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ASYMPTOTIC BEHAVIOR OF POSITIVELY CURVED

STEADY RICCI SOLITONS

YUXING DENG AND XIAOHUA ZHU

Abstract. In this paper, we analyze the asymptotic behavior of κ-noncollaps-
ed and positively curved steady Ricci solitons and prove that any n-dimensional
κ-noncollapsed steady Kähler–Ricci soliton with nonnegative sectional curva-
ture must be flat.

1. Introduction

The classification of a positively curved steady soliton is an important problem in
the study of Ricci flow. In his celebrated paper [20], Perelman conjectured that all
3-dimensional κ-noncollapsed steady (gradient) Ricci solitons must be rotationally
symmetric (precisely, Perelman claims that the conjecture is true without giving
any sketch of proof; see 11.9 of that paper). The conjecture was solved by Brendle
in 2013 [1]. Brendle also proved that the same result holds for higher-dimensional κ-
noncollapsed Ricci solitons with nonnegative sectional curvature if they are asymp-
totically cylindrical [2]. Under the condition of a locally conformally flat condition,
Cao and Chen also proved the rotational symmetry of a gradient steady soliton
in [7]. These rotationally symmetric metrics are usually called the Bryant steady
Ricci solitons.

In the complex case, Cao constructed a family of U(n)-invariant steady Kähler–
Ricci solitons with positive sectional curvature on Cn [5]. He also proposed the
following open problem.

Problem 1.1. Is it true that any complete gradient steady Kähler–Ricci soliton
with positive sectional curvature must be U(n)-invariant?

Unlike the Bryant solitons, one can check that Cao’s solitons are all collapsed
(cf. the Appendix in the present paper). Thus, it is interesting to ask the following
question.

Problem 1.2. Does there exist a steady Kähler–Ricci soliton with positive sec-
tional curvature which is κ-noncollapsed?

In this paper, we give a negative answer to Problem 1.2. Namely we prove the
following theorem.

Theorem 1.3. There is no κ-noncollapsed steady gradient Kähler–Ricci soliton
with positive sectional curvature.
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Theorem 1.3 gives a positive evidence to Problem 1.1. As an application of The-
orem 1.3, we get the following rigidity result for the steady Kähler–Ricci solitons.

Theorem 1.4. Any κ-noncollapsed steady Kähler–Ricci soliton with nonnegative
sectional curvature must be flat. More generally, any κ-noncollapsed noncompact
and eternal Kähler–Ricci flow with nonnegative sectional curvature and uniformly
bounded curvature must be a flat flow.

We use the induction argument to prove Theorem 1.3 and first prove it for Kähler
surfaces. The main technique is to analyze the asymptotic behavior of positively
curved steady Ricci solitons as used by many people, such as in [20], [18], [19],
[1], etc. By the blow-down argument, we first generalize Perelman’s compactness
theorem for 3-dimensional κ-solution in [20] to higher dimensions (see Theorem
3.3). Then we apply the compactness theorem to the steady Ricci solitons and
prove the following theorem.

Theorem 1.5. Let (M, g, f) be a noncompact κ-noncollapsed steady Kähler–Ricci
soliton with dimension n. Suppose that M has nonnegative sectional curvature
and positive Ricci curvature. Then, for any pi → ∞, the sequence of rescaled
flows (M,R(pi)g(R

−1(pi)t), pi) converges subsequently to a Kähler–Ricci flow (N1×
N2, g̃(t)) ( t ∈ (−∞, 0]) in the Cheeger–Gromov topology, where

g̃(t) = dz ⊗ dz + gN2
(t),

N1 is C1 or R1×S1 with the flat metric gN1
= dz⊗dz, and (N2, gN2

(t)) is a pseudo
κ-solution (cf. Definition 3.2) of Kähler–Ricci flow on a complex manifold N2 with
dimension n − 1. Furthermore, in case dimCM = 2, (N2, gN2

(t)) = (CP1, (1 −
t)gFS), where gFS is the Fubini–Study metric of CP 1.

Once Theorem 1.5 is available, we study integral curves generated by the Killing
vector field J∇f on (M, g, f). We show that there exists a sequence of closed
integral curves whose lengths have a positive lower bound under suitable rescaled
metrics of g. On the other hand, we can use the global Poincaré coordinates on M
constructed by Bryant in [3] to prove that the length of those curves should tend
to zero. This will lead to a contradiction!

We remark that the real version of Theorem 1.5 is also true.

Theorem 1.6. Let (M, g, f) be a noncompact κ-noncollapsed steady Ricci soliton
with dimension n. Suppose that M has a nonnegative curvature operator and posi-
tive Ricci curvature. We also assume that (M, g, f) has a unique equilibrium point.
Then, for any pi → ∞, the sequence of rescaled flows (M,R(pi)g(R

−1(pi)t), pi)
converges subsequently to a Ricci flow (R×N, g̃(t)) ( t ∈ (−∞, 0]) in the Cheeger–
Gromov topology, where

g̃(t) = ds⊗ ds+ gN (t),

and (N, gN (t)) is a pseudo κ-solution on N with dimension n− 1.

The proof of Theorem 1.6 is the same as Theorem 1.5. Theorem 1.6 gives an
asymptotic behavior of κ-noncollapsed steady solitons with a nonnegative curvature
operator in higher dimensions.

In a sequel of papers [13], we improve Theorem 1.3 in the sense of positive
bisectional curvature as follows.

Theorem 1.7. There is no κ-noncollapsed steady gradient Kähler–Ricci soliton
with positive bisectional curvature.
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The paper is organized as follows. In section 2, we recall some facts on κ-solution.
In section 3, we give a generalization of Perelman’s compactness theorem for higher-
dimensional κ-solutions. In section 4, we analyze the asymptotic geometry of steady
solitons and prove Theorem 1.5. In section 5, we prove both of Theorem 1.3 and
Theorem 1.4.

2. Preliminary on κ-solutions

A Riemannian metric (M, g) is called a (gradient) Ricci soliton if there exists a
smooth function f on M such that

(2.1) Rij − λgij = ∇i∇jf,

where Rij are components of Ricci curvature of g, ∇ is a co-derivative associated
to g, and λ is a constant. (M, g) is called shrinking, steady, or expanding according
to λ >,=, < 0, respectively. In the case that (M,J) is an n-dimensional complex
manifold and g is a Kähler metric, then we call (M, g) a Kähler–Ricci soliton. It is
easy to see that (2.1) is equivalent to

(2.2) Rij̄ − λgij̄ = ∇i∇j̄f, ∇ī∇j̄f = 0.

Let ϕt and ψt be the one parameter group generated by vector field ∇f and J∇f ,
respectively. Then ϕt, ψt are two families of biholomorphisms of M . Moreover ψt

are isometric transformations since J∇f is a Killing vector field (cf. [3]).
Recall that a complete n-dimensional Riemannian manifold (Mn, g) is called κ-

noncollapsed if there exist some κ > 0 such that vol(B(p, r)) ≥ κrn for any r > 0
whenever |Rm(q)| ≤ r−2 for all q ∈ B(p, r). For a solution of Ricci flow, Perelman
introduced the following [20].

Definition 2.1. Let g = g(t) be a solution of the Ricci flow on M ,

∂g

∂t
= −2Ric(g), t ∈ (a, b].(2.3)

We say that (M, g(t)) is κ-noncollapsed on scales at most r0 if there exist some
κ > 0 such that

vol(B(p, r, t)) ≥ κrn,

whenever |Rm(q, t′)| ≤ r−2 for all q ∈ B(p, r, t), t′ ∈ (t − r2, t], a ≤ t − r2, and
0 ≤ r ≤ r0. We say that (M, g(t)) is κ-noncollapsed if it is κ-noncollapsed on all
scales r0 ≤ ∞.

