TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY.

Volume 370, Number 4, April 2018, Pages 2785-2823
http://dx.doi.org/10.1090/tran/7151

Article electronically published on December 26, 2017

ASYMPTOTIC ANALYSIS OF SECOND ORDER NONLOCAL
CAHN-HILLIARD-TYPE FUNCTIONALS

GIANNI DAL MASO, IRENE FONSECA, AND GIOVANNI LEONI

ABSTRACT. In this paper the study of a nonlocal second order Cahn—Hilliard-
type singularly perturbed family of functions is undertaken. The kernels con-
sidered include those leading to Gagliardo fractional seminorms for gradients.
Using I' convergence the integral representation of the limit energy is character-
ized leading to an anisotropic surface energy on interfaces separating different
phases.

1. INTRODUCTION

In the van der Waals—Cahn—Hilliard theory of phase transitions [15], [41], [50],
[31], the total energy is given by

(1.1) /W da?+5/ [Vu(z

where the open bounded set 0 C R™ represents a container, u : @ — R is the
fluid density, and W : R — [0,4+0c0) is a double-well potential vanishing only at
the phases —1 and 1. The perturbation ¢ [, |Vu(z)|* d penalizes rapid changes of
the density u, and it plays the role of an interfacial energy. This problem has been
extensively studied in the last four decades (see, e.g., [§], [9], [10], [27], [37], [38],
40, [39], [47), [48]).

Higher order perturbations were considered in the study of shape deformation
of unilamellar membranes undergoing inplane phase separation (see, e.g., [33], [49],
[34[43]). A simplified local version of that model (see [43]) leads to the study of a
Ginzburg-Landau-type energy

(1.2) /W dx+qs/ |Vu(z dx+53/ ‘Vzu(x)fdx,
Q

where ¢ € R. This functional is also related to the Swift—Hohenberg equation (see
[46]). When ¢ = 0, the functional reduces to the second order version of (Ll); to
be precise,

1
(1.3) — | W(u(z))de +&* ‘VQu(a:) ‘2 dr ,

€ Ja Q
which was studied in [25]. The case ¢ > 0 was treated in [32], with |V?u|? replaced
by |Au|?. The case ¢ < 0 is more delicate and was considered in [[6] and [I7]. The
original energy functional proposed in [33], [49], [34], [43]) involved also a nonlocal

perturbation and was addressed in [24].

Received by the editors August 30, 2016 and, in revised form, November 22, 2016.
2010 Mathematics Subject Classification. Primary 49J45.

©2017 American Mathematical Society

2785


http://www.ams.org/tran/
http://www.ams.org/tran/
http://dx.doi.org/10.1090/tran/7151

2786 GIANNI DAL MASO, IRENE FONSECA, AND GIOVANNI LEONI

A nonlocal version of (L)) was studied in [I], [2], [3], with the perturbation
e g |Vu(z)|* da replaced by a nonlocal term, leading to the energy

(1.4) é A W(u(x))dx+ ¢ /Q /Q Jo(x — y)|u(z) — u(y)|Pdedy |
where
(1.5) J.(z) = giJ(g)

and the kernel J : R™ — [0, +00) is an even measurable function such that
(1.6) / J(x)(|z| A |z|?) doe =: My < 400,
R

with a Ab := min{a, b}. Functionals of the form (L4 arise in equilibrium statistical
mechanics as free energies of continuum limits of Ising spin systems on lattices. In
that setting, v is a macroscopic magnetization density and J stands for a ferromag-
netic Kac potential (see [3]). Note that (L6]) is satisfied if J is integrable and has
compact support. Another important case is when

1
(1.7) J(x) = |z|™""%  with 5 <s<l,

so that J.(z) = €%*|x|7"~2%, which leads to Gagliardo’s seminorm for the fractional
Sobolev space H*(R™) (see [22], [28], [35]). A functional related to (I4]) with kernel
(T has been studied in [H], [5], and [42] for 0 < s < 1 (see also [30] for an LP
version in dimension n = 1).

The motivation in [42] was the renewed interest in the fractional Laplacian (see,
e.g., [14] and the references therein), and nonlocal characterizations of fractional
Sobolev spaces ([6], [11], [I2], [36] and the references therein).

Another important application of this type of nonlocal singular perturbation
functionals is in the study of dislocations in elastic materials exhibiting microstruc-
ture (see, e.g., [13], [19], [29]).

In this paper we consider a nonlocal version of (I3]); to be precise, we study the
functional

(1.8) Felu) = é/@W(u(w)) dx + E/Q/QJE(LB — )| Vu(z) — Vu(y)|?dzdy

for u € Wlif(ﬂ), where 2 C R™, n > 2, is a bounded open set with Lipschitz
boundary, the double-well potential W : R — [0, 400) is a continuous function with
W=1({0}) = {1, +1} satisfying appropriate coercivity and growth conditions, and
J. is given by (LH]). We assume a nondegeneracy hypothesis (see (Z2))) on the even
measurable kernel J : R™ — [0, +00), and that (L8] holds.

We establish compactness in L?(Q) for energy bounded sequences, and in order
to study the asymptotic behavior of (L) as ¢ — 07, we use the notion of T'-
convergence (see [21]) with respect to the metric in L?(2) and we identify the
[-limit of F.. As it is usual, we extend F.(u) to be +oo for u € L*(Q)\ V[/lif ().
Our first main result is the following theorem.

Theorem 1.1 (Compactness). Assume that W and J satisfy [23)—(20) and (1),
Z2), respectively. Let {u.} C W,2(Q) N L2 (Q) be such that

(1.9) M :=sup F.(u:) < 400 .
g
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Then there exists a sequence €; — 07 such that {u.,} converges in L*(Q) to some
function v € BV(Q;{-1,1}).

The proof of this theorem is more involved than the corresponding one in [2]
due to the presence of gradients in the nonlocal term. This prevents us from
using standard arguments in which discontinuities in u may be allowed. We first
prove compactness in n = 1, and then use a slicing technique to treat the higher
dimensional case.

To state the I' convergence result, we need to introduce some notation. Given
n>2and v € S" ! :=0B;(0), let vy, ..., v, be an orthonormal basis in R with
v, = v. Here, and in what follows, we denote by B,.(z) the open ball in R™ centered
at  and with radius r. Let

(1.10) Vii={zeR": |z-y|<1/2fori=1,...,n—1},

(1.11) QVi={zeR": |z-y|<1/2fori=1,...,n},

let W22, be the set of all functions v € VVliCQ(R”) such that v(z + v;) = v(x)
for a.e. x € R™ and for every i =1,...,n— 1, and let

(112) X" :={veW)? , ,: v(z)==1forae zcR"with £z -v>1/2}.

When n =1 take v = £1, V¥ :=R, Q" := (—1/2,1/2), and let X" be the space of
all functions v € W,"?(R) such that v(z) = +1 for a.e. € R with +z > 1/2. We

loc
define the anisotropic surface energy density

(1.13) Y(v) = inf nf F(v),
where
1
FY(u) = B W(u(x)) dz + 8/ / Jo(z — y)|Vu(z) — Vu(y)|*dzdy .
Ql/ v n
Finally, we define F : L%(Q) — [0, +oc] by
n—1 L
(1.14) Flu) = /Su Y(vy) dH if ue BV(Q;{-1,1}) ,
+00 otherwise in L?(2) ,

where S, is the jump set of u, v, is the approximate normal to S,,, and H" ! is the
(n — 1)-dimensional Hausdorff measure (see [7] for a detailed description of these
notions).

Theorem 1.2 (I-limit). Assume that W and J satisfy 22)-28) and (L4]), re-
spectively. Then for every e; — 0T the sequence {F.,} T'-converges to F in L2(Q).

Although the general structure of the proof is standard, there are remarkable
technical difficulties due to the nonlocality of the perturbation and the presence of
gradients.

An interesting sequel to this work would be to consider the analogous model
for (elastic) solid-solid phase transformations, in which u : & — R™ denotes the
deformation, Vu is the strain and the nonlocal energy is given by

ur—>é/ﬂW(VU(.’E))d:L‘-i—E/Q/QJs(x—y)|vu(x)_vu(y)|2dxdy.

This can be thought of as the nonlocal version of the model treated in [1§], in
particular, if we assume SO(n) invariance as in [20].
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This paper is organized as follows. After a brief section on preliminaries, in
Section ] in order to establish compactness in dimension n = 1, we prove an
interpolation result, which allows us to control the L? norm of «’ in terms of the full
energy (see Lemma[30]). Section[lis devoted to compactness in higher dimensions,
and here again we obtain the equivalent of the interpolation Lemma[335] (see Lemma
[43). As is classical in this type of problem, it is important to be able to modify
admissible sequences near the boundary of their domain without increasing the
limit energy. We address this in Theorem [5.1] in Section Bl Section [6] concerns the
I-liminf inequality, and in Section [] we construct the recovery sequence for the
I'-limsup inequality.

2. PRELIMINARIES

In what follows, in addition to (@) we also assume that the kernel J : R" —
[0,400) has the following property: there exist v; > 0, §; € (0,1), ¢; > 0, such
that for all £ € S"~! there are a(€) < (€) satisfying

(2.1) —v7 <o) <)+ <BE) <
and
B(&) 1

Remark 2.1. For example, condition (Z2]) holds if there exist 0 < r < R and a > 0
such that J(z) > a for every € R™ with r < |z| < R. Indeed, it is enough to set
v =R, 65=R—r,a)=r, B¢ =R, and ¢; = (na)~(r~—" — R™").

