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ASYMPTOTIC ANALYSIS OF SECOND ORDER NONLOCAL

CAHN-HILLIARD-TYPE FUNCTIONALS

GIANNI DAL MASO, IRENE FONSECA, AND GIOVANNI LEONI

Abstract. In this paper the study of a nonlocal second order Cahn–Hilliard-
type singularly perturbed family of functions is undertaken. The kernels con-
sidered include those leading to Gagliardo fractional seminorms for gradients.
Using Γ convergence the integral representation of the limit energy is character-
ized leading to an anisotropic surface energy on interfaces separating different
phases.

1. Introduction

In the van der Waals–Cahn–Hilliard theory of phase transitions [15], [41], [50],
[31], the total energy is given by

(1.1)
1

ε

∫
Ω

W (u(x)) dx+ ε

∫
Ω

|∇u(x)|2 dx,

where the open bounded set Ω ⊂ Rn represents a container, u : Ω → R is the
fluid density, and W : R → [0,+∞) is a double-well potential vanishing only at

the phases −1 and 1. The perturbation ε
∫
Ω
|∇u(x)|2 dx penalizes rapid changes of

the density u, and it plays the role of an interfacial energy. This problem has been
extensively studied in the last four decades (see, e.g., [8], [9], [10], [27], [37], [38],
[40], [39], [47], [48]).

Higher order perturbations were considered in the study of shape deformation
of unilamellar membranes undergoing inplane phase separation (see, e.g., [33], [49],
[34, 43]). A simplified local version of that model (see [43]) leads to the study of a
Ginzburg-Landau-type energy

(1.2)
1

ε

∫
Ω

W (u(x)) dx+ qε

∫
Ω

|∇u(x)|2 dx+ ε3
∫
Ω

∣∣∇2u(x)
∣∣2 dx ,

where q ∈ R. This functional is also related to the Swift–Hohenberg equation (see
[46]). When q = 0, the functional reduces to the second order version of (1.1); to
be precise,

(1.3)
1

ε

∫
Ω

W (u(x)) dx+ ε3
∫
Ω

∣∣∇2u(x)
∣∣2 dx ,

which was studied in [25]. The case q > 0 was treated in [32], with |∇2u|2 replaced
by |Δu|2. The case q < 0 is more delicate and was considered in [16] and [17]. The
original energy functional proposed in [33], [49], [34], [43]) involved also a nonlocal
perturbation and was addressed in [24].
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A nonlocal version of (1.1) was studied in [1], [2], [3], with the perturbation

ε
∫
Ω
|∇u(x)|2 dx replaced by a nonlocal term, leading to the energy

(1.4)
1

ε

∫
Ω

W (u(x)) dx+ ε

∫
Ω

∫
Ω

Jε(x− y)|u(x)− u(y)|2dxdy ,

where

(1.5) Jε(x) :=
1

εn
J
(x
ε

)
and the kernel J : Rn → [0,+∞) is an even measurable function such that

(1.6)

∫
Rn

J(x)(|x| ∧ |x|2) dx =: MJ < +∞ ,

with a∧b := min{a, b}. Functionals of the form (1.4) arise in equilibrium statistical
mechanics as free energies of continuum limits of Ising spin systems on lattices. In
that setting, u is a macroscopic magnetization density and J stands for a ferromag-
netic Kac potential (see [3]). Note that (1.6) is satisfied if J is integrable and has
compact support. Another important case is when

(1.7) J(x) = |x|−n−2s with
1

2
< s < 1 ,

so that Jε(x) = ε2s|x|−n−2s, which leads to Gagliardo’s seminorm for the fractional
Sobolev space Hs(Rn) (see [22], [28], [35]). A functional related to (1.4) with kernel
(1.7) has been studied in [4], [5], and [42] for 0 < s < 1 (see also [30] for an Lp

version in dimension n = 1).
The motivation in [42] was the renewed interest in the fractional Laplacian (see,

e.g., [14] and the references therein), and nonlocal characterizations of fractional
Sobolev spaces ([6], [11], [12], [36] and the references therein).

Another important application of this type of nonlocal singular perturbation
functionals is in the study of dislocations in elastic materials exhibiting microstruc-
ture (see, e.g., [13], [19], [29]).

In this paper we consider a nonlocal version of (1.3); to be precise, we study the
functional

(1.8) Fε(u) :=
1

ε

∫
Ω

W (u(x)) dx+ ε

∫
Ω

∫
Ω

Jε(x− y)|∇u(x)−∇u(y)|2dxdy

for u ∈ W 1,2
loc (Ω), where Ω ⊂ Rn, n ≥ 2, is a bounded open set with Lipschitz

boundary, the double-well potential W : R → [0,+∞) is a continuous function with
W−1({0}) = {−1,+1} satisfying appropriate coercivity and growth conditions, and
Jε is given by (1.5). We assume a nondegeneracy hypothesis (see (2.2)) on the even
measurable kernel J : Rn → [0,+∞), and that (1.6) holds.

We establish compactness in L2(Ω) for energy bounded sequences, and in order
to study the asymptotic behavior of (1.8) as ε → 0+, we use the notion of Γ-
convergence (see [21]) with respect to the metric in L2(Ω) and we identify the

Γ-limit of Fε. As it is usual, we extend Fε(u) to be +∞ for u ∈ L2(Ω) \W 1,2
loc (Ω).

Our first main result is the following theorem.

Theorem 1.1 (Compactness). Assume that W and J satisfy (2.3)–(2.6) and (1.6),

(2.2), respectively. Let {uε} ⊂ W 1,2
loc (Ω) ∩ L2 (Ω) be such that

(1.9) M := sup
ε

Fε(uε) < +∞ .
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Then there exists a sequence εj → 0+ such that {uεj} converges in L2(Ω) to some
function u ∈ BV (Ω; {−1, 1}).

The proof of this theorem is more involved than the corresponding one in [2]
due to the presence of gradients in the nonlocal term. This prevents us from
using standard arguments in which discontinuities in u may be allowed. We first
prove compactness in n = 1, and then use a slicing technique to treat the higher
dimensional case.

To state the Γ convergence result, we need to introduce some notation. Given
n ≥ 2 and ν ∈ Sn−1 := ∂B1(0), let ν1, . . . , νn be an orthonormal basis in Rn with
νn = ν. Here, and in what follows, we denote by Br(x) the open ball in Rn centered
at x and with radius r. Let

V ν := {x ∈ R
n : |x · νi| < 1/2 for i = 1, . . . , n− 1} ,(1.10)

Qν := {x ∈ R
n : |x · νi| < 1/2 for i = 1, . . . , n} ,(1.11)

let W 1,2
ν1,...,νn−1

be the set of all functions v ∈ W 1,2
loc (R

n) such that v(x+ νi) = v(x)
for a.e. x ∈ R

n and for every i = 1, . . . , n− 1, and let

(1.12) Xν := {v ∈ W 1,2
ν1,...,νn−1

: v(x) = ±1 for a.e. x ∈ R
n with ± x · ν ≥ 1/2}.

When n = 1 take ν = ±1, V ν := R, Qν := (−1/2, 1/2), and let Xν be the space of

all functions v ∈ W 1,2
loc (R) such that v(x) = ±1 for a.e. x ∈ R with ±x ≥ 1/2. We

define the anisotropic surface energy density

(1.13) ψ(ν) := inf
0<ε<1

inf
v∈Xν

Fν
ε (v) ,

where

Fν
ε (u) :=

1

ε

∫
Qν

W (u(x)) dx+ ε

∫
V ν

∫
Rn

Jε(x− y)|∇u(x)−∇u(y)|2dxdy .

Finally, we define F : L2(Ω) → [0,+∞] by

(1.14) F(u) :=

⎧⎨⎩
∫
Su

ψ(νu) dHn−1 if u ∈ BV (Ω; {−1, 1}) ,

+∞ otherwise in L2(Ω) ,

where Su is the jump set of u, νu is the approximate normal to Su, and Hn−1 is the
(n − 1)-dimensional Hausdorff measure (see [7] for a detailed description of these
notions).

Theorem 1.2 (Γ-limit). Assume that W and J satisfy (2.2)–(2.6) and (1.6), re-
spectively. Then for every εj → 0+ the sequence {Fεj} Γ-converges to F in L2(Ω).

Although the general structure of the proof is standard, there are remarkable
technical difficulties due to the nonlocality of the perturbation and the presence of
gradients.

An interesting sequel to this work would be to consider the analogous model
for (elastic) solid-solid phase transformations, in which u : Ω → Rn denotes the
deformation, ∇u is the strain and the nonlocal energy is given by

u 
→ 1

ε

∫
Ω

W (∇u(x)) dx+ ε

∫
Ω

∫
Ω

Jε(x− y)|∇u(x)−∇u(y)|2dxdy .

This can be thought of as the nonlocal version of the model treated in [18], in
particular, if we assume SO(n) invariance as in [20].
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This paper is organized as follows. After a brief section on preliminaries, in
Section 3 in order to establish compactness in dimension n = 1, we prove an
interpolation result, which allows us to control the L2 norm of u′ in terms of the full
energy (see Lemma 3.5). Section 4 is devoted to compactness in higher dimensions,
and here again we obtain the equivalent of the interpolation Lemma 3.5 (see Lemma
4.3). As is classical in this type of problem, it is important to be able to modify
admissible sequences near the boundary of their domain without increasing the
limit energy. We address this in Theorem 5.1 in Section 5. Section 6 concerns the
Γ-liminf inequality, and in Section 7 we construct the recovery sequence for the
Γ-limsup inequality.

2. Preliminaries

In what follows, in addition to (1.6) we also assume that the kernel J : Rn →
[0,+∞) has the following property: there exist γJ > 0, δJ ∈ (0, 1), cJ > 0, such
that for all ξ ∈ S

n−1 there are α(ξ) < β(ξ) satisfying

(2.1) −γJ ≤ α(ξ) ≤ α(ξ) + δJ ≤ β(ξ) ≤ γJ

and

(2.2)

∫ β(ξ)

α(ξ)

1

J(tξ)|t|n−1
dt ≤ cJ .

Remark 2.1. For example, condition (2.2) holds if there exist 0 < r < R and a > 0
such that J(x) ≥ a for every x ∈ R

n with r < |x| < R. Indeed, it is enough to set
γJ = R, δJ = R− r, α(ξ) = r, β(ξ) = R, and cJ = (na)−1(r−n −R−n).

We assume that the double-well potential is a continuous function W : R →
[0,+∞) such that

W−1({0}) = {−1, 1} ,(2.3)

(|s| − 1)2 ≤ cWW (s) for all s ∈ R ,(2.4)

W is increasing on [1,+∞) and on [−1,−1 + aW ] ,(2.5)

W is decreasing on (−∞,−1] and on [1− aW , 1] ,(2.6)

for some constants cW > 0 and aW ∈ (0, 1).
If s ≤ 0 and |s+1| ≥ 1

2 , then |s−1| = |s|−1+2, hence (s−1)2 ≤ 2(|s|−1)2+4 ≤
2cWW (s) + 4

mW
W (s), where

(2.7) mW := min
{||s|−1|≥ 1

2 }
W (s) > 0 .

Together with (2.4) this leads to the estimate

(2.8) (s− 1)2 ≤ ĉWW (s) for all s ∈ R with |s+ 1| ≥ 1

2
,

where ĉW := 2cW + 4
mW

. Similarly, it can be shown that

(2.9) (s+ 1)2 ≤ ĉWW (s) for all s ∈ R with |s− 1| ≥ 1

2
.

We recall that Ω ⊂ R
n is a bounded open set with Lipschitz boundary. For every

ε > 0 and u ∈ L2 (Ω) consider the functional

(2.10) Fε(u) :=

{
Wε(u) + Jε(u) if u ∈ W 1,2

loc (Ω) ∩ L2 (Ω) ,
+∞ otherwise,
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where

(2.11) Wε(u) :=
1

ε

∫
Ω

W (u(x)) dx for u ∈ L2 (Ω) ,

and

(2.12) Jε(u) := ε

∫
Ω

∫
Ω

Jε(x− y)|∇u(x)−∇u(y)|2dxdy for u ∈ W 1,2
loc (Ω).

In what follows, we will use a localized version of (2.10). To be precise, given
two open sets A, B ⊂ R

n we define

(2.13) Wε(u,A) :=
1

ε

∫
A

W (u(x)) dx

for u ∈ L2(A), and

(2.14) Jε(u,A,B) := ε

∫
A

∫
B

Jε(x− y)|∇u(x)−∇u(y)|2dxdy

for u ∈ W 1,2
loc (A ∪B). When A = B we set

(2.15) Fε(u,A) := Wε(u,A) + Jε(u,A,A) and Jε(u,A) := Jε(u,A,A)

for u ∈ W 1,2
loc (A) ∩ L2(A).

Since J is even, by Fubini’s theorem for all u ∈ W 1,2
loc (A ∪B) we have that

(2.16) Jε(u,A,B) = Jε(u,B,A) .

Moreover, if A ∩B = Ø we have

(2.17) Jε(u,A ∪B) = Jε(u,A) + 2Jε(u,A,B) + Jε(u,B) .

In the compactness theorem we use a slicing argument based on the following
preliminary result. Given a vector ξ ∈ Sn−1, the hyperplane through the origin
orthogonal to ξ is denoted by Πξ, that is,

(2.18) Πξ := {x ∈ R
n : x · ξ = 0} .

If E ⊂ Rn and y ∈ Πξ, then we define

(2.19) Eξ
y := {t ∈ R : y + tξ ∈ E} .

The next result is a particular case of the affine Blaschke–Petkantschin formula,
for which we refer to [44, Theorem 7.2.7].