Definition 2.2. A complete solution (M, g(t)) of (2.3) is called ancient if it is
defined on (−∞, 0] and the curvature operator of g(t) is bounded and nonnegative
for any t ∈ (−∞, 0]. A complete Kähler–Ricci flow (M, g(t)) on t ∈ (−∞, 0] is
called ancient if the bisectional curvature of g(t) is bounded and nonnegative for
any t ∈ (−∞, 0]. Without confusion, we call a κ-noncollapsed, nonflat ancient
solution of (2.3) a κ (Kähler) solution.

For a complete noncompact Riemannian manifold (M, g) with nonnegative Ricci
curvature, we define the asymptotical volume by

V(M, g) = lim
r→∞

vol(B(p, r))

rn
.

Clearly, V(M, g) is independent of the choice of p. The following result says that it
is always zero for an ancient solution (M, g(t)) (cf. [20], [18]).
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Proposition 2.3. Suppose that (M, g(t)) is a noncompact and nonflat ancient
(Kähler) solution. Then V(M, g(t)) = 0 for all t ≤ 0.

Next, we define the asymptotical scalar curvature of g by

R(M, g) = limsupρ(p,x)→∞R(x)ρ2(p, x),

where ρ(p, ·) is a distance function from p on M . It is easy to see that R(M, g) is
independent of the choice of p. By Proposition 2.3, we prove the following.

Corollary 2.4. The asymptotical scalar curvature R(M, g(t)) of a noncompact κ
(Kähler) solution (M, g(t)) is infinite.

Proof. We prove the corollary by contradiction. Suppose R(M, g(t0)) < A for
some positive constant A > 1 and t0 ≤ 0. For a fixed point p ∈ M , we have
R(x, t0) ≤ Ar−2 for all x ∈ M \B(p, r, t0) when r > r0. Fix any q ∈ B(p, 3

√
Ar, t0)\

B(p, 2
√
Ar, t0). Then, replacing r by

√
Ar we have R(x, t0) ≤ r−2 for all x ∈

B(q, r, t0). Since (M, g(t0)) is κ-noncollapsed and has nonnegative curvature, we
get vol(B(q, r, t0)) ≥ κrn. By the volume comparison theorem,

vol(B(p, (3
√
A+ 1)r, t0) ≥ volB(q, r, t0)

≥ κ(3
√
A+ 1)−n(3

√
A+ 1)r)n, ∀ r > r0.

It follows that
V(M, g(t)) ≥ κ(3

√
A+ 1)−n.

This is a contradiction to Proposition 2.3! �

3. Perelman’s compactness theorem

In [20], Perelman proved the following compactness theorem for 3-dimensional
κ-solutions.

Theorem 3.1. Let (Mk, gk(t), pk) be a sequence of 3-dimensional κ-solutions on
a noncompact manifold M with R(pk, 0) = 1. Then, (Mk, gk(t), pk) subsequently
converge to a κ-solution.

To generalize Theorem 3.1 to higher-dimensional κ (Kähler) solutions, we intro-
duce the following.

Definition 3.2. We call a κ-noncollapsed Ricci flow (M, g(t)) a pseudo κ (Kähler)
solution if it is defined on M×(−∞, 0] with a nonnegative curvature operator (non-
negative bisectional curvature) such that the following Harnack inequality holds
along the flow:

(3.1)
∂R

∂t
+ 2∇iRV i + 2RijV

iV j ≥ 0, ∀ V ∈ TM,

or in Kähler case,

(3.2)
∂R

∂t
+∇iRV i +∇īRV ī +Rij̄V

iV j̄ ≥ 0, ∀ V ∈ T (1,0)M.

(3.1) or (3.2) implies the Harnack inequality (cf. [14], [4]),

R(x2, t2)

R(x1, t1)
≥ e

−
d2t1

(x1,x2)

2(t2−t1) .(3.3)

In this section, we prove the following.
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Theorem 3.3. Let (Mk, gk(t), pk) be a sequence of n-dimensional κ (Kähler) so-
lutions on a noncompact manifold with R(pk, 0) = 1. Then (Mk, gk(t), pk) subse-
quently converge to a pseudo κ (Kähler) solution of Ricci flow.

It was mentioned by Morgan–Tian that Perelman’s argument still works for
higher-dimensional κ-solutions [17, p. 222] (also see [18]). In fact, our proof of
Theorem 3.3 below is from Theorem 9.64 in [17], where Perelman’s Theorem 3.1 is
proved. The proof consists of several technical lemmas below, some of which will
also be used in Sections 4 and 5. First we need an elementary lemma (cf. [17]).

Lemma 3.4. Let (M, g) be a Riemannian manifold and let p ∈ M . Let f be a
continuous and bounded function defined on B(p, 2r) → R with f(p) > 0. Then
there is a point q ∈ B(p, 2r) such that f(q) ≥ f(p), d(p, q) ≤ 2r(1 − α), and
f(q′) < 2f(q) for all q′ ∈ B(q, αr), where α = f(p)/f(q).

By Proposition 2.3 and Lemma 3.4, we prove the following.

Lemma 3.5. Let (Mk, gk(t), pk) be a sequence of n-dimensional ancient solutions
of flow (2.3). Let ν > 0. Suppose that there are pk ∈ Mk and rk > 0 such
that vol(B(pk, rk, 0)) ≥ νr2nk . Then there is a C(ν) independent of k such that
r2kR(q, 0) ≤ C(ν) for all q ∈ B(pk, rk, 0).

Proof. We argue by contradiction. Then there is a sequence of points qk∈B(pk,rk,0)

such that r2kR(qk, 0) → ∞ as k → ∞. Let f(x, t) =
√
R(x, t). Applying Lemma

3.4 to f(x, 0) defined on B(qk, 2rk, 0), we see that there are q′k ∈ B(qk, 2rk, 0)
such that R(q′k, 0) ≥ R(qk, 0) and R(q, 0) ≤ 4R(q′k, 0) for all q ∈ B(q′k, sk, 0) with

sk = rk
√
R(qk, 0)/R(q′k, 0). Since ∂R

∂t ≥ 0 by the Harnack inequality (3.1) (or
(3.2)), we get

(3.4) R(q, t) ≤ 4R(q′k, 0), ∀ t ≤ 0, q ∈ B(q′k, sk, 0).

On the the hand, by the relation

ρ0(pk, q
′
k) ≤ ρ0(pk, qk) + ρ0(qk, q

′
k) < 3rk,

where ρ0(pk, qk) is a distance function between two points pk, qk in Mk with respect
to gk(0), we have

vol(B(q′k, 4rk, 0)) ≥ vol(B(pk, rk, 0)) ≥ (ν/42n)(4rk)
2n.

It follows from the Bishop–Gromov volume comparison theorem,

(3.5) vol(B(q′k, s, 0)) ≥ (ν/42n)s2n ∀ s ≤ sk ≤ 3rk.

Now we consider the rescaled flows (Mk, Qkg(Q
−1
k t), q′k) with Qk = R(q′k, 0).

By (3.4) and (3.5), we see that the flows are all (ν/42n)-noncollapsed with the
scalar curvature bounded by 4 on the geodesic balls of radii sk

√
Qk centered at

q′k. Since sk
√
Qk = rk

√
R(qk, 0) → ∞ as k → ∞, by Hamilton’s compactness

theorem [15], (Mk, Qkg(Q
−1
k t), q′k) converge subsequently to an ancient solution

(M∞, g∞(t)). Note that (3.5) implies that the limit (M∞, g∞(0)) has the maximal
volume growth. This is a contradiction to Proposition 2.3. �

Lemma 3.6. Let (M, g(t), p) be an n-dimensional κ-solution of Ricci flow. Suppose
that there exists a point q ∈ (M, g(0)) such that

ρ0(p, q)
2R(q, 0) = 1.(3.6)



2860 YUXING DENG AND XIAOHUA ZHU

Then, there is a uniform constant C>0 independent of g(t) such that R(x, 0)/R(q, 0)
≤ C for all x ∈ B(q, 2d, 0), where d = ρ0(p, q).