We assume that the double-well potential is a continuous function W : R —
[0, 4+00) such that

(2.3) w0 = {-1.1},

(2.4) (Is| = 1)* < cwW(s) forallseR,

(2.5) W is increasing on [1,+o00) and on [—1, -1 + aw] ,
(2.6) W is decreasing on (—oo, —1] and on [1 — aw, 1],

for some constants cyy > 0 and ay € (0, 1).
If s <0and|s+1| > 3, then |s—1| = [s|— 142, hence (s —1)% < 2(|s|—1)?+4 <
2ew W (s) + ﬁW(s), where

(2.7) mw:= min W(s)>0.
{IlsI-11=3}

Together with ([24) this leads to the estimate

1
(2.8) (s —1)> < éwW(s) forall s € R with [s+1| > 5
where ¢y := 2cw + %. Similarly, it can be shown that

1
(2.9) (s+1)* < éwW(s) forall s€ R with |s— 1| > 5

We recall that 2 C R" is a bounded open set with Lipschitz boundary. For every
e >0 and u € L?(Q) consider the functional

(2.10) Fo(u) = { We(u) + Te(u) it w € Wig2(Q) N L2 (Q)

loc
+00 otherwise,
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where

(2.11) We(u) == é/QW(u(x)) dx forue L*(Q) ,

and

(2.12) Je(u) == 6/ / Je(z — y)|Vu(x) — Vu(y)|2dxdy for u € WIT)CQ(Q)
QJa

In what follows, we will use a localized version of ([ZI0). To be precise, given
two open sets A, B C R™ we define

(2.13) We(u, A) := é/AW(u(x)) dx
for u € L?(A), and
(2.14) Je(u, A, B) := E/A/BJE(.’L' — )| Vu(z) — Vu(y)[*dzdy

for u € W,2?(AU B). When A = B we set

loc

(2.15) Fe(u, A) :=We(u, A) + Te(u, A, A) and  J-(u, A) = T(u, A, A)
for u € WL2(A) N L2(A).

loc

Since J is even, by Fubini’s theorem for all v € W;"?(A U B) we have that

loc

(2.16) Je(u, A, B) = J.(u, B, A) .
Moreover, if AN B = @ we have
(2.17) J-(u,AUB) = J-(u, A) + 2J.(u, A, B) + T (u, B) .

In the compactness theorem we use a slicing argument based on the following
preliminary result. Given a vector & € S~ !, the hyperplane through the origin
orthogonal to ¢ is denoted by II¢, that is,

(2.18) ¢ :={zeR": z-£=0}.
If EC R™ and y € II¢, then we define
(2.19) E5:={teR: y+t{€E}.

The next result is a particular case of the affine Blaschke-Petkantschin formula,
for which we refer to [44, Theorem 7.2.7].

Proposition 2.2. Let E C R™ be a Borel set and let g : E x E — [0,400] be a
Borel function. Then

/E/Eg(x,y) drdy

:l/ ///9(2+s§72+t€)|t—5|"71d5dtd7'[n71(Z)danl(f)-
2 sn—1 J11€ E§ E§

Proof. For the convenience of the reader we present a proof. We extend g to be
zero outside E' x E. Using the change of variables 7 =t — s, we obtain

[ otetst,zv )it slnts = [ gt t6 = ezt te)lr lar
R R
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and by Fubini’s theorem we get

/Hg AAQ(Z+S€72+t€)It—s|"*1dsdtd7{”*1(z)

:/n/Rg(y—T&,y)ITI"’ldey.

Exchanging the order of integration and using integration in spherical coordinates
we have

%/SM /Hg/R/Rg(z+sg,z+tg)|t_s\”*ldsdtdﬂ”*l(z)dH”*l(f)
=5 [ [ [at=reairtaran -t €ay
= / /ng(x,y) dady

which concludes the proof. O
For £ € S"! and € > 0 define J : R — [0, +o0) by

1 t

(2.20) JE(t) == JE)|t"t and  JE(t) = ng (g) :

By (L0) and using spherical coordinates, we have
(2.21) /Jf(t)(\ﬂ AJt?) dt < 400

R
for H" t-a.e. £ € S"7L, and in view of (Z.2) we obtain
o) 8O
2.22 / — _dt<cy.
ate) JE(2)

Moreover,

= J-(te)[t]" " .

(2.23) JE(t) = éjf (é) - %J (%) t

€
For £ € S" !, ACR, and ¢ > 0, we define

Op 15/W )dt+3 //Jgs_t (5) — v/ (t))dsdt

for v € Wb?(A) N L2 (A), where 0,1 := H"1(S*1)

(2.24) FS(v, A) =

3. COMPACTNESS AND INTERPOLATION IN DIMENSION ONE

For a set A contained in R™ and for n > 0 we define
(A)":= {z e R" : dist(z, A) < n},
(A), ={ze A: dist(z,04) >n}.
The main result of this section is the following theorem.

Theorem 3.1. Let £ € S"™1, let A C R be a bounded open set, and let {u.} C
WE2(A) N L2 (A) be such that

loc

(3.2) M = sup F&(ue, A) < +oo
g

(3.1)
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where F& is defined in [224). Then there exists a sequence €; — 07 such that
{ue,} converges in L*(A) to some function u € BV (A;{—1,1}). Moreover, there
exists a constant cyw > 0, independent of &, A, and {uc}, such that

(3.3) #S, < M ,

CI W

where #S,, denotes the number of jump points of w.

The strategy of the proof is to obtain uniform L' bounds for £(u.)? in terms
of the energy since this would reduce the problem to the compactness of energy
bounded sequences for ([LI)). This is achieved in Lemma As a preliminary
step, we use the following lemma to derive a pointwise estimate on £(u.)? in terms
of a rescaled difference quotient and a “slice” of the nonlocal energy J. (see Remark
B3). We then prove that the integral of the rescaled difference quotient may be
bounded above by the energy F¢ by combining Lemma 3.4 with (3.19).

Lemma 3.2. Let £ € S"1, let A C R be an open set, let € > 0, let a < 3, and let
we WE2((A)7), where vy is the constant in &1)). Then for a.e. t € A,

loc

c /t T = ) () — () s

—eB

’ u(t —ea) — u(t — 2
s zeomer([lag ) (0 )

where J¢ and J¢ are defined in (2.20).

Proof. Tt is enough to show that for every A € R we have

€ /t_w JE(t — )\ —u/(s))%ds

—eB

5 LS| - u(t —ea) —u(t —eB)\°
el </Jf—<)d> (-

This inequality follows by considering the Euler-Lagrange equation of the minimum
problem

t—ea
min / JE(t = )\ — v (s))2ds
t—ep

over all v € WH2((t — e, t — ea)) satisfying v(t — e) = u(t — ¢8) and v(t — ca) =
u(t — ea). O

Remark 3.3. Under the same assumptions of Lemma[3.2], it follows from (2.1]), (22,

and (B4) that

S ()7 < 2= (ult — ea(€) — ult — B(€)))”
J
t+eys
+2q,a/7 JE(t — s) (@ (1) — ' (s))2ds

for a.e. t € A.
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Lemma 3.4. Let v be the constant in [2.1)). Then there exists a constant cjw > 0
such that

T+€'VJ 1 [7tevs
(3.5) / / St — s) (' (t) — u/(s))dsdt + —/ W (u(t)) dt > cyw
o—evs € Jo—evs

for every & € S"L, for every € > 0, for every o, T, with ¢ < T, and for every
u e I/Vloc ((o0 —evg, 7 +evs)) such that

(3.6) u(t) € (—3,3) for everyt € (o,7),
and either

(3.7) u(o) =—% and u(r) =3

or

(3.8) u(o) =35 and u(r)=-%.

Proof. Fix £, ¢, 0, T, aAnd u as in the statement of the lemma, and let & and 3 be
such that a(§) < & < § < (), and

(3.9) of€) ~a> 10, B> 1h BE)-F> 30,
where «a(€), 5(§), and J; are given in (2.1). By 24) and [B.6), we have W (u(t)) >

45 for every t € (o, 7). Therefore, if 7 — o > d;/25, then

1 (7 )
(3.10) - /a W (ue(t)) dt > ﬁ
If 7 — 0 <edy/25, define
(3.11) Ay = {t € (o,7): [W(t)] > 11 } .
27 -0

‘We now consider two cases.

Case 1. Assume that for every t € Ag there exist a € [a(€),a] and 8 € [B, 8(€)]
such that

=zl
Then ,
(u’(t) - e vl )) > LW(0)”.

Therefore, by Lemma [3.2]

e —5)(u/(t) — u/(s))?ds
e[, - O ()

(B —a)? 7 - 1(4\\2
>0 (/ e dz> (W (®)

and integrating over Ay, using ([222) and [B3]), we obtain

2

(3.12) 5/A /t :ﬁ JE(t — s)(u/(t) — ' (s))2dsdt > —=L [ (u'(t))%dt .

GCJ "
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By 37), 38), and BI1) using Jensen’s inequality and 7 — o < Ske, we have

/ 2 T 2 / 2 1 L1 3.2
(W' (@)dt = | (W'(t))°dt — (u'(2))*dt > - = > .
Ao - (o,7)\ Ao T—0o 417—0 gdy
Hence, from [BI2)) we deduce that

T— Ea(g)
(3.13) / / TSt — s)(u/ (t) — /() 2dsdt > Z‘S—J .

—ef(€) a

Case 2. It remains to study the case in which there exists ty € Ay such that
lu(to — ear) — u(to — €B)]
(B —a)
for every o € [a(€),a] and for every 8 € [3,8(€)]. By BII) and the inequality
T —0 <edy/2% we have
uto—co) —uto—8)| | 1 16
e(f—a) T At —o0o) T el

1
> §|Uls(to)|

hence by (3.9,

u(to — ea) —ulto —ep)| >

If |u(to —ea)| > 2 for every « € [a(€), &], then by (24) we have W (u(tg —ea)) >
$ for every a € [«(§), @]. This leads to W (u(t)) > % for every t € [to — ed, to —
ea(€)], hence

THevs to—ea(§) A
(3.14) L W) ae > L Wlu(t) dt > 2=UE 5 ¥
O—EYJ € to—Ed CW 4CW

where in the last inequality we used (39)).

If there exists o € [a(§),d] such that |u(ty — ea)| < 2, then |u(ty — efB)| > 2
for every 8 € [, 8] (if not, there exists 3 € [, 5(€)] such that |u(ty — e8)| < 2,
which gives |u(ty — ea) — u(ty — )| < 4, a contradiction). Consequently, for every
B € [B,8(€)] we have W (u(ty —e8)) > $ This leads to W (u(t)) > j for every

t € [to — £B(€), to — £f], hence

T+E’YJ 1 to—é‘B _ A 6
(3.15) S W) dt > = [ W(u(t)) a>P8 =8 % :
o—es € Jto—ep(e) cw dew

where in the last inequality we used ([B.9). The conclusion follows now from (B0,

B.13), B.I4), and B.I13). 0

Lemma 3.5 (Interpolation inequality in dimension one). There exists a constant
CSI%,V such that

(3.16) e /A (u'(£))2dt < {1y FE(u, (A)*77)

for every € € S, for every e > 0, for every open set A C R, and for every
w e W2 ((A)217), where ~; is the constant in ([21).

loc
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Proof. Fix €, €, A, and u as in the statement of the lemma, and define
U:={teAd:ult—eaf)),ult—eB(§)) ¢ [%7 %]} )
(3.17) Vi={t e Az u(t —ea(§)),ult —B(8)) ¢ [-5, -3} -
If t € V, then by ([2.8),
(u(t —ea(f)) —u(t —eB(£)))* < 2(u(t — ea(€)) — 1)* + 2(u(t — eB(£)) — 1)
< 2w (W (ult — ea(€))) + W (u(t — e(€)))) -

Using (Z9]) we prove the same inequality for ¢ € U. Integrating and using Remark
[3-3] we obtain

(3.18) [ o) < (85 +20) P (4)7)

Ifte A\ (UUYV), then either
u(t —ea(f)) €[5, —3] and u(t —eB(§)) €[5, 3]

or
u(t —eB(€)) € [-3.—3) and u(t —ca(€)) € [3,3] -

Then

(3.19) (u(t = ca(€)) —ut —B(€)))* < 9.

