivially on Z. Hence

(5.6) det (−ϕ|Q) = −1.

Consider the orbit O of a vertex of Γ under ϕ. Let S be the Gk-invariant
submodule of C0(Γ,Z) generated by the elements of O and let t = |O|. Then ϕ
acts on O as a cyclic permutation of length t and sign (−1)t−1, so we have

det(−ϕ|S⊗ZQ) = (−1)t sign ϕ = (−1)t (−1)t−1 = −1.

Note that each such orbit corresponds to a component of C̃ defined over k. Hence
the number of distinct orbits is sk. By decomposing C0(Γ,Z) according to these
distinct orbits, we find that

(5.7) det
(
−ϕ|C0(Γ,Z)⊗ZQ

)
= (−1)sk .

Consider the orbit O′ = [z] of a node z ∈ Σ of C, under the action of ϕ, and let
d = |O′|. The Galois conjugates of the associated edge ez on the graph Γ generate
a Gk-invariant submodule S1 of C1(Γ,Z) whose rank is d and on which ϕd acts as
multiplication by τ[z]. Hence det (−ϕ|S1⊗ZQ) = −τ[z]. Each orbit [z] corresponds to
an element of Σk, and since there are nk distinct orbits, we have

(5.8) det
(
−ϕ|C1(Γ,Z)⊗ZQ

)
= (−1)nk

∏
[z]∈Σk

τ[z].

Thus (5.5) follows from (5.6)–(5.8). �

Corollary 5.9. Let k′ ⊂ k be the quadratic extension of k and let nk′ = |Σk′ | be
the number of singular k′-points of C. Then

det
(
−ϕ|H(T )⊗ZQ

)
= (−1)nk′+nk+sk+1.

Proof. For each [z] in Σk, there are one or two elements over it in Σk′ , corresponding
to whether τ[z] = −1 or +1. Hence∏

[z]∈Σk

τ[z] = (−1)nk′ . �

6. Examples

In this section we give examples of genus 2 hyperelliptic curves C over Q for
which we can compute the global root number of the Jacobians A = J(C) using
the results above. Refer to Section 2.2 for the following notation. In each example,
J(C) has additive reduction at p = 3, i.e., for K = Q3, the connected component
A0

vK = U is unipotent. Moreover, A requires a wildly ramified extension F of Q3

to achieve semistable reduction, which is then totally toroidal. Thus A0
vF = TvF is

a torus. If ρ̄avl is the representation in (2.2.15), then ρ̄av = ρ̄avl ⊗ι C is trivial and
its root number W (ρ̄av) = 1. Since TvK is trivial, Corollary 4.3 gives δ(ρ′) = 1. By
the definition (2.2.11) of the local root number and Proposition 2.2.17, we have

(6.1) W3 = W (A/Q3
) = (det ρ̄tor)(−1),
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which we evaluate by Proposition 3.4. At other primes q 
= 3 the curves C have
stable reduction over Qq, and so A = J(C) is semistable over Qq by [BLR90,
Example 8]. In that case, we evaluate Wq = W (A/Qq

) by Proposition 5.4. In
particular, W (A/Qq

) = 1 for prime q at which A has good reduction.
Next we discuss some polynomials needed to construct the curves C. Let

(6.2) f(x) = x3 + 3ax2 + 3bx+ 3c, a, b, c ∈ Z, 3 � c.

Then 3d‖ disc(f), with d =

⎧⎪⎨
⎪⎩
3, if 3 � b,

4, if 3 | b and 3 � a,

5, if 3 | b and 3 | a.
Fix an algebraic closure Q of Q, let L ⊂ Q be the splitting field of f and factor

f(x) = (x − r1)(x − r2)(x− r3) with r1, r2, r3 ∈ L. Since f is Eisenstein at 3, the
inertia subgroup Iv(L/Q) of Gal(L/Q) at a place v over 3 in L contains an element
σ of order 3. Furthermore, Iv(L/Q) is the cyclic group of order 3 if d is even and
Iv(L/Q) is the symmetric group S3 if d is odd.