Proposition 2.2. Let E ⊂ Rn be a Borel set and let g : E × E → [0,+∞] be a
Borel function. Then∫

E

∫
E

g(x, y) dxdy

=
1

2

∫
Sn−1

∫
Πξ

∫
Eξ

z

∫
Eξ

z

g(z + sξ, z + tξ)|t− s|n−1dsdtdHn−1(z)dHn−1(ξ) .

Proof. For the convenience of the reader we present a proof. We extend g to be
zero outside E × E. Using the change of variables τ = t− s, we obtain∫

R

g(z + sξ, z + tξ)|t− s|n−1ds =

∫
R

g(z + tξ − τξ, z + tξ)|τ |n−1dτ ,
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and by Fubini’s theorem we get∫
Πξ

∫
R

∫
R

g(z + sξ, z + tξ)|t− s|n−1dsdtdHn−1(z)

=

∫
Rn

∫
R

g(y − τξ, y)|τ |n−1dτdy .

Exchanging the order of integration and using integration in spherical coordinates
we have

1

2

∫
Sn−1

∫
Πξ

∫
R

∫
R

g(z + sξ, z + tξ)|t− s|n−1dsdtdHn−1(z)dHn−1(ξ)

=
1

2

∫
Rn

∫
Sn−1

∫
R

g(y − τξ, y)|τ |n−1dτdHn−1(ξ)dy

=

∫
Rn

∫
Rn

g(x, y) dxdy ,

which concludes the proof. �

For ξ ∈ Sn−1 and ε > 0 define Jξ : R → [0,+∞) by

(2.20) Jξ(t) := J(tξ)|t|n−1 and Jξ
ε (t) :=

1

ε
Jξ

(
t

ε

)
.

By (1.6) and using spherical coordinates, we have

(2.21)

∫
R

Jξ(t)(|t| ∧ |t|2) dt < +∞

for Hn−1-a.e. ξ ∈ Sn−1, and in view of (2.2) we obtain

(2.22)

∫ β(ξ)

α(ξ)

1

Jξ(t)
dt ≤ cJ .

Moreover,

(2.23) Jξ
ε (t) =

1

ε
Jξ

(
t

ε

)
=

1

ε
J

(
tξ

ε

) ∣∣∣∣ tε
∣∣∣∣n−1

= Jε(tξ)|t|n−1 .

For ξ ∈ S
n−1, A ⊂ R, and ε > 0, we define

(2.24) Fξ
ε (v,A) :=

1

σn−1ε

∫
A

W (v(t)) dt+
ε

2

∫
A

∫
A

Jξ
ε (s− t)(v′(s)− v′(t))2dsdt

for v ∈ W 1,2
loc (A) ∩ L2 (A), where σn−1 := Hn−1(Sn−1).

3. Compactness and interpolation in dimension one

For a set A contained in Rn and for η > 0 we define

(3.1)
(A)η := {x ∈ Rn : dist(x,A) < η} ,
(A)η := {x ∈ A : dist(x, ∂A) > η} .

The main result of this section is the following theorem.

Theorem 3.1. Let ξ ∈ S
n−1, let A ⊂ R be a bounded open set, and let {uε} ⊂

W 1,2
loc (A) ∩ L2 (A) be such that

(3.2) M := sup
ε

Fξ
ε (uε, A) < +∞ ,
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where Fξ
ε is defined in (2.24). Then there exists a sequence εj → 0+ such that

{uεj} converges in L2(A) to some function u ∈ BV (A; {−1, 1}). Moreover, there
exists a constant cJ,W > 0, independent of ξ, A, and {uε}, such that

(3.3) #Su ≤ M

cJ,W
,

where #Su denotes the number of jump points of u.

The strategy of the proof is to obtain uniform L1 bounds for ε(u′
ε)

2 in terms
of the energy since this would reduce the problem to the compactness of energy
bounded sequences for (1.1). This is achieved in Lemma 3.5. As a preliminary
step, we use the following lemma to derive a pointwise estimate on ε(u′

ε)
2 in terms

of a rescaled difference quotient and a “slice” of the nonlocal energy Jε (see Remark
3.3). We then prove that the integral of the rescaled difference quotient may be
bounded above by the energy Fξ

ε by combining Lemma 3.4 with (3.19).

Lemma 3.2. Let ξ ∈ Sn−1, let A ⊂ R be an open set, let ε > 0, let α < β, and let
u ∈ W 1,2

loc ((A)εγJ ), where γJ is the constant in (2.1). Then for a.e. t ∈ A,

ε

∫ t−εα

t−εβ

Jξ
ε (t− s)(u′(t)− u′(s))2ds

≥ ε(β − α)2

(∫ β

α

1

Jξ(z)
dz

)−1 (
u′(t)− u(t− εα)− u(t− εβ)

ε(β − α)

)2

,(3.4)

where Jξ and Jξ
ε are defined in (2.20).

Proof. It is enough to show that for every λ ∈ R we have

ε

∫ t−εα

t−εβ

Jξ
ε (t− s)(λ− u′(s))2ds

≥ ε(β − α)2

(∫ β

α

1

Jξ(z)
dz

)−1 (
λ− u(t− εα)− u(t− εβ)

ε(β − α)

)2

.

This inequality follows by considering the Euler–Lagrange equation of the minimum
problem

min

∫ t−εα

t−εβ

Jξ
ε (t− s)(λ− v′(s))2ds

over all v ∈ W 1,2((t− εβ, t− εα)) satisfying v(t− εβ) = u(t− εβ) and v(t− εα) =
u(t− εα). �

Remark 3.3. Under the same assumptions of Lemma 3.2, it follows from (2.1), (2.2),
and (3.4) that

ε(u′(t))2 ≤ 2

δ2J

1

ε

(
u(t− εα(ξ))− u(t− εβ(ξ))

)2
+ 2cJε

∫ t+εγJ

t−εγJ

Jξ
ε (t− s)(u′(t)− u′(s))2ds

for a.e. t ∈ A.
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Lemma 3.4. Let γJ be the constant in (2.1). Then there exists a constant cJ,W > 0
such that

(3.5) ε

∫ τ

σ

∫ τ+εγJ

σ−εγJ

Jξ
ε (t− s)(u′(t)− u′(s))2dsdt+

1

ε

∫ τ+εγJ

σ−εγJ

W (u(t)) dt ≥ cJ,W

for every ξ ∈ S
n−1, for every ε > 0, for every σ, τ , with σ < τ , and for every

u ∈ W 1,2
loc ((σ − εγJ , τ + εγJ )) such that

(3.6) u(t) ∈
(
− 1

2 ,
1
2

)
for every t ∈ (σ, τ ) ,

and either

(3.7) u(σ) = − 1
2 and u(τ ) = 1

2

or

(3.8) u(σ) = 1
2 and u(τ ) = − 1

2 .

Proof. Fix ξ, ε, σ, τ , and u as in the statement of the lemma, and let α̂ and β̂ be

such that α(ξ) < α̂ < β̂ < β(ξ), and

(3.9) α(ξ)− α̂ >
1

4
δJ , β̂ − α̂ >

1

4
δJ , β(ξ)− β̂ >

1

4
δJ ,

where α(ξ), β(ξ), and δJ are given in (2.1). By (2.4) and (3.6), we have W (u(t)) ≥
1

4CW
for every t ∈ (σ, τ ). Therefore, if τ − σ > εδJ/2

6, then

(3.10)
1

ε

∫ τ

σ

W (uε(t)) dt >
δJ

28CW
.

If τ − σ ≤ εδJ/2
6, define

(3.11) A0 :=

{
t ∈ (σ, τ ) : |u′(t)| ≥ 1

2

1

τ − σ

}
.

We now consider two cases.

Case 1. Assume that for every t ∈ A0 there exist α ∈ [α(ξ), α̂] and β ∈ [β̂, β(ξ)]
such that

|u(t− εα)− u(t− εβ)|
ε(β − α)

<
1

2
|u′(t)| .

Then (
u′(t)− u(t− εα)− u(t− εβ)

ε(β − α)

)2

≥ 1

4
(u′(t))2 .

Therefore, by Lemma 3.2,

ε

∫ t−εα

t−εβ

Jξ
ε (t− s)(u′(t)− u′(s))2ds

≥ ε(β − α)2

4

(∫ β

α

1

Jξ(z)
dz

)−1

(u′(t))2 ,

and integrating over A0, using (2.22) and (3.9), we obtain

(3.12) ε

∫
A0

∫ t−εα(ξ)

t−εβ(ξ)

Jξ
ε (t− s)(u′(t)− u′(s))2dsdt ≥ εδ2J

26cJ

∫
A0

(u′(t))2dt .
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By (3.7), (3.8), and (3.11) using Jensen’s inequality and τ − σ ≤ δJ
26 ε, we have∫

A0

(u′(t))2dt =

∫ τ

σ

(u′(t))2dt−
∫
(σ,τ)\A0

(u′(t))2dt ≥ 1

τ − σ
− 1

4

1

τ − σ
≥ 3 · 24

εδJ
.

Hence, from (3.12) we deduce that

(3.13) ε

∫ τ

σ

∫ τ−εα(ξ)

σ−εβ(ξ)

Jξ
ε (t− s)(u′(t)− u′(s))2dsdt ≥ 3

4

δJ
cJ

.

Case 2. It remains to study the case in which there exists t0 ∈ A0 such that

|u(t0 − εα)− u(t0 − εβ)|
ε(β − α)

≥ 1

2
|u′

ε(t0)|

for every α ∈ [α(ξ), α̂] and for every β ∈ [β̂, β(ξ)]. By (3.11) and the inequality
τ − σ ≤ εδJ/2

6, we have

|u(t0 − εα)− u(t0 − εβ)|
ε(β − α)

≥ 1

4(τ − σ)
≥ 16

εδJ
,

hence by (3.9),

|u(t0 − εα)− u(t0 − εβ)| ≥ 16(β̂ − α̂)

δJ
≥ 4 .

If |u(t0−εα)| ≥ 2 for every α ∈ [α(ξ), α̂], then by (2.4) we have W (u(t0−εα)) ≥
1

cW
for every α ∈ [α(ξ), α̂]. This leads to W (u(t)) ≥ 1

cW
for every t ∈ [t0 − εα̂, t0 −

εα(ξ)], hence

(3.14)
1

ε

∫ τ+εγJ

σ−εγJ

W (u(t)) dt ≥ 1

ε

∫ t0−εα(ξ)

t0−εα̂

W (u(t)) dt ≥ α̂− α(ξ)

cW
≥ δJ

4cW
,

where in the last inequality we used (3.9).
If there exists α ∈ [α(ξ), α̂] such that |u(t0 − εα)| < 2, then |u(t0 − εβ)| > 2

for every β ∈ [β̂, βJ ] (if not, there exists β ∈ [β̂, β(ξ)] such that |u(t0 − εβ)| ≤ 2,
which gives |u(t0 − εα)− u(t0 − εβ)| < 4, a contradiction). Consequently, for every

β ∈ [β̂, β(ξ)] we have W (u(t0 − εβ)) ≥ 1
cW

. This leads to W (u(t)) ≥ 1
cW

for every

t ∈ [t0 − εβ(ξ), t0 − εβ̂], hence

(3.15)
1

ε

∫ τ+εγJ

σ−εγJ

W (u(t)) dt ≥ 1

ε

∫ t0−εβ̂

t0−εβ(ξ)

W (u(t)) dt ≥ β(ξ)− β̂

cW
≥ δJ

4cW
,

where in the last inequality we used (3.9). The conclusion follows now from (3.10),
(3.13), (3.14), and (3.15). �

Lemma 3.5 (Interpolation inequality in dimension one). There exists a constant

c
(1)
J,W such that

(3.16) ε

∫
A

(u′(t))2dt ≤ c
(1)
J,WFξ

ε (u, (A)
2εγJ ) .

for every ξ ∈ S
n−1, for every ε > 0, for every open set A ⊂ R, and for every

u ∈ W 1,2
loc ((A)2εγJ ), where γJ is the constant in (2.1).
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Proof. Fix ξ, ε, A, and u as in the statement of the lemma, and define

U := {t ∈ A : u(t− εα(ξ)), u(t− εβ(ξ)) /∈ [ 12 ,
3
2 ]} ,

V := {t ∈ A : u(t− εα(ξ)), u(t− εβ(ξ)) /∈ [− 3
2 ,−

1
2 ]} .(3.17)

If t ∈ V , then by (2.8),

(u(t− εα(ξ))− u(t− εβ(ξ)))2 ≤ 2(u(t− εα(ξ))− 1)2 + 2(u(t− εβ(ξ))− 1)2

≤ 2ĉW
(
W (u(t− εα(ξ))) +W (u(t− εβ(ξ)))

)
.

Using (2.9) we prove the same inequality for t ∈ U . Integrating and using Remark
3.3, we obtain

(3.18) ε

∫
U∪V

(u′(t))2dt ≤
(
8
ĉW
δ2J

+ 2cJ
)
Fξ

ε (u, (A)εγJ ) .

If t ∈ A \ (U ∪ V ), then either

u(t− εα(ξ)) ∈ [− 3
2 ,−

1
2 ] and u(t− εβ(ξ)) ∈ [ 12 ,

3
2 ]

or

u(t− εβ(ξ)) ∈ [− 3
2 ,−

1
2 ] and u(t− εα(ξ)) ∈ [ 12 ,

3
2 ] .

Then

(3.19) (u(t− εα(ξ))− u(t− εβ(ξ)))2 ≤ 9 .

Moreover there exist σ and τ , satisfying

(3.20) t− εγJ ≤ t− εβ(ξ) ≤ σ < τ ≤ t− εα(ξ) ≤ t+ εγJ

and such that

u(t) ∈
(
− 1

2 ,
1
2

)
for every t ∈ (σ, τ )

and either

u(σ) = 1
2 and u(τ ) = − 1

2

or

u(σ) = − 1
2 and u(τ ) = 1

2 .