Moreover there exist o and 7, satisfying

(3.20) t—eyy<t—eb§)<o<t<t—call) <t+eyy

and such that
u(t) € (—3,3) for every t € (o, 7)

and either
u(o)=1 and wu(r)=-—

N[

or
u(o) =—3 and u(r)=73.

By Lemma [34] and by (3:20)), there exists ¢ > 0 such that

t+evg t+2aw 1 t+2evy
caw < 5/ / (r — s)(ul(r) — u.(s))*dsdr + = W (ue(r)) dr .
t t

£vJ 26’)’] € t—2evyy

Therefore by (BI9) we have

1
[ e~ ca(©) ~ ult - 55
€ A\(UUV)
t+evs t+2€~/]
(3.21) < / / / (r — 8)(uL(r) — u.(s))*dsdrdt
CJW t—evyy Jt 25A/]
t+2evs
2/ W (ue(r)) drdt .
CJW € t—2evy

Since

/[n Wﬁ</ £(1)
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for every n > 0 and for every integrable function f: A — [0, +o0], from [B.2I) we
obtain

1
(3:22) —/ (u(t — ea(€)) — u(t — eB(€)))?dt < éyw Fe(u, (A)*7)

€ Ja\(uuv)
for a suitable constant ¢;w depending only on J and W. The conclusion follows
from (BI8) and [B22) using Remark B3 O
Proof of Theorem Bl By (B:2) we have that
(3.23) / W(u.(t)) dt < Me .

A

By 3) and (Z4) this implies that {u2} converges to 1 in L'(A) and, up to a
subsequence (not relabeled) pointwise a.e. in A.

Let vy > 0 be the constant given in (2. Consider the collection Z. of all
intervals (o — &7y, ye +€7) such that (o, 7) is contained in (A)%7/, and wu. satisfies
B8) and either (B1) or (B.8)) in (o, 7). Note that by the intermediate value theorem
for all € > 0 sufficiently small there exist such intervals. Moreover, by construction,
all intervals in Z. are contained in A. It follows from (24) and ([3:23) that

Me > / W(ue(t)) dt > =—2
. 4CW
hence
(3.24) T—0 <dewMe .
In particular, for every I € Z. we have
(3.25) diam I < (dew M + 2vy5)e .
Moreover, by (32) and B3), if Iy, ..., Ix are pairwise disjoint intervals in Z., then
M
(3.26) k< .
CIW

Let B, be the union of all intervals in Z. and let C. be the collection of its
connected components. Observe that distinct elements of C. must contain disjoint
intervals of Z., and so by ([8.20]) the number of elements of C. is uniformly bounded.
To be precise,

(3.27) yo. < M

CJ W

Next we claim that if C € C., then

M
(3.28) diam C < 2(4Cw M + 27y) (C— + 1) €.
JW

Assume by contradiction that ([3.28) fails. Let k be the integer such that -4 <

CcIwW
k< % -+ 1 and partition C into k subintervals C1, ..., Cj of equal length larger
than 2(4CWM + 27s)e. The middle point of each C; belongs to some interval
I; € Z.. By (B28)), we have that I; C C; and so I, ..., I} are pairwise disjoint. In
turn k satisfies ([B.20]), which contradicts its definition. This concludes the proof of
B.23).

In view of ([B27) there exist a sequence ¢; — 0" and a nonnegative integer
k< j\,/lw such that #C., = k for all j € N. Write C; = {C},...,CF} and choose

c
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tj» € CJZ Up to a subsequence (not relabeled) we may assume that té — t' € A for
alli =1, ..., k. By (828) for every 1 > 0 we have that C} C [t? —n,tt 4+ ] for all
j sufficiently large. Let S := {t!,...,t*} and let K be a closed interval contained
in A\ S. Then B, N K = O for all j sufficiently large. We claim that for all such
J either infr ue, > —% Or SUPf Ue; < % Indeed, if this does not hold, then we can
find o; and 7; in K for which u.; satisfies (3.6) and either (3.7) or (3.8). On the
one hand (o,7;) C B:, by the definition of B.,. On the other hand (o;,7;) C K
since K is an interval. Therefore (0;,7;) C B, N K and this contradicts the fact
that B., N K = .

We extract a subsequence, possibly depending on K, not relabeled, such that,
either infx us, > —3% for all j or supgu., < 3 for all j. Since ugj (t) — 1 for
a.e. t € K, we conclude that u.,(t) — 1 for a.e. t € K in the former case while
ue,;(t) — —1 for a.e. t € K in the latter. By iterating this argument with an
increasing sequence of compact intervals K whose union is a connected component
of A\ S, it follows by a diagonal argument that a subsequence {uc,} (not relabeled)
converges pointwise a.e in A\ S to a function u constantly equal to —1 or 1 in each
connected component of A\ S. This implies that v € BV (A4;{—1,1}) with S,, C S,
hence #S5, < #S <k < % The L? convergence of {usj} to w now follows from

@) and G23). O
4. COMPACTNESS AND INTERPOLATION FOR n > 2

As in Section Bl the goal is to obtain L' bounds of &|Vu.|? in terms of the
energy F.. Using standard slicing techniques (see [7], [35]) together the compactness
obtained in the one-dimensional case, we obtain the desired estimate in Lemma 3]

Given a € R we define

(4.1) aM = (=1)V(anl).
Lemma 4.1. Let {u.} C L?(Q) be such that
(4.2) M :=sup W.(u.) < 400 .

Then u. — uf =0 strongly in L*(Q).

Proof. By [211) and ([@2)) we have that
(4.3) /wmumwmeo
Q

as ¢ — 0%. By ([2.3) and (2.4) this implies that, up to a subsequence, |u.(z)| — 1

for a.e. x € 2. Hence, u.(x) — ugl)(x) — 0 for a.e. z € Q. On the other hand, by

ea, 2
(ue(z) — ul (2))? < (ue(2))? < JW(UE(J?)) +2,

so that the conclusion follows from (2] and the (generalized) Lebesgue dominated
convergence theorem. (Il

In what follows, given a Borel set £ C R™ and a function u : £ — R, for every
¢ € S"1 and for every y € I1¢ (see ([ZI8)) we define the one-dimensional function

(4.4) uS(t) ==u(y+ &), teE;,

where Ef is defined in (2.I9).
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Lemma 4.2. For every A C R™ open, € > 0, and u € W1 2(A) N L%(A), we have

loc
Fu )z [ [ FEE A e @ann o)
sn—1 JTI¢
Proof. By Fubini’s theorem, Proposition 222 (210, (Z23]), and ([Z24]), we obtain
Fe(u, A)
1
- / / W (u(z + t)) dtdH™ (2)aH™(€)
sn-1 Jme J AS

On—1&

/ / /ﬁ/é (t—8)|Vu(z+t&) — Vu(z+5s€) PdtdsdH™ H(2)dH™ (&)
sn—1Jm1eJ A A
N Un 1€ /S" 1 /H& A W )dtd’H" 1( )den—l(g)

sl /A TS0 = () () = () 0) Pt ()€
=[] s ag awe @)
sn—1 J1¢

O

Proof of Theorem [LTl Let e; — 0% and, for simplicity, write u; := u.,. By Lemma

2
(45) [ [ A wsan awt @ < .

We claim that there exist a collection &1, ..., &, € S”™! of linearly independent
vectors and a subsequence (not relabeled) such that

(4.6) lim .7:51(( 5,085 dHM T (2) =1 M; < 400
J—r+oo Jryg;
foreveryi=1, ..., n.
Indeed, using Fatou’s lemma by (5] we have that

(4.7) /S liminf [ FE ((u)$,Q5) dH" " (2)dH" (&) < M .

n—1 J—r+00 11

Hence, there exists & € S*~! such that

(4.8) lim inf FE ((ug)8,Q5) dH™ 1 (2) = My < 400,
J—+oo Ji6 !

and we can extract a subsequence (not relabeled) such that (£.0]) holds for ¢ = 1.

We proceed by induction. Assume that we found a collection &1, ..., & € S*1,
1 < k < n, of linearly independent vectors and a subsequence (not relabeled) such
that (6] holds for every i = 1, ..., k. Note that this subsequence still satisfies
([@5), and hence (AT). Therefore we can find &1 € S"~1, linearly independent of
&, ..., &, such that

hmmf/ FEet1 ()51 Q8e+1) dH" 1 (2) = My < 400,
T1ék+1 7

Jj—+oo

and we can extract a subsequence (not relabeled) such that (£6) holds also for
i =k+ 1. After n steps we obtain that (L0 is satisfied for every i =1, ..., n
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Giveni =1, ..., nand § > 0, for every j let
(4.9) A= {2 e T FE (u), 08) > T} :
and let vi € L?(2) be defined by
(1.10) (v))8 = (WE ifzems\ 4;,
(v =0 ifze A,

where ugl) is the truncated function defined using (@.1]). By (£.6) and (£9]) we have
lim sup H"_l(A;-) <9d,

j—+oo

hence ([@I0) yields
(4.11) lim sup v} — u§1)\|%2(9) < 6 diam(2) .
j—+o0

By Theorem Bl for every z € IIS the set {(u;)$ (1 — Xai (2)) : j € N} is
relatively compact in L2(02¢), where XA;(Z) =1 for z € A} and XA;(Z) = 0 for
z ¢ Aj. Therefore the same property holds for the set of truncated functions
{(ugl))g(l = Xai (2)) : j € N}. It follows that for every z € II* the set {(v})5 : j €
N} is relatively compact in L2(Q%). Since this property is valid for every i = 1,
..., n, we can apply the characterization by the slicing of precompact sets of L?(£2)
given by [0, Theorem 6.6] and we obtain that the set {uél) : j € N} is relatively
compact in L?(Q). In turn, by Lemmaf Tl the set {u; : j € N} is relatively compact

in L?(2), hence there exist a subsequence (not relabeled) , such that u; converges
in L2(Q) to some function u. By (LJ),

li W(u; dr =0
Jm | Wiu()) de =0,
which, together with ([2.3) and (24)), implies that u(z) € {—1,1} for a.e. z € Q.