Proof. Suppose that the lemma is not true. Then there is a sequence of κ-solutions
(Mk, gk(t), pk) with points q′k ∈ B(qk, 2dk, 0) such that

lim
k→∞

(2dk)
2R(q′k, 0) = ∞,

where dk = ρ0(pk, qk) and ρ0(pk, qk)
2R(q, 0) = 1. By Lemma 3.5, it is easy to see

that for any ν > 0, there is an N(ν) such that

vol(B(qk, 2dk, 0)) < ν(2dk)
2n ∀ k > N(ν).

Hence, by taking the diamond method, we may assume that

(3.7) lim
k→∞

vol(B(qk, 2dk, 0))/(2dk)
2n = 0.

In particular,

vol(B(qk, 2dk, 0)) < (ω2n/2)(2dk)
2n ∀ k ≥ k0,

where ω2n is the volume of unit ball in R2n. Therefore, by the Bishop-Gromov
volume comparison theorem, there exists an rk < 2dk such that

(3.8) vol(B(qk, rk, 0)) = (ω2n/2)r
2n
k .

Note that by (3.7) and (3.8) we have limk→∞ rk/dk = 0.
Next we consider a sequence of rescaled ancient flows (Mk, g

′
k(t), qk), where

g′k(t) = r−2
k gk(r

2
kt). Then by (3.8), we have

vol(B(qk, 1 +A, g′k(0))) ≥ vol(B(qk, 1, g
′
k(0))) =

ω2n

2(1 +A)2n
(1 +A)2n,

where A > 0 is any fixed constant. Thus by applying Lemma 3.5 to the ball
B(qk, 1 +A; g′k(0)), there is a constant K(A) independent of k such that

(1 +A)2R(q, g′k(0)) ≤ K(A) ∀ q ∈ B(qk, 1 +A; g′k(0)).

Hence by the Harnack inequality, the scalar curvature on Bg′
k(0)

(qk, A, 0)×(−∞, 0] is

uniformly bounded by K(A). By Hamilton’s compactness theorem, (Mk, g
′
k(t), qk)

converges to a limit flow (M∞, g∞(t), q∞). Note by (3.6) that

R(q∞, g∞(0)) = lim
k→∞

R(qk, g
′
k(0)) = lim

k→∞

(rk)
2

d2k
= 0.

Therefore, the strong maximum principle implies that (M∞, g∞(t)) is a flat flow.
At last, we prove that (M∞, g∞(t)) is isometric to the Euclidean space for any

t ≤ 0. We need to consider at t = 0. Fix any r > 0. Obviously,

sup
x∈B(q∞,r;g′

k(0))

|Rm(x)| = 0 ≤ ε,

where ε can be chosen so that π√
ε
> 2r. Note that (M∞, g∞(t)) is κ-noncollapsed

for each t ≤ 0. Thus we have

vol(B(q∞, r; g∞(0)) ≥ κr2n.

It follows from the estimate of Cheeger–Taylor–Gromov [9],

inj(q∞) ≥ π

2
√
ε

1

1 + ω2n(r/4)2n

vol(B(q∞,r/4;g∞(0)))

≥ κ

κ+ ω2n
· r.
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Hence B(q∞, κ
κ+ω2n

· r, g∞(0)) is simply connected for all r > 0. Therefore, M∞ is

simply connected, and consequently g∞(t) are all isometric to the Euclidean metric.
The above implies that vol(B(q∞, 1, g∞(0))) = ω2n. On the other hand, by the

convergence of (Mk, gk(t), pk) and the relation (3.8), we get

vol(B(q∞, 1, g∞(0))) = ω2n/2.

This is a contradiction. The lemma is proved. �

Lemma 3.7. Let (M, g(t), p) be a κ-solution with R(p, 0) = 1. Then there exists a
δ > 0 independent of g(t) such that R(q, 0) ≤ δ−2 for all q ∈ B(p, δ; 0).

Proof. By Corollary 2.4, there exists a point q ∈ M such that

ρ0(p, q)
2R(q, 0) = 1.(3.9)

Applying Lemma 3.6, we get

R(x, 0)/R(q, 0) ≤ A ∀ x ∈ B(q, 2d, 0),(3.10)

where d = ρ0(p, q). It suffices to prove that R(q, 0) ≤ C0 for some C0 > 0.
By the Harnack inequality, we have

R(x, t) ≤ R(x, 0) ∀ x ∈ B(q, 2d, 0).(3.11)

Thus the Ricci curvature of g(t) is uniformly bounded by AR(q, 0) on B(q, 2d, 0)
by (3.10). By the flow (2.3), it follows that

d

dt
L(t) ≥ −AR(q, 0)L(t),

where L(t) is the length of γ(s) with respect to g(t) for any t ≤ 0 and γ(s) is a
minimal geodesic connecting p and q with respect to g(0). Thus

dt(p, q) ≤ L(t) ≤ e−AR(q,0)tL(0) = e−AR(q,0)tR(q, 0)−1/2.

Choose tc = −cR−1(q, 0) , where 0 < c < 1 is to be determined. By the Harnack
inequality (3.3),

R(p, 0)

R(q, t)
≥ e

d2t (p,q)

2t ,

we obtain

R(q, tc) ≤ exp(e2cA/2c) ≤ eC
′/2c.(3.12)

Let g̃(t) = R(q, 0)g(R(q, 0)−1t). By (3.11),

|R̃(x, t)| ≤ A ∀x ∈ B(q, 2d, 0).

Since the Ricci curvature is nonnegative,

B̃(q, 2, t) ⊆ B̃(q, 2, 0) = B(q, 2d, 0) ∀ t ≤ 0.

By Shi’s higher order estimates for curvature tensors [21], we have

|Δ̃R̃|(x, t) ≤ C(A) ∀x ∈ B̃(q, 1,−1) , t ∈ (−1, 0].

It follows that

|ΔR|(x, t) ≤ CR2(q, 0) ∀x ∈ B̃(q, 1,−1), t ∈ (−R(q, 0)−1, 0].

Hence

|ΔR(q, t)| ≤ CR2(q, 0) ∀ t ∈ (−R(q, 0)−1, 0].(3.13)
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By (3.13) and the equation

∂R

∂t
= �R+ 2|Ric|2,

we have

| ∂
∂t

R(q, t)| ≤ C ′R2(q, 0).

By (3.12), it follows that

R(q, 0) ≤ R(q, tc) + C ′|tc|R2(q, 0)2 ≤ eC/2c + cC ′R(q, 0).

Thus by choosing c = 1
2 (C

′)−1, we derive

R(q, 0) ≤ C0.

Let δ =
√
(AC0)−1. Then the lemma immediately follows from (3.9) and (3.10). �

Proof of Theorem 3.3. By Lemma 3.7, the κ-noncollapsed condition of (Mk, gk(t))
implies

vol(B(pk, δ, 0)) ≥ κδ2n,

where δ > 0 is a uniform number. By the Bishop–Gromov volume comparison
theorem, we have

vol(B(pk, δ + r, 0)) ≥ vol(B(pk, δ, 0)) ≥
κ

(1 + (r/δ))2n
(δ + r)2n ∀ r > 0.

Applying Lemma 3.5 to each ball B(pk, δ + r, 0), we see that there is a C(r) inde-
pendent of k such that

R(q, 0) ≤ C(r)(r + δ)−2 ∀ q ∈ B(pk, δ + r, 0).

By the Harnack inequality, we also get

R(q, t) ≤ C(r)(r + δ)−2 ∀ q ∈ B(pk, δ + r, 0).