By Lemma 3.4 and by (3.20), there exists cJ,W > 0 such that

cJ,W ≤ ε

∫ t+εγJ

t−εγJ

∫ t+2εγJ

t−2εγJ

Jξ
ε (r − s)(u′

ε(r)− u′
ε(s))

2dsdr +
1

ε

∫ t+2εγJ

t−2εγJ

W (uε(r)) dr .

Therefore by (3.19) we have

1

ε

∫
A\(U∪V )

(u(t− εα(ξ))− u(t− εβ(ξ)))2dt

≤ 9

cJ,W

∫
A

∫ t+εγJ

t−εγJ

∫ t+2εγJ

t−2εγJ

Jξ
ε (r − s)(u′

ε(r)− u′
ε(s))

2dsdrdt(3.21)

+
9

cJ,W

1

ε2

∫
A

∫ t+2εγJ

t−2εγJ

W (uε(r)) drdt .

Since
1

2η

∫
A

∫ t+η

t−η

f(r) drdt ≤
∫
(A)η

f(t) dt
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for every η > 0 and for every integrable function f : A → [0,+∞], from (3.21) we
obtain

(3.22)
1

ε

∫
A\(U∪V )

(u(t− εα(ξ))− u(t− εβ(ξ)))2dt ≤ c̃J,WFξ
ε (u, (A)2εγJ )

for a suitable constant c̃J,W depending only on J and W . The conclusion follows
from (3.18) and (3.22) using Remark 3.3. �

Proof of Theorem 3.1. By (3.2) we have that

(3.23)

∫
A

W (uε(t)) dt ≤ Mε .

By (2.3) and (2.4) this implies that {u2
ε} converges to 1 in L1(A) and, up to a

subsequence (not relabeled) pointwise a.e. in A.
Let γJ > 0 be the constant given in (2.1). Consider the collection Iε of all

intervals (σ− εγJ , yε + εγJ ) such that (σ, τ ) is contained in (A)εγJ , and uε satisfies
(3.6) and either (3.7) or (3.8) in (σ, τ ). Note that by the intermediate value theorem
for all ε > 0 sufficiently small there exist such intervals. Moreover, by construction,
all intervals in Iε are contained in A. It follows from (2.4) and (3.23) that

Mε ≥
∫ τ

σ

W (uε(t)) dt ≥
τ − σ

4cW
,

hence

(3.24) τ − σ ≤ 4cWMε .

In particular, for every I ∈ Iε we have

(3.25) diam I ≤ (4cWM + 2γJ)ε .

Moreover, by (3.2) and (3.5), if I1, . . . , Ik are pairwise disjoint intervals in Iε, then

(3.26) k ≤ M

cJ,W
.

Let Bε be the union of all intervals in Iε and let Cε be the collection of its
connected components. Observe that distinct elements of Cε must contain disjoint
intervals of Iε, and so by (3.26) the number of elements of Cε is uniformly bounded.
To be precise,

(3.27) #Cε ≤
M

cJ,W
.

Next we claim that if C ∈ Cε, then

(3.28) diamC ≤ 2(4CWM + 2γJ)

(
M

cJ,W
+ 1

)
ε .

Assume by contradiction that (3.28) fails. Let k be the integer such that M
cJ,W

<

k ≤ M
cJ,W

+ 1 and partition C into k subintervals C1, . . . , Ck of equal length larger

than 2(4CWM + 2γJ )ε. The middle point of each Ci belongs to some interval
Ii ∈ Iε. By (3.25), we have that Ii ⊂ Ci and so I1, . . . , Ik are pairwise disjoint. In
turn k satisfies (3.26), which contradicts its definition. This concludes the proof of
(3.28).

In view of (3.27) there exist a sequence εj → 0+ and a nonnegative integer

k ≤ M
cJ,W

such that #Cεj = k for all j ∈ N. Write Cεj = {C1
j , . . . , C

k
j } and choose
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tij ∈ Ci
j . Up to a subsequence (not relabeled) we may assume that tij → ti ∈ A for

all i = 1, . . . , k. By (3.28) for every η > 0 we have that Ci
j ⊂ [ti − η, ti + η] for all

j sufficiently large. Let S := {t1, . . . , tk} and let K be a closed interval contained
in A \ S. Then Bεj ∩K = Ø for all j sufficiently large. We claim that for all such

j either infK uεj ≥ − 1
2 or supK uεj ≤ 1

2 . Indeed, if this does not hold, then we can
find σj and τj in K for which uεj satisfies (3.6) and either (3.7) or (3.8). On the
one hand (σj , τj) ⊂ Bεj by the definition of Bεj . On the other hand (σj , τj) ⊂ K
since K is an interval. Therefore (σj , τj) ⊂ Bεj ∩K and this contradicts the fact
that Bεj ∩K = Ø.

We extract a subsequence, possibly depending on K, not relabeled, such that,
either infK uεj ≥ − 1

2 for all j or supK uεj ≤ 1
2 for all j. Since u2

εj (t) → 1 for

a.e. t ∈ K, we conclude that uεj (t) → 1 for a.e. t ∈ K in the former case while
uεj (t) → −1 for a.e. t ∈ K in the latter. By iterating this argument with an
increasing sequence of compact intervals K whose union is a connected component
of A\S, it follows by a diagonal argument that a subsequence {uεj} (not relabeled)
converges pointwise a.e in A \S to a function u constantly equal to −1 or 1 in each
connected component of A\S. This implies that u ∈ BV (A; {−1, 1}) with Su ⊂ S,
hence #Su ≤ #S ≤ k ≤ M

cJ,W
. The L2 convergence of {uεj} to u now follows from

(2.4) and (3.23). �

4. Compactness and interpolation for n ≥ 2

As in Section 3, the goal is to obtain L1 bounds of ε|∇uε|2 in terms of the
energy Fε. Using standard slicing techniques (see [7], [35]) together the compactness
obtained in the one-dimensional case, we obtain the desired estimate in Lemma 4.3.

Given a ∈ R we define

(4.1) a(1) := (−1) ∨ (a ∧ 1) .

Lemma 4.1. Let {uε} ⊂ L2 (Ω) be such that

(4.2) M := sup
ε

Wε(uε) < +∞ .

Then uε − u
(1)
ε → 0 strongly in L2(Ω).

Proof. By (2.11) and (4.2) we have that

(4.3)

∫
Ω

W (uε(x)) dx → 0

as ε → 0+. By (2.3) and (2.4) this implies that, up to a subsequence, |uε(x)| → 1

for a.e. x ∈ Ω. Hence, uε(x)− u
(1)
ε (x) → 0 for a.e. x ∈ Ω. On the other hand, by

(2.4),

(uε(x)− u(1)
ε (x))2 ≤ (uε(x))

2 ≤ 2

cW
W (uε(x)) + 2 ,

so that the conclusion follows from (4.2) and the (generalized) Lebesgue dominated
convergence theorem. �

In what follows, given a Borel set E ⊂ Rn and a function u : E → R, for every
ξ ∈ Sn−1 and for every y ∈ Πξ (see (2.18)) we define the one-dimensional function

(4.4) uξ
y(t) := u(y + tξ) , t ∈ Eξ

y ,

where Eξ
y is defined in (2.19).
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Lemma 4.2. For every A ⊂ Rn open, ε > 0, and u ∈ W 1,2
loc (A) ∩ L2(A), we have

Fε(u,A) ≥
∫
Sn−1

∫
Πξ

Fξ
ε (u

ξ
z, A

ξ
z) dHn−1(z)dHn−1(ξ) .

Proof. By Fubini’s theorem, Proposition 2.2, (2.15), (2.23), and (2.24), we obtain

Fε(u,A)

=
1

σn−1ε

∫
Sn−1

∫
Πξ

∫
Aξ

z

W (u(z + tξ)) dtdHn−1(z)dHn−1(ξ)

+
ε

2

∫
Sn−1

∫
Πξ

∫
Aξ

z

∫
Aξ

z

Jξ
ε (t−s)|∇u(z+tξ)−∇u(z+sξ)|2dtdsdHn−1(z)dHn−1(ξ)

≥ 1

σn−1ε

∫
Sn−1

∫
Πξ

∫
Aξ

z

W (uξ
z(t)) dtdHn−1(z)dHn−1(ξ)

+
ε

2

∫
Sn−1

∫
Πξ

∫
Aξ

z

∫
Aξ

z

Jξ
ε (t− s)((uξ

z)
′(t)− (uξ

z)
′(s))2dtdsdHn−1(z)dHn−1(ξ)

=

∫
Sn−1

∫
Πξ

Fξ
ε (u

ξ
z, A

ξ
z) dHn−1(z)dHn−1(ξ) .

�

Proof of Theorem 1.1. Let εj → 0+ and, for simplicity, write uj := uεj . By Lemma
4.2,

(4.5)

∫
Sn−1

∫
Πξ

Fξ
εj ((uj)

ξ
z,Ω

ξ
z) dHn−1(z)dHn−1(ξ) ≤ M .

We claim that there exist a collection ξ1, . . . , ξn ∈ Sn−1 of linearly independent
vectors and a subsequence (not relabeled) such that

(4.6) lim
j→+∞

∫
Πξi

Fξi
εj ((uj)

ξi
z ,Ωξi

z ) dHn−1(z) =: Mi < +∞

for every i = 1, . . . , n.
Indeed, using Fatou’s lemma by (4.5) we have that

(4.7)

∫
Sn−1

lim inf
j→+∞

∫
Πξ

Fξ
εj ((uj)

ξ
z,Ω

ξ
z) dHn−1(z)dHn−1(ξ) ≤ M .

Hence, there exists ξ1 ∈ Sn−1 such that

(4.8) lim inf
j→+∞

∫
Πξ1

Fξ1
εj ((uj)

ξ1
z ,Ωξ1

z ) dHn−1(z) =: M1 < +∞ ,

and we can extract a subsequence (not relabeled) such that (4.6) holds for i = 1.
We proceed by induction. Assume that we found a collection ξ1, . . . , ξk ∈ Sn−1,

1 ≤ k < n, of linearly independent vectors and a subsequence (not relabeled) such
that (4.6) holds for every i = 1, . . . , k. Note that this subsequence still satisfies
(4.5), and hence (4.7). Therefore we can find ξk+1 ∈ Sn−1, linearly independent of
ξ1, . . . , ξk, such that

lim inf
j→+∞

∫
Πξk+1

Fξk+1
εj ((uj)

ξk+1
z ,Ωξk+1

z ) dHn−1(z) =: Mk+1 < +∞ ,

and we can extract a subsequence (not relabeled) such that (4.6) holds also for
i = k + 1. After n steps we obtain that (4.6) is satisfied for every i = 1, . . . , n.
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Given i = 1, . . . , n and δ > 0, for every j let

(4.9) Ai
j :=

{
z ∈ Πξi : Fξi

εj ((uj)
ξi
z ,Ωξi

z ) >
Mi

δ

}
,

and let vij ∈ L2(Ω) be defined by

(4.10)

{
(vij)

ξi
z := (u

(1)
j )ξiz if z ∈ Πξi \Aj ,

(vij)
ξi
z := 0 if z ∈ Aj ,

where u
(1)
j is the truncated function defined using (4.1). By (4.6) and (4.9) we have

lim sup
j→+∞

Hn−1(Ai
j) ≤ δ ,

hence (4.10) yields

(4.11) lim sup
j→+∞

‖vij − u
(1)
j ‖2L2(Ω) ≤ δ diam(Ω) .

By Theorem 3.1 for every z ∈ Πξi the set {(uj)
ξi
z (1 − χAi

j
(z)) : j ∈ N} is

relatively compact in L2(Ωξi
z ), where χAi

j
(z) = 1 for z ∈ Ai

j and χAi
j
(z) = 0 for

z �∈ Ai
j . Therefore the same property holds for the set of truncated functions

{(u(1)
j )ξiz (1−χAi

j
(z)) : j ∈ N}. It follows that for every z ∈ Πξi the set {(vij)ξiz : j ∈

N} is relatively compact in L2(Ωξi
z ). Since this property is valid for every i = 1,

. . . , n, we can apply the characterization by the slicing of precompact sets of L2(Ω)

given by [5, Theorem 6.6] and we obtain that the set {u(1)
j : j ∈ N} is relatively

compact in L2(Ω). In turn, by Lemma 4.1 the set {uj : j ∈ N} is relatively compact
in L2(Ω), hence there exist a subsequence (not relabeled) , such that uj converges
in L2(Ω) to some function u. By (1.9),

lim
j→+∞

∫
Ω

W (uj(x)) dx = 0 ,

which, together with (2.3) and (2.4), implies that u(x) ∈ {−1, 1} for a.e. x ∈ Ω.
It remains to show that u ∈ BV (Ω). Using Fubini’s theorem we find that there

exists a subsequence (not relabeled) such that

(4.12) (uj)
ξi
z → uξi

z in L2(Ωξi
z ) .

Moreover, Fatou’s lemma and (4.6) imply that

(4.13)

∫
Πξi

lim inf
j→+∞

Fξi
εj ((uj)

ξi
z ,Ωξi

z ) dHn−1(z) ≤ Mi ,

hence

(4.14) lim inf
j→+∞

Fξi
εj ((uj)

ξi
z ,Ωξi

z ) < +∞

for Hn−1-a.e. z ∈ Πξi . Fix z ∈ Πξi satisfying (4.12) and (4.14), and extract a
subsequence {ûj}, depending on z, such that

(4.15) lim
j→+∞

Fξi
εj ((ûj)

ξi
z ,Ωξi

z ) = lim inf
j→+∞

Fξi
εj ((uj)

ξi
z ,Ωξi

z ) .