It remains to show that v € BV (). Using Fubini’s theorem we find that there
exists a subsequence (not relabeled) such that

(4.12) (uj)8 — u$ in L2(Q%) .
Moreover, Fatou’s lemma and (0] imply that

(4.13) [ timint 7 (). 08) a0 e) < 0
118 Jj—+oo

hence

(4.14) lim inf F& ((u;)8, Q%) < +o0

j——4o0 J

for H"l-ae. 2z € II%. Fix z € 1% satisfying (@12) and ([@I4), and extract a
subsequence {#;}, depending on z, such that

(4.15) Tim FE ()8, 96 = lim inf FE ((u,)§, 05 -
j—+oo J j—+oo J
By (33), ({12), and [@I5]) we have
#S e < lim inf FE ((uy)§, Q5) -

g CJWw J—r+oo
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Since u§i(t) € {—1,1} for a.e. t € Q% we deduce that

2
i Si) < i i N Ofi
|Duz (Qz ) — CJ,W ljlgjgffq((uj)z an )
for H"'-a.e. z € II%. This property holds for every i = 1, ..., n. Therefore,
we can apply the characterization by slicing of BV functions given by [7, Remark
3.104] and we obtain from ([@I3) that u € BV (Q). O

For A C R™ and n > 0 we recall the notation (BI).

Lemma 4.3 (Interpolation inequality). There erists a constant cgn%, such that

(4.16) €/A |Vu(z)2de < cf,?&vfa(u, (A)*77)

for every e > 0, for every open set A C R™, and for every u € VV&;E((A)QW,), where
v s the constant in (21]).

Proof. Fix €, A, and u as in the statement of the lemma, and define B := (A)%77.
Given ¢ € S"7L, for H" 1 ae. z € TI¢ we have that (A$)2*77 C B¢ and the sliced
function ué (see (@) belongs to W,-?(BE). Hence by Lemma B we have
[ e < o R B
AS ’
Integrating this inequality in z over II¢ we obtain

€ / (Vu(z) - €)%dz < ¢}, / FEE, BE) dH™ 1 (z) .
A ’ 1

Integrating this inequality in £ over S*~! and using Lemma F2] together with the
identity [s, 1 a-&[PdH" 1 (€) = walal?, we deduce

wne/ |Vu(z)2de < CS%‘)A/.FE(U,B) .
A
This concludes the proof. O

5. THE MODIFICATION THEOREM

In this section we prove that we can modify an admissible sequence to match
a mollification of its limit in a neighborhood of the boundary, without increasing
the limit energy. This argument is typical in variational problems that involve
localization of the domain of integration, since it allows us to glue two admissible
sequences on overlapping domains. The main idea is to use the so-called De Giorgi’s
slicing lemma to partition an appropriate neighborhood of the boundary into several
layers and to select a layer S; with least energy. We then use cut-off functions ¢;
with {0 < ¢; < 1} C 5 to glue the sequence to the mollification of its limit. The
proof of this modification result (see Theorem [B)) is significantly more involved
than the corresponding one for local energies of the type (LI) due to the presence
of the nonlocal regularization term 7.

Given v € S" 71, let

N 1 ifz-v>0,
(5-1) w(:c).{_l ifx-r<0.
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When v= en, the superscript v is omitted. Let 6 € C$° (R™) be such that supp 6 C
fR" ) dx =1, and for every o > 0 define the mollifier

(5.2) 0, (z) :Une( ) zeR".

Note that suppf, C B, (0). There exists a constant Cy > 1, independent of o,
such that

(5.3) sup [(w”*0,) —w”| <1,
Rn

(5.4) (w#0,)(x)=1 fz-v>0 (Wb, (x)=-1 ifz-v<-—0,

(5.5) V(w’*0,)(z) =0 if |[z-v]| >0,

(5.6) sup [V(w"*6,)| < Co and sup |V (w”x0,)| < Qg .
Rn» g R o

Let P be a bounded polyhedron of dimension n— 1 containing 0 and let v € S~}
be normal to P. For every p > 0 we set

(5.7) P,:={z+tv: z€P,te(—p/2,p/2)}.

Theorem 5.1 (Modification theorem). Let P be a bounded polyhedron of dimen-
sion n — 1 containing 0, let p > 0, let £; — 0T, and let {u;} be a sequence in
W1’2(Pp) N L*(P,) such that u; — w” in L*(P,). Then there exists a constant

loc

op, >0 depending only on P, such that for every 0 < & < dp, there exists a se-
quence {v;} C W1 (P, ) N L2(P ) such that v; — w” in L2(P,), v; = uj in (P,)as,
v; = w0, oan\( »)s, and

(5.8) limsup F, (v;, Pp) < limsup F¢, (uj, Py) + K16,

Jj—+oo Jj—+oo
where k1 > 0 is a constant independent of j, 0, and P,,.

Remark 5.2. By choosing a suitable subsequence, under the same assumptions of
Theorem [5.1] we obtain that

(5.9) hmmf}' (v, P,) < hmmf]-" (ug, Py) + K10 .

To prove Theorem [EI] we use the estimate of the following lemma.

Lemma 5.3. Let € > 0, let y € R", let A be a measurable subset of R™, and let
g: A — R be a measurable function such that

(5.10) 0 < g(x) < (alz —y[)> Ab*  for every x € A
for some constants a and b. Then
(5.11) / Jo(z — y)g(x) de < My((ca) Vb)*

A

where My is the constant given in (L) and aV 8 := max{a, 8}.
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Proof. Using (5] and the change of variables z = (x — y) /e, we obtain

/ Je(z —y)g(x) do < a2/ Je(z —y)|lz —y|* da
A ANBc(y)

—l—bz/ Ja(m—y)u dz
A\B. (y) <

< g%ﬂ/ J(2)|2P dz + b2/ J(2)\4 dz .
B1(0) R"\ B (0)
The conclusion follows from (L6]).

Lemma 5.4. Let 0 < e < 4, let A and B be open sets in R™, with dist(A, B)
and let u € Wh2(AU B). Then

C

(5.12) Je(u, A, B) < ewq (E) / |Vu(z)*dx |
6/ Jaup
where
(5.13) wy(t) == 2/ J(2)|z| dz — 0
R™\ By /:(0)
ast— 0%,

Proof. Using a change of variables we obtain

J.(u, A, B) = /A /B (2 — )| Vu(e) — Vu(y)[2dady

<o /B ( /A Je(w ~y) dy)[Vux) de
4o /A /B Jo(e — y) dz) [Vu(y)*dy

Je(z —y) dy) |Vu(z)|*dx

[ g y) do) Vuty) Py
"\Bs(y)

< 25/ J(2) dz/ |Vu(z)|?de
R\ B 5 (0) AUB

< 25/ J(2)|| dz/ \Vu(z)|?dz .
R\ B 5 (0) AUB

This leads to (512). The fact that wy(t) — 07 as t — 01 follows from (LG).

2801

>0,

]

Proof of Theorem [5.1l. It is not restrictive to assume that 6 < %, g; < 0%, and
8¢jvs < d for every j. To simplify the notation, set u; := w”* 0.,. From (5.5]) and

E9) it follows that

(5.14) aj/ |Vii;(x)|?dr < Cpp  for every j

for some constant Cy p > 0 depending only on P and 6.
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If the right-hand side of (B.8)) is infinite, then there is nothing to prove. Thus, by
extracting a subsequence (not relabeled), without loss of generality we may assume
that

(5.15) Fe,(uj, P,) <M < 400 for every j

for a suitable constant M > 0.
The functions v; will be constructed as

(516) Vj = QjUy + (1 — gﬁj)ﬁj s

where p; € C°(R™) are suitable cut-off functions satisfying ¢;(z) = 1 for z € (P,)s
and @;(z) = 0 for x ¢ (P,)s/2. Introduce the set

0
(5.17) $i={wePp,: 5 <dist(z,08,) < o}.
To construct the cut-off functions we divide S into m; pairwise disjoint layers of
width 57—
Consider the sequence {7;} defined by

L= wi(z) =1 (z))%dx (=) (wi(2) =T () 2dzdy .
(5.18) m.f/Pw) A >>d+/PP/PP\BEj(y)J5J< ) (@) — 1% (2)) dedy

P

By Fubini’s theorem, a change of variables, (L6]), and (5I])), we obtain

/ / T, (& — ) (u (x) — T (x))2ddy
P, PP\BE]- ()

-/ p < / PROCEE dy) (us(w) — s (w))?da

< [ - w2 [ IEdz< My [ (uyle) - () s
) R™\ B1(0) P,

Hence, n; — 0" as j — +oo, because {u;} and {u;} converge to w” in L?(P,).
Without loss of generality, we assume that n; < % for every j. Let m; be the unique
integer such that

(5.19) M<mi§M+l'

€j €j
Since €; < 1 we have
(5.20) mij <& and m; < 2@
and
(5.21) mzjéj <VE+ VI and mye; < 2(E + /1) -

Divide S into m; pairwise disjoint layers of width ﬁ ,
J

; 5 (t—-1)95 . o i
22 t= P = d P 7
(5.22) S; {x €L o+ om, < dist (z,0P,) < 5 T 2m]} )

1=1,...,m;.
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For every open set A C R? define
Gi(A) == T, (u;, A, Pp) + We, (u;, A)

(5.23) + E]/ [Vu;(x)] d:E—l——/ (uj(z) —uj(z))*ds

— z—y)(u;(z) — 0, (x))*dzedy .
+Ej/A/Pp\BEj(y>JEj( D)(us(e) = () dudy

Hence, using (B.153), (5.18), and Lemma [£3] we obtain

S GSH<GS) <K -1+2
i=1 €
where K := M—i—cf{%,M—i— 1, and so there exists i; € {1,...,m;} such that, setting
Sj=87,

we have
K —

mj m] 51

where in the last inequalities we used (5.20), (5.21)), and the fact that e; < 1,
n; < 1, and K > 1. Define

o0 i
A; .{xePp. dist(z, 0P,) > 2—|—%},
* L . . (S 1]6 (S
(5.25) Aj = {3: € P,: dist(z,0P,) > 3 + o T } ,
. o (i —1))
B; = {x € P, dist(z,0P,) < 3 + JZTJ} ,
and let
pj(x):= [ 0, (z—y)dy.