Hence, Hamilton’s compactness theorem implies that (Mk, gk(t), pk) subsequently
converges to a limit Ricci flow (M∞, g∞(t)) with a nonnegative curvature operator
(or a nonnegative bisectional curvature) for any t ≤ 0 [15]. Moreover, g∞(t) satisfies
the Harnack inequality (3.1) or (3.2) since gk(t) satisfies the corresponding Harnack
inequality (cf. [14], [4]). �

By using the argument in the proof of Theorem 3.3, we have the following point-
wisely estimate for the Laplace of scalar curvature.

Proposition 3.8. Let (M, g(t)) be a κ-solution. Then there is a constant C inde-
pendent of p, t such that

|ΔR(p, t)|
R2(p, t)

≤ C ∀ (p, t) ∈ M × (−∞, 0].

Proof. On the contrary, we can find a sequence of pi and ti such that

(3.14) lim
i→∞

|ΔR(pi, ti)|
R2(pi, ti)

= ∞.

Consider a sequence of rescaled flows (M, gi(t), pi) with

gi(t) = R(pi, ti)g(R
−1(pi, ti)t+ ti).
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Then R(pi, gi(0)) = 1. As in the proof of Theorem 3.3, we see that there is a
constant C independent of i such that

R(q, gi(0)) ≤ C ∀ q ∈ B(pi, 1, gi(0)).

Since the bisectional curvature is positive and the Harnack inequality holds on
(M, gi(t)), we have ∂

∂tR(q, gi(t)) ≥ 0. Thus

|Rm(q, gi(t))| ≤ C(n)R(q, gi(t)) ≤ C(n)R(q, gi(0)) ≤ C(n)C,

where (q, t) ∈ B(pi, 1, gi(0))× [−1, 0].
Since the Ricci curvature Ric(q, gi(t)) is nonnegative along the flow, the metric

gi(q, t) is decreasing along the flow. It follows that

B(pi, 1, gi(−1)) ⊂ B(pi, 1, gi(0)).

Hence,

|Rm(q, gi(t))| ≤ C(n)C ∀ (q, t) ∈ B(pi, 1, gi(−1))× [−1, 0].

By Shi’s higher order estimate, it follows that

|ΔR(q, gi(t))| ≤ C ′, ∀ q ∈ B(pi,
1

2
, gi(−

1

2
))× [−1

2
, 0].

In particular,
|ΔR(pi, ti)|
R2(pi, ti)

= |ΔR(pi, gi(0))| ≤ C ′.

This is in contradiction with (3.14). �

Proposition 3.8 will be used in the proof of Theorem 1.5 in next section.

4. Asymptotical geometry of solitons

In this section, we use Theorem 3.3 to prove Theorem 1.5. Let φt be a family of
biholomorphisms generated by −∇f . Let g(t) = φ∗

t (g). Then g(t) satisfies the Ricci
flow (2.3). In [12], the authors proved that there exists a unique equilibrium point
o such that ∇f(o) = 0 for a steady gradient Kähler–Ricci soliton with nonnegative
bisectional curvature and positive Ricci curvature. Thus for any p ∈ M \ {o}, it is
easy to see that φt(p) converge to o as t → ∞. In the following, we show that the
growth order of ρ(o, φt(p)) is actually equivalent to |t| as t → −∞.

Lemma 4.1. Let o be the equilibrium point defined above. Then for any p ∈ M\{o},
there exist constants C1, C2 > 0 and t0 ≤ 0 such that

C1|t| ≤ ρ(o, φt(p)) ≤ C2|t| ∀ t ≤ t0.(4.1)

Proof. By the identity (cf. [16])

R+ |∇f |2 = A0,(4.2)

where A0 is a constant, we have

|∇f |2(x) +R(x) = R(o) ∀x ∈ M.

Note that
d

dt
f(φt(p)) = −|∇f |2(φt(p)) ∀t ≤ 0

and
d2

dt2
f(φt(p)) =

d

dt
R(φt(p)) = Ric(∇f,∇f) ≥ 0 ∀t ≤ 0.
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Thus

0 ≤ R(φt(p)) ≤ R(p) ∀t ≤ 0

and

R(o)−R(p) ≤ − d

dt
f(φt(p)) ≤ R(o) ∀t ≤ 0.

It follows that

(R(o)−R(p))|t| ≤ f(p)− f(φt(p)) ≤ R(o)|t| ∀t ≤ 0.(4.3)

Consequently,

(R(o)−R(p))|t|+ C(p) ≤ f(o)− f(φt(p)) ≤ R(o)|t|+ C(p) ∀t ≤ 0,

where C(p) = f(o) − f(p). On the there hand, by Proposition 7 in [7], there are
constants C1, C2 > 0 such that

C1ρ(o, φt(p)) ≤ f(o)− f(φt(p)) ≤ C2ρ(o, φt(p)),(4.4)

where t ≤ t0 and t0 is small enough constant. Combining the above two inequalities,
we get (4.1). �

Remark 4.2. Let A(r) = {p ∈ M : f(p) = r} for any r ∈ R. Then A(r) is compact
as r � 1 since f is strictly convex. Thus from the proof of Lemma 4.1, the constants
C1 and C2 in (4.1) can be chosen uniformly for all p ∈ A(r) so that both of them
are independent of t.

Combining Lemma 4.1 and Proposition 3.8, we obtain a lower bound growth
estimate for scalar curvature.

Proposition 4.3. For a κ-noncollapsed steady Kähler–Ricci soliton (M, g) with
nonnegative bisectional curvature and positive Ricci curvature, the scalar curvature
satisfies

C

ρ(x)
≤ R(x), if ρ(x) ≥ r0,(4.5)

where ρ(x) = ρ(o, x) and C > 0 is a uniform constant.

Proof. Sine the scalar curvature R(p, t) of g(p, t) satisfies

∂

∂t
R(p, t) = ΔR(p, t) + 2|Ric(p, t)|2,

by Proposition 3.8, there is a positive constant C > 0 such that

| ∂
∂t

R−1(p, t)| ≤ |ΔR(p, t)|
R2(p, t)

+
2|Ric(p, t)|2
R2(p, t)

≤ C + 2,

and consequently,

(4.6) R(p, t)|t| ≥ |t|
(C + 2)|t|+R(p, 0)−1

≥ 1

2(C + 2)

as long as |t| is large enough.



ASYMPTOTIC BEHAVIOR OF STEADY RICCI SOLITONS 2865

Next we show that (4.6) implies (4.5). We may assume f(o) = 0. For any x
such that f(x) � 1, there exists px ∈ {q ∈ M |f(q) = 1} and tx < 0 such that
φtx(px) = x. By (4.6) together with (4.3) and(4.4), we have

R(x) ≥ 1

|tx|
· 1

(C + 2) + (R(px)|tx|)−1

≥R(o)−R(px)

f(x)− f(px)
· 1

(C + 2) + (R(px)|tx|)−1

≥ R(o)−R(px)

2(f(x)− f(o))
· 1

(C + 2) + (R(px)|tx|)−1

≥R(o)−M1

2C2ρ(x)
· 1

2(C + 2)
∀ |tx| ≥

C + 2

R(px)
.

Here M1 = supq∈{f=1} R(q). On the other hand, by (4.3), we have

|tx| ≥
f(x)− f(px)

R(o)−R(px)
=

f(x)− 1

R(o)−R(px)
.

Then it holds that

R(x) ≥ R(o)−M1

4C2(C + 2)ρ(x)
≥ 1

C3(C + 2)ρ(x)
,

as long as f(x) ≥ C+2
m1

· (R(o) −m1) + 1, where m1 = infq∈{f=1} R(q). Note that

C, C3, and m1 are all independent of x, t. Hence, by (4.4), we get (4.5). �

Now we are ready to prove Theorem 1.5.

Proof Theorem 1.5. By Proposition 4.3, we have

(4.7) lim
i→∞

ρ2(o, pi)R(pi, 0) = ∞.

Let ĝi(t) = R(pi, 0)g(R
−1(pi, 0)t) be a sequence of rescaled Ricci flows of g(t).