Thanks to the action of σ, the various differences of roots of f have the same
v-adic valuation, say m = v(ri − rj) for all i 
= j. Since∏

1≤i<j≤3

(ri − rj)
2 = disc(f),

we find that m = 1
6 v(disc(f)) =

1
6 v(3) d =

{
d if d is odd,

d/2 if d is even.

Fix an element t in the ring of integers OL such that v(t) = 1 and write

r2 − r1 = tmu and r3 − r1 = tmu′.

Then u and u′ embed as v-adic units in the completion Lv. Furthermore, u and u′

are distinct modulo t, since tm(u′ − u) = r3 − r2 also has v-adic valuation m. By
stretching and translation, we have

(6.3) f(tmX + r1) = tmX(tmX − tmu)(tmX − tmu′) = t3mX(X − u)(X − u′).

Proposition 6.4. Let g(x) =
∑5

j=0 cjx
j ∈ Z[x] with 9|c0 and 3|c1, c2, c3. Given

f(x) as in (6.2), with 3d‖ disc(f), suppose that f(x)2+4·3d−1g(x) has distinct roots
in Q. Then the Jacobian A = J(C) of the hyperelliptic genus 2 curve C defined by

C : y2 = f(x)2 + 4 · 3d−1g(x)

has additive reduction over Q3 and totally toroidal reduction over Lv for v|3.
Furthermore, Lv is the minimal Galois extension of Q3 over which A becomes
semistable. The local root number is given by W3 = (−1)d.

Proof. By (6.3), the change of variables x = tmX + r1, y = t3mY leads to a model
C ′ of C over Lv of the form

(6.5) C ′ : Y 2 = X2(X − u)2(X − u′)2 + 4tG(X),

in which the coefficients of G(X) = 3d−1g(tmX + r1)/t
6m+1 are v-integral because

of the congruences imposed on the coefficients of g(x). Indeed, let e = 2 if d is odd
and e = 1 if d is even. Then v(3) = 3e and v(tm) = m > v(r1) = e. For the desired
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integrality, it suffices to choose αj = ord3(cj) satisfying t6m+1 | 3d−1cj(r1)
j for all

j. Thus

αj ≥
6m+ 1− je

3e
− d+ 1,

which leads to the congruences stated in the proposition.
Clearly, C ′ defines a stable curve [DM69, Def. 1.1] over the ring of integers

OLv
of Lv, and the reduction C′ of C ′ over the residue field k of OLv

consists of
two projective lines intersecting transversally at three points. We claim that the
connected component A0

v of the special fiber of the Néron model A at v = vL
is totally toroidal. Indeed, over an algebraic closure k of k, A0

v is isomorphic to
Pic0(C′/k) (see [R70]). The dimension of the toric part Tv of A0

v is the first Betti
number of C′, and the dimension of the abelian variety part Bv is the sum of the
genera of the irreducible components of C′; cf. [BLR90, Example 8, Cor. 12].

Over Z, the curve C has a model of the form

y2 = (x3 + e1x
2 + e2x+ e3)

2 + e4x
2 + e5x+ e6 ∀ei ∈ Z

such that 3‖e3; 3|e1, e2 and 9|e4, e5, e6. Liu’s algorithm [L94, pp. 151–152] implies
that 3 divides the degree of the minimal Galois extension of Q3 over which C has
stable reduction. Furthermore, the closed fiber F of a minimal model of C over
Z3 has type [IIIN ] for some natural number N (see [NU73]). In particular, F has
no cycles and its irreducible components are projective lines. As was explained at
the end of the previous paragraph, this implies that the reduction of A/Q3

must
be additive. Finally, by the Deligne–Mumford theorem ([DM69, Thm. 2.4]) on
stable curves and their Jacobians, Lv is the minimal Galois extension over which
A becomes semistable.

If d is odd, the inertia group Iv(L/Q) is the symmetric group S3 and ρ̄tor is its
two-dimensional irreducible representation. If d is even, Iv(L/Q) is cyclic of order
3 and ρ̄tor ∼= μ⊕μ∗, where μ∗ is a character of order 3. Hence W3 = (−1)d by (6.1)
and Proposition 3.4. �

Our global examples of genus 2 curves C have the form

(6.6) C : y2 +Q(x)y = P (x), P,Q ∈ Z[x],

with F = Q2 + 4P of degree 6. Then the discriminant of C is ΔC = 2−12 disc(F );
cf. [L96, p. 4581].