Ay Amj
Then ¢; € C°(R™) and the following properties hold, thanks to (5.6]) and (520):

(5.26) p;j=1inA;, 0<¢;<1inS;, ¢; =0in B; ,

Co /5 + /Tj 8C C
(5.27)  sup|Vi;| <8 LYV L B0 gy g2 < o720 S T
5 j 6€j 5 5]'

where Cy is the constant given in (B.6]).

Let v; be the function defined by (IBEI) Since (P,)s C Aj and P,\(P,)s/2 C Bj,
we have that v; = u; in (P,)s and v; = u; on P, \ ( )52 Moreover since u; and
u; converge to w” in L?(P,), we have that v; — w” in L?(P,). Note that

(5.28) Vou; = ¢;Vu; + (1 —¢;)Vu,; + (u; —u;)Ve; .
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Fix 0 < n < 3. Using the inequality |a + b* < % + %, we obtain
Vv;(x) = Vo, (y)]* < 1—|90; WVu;(@) — @i(y) Vu;(y)

(5.29) + (1= (@) Vit (@) = (1 - ;) Vi (y)|”

+ %|(Uj(l”) — () V() — (u;(y) — (1) Vs ()] -

In view of the same inequality and the convexity of | - |2, we get

[0(@) Vs (@) = 05 (9) Vs () + (1 = 05 (@)) Vit () — (1~ 0,(1) Vil (9)
= [ (@) (Vu (@) = Vuy (1) + (5(x) — 05 (4) V()
(11— 05 (2)) (VL () — V(1) — (p5(2) — 0, (0) VT (9)
< %n\soxx)(wj(x) — V) + (1 - (@) (Vi () - Vit ()]

+% (3(2) — 93(0)) (V) — Vit ()
< 1_x7;|Vuj wmﬂﬁ%}v Vﬂj(y)|2
+ %«oj(x) — )2 |V () — Vi)

This inequality and (529) yield

2 ©j (x) 2
[Vv;(z) — Vo, (y)|” < T |Vu;(z) — Vu,(y)|
1 —pi(®) o~ ~ 2
+ (1 — 17)2 |Vuj(x) - Vuj(y)|
+ %m»(a:) — ()| Vs () — Vi (9)]
+ %\(uj@ () Vi (@) — (us() — 5 (1) Yoy ()

hence for every pair of open sets A, B C P, we obtain by (2.14])
Je; (uj, A BO(A;US))) | Je, (5,4, BO(S; U Bj))
(1—n)? (1—n)?

jEj (Uija B) <
(5.30)

26j

n /A (/B Je; (@ = y)(wj(2) - @j(y))le‘) [V, (y) — Vi (y)Pdy

i % P (/BJE" (=) (uy () =105 (2)) Vip; () — () =T (1)) Vep () | dvdy.

By (ZI1) we have
jEj(vjaPP) = jEj(uijj) + jEj(UjaSj) + jaj(ﬂj?Bj)
(5.31) + 27, (05,55, A U Bj) + 27, (vj, A, Bj) -
We now estimate all the terms but the first on the right-hand side of (G.31]).

+
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By (.30,
(5.32)

jsj(vjasj) S jEj(ujaSj) jEj(ujaSj)

+
C—m? -
+ 2 / / (0 = 9)(05(2) = 5 (0) %) (Vs (y) — Vi ) Py

2 ([ Tl =) Ve (0) 5 (5) = () Vi )y

From (ZI7) and (&3] it follows that
jsj (ﬂj, Sj U Bj) = jgj (ﬂj, (S] U Bj) n PQEJ.)
(5.33) + 27, (uy, (S5 U Bj) N P, (S;UBj) \ Pa;) -
By the mean value theorem and by (5.0), for every y € P, the function g(z) :=
|V, (z) — Vau;(y)|? satisfies (5.10) with a = % and b= %, hence by Lemma [£.3]
we obtain ’ )
; Je; (x — y)|Vu;(z) — Vﬂj(y)\zdx < 4092MJ§ .
» J
Therefore by (2.14) and (533) we have
Je, (g, 85,55 U Bj) + Te, (u, Bj) < T, (uy, S5 U By)
1
< L"((S; U Bj) N Pye,) 4C§MJ€—.
J
We now use the fact that there exist two constants Cp, > 0 and dp, > 0, depending
only on P,, such that

(5.34) L*(((Pp)sy \ (Pp)sy) N P.) < Cp,e(d2 — 61)
for every 0 < e < 41 < d2 < dp,. Therefore
(5.35) NS (w;, S;,S; UB;) + Te; (uj, Bj) < 4Cpp092MJ5 .

By the mean value theorem, (5.20), and (527, for every y € S; the function
g(z) = (p;(z) — p,(y))? satisfies (EI0) with a = % and b=1< %, where we
J
used the inequalities Cy > 1 and 6 < 1. Hence, by Lemma [5.3] we have

[ oo = u)os(a) = oy(w)de < 2500,

P

In turn, by (&5), (&6), (23), and (G24),
= [ A / e, (o= )(5(0) = i) ) 93 0) = Vi 0y

C2M. CiMy 1
(5.36) gzse—jaj/ V() Py + 25 O (5,01 P )
nd n &5
c CiM
<28 (K /&5 + /i) +2°Ch, 97]6",/5-,

where in the last 1nequahty we used the estimate

(5.37) L7(S; N P.)) < Cp, 6 < Cp, b2, /5 ,
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which follows from (5.20) and (5.34).
To treat the last term on the right-hand side of (5.32]) we observe that

|(uj () — 1 (2)) Vg () = (u () — (1)) Vip; ()|
= [(us(x) — W(2)) (Vs () — Vs (y))
+ (uj () — i1 (x) — u;(y) + 5 (y)) Voo ()|
< 2(u;(x) — 11 (x))| Vg (x) — Vg ()|
+2(u(x) — 1 (x) — i (y) + 1 (¥))?| Vg ()]

Integrating and using the symmetry of J, we obtain

/ / T, (5= )| (3 (2) — T3 (2)) Vipy () — (s () — T3 (1)) Vg5 (1) vy
538

<7 [ ([, Ja =196 = TP o) )y
26] = 9000~ e 00+ 5,0 9 1) Pl

By the mean value theorem and (5.27)), for every y € S; the funct7i0n g(x)
IVpi(z) — V,(y)|? satisfies (EI0) for every x € R™, with @ = 252 &

52 &2
J
200,y \/€;+\/m and b = 24Cp VEIHVT < 260y VEI T/
52 (S Ej - (52 Ej

0 <1, ej < Z’ and 7; < i. Hence, by Lemma [5.3] we have

CiMjej+n;
e L

[ Jesa = IV (@) - Viyly)Pae < 20 SRS

P, J

In turn, by (523)) and (524,

= / / -, (2 = )V () — Vipy () Pa) s (y) — Ty () dy

(5:3) 3214C;§f<aj+nj>§j [ ) -7y

S

<

, where we used the inequalities
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Since J is even, by Fubini’s theorem, a change of variables, and (5.27),

L /S ( /P oo =) 05(0) = Tl) = uy(0) + (1) ?dx ) [V, (y) *dy

< EChetn | ([ @ = nts(@) = 5(0) = 0500 + 7y 1) )y

— 2 .
176 E] 3 Pmst(y)

22CF €; +n; . .
+ 22 ([ @ = ) = (o) = ) + Ty (0) P ) dy
ey Js, N eikiw

28C2 ¢, +n, _ _
S & / e, (2) (/ (uj(y +2) —u;(y + 2) —u;(y) + Uj(y))2dy> dz
n €j Be,(0) S,

J

(5.40)
29092€j+7]j/ / ~ 2
+ — Je; (z — y)(uj(z) —uy(z dx |dy
2 (gt —e))
29092€j+77j/ / ~ 9
4+ —F = Je; (x —y)dx ) (u;(y) —u;(y)) dy -
ot ([, g i) ) = 500

Since €; < §/4, by (6:20) and ([E.22) for y € S; and |z| < ¢; the segment joining y
and y + z is contained in (P,)s/4, and so by the mean value theorem for |z| <¢;,

[ ) =ty 2) ) + Ty <P [ V00— i)y
J Pp)ssa
Therefore, recalling that 2¢jv; < §/4, it follows from (LX), (L6), (GI4), and
Lemma [£.3] that

2°Ch &5+, /B 7, ) /S (1 (y+2) = (y+ 2)— () + () *dy ) d2

n6? & JB.,(0) .
28C2 ¢ +n; -
<IN @kl [ Vi) - V)P
no gj Bc,(0) Pp)sya
29002 2 2
(5.41) < —r (g5 +mi)ej | J(2)]z]7dz |V, (y)|~dy
7o B1(0) (Pp)é/a
2902 _
+ 250 e [ IR [ 9Ty
1 B1(0) (Pp)s/a
20C2M ;e\, M 2902Cy pM;
< Tz’(ﬁj +15) + 017#(5]4 +15) -
By (5:23) and (5:21)
2°C% e; + n;
5.42 ‘QM/ /J.x—y w;(z) —u;(z))?dx ) dy
(5.42) e A ()~ (@) )
292K

ST (5 +n5) -
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Using (L6), (523), and (524) we obtain

2907 ¢; —|—77j/ / ~ 9
- Je; (z —y)dx ) (u;(y) —u;(y)) dy
o g S ( PAB., (3) ( ) )( () i(¥))

J
2902MJ€' +n; . 2902M]K
TSI [ ()~ T )Py < T )

Combining (5.32)), (]535)’ (m)’ (m)’ (m)v G40, m’ M)7 and (m)7

4 <
(543) < -

we have

- jJ(’U,,S) 4CPngMJ 1
(5.44) T, (v5,55) + T, (i, Bj) < Zl —Jn); MG §+aot),
where O’§1> — 0% as j — +oo.

Next we consider the term J, (v;, 55, A;UB;) in (531) . By (£.30), using (5.28]),

jgj(uj75j’Aj) + jEj(ajv‘S’jaBj)
(1—mn)? (1—n)?

