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COMPUTING GEOMETRIC LORENZ ATTRACTORS

WITH ARBITRARY PRECISION

D. S. GRAÇA, C. ROJAS, AND N. ZHONG

Abstract. The Lorenz attractor was introduced in 1963 by E. N. Lorenz as
one of the first examples of strange attractors. However, Lorenz’ research was
mainly based on (non-rigorous) numerical simulations, and, until recently, the
proof of the existence of the Lorenz attractor remained elusive. To address
that problem some authors introduced geometric Lorenz models and proved

that geometric Lorenz models have a strange attractor. In 2002 it was shown
that the original Lorenz model behaves like a geometric Lorenz model and thus
has a strange attractor.

In this paper we show that geometric Lorenz attractors are computable, as
well as show their physical measures.

1. Introduction

The system of equations

(1.1)

⎧⎨
⎩

x′ = σ(y − x),
y′ = ρx− y − xz,
z′ = xy − βz

is called the Lorenz system, where σ, β, and ρ are parameters. This system was
first studied by E. N. Lorenz in 1963 [13] as a simplified model of atmosphere
convection in an attempt to understand the unpredictable behavior of the weather.
Lorenz’s original numerical simulations, where the parameters were given by σ = 10,
β = 8/3, and ρ = 28, suggested that for any typical initial condition, the system
would eventually tend to a same limit set with a rather complicated structure –
the Lorenz (strange) attractor. Moreover, the dynamics on this attractor seemed to
magnify small errors very rapidly, rendering it impractical to numerically simulate
an individual trajectory for an extended period of time.

The Lorenz system became a landmark in the modern paradigm of the numerical
study of chaos: instead of studying trajectories individually, one should study the
limit set of a typical orbit, both as a spatial object and as a statistical distribution
[15]. However, proving the existence of the Lorenz attractor in a rigorous fashion
turned out to be no easy task; indeed, the problem was listed in 1998 by Smale as
one of the eighteen unsolved problems he suggested for the 21st century [17].
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In 1979, based on the behavior observed in the numerical simulations of (1.1),
Afraimovich, Bykov, and Shil’nikov [1] and Guckenheimer and Williams [11] orig-
inated the study of flows satisfying a certain list of geometric properties intended
to capture the observed numerically simulated behavior. In particular, they proved
that any such flow must contain a strange attractor, which supports a unique in-
variant probability distribution that describes the limiting statistical behavior of
almost any initial condition. These examples came to be known as geometric Lorenz
models, and the strange attractor contained in a geometric Lorenz flow is called
the geometric Lorenz attractor.

Using a combination of normal form theory and rigorous numerics, Tucker [18]
provided, in 2002, a formal proof on the existence of the Lorenz attractor by show-
ing that the geometric Lorenz models do indeed correspond to the Lorenz system
(1.1) for certain parameters. Since a geometric Lorenz model supports a strange
attractor, so does the Lorenz system (1.1).

In this note, we examine computability of geometric Lorenz attractors and their
physical measures. By definition, a computable set in the plane can be visualized
on a computer screen with an arbitrarily high magnification, and integrals with
respect to a computable probability measure can be generated by a computer with
arbitrary precision. Our main result is the following.

Main Theorem. For any geometric Lorenz flow, if the data defining the flow are
computable, then its attractor is a computable subset of R3. Moreover, the physical
measure supported on this attractor is a computable probability measure.

We note that, although computer generated images of the “butterfly shaped”
Lorenz attractor abound on the Internet, these images are not rigorous computa-
tions. In particular, their existence does not necessarily mean that the attractor is
actually computable. In fact, an equally famous collection of invariant sets, namely
Julia sets, whose computer images are also abundant, was shown to contain non-
computable members [5].

In order to make our results accessible to a wide audience, we have made an
effort to work directly from the definitions, making the proofs as self-contained as
possible.

2. Preliminaries

2.1. Computable analysis. Roughly speaking, an object is computable if it can
be approximated by computer-generated approximations with arbitrarily high pre-
cision. Formalizing this idea to carry out computations on infinite objects such as
real numbers, we encode those objects as infinite sequences of rational numbers (or
equivalently, sequences of any finite or countable set Σ of symbols), using represen-
tations (see [20] for a complete development). A represented space is a pair (X; δ)
where X is a set, dom(δ) ⊆ ΣN, and δ :⊆ ΣN → X is an onto map (“⊆ ΣN” is
used to indicate that the domain of δ may be a subset of ΣN). Every q ∈ dom(δ)
such that δ(q) = x is called a δ-name of x (or a name of x when δ is clear from
context). Naturally, an element x ∈ X is computable if it has a computable name
in ΣN (the notion of computability on ΣN is well established). In this note, we use
the following particular representations for points in Rn; for closed subsets of Rn;
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and for continuous functions defined on I1 × I2 × · · · × In ⊂ Rn, where Ij ’s are
intervals:

(1) For a point x ∈ Rn, a name of x is a sequence {rk} of points with rational
coordinates satisfying |x − rk| < 2−k. Thus x is computable if there is a
Turing machine (or a computer program or an algorithm) that outputs a
rational n-tuple rk on input k such that |rk−x| < 2−k; for a sequence {xj},
xj ∈ Rn, a name of {xj} is a double sequence {rj,k} of points with rational
coordinates satisfying |xj − rj,k| < 2−k.