Lemma 6.7. Suppose that the reduction F̄ of F at an odd prime q has the form

F̄ (x) = (x− r)2h̄(x), r ∈ Fq, h̄(r) 
= 0 in Fq,

where h̄ is a separable polynomial of degree 3 or 4 in Fq[x]. In terms of the Legendre

symbol, the local root number of A = J(C) is Wq = −
(

h̄(r)
q

)
. In particular, this

holds when ordq(ΔC) = 1.

Proof. The equation y2 = F (x) defines a minimal Weierstrass model of C over Zq

(see [L96]). The reduction C of C at q has one ordinary double point, corresponding
to x = r, and r is in k = Fq by uniqueness of this node. The blow-up of C at x = r
is a curve of genus 1. This implies that A has semistable reduction at q, with
abelian variety and toric parts both of dimension one. The points over x = r on
the normalization are rational or not, according to whether or not the slopes of
the tangents to C at x = r are in k, i.e., whether or not h̄(r) is a square in k.
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Proposition 5.4 applies with nk = 1 and, since C is irreducible, sk = 1. Hence

Wq = −τ[r] = −
(

h̄(r)
q

)
. �

The numerical examples of curves in the tables below have minimal models over
Z of the form (6.6), where P = 3d−1g and Q = f , with f(x), g(x), and d as in
Proposition 6.4. That proposition and Lemma 6.7 give the local root numbers.
The global root number WQ(A) is their product. We write Gv and Iv for the
decomposition and inertia groups in Gal(L/Q) at v|3 in L. Magma [M97] was used
to find the rank of A(Q).

Table 1. Q = f = x3 − 3x2 + 3, disc f = 34, Gv = Iv = Z/3

P ΔC
local

root numbers
WQ

rank
A(Q)

81x 321 · 17 · 4931 W3 = 1,
W17 = W4931 = −1

1 2

−81x 321 · 86201 W3 = 1,
W86201 = −1

−1 1

27x5 322 · 532 · 73 W3 = W53 = 1,
W73 = −1

−1 1

−81x5 325 · 13 · 561359 W3 = W13 = 1,
W561359 = −1

−1 1

Table 2. Q = f = x3 − 3x− 3, disc f = −33 · 5, Gv = Iv = S3

P ΔC
local

root numbers
WQ

rank
A(Q)

81 −318 · 52 · 13 · 349 W13 = W349 = 1,
W3 = W5 = −1

1 0

−81 −318 · 13 · 17 · 19 · 23 W17 = 1,W3 = −1,
W13 = W19 = W23 = −1

1 0

27x 316 · 97 · 491 W491 = 1,
W3 = W97 = −1

1 2

−27x 316 · 19 · 733 W19 = W733 = 1,
W3 = −1

−1 1

27x3 318 · 132 · 251 W13 = W251 = 1,
W3 = −1

−1 1

−27x3 318 · 7 · 73 · 163 W7 = W163 = 1,
W3 = W73 = −1

1 2

−9x5 317 · 11 · 23 · 331 W11 = W23 = 1,
W331 = 1,W3 = −1

−1 1
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Table 3. Q = f = x3 − 6x2 + 9x+ 3, disc f = −34 · 7, Gv = S3, Iv = Z/3

P ΔC
local

root numbers
WQ

rank
A(Q)

243 −323 · 109 · 1021 W3 = W109 = 1,
W1021 = −1

−1 1

−243 −323 · 13 · 71 · 107 W3 = W107 = 1,
W13 = W71 = −1

1 0

−81x3 −323 · 132 · 2423 W3 = W13 = 1,
W2423 = 1

1 2

27x5 322 · 37 · 73 · 131 W3 = W73 = 1,
W37 = W131 = −1

1 2

81x5 325 · 47 · 4691 W3 = W47 = 1,
W4691 = −1

−1 1
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