2 (] e o) )P V) — 9,

jEj(Ujvsj’Aj UBj) <

G4 +5 //AUB e (@ —=y) (u; (y) = ()| Vps(y) P dedy .

Since n < 1/2, by (£23) and (524) we have
Je, (u5, 55, Aj)
(1—=mn)?

The second and third terms on the right-hand side of (54H) can be estimated
using (530 and (B.36). For the last term, we use the fact that Vo,;(z) = 0 if

x € A; U B;. Hence, by a change of variables, from (L8]), (5.23)), (5.24), (5:27) and
from the inequalities 6 <1, ¢; < 1, and 7; < 1, we obtain

% /s /A,.UBJ- Je, (2 —y) (u; (y) =15 ())?[Vp; (y) [*dady
2 Je; (@=y) (u; (y) =5 ()*|Vip; (y) — Vepj ()| *dad
= //(y S (@=y) (i (y) =15 (1)) |Vep; (v) — Vep; (@) dady
i/ / JeJ- (2 =) (u; (y) =105 (1))*|Vp; (v) | davdly
i/ P\B. (y
C2 (g5 +m5)° 77;
21477594 / /BE W Je; (x—y \x—y|2dx)(uj( )—u;(y ))Qdy

E

2709 6] +77J / / ~ 2
—_— Je; (x—y) dz ) (u;(y) —u;(y)) dzdy
ot g sj( P\B.(») (#=9) ) )=, )

C2M; &+ - CjM, K
< ol 954J i J/(uj(y)_ i(y)dy < 214%(ej+m) :
Ui € Js

J

(5.47) +
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Therefore, by (£.35), (536), (5-45), (5.40), and (G.47) we get
(5.48) jgj(vj7sj7AjUBj)§O/;7n)25+aj ;

where O'J(-2) — 0% as j — +oo.
We now estimate the term J., (v;, A;, B;) in (B.31)). Since v; = u; in Aj, v; =
u; = 1in Bj, and dist(4,, B;) = %, by a change of variables and in view of
J

GI4), (B21I), and Lemmas 3] and [54] for j large enough we obtain

T (03 45,8 < 2025 (&5 [ IV@Pdo ey [ 1VusPan)
B; A

(5.49) < 2w (4@)(097134—6%},]\4) :
Combining (5.31)), (.35), (544), (5.48)), and (E.49) we deduce
jEj (uja PP) 12CPngMJ5 0_(3)
(1—n)? (1—n)? !

(5.50) Te, (03, Py) <
where UJ(-P’) — 0% as j — +oo.

Next we consider the term W, (v;, P,). Fix x € S; with x-v > ¢;, so that
uj(z) = 1. By 3) and 2.8) we have W (v;(x)) < W(u;(z)) if uj(z) > 1 — aw.
Let sg < —1 be such that

(5.51) W(sg) = [Inla)lc] W =: My .

If u;(x) < sp, then either u;(z) < wv;j(z) < —1or —1 < w;(z) < 1. In both cases we
get W(v;(z)) < W(u;j(z)), either by Z8) or by (GEI). If so < u;(z) < 1— aw,
then sg < v;(z) < 1 and we have
W (v;(z)) < W(so) = Mw
by 20) and (EEI). We conclude that
W (vj(x)) < W(u;(z)) + Mw

for every x € S; with - v > ¢;. Integrating we obtain

1 1

L Wiey(o) do< = [ W (us(2)) da

€5 Js;n{z-v>e;} €5 Js;n{av>a,}
My

€5

1 My

< — W(u;j(z)) de+ —
€5 Js;n{zv>e;} €0y JSin{zv>e;}

+ E”(Sjﬂ{|uj—1| >aw}ﬁ{l‘-l/>€j})

(uj(z) —1)%dz.

A similar inequality can be obtained for S; N {z - v < —¢;}, and adding these two
inequalities we conclude that

1 1
- W (v;(x)) doe < — W (u;(z)) dx
€5 JSj\P.; €5 Js;\P,
My 1 ~
(5.52) + X / (uj(2) = U;(x))>de
Sj\PEJ'

2 .
Ay &j

where in the last inequality we used the fact that u; = w” on P, \ P;,.
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On the other hand, since W(v;(z)) < W(u;(z)) + Mw for every & € P,, inte-
grating over S; N P., and using (5.37), we obtain

1 1 M,
— [ W= [ W) des 200 P
S;NP., i Js;nP, €j
1
(553) S — W(Uj(.f)) dx + CPPMW(Sw/Sj .
j Sjﬂpsj
Adding (£52) and (E53) gives
1

L W) de< = [ W) dr
JSj JSj

My 1 ~
o / (uj(x) — uj(x))*dz + Cp, Mw i /55 ,
WGy €5 Js;
hence by (5.2Z3) and (5.24) we have
. W (v;(x)) do < L W (u;(x)) do
6'7 Sj 6] Sj
My,
(5:54) + =L (K &7 + /) + Cr, M6 /55 .
w

By ©.3), (.4), (©.34), and ([B.51) we get

—/W’U] dx——/Wuj
My,
<

(5.55) - E"(Bj NP.,) <Cp,Mwd .
From (5.54) and (B.53) it follows that
1
(5.56) = [ W) dr < —/ W (u(x)) dz + Cp, My + 0t |
iJp,
where O'J(-4) — 0T as j — +oo.
Adding (&50) and (E50) we obtain
Fovy, Py < 2220 ) o s cany + Mo+ 0
e, (v, Pp) < (1_—77)2+ p,(A48CGM; + Mw)d + o,
where a( ) 0t as J — 400. This implies that

limsup 7, (vj, Pp) < ——— limsup F, (u;, P,) + K10 ,

j—+oo (1=m)?2 joteo
where k1 is a constant independent of j, §, and P,. Passing to the limit as n — 0"
we obtain (B.8). O

6. GAMMA LIMINF INEQUALITY

In this section we prove the I'-liminf inequality. The proof relies on the blow-
up method introduced in [26], which reduces the limiting function to a piecewise
constant function in X (see (I.I2))) whose jump set is a hyperplane with normal
v, and the domain of integration to a cube with two of its faces parallel to v.
The modification Theorem [(.1lis used to match the approximating sequence on the
boundary of the cube with the mollification of this jump function, and in turn, we
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can show that in the limit the energy in the cube is bounded below by ¥ (v) (see
([TI3)). Again, the presence of the nonlocal term J. adds remarkable technical
difficulties to this argument.

Theorem 6.1 (I-liminf). Let ¢, — 07 and let {u;} be a sequence in VV&)CQ(Q) N
L2(2) such that uj — w in L*() and

(6.1) lim inf ., (u;,§2) < 400 .

Jj—+o0

Then u € BV (Q;{-1,1}) and

(6.2) liminf 7, (uj, Q) > / Y(v) dH"
Jotoeo S
where 1 is defined by (LI3).
Given v € S"7 !, let v, ..., v, be an orthonormal basis in R™ with v,, = v, let
(6.3) Q,={zeR": [z -v|<p/2,i=1,...,n}, Qp:=R"\Q},
and let

Sy ={zeR": [z -v|<p/2}, Sp" =R"\ S, .
When vy, ..., v, is the canonical basis ey, ..., e, in R™ we omit the superscript v
in the above notation.
We recall the definition of the sets V¥ and X* in (I10) and in (I.I2]), respectively.

We will use these sets in what follows. Further, as in Section [l 6, is the standard
mollifier (see (B2))), and we set

(6.4) Ue = w" * 0,
where w” is the function defined in (5.I)), with v € S*~ 1.

Lemma 6.2. Let 0 < ¢ < § < 1/3, let Cs := Q145 \ Q1-s, and let G, be the
function in [64), with v = e,,. Then

L7€(a€7C(§) < 526
for some constant ko > 0 independent of € and §.

Proof. For every o > 0 define C¢ := Cs N {|x,| < 0}, C¢ := Cs5 N {|x,| > 0}, and
write

Cs x C5 = (CE X CEYU(C5 x CEYU(CE X CE U (C5 x C5) .

Since J is even, we have

(6.5) Je(fic, C5) < Je(fie, C5°) + 270, G5, CF°) + T3, C5) -
By (52) we have that Vi, = 0 on C§ and so
(6.6) T (e, C5) =0 .

We now estimate the first term on the right-hand side of (G.H). Since eV, and
e2V?i, are bounded in L> uniformly with respect to &, there exists a constant
¢ > 0 such that

R
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for every x, y € R™. Therefore, by the change of variables z = (z — y)/e and (L)

we get
_ — 2
f/ / Ja(x—y)(‘x y‘/\‘x 4 )dxdy
g C?E C?E g g

CMJ
€

(6.7) J- (1., C%)

IN

IN

Lr(C2%) < 2" (n — 1)eMyo ,

where we used the fact that £L7(C2%) < (n — 1)(1 + 6)"280e.

Next we study the second term on the right-hand side of (63]). Since Vi, = 0
on CA’§€ and eV, is bounded in L* uniformly with respect to e, there exists a
constant ¢ > 0 such that

68 (i CE) = [ ([ gt i) VaPay

)

< Seme) / J(2) dz < 2"(n — 1)eMys
€ R™\ By (0)

where we used again the change of variables z = (z—y)/e and ([[L6). The conclusion
follows by combining (6.5])—(6.8]). O

The following result will be crucial in the proof of the I'-liminf inequality.

Lemma 6.3. Let 0 < e < < 1/3, let u € XV be such that v = u. in QY \ QY_;,
where U, is the function defined in ([©4). Then there exist two constants k3 and
K4, depending only on the dimension n of the space, such that

€
Te(u, V' R™) — To(u, QY) < Kod + (ﬁ3w1(5> + H4w1(5))6/ |Vu(z)|*dr
QY
where Ky is the constant in Lemma [0.2, and wy is the function defined in (5.13).

Proof. Without loss of generality, we may assume that v = e,, the n-th vector of
the cimonicalAbasis. For simplicity we omit the superscript v in the notation for
b Qpy Sy, Sy, VY, XV, w”, and the subscript p when p = 1. Write
(6.9) VxR"=((V\Q)xQU(V\Q)xQU(@xQU(@QxQ)
C (5xQ) U ((V\Q)xS) U (5x8) U (@xQ) U (@x(5\Q)) U (@x5) .