By (3.3), (4.12), and (4.15) we have

#S
u
ξi
z

≤ 1

cJ,W
lim inf
j→+∞

Fξi
εj ((uj)

ξi
z ,Ωξi

z ) .
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Since uξi
z (t) ∈ {−1, 1} for a.e. t ∈ Ωξi

z , we deduce that

|Duξi
z |(Ωξi

z ) ≤ 2

cJ,W
lim inf
j→+∞

Fξi
εj ((uj)

ξi
z ,Ωξi

z )

for Hn−1-a.e. z ∈ Πξi . This property holds for every i = 1, . . . , n. Therefore,
we can apply the characterization by slicing of BV functions given by [7, Remark
3.104] and we obtain from (4.13) that u ∈ BV (Ω). �

For A ⊂ Rn and η > 0 we recall the notation (3.1).

Lemma 4.3 (Interpolation inequality). There exists a constant c
(n)
J,W such that

(4.16) ε

∫
A

|∇u(x)|2dx ≤ c
(n)
J,WFε(u, (A)2εγJ )

for every ε > 0, for every open set A ⊂ R
n, and for every u ∈ W 1,2

loc ((A)2εγJ
), where

γJ is the constant in (2.1).

Proof. Fix ε, A, and u as in the statement of the lemma, and define B := (A)2εγJ .
Given ξ ∈ Sn−1, for Hn−1 a.e. z ∈ Πξ we have that (Aξ

z)
2εγJ ⊂ Bξ

z and the sliced

function uξ
z (see (4.4)) belongs to W 1,2

loc (B
ξ
z). Hence by Lemma 3.5 we have

ε

∫
Aξ

z

((uξ
z)

′(t))2dt ≤ c
(1)
J,WFξ

ε (u
ξ
z, B

ξ
z) .

Integrating this inequality in z over Πξ we obtain

ε

∫
A

(∇u(x) · ξ)2dx ≤ c
(1)
J,W

∫
Πξ

Fξ
ε (u

ξ
z, B

ξ
z) dHn−1(z) .

Integrating this inequality in ξ over Sn−1 and using Lemma 4.2, together with the
identity

∫
Sn−1 |a · ξ|2dHn−1(ξ) = ωn|a|2, we deduce

ωnε

∫
A

|∇u(x)|2dx ≤ c
(1)
J,WFε(u,B) .

This concludes the proof. �

5. The modification theorem

In this section we prove that we can modify an admissible sequence to match
a mollification of its limit in a neighborhood of the boundary, without increasing
the limit energy. This argument is typical in variational problems that involve
localization of the domain of integration, since it allows us to glue two admissible
sequences on overlapping domains. The main idea is to use the so-called De Giorgi’s
slicing lemma to partition an appropriate neighborhood of the boundary into several
layers and to select a layer Sj with least energy. We then use cut-off functions ϕj

with {0 < ϕj < 1} ⊂ Sj to glue the sequence to the mollification of its limit. The
proof of this modification result (see Theorem 5.1) is significantly more involved
than the corresponding one for local energies of the type (1.1) due to the presence
of the nonlocal regularization term Jε.

Given ν ∈ Sn−1, let

(5.1) wν(x) :=

{
1 if x · ν > 0 ,

−1 if x · ν < 0 .
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When ν = en, the superscript ν is omitted. Let θ ∈ C∞
c (Rn) be such that supp θ ⊂

B1 (0),
∫
Rn θ (x) dx = 1, and for every σ > 0 define the mollifier

(5.2) θσ (x) :=
1

σn
θ
(x
σ

)
, x ∈ R

n .

Note that supp θσ ⊂ Bσ (0). There exists a constant Cθ > 1, independent of σ,
such that

sup
Rn

|(wν ∗ θσ)− wν | ≤ 1 ,(5.3)

(wν ∗ θσ) (x) = 1 if x · ν > σ, (wν ∗ θσ) (x) = −1 if x · ν < −σ ,(5.4)

∇(wν ∗ θσ) (x) = 0 if |x · ν| > σ ,(5.5)

sup
Rn

|∇(wν ∗ θσ) | ≤
Cθ

σ
and sup

Rn

|∇2(wν ∗ θσ) | ≤
Cθ

σ2
.(5.6)

Let P be a bounded polyhedron of dimension n−1 containing 0 and let ν ∈ S
n−1

be normal to P . For every ρ > 0 we set

(5.7) Pρ := {x+ tν : x ∈ P , t ∈ (−ρ/2, ρ/2)} .

Theorem 5.1 (Modification theorem). Let P be a bounded polyhedron of dimen-
sion n − 1 containing 0, let ρ > 0, let εj → 0+, and let {uj} be a sequence in

W 1,2
loc (Pρ) ∩ L2(Pρ) such that uj → wν in L2(Pρ). Then there exists a constant

δPρ
> 0 depending only on Pρ such that for every 0 < δ < δPρ

there exists a se-

quence {vj} ⊂ W 1,2
loc (Pρ)∩L2(Pρ) such that vj → wν in L2(Pρ), vj = uj in (Pρ)2δ,

vj = wν ∗ θεj on Pρ \ (Pρ)δ, and

(5.8) lim sup
j→+∞

Fεj (vj , Pρ) ≤ lim sup
j→+∞

Fεj (uj , Pρ) + κ1δ ,

where κ1 > 0 is a constant independent of j, δ, and Pρ.

Remark 5.2. By choosing a suitable subsequence, under the same assumptions of
Theorem 5.1 we obtain that

(5.9) lim inf
j→+∞

Fεj (vj , Pρ) ≤ lim inf
j→+∞

Fεj (uj , Pρ) + κ1δ .

To prove Theorem 5.1 we use the estimate of the following lemma.

Lemma 5.3. Let ε > 0, let y ∈ Rn, let A be a measurable subset of Rn, and let
g : A → R be a measurable function such that

(5.10) 0 ≤ g(x) ≤ (a|x− y|)2 ∧ b2 for every x ∈ A

for some constants a and b. Then

(5.11)

∫
A

Jε(x− y)g(x) dx ≤ MJ

(
(εa) ∨ b

)2
,

where MJ is the constant given in (1.6) and α ∨ β := max{α, β}.
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Proof. Using (1.5) and the change of variables z = (x− y)/ε, we obtain∫
A

Jε(x− y)g(x) dx ≤ a2
∫
A∩Bε(y)

Jε(x− y)|x− y|2 dx

+ b2
∫
A\Bε(y)

Jε(x− y)
|x− y|

ε
dx

≤ ε2a2
∫
B1(0)

J(z)|z|2 dz + b2
∫
Rn\B1(0)

J(z)|z| dz .

The conclusion follows from (1.6). �

Lemma 5.4. Let 0 < ε < δ, let A and B be open sets in R
n, with dist(A,B) ≥ δ,

and let u ∈ W 1,2
loc (A ∪B). Then

(5.12) Jε(u,A,B) ≤ εω1

(ε
δ

)∫
A∪B

|∇u(x)|2dx ,

where

(5.13) ω1(t) := 2

∫
Rn\B1/t(0)

J(z)|z| dz → 0

as t → 0+.

Proof. Using a change of variables we obtain

Jε(u,A,B) = ε

∫
A

∫
B

Jε(x− y)|∇u(x)−∇u(y)|2dxdy

≤ 2ε

∫
B

(∫
A

Jε(x− y) dy
)
|∇u(x)|2dx

+ 2ε

∫
A

(∫
B

Jε(x− y) dx
)
|∇u(y)|2dy

≤ 2ε

∫
B

(∫
Rn\Bδ(x)

Jε(x− y) dy
)
|∇u(x)|2dx

+ 2ε

∫
A

(∫
Rn\Bδ(y)

Jε(x− y) dx
)
|∇u(y)|2dy

≤ 2ε

∫
Rn\B δ

ε
(0)

J(z) dz

∫
A∪B

|∇u(x)|2dx

≤ 2ε

∫
Rn\B δ

ε
(0)

J(z)|z| dz
∫
A∪B

|∇u(x)|2dx .

This leads to (5.12). The fact that ω1(t) → 0+ as t → 0+ follows from (1.6). �

Proof of Theorem 5.1. It is not restrictive to assume that δ < 1
4 , εj < δ2, and

8εjγJ < δ for every j. To simplify the notation, set ũj := wν ∗ θεj . From (5.5) and
(5.6) it follows that

(5.14) εj

∫
Pρ

|∇ũj(x)|2dx ≤ Cθ,P for every j

for some constant Cθ,P > 0 depending only on P and θ.
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If the right-hand side of (5.8) is infinite, then there is nothing to prove. Thus, by
extracting a subsequence (not relabeled), without loss of generality we may assume
that

(5.15) Fεj (uj , Pρ) ≤ M < +∞ for every j

for a suitable constant M > 0.
The functions vj will be constructed as

(5.16) vj := ϕjuj + (1− ϕj)ũj ,

where ϕj ∈ C∞
c (Rn) are suitable cut-off functions satisfying ϕj(x) = 1 for x ∈ (Pρ)δ

and ϕj(x) = 0 for x /∈ (Pρ)δ/2. Introduce the set

(5.17) S :=
{
x ∈ Pρ :

δ

2
< dist

(
x, ∂Pρ

)
≤ δ

}
.

To construct the cut-off functions we divide S into mj pairwise disjoint layers of

width δ
2mj

.

Consider the sequence {ηj} defined by

(5.18) ηj :=

∫
Pρ

(uj(x)−ũj(x))
2dx+

∫
Pρ

∫
Pρ\Bεj

(y)

Jεj (x−y)(uj(x)−ũj(x))
2dxdy .

By Fubini’s theorem, a change of variables, (1.6), and (5.18), we obtain∫
Pρ

∫
Pρ\Bεj

(y)

Jεj (x− y)(uj(x)− ũj(x))
2dxdy

=

∫
Pρ

(∫
Pρ\Bεj

(x)

Jεj (x− y) dy

)
(uj(x)− ũj(x))

2dx

≤
∫
Pρ

(uj(x)− ũj(x))
2dx

∫
Rn\B1(0)

J(z) dz ≤ MJ

∫
Pρ

(uj(x)− ũj(x))
2dx .

Hence, ηj → 0+ as j → +∞, because {uj} and {ũj} converge to wν in L2(Pρ).
Without loss of generality, we assume that ηj <

1
4 for every j. Let mj be the unique

integer such that

(5.19)

√
εj +

√
ηj

εj
< mj ≤

√
εj +

√
ηj

εj
+ 1 .

Since εj < 1 we have

(5.20)
1

mj
<

√
εj and mj < 2

√
εj +

√
ηj

εj

and

(5.21)
ηj

mjεj
≤ √

εj +
√
ηj and mjεj ≤ 2(

√
εj +

√
ηj) .

Divide S into mj pairwise disjoint layers of width δ
2mj

,

(5.22) Si
j :=

{
x ∈ Pρ :

δ

2
+

(i− 1)δ

2mj
< dist

(
x, ∂Pρ

)
<

δ

2
+

iδ

2mj

}
,

i = 1, . . . ,mj .
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For every open set A ⊂ Rd define

Gj(A) := Jεj (uj , A, Pρ) +Wεj (uj , A)

+ εj

∫
A

|∇uj(x)|2dx+
1

εj

∫
A

(uj(x)− ũj(x))
2dx(5.23)

+
1

εj

∫
A

∫
Pρ\Bεj

(y)

Jεj (x− y)(uj(x)− ũj(x))
2dxdy .

Hence, using (5.15), (5.18), and Lemma 4.3, we obtain

mj∑
i=1

Gj(S
i
j) ≤ Gj(S) ≤ K − 1 +

ηj
εj

,

where K := M + c
(n)
J,WM +1, and so there exists ij ∈ {1, . . . ,mj} such that, setting

Sj := S
ij
j ,

we have

(5.24) Gj(Sj) ≤
K − 1

mj
+

ηj
mjεj

≤ K
√
εj +

√
ηj ≤ K ,

where in the last inequalities we used (5.20), (5.21), and the fact that εj < 1
4 ,

ηj <
1
4 , and K ≥ 1. Define

Aj :=

{
x ∈ Pρ : dist(x, ∂Pρ) >

δ

2
+

ijδ

2mj

}
,

A∗
j :=

{
x ∈ Pρ : dist(x, ∂Pρ) >

δ

2
+

ijδ

2mj
− δ

4mj

}
,(5.25)

Bj :=

{
x ∈ Pρ : dist(x, ∂Pρ) <

δ

2
+

(ij − 1)δ

2mj

}
,

and let

ϕj(x) :=

∫
A∗

j

θ
δ

4mj

(x− y) dy .

Then ϕj ∈ C∞
c (Rn) and the following properties hold, thanks to (5.6) and (5.20):

ϕj = 1 in Aj , 0 ≤ ϕj ≤ 1 in Sj , ϕj = 0 in Bj ,(5.26)

sup |∇ϕj | ≤ 8
Cθ

δ

√
εj +

√
ηj

εj
≤ 8Cθ

δεj
, sup |∇2ϕj | ≤ 27

Cθ

δ2
εj + ηj

ε2j
,(5.27)

where Cθ is the constant given in (5.6).
Let vj be the function defined by (5.16). Since (Pρ)δ ⊂ Aj and Pρ\(Pρ)δ/2 ⊂ Bj ,

we have that vj = uj in (Pρ)δ and vj = ũj on Pρ \ (Pρ)δ/2. Moreover, since uj and

ũj converge to wν in L2(Pρ), we have that vj → wν in L2(Pρ). Note that

(5.28) ∇vj := ϕj∇uj + (1− ϕj)∇ũj + (uj − ũj)∇ϕj .
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Fix 0 < η < 1
2 . Using the inequality |a+ b|2 ≤ |a|2

1−η + |b|2
η , we obtain

|∇vj(x)−∇vj(y)|2 ≤ 1

1− η

∣∣ϕj(x)∇uj(x)− ϕj(y)∇uj(y)

+ (1− ϕj(x))∇ũj(x)− (1− ϕj(y))∇ũj(y)
∣∣2(5.29)

+
1

η

∣∣(uj(x)− ũj(x))∇ϕj(x)− (uj(y)− ũj(y))∇ϕj(y)
∣∣2 .