Clearly, R(pi; ĝi(0)) = 1. Then applying Theorem 3.3 to (M, ĝi(t), pi), we see that
(M, ĝi(t), pi) converges to a pseudo κKähler solution (M∞, g̃(t), p∞) of (2.3). More-
over, by (4.7) and the nonnegative sectional curvature condition, we can construct
a geodesic line through p∞ in (M∞, g̃(t), p∞) (cf. Theorem 5.35 in [17]). Thus by
the Cheeger–Gromoll splitting theorem [8], (M∞, g̃(0)) must split off a line. Let X
be the vector field tangent to the line with the norm equal to 1 and J∞ the complex
structure on M∞. Then J∞X generates a geodesic curve γ(s) in M∞. If γ(s) is
not closed, it is a geodesic line on M∞. If γ(s) is closed, it is a flat S1. Hence
(M∞, g̃(0)) splits off a complex line N1 = C

1 or a cylinder N1 = R
1 × S

1. Namely,
M∞ = N1 × N2 and g̃(t) = dz ⊗ dz + gN2

(t), where gN2
(t) is a pseudo κ Kähler

solution of (2.3) on a complex manifold N2 with dimension n− 1.
In case dimC(M) = 2, (M∞, g̃(t)) = (N1 ×N2, dz ⊗ dz + gN2

(t)), where gN2
is a

pseudo κ Kähler solution of (2.3) on a surface N2. In particular, the scalar curvture

R̃(·, t) of gN2
(t)) satisfies Harnack inequality

∂

∂t
R̃(·, t) ≥ 0 in N2 × (−∞, 0].(4.8)

By Lemma 4.4 below, we see that (N2, gN2
(t)) = (CP1, (1− t)gFS). �
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Since Theorem 3.3 holds for κ-solutions and all lemmas in this section are true
for all steady Ricci solitons, one can prove Theorem 1.6 by the same argument as
in the proof of Theorem 1.5.

The following lemma is a generalization of Corollary 11.3 in [20] which says: Any
oriented κ-solution on a surface is a shrinking round sphere.

Lemma 4.4. Any oriented pseudo κ-solution (M, g(·, t)) (t ≤ 0) on a surface is a
shrinking round sphere.

Proof. By Corollary 11.3 in [20], it suffices to exclude the case that (M, g(t)) is
noncompact and has unbounded curvature. In this case, we may assume that there
is a sequence of points pi such that R(pi,−1) → ∞ and ρg(−1)(p0, pi) → ∞, where
p0 is a fixed point. In particular,

(4.9) ρ2g(−1)(p0, pi)R(pi,−1) → ∞, as i → ∞.

By taking f(x, t) =
√
R(x, t) and r = ri =

1
4ρg(−1)(p0, pi) in Lemma 3.4, we can

find a sequence of points qi such that R(qi,−1) ≥ R(pi,−1) and

R(q,−1) ≤ 4R(qi,−1) ∀ q ∈ B(qi, di,−1),

where di
√
R(qi,−1) = ri

√
R(pi,−1). Moreover,

ρg(−1)(pi, qi) ≤ 2ri =
1

2
ρg(−1)(p0, pi).

Hence

ρg(−1)(p0, qi) ≥ ρg(−1)(p0, pi)− ρg(−1)(pi, qi) ≥
1

2
ρg(−1)(p0, pi).

It follows that

(4.10) lim
i→∞

ρ2g(−1)(p0, qi)R(qi,−1) = ∞.

Now, we consider a sequence of rescaled Ricci flows (Mi, g
′
i(t), qi), where g′i(t) =

R(qi,−1)g(R−1(qi,−1)(t+ 1)− 1). Since ∂
∂tR ≥ 0, we have

Rg′
i
(q, t) ≤ 4 ∀ q ∈ B(qi, ri

√
R(pi,−1), g′i), t ≤ −1.

Note that ri
√
R(pi,−1) go to infinity as i → ∞ by (4.9). This means that the

curvature of flows are locally uniformly bounded. Together with the κ-noncollapsed
condition, (Mi, g

′
i(t), qi) converge to a limit Ricci flow (M∞, g∞(t), q∞) for t ≤ −1.

Moreover it is a pseudo κ Kähler solution. On the other hand, by (4.10) and the
nonnegative sectional curvature condition, one can construct a geodesic line through
q∞ in (M∞, g∞, q∞) (cf. Theorem 5.35 in [17]). Thus (M∞, g∞(−1))) splits off a
line. As a consequence, it is isometric to C1 or R1 × S1 with the flat metric. But
this is impossible since R(q∞,−1) = 1. The lemma is proved. �

Remark 4.5. A complete classification of ancient flow has been obtained by
Daskalopoulos–Hamilton–Sesum (cf. [11], [10]). They need to assume that the
curvature of the flow is uniformly bounded. In Lemma 4.4, the curvature of the
flow can be unbounded.

As an application of Theorem 1.5, we get the following precise estimate for scalar
curvature of steady Ricci solitons on a complex surface.
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Corollary 4.6. Let (M, g, f) be a 2-dimensional κ-noncollapsed steady Kähler–
Ricci soliton with positive sectional curvature. Let o ∈ M be the unique equilibrium
point such that ∇f(o) = 0 and p �= o. Then

(4.11) R(p, t)|t| → 1, as t → −∞.

As a consequence, there are constants C1 and C2 such that

C1

ρ(x)
≤ R(x) ≤ C2

ρ(x)
.(4.12)

Proof. We first prove the following claim.

Claim 4.7.

lim
t→∞

∂

∂t
R−1(p,−t) = 1.(4.13)

Moreover, the convergence is uniform for all p ∈ A(1), where A(1) = {q ∈ M |f(q) =
1}.

Proof of the claim. We prove the claim by contradiction. On the contrary, we can
find δ > 0, p(i) ∈ A(1), and ti → ∞ such that

| ∂
∂t

R−1(p(i),−ti)− 1| ≥ δ > 0.(4.14)

Let φt be the group of biholomorphisms generated by −∇f and let g(t) be the
corresponding Kähler–Ricci flow. Let pi = φti(p(i)). Consider a sequence of rescaled

Ricci flows (M, ĝi(t), pi) as in Theorem 1.5, where ĝi(t) = R(pi, 0) g(R−1(pi, 0)t).
Then (M, ĝi(t), pi) subsequently converge to a limit Ricci flow (M∞, g̃(t), p∞), while
(M∞, g̃(0), p∞) are isometric to (N1 × CP

1, dz ⊗ dz̄ + gFS). Moreover, by the flow

equation for scalar curvature R̃(·, t) of g̃(t) at (p∞, 0),

∂

∂t
R̃(p∞, 0) = ΔR̃(p∞, 0) + 2|R̃ic|2(p∞, 0),

we get

∂

∂t
R̃(p∞, 0) = 1.

On the other hand, by the convergence of (R(pi, 0)g(R
−1(pi, 0)t, pi), we have

∂

∂t
R̃(p∞, 0) = lim

i→∞

1

R2(pi, 0)

∂

∂t
R(pi, 0) = lim

i→∞

1

R2(p(i),−ti)

∂

∂t
R(p(i),−ti).

Thus

lim
i→∞

G(p(i), ti) = 1,

where G(p, t) = ∂
∂tR

−1(p,−t). This is a contradiction to (4.14). Hence the claim is
true. �

By Claim 4.7, for any ε > 0, there exists a t(ε) < 0 such that

(4.15) R(p, t)|t| ≤ 1

1− ε
∀ p ∈ A(1), t ≤ t(ε).
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We may assume f(o) = 0. For any x such that f(x) � 1, we can find px ∈ {q ∈
M |f(q) = 1} and tx < 0 such that φtx(px) = x. By (4.15) together with (4.3) and
(4.4), we have

R(x) ≤ R(o)

f(x)− f(px)
· 1

1− ε

≤ 2R(o)

f(x)− f(o)
· 1

1− ε

≤ 2R(o)

Cρ(x)
· 1

1− ε
∀ |tx| ≥ |t(ε)|.

Note that by (4.3) we have

|tx| ≥
f(x)− f(px)

R(o)−R(px)
=

f(x)− 1

R(o)−R(px)
.

Thus as long as f(x) ≥ |t(ε)| · (R(o) − m1) + 1, where m1 = infq∈{f=1} R(q), we
obtain

R(x) ≤ 2R(o)

Cρ(x)
· 1

1− ε
.

The proof is finished. �

5. Nonexistence of the noncollapsed steady Kähler–Ricci soliton

In this section, we prove Theorem 1.3 and Theorem 1.4. First we recall a result of
Bryant about the existence of global Poincaré coordinates on a steady Kähler–Ricci
soliton [3].

Theorem 5.1. Let (M, g, f) be a steady Kähler–Ricci soliton with positive Ricci

curvature, which admits an equilibrium point on M . Let Z = ∇f−
√
−1J∇f
2 . Then

there exist global holomorphic coordinates (Poincaré coordinates) z : M → Cn which
linearize Z. Namely, there are positive constants h1, . . . , hn such that

(5.1) Z =

n∑
i=1

hizi
∂

∂zi
.

Corollary 5.2. Let (M, g, f) be a steady Kähler–Ricci soliton with nonnegative
bisectional curvature and positive Ricci curvature. Then, there exists a sequence
of points pk → ∞ such that every integral curve γk(s) of J∇f starting from pk
is closed with the same period time. Moreover, the length of γk(s) is uniformly
bounded from above.

Proof. By Theorem 1.1 in [12], there exists a unique equilibrium point on M .
According to Theorem 5.1, we see that there exist global Poincaré coordinates

(z1, . . . , zn) on M such that Z = ∇f−
√
−1J∇f
2 satisfies (5.1).

Let zi = xi +
√
−1yi. Then

J∇f =

n∑
i=1

hi(xi
∂

∂yi
− yi

∂

∂xi
).

Choose points pk = (k, 0, . . . , 0, 0 . . . , 0) ∈ M . Then the integral curves of J∇f
starting from pk are given by

γk(s) = (k cos(h1s), k sin(h1s), 0, . . . , 0, 0 . . . , 0).
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Clearly, these curves are all closed with period time 2π
h1
. By the identity (4.2),

|γ′
k(s)| = |∇f |(γk(s)) ≤ A

1
2
0 , as k → ∞.

Hence the length lk of γk(s) has a uniformly upper bound:

lk =

∫ 2π
h1

0

|γ′
k(s)|ds ≤ A

1
2
0

2π

h1
.(5.2)

�

In the remainder of this section, we use the estimates in Section 4 to get a lower
bound of lk to derive a contradiction. First, we need the following fundamental
lemma.

Lemma 5.3. Let B(p, r) be a geodesic ball with radius r centered at p in a Rie-
mannian manifold (M, g), and let X be a smooth vector field such that |X|g(x) ≥ C0

and |∇X|(x) ≤ C for any x ∈ B(p, r), where C is a positive constant independent
of x ∈ B(p, r). Let γ(s) be the integral curve of X starting from p and we assume
that γ(s) stays in B(p, r) for all s ∈ [0,∞). Then there exists c0 > 0, which depends
only on r, C, C0, and the metric g on B(p, r), such that γ(s) is away from p for all
s ∈ (0, c0] and

Length(γ(s)) ≥ c0C0.(5.3)

Proof. Suppose that rp is the injective radius at p ∈ M . Set r0 = min{rp, r
2}. By

the exponential map, we can choose a normal coordinate (x1, . . . , xn) on B(p, r0).
Let X(p) = (X1(p), X2(p), . . . , Xn(p)). We may assume that |Xk(p)| =
max1≤i≤n |Xi(p)|. Then |Xk(p)| ≥ C0√

n
. Note that

xk(γ(s))− xk(γ(0)) =
dxk(γ(0))

ds
· s+ d2xk(γ(θs))

ds2
· s2

=s(Xk(p) +
d2xk(γ(θs))

ds2
· s)

and

|d
2xk(γ(s))

ds2
| =

∣∣∣∣∇XX − Γk
ij

dxi(γ(s))

ds

dxj(γ(s))

ds

∣∣∣∣
≤C1|∇XX|g + C2|X(γ(s))|g · max

1≤i,j,k≤n,x∈B(x,r)
|Γk

ij(x)|

≤C3,

where C3 is independent of s ∈ [0, r0]. Choose c0 = min{r0, C0

2
√
nC3

}. Then

|Xk(p) +
d2xk(γ(θs))

ds2
· s| ≥ 1

2
|Xk(p)| > 0 ∀ s ∈ (0, c0].(5.4)

It follows that

|xk(γ(s))− xk(γ(0))| ≥
1

2
s|Xk(p)| > 0 ∀ s ∈ (0, c0].

Thus, (5.3) is true. Hence, the lemma is proved. �
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By Lemma 5.3, we prove the following lemma.

Lemma 5.4. Let (M, g, f) be an n-dimensional κ-noncollapsed steady Kähler–Ricci
soliton with nonnegative sectional curvature and positive Ricci curvature. Let pk be
the sequence of points constructed in Corollary 5.2. Then, there exists a positive
constant C such that R(pk) > C, where C is independent of pk.

Proof. We use the contradiction argument and suppose that R(pk) → 0 as k → ∞.
Let gk(t) = R(pk)g(R

−1(pk)t). Then by Theorem 1.5, the sequence of Ricci flows
(M, gk(t), pk) converge subsequently to a limit flow (M∞, g∞(·, t), p∞). Fix r >

A
1
2
0

2π
h1

(cf. Corollary 5.2). Applying Lemma 3.7 to flows (M, gk(t), pk), there is a

positive constant C = C(r) independent of k such that

(5.5)
R(x)

R(pk)
≤ C ∀ x ∈ Bgk(0)(pk, r).

Thus

(5.6) R(x) → 0 ∀ x ∈ Bgk(0)(pk, r).

Moreover, the convergence is uniform for x ∈ Bgk(0)(pk, r).

Let X(k) = R(pk)
− 1

2 J∇f . Then

|X(k)|2gk(0)(x) = |∇f |2(x) = A0 −R(x).

By identity (4.2) together with condition (5.6), it follows

lim
k→∞

sup
Bgk(0)(pk,r)

||X(k)|gk(0) −
√
A0| = 0.

By Shi’s higher order estimate [21] and soliton equation (2.2), we also get

sup
Bgk(0)(pk,r)

|∇̃m
(gk(0))

X(k)|gk(0) ≤ C(n) sup
Bgk(0)(pk,r)

|∇̃m−1
(gk(0))

Ric(gk(0))|gk(0) ≤ C1,

where ∇̃ denotes the connection with respect to the rescaled metric gk(0). As a
consequence, the restricted vector field Xk on Bgk(0)(pk, r) converges to a smooth
vector field X∞ on Bg∞(0)(p∞, r) ⊂ M∞ in C∞-topology. On the other hand,

∇̃(gk(0))J∇f (J∇f) = ∇J∇f (J∇f) = −∇∇f (∇f) = ∇R.(5.7)

Then

|∇̃(gk(0))X(k)
X(k)|gk(0) =

|∇R|(x)
R

1
2 (pk)

.

Note that by (5.5) and Shi’s higher order estimate,

|∇R|(x)
R

3
2 (pk)

≤ C ′ ∀ x ∈ Bgk(0)(pk, r).(5.8)

Thus we get

|∇̃(g∞(0))X(∞)
X(∞)|g∞(0) = lim

k→∞
|∇̃(gk(0))X(k)

X(k)|gk(0) = 0,(5.9)

where the convergence is uniform on Bgk(0)(pk, r).
By the convergence, there are diffeomorphisms Φk : Bgk(0)(pk, r) → M∞ such

that Φk(pk) = p∞, Φk(gk(0)) → g∞(0), and

(Φk)∗(Xk) → X∞, as k → ∞.



ASYMPTOTIC BEHAVIOR OF STEADY RICCI SOLITONS 2871

By (5.9), it follows that

|∇̃(g∞(0))X(k)
X(k)|g∞(0) → 0, as k → ∞,

where X(k) = (Φk)∗(Xk). Let γk = Φk(γk). Clearly γk ⊂ Bg∞(0)(p∞, r) as long
as k is sufficiently large, since γk ⊂ Bgk(0)(pk, r) by the choice of r. Then we can
apply Lemma 5.3 to γk to see that there are constants c0, A > 0, which depend
only on the metric g∞(0) on Bg∞(0)(p∞, r) such that

Length(γk, g∞(0)) ≥ A

and d(γk(s), p∞) > 0 for all s ∈ (0, c0]. It follows that

Length(γk, gk(0)) ≥
1

2
Length(γk, g∞(0)) ≥ 1

2
A

and d(γk(s), pk) > 0 for all s ∈ (0, c0], as long as k is sufficiently large. On the
other hand, by (5.2), we have

Length(γk, gk(0)) ≤
2π

h1
A

1
2
0 R(pk)

1
2 → 0, as k → ∞.

Hence we get a contradiction! The lemma is proved. �

Combining Lemma 5.4 and Corollary 4.6 in Section 4, we prove Theorem 1.4 in
the surfaces case.

Proposition 5.5. Let (M, g, f) be a 2-dimensional κ-noncollapsed steady Kähler–
Ricci soliton with nonnegative sectional curvature. Then (M, g) is flat.

Proof. If (M, g) is compact, then applying the maximum principle to the identity

Δf + |∇f |2 = A0,

it is easy to see that f is constant of g and so (M, g) is flat. If the soliton is not flat,
then we may assume that (M, g) is a κ-noncollapsed, noncompact steady Kähler–
Ricci soliton with positive Ricci curvature by the Cao dimension reduction theorem
in [6].

Let (z1, . . . , zn) be the Poincaré coordinates as in Theorem 5.1 and let φ(t) be a
family of diffeomorphisms generated by −2Re(Z) = −∇f . Let p = (1, 0, 0, . . . , 0).
Then one can check zi(φt(p)) = e−hitzi(p) (cf. Theorem 3 in [3]). Namely,
Z(φt(p)) = (e−h1t, 0, . . . , 0). For pk = (k, 0, . . . , 0) in Corollary 5.2, we see that
pk = φtk(p) and tk = − ln k

h1
. By Lemma 5.4, we have R(pk) > C for some positive

constant C independent of pk. On the other hand, by (4.11) in Corollary 4.6 we
have

R(pk)
ln k

h1
= R(p, tk)|tk| → 1 as k → ∞.

Hence, we get a contradiction. The proposition is proved. �

Now, we prove Theorem 1.3.

Proof of Theorem 1.3. We prove it by induction on the complex dimension of M .
By Proposition 5.5, we suppose that there is no l-dimensional κ-noncollapsed steady
Kähler–Ricci soliton with nonnegative sectional curvature and positive Ricci cur-
vature for all l < n. To generalize the argument in the proof of Proposition 5.5 to
higher dimensions, we only need to find a sequence of R(pk) as in Lemma 5.4 such
that limk→∞ R(pk) → 0. In fact, we prove the following claim.
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Claim 5.6. Let o be the unique equilibrium of M . Then, under the induction
hypothesis, for any fixed p ∈ M \ {o}, R(p,−t) → 0 as t → ∞.

Proof. By the Harnack inequality, we have ∂
∂tR(p, t) ≥ 0. Note that R(p, t) ≥ 0.

So, limt→−∞ R(p, t) exists. Then there exists a point p ∈ M such that

lim
t→−∞

R(p, t) = C > 0,(5.10)

if the claim is not true. Consider the sequence (M, gτ (t), pτ ), where gτ =
R(p, τ )g(R−1(p, τ )t) and pτ = φτ (p). Then the curvature of (M, gτ (t)) is uni-
formly bounded. Note that (M, gτ (t)) is also κ-noncollapsed. Thus there is a
subsequence (M, gτi(t), pτi) which converges to a geometric limit (M∞, g∞(t), p∞),
where t ∈ (−∞,∞). For any fixed t ∈ (−∞,+∞), by (5.10),

lim
τi→−∞

(τi +R−1(p, τi)t) = −∞.

Therefore,

lim
τi→−∞

R(pτi , R
−1(p, τi)t) = lim

τi→−∞
R(p, τi +R−1(p, τi)t) = C.

Hence

R∞(p∞, t) = lim
τi→−∞

R(pτi , R
−1(p, τi)t)

R(p, τi)
= 1,(5.11)

and consequently,

(5.12)
∂

∂t
R∞(p∞, t) ≡ 0.

By (5.11), (M∞, g∞(t); p∞) is not flat. Then by Cao’s dimension reduction the-
orem [6], we may assume that (M∞, g∞(t)) has positive Ricci curvature. Since
(M∞, g∞(t), p∞) satisfies the Harnack inequality (3.2) and there exists a point
p∞ ∈ M∞ which satisfies (5.12), following the argument in the proof of Theorem
4.1 in [4], we can further prove that (M∞, g∞(t), p∞) is in fact a steady Kähler–
Ricci soliton, which is κ-noncollapsed and has nonnegative sectional curvature and
positive Ricci curvature.

On the other hand, it follows from (5.10) that

R(p, τi)d
2(o, pτi) → ∞, as τi → ∞.

Then as in the proof of Theorem 1.5, (M∞, g∞(0)) splits off M∞ = N1 × N2

with g∞(0) = gN1
+ gN2

, where gN1
= dz ⊗ dz is a flat metric on N1 and gN2

is a Riemannian metric on N2. Consequently, gN2
is an (n − 1)-dimension κ-

noncollapsed steady Kähler–Ricci soliton with nonnegative sectional curvature and
positive Ricci curvature. It contradicts the induction hypothesis. The claim is
proved. �

Let p = (1, 0, 0, . . . , 0). Then pt = φt(p) = (e−h1t, 0, . . . , 0). By Claim 5.6,
R(pt) → 0 as t → −∞. On the other hand, R(pt) = R(p, t) is increasing for
t ∈ (−∞,+∞) by the Harnack inequality. By Lemma 5.4, we see that there is a
positive constant C > 0 such that R(pt) ≥ C as long as −t is sufficiently large.
Therefore, we get a contradiction. The proof of Theorem 1.3 is complete. �

By Theorem 1.3 together with Cao’s dimension reduction theorem [6], we imme-
diately get the following corollary.
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Corollary 5.7. Any n-dimensional κ-noncollapsed steady Kähler–Ricci soliton
with non-negative sectional curvature must be flat.

In the end, we apply Corollary 5.7 to prove Theorem 1.4.

Proof of Theorem 1.4. We only need to prove that R(p, t) ≡ 0 for all p ∈ M and
t ∈ (−∞,+∞). Suppose not. Fix any p ∈ M such that R(p, t′) > 0 for some
t′ ∈ (−∞,+∞). Let {tk} be a sequence of numbers which tends to infinity and let
gk(t) = g(t+ tk). Since each flow (M, gk(t), p) is κ-noncollapsed and has uniformly
bounded curvature, (M, gk(t), p) converges to (M∞, g∞(t), p∞) in the Cheeger–
Gromov topology. Note that the Harnack inequality (3.2) holds along flow (M, g(t))
and that (M, g(t)) has uniformly bounded curvature. Thus ∂

∂tR(p, t) ≥ 0 and R(p, t)
is uniformly bounded. It follows that

R∞(p∞, t1) = lim
t→∞

R(p, t+ t1) = lim
t→∞

R(p, t+ t2) = R∞(p∞, t2),

and consequently,

(5.13)
∂

∂t
R∞(p∞, t) ≡ 0.