Since J is even we have

j&‘(u) V) Rn) - js(u, Q) S 25/

S

(6.10) +5/V\Q(/S_ Jo(z = y)|Vu(@)Pdz ) dy
e /Q ( /S ACIICR Vu(y)Pdz)dy

(/Q ) Je(x — y)IW(x)Ide)dy

where we have used the equalities © = £1 and Vu = 0 in 5’1_5, which follow from
the facts that v € X and u = 4. on Q1 \ Q1-s (see (&4), (55), and the inequalities
0<e<d<1/3).
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We now estimate the first term on the right-hand side of (6.10). By Lemma [5.4]
and because Vu = 0 in S, we have

(6.11) E/S(/Q_‘Ja(z—y)Vu(x)zdx)dygawl(%>/cg \Vu(z)2da .

1-6

To estimate the second term on the right-hand side of ([@I0), we identify Z™
with Z"~! x Z so that for a = (a1,...,,_1) € Z" ! and B € Z we have («a, ) =
(041, e, O, 5) € Z". Write

S\ Qs = U (eo+@, v=_JW

a€Zn =1, |ale >2 BEZ

where |a|o := max{|aq],...,|an—1]}. Then

c /V \Q( /S el )| Vu(a) ) dy
(6.12) < E/V\Q (/Sl_ng Je(x — y)|Vu(x)|2d3:) dy
DD St /(WQ ( /( g T WIVu@)do)dy

a€Zn=1, |ae>2 BEZ

By Lemma [54] and because Vu = 0 in V' \ @, we have

5/ (/ Je(z — y)|Vu(;v)|2dx)dy <ew (E) / |Vu(x)*dz .
VAQ W S51-sNQ3 g S1-5NQ3

To estimate the second term on the right-hand side of ([612)), we use the change of
variables ( = x — y and observe that for z € (o, 0) + Q and y € (0, 8) + Q we have
¢ € (a, —f) + Q2. Therefore, we obtain

/ (/ Je(x—y)|Vu(a:)|2daz)dy
0,8)+Q */(,0)+Q
— [ Nu@P(] ey dy)is
(,0)+Q 0,8)+Q
<[ WP [ Q&
(,0)+Q (a,—B)+Q2
- [ Wuta)Pas [ J.(C) de
Q (a7_ﬁ)+Q2

where in the last equality we used the periodicity of u € X. Hence

S e (] e TP

a€Z™ 1 |a|eo>2 BEZ

< €/Q|Vu(x)|2dx > Z/(mmc& J-(¢) d¢

a€Z" 1, |a|oo>2 BEL

/IW |dx/2 (¢ de .

In the last inequality we used the fact that each point of Qg belongs to at most 2"
cubes of the form (o, —8) + Q2 for a € Z"~!, with |a|s > 2, and B € Z. After the
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change of variables z = (/¢ we obtain (see (B.13))

/ Je(¢) d¢ §/ J(z) dz <wi(e) .
)2 R™\B;,.(0)

Combining the last five inequalities and using the periodicity of u, from ([EI2]) we
obtain

(6.13) E/V\Q(/S ) Js(it—y)|VU(x)|2dx)dy
< (wl (%) +2”w1(6)>5/5ﬂQ |Vu(z)|?ds

:3"*1( (5 —|—2 wi(e /|Vu )|?dx .

Finally, to estimate the last term on the right-hand side of (6I0]), we use the
inclusion

Qx(S\Q)C(Qx(S\Q3)U(Qisx (SN (Q3\ Q1))
U((Q1\ Qi-s) X (146 \ Q1)) U ((Q1\ Q1-s) x (SN (Q3\ Q1+5)))

and we write

. /Q (/. = DIVute) = Vuly)Pd)dy
<e /Q (/. o, e DIVue) - Vut) )y
e /Q - / oy JE = ITUE) = V() ) dy
+ 5/621\Q16 (/QM\QI Je(z — )| Vu(z) - vu(y)\2dx)dy
be /QI\QH (/SQ(QS\QM) J-(x — )| Vu(x) — Vuly) Pdr)dy

(6.14)

By Lemma [5.4]

e /Q H( /S oy V) - Vuly)Pdr)dy
(6.15) + s/Q o (/SO(Q o Jo(z — )| Vu(z) - Vu(y)|2d3:)dy

< 2ew (E) |Vu(z)|*de = 2-3" 15w1 |Vu )|de
0/ Jsnqs

where in the last equality we used the periodicity of u. On the other hand, by
Lemma [6.2]

(6.16) 5/ (/ Je(x — y)|Vu(z) — Vu(y)|2dx>dy < K20 .
Q1\Qi—s W Q145\Q1)
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It remains to study the first term on the right-hand side of (6.14). We have

c /Q ( [3 IV - Vuly)Pdz)dy
(6.17) < QE/Q(/S\Qg Je(z — y)\vu(x)‘2dx)dy

+ 26/@(/5\623 Je(z —y) da:)|Vu(y)|2dy .

To estimate the first term on the right-hand side of ([G.I7) we write

25/Q(/S\Q3Js(x—y)Vu(x)2dx>dy
_ //MQ (z — 9)|Vu(e) P ) dy

aEZ"ﬂ(S\Qs)

By Fubini’s theorem and the change of variables { = z — y, we get

/Q(/(HQ Je(x — y)|Vu(x)|2d3:)dy = /a+Q (/Q J.(z — ) dy)|Vu(:z:)|2dx
= /Ot-i-Q(/x—Q J=(¢) dC)W”(:ﬂ)Pdw < /Q |Vu(:s)|2dac/a_Q2 Jo(¢) d¢

where in the last inequality we have used the periodicity of u and the inclusion
r—Q Ca— Qs for z € a+ Q. Hence,

/ / )| Vu(e) P ) dy

<25/|Vu WPdw /

a€eZ™N(S\Q3)

< 2"€/Q|Vu(z)|2dx/2Je(<) dc ,

where in the last inequality we used the fact that each point of Qg belongs to at
most 2”71 cubes of the form o — Qo for a € Z" N (S'\ Q3). After the change of
variables z = (/e, we obtain

(6.18) 25/(/5\53 (z — y)|Vu(z )\de)dy<2” /|Vu |dx/Rn(\]élz/)E|(z(:))dz.

We now estimate the second term on the right-hand side of (6I7). With the
change of variables z = (x — y)/e, we have

(6.19) 25/Q(/S J(z — ) dac)|Vu(y)|2dy§25/ I dz/ Vu(y)2dy .

\Q3 R"\ By, (0
Combining the inequalities ([E.I7)—([6.19), we obtain

(6.20) 28/ (/ Je(x — y)|Vu(w)|2d;v)dy < 2”54;.)1(5)/ |Vu(z)|?dz .
Q ~S\Qs Q
The conclusion follows from (E11)), (GI3), (€14), (GI5), €I14), and G20). O

Qg™ ﬂ(S\Q3)



2816 GIANNI DAL MASO, IRENE FONSECA, AND GIOVANNI LEONI

Proof of Theorem [61l By Theorem [[.T] we deduce that u € BV (€;{—1,1}). Let
w; be the nonnegative Radon measure on 2 defined by

(6.21) p;(B):= é/BW(u](x)) dr + a/B /Q Je(z — y)|Vuj(x) — Vu;(y)|*dzdy

for every Borel set B C Q. Since () = F¢,(u;,Q), by @) p;(€2) is bounded
uniformly with respect to j. Extracting a subsequence (not relabeled), we may
assume that the liminf in (62) is a limit and that p; - p weakly* in the space
M, (Q) of bounded Radon measures on {2, considered, as usual, as the dual of the
space Cy(f2) of continuous functions on Q vanishing on 9. Let g be the density
of the absolutely continuous part of i with respect to H™ ! restricted to S,,. Then
the inequality (6.2) will follow from

(6.22) 9(x0) > Y(vy(z0)) for H* ae. 29 € S, .

To prove this inequality, fix zo € S, such that, setting v := v, (xg), we have
1

(6.23) lim — lu(z 4+ xo) — w”(z + z9)| dz =0,

p=0T P Jqu

(6.24) g(xg) = lim M < +00 .

p—0+ pnfl
It is well known (see [23] Theorem 3 in Section 5.9]) that ([6.23]) and (6.24)) hold for

H" 1 ae. xg € S, Since p; — p weakly* in M, (Q), by (2ZI5) and (G.21)), using a
change of variables, we get

xo + QY i(ro + QY
glao) = tim PO D) S i gup tim sup 20T 90
p—07F P p—0t  j—o+oo P

Fe (us,z0 + QY
> lim sup lim sup 2 ]7n_1 ) = limsup limsup 7, , (vj,,, Q7) »
p—0+  j—+too P p—0+  j—+too

where 7; , :=¢;/p and v; ,(y) := u;(xo + py). On the other hand, since u; — u in
L?(Q), by ([6.23) we obtain

1
0= lim lim —/ luj(z + xo) — w”(z + x0)| dx
QF

p—0+ j—+oo pT

= lim lim vi () — w”(2)] dx .
PO+ j v | J’P( ) ( )|
Since for every p > 0

lim n;,=0
jHJroonJ,p )

by a diagonal argument we can choose p; — 07 such that, setting n; := 7, ,, and
v; 1= Vj,p,, we have ; — 0%, v; = w” in L' (QY), and

(6.25) g(xg) > lim sup F, (vj,Q7) .
J—+o0

The finiteness of g(xo) and Theorem [[1] yield that v; — w” in L?*(QY). We can
now apply the modification Theorem [5.IF there exists d,, > 0 such that for every

0 < § < 4, we obtain a sequence {w;} € WL3(Q¥) N L*(QY) with w; — w” in
L2(QY), w; = w”* 0., in QY \ Qf_s, and
(6.26) limsup 7y, (v, Q7) > limsup F, (wy, QF) — K16 ,

J—+o0 Jj—+o0
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where, we recall, the constant ; is independent of §. Extend w; to R™ in such a
way that w;(z) = £1 for £z -v > % and w(z + v;) = w(z) for all z € R" and for
alli=1, ..., n—1, where v; are the vectors in (LII). Then w; € X" and so we
can apply Lemma to obtain
(6.27) li_miup F, (wy, Q7) > limsup(Wy, (wj, QF) + T, (wy, V¥, R™))

j—+o0

Jj—+oo

— Kod — limsup (Fogwl <%ﬂ) + /<;4w1(17j))17j/Q |Vw;(x)2dz

Jj—4o00
where we recall that W, is defined in (Z13)). By (LI3),
(6.28) W (Wi, @) + Ty (w;, V7, R™) > (v)

for every j with n; < 1. By (625) and (6.25]) the finiteness of g(zo) implies that
Fu, (wj, QF) is bounded uniformly with respect to j. Therefore Lemmal.3], together
with the periodicity of w;, proves the same property holds for n; fQ'f |Vw;(z)|*da.
Together with (B13), (€20), [©20), [©27), and (E28), this shows that g(z¢) >
(V) — K10 — K20 for every 0 < § < 6,,. Taking the limit as § — 01 we obtain (6.22).
This concludes the proof of the theorem. |

7. GAMMA LIMSUP INEQUALITY

In this section we prove the I'-limsup inequality. As usual in this type of singu-
larly perturbed problems, the I'-limsup inequality is first established for a piecewise
constant function whose jump set is a hyperplane with normal v. The recovery se-
quence is obtained by selecting in X* (see (ILIZ)) an almost optimal function for
Y(v) (see (LI3)) and making it oscillate very fast in the directions orthogonal to v.
We then consider BV functions whose jump sets are polyhedral, and finally we use
a density argument to obtain the result for arbitrary functions u € BV (Q;{—1,1}).

Fix e; — 0. For every u € BV (2;{—1,1}) we define

(7.1) F(u, Q) := inf {limsup 7., (u;,9Q) : u; — v in L*(Q)} .

Jj—+oo

Theorem 7.1 (I-limsup). For every u € BV (Q;{—1,1}) we have
(7.2) F(u,Q) < / () dH™ T
S

To prove the I'-limsup inequality we need the results proved in the following
lemmas.

Lemma 7.2. Let u € BVio.(R™;{—1,1}) and, for everye > 0, let 4. be as in (64).
Assume that there ezists a bounded polyhedral set ¥ of dimension n — 1 such that
S, =%, let X772 be the union of all its n — 2 dimensional faces, and let (¥"~2)°
be defined as in BI). Then there exists oz > 0 such that for 0 < e < § < oy we
have

js(a& (Zn—2)5) < 61(57'["_2(En_2)

for some constant c¢; > 0 independent of €, §, and X.

Proof. Tt is enough to repeat the proof of Lemma with C§ and C'g replaced by
{z € (¥"2)°: dist(z,%) < e} and {z € (¥"72)° : dist(z,%) > ¢}. O
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Lemma 7.3. Let P be a bounded polyhedron of dimension n — 1 containing 0 with
normal v, let p > 0, and let P, be the n-dimensional prism defined in ([571). Then
for every n > 0 there exists a sequence {u.} C W*(P,) such that uc — w” in
L*(P,) and

limSIip (Ws(usa Pp) + js(usa PpaRn)) < (¢(V) + n)Hnil(P) .

e—0

Proof. Without loss of generality, we assume that v = e,. For simplicity, we omit
the superscript v in the notation for w”, X*, V¥, @Y, and the subscript p when
p = 1. By the definition of ¢ (see (I3)), given n > 0 there exist ¢, € (0,1) and
uyx € X such that

(7.3) We, (us, Q) + Je. (us, V,R™) < ¢(en) + 1 .

Define u () := u.(==x) for x € R™. Since u.(z) = +1 for +x,, > 1/2, the sequence
{uc} converges to w in L2 _(R™).
To estimate Wk (ue, P,) and Jz(u., P,,R™), we consider the (n — 1)-dimensional

cube QY := QN {z, =0} and we set
— n.og — (n—1) Ex
ZE._{{QGZ Can =0, (a+Q )m(gp);é@}.

Observe that

n—1
(7.4) (Ei) #7. 5 HHP) ase— 0,
where #Z. is the number of elements of Z..

Let S :={z € R": |z,| < 1/2}. Since u.(z) = %1 for £z, > 1/2, by 23)

we have W(u.(z)) = 0 for z € R™\ S. Therefore a change of variables and the
periodicity of u, give

= (2 W 1) = (2) o (22) 9

e .
) < (0) et @ = (2)" #M00)
Similarly, o

J-(ue, P, R") = (Ei)Hj (e = Py )
(7.6) < (f)"_lz Je. (s, 0+ V,R™) = (f) T 2. (VR .
The result now fouow:;z;l @3- 0

Lemma 7.4. Let u € BV, (R™;{—1,1}). Assume that there exists a bounded
polyhedral set 3 of dimension n — 1 such that S, = X. For every p > 0 let ¥, :=
{z e R": dist(z,X) < p/2}. Then for every o > 0 there exist p > 0 and § € (0, p)
with the following property: for every e; — 0T there exists v; € W12(X,) such that
vi=uonX,\X,_s and

limsup F¢, (vj, X)) < / V() dH" ' + o .
)

j—+oo
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Proof. Let s > 0 be as in Lemmal[l.2 Fix o and 6 with 6 € (0, min{o, éx}). There
exist p € (0,6) and a finite number of bounded polyhedra P, ..., P* of dimension
n — 1 and contained in the n — 1 dimensional faces of ¥ such that Fﬁ) N ?{) = for
1 # 7 and

(7.7) ) \UPz (x"2)

where P! and (X"2)7 are defined as in (5.7) and Lemmal[Z.2} respectively. Find R,
, R* bounded polyhedra of dimension n — 1 contained in the n — 1 dimensional
faces of ¥, such that P? € R' and Rz N Rfé =@ for i # j.
Fix n > 0 such that nH"~*(¥) < ¢/2. By Lemma [T.3 for every i = 1, ..., k,
: i 1,2( pi i o T2(pi
there exists a sequence {u}} C WH?(Ry,) such that uj — w in L*(R}), and
(7.8) limsup (W, (u}, R}) + Tz, (uf, R, R™)) < (¥(v') + n)H"H(RY) .
Jj—+oo
By Theorem (.1 ther§ exist 0 € (0, min{, p/2}) and.{v;} C WH2(R)) such that
vt — win L*(R}) as j — 400, v = ux 6., on R, \ (R});, and
(7.9) lim sup F=, (vé, RZ) < limsup F, (“37 Rf)) + K10

j—+oo Jj—r+o0
< @) +H" (R + k16,

where, we recall, the costant x1 > 0 is independent of j, &, and R},. Define v; := v}

on R, and vj := ux 0, on A, :=%,\ Ule R.. Then v; € W"?(%,) and v; — u in
L%*(%,). Moreover v; =u on X, \ X,_s for all j sufficiently large.
By additivity we obtain

(7.10) W, (v, 8 v],Rl +We, (v, Ap)

H'Mw

Since (ux* 0.,)(x) = £1 for z ¢ Egsj and —1 < (ux 0., )(x) < 1, by [3) and (Z.7)

we have
We, (v, Ap) S We, (ux 0., (="’ n Tae;)
1
< —MwL"((£"2)° NEae,) < MyesdH " 2(2"72)
&j
where My, is the constant in (EEI) and ¢z > 0 is a constant depending only on
the geometry of .. The previous inequality together with (ZI0) gives

(7.11) (0,2 <ZW vj, RY) + My es6H"2(8"72) .

To estimate J, (v;,%,) we use the inclusion
koo k k _ ‘
S, x %, € [ J(R] x Ry U (E\R))UJE,\RY) x PY)
i=1 i=1 i=1

U ((EP\QP;) x (zp UP%)) (R: x Ri)

i#]
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which, together with (77), gives

(7.12) ij(UJ’ ) < stj UJle "‘stj (vj, ;,EP\R;)
i=1 =
+ZJSJ (0,8, \ Rb, P) + T2, (v, (5"72)7) + Y T, (v, RS, RY)
i=1 i#£]
By Lemma[3 and (Z9) the sequence {e; [5; [Vv}|*dz} is uniformly bounded with

respect to j. Taking into account (BB and (5:6) we see that the same property
holds for {e; [ |Vwv;|?dx}. Hence, by Lemma 5.4, the second, third, and fifth
p

terms on the right-hand side of (ZI2)) tend to zero as j — 4+o0c0. By Lemma [T.2]
(7.13) Te; (05, (E"72)7) < ci6H"2(E"2) .
Combining (Z9), (CI1)), (CI2), and [TI3) we get

limsup 7, (v;, 5,) < / Y(vu) dH" '+ an_l(E)
b

j—+o0
+ K16 + My esoH  2(2"72) + e oH"2(2" ) .

Since nH"~1(¥) < o/2, the conclusion can be obtained by taking & sufficiently
small. ]

We are now ready to prove Theorem [7.1}

Proof of Theorem [[1l By [8, Lemma 3.1] for every u € BV (€2; {—1,1}) there exists
a sequence {zx} in BV (Q;{—1,1}) converging to u in L?(£2) such that S, is given
by the intersection with Q with a bounded polyhedral set ¥ of dimension n — 1
and H"71(S,,) — H"1(S,). By Reshetnyak’s convergence theorem (see, e.g., [45])
this implies that

lim / w(yzk)dH”’I:/ Y(vy) dH L.
k—+o0 Szk Su

Hence, using the lower semicontinuity of F ”(-, Q) with respect to convergence in
L?(Q) it suffices to prove (T.2) for u € BV (Q;{—1,1}) such that S, = QN X with
3 a bounded polyhedral set of dimension n — 1.

In this case, for every o > 0let 0 < § < p and v; € WH%(X,) be as in Lemma
[[4l Define uj :=v; on ¥, and u; :=u on Q \ £,. The properties of v; imply that
uj :=wuon Q\ X, 5 for all j sufficiently large. Hence, by (Z3]) we have

(7.14) W, (uy, Q) < W, (uy,%,) .
To estimate J., (u;,{2) we consider the inclusion
(7.15) AxQC(E, x3,)U(E,m5 x (Q\X,)U((Q\X,) x X,_p)
U ((Q\Zp5) X (Q\ Xp5)) -
Since Vu; = Vu =0 on 2\ ¥,_s, in view of (ZI5) we obtain
(7.16) T, (uj, Q) < Tz, (uj, Bp) + Te, (uj, Ep—5, 2\ Bp) + Tz, (uy, A\ X,,5,5) .
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By Lemmas 3] and [£.4] the last two terms tend to zero as j — oo, and by Lemma
[T 4 we deduce

limsup F¢, (uj, X,) < / V() dH"  + o .
b

j—+oo

Together with ((C.I4) and (ZI6) this shows that

P00 < im0 < [ v 101 55
)

Jj—+oo

Letting o tend to 0 we obtain (T.2). O
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