In view of the same inequality and the convexity of | · |2, we get∣∣ϕj(x)∇uj(x)− ϕj(y)∇uj(y) + (1− ϕj(x))∇ũj(x)− (1− ϕj(y))∇ũj(y)
∣∣2

=
∣∣ϕj(x)(∇uj(x)−∇uj(y)) + (ϕj(x)− ϕj(y))∇uj(y)

+ (1− ϕj(x))(∇ũj(x)−∇ũj(y))− (ϕj(x)− ϕj(y))∇ũj(y)
∣∣2

≤ 1

1− η

∣∣ϕj(x)(∇uj(x)−∇uj(y)) + (1− ϕj(x))(∇ũj(x)−∇ũj(y))
∣∣2

+
1

η

∣∣(ϕj(x)− ϕj(y))(∇uj(y)−∇ũj(y))
∣∣2

≤ ϕj(x)

1− η

∣∣∇uj(x)−∇uj(y)
∣∣2 + 1− ϕj(x)

1− η

∣∣∇ũj(x)−∇ũj(y)
∣∣2

+
1

η
(ϕj(x)− ϕj(y))

2
∣∣∇uj(y)−∇ũj(y)

∣∣2 .

This inequality and (5.29) yield

|∇vj(x)−∇vj(y)|2 ≤ ϕj(x)

(1− η)2
∣∣∇uj(x)−∇uj(y)

∣∣2
+

1− ϕj(x)

(1− η)2
∣∣∇ũj(x)−∇ũj(y)

∣∣2
+

2

η
(ϕj(x)− ϕj(y))

2
∣∣∇uj(y)−∇ũj(y)

∣∣2
+

1

η

∣∣(uj(x)− ũj(x))∇ϕj(x)− (uj(y)− ũj(y))∇ϕj(y)
∣∣2 ,

hence for every pair of open sets A, B ⊂ Pρ we obtain by (2.14)

Jεj (vj , A,B) ≤
Jεj (uj , A,B ∩ (Aj ∪ Sj))

(1− η)2
+

Jεj (ũj , A,B ∩ (Sj ∪Bj))

(1− η)2

+
2εj
η

∫
A

(∫
B

Jεj (x− y)(ϕj(x)− ϕj(y))
2dx

)
|∇uj(y)−∇ũj(y)|2dy

(5.30)

+
εj
η

∫
A

(∫
B

Jεj (x−y)
∣∣(uj(x)−ũj(x))∇ϕj(x)− (uj(y)−ũj(y))∇ϕj(y)

∣∣2dxdy.
By (2.17) we have

Jεj (vj , Pρ) = Jεj (uj , Aj) + Jεj (vj , Sj) + Jεj (ũj , Bj)

+ 2Jεj (vj , Sj , Aj ∪Bj) + 2Jεj (vj , Aj , Bj) .(5.31)

We now estimate all the terms but the first on the right-hand side of (5.31).
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By (5.30),

Jεj (vj , Sj) ≤
Jεj (uj , Sj)

(1− η)2
+

Jεj (ũj , Sj)

(1− η)2

(5.32)

+
2εj
η

∫
Sj

(∫
Sj

Jεj (x− y)(ϕj(x)− ϕj(y))
2dx

)
|∇uj(y)−∇ũj(y)|2dy

+
εj
η

∫
Sj

(∫
Sj

Jεj (x−y)
∣∣(uj(x)−ũj(x))∇ϕj(x)− (uj(y)−ũj(y))∇ϕj(y)

∣∣2dxdy.
From (2.17) and (5.5) it follows that

Jεj (ũj , Sj ∪Bj) = Jεj (ũj , (Sj ∪Bj) ∩ P2εj )

+ 2Jεj (ũj , (Sj ∪Bj) ∩ P2εj , (Sj ∪Bj) \ P2εj ) .(5.33)

By the mean value theorem and by (5.6), for every y ∈ Pρ the function g(x) :=

|∇ũj(x)−∇ũj(y)|2 satisfies (5.10) with a = Cθ

ε2j
and b = 2Cθ

εj
, hence by Lemma 5.3

we obtain ∫
Pρ

Jεj (x− y)|∇ũj(x)−∇ũj(y)|2dx ≤ 4C2
θMJ

1

ε2j
.

Therefore by (2.14) and (5.33) we have

Jεj (ũj , Sj , Sj ∪Bj) + Jεj (ũj , Bj) ≤ Jεj (ũj , Sj ∪Bj)

≤ Ln((Sj ∪Bj) ∩ P2εj ) 4C
2
θMJ

1

εj
.

We now use the fact that there exist two constants CPρ
> 0 and δPρ

> 0, depending
only on Pρ, such that

(5.34) Ln(((Pρ)δ1 \ (Pρ)δ2) ∩ Pε) ≤ CPρ
ε(δ2 − δ1)

for every 0 < ε < δ1 < δ2 < δPρ
. Therefore

(5.35) Jεj (ũj , Sj , Sj ∪Bj) + Jεj (ũj , Bj) ≤ 4CPρ
C2

θMJδ .

By the mean value theorem, (5.20), and (5.27), for every y ∈ Sj the function

g(x) = (ϕj(x) − ϕj(y))
2 satisfies (5.10) with a = 8Cθ

δεj
and b = 1 ≤ 8Cθ

δ , where we

used the inequalities Cθ ≥ 1 and δ ≤ 1. Hence, by Lemma 5.3 we have∫
Pρ

Jεj (x− y)(ϕj(x)− ϕj(y))
2dx ≤ 26

C2
θ

δ2
MJ .

In turn, by (5.5), (5.6), (5.23), and (5.24),

2εj
η

∫
Sj

(∫
Pρ

Jεj (x− y)(ϕj(x)− ϕj(y))
2dx

)
|∇uj(y)−∇ũj(y)|2dy

≤ 28
C2

θMJ

ηδ2
εj

∫
Sj

|∇uj(y)|2dy + 28
C4

θMJ

ηδ2
1

εj
Ln(Sj ∩ P2εj )(5.36)

≤ 28
C2

θMJ

ηδ2
(
K
√
εj +

√
ηj
)
+ 28CPρ

C4
θMJ

ηδ

√
εj ,

where in the last inequality we used the estimate

(5.37) Ln(Sj ∩ Pεj ) ≤ CPρ
δ
εj
mj

≤ CPρ
δεj

√
εj ,
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which follows from (5.20) and (5.34).
To treat the last term on the right-hand side of (5.32) we observe that

∣∣(uj(x)− ũj(x))∇ϕj(x)− (uj(y)− ũj(y))∇ϕj(y)
∣∣2

=
∣∣(uj(x)− ũj(x))(∇ϕj(x)−∇ϕj(y))

+ (uj(x)− ũj(x)− uj(y) + ũj(y))∇ϕj(y)
∣∣2

≤ 2(uj(x)− ũj(x))
2
∣∣∇ϕj(x)−∇ϕj(y)

∣∣2
+ 2(uj(x)− ũj(x)− uj(y) + ũj(y))

2
∣∣∇ϕj(y)

∣∣2 .

Integrating and using the symmetry of J , we obtain

εj
η

∫
Sj

(∫
Sj

Jεj (x−y)
∣∣(uj(x)−ũj(x))∇ϕj(x)− (uj(y)−ũj(y))∇ϕj(y)

∣∣2dxdy
≤ 2εj

η

∫
Sj

(∫
Sj

Jεj (x− y)|∇ϕj(x)−∇ϕj(y)|2dx
)
(uj(y)− ũj(y))

2dy

(5.38)

+
2εj
η

∫
Sj

(∫
Sj

Jεj (x− y)(uj(x)− ũj(x)− uj(y) + ũj(y))
2dx

)
|∇ϕj(y)|2dy .

By the mean value theorem and (5.27), for every y ∈ Sj the function g(x) =

|∇ϕj(x) − ∇ϕj(y)|2 satisfies (5.10) for every x ∈ Rn, with a = 27Cθ

δ2
εj+ηj

ε2j
≤

26Cθ

δ2

√
εj+

√
ηj

ε2j
and b = 24Cθ

δ

√
εj+

√
ηj

εj
≤ 26Cθ

δ2

√
εj+

√
ηj

εj
, where we used the inequalities

δ ≤ 1, εj ≤ 1
4 , and ηj ≤ 1

4 . Hence, by Lemma 5.3 we have

∫
Pρ

Jεj (x− y)|∇ϕj(x)−∇ϕj(y)|2dx ≤ 213
C2

θMJ

δ4
εj + ηj

ε2j
.

In turn, by (5.23) and (5.24),

2εj
η

∫
Sj

(∫
Pρ

Jεj (x− y)|∇ϕj(x)−∇ϕj(y)|2dx
)
(uj(y)− ũj(y))

2dy

≤ 214
C2

θMJ

ηδ4
(εj + ηj)

1

εj

∫
Sj

(uj(y)− ũj(y))
2dy(5.39)

≤ 214
C2

θMJK

ηδ4
(εj + ηj) .
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Since J is even, by Fubini’s theorem, a change of variables, and (5.27),

2εj
η

∫
Sj

(∫
Pρ

Jεj (x− y)(uj(x)− ũj(x)− uj(y) + ũj(y))
2dx

)
|∇ϕj(y)|2dy

≤ 28C2
θ

ηδ2
εj + ηj

εj

∫
Sj

(∫
Pρ∩Bεj

(y)

Jεj (x− y)(uj(x)− ũj(x)− uj(y) + ũj(y))
2dx

)
dy

+
28C2

θ

ηδ2
εj + ηj

εj

∫
Sj

(∫
Pρ\Bεj

(y)

Jεj (x− y)(uj(x)− ũj(x)− uj(y) + ũj(y))
2dx

)
dy

≤ 28C2
θ

ηδ2
εj + ηj

εj

∫
Bεj

(0)

Jεj (z)
(∫

Sj

(uj(y + z)− ũj(y + z)− uj(y) + ũj(y))
2dy

)
dz

+
29C2

θ

ηδ2
εj + ηj

εj

∫
Sj

(∫
Pρ\Bεj

(y)

Jεj (x− y)(uj(x)− ũj(x))
2dx

)
dy

(5.40)

+
29C2

θ

ηδ2
εj + ηj

εj

∫
Sj

(∫
Pρ\Bεj

(y)

Jεj (x− y)dx
)
(uj(y)− ũj(y))

2dy .

Since εj < δ/4, by (5.20) and (5.22) for y ∈ Sj and |z| ≤ εj the segment joining y
and y + z is contained in (Pρ)δ/4, and so by the mean value theorem for |z| ≤ εj ,∫

Sj

(uj(y + z)− ũj(y + z)− uj(y) + ũj(y))
2dy ≤ |z|2

∫
(Pρ)δ/4

|∇uj(y)−∇ũj(y)|2dy .

Therefore, recalling that 2εjγJ < δ/4, it follows from (1.5), (1.6), (5.14), and
Lemma 4.3, that

28C2
θ

ηδ2
εj+ηj
εj

∫
Bεj

(0)

Jεj (z)
(∫

Sj

(uj(y+z)−ũj(y+z)−uj(y)+ũj(y))
2dy

)
dz

≤ 28C2
θ

ηδ2
εj + ηj

εj

∫
Bεj

(0)

Jεj (z)|z|2dz
∫
(Pρ)δ/4

|∇uj(y)−∇ũj(y)|2dy

≤ 29C2
θ

ηδ2
(εj + ηj)εj

∫
B1(0)

J(z)|z|2dz
∫
(Pρ)δ/4

|∇uj(y)|2dy(5.41)

+
29C2

θ

ηδ2
(εj + ηj)εj

∫
B1(0)

J(z)|z|2dz
∫
(Pρ)δ/4

|∇ũj(y)|2dy

≤
29C2

θMJc
(n)
J,WM

ηδ2
(εj + ηj) +

29C2
θCθ,PMJ

ηδ2
(εj + ηj) .

By (5.23) and (5.24)

29C2
θ

ηδ2
εj + ηj

εj

∫
Sj

(∫
Pρ\Bεj

(y)

Jεj (x− y)(uj(x)− ũj(x))
2dx

)
dy(5.42)

≤ 29C2
θK

ηδ2
(εj + ηj) .
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Using (1.6), (5.23), and (5.24) we obtain

29C2
θ

ηδ2
εj + ηj

εj

∫
Sj

(∫
Pρ\Bεj

(y)

Jεj (x− y)dx
)
(uj(y)− ũj(y))

2dy

≤ 29C2
θMJ

ηδ2
εj + ηj

εj

∫
Sj

(uj(y)− ũj(y))
2dy ≤ 29C2

θMJK

ηδ2
(εj + ηj) .(5.43)

Combining (5.32), (5.35), (5.36), (5.38), (5.39), (5.40), (5.41), (5.42), and (5.43),
we have

(5.44) Jεj (vj , Sj) + Jεj (ũj , Bj) ≤
Jεj (uj , Sj)

(1− η)2
+

4CPρ
C2

θMJ

(1− η)2
δ + σ

(1)
j ,

where σ
(1)
j → 0+ as j → +∞.

Next we consider the term Jεj (vj , Sj , Aj∪Bj) in (5.31) . By (5.30), using (5.26),

Jεj (vj , Sj , Aj ∪Bj) ≤
Jεj (uj , Sj , Aj)

(1− η)2
+

Jεj (ũj , Sj , Bj)

(1− η)2

+
2εj
η

∫
Sj

(∫
Aj∪Bj

Jεj (x− y)(ϕj(x)− ϕj(y))
2dx

)
|∇uj(y)−∇ũj(y)|2dy

+
εj
η

∫
Sj

∫
Aj∪Bj

Jεj (x−y)(uj(y)−ũj(y))
2|∇ϕj(y)|2dxdy .(5.45)

Since η < 1/2, by (5.23) and (5.24) we have

(5.46)
Jεj (uj , Sj , Aj)

(1− η)2
≤ 4Jεj (uj , Sj , Aj) ≤ 4K

√
εj + 4

√
ηj .

The second and third terms on the right-hand side of (5.45) can be estimated
using (5.35) and (5.36). For the last term, we use the fact that ∇ϕj(x) = 0 if
x ∈ Aj ∪Bj . Hence, by a change of variables, from (1.6), (5.23), (5.24), (5.27) and
from the inequalities δ ≤ 1, εj ≤ 1, and ηj ≤ 1, we obtain

εj
η

∫
Sj

∫
Aj∪Bj

Jεj (x−y)(uj(y)−ũj(y))
2|∇ϕj(y)|2dxdy

≤ εj
η

∫
Sj

∫
Bεj

(y)

Jεj (x−y)(uj(y)−ũj(y))
2|∇ϕj(y)−∇ϕj(x)|2dxdy

+
εj
η

∫
Sj

∫
Pρ\Bεj

(y)

Jεj (x−y)(uj(y)−ũj(y))
2|∇ϕj(y)|2dxdy

≤ 214
C2

θ

ηδ4
(εj + ηj)

2

ε3j

∫
Sj

(∫
Bεj

(y)

Jεj (x−y)|x− y|2dx
)
(uj(y)−ũj(y))

2dy

+
27C2

θ

ηδ2
εj + ηj

εj

∫
Sj

(∫
Pρ\Bεj

(y)

Jεj (x−y) dx
)
(uj(y)−ũj(y))

2dxdy(5.47)

≤ 214
C2

θMJ

ηδ4
εj+ηj
εj

∫
Sj

(uj(y)−ũj(y))
2dy ≤ 214

C2
θMJK

ηδ4
(εj+ηj) .
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Therefore, by (5.35), (5.36), (5.45), (5.46), and (5.47) we get

(5.48) Jεj (vj , Sj , Aj ∪Bj) ≤
4CPρ

C2
θMJ

(1− η)2
δ + σ

(2)
j ,

where σ
(2)
j → 0+ as j → +∞.

We now estimate the term Jεj (vj , Aj , Bj) in (5.31). Since vj = uj in Aj , vj =

ũj = 1 in Bj , and dist(Aj , Bj) = δ
2mj

, by a change of variables and in view of

(5.14), (5.21), and Lemmas 4.3 and 5.4, for j large enough we obtain

Jεj (vj , Aj , Bj) ≤ 2ω1

(
2
mjεj
δ

)(
εj

∫
Bj

|∇ũj(x)|2dx+ εj

∫
Aj

|∇uj(y)|2dy
)

≤ 2ω1

(
4

√
εj +

√
ηj

δ

)
(Cθ,P +c

(n)
J,WM) .(5.49)

Combining (5.31), (5.35), (5.44), (5.48), and (5.49) we deduce

(5.50) Jεj (vj , Pρ) ≤
Jεj (uj , Pρ)

(1− η)2
+

12CPρ
C2

θMJ

(1− η)2
δ + σ

(3)
j ,

where σ
(3)
j → 0+ as j → +∞.

Next we consider the term Wεj (vj , Pρ). Fix x ∈ Sj with x · ν > εj , so that
ũj(x) = 1. By (2.5) and (2.6) we have W (vj(x)) ≤ W (uj(x)) if uj(x) ≥ 1 − aW .
Let s0 < −1 be such that

(5.51) W (s0) = max
[−1,1]

W =: MW .

If uj(x) ≤ s0, then either uj(x) ≤ vj(x) ≤ −1 or −1 ≤ vj(x) ≤ 1. In both cases we
get W (vj(x)) ≤ W (uj(x)), either by (2.6) or by (5.51). If s0 < uj(x) < 1 − aW ,
then s0 < vj(x) < 1 and we have

W (vj(x)) ≤ W (s0) = MW

by (2.6) and (5.51). We conclude that

W (vj(x)) ≤ W (uj(x)) +MW

for every x ∈ Sj with x · ν > εj . Integrating we obtain

1

εj

∫
Sj∩{x·ν>εj}

W (vj(x)) dx ≤ 1

εj

∫
Sj∩{x·ν>σj}

W (uj(x)) dx

+
MW

εj
Ln(Sj ∩ {|uj − 1| > aW } ∩ {x · ν > εj})

≤ 1

εj

∫
Sj∩{x·ν>εj}

W (uj(x)) dx+
MW

εja2W

∫
Sj∩{x·ν>εj}

(uj(x)− 1)2dx.

A similar inequality can be obtained for Sj ∩ {x · ν < −εj}, and adding these two
inequalities we conclude that

1

εj

∫
Sj\Pεj

W (vj(x)) dx ≤ 1

εj

∫
Sj\Pεj

W (uj(x)) dx

+
MW

a2W

1

εj

∫
Sj\Pεj

(uj(x)− ũj(x))
2dx ,(5.52)

where in the last inequality we used the fact that ũj = wν on Pρ \ Pεj .
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On the other hand, since W (vj(x)) ≤ W (uj(x)) + MW for every x ∈ Pρ, inte-
grating over Sj ∩ Pεj and using (5.37), we obtain

1

εj

∫
Sj∩Pεj

W (vj(x)) dx ≤ 1

εj

∫
Sj∩Pεj

W (uj(x)) dx+
MW

εj
Ln(Sj ∩ Pεj )

≤ 1

εj

∫
Sj∩Pεj

W (uj(x)) dx+ CPρ
MW δ

√
εj .(5.53)

Adding (5.52) and (5.53) gives

1

εj

∫
Sj

W (vj(x)) dx ≤ 1

εj

∫
Sj

W (uj(x)) dx

+
MW

a2W

1

εj

∫
Sj

(uj(x)− ũj(x))
2dx+ CPρ

MW δ
√
εj ,

hence by (5.23) and (5.24) we have

1

εj

∫
Sj

W (vj(x)) dx ≤ 1

εj

∫
Sj

W (uj(x)) dx

+
MW

a2W
(K

√
εj +

√
ηj) + CPρ

MW δ
√
εj .(5.54)

By (5.3), (5.4), (5.34), and (5.51) we get

1

εj

∫
Bj

W (vj(x)) dx =
1

εj

∫
Bj

W (ũj(x)) dx

≤ MW

εj
Ln(Bj ∩ Pεj ) ≤ CPρ

MW δ .(5.55)

From (5.54) and (5.55) it follows that

(5.56)
1

εj

∫
Pρ

W (vj(x)) dx ≤ 1

εj

∫
Pρ

W (u(x)) dx+ CPρ
MW δ + σ

(4)
j ,

where σ
(4)
j → 0+ as j → +∞.

Adding (5.50) and (5.56) we obtain

Fεj (vj , Pρ) ≤
Fεj (uj , Pρ)

(1− η)2
+ CPρ

(48C2
θMJ +MW )δ + σ

(5)
j ,

where σ
(5)
j → 0+ as j → +∞. This implies that

lim sup
j→+∞

Fεj (vj , Pρ) ≤
1

(1− η)2
lim sup
j→+∞

Fεj (uj , Pρ) + κ1δ ,

where κ1 is a constant independent of j, δ, and Pρ. Passing to the limit as η → 0+

we obtain (5.8). �

6. Gamma liminf inequality

In this section we prove the Γ-liminf inequality. The proof relies on the blow-
up method introduced in [26], which reduces the limiting function to a piecewise
constant function in Xν (see (1.12)) whose jump set is a hyperplane with normal
ν, and the domain of integration to a cube with two of its faces parallel to ν.
The modification Theorem 5.1 is used to match the approximating sequence on the
boundary of the cube with the mollification of this jump function, and in turn, we
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can show that in the limit the energy in the cube is bounded below by ψ(ν) (see
(1.13)). Again, the presence of the nonlocal term Jε adds remarkable technical
difficulties to this argument.

Theorem 6.1 (Γ-liminf). Let εj → 0+ and let {uj} be a sequence in W 1,2
loc (Ω) ∩

L2(Ω) such that uj → u in L2(Ω) and

(6.1) lim inf
j→+∞

Fεj (uj ,Ω) < +∞ .

Then u ∈ BV (Ω; {−1, 1}) and

(6.2) lim inf
j→+∞

Fεj (uj ,Ω) ≥
∫
Su

ψ(νu) dHn−1 ,

where ψ is defined by (1.13).

Given ν ∈ Sn−1, let ν1, . . . , νn be an orthonormal basis in Rn with νn = ν, let

(6.3) Qν
ρ := {x ∈ R

n : |x · νi| < ρ/2 , i = 1, . . . , n} , Q̂ν
ρ := R

n \Qν
ρ ,

and let

Sν
ρ := {x ∈ R

n : |x · ν| < ρ/2} , Ŝν
ρ := R

n \ Sν
ρ .

When ν1, . . . , νn is the canonical basis e1, . . . , en in Rn we omit the superscript ν
in the above notation.

We recall the definition of the sets V ν andXν in (1.10) and in (1.12), respectively.
We will use these sets in what follows. Further, as in Section 5, θε is the standard
mollifier (see (5.2)), and we set

(6.4) ũε := wν ∗ θε ,

where wν is the function defined in (5.1), with ν ∈ Sn−1.

Lemma 6.2. Let 0 < ε < δ < 1/3, let Cδ := Q1+δ \ Q1−δ, and let ũε be the
function in (6.4), with ν = en. Then

Jε(ũε, Cδ) ≤ κ2δ

for some constant κ2 > 0 independent of ε and δ.

Proof. For every σ > 0 define Cσ
δ := Cδ ∩ {|xn| < σ}, Ĉσ

δ := Cδ ∩ {|xn| ≥ σ}, and
write

Cδ × Cδ = (C2ε
δ × C2ε

δ ) ∪ (Cε
δ × Ĉ2ε

δ ) ∪ (Ĉ2ε
δ × Cε

δ ) ∪ (Ĉε
δ × Ĉε

δ ) .

Since J is even, we have

(6.5) Jε(ũε, Cδ) ≤ Jε(ũε, C
2ε
δ ) + 2Jε(ũε, C

ε
δ , Ĉ

2ε
δ ) + Jε(ũε, Ĉ

ε
δ ) .

By (5.2) we have that ∇ũε = 0 on Ĉε
δ and so

(6.6) Jε(ũε, Ĉ
ε
δ ) = 0 .

We now estimate the first term on the right-hand side of (6.5). Since ε∇ũε and
ε2∇2ũε are bounded in L∞ uniformly with respect to ε, there exists a constant
c > 0 such that

|∇ũε(x)−∇ũε(y)|2 ≤ c

ε2

(∣∣∣x− y

ε

∣∣∣ ∧ ∣∣∣x− y

ε

∣∣∣2)
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for every x, y ∈ Rn. Therefore, by the change of variables z = (x− y)/ε and (1.6)
we get

Jε(ũε, C
2ε
δ ) ≤ c

ε

∫
C2ε

δ

∫
C2ε

δ

Jε(x− y)
(∣∣∣x− y

ε

∣∣∣ ∧ ∣∣∣x− y

ε

∣∣∣2) dxdy(6.7)

≤ cMJ

ε
Ln(C2ε

δ ) ≤ 2n+1(n− 1)cMJδ ,

where we used the fact that Ln(C2ε
δ ) ≤ (n− 1)(1 + δ)n−28δε.

Next we study the second term on the right-hand side of (6.5). Since ∇ũε = 0

on Ĉ2ε
δ and ε∇ũε is bounded in L∞ uniformly with respect to ε, there exists a

constant c > 0 such that

Jε(ũε, C
ε
δ , Ĉ

2ε
δ ) = ε

∫
Cε

δ

(∫
Ĉ2ε

δ

Jε(x− y)dx
)
|∇ũε(y)|2dy(6.8)

≤ c

ε
Ln(Cε

δ )

∫
Rn\B1(0)

J(z) dz ≤ 2n(n− 1)cMJδ ,

where we used again the change of variables z = (x−y)/ε and (1.6). The conclusion
follows by combining (6.5)–(6.8). �

The following result will be crucial in the proof of the Γ-liminf inequality.

Lemma 6.3. Let 0 < ε < δ < 1/3, let u ∈ Xν be such that u = ũε in Qν
1 \Qν

1−δ,
where ũε is the function defined in (6.4). Then there exist two constants κ3 and
κ4, depending only on the dimension n of the space, such that

Jε(u, V
ν ,Rn)− Jε(u,Q

ν
1) ≤ κ2δ +

(
κ3ω1

(ε
δ

)
+ κ4ω1(ε)

)
ε

∫
Qν

1

|∇u(x)|2dx ,

where κ2 is the constant in Lemma 6.2, and ω1 is the function defined in (5.13).

Proof. Without loss of generality, we may assume that ν = en, the n-th vector of
the canonical basis. For simplicity we omit the superscript ν in the notation for
Qν

ρ, Q̂
ν
ρ , S

ν
ρ , Ŝ

ν
ρ , V

ν , Xν , wν , and the subscript ρ when ρ = 1. Write

V × R
n = ((V \Q)×Q) ∪ ((V \Q)× Q̂) ∪ (Q×Q) ∪ (Q× Q̂)(6.9)

⊂ (Ŝ×Q) ∪ ((V \Q)×S) ∪ (Ŝ×Ŝ) ∪ (Q×Q) ∪ (Q×(S\Q)) ∪ (Q×Ŝ) .

Since J is even we have

Jε(u, V,R
n)− Jε(u,Q) ≤ 2ε

∫
Ŝ

(∫
Q1−δ

Jε(x− y)|∇u(x)|2dx
)
dy

+ ε

∫
V \Q

(∫
S1−δ

Jε(x− y)|∇u(x)|2dx
)
dy(6.10)

+ ε

∫
Q

(∫
S\Q

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy ,

where we have used the equalities u = ±1 and ∇u = 0 in Ŝ1−δ, which follow from
the facts that u ∈ X and u = ũε on Q1 \Q1−δ (see (5.4), (5.5), and the inequalities
0 < ε < δ < 1/3).
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We now estimate the first term on the right-hand side of (6.10). By Lemma 5.4

and because ∇u = 0 in Ŝ, we have

(6.11) ε

∫
Ŝ

(∫
Q1−δ

Jε(x− y)|∇u(x)|2dx
)
dy ≤ εω1

(ε
δ

)∫
Q1−δ

|∇u(x)|2dx .

To estimate the second term on the right-hand side of (6.10), we identify Zn

with Z
n−1 × Z so that for α = (α1, . . . , αn−1) ∈ Z

n−1 and β ∈ Z we have (α, β) =
(α1, . . . , αn−1, β) ∈ Zn. Write

S \Q3 =
⋃

α∈Zn−1, |α|∞≥2

((α, 0) +Q) , V =
⋃
β∈Z

((0, β) +Q) ,

where |α|∞ := max{|α1|, . . . , |αn−1|}. Then

ε

∫
V \Q

(∫
S1−δ

Jε(x− y)|∇u(x)|2dx
)
dy

≤ ε

∫
V \Q

(∫
S1−δ∩Q3

Jε(x− y)|∇u(x)|2dx
)
dy(6.12)

+
∑

α∈Zn−1, |α|∞≥2

∑
β∈Z

ε

∫
(0,β)+Q

(∫
(α,0)+Q

Jε(x− y)|∇u(x)|2dx
)
dy .

By Lemma 5.4 and because ∇u = 0 in V \Q, we have

ε

∫
V \Q

(∫
S1−δ∩Q3

Jε(x− y)|∇u(x)|2dx
)
dy ≤ εω1

(ε
δ

)∫
S1−δ∩Q3

|∇u(x)|2dx .

To estimate the second term on the right-hand side of (6.12), we use the change of
variables ζ = x− y and observe that for x ∈ (α, 0) +Q and y ∈ (0, β) +Q we have
ζ ∈ (α,−β) +Q2. Therefore, we obtain∫

(0,β)+Q

(∫
(α,0)+Q

Jε(x− y)|∇u(x)|2dx
)
dy

=

∫
(α,0)+Q

|∇u(x)|2
(∫

(0,β)+Q

Jε(x− y) dy
)
dx

≤
∫
(α,0)+Q

|∇u(x)|2dx
∫
(α,−β)+Q2

Jε(ζ) dζ

=

∫
Q

|∇u(x)|2dx
∫
(α,−β)+Q2

Jε(ζ) dζ ,

where in the last equality we used the periodicity of u ∈ X. Hence∑
α∈Zn−1, |α|∞≥2

∑
β∈Z

ε

∫
(0,β)+Q

(∫
(α,0)+Q

Jε(x− y)|∇u(x)|2dx
)
dy

≤ ε

∫
Q

|∇u(x)|2dx
∑

α∈Zn−1, |α|∞≥2

∑
β∈Z

∫
(α,−β)+Q2

Jε(ζ) dζ

≤ 2nε

∫
Q

|∇u(x)|2dx
∫
Q̂2

Jε(ζ) dζ .

In the last inequality we used the fact that each point of Q̂2 belongs to at most 2n

cubes of the form (α,−β) +Q2 for α ∈ Zn−1, with |α|∞ ≥ 2, and β ∈ Z. After the
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change of variables z = ζ/ε we obtain (see (5.13))∫
Q̂2

Jε(ζ) dζ ≤
∫
Rn\B1/ε(0)

J(z) dz ≤ ω1(ε) .

Combining the last five inequalities and using the periodicity of u, from (6.12) we
obtain

ε

∫
V \Q

(∫
S1−δ

Jε(x− y)|∇u(x)|2dx
)
dy(6.13)

≤
(
ω1

(ε
δ

)
+ 2nω1(ε)

)
ε

∫
S∩Q3

|∇u(x)|2dx

= 3n−1
(
ω1

(ε
δ

)
+ 2nω1(ε)

)
ε

∫
Q

|∇u(x)|2dx .

Finally, to estimate the last term on the right-hand side of (6.10), we use the
inclusion

Q× (S \Q) ⊂
(
Q× (S \Q3)

)
∪
(
Q1−δ × (S ∩ (Q3 \Q1)

)
∪
(
(Q1 \Q1−δ)× (Q1+δ \Q1)

)
∪
(
(Q1 \Q1−δ)× (S ∩ (Q3 \Q1+δ))

)
and we write

ε

∫
Q

(∫
S\Q

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy

≤ ε

∫
Q

(∫
S\Q3

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy

+ ε

∫
Q1−δ

(∫
S∩(Q3\Q1)

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy(6.14)

+ ε

∫
Q1\Q1−δ

(∫
Q1+δ\Q1

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy

+ ε

∫
Q1\Q1−δ

(∫
S∩(Q3\Q1+δ)

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy .

By Lemma 5.4,

ε

∫
Q1−δ

(∫
S∩(Q3\Q1)

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy

+ ε

∫
Q1\Q1−δ

(∫
S∩(Q3\Q1+δ)

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy(6.15)

≤ 2εω1

(ε
δ

)∫
S∩Q3

|∇u(x)|2dx = 2·3n−1εω1

(ε
δ

)∫
Q

|∇u(x)|2dx ,

where in the last equality we used the periodicity of u. On the other hand, by
Lemma 6.2

(6.16) ε

∫
Q1\Q1−δ

(∫
Q1+δ\Q1)

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy ≤ κ2δ .
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It remains to study the first term on the right-hand side of (6.14). We have

ε

∫
Q

(∫
S\Q3

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy

≤ 2ε

∫
Q

(∫
S\Q3

Jε(x− y)|∇u(x)|2dx
)
dy(6.17)

+ 2ε

∫
Q

(∫
S\Q3

Jε(x− y) dx
)
|∇u(y)|2dy .

To estimate the first term on the right-hand side of (6.17) we write

2ε

∫
Q

(∫
S\Q3

Jε(x− y)|∇u(x)|2dx
)
dy

= 2ε
∑

α∈Zn∩(S\Q3)

∫
Q

(∫
α+Q

Jε(x− y)|∇u(x)|2dx
)
dy .

By Fubini’s theorem and the change of variables ζ = x− y, we get∫
Q

(∫
α+Q

Jε(x− y)|∇u(x)|2dx
)
dy =

∫
α+Q

(∫
Q

Jε(x− y) dy
)
|∇u(x)|2dx

≤
∫
α+Q

(∫
x−Q

Jε(ζ) dζ
)
|∇u(x)|2dx ≤

∫
Q

|∇u(x)|2dx
∫
α−Q2

Jε(ζ) dζ ,

where in the last inequality we have used the periodicity of u and the inclusion
x−Q ⊂ α−Q2 for x ∈ α+Q. Hence,

2ε
∑

α∈Zn∩(S\Q3)

∫
Q

(∫
α+Q

Jε(x− y)|∇u(x)|2dx
)
dy

≤ 2ε

∫
Q

|∇u(x)|2dx
∑

α∈Zn∩(S\Q3)

∫
α−Q2

Jε(ζ) dζ

≤ 2nε

∫
Q

|∇u(x)|2dx
∫
Q̂2

Jε(ζ) dζ ,

where in the last inequality we used the fact that each point of Q̂2 belongs to at
most 2n−1 cubes of the form α − Q2 for α ∈ Zn ∩ (S \ Q3). After the change of
variables z = ζ/ε, we obtain

(6.18) 2ε

∫
Q

(∫
S\Q3

Jε(x− y)|∇u(x)|2dx
)
dy ≤ 2nε

∫
Q

|∇u(x)|2dx
∫
Rn\B1/ε(0)

J(z)|z| dz .

We now estimate the second term on the right-hand side of (6.17). With the
change of variables z = (x− y)/ε, we have

(6.19) 2ε

∫
Q

(∫
S\Q3

Jε(x− y) dx
)
|∇u(y)|2dy ≤ 2ε

∫
Rn\B1/ε(0)

J(z)|z| dz
∫
Q

|∇u(y)|2dy .

Combining the inequalities (6.17)–(6.19), we obtain

(6.20) 2ε

∫
Q

(∫
S\Q3

Jε(x− y)|∇u(x)|2dx
)
dy ≤ 2nεω1(ε)

∫
Q

|∇u(x)|2dx .

The conclusion follows from (6.11), (6.13), (6.14), (6.15), (6.16), and (6.20). �
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Proof of Theorem 6.1. By Theorem 1.1 we deduce that u ∈ BV (Ω; {−1, 1}). Let
μj be the nonnegative Radon measure on Ω defined by

(6.21) μj(B) :=
1

ε

∫
B

W (uj(x)) dx+ ε

∫
B

∫
Ω

Jε(x− y)|∇uj(x)−∇uj(y)|2dxdy

for every Borel set B ⊂ Ω. Since μj(Ω) = Fεj (uj ,Ω), by (6.1) μj(Ω) is bounded
uniformly with respect to j. Extracting a subsequence (not relabeled), we may

assume that the liminf in (6.2) is a limit and that μj
∗
⇀ μ weakly∗ in the space

Mb(Ω) of bounded Radon measures on Ω, considered, as usual, as the dual of the
space C0(Ω) of continuous functions on Ω vanishing on ∂Ω. Let g be the density
of the absolutely continuous part of μ with respect to Hn−1 restricted to Su. Then
the inequality (6.2) will follow from

(6.22) g(x0) ≥ ψ(νu(x0)) for Hn−1 a.e. x0 ∈ Su .

To prove this inequality, fix x0 ∈ Su such that, setting ν := νu(x0), we have

lim
ρ→0+

1

ρn

∫
Qν

ρ

|u(x+ x0)− wν(x+ x0)| dx = 0 ,(6.23)

g(x0) = lim
ρ→0+

μ(x0 +Qν
ρ)

ρn−1
< +∞ .(6.24)

It is well known (see [23, Theorem 3 in Section 5.9]) that (6.23) and (6.24) hold for

Hn−1 a.e. x0 ∈ Su. Since μj
∗
⇀ μ weakly∗ in Mb(Ω), by (2.15) and (6.21), using a

change of variables, we get

g(x0) = lim
ρ→0+

μ(x0 +Qν
ρ)

ρn−1
≥ lim sup

ρ→0+
lim sup
j→+∞

μj(x0 +Qν
ρ)

ρn−1

≥ lim sup
ρ→0+

lim sup
j→+∞

Fεj (uj , x0 +Qν
ρ)

ρn−1
= lim sup

ρ→0+
lim sup
j→+∞

Fηj,ρ
(vj,ρ, Q

ν
1) ,

where ηj,ρ := εj/ρ and vj,ρ(y) := uj(x0 + ρy). On the other hand, since uj → u in
L2(Ω), by (6.23) we obtain

0 = lim
ρ→0+

lim
j→+∞

1

ρn

∫
Qν

ρ

|uj(x+ x0)− wν(x+ x0)| dx

= lim
ρ→0+

lim
j→+∞

∫
Qν

1

|vj,ρ(x)− wν(x)| dx .

Since for every ρ > 0
lim

j→+∞
ηj,ρ = 0 ,

by a diagonal argument we can choose ρj → 0+ such that, setting ηj := ηj,ρj
and

vj := vj,ρj
, we have ηj → 0+, vj → wν in L1(Qν

1), and

(6.25) g(x0) ≥ lim sup
j→+∞

Fηj
(vj , Q

ν
1) .

The finiteness of g(x0) and Theorem 1.1 yield that vj → wν in L2(Qν
1). We can

now apply the modification Theorem 5.1: there exists δν > 0 such that for every
0 < δ < δν we obtain a sequence {wj} ⊂ W 1,2

loc (Q
ν
1) ∩ L2(Qν

1) with wj → wν in
L2(Qν

1), wj = wν ∗ θεj in Qν
1 \Qν

1−δ, and

(6.26) lim sup
j→+∞

Fηj
(vj , Q

ν
1) ≥ lim sup

j→+∞
Fηj

(wj , Q
ν
1)− κ1δ ,
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where, we recall, the constant κ1 is independent of δ. Extend wj to Rn in such a
way that wj(x) = ±1 for ±x · ν ≥ 1

2 and w(x + νi) = w(x) for all x ∈ R
n and for

all i = 1, . . . , n − 1, where νi are the vectors in (1.11). Then wj ∈ Xν and so we
can apply Lemma 6.3 to obtain

lim sup
j→+∞

Fηj
(wj , Q

ν
1) ≥ lim sup

j→+∞
(Wηj

(wj , Q
ν
1) + Jηj

(wj , V
ν ,Rn))(6.27)

− κ2δ − lim sup
j→+∞

(
κ3ω1

(ηj
δ

)
+ κ4ω1(ηj)

)
ηj

∫
Qν

1

|∇wj(x)|2dx ,

where we recall that Wηj
is defined in (2.13). By (1.13),

(6.28) Wηj
(wj , Q

ν
1) + Jηj

(wj , V
ν ,Rn) ≥ ψ(ν)

for every j with ηj < 1. By (6.25) and (6.25) the finiteness of g(x0) implies that
Fηj

(wj , Q
ν
1) is bounded uniformly with respect to j. Therefore Lemma 4.3, together

with the periodicity of wj , proves the same property holds for ηj
∫
Qν

1
|∇wj(x)|2dx.

Together with (5.13), (6.25), (6.26), (6.27), and (6.28), this shows that g(x0) ≥
ψ(ν)−κ1δ−κ2δ for every 0 < δ < δν . Taking the limit as δ → 0+ we obtain (6.22).
This concludes the proof of the theorem. �

7. Gamma limsup inequality

In this section we prove the Γ-limsup inequality. As usual in this type of singu-
larly perturbed problems, the Γ-limsup inequality is first established for a piecewise
constant function whose jump set is a hyperplane with normal ν. The recovery se-
quence is obtained by selecting in Xν (see (1.12)) an almost optimal function for
ψ(ν) (see (1.13)) and making it oscillate very fast in the directions orthogonal to ν.
We then consider BV functions whose jump sets are polyhedral, and finally we use
a density argument to obtain the result for arbitrary functions u ∈ BV (Ω; {−1, 1}).

Fix εj → 0+. For every u ∈ BV (Ω; {−1, 1}) we define

(7.1) F ′′
(u,Ω) := inf

{
lim sup
j→+∞

Fεj (uj ,Ω) : uj → u in L2(Ω)
}
.

Theorem 7.1 (Γ-limsup). For every u ∈ BV (Ω; {−1, 1}) we have

(7.2) F ′′
(u,Ω) ≤

∫
Su

ψ(νu) dHn−1 .

To prove the Γ-limsup inequality we need the results proved in the following
lemmas.

Lemma 7.2. Let u ∈ BVloc(R
n; {−1, 1}) and, for every ε > 0, let ũε be as in (6.4).

Assume that there exists a bounded polyhedral set Σ of dimension n − 1 such that
Su = Σ, let Σn−2 be the union of all its n − 2 dimensional faces, and let (Σn−2)δ

be defined as in (3.1). Then there exists δΣ > 0 such that for 0 < ε < δ < δΣ we
have

Jε(ũε, (Σ
n−2)δ) ≤ c1δHn−2(Σn−2)

for some constant c1 > 0 independent of ε, δ, and Σ.

Proof. It is enough to repeat the proof of Lemma 6.2 with Cσ
δ and Ĉσ

δ replaced by
{x ∈ (Σn−2)δ : dist(x,Σ) < ε} and {x ∈ (Σn−2)δ : dist(x,Σ) ≥ ε}. �
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Lemma 7.3. Let P be a bounded polyhedron of dimension n− 1 containing 0 with
normal ν, let ρ > 0, and let Pρ be the n-dimensional prism defined in (5.7). Then
for every η > 0 there exists a sequence {uε} ⊂ W 1,2(Pρ) such that uε → wν in
L2(Pρ) and

lim sup
ε→0+

(
Wε(uε, Pρ) + Jε(uε, Pρ,R

n)
)
≤ (ψ(ν) + η)Hn−1(P ) .

Proof. Without loss of generality, we assume that ν = en. For simplicity, we omit
the superscript ν in the notation for wν , Xν , V ν , Qν

1 , and the subscript ρ when
ρ = 1. By the definition of ψ (see (1.13)), given η > 0 there exist ε∗ ∈ (0, 1) and
u∗ ∈ X such that

(7.3) Wε∗(u∗, Q) + Jε∗(u∗, V,R
n) ≤ ψ(en) + η .

Define uε(x) := u∗(
ε∗
ε x) for x ∈ Rn. Since u∗(x) = ±1 for ±xn ≥ 1/2, the sequence

{uε} converges to w in L2
loc(R

n).
To estimate Wε(uε, Pρ) and Jε(uε, Pρ,R

n), we consider the (n− 1)-dimensional

cube Q(n−1) := Q ∩ {xn = 0} and we set

Zε :=
{
{α ∈ Z

n : αn = 0 , (α+Q(n−1)) ∩
(ε∗
ε
P
)
�= Ø

}
.

Observe that

(7.4)
( ε

ε∗

)n−1

#Zε → Hn−1(P ) as ε → 0+ ,

where #Zε is the number of elements of Zε.
Let S := {x ∈ Rn : |xn| < 1/2}. Since u∗(x) = ±1 for ±xn ≥ 1/2, by (2.3)

we have W (u∗(x)) = 0 for x ∈ R
n \ S. Therefore a change of variables and the

periodicity of u∗ give

Wε(uε, Pρ) =
( ε

ε∗

)n−1

Wε∗

(
u∗,

ε∗
ε
Pρ

)
=

( ε

ε∗

)n−1

Wε∗

(
u∗,

(ε∗
ε
Pρ

)
∩ S

)
≤

( ε

ε∗

)n−1 ∑
α∈Zε

Wε∗(u∗, α+Q) =
( ε

ε∗

)n−1

#ZεWε∗(u∗, Q) .(7.5)

Similarly,

Jε(uε, Pρ,R
n) =

( ε

ε∗

)n−1

Jε∗

(
u∗,

ε∗
ε
Pρ,R

n
)

≤
( ε

ε∗

)n−1∑
α∈Zε

Jε∗(u∗, α+ V,Rn) =
( ε

ε∗

)n−1

#ZεJε∗(u∗, V,R
n) .(7.6)

The result now follows from (7.3)–(7.6). �

Lemma 7.4. Let u ∈ BVloc(R
n; {−1, 1}). Assume that there exists a bounded

polyhedral set Σ of dimension n − 1 such that Su = Σ. For every ρ > 0 let Σρ :=
{x ∈ Rn : dist(x,Σ) < ρ/2}. Then for every σ > 0 there exist ρ > 0 and δ ∈ (0, ρ)
with the following property: for every εj → 0+ there exists vj ∈ W 1,2(Σρ) such that
vj = u on Σρ \ Σρ−δ and

lim sup
j→+∞

Fεj (vj ,Σρ) ≤
∫
Σ

ψ(νu) dHn−1 + σ .
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Proof. Let δΣ > 0 be as in Lemma 7.2. Fix σ and σ̂ with σ̂ ∈ (0,min{σ, δΣ}). There
exist ρ ∈ (0, σ̂) and a finite number of bounded polyhedra P 1, . . . , P k of dimension
n− 1 and contained in the n− 1 dimensional faces of Σ such that P i

ρ ∩P j
ρ = Ø for

i �= j and

(7.7) Σρ \
k⋃

i=1

P i
ρ ⊂ (Σn−2)σ̂,

where P i
ρ and (Σn−2)σ̂ are defined as in (5.7) and Lemma 7.2, respectively. Find R1,

. . . , Rk, bounded polyhedra of dimension n− 1 contained in the n− 1 dimensional
faces of Σ, such that P i � Ri and Ri

ρ ∩Rj
ρ = Ø for i �= j.

Fix η > 0 such that ηHn−1(Σ) < σ/2. By Lemma 7.3 for every i = 1, . . . , k,
there exists a sequence {ui

j} ⊂ W 1,2(Ri
ρ) such that ui

j → u in L2(Ri
ρ), and

(7.8) lim sup
j→+∞

(
Wεj (u

i
j , R

i
ρ) + Jεj (u

i
j , R

i
ρ,R

n)
)
≤ (ψ(νi) + η)Hn−1(Ri) .

By Theorem 5.1 there exist δ ∈ (0,min{σ̂, ρ/2}) and {vij} ⊂ W 1,2(Ri
ρ) such that

vij → u in L2(Ri
ρ) as j → +∞, vij = u∗ θεj on Ri

ρ \ (Ri
ρ)δ, and

lim sup
j→+∞

Fεj (v
i
j , R

i
ρ) ≤ lim sup

j→+∞
Fεj (u

i
j , R

i
ρ) + κ1δ(7.9)

≤ (ψ(νi) + η)Hn−1(Ri) + κ1σ̂ ,

where, we recall, the costant κ1 > 0 is independent of j, σ̂, and Ri
ρ. Define vj := vij

on Ri
ρ and vj := u∗ θεj on Aρ := Σρ \

⋃k
i=1 R

i
ρ. Then vj ∈ W 1,2(Σρ) and vj → u in

L2(Σρ). Moreover vj = u on Σρ \ Σρ−δ for all j sufficiently large.
By additivity we obtain

(7.10) Wεj (vj ,Σρ) ≤
k∑

i=1

Wεj (vj , R
i
ρ) +Wεj (vj , Aρ) .

Since (u∗ θεj )(x) = ±1 for x /∈ Σ2εj and −1 ≤ (u∗ θεj )(x) ≤ 1, by (2.3) and (7.7)
we have

Wεj (vj , Aρ) ≤ Wεj (u∗ θεj , (Σn−2)σ̂ ∩ Σ2εj )

≤ 1

εj
MWLn((Σn−2)σ̂ ∩ Σ2εj ) ≤ MW cΣσ̂Hn−2(Σn−2) ,

where MW is the constant in (5.51) and cΣ > 0 is a constant depending only on
the geometry of Σ. The previous inequality together with (7.10) gives

(7.11) Wεj (vj ,Σρ) ≤
k∑

i=1

Wεj (vj , R
i
ρ) +MW cΣσ̂Hn−2(Σn−2) .

To estimate Jεj (vj ,Σρ) we use the inclusion

Σρ × Σρ ⊂
k⋃

i=1

(Ri
ρ ×Ri

ρ) ∪
k⋃

i=1

(P i
ρ × (Σρ \Ri

ρ)) ∪
k⋃

i=1

((Σρ \Ri
ρ)× P i

ρ)

∪
((

Σρ \
k⋃

i=1

P i
ρ

)
×
(
Σρ \

k⋃
i=1

P i
ρ

))
∪
⋃
i �=j

(Ri
ρ ×Rj

ρ) ,
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which, together with (7.7), gives

Jεj (vj ,Σρ) ≤
k∑

i=1

Jεj (vj , R
i
ρ) +

k∑
i=1

Jεj (vj , P
i
ρ,Σρ \Ri

ρ)(7.12)

+

k∑
i=1

Jεj (vj ,Σρ \Ri
ρ, P

i
ρ) + Jεj (vj , (Σ

n−2)σ̂) +
∑
i �=j

Jεj (vj , R
i
ρ, R

j
ρ) .

By Lemma 4.3 and (7.9) the sequence {εj
∫
Ri

ρ
|∇vij |2dx} is uniformly bounded with

respect to j. Taking into account (5.5) and (5.6) we see that the same property
holds for {εj

∫
Σρ

|∇vj |2dx}. Hence, by Lemma 5.4, the second, third, and fifth

terms on the right-hand side of (7.12) tend to zero as j → +∞. By Lemma 7.2,

(7.13) Jεj (vj , (Σ
n−2)σ̂) ≤ c1σ̂Hn−2(Σn−2) .

Combining (7.9), (7.11), (7.12), and (7.13) we get

lim sup
j→+∞

Fεj (vj ,Σρ) ≤
∫
Σ

ψ(νu) dHn−1 + ηHn−1(Σ)

+ κ1σ̂ +MW cΣσ̂Hn−2(Σn−2) + c1σ̂Hn−2(Σn−2) .

Since ηHn−1(Σ) < σ/2, the conclusion can be obtained by taking σ̂ sufficiently
small. �

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. By [8, Lemma 3.1] for every u ∈ BV (Ω; {−1, 1}) there exists
a sequence {zk} in BV (Ω; {−1, 1}) converging to u in L2(Ω) such that Szk is given
by the intersection with Ω with a bounded polyhedral set Σk of dimension n − 1
andHn−1(Szk) → Hn−1(Su). By Reshetnyak’s convergence theorem (see, e.g., [45])
this implies that

lim
k→+∞

∫
Szk

ψ(νzk) dHn−1 =

∫
Su

ψ(νu) dHn−1 .

Hence, using the lower semicontinuity of F ′′
(·,Ω) with respect to convergence in

L2(Ω) it suffices to prove (7.2) for u ∈ BV (Ω; {−1, 1}) such that Su = Ω ∩ Σ with
Σ a bounded polyhedral set of dimension n− 1.

In this case, for every σ > 0 let 0 < δ < ρ and vj ∈ W 1,2(Σρ) be as in Lemma
7.4. Define uj := vj on Σρ and uj := u on Ω \ Σρ. The properties of vj imply that
uj := u on Ω \ Σρ−δ for all j sufficiently large. Hence, by (2.3) we have

(7.14) Wεj (uj ,Ω) ≤ Wεj (uj ,Σρ) .

To estimate Jεj (uj ,Ω) we consider the inclusion

Ω× Ω ⊂(Σρ × Σρ) ∪ (Σρ−δ × (Ω \ Σρ)) ∪ ((Ω \ Σρ)× Σρ−δ)(7.15)

∪ ((Ω \ Σρ−δ)× (Ω \ Σρ−δ)) .

Since ∇uj = ∇u = 0 on Ω \ Σρ−δ, in view of (7.15) we obtain

(7.16) Jεj (uj ,Ω) ≤ Jεj (uj ,Σρ) + Jεj (uj ,Σρ−δ,Ω \ Σρ) + Jεj (uj ,Ω \ Σρ,Σρ−δ) .
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By Lemmas 4.3 and 5.4 the last two terms tend to zero as j → ∞, and by Lemma
7.4 we deduce

lim sup
j→+∞

Fεj (uj ,Σρ) ≤
∫
Σ

ψ(νu) dHn−1 + σ .

Together with (7.14) and (7.16) this shows that

F ′′
(u,Ω) ≤ lim sup

j→+∞
Fεj (uj ,Ω) ≤

∫
Σ

ψ(νu) dHn−1 + σ .

Letting σ tend to 0 we obtain (7.2). �
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