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INCIRCULAR NETS AND CONFOCAL CONICS

ARSENIY V. AKOPYAN AND ALEXANDER I. BOBENKO

Abstract. We consider congruences of straight lines in a plane with the com-
binatorics of the square grid, with all elementary quadrilaterals possessing an
incircle. It is shown that all the vertices of such nets (we call them incircular
or IC-nets) lie on confocal conics.

Our main new results are on checkerboard IC-nets in the plane. These
are congruences of straight lines in the plane with the combinatorics of the
square grid, combinatorially colored as a checkerboard, such that all black
coordinate quadrilaterals possess inscribed circles. We show how this larger
class of IC-nets appears quite naturally in Laguerre geometry of oriented planes
and spheres and leads to new remarkable incidence theorems. Most of our
results are valid in hyperbolic and spherical geometries as well. We present
also generalizations in spaces of higher dimension, called checkerboard IS-nets.
The construction of these nets is based on a new 9 inspheres incidence theorem.

1. Introduction

Geometric constructions based on circles play an important role in discrete dif-
ferential geometry. Circle packings and, more generally, circle patterns serve as
discrete counterparts of analytic functions; see the book [21]. The origin of this
idea is connected with the approach by Thurston to the Riemann mapping theo-
rem via circle packings. Circular nets, i.e., nets with planar circular quadrilaterals,
in space are discrete analogues of curvature line parametrized surfaces and orthog-
onal coordinate systems. They are described by discrete integrable systems, which
leads to a rather developed theory; see [9]. Orthogonal circle patterns in a plane
with the combinatorics of the square grid introduced by Schramm [18] are also
described by discrete integrable systems. They can also be seen as special quadri-
lateral patterns with circumscribed quadrilaterals. Möbius geometry is a natural
framework for all these theories.

In this article we construct some grids naturally related to conics and quadrics,
and in particular to confocal conics.

We consider congruences of straight lines in a plane with the combinatorics of the
square grid, with all elementary quadrilaterals possessing an incircle. It follows from
the Graves–Chasles theorem that the vertices of such nets (we call them incircular
or IC-nets) lie on confocal conics. This gives a simple geometric construction of
IC-nets starting with 2 circles and their 5 tangent lines, three of which are common
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(Corollary 2.10). After we presented our results at an Oberwolfach conference
Serge Tabachnikov informed us about two papers of Böhm [10,11] from the 1960s,
which seem to be forgotten. In these papers Böhm gives a new proof of Ivory’s
theorem using the Graves–Chasles theorem. He also introduced IC-nets and the
corresponding three-dimensional nets with all hypercubes possessing an insphere.
Our presentation of IC-nets in Section 2 is more detailed and includes some new
results.

Our main new results are on checkerboard IC-nets in the plane. These are the
congruences of straight lines in the plane with the combinatorics of the square
grid, combinatorially colored as a checkerboard, such that all black coordinate
quadrilaterals possess inscribed circles. In Section 3 we show how this larger class
of IC-nets appears quite naturally in Laguerre geometry of oriented planes. IC-nets
appear then as a special case when the straight lines of the congruence coincide in
pairs. The construction is based on a new incidence theorem (Theorem 3.3; see
also Figure 13) involving 13 circles and 12 straight lines. We were not able to find
an elementary proof of this theorem and present a proof based on the cyclographic
model of Laguerre geometry.

We also present generalizations of these nets in spaces of higher dimension, called
checkerboard IS-nets. In Section 4 we show that the geometry of these nets is more
rigid than the one of the planar checkerboard IC-nets. The construction is based
on a new incidence theorem (Theorem 4.4) involving 9 inspheres.

Most of the results are valid in hyperbolic and spherical geometries as well. We
present the corresponding modifications for the hyperbolic space in Section 5.

IC-nets are closely related to Poncelet grids (called also Poncelet–Darboux grids),
introduced and studied by Darboux [12] and after him by several authors [19] and
[16]. These are generated by a (Poncelet) polygon with vertices on an ellipse α,
the edges of which touch an ellipse α′ located within α. The straight lines of edges
comprise the Poncelet grid. If the ellipses α and α′ are confocal, then the Poncelet
grid is a periodic IC-net; see Figure 1. On the other hand, any Poncelet grid is a
projective image of a periodic IC-net. The last claim follows from the fact that two
nested ellipses can be made confocal by a projective transformation. As a corollary
of Theorem 2.1 we obtain that the perspectivity property (vii) is valid for general
Poncelet grids.