(2) For a closed subset A of Rn, a name of A consists of a pair of an inner-name
and an outer-name: an inner-name is a sequence dense in A and an outer-
name is a sequence of balls B(an, rn) = {x ∈ Rn : d(an, x) < rn}, an ∈ Qn

and rn ∈ Q, exhausting the complement of A, i.e., Rn\A =
⋃∞

n=1 B(an, rn).
A is said to be r.e. closed if the sequence (dense in A) is computable, co-r.e.
closed if the sequences {an} and {rn} are computable, and computable if it
is r.e. and co-r.e. For a compact set K, a name of K consists of a name of
K as a closed set and a rational number r such that K ⊆ B(0, r). By the
definition, a planar computable closed set can be visualized on a computer
screen with an arbitrarily high magnification.

(3) For every continuous function f defined on I1 × I2 × · · · × In ⊆ Rn, where
Ij is an interval with endpoints aj and bj , a name of f is a double sequence
{Pk,l} of polynomials with rational coefficients satisfying dk(Pk,l, f) < 2−l,
where dk(g, f) = max{|g(x)− f(x)| : aj +2−k ≤ xj ≤ bj − 2−k, 1 ≤ j ≤ n}
(dk(g, f) = 0 if [aj + 2−k, bj − 2−k] = ∅). Thus, f is computable if there is
an (oracle) Turing machine that outputs Pk,l (more precisely coefficients of
Pk,l) on input k, l satisfying dk(Pk,l, f) < 2−l.

(4) For every Cm function f defined on E = I1 × I2 × · · · × In ⊆ Rn, where
Ij is an interval with endpoints aj and bj , a (Cm) name of f is a double
sequence {Pk,l} of polynomials with rational coefficients satisfying

dmk (Pk,l, f) < 2−l,

where

dmk (g, f) = max
0≤i≤m

max{|Dig(x)−Dif(x)| : aj + 2−k ≤ xj ≤ bj − 2−k}

(dmk (g, f) = 0 if [aj + 2−k, bj − 2−k] = ∅). We observe that a Cm name of
f contains information on both f and Df,D2f, . . . , Dmf , in the sense that
(P1, P2, . . .) is a ρ-name of f while (DiP1, D

iP2, . . .) is a ρ-name of Dif .
See [22] for further details.

The notion of computable maps between represented spaces now arises naturally.
A map Φ : (X; δX) → (Y ; δY ) between two represented spaces is computable if there
is a computable map φ :⊆ ΣN → ΣN such that Φ◦δX = δY ◦φ. Informally speaking,
this means that there is a computer program that outputs a name of Φ(x) when
given a name of x as input [4].

2.2. Geometric Lorenz models. We briefly describe a geometric Lorenz model
taken from [10] (see Section 5.7 in [10] for more details).

For the parameter values σ = 10, β = 8/3, and ρ = 28, the Lorenz system (1.1)
has three equilibrium points: the origin, q−, and q+; both q− and q+ lie on the
plane z = ρ−1 = 27. The numerical simulations of (1.1) for these parameter values
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show that the Lorenz flow rotates around the equilibria q± and intersects the plane
z = 27 infinitely many times, thus indicating that there is a return map with the
cross-section z = 27. Geometric Lorenz models are constructed based upon the
behavior of this numerically observed return map.

It is proved (cf. [10], [12], and the references therein) that a flow satisfying the
following properties exists (see Figure 1): The flow has three equilibrium points:
the origin of R3 and Q±. For the origin, its stable manifold is the yz-plane, while
its unstable manifold intersects the plane z = 27 from above at two points, say
ρ+ = (r−, t−) and ρ− = (r+, t+). For Q− and Q+, they lie in the plane z = 27 and
have integer coordinates (−m,−n, 27) and (m,n, 27), their stable lines are parallel
to the y-axis, and the other two eigenvalues at Q± are assumed to be complex with
positive real part, as is the Lorenz system. Let Σ be a rectangle contained in the
plane z = 27 such that ρ± is contained in Σ, the two opposite sides of Σ parallel
to the y-axis pass through the equilibrium points Q− and Q+, and these two sides
form portions of the stable lines at Q− and Q+. Let D be the intersection of the
yz-plane and Σ. The flow has the following features: Σ is a cross-section for the
flow; all trajectories go downwards through Σ; all trajectories originating in Σ and
not entering D spiral around Q− or Q+ and return to Σ as time moves forward; all
trajectories beginning at points in D tend to the origin as time moves forward and
never return to Σ; and there is a Poincaré return map F : Σ− ∪ Σ+ → Σ, where
Σ− = {(x, y) ∈ Σ|x < 0} and Σ+ = {(x, y) ∈ Σ|x > 0}.

Let V = {(x, y)|r− ≤ x ≤ r+, −27 ≤ y ≤ 27} (the number 27 is arbitrarily
chosen; other positive numbers can be used as well). The Lorenz flow has also
the property that all points in the interior of Σ \ D have a trajectory which will
eventually reach V and F (V \ D) ⊆ V (see Figure 4). Thus we can restrict the
analysis of the flow to V . The Poincaré return map F has the following properties
on V :

(F-1) The set F , F = {x=constant} is invariant under the action of F . In other
words, the x-coordinate of the image F (x0, y0) depends only on x0.

(F-2) There are functions f and g such that F can be written as

F (x, y) = (f(x), g(x, y)) for x 
= 0

and F (−x,−y) = −F (x, y).

(F-3) f ′(x) >
√
2 for x 
= 0 and f ′(x) → ∞ as x → 0; 0 < f(r+) < r+ and r− <

f(r−) < 0 (recall that the unstable manifold of the origin first intersects V
from above at points ρ+ and ρ−).

(F-4) 0 < ∂g/∂y ≤ c < 1/
√
2 and 0 < ∂g/∂x ≤ c for x 
= 0 and ∂g/∂y → 0 as

x → 0 (see [12, Section 14.4]). Without loss of generality, c can be assumed
to be a rational number and ∂g/∂y → 0 to be monotonic as x → 0.

A consequence of (F-2)–(F-4) is that (see [12, Section 14.4]):

(F-5) limx→0− F (x, y) = (r+, t+) and limx→0+ F (x, y) = (r−, t−), where ρ− =
(r+, t+) and ρ+ = (r−, t−). The symmetry property (F-2) implies that
r− < 0 < r+ and r− = −r+.

The image of Σ by F is depicted in Figure 2.
Figure 3 shows a picture of the flow, where Σ is the upper surface of the solid and

the flow is tangent to the curved surfaces of the solid and to the bottom segment.
On the front and back surfaces, the flow is into the solid while the trajectories
emerge from the vertical ends. These emergent trajectories are continued around
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Figure 1. The geometric model for the Lorenz system.

Figure 2. The Poincaré map F on the cross-section Σ.

so that F describes the return map for V . This flow, denoted by φt, t ∈ R, and
acting on M = {φt(x, y, z) : (x, y, z) ∈ V × {27}, t ∈ R+} is called a geometric
Lorenz flow.

It is shown in [10] that

A =
⋂
n≥0

Fn(V \D)

is the intersection of the attractor for the geometric Lorenz flow with V and that

A =

(⋃
t∈R

φt(A)

)
∪ {(0, 0, 0)}

is an attractor for the geometric Lorenz flow φt; this attractor is a Lorenz-like
strange attractor. Note that F is defined on V \D. Thus F 2(V \D) is understood
as of F (F (V \D) \D) and, inductively, Fn+1(V \D) = F (Fn(V \D) \D).

We mention in passing that the geometric Lorenz model is not unique; in fact,
any flow which satisfies the geometric conditions listed above contains a Lorenz-like
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p

F(p)

0

Figure 3. A three-dimensional representation of the geometric
Lorenz flow.

Figure 4. The Poincaré map on the cross-section V .

strange attractor, thus it is a geometric Lorenz flow. As usual, one might also need
to use some reparametrization of the model to ensure that it behaves as described
in this section (it has a fixed point on the origin, etc.). All computability results
stated in this paper are relative to that (eventual) reparametrization.

3. Computability of geometric Lorenz attractors

In this section, we show that the strange attractor A contained in a geometric
Lorenz flow is uniformly computable from the data defining the flow. Thus, if the
data defining the flow is computable, then so is A; by definition this means that A
can be visualized on a computer screen with an arbitrary high magnification.

We begin by studying computability of the set A, forA consists of the trajectories
passing through A. We start by showing that A is uniformly computable from F
and ρ±.

Theorem 3.1. The operation (F, ρ±) → A is computable.
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Proof. We show that A is computable by making use of the “constructive” definition
of A, A =

⋂
n≥0 F

n(V \D). Let An = Fn(V \D). In Propositions 3.4 and 3.5
below, we show that

(i) the sequence {An} is computable from F and ρ± and
(ii) max(x,y)∈V |dAn+1

(x, y)− dAn
(x, y)| ≤ 108cn (see (F-4) for the definition of

the number c).

Then it follows from (d) and (e) of Lemma 3.3 that A is computable from F
and ρ± since An+1 ⊆ An. Propositions 3.4 and 3.5, together with their proofs, are
presented below. �

We will need the following lemmas, which will also be needed in several later
proofs. Recall that an operation O : X → Y is computable if there is a Turing
algorithm that, for any given name of x as input, outputs a name of O(x).

Lemma 3.2. The operation (f, b, β) → f1 is computable, where f : (0, b] → R is a
continuous function with the following properties: (i) it is monotonic on (0, b], and
(ii) f(x) → β as x → 0+ and

f1(x) =

{
f(x), x ∈ (0, b],
β, x = 0.

Similarly, the operation (f, a, β) → f2 is computable, where f : [a, 0) → R is a
continuous function, with the following properties: (i) it is monotonic on [a, 0),
and (ii) f(x) → β as x → 0− and

f2(x) =

{
f(x), x ∈ [a, 0),
β, x = 0.

Proof. The proof is straightforward, thus omitted. �

Lemma 3.3. The following results can be found in Chapters 5 and 6 of [20]. As-
sume that A, B, and K are subsets of Rn.

(a) The operation (f,K) → f [K] for continuous f and compact K is com-
putable.

(b) The union (A,B) → A ∪B of compact sets is computable.
(c) The operation (f, a, b) → (f−1, c, d) for continuous strictly monotonic f is

computable, where f−1 is the inverse of f and f [a, b] = [c, d].
(d) The operation ((fi)i∈N,K) → f , f(x) = limi→∞ fi(x), is computable, where

maxx∈K |fi(x)− fj(x)| ≤ C · ci for all j > i, K is compact, C is a rational
number, and 0 < c < 1.

(e) The operations K → dK and dK → K for non-empty compact sets K
are computable, where dK is the distance function defined on K: dK(x) =
dist(x,K).

Proposition 3.4. {An} is computable.

Proof. Let us first give an idea of how to compute the sequence {An} from F and
ρ±. Intuitively one may attempt to compute Fn(V \D) directly and then compute
its closure. However, since Fn(V \ D) is neither open nor closed, it cannot be
computed from Fn, although Fn is computable from F for every n ∈ N. A possible
solution is to extend F to be defined on V and then compute Fn(V ). But this
method also fails to work here: F is singular along D ⊆ V , and therefore it cannot
be extended to a continuous function on V . Nevertheless, we observe that if we
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break F into two half functions, each of them defined on one half of V \D, then we
can extend each half function continuously to be also defined on D (from property
(F-5)); moreover, the extension is computable from the given data. And so if we

can show that the iterations of the two half functions yield Fn(V \D) and are
computable from F and ρ±, we have the desired sets An.

Now for the details. Recall that V = {(x, y)|r− ≤ x ≤ r+, −27 ≤ y ≤ 27}. Let
V + = {(x, y) ∈ V |x ≥ 0} and V − = {(x, y) ∈ V |x ≤ 0}; let I+ = {x | 0 ≤ x ≤
r+}, I− = {x |r− ≤ x ≤ 0}, and I = [r−, r+]. It is then clear that V , V +, V −, I,
I+, and I− are all computable from r±. Also recall that F (x, y) = (f(x), g(x, y))
on V \D, D = {(0, y) | − 27 ≤ y ≤ 27}. Define

f+ : I+ → I, f+(x) =

{
f(x), 0 < x ≤ r+,
r−, x = 0,

f− : I− → I, f−(x) =

{
f(x), r− ≤ x < 0,
r+, x = 0,

g+ : V + → [−27, 27], g+(x, y) =

{
g(x, y), 0 < x ≤ r+,
t−, x = 0,

g− : V − → [−27, 27], g−(x, y) =

{
g(x, y), r− ≤ x < 0,
t+, x = 0.

By (F-3) and (F-5) (that is, f ′(x) >
√
2 for x 
= 0, limx→0− F (x, y) = (r+, t+),

and limx→0+ F (x, y) = (r−, t−)), it follows that f(x) ↗ r+ when x → 0− and that
f(x) ↘ r− as x → 0+. Then it follows from Lemma 3.2 that both f+ and f− are
computable. A similar argument shows that g+, g− are computable.

Let F±(x, y) = (f±(x), g±(x, y)), (x, y) ∈ V ±, where f± (g±) is either f+ or f−

(g+ or g−). Then F± is computable from f± and g±; thus it is computable.

Now, recall that An = Fn(V \D) by definition. It can be shown that

(3.1) An = F (An−1 \D), n ≥ 1,

by induction as follows: Let A0 = V . Then A1 = F (V \D) = F (A0 \D). Assume

that An = F (An−1 \D). We show that An+1 = F (An \D). By definition,

An+1 = Fn+1(V \D)

= F (Fn(V \D) \D)

⊆ F
(
Fn(V \D) \D

)
= F (An \D).

It remains to show that F (An \D) ⊆ An+1. Since An+1 is closed (in R2), it suffices
to show that F (An \D) ⊆ An+1. Since F (An \D) = F (An∩ (V \D)), An∩ (V \D)
is closed in V \D, and F is continuous on V \D, it then follows that

F (An \D) = F (An ∩ (V \D))

= F
(
Fn(V \D) ∩ (V \D)

)
⊆ F (Fn(V \D) ∩ (V \D))

= An+1.

Therefore An+1 = F (An \D).
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We also note that, following (F-3), f : I \{0} → I \{r+, r−} is a surjective map.
Combining this fact with (F-4) and (F-5) we conclude that

(3.2) ρ−, ρ+ ∈ An, n ≥ 0.

It now follows from (3.1) and (3.2) that

(3.3) An = F (An−1 \D) = F+(An−1 ∩ V +) ∪ F−(An−1 ∩ V −).

Let C = {K ⊆ V |K is closed in V } and let α be a map from C to C defined by the
following formula: for each K ∈ C,

(3.4) α(K) = F+(K ∩ V +) ∪ F−(K ∩ V −) ∪ {ρ−, ρ+}.

Note that F (K ∩ (V \ D)) = F+(K ∩ (V + \ D)) ∪ F−(K ∩ (V − \ D)). Then it

follows from (F-5) that F (K ∩ (V \D))∪ {ρ−, ρ+} = F+(K ∩ V +) ∪ F−(K ∩ V −)
∪{ρ−, ρ+}; i.e.,

(3.5) α(K) = F (K ∩ (V \D)) ∪ {ρ−, ρ+}.

In order to prove that {An} is computable, it suffices to show that the map α is
computable since An = αn(V ). Towards this end, it suffices to show that, for each
K ∈ C, (i) α maps every outer-name of K to an outer-name of α(K) and (ii) α maps
every inner-name of K to an inner-name of α(K). For (i): for each K ∈ C, it is
clear that K is contained in the ball centered at the origin of R2 with a computable
radius max{r+, 27}. Then it follows from Theorems 5.1.13(2) and 6.2.4(4) [20] that
α meets the condition (i). For (ii): Since V \ D is r.e. open in V , there exist
computable sequences {an} and {sn}, an ∈ V \ D with rational coordinates and
sn ∈ Q, such that V \ D = (

⋃
n∈N

B(an, sn)) ∩ V , where B(a, s) is an open ball
centered at a with radius s. Now let {dj} be an inner-name of K; i.e., {dj} is a
sequence dense in K. For each m ∈ N, compute the Euclidean distance d(dj , an)
for all 1 ≤ j, n ≤ m. This algorithm yields a sequence {dji} that is a subset of {dj},
where x ∈ {dji} if and only if d(x, an) < sn for some n ∈ N. It is readily seen that
{dji} is a dense sequence in K ∩ (V \D). Since F is continuous on V \D, it follows
that F ({dji}) is a dense sequence in F (K ∩ (V \D)); thus F ({dji}) ∪ {ρ−, ρ+} is

an inner-name of F (K ∩ (V \D)) ∪ {ρ−, ρ+}, which equals φ(K) by (3.5). �

Proposition 3.5. The distance function dA is computable from F and ρ±.

Proof. It suffices to show that dAn
meet the convergence condition of Lemma 3.3(d).

The proof makes use of the properties (F-3) and (F-4). Note that it follows from
(F-3) that fn([r−, 0)∪(0, r+]) = (r−, r+) for each positive integer n and from (F-4)
that the distance between Fn(x, y1) and Fn(x, y2) decreases exponentially in n:

d(Fn(x, y1), F
n(x, y2)) < cn|y1 − y2|.

We also observe from (3.1) that An+1 ⊂ An, n ∈ N. In the following we show that,
for any n ∈ N, Fn(V \D) is contained in a 108cn-neighborhood of Fn+1(V \D);
thus the Hausdorff distance between An and An+1 is bounded by 108cn (recall that

An = Fn(V \D)). This fact shows that dAn
indeed meet the convergence condition

desired. For any s ∈ Fn(V \D), there exists (x, y) ∈ V such that s = Fn(x, y). If
x 
= r− and x 
= r+, then it follows from the fact that f(I \ {0}) = (r−, r+) that
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there exist (u, v) ∈ V and −27 ≤ w ≤ 27 such that F (u, v) = (x,w) and (x,w) is
in the domain of Fn; subsequently,

d(Fn+1(u, v), s) = d(Fn(F (u, v)), Fn(x, y))

= d(Fn(x,w), Fn(x, y))

≤ cn|w − y| ≤ 54cn

(note that |w−y|≤54). The above inequality shows that s is in a 54cn-neighborhood
of t, where t = Fn+1(u, v) ∈ Fn+1(V \ D). Next we consider the case where
s = Fn(x, y) and x = r− (thus y = t−). Since fn(I \ {0}) = (r−, r+), there exists
(x̃, ỹ) ∈ V such that x̃ 
= 0, r−, nor r+, and d(Fn(x, y), Fn(x̃, ỹ)) ≤ 54cn. We now
apply the above argument to s̃ = Fn(x̃, ỹ) to find (u, v) ∈ V and −27 ≤ w ≤ 27
such that F (u, v) = (x̃, w). It then follows that

d(Fn+1(u, v), Fn(x, y))

≤ d(Fn+1(u, v), Fn(x̃, ỹ)) + d(Fn(x̃, ỹ), Fn(x, y))

≤ 54cn + 54cn = 108cn;

in other words, s is in the 108cn-neighborhood of t = Fn+1(u, v) ∈ Fn+1(V \D).
The same argument applies to the case where x = r+. Thus we have shown that
for any s ∈ Fn(V \ D) there exists t ∈ Fn+1(V \ D) such that s is in the 108cn-
neighborhood of t. Hence the Hausdorff distance between An and An+1 is bounded
by 108cn. �

Before proving our main result, we need one more lemma that will also prove
useful in the next section.

Lemma 3.6. Let φ be the flow of some Lorenz geometric system. Then we can
uniformly compute from a (C2) name of φ:

(1) The return function F (and its components f, g).
(2) The return time function r : V \D → [0,+∞).
(3) The points r±, t±.

Proof. Because we have access to a C2 name of φ, we can compute its derivative
and hence we can compute the function h : D ⊆ R3 → R3 defining the ODE

(3.6) y′ = h(y),

whose flow is φ. Let us now show condition (2) of the lemma.
The idea for the proof is relatively simple, that is, computing the time that a

trajectory starting in a point a ∈ V × {27} needs to hit V × {27} again. The
strategy is to compute iterates φti(a) for i = 1, 2, . . . until the iterate is on (or close
enough to) V × {27}. The difficulty is that we need to be careful in the way we
choose the time step needed to compute the time t∗ > 0 when φt(a) hits V × {27}
for the first time, to avoid returning some t∗∗ > t∗ with φt∗∗ ∈ V × {27}.

Since the flow of (3.6) behaves like the geometric Lorenz attractor, we conclude
that the flow will cross the cross-section V transversally, which has the direction
of the positive z-axis as its “normal” direction. This implies that for any point
a ∈ V , the angle �(h(a), V ) between h(a) and the cross-section V × {27} will

satisfy �(h(a), V ) 
= 0. Let θ = mina∈V |�(h(a),V )|
2 > 0. Then there exists some ε > 0

such that
min

a∈V ×[27−ε,27+ε]
|�(h(a), V )| > θ > 0.
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(Recall that V is compact and thus the minimum exists.) Initially the flow on
V × {27} will be pointing downwards, i.e., �(h(a), V ) < 0. Let a ∈ V \D and
suppose that we want to compute r(a) with precision bounded by some value ε > 0;
i.e., we want to compute a value r̃a such that

(3.7) |r(a)− r̃a| ≤ ε.

To prove this result we will use an “adapted” Euler method to compute r̃a. The
idea is to numerically compute the solution of (3.6) starting at a using an algorithm
which discretizes time steps, similar to Euler’s method. However the time steps
must be chosen small enough so that we can detect when the flow first leaves the
band V × [27 − ε, 27 + ε], and then when it re-enters this band again (from the
top). In this manner, by improving the accuracy of the numerical method and/or
using a smaller ε, we will be able to compute a suitable approximation r̃a for the
return time r(a) which satisfies condition (3.7). Of course, we have to describe
more precisely how this method works.

Let
α = min

a∈V×[27−ε,27+ε]
‖h(a)‖ , β = max

a∈V ×[27−ε,27+ε]
‖h(a)‖ .

Note that α, β > 0 since V is compact and contains no zeros of h. A simple analysis
(consider the component of the flow hV (b) which is orthogonal to V × {27}, given
by hV (b) = ‖h(b)‖ |sin(�(h(b), V ))|, for any b ∈ V × [27− ε, 27 + ε], which satisfies
α sin θ ≤ ‖h(b)‖ sin θ ≤ hV (b) ≤ ‖h(b)‖ ≤ β) shows that the flow of (3.6) cannot
take more than 2ε/(α sin θ) > 0 time units to cross the band V × [27 − ε, 27 + ε]
(basically the flow will have to cross this band, but since the norm of the orthogonal
component is at least α sin θ, this will be done in time 2ε/(α sin θ)), but will require
at least 2ε/β > 0 time units to cross it (since the norm of the orthogonal component
is bounded by β). Now pick some rational ε0 > 0 satisfying ε0 ≤ min{εα sin θ/2, ε}.
In particular this implies that the maximum time the flow takes to cross the band
B = V × [27− ε0, 27 + ε0] ⊆ V × [27− ε, 27 + ε] is

(3.8) 2ε0/(α sin θ) ≤ 2ε sin θ

2 sin θ
≤ ε.

This implies that if we can tell that the flow starting at a leaves and then re-enters
the band V × [27− ε0, 27 + ε0] from the top for the first time at time T0 and stays
in this band up to time T ∗

0 , with T0 < T ∗
0 (note that T ∗

0 − T0 < ε due to (3.8)) and
if we can determine a time T ∈ [T0, T

∗
0 ], then we can return r̃a = T since condition

(3.7) holds in that case. Now let us see how we can determine this value T .
Let B+ = V × [27, 27 + ε0], B

− = V × [27 − ε0, 27], and δ = ε0/(2β). Now
consider the sequence of iterates φti(a) where 0 < ti+1 − ti ≤ δ and {ti}i∈N is
computable. Since the flow of φt(a) takes at least 2δ time units to cross each band
B±, we are certain that φt1(a), φt2(a) ∈ B− when the flow first leaves V from a and
that there is some k > 0 such that φtk(a), φtk+1

(a) ∈ B+ with tk, tk+1 ∈ [T0, T
∗
0 ].

Note that the interior of B+ is an r.e. open set, as well as its complement. Since
at every time ti the corresponding iterate is computable, and because one can semi-
decide whether a computable point belongs to an r.e. open set, we can semi-decide
in parallel, for each i ∈ N, whether the iterates φti or φti+1

belong to B+ or to its
complement. Since only one of these iterates can fall exactly in the boundary of
B+ (which is the only thing one cannot detect), we know that we can tell in finite
time, for at least one of the iterates, whether it belongs to B+ or to its complement.
Now run this procedure as a subroutine for each pair ti, ti+1. Start with i = 1 and
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increment i each time we conclude that an iterate φtj , for j ∈ {i, i + 1}, does not
belong to B+. If we conclude that some iterate φtj belongs to B+, then stop the
algorithm and return r̃a = tj .

Note that this algorithm always stops in the worst case, when i = k, and therefore
always computes the return time.

To prove condition (1) of the lemma, we note that F (a) is the solution of (3.6)
with initial condition y′(0) = a at time r(a). Since r is computable from φ and the
solution of (3.6) is also computable from h, a [8] and hence from φ, a, we conclude
that F is computable from φ.

To prove condition (3) of the lemma, we notice that the stable manifold of the
origin is locally computable from h [9]. If we compute a local version of the stable
manifold which stays on the half-space z < 27 and if we take some point from that
local stable manifold which is not the origin, then we know that the trajectory
starting from this point will move upwards until it reaches the plane z = 27 and
then continues moving up until it falls and reaches the plane z = 27 for the second
time. At this time the intersection will occur at ρ− or ρ+, depending on whether
the first coordinate of this intersection point is positive or negative, respectively.
Hence, using similar arguments as those used for the cases (2) and (1), we conclude
that ρ± must be computable and hence r±, t± are also computable from φ. �

We are now in position to prove our first main result.

Theorem 3.7. The global attractor A of a geometric Lorenz flow φ is computable
from a (C2) name of φ.

Proof. By Lemma 3.6, we only need to show that the operation (φ, F, r±) → A
is computable. To prove that A is computable from φ, F , and r±, it suffices to
show that, from the given information, (i) a sequence dense in A can be computed
and (ii) a sequence of open rational balls exhausting the complement of A can be
computed.

For x ∈ V and T > 0, let OT (x) = {φ(t, x) : −T ≤ t ≤ T} and OT (A) =⋃
x∈A OT (x). ThenA = O∞(A)∪{(0, 0, 0)}. Since for each positive rational number

T , the compact subset OT (A) of R3 is computable from φ, T , and A by Lemma
3.3(a), it follows from Theorem 3.1 that a sequence dense in OT (A) can be computed
using the given information. By effectively listing the set of all positive rational
numbers and then using a computable pairing function, we obtain a sequence dense
in O∞(A), which is of course also dense in A. This proves (i).

We now turn to (ii). It is enough to show that given a point x ∈ M we can
semi-decide, uniformly in x, whether x is outside the global attractor A, that is,
whether x /∈ A. By the proof of Lemma 3.6, we know that we can use φ to follow
the trajectory starting at x until it hits V for the first time, and then compute the
point l(x) ∈ V at which this trajectory lands. Note that l(x) = φt(x) for some
(computable) time t. It follows that x ∈ A if and only if l(x) ∈ A, and this last
relation can be semi-decided by Theorem 3.1. This proves (ii). �

Corollary 3.8. The geometric Lorenz attractor contains computable points with
dense orbits.

Proof. By the previous result, A itself is a computable metric space. The Poincaré
map on A is well defined and computable on A \ D which, with respect to the
induced topology on A, is a recursively enumerable open set which is dense on A.
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Moreover, this dynamical system is transitive (see for instance [10]), and therefore
it contains a computable point whose orbit is dense in A (see [7], Theorem 3). But
the orbit of this point under the flow is dense in A, which finishes the proof. �

4. A computable geometric Lorenz flow admits a computable

physical measure

Given an invariant probability measure μ for a flow φt on a space M , let B(μ) be
the set of initial conditions z ∈ M satisfying for all continuous functions ϕ : M → R:

lim
T→∞

1

T

∫ T

0

ϕ(φt(z)) dt =

∫
M

ϕ(z) dμ.

The set B(μ) is known as the (ergodic) basin of μ. When this basin has positive
volume, one says that the measure μ is Physical, or SRB (for Sinai-Ruelle-Bowen;
see for instance [21]). These measures are “physical” in the sense that they de-
scribe the statistical asymptotic behavior for a “big” (positive volume) set of initial
conditions, so they represent the “physically observable” equilibrium states of the
system.

Geometric Lorenz attractors are robust attractors of 3-dimensional flows, and it
was shown in [2] that they admit a unique physical measure. In this section, we
show that if the data defining a geometric Lorenz flow are computable, then the
flow admits a computable physical measure.

We start by recalling the definition of computable measure.

Definition 4.1. A probability measure μ on a (computably) compact subset M ⊂
R3 is computable if the integration operator ϕ →

∫
M

ϕdμ, where ϕ is a continuous
real valued function on M , is computable.

It can be shown (see for instance [16]) that if R : M → M ′ is a computable
function and μ is a computable probability measure on M , then the pushforward
R∗μ of μ by R, defined by

R∗μ(E) = μ(f−1(E)),

is also a computable measure.

Theorem 4.2. Let φ be the flow of some Lorenz geometric system. If φ is (C2)
computable, then the geometric Lorenz flow admits a computable physical measure.
More generally, the geometric Lorenz flow admits a physical measure which is com-
putable from φ.

Proof. Let F : V − ∪ V + → V , F (x, y) = (f(x), g(x, y)), be the return map of the
geometric Lorenz flow, as defined in Subsection 2.2. The map f : I \ {0} → I,
I = [r−, r+] describes the dynamics of the leaves {γx}x∈I of the foliation F of V ,
which is invariant for the return map F (recall that the leaves are just vertical
straight lines x = c). In particular, for each x ∈ I and x 
= 0,

F (γx) ⊂ γf(x).

Moreover, the dynamics of F is uniformly contracting in the direction of the leaves
of F .

Since f is expanding, it follows that it admits a unique ergodic invariant measure
μf on [r−, r+] which is absolutely continuous with respect to Lebesgue measure
(see for instance [19]). Moreover, it can be shown that this measure has a bounded
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density function. Recall that by Lemma 3.6, the functions F and f are computable
from φ. It follows from [6] that μf is also computable from φ.

One then considers the product measure ν = μf ×μL on V , where μL is just the
Lebesgue measure on [−27, 27], normalized to integrate one. It is easy to see that
ν is a computable measure too. By the contracting property of F on the leaves, it
follows that the pushforwards F ∗ν of this measure by F , defined by

F ∗nν(E) = ν(F−nE),

converge exponentially fast (in the weak* topology) towards a limit measure μF

on V which is invariant and physical for F (see [3]). The sequence F ∗nν being
computable, as well as the rate of convergence, implies computability of the limit
measure μF .

The last step is to compute a physical measure for the flow. To this end, let V ∗r

be the subset of R3 defined by

V ∗r = {(x, y, z) ∈ R3 : (x, y) ∈ V \D, z ∈ [0, r(x, y)]}.

In case the function r is integrable,∫
V \D

r(x, y)dμF < ∞,

a measure μ∗ on V ∗r can be naturally defined by

μ∗ =
μF × μL∫
r(x, y)dμF

,

where μL is again Lebesgue measure. Moreover, this measure is computable when-
ever the integral above is computable. We then transport this measure into the
actual flow via the function

Φ : V ∗r → M : (x, y, t) → φt(x, y, 27),

where φt(x, y, z) is the trajectory of the flow at time t starting at (x, y, z). Clearly,
the function Φ is computable from φ, which implies that the transported measure

μPhysical(E) = μ∗(Φ−1E),

where E is a Borel set of M , is a computable measure. Moreover, by [3], this is the
physical measure for the flow. The following claim therefore finishes the proof of
the theorem. �

Claim 4.3.
∫
V ∗ r(x, y)dμF is computable.

Proof of the claim. Since the return function r(x, y) depends only on the x coor-
dinate, we have that

∫
V ∗ r(x, y)dμF =

∫
I
r(x)dμf , where r(x) is the projection of

r onto I. We have already seen that r(x) is a computable unbounded function on
I \ {0} (Lemma 3.6). The following estimate is shown in [14]:

|r(x)− r(y)| ≤ C| ln |x| − ln |y||

for all x, y > 0 and all x, y < 0, where C ≥ 1 is a constant. We show that∫
(0,1]

r(x)dμf is computable. Since r(x) is computable and bounded on [ε, 1], we

have that
∫ 1

ε
r(x)dμf is computable. Thus, we only need to estimate

∫ ε

0
r(x)dμf .

By the inequality above, we have that |r(x)− r(1)| ≤ C| ln |x| − ln |1|| = C| ln |x||
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so that, for x > 0, we have r(x) ≤ C| ln(x)| + r(1). Recall that μf is absolutely
continuous with density bounded above, say by M . Then∫ ε

0

r(x)dμf ≤ M

∫ ε

0

r(x) dx ≤ M(Cε[ln(1/ε) + 1] + εr(1)) = O
(
ε ln(1/ε)

)
.

The claim then follows. �
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[6] Stefano Galatolo, Mathieu Hoyrup, and Cristóbal Rojas, Statistical properties of dynamical
systems—simulation and abstract computation, Chaos Solitons Fractals 45 (2012), no. 1,
1–14, DOI 10.1016/j.chaos.2011.09.011. MR2863582

[7] Stefano Galatolo, Mathieu Hoyrup, and Cristóbal Rojas, A constructive Borel-Cantelli
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