Since R∞(p∞, t) ≥ R(p, t′) > 0, (M∞, g∞(t)) is nonflat. By Cao’s dimension
reduction theorem in [6], we may assume that (M∞, g∞(t)) has positive Ricci cur-
vature. Since (M∞, g∞(t); p∞) satisfies Harnack inequality (3.2) and there exists a
point p∞ ∈ M∞ which satisfies (5.13), following the argument in the proof of The-
orem 4.1 in [4], we can prove that (M∞, g∞(t), p∞) is in fact a (gradient) steady
Kähler–Ricci soliton which is κ-noncollapsed and has nonnegative sectional curva-
ture. By Corollary 5.7, (M∞, g∞(t), p∞) is a flat metric flow. This is impossible
because R∞(p∞, t) ≥ R(p, t′) > 0. Hence, we complete the proof. �

6. Appendix

In this appendix, we compute the curvature decay of the steady gradient Käher–
Ricci solion on Cn constructed by Cao in [5] and we show that these steady solitons
are collapsed.

We first recall Cao’s construction. Let (z1, z2, . . . , zn) be the standard holomor-
phic coordinates on Cn. Assume that g = (gij̄) is an U(n)-invariant metric on Cn

and the corresponding Kähler potential is given by u(s), where u(s) is a strictly
increasing and convex function on (−∞,∞) and s = ln |z|2 = ln r2. By a direct
computation, we have

gij̄ = ∂i∂j̄u(s) = e−su′(s)δij + e−2sz̄izj(u
′′(s)− u′(s)),

gij̄ = ∂i∂j̄u(s) = esu′(s)−1δij + ziz̄j(u
′′(s)− u′(s)),

and

f(s) � − ln det(gij̄) = ns− (n− 1) lnu′(s)− lnu′′(s).(6.1)

Then

Rij̄ = ∂i∂j̄f(s) = e−sf ′(s)δij + e−2sz̄izj(f
′′(s)− f ′(s)).(6.2)

Thus gij̄ is a steady gradient soliton if and only if

vi
∂

∂zi
= gij̄∂j̄f

∂

∂zi
= (zi

f ′

u′′ )
∂

∂zi
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is a holomorphic vector field, which is equivalent to

(6.3) f ′ = λu′′,

for some constant λ.
Let φ = u′. Then by (6.3) and (6.1), we get an equation for φ,

(6.4) φn−1φ′eαφ = βens.

After rescaling, we may choose α = β = 1. Cao solved (6.4) by

(6.5)
n−1∑
k=0

(−1)n−k−1n!

k!
φkeφ = ens + (−1)n−1n!.

Cao has observed the following properties of φ:

φ(s) > 0, φ′(s) > 0 ∀ s ∈ (−∞,+∞),

lim
s→∞

φ(s)

s
= n, lim

s→∞
φ′(s) = n.(6.6)

He also proved that these solitons have positive sectional curvature.
The curvature asymptotic behavior can also be computed in the following. Let

o = (0, 0, . . . , 0) and p = (z1, 0, . . . , 0). Then by (6.2), we have

R(p) = − 1

φ′

(
(n− 1)(

φ′

φ
)′ + (

φ′′

φ′ )
′
)
+

n− 1

φ

(
n− (n− 1)

φ′

φ
− φ′′

φ′

)
(6.7)

= n− φ′.

On the other hand, by differentiating (6.5), it follows that

φ′ =
ens

ens + (−1)n−1n!

n−1∑
k=0

(
(−1)n−k−1n!

k!
φk−n+1

)
.

Thus

R(p) =
(−1)n−1n! · n

ens + (−1)n−1n!

+
ens

ens + (−1)n−1n!

(n(n− 1)

φ
+

1

φ2

n−3∑
k=0

(−1)n−k−1n!

k!
φk−n+3

)
→ (n− 1), as |z1| → ∞.(6.8)

Let ρ(x) be a distance function from the original point o ∈ Cn. Then by (6.6),
it is easy to see that

ρ(x) =

√
n

2
s(x) + o(s(x)), as s → ∞.(6.9)

Hence, using the U(n)-symmetry of g, we obtain from (6.8) the following lemma.

Lemma 6.1. The metric g satisfies the curvature condition

R(x)ρ(x) → 1

2

√
n(n− 1), as |x| → ∞.(6.10)

By Lemma 6.1, we prove the following proposition.

Proposition 6.2. Any U(n)-symmetric steady gradient soliton on Cn is collapsed.
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Proof. Let zi = xi +
√
−1yi for 1 ≤ i ≤ n. We introduce new coordinates

(r, θ, x′
2, y

′
2, . . . , x

′
n, y

′
n) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = cos θ
√
r2 − Σn

i=2(x
2
i + y2i ),

y1 = sin θ
√
r2 − Σn

i=2(x
2
i + y2i ),

x2 = rx′
2,

y2 = ry′2,

· · ·
xn = rx′

n,

yn = ry′n.

Then under the new coordinates the metric g has an expression,

g = r−2φ′(s)(dr2 + r2dθ2) + φ(s)π∗gFS

=
φ′(s)

4
ds2 + φ′(s)dθ2 + φ(s)π∗gFS

= φ′(τ2)τ2dτ2 + φ′(τ2)dθ2 + φ(τ2)π∗gFS ,(6.11)

where π : S2n−1 → CP
n−1 is the S1-Hopf fibration. Let pk ∈ M such that |pk|2 =

ek
2

and let rk = k
2
√
n−1

. By the choice of pk, we have s(pk) = k2.

Let Nk = {x ∈ M : k2 − k ≤ s(x) ≤ k2 + k} and gk = φ(pk)
−1g. We consider

open manifolds (Nk, gk). By the asymptotic behavior of φ(s) and (6.11), it is easy
to see that (Nk, gk) converge to (R × CP

n−1, ds2 ⊗ gFS) in C∞ topology. Note
that B(pk, rk) ⊂ Nk. By the convergence, for any x ∈ B(pk, rk), s(x) ∈ [k2 −
2rk, k

2 + 2rk] and (x′
2(x), y

′
2(x), . . . , x

′
n(x), y

′
n(x)) ⊂ BFS(pk, 2φ(pk)

−1/2rk), where
BFS(pk, r) is the geodesic ball of the submanifold {(r(pk), θ(pk), x′

2, y
′
2, . . . , x

′
n, y

′
n)

∈ M} with the metric π∗gFS . Hence, the volume of B(pk, rk) satisfies the following
estimate for sufficiently large k:

vol(B(pk, rk))

≤
∫ k2+2rk

k2−2rk

ds

∫ 2π

0

dθ

∫
BFS(pk,2φ(pk)−1/2rk)

φ′(s)φ(s)n−1dvolgFS

= 2π(φ(pk))
n−1

∫ k2+2rk

k2−2rk

ds

∫
BFS(pk,2φ(pk)−1/2rk)

φ′(s)
( φ(s)

φ(pk)

)n−1

dvolgFS

≤ 2π(φ(pk))
n−1

∫ k2+2rk

k2−2rk

ds

∫
CPn−1

2n−1ndvolgFS

≤ (32)n+1n(n− 1)n−1πω2n−2r
2n−1
k .(6.12)

It follows that

lim
k→∞

vol(B(pk, rk))

r2nk
= 0.

On the other hand, by Lemma 6.1,

R(x) ≤ 2(n− 1)

k2 − k
≤ 4(n− 1)

k2
=

1

r2k
∀ x ∈ B(pk, rk),

when k is large enough. Hence g is collapsed. �
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From the computation in (6.12), it is easy to get the volume growth of B(p, r),

vol(B(p, r)) = O(rn), as r → ∞.
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