Finally, we would like to mention a number of recent attempts to discretize
quadrics in general and confocal systems of quadrics in particular. In [22] a dis-
cretization of the defining property of a conic as an image of a circle under a
projective transformation is considered. Since a natural discretization of a circle is
a regular polygon, one ends up with a class of discrete curves that are projective im-
ages of regular polygons. Although this class has several nice geometric properties,
this discretization is too simplistic.

A version of discrete confocal quadrics in any dimension was introduced in
[7] in the framework of the theory of integrable systems. Starting with an inte-
grable discretization of the Euler–Darboux system, which describes classical confo-
cal quadrics, discrete confocal quadrics were defined analytically. They turn out to
have a remarkable geometric property: all discrete two-dimensional level surfaces of
the so-defined discrete quadrics are Koenigs nets. This is a very important property
since together with the orthogonality condition it characterizes confocal quadrics.
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The corresponding discrete orthogonality condition was formulated in terms of two
combinatorially dual nets.

The geometric patterns constructed in this paper are rather rigid. It would
be interesting to find an appropriate analytic description in terms of difference
equations. Since the geometric constructions depend on finitely many parameters,
it is probably an interesting special ordinary difference equation.

2. Incircular (IC) nets

2.1. Main theorem. We consider maps of the square grid to the plane f : Z2 → R2

and use the following notation:

• fi,j = f(i, j) for the vertices of the net,
• �c

i,j for the quadrilateral (fi,j , fi+c,j , fi+c,j+c, fi,j+c), which we call a net-
square,

• �i,j for the net-square �1
i,j , which we call a unit net-square.

We denote a rectangle in Z2 by P = {(i, j) ∈ Z2|m1 < i < m2, n1 < j < n2}.

Figure 1. A Poncelet IC-net
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Definition 2.1. An IC-net (inscribed circular net) is a map f : P → R2 satisfying
the following conditions:

(i) For any integer i the points {fi,j |j ∈ Z} lie on a straight line �i preserving
the order; i.e., the point fi,j lies between fi,j−1 and fi,j+1. The same holds
for points {fi,j |i ∈ Z} which lie on a straight line mj . We call the lines
�i,mj the lines of the IC-net.

(ii) All unit net-squares �i,j are circumscribed. We denote the inscribed circle
of �i,j by ωi,j and its center by oi,j .

An example of an IC-net is presented in Figure 1. IC-nets have remarkable
geometric properties (see Figure 2), which we summarize in the following theorem.

Theorem 2.1. Let f be an IC-net. Then the following properties hold:

(i) All lines of the IC-net f touch some conic α (possibly degenerate).
(ii) The points fi,j , where i+ j = const, lie on a conic confocal with α. As well

the points fi,j , where i− j = const, lie on a conic confocal with α.
(iii) All net-squares of f are circumscribed.
(iv) In any net-square with even combinatorial side lengths the midlines have

equal lengths:

(1) |fi−c,jfi+c,j | = |fi,j−cfi,j+c|.
(v) The cross ratio

cr(fi,j1 , fi,j2 , fi,j3 , fi,j4) =
(fi,j1 − fi,j2)(fi,j3 − fi,j4)

(fi,j2 − fi,j3)(fi,j4 − fi,j1)

is independent of i. The cross ratio cr(fi1,j , fi2,j , fi3,j , fi4,j) is independent
of j.

(vi) Consider the conics Ck that contain the points fi,j with i+ j = k (see (ii)).
Then for any l ∈ Z there exists an affine transformation Ak,l : Ck → Ck+2l

such that Ak,l(fi,j) = fi+l,j+l. The same holds for the conics through the
points fi,j with i− j = const.

(vii) The net-squares �c
i,j and �c+2l

i−l,j−l are perspective.

(viii) Consider the cone in R
3 intersecting the plane along the inscribed circle

ωi,j at constant oriented angle (all the apexes ai,j of these cones lie in one
half-space). Then all the apexes ai,j lie on a one-sheeted hyperboloid.

(ix) All the circle centers oi,j with i + j = const lie on a conic, and oi,j with
i− j = const also lie on a conic.

(x) The centers oi,j of circles of an IC-net build an affine image of an IC-net.

We will prove this theorem in Section 2.4. But before this we present some
important facts about pencils of conics.

2.2. The Graves–Chasles theorem. In this section we present a remarkable
theorem of Graves–Chasles. It plays a crucial role in the proof of our main theorem
and in construction of IC-nets. Darboux called this theorem beautiful and presented
its proof in his book (see [13], p. 174). It is of course possible to prove it by direct
computation (see Appendix). For completeness in this section we give a geometric
proof of the Graves–Chasles theorem and related results used for construction of
IC-nets. An advantage of our approach is that it can be applied to the hyperbolic
space and to the sphere as well.
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Figure 2. Geometry of IC-nets: (top) tangent lines and confocal
conics, (middle) perspective net-squares, (bottom) circumscribed
net-squares and equal length midlines
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Figure 3. Two coordinate systems

Lemma 2.2. Suppose on a domain Ω ⊂ R2 two coordinate systems (x, y) and (z, t)
are given. Then the following two properties are equivalent:

(i) If the points (x1, y1) and (x2, y2) have the same z coordinate, then the points
(x1, y2) and (x2, y1) have the same t coordinate.

(ii) If the points (z1, t2) and (z2, t1) have the same x coordinate, then the points
(z1, t1) and (z2, t2) have the same y coordinate.

Proof. Prove the implication (i)⇒(ii). Take two points (z1, t2) and (z2, t1) with
the same x-coordinate and consider the line with the fixed y-coordinate passing
through the point (z1, t1) (see Figure 3). Let (z2, t

′
2) be the point on this line with

the coordinate z = z2. We have to show that (i) implies t′2 = t2.
Draw the x, y coordinate lines through the points (z1, t1), (z2, t1), (z1, t2), and

(z2, t
′
2), and denote the points of their intersection as shown in Figure 3. Applying

property (i) for the pairs of points {(z1, t1), (z1, t2)}, {(z2, t1), (z2, t′2)}, we see that
the points (x1, y2), o, and (x2, y1) have equal t-coordinates. Further, (i) for the
pairs {(z1, t1), (z2, t1)} and {(x1, y2), (x2, y1)} implies that the points (x1, y1), o,
and (x2, y2) have equal z-coordinates. Finally, applying (i) to {o, (x2, y2)}, we
obtain that t2 = t′2.

The implication (ii)⇒(i) is proven in exactly the same way. �

Definition 2.2. We call a pair of coordinate line systems diagonal-connected if
they satisfy the condition of Lemma 2.2.

We start with the following well-known lemma (for the proof see [4, Lemma 3.8]
and [5, 16.6.4]).

Lemma 2.3. Let a, b, c, d be four points on a conic α and the lines (ab) and (cd)
touch some other conic β. Then lines (bd) and (ac) touch some conic γ from the
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Figure 4. Graves–Chasles theorem

pencil generated by the conics α and β. Moreover the tangent points of β with (ab)
and (cd) and the tangent points of γ with (bd) and (ac) are collinear.

Recall that a generic dual pencil of conics in RP2 is a set of conics with four
common tangent lines (possibly complex). It is projectively dual to a generic pencil
of conics (see [4] and [5]). The projectively dual form of Lemma 2.3 reads as follows.

Lemma 2.4. Consider two coordinate systems in Ω ⊂ R2 formed by a dual pencil
of conics and the family of lines tangent to some conic from this pencil respectively.
These coordinate line systems are diagonal-connected.

Moreover, let the lines of the sides of the quadrilateral (abcd) touch a conic α,
let its vertices a and c lie on conic β, let the vertices b and d lie on a conic γ, and
let all three conics α, β, γ be from a dual pencil. Then the tangent lines through a
and c to the conic β and through b and d to the conic γ intersect in one point.

Theorem 2.5 (Graves–Chasles theorem). Suppose that all sides of a complete
quadrilateral touch a conic α. Denote pairs of its opposite vertices by {a, c}, {b, d},
and {e, f}; see Figure 4. Then the following four properties are equivalent:

(i) (abcd) is circumscribed.
(ii) Points a and c lie on a conic confocal with α.
(iii) Points b and d lie on a conic confocal with α.
(iv) Points e and f lie on a conic confocal with α.

Proof. Note that a family of confocal conics forms a dual pencil. Therefore the
equivalence of conditions (ii) and (iii) and the equivalence of conditions (ii) and
(iv) follow directly from the first part of Lemma 2.4.

Let us show how the statement (i) follows from (ii) and (iii). Assume that
conditions (ii) and (iii) hold. Then the second part of Lemma 2.4 implies that the
tangent lines to the conics at the vertices of (abcd) intersect at a point. It remains
to show that these tangent lines are bisectors of the quadrilateral (abcd).

The classical equal angle lemma (see, for example, [4]) states that the bisectors
of the angle formed by the tangent lines from a point p to the conic α coincide
with the bisectors of the angles ∠f1pf2, where f1 and f2 are the foci of the conic
α. On the other hand, the optical property of conics implies that these bisectors
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are tangent lines to conics confocal with α passing through p. Therefore all four
tangent lines to conics at vertices of (abcd) are bisectors, so their intersection point
is the incenter of (abcd). This completes the implication (ii)⇒(i).

For the proof in the opposite direction (i) ⇒ (ii), we use the uniqueness of the
configuration. Indeed, choose a point c′ on the line (bc) such that a and c′ lie
on a conic from our confocal family, and choose a point d′ on the line (ad) such
that (c′d′) is tangent to α. We have proved already that then (abc′d′) is circum-
scribed. Moreover its incircle coincides with the incircle of the quadrilateral (abcd)
because it is uniquely determined by the lines (ad), (ab), and (bc). The incircle and
the conic α have no more than four common tangent lines. Since they already have
three common tangent lines (ad), (ab), and (bc), the common tangent lines (cd)
and (c′d′) coincide. �

We will also use the following direct corollary of this theorem.

Corollary 2.6. Let the lines (ab), (bc), (cd) of three sides of a circumscribed
quadrilateral (abcd) touch a conic α and the vertices a, c lie on a conic confocal to
α. Then the line (ad) of the fourth side also touches α.

Remark 1. Dual pencils of conics are studied in particular in [3]. From Lemma 1
of [3] it follows that if the lines of the sides of a quadrilateral (abcd) touch a conic α
and a circle with center o, then the lines of the sides of the quadrilateral f1af2c,
where f1 and f2 are the foci of the conic α, are also tangent to a circle with center o.
However circumscribability is equivalent to the fact that a and c lie on a conic with
foci f1 and f2. That shows the equivalence (i)⇔(ii).

Applying Lemma 2.4 to the previous family of confocal conics we obtain the
following useful statement.

Lemma 2.7. Let α1, α2 be two ellipses and γ1, γ2 be two hyperbolas from the same
confocal family. Let x, y, z, t be their intersection points (see Figure 5). Then the
lines (xz) and (yt) touch a conic confocal to α1, α2, γ1, γ2.

Now the classical Ivory theorem (see, for example, [20] and [15, Sect. 30.6])
follows directly from the Graves–Chasles theorem.

Corollary 2.8 (The Ivory theorem). Let α1, α2 be two ellipses and γ1, γ2 be two
hyperbolas from the same confocal family. Let x, y, z, t be their intersection points
(see Figure 5). Then

(2) |xz| = |yt|.

Proof. Due to Lemma 2.7 there exists a conic α from the confocal family with tan-
gent lines (xz) and (yt). Let us draw four more lines tangent to α passing through
the points x, y, z and t. They determine the intersection points a, b, c, d as in Fig-
ure 5. The Graves–Chasles theorem implies that the four obtained quadrilaterals
shown in Figure 5 as well as the big quadrilateral (abcd) are circumscribed.

Now identity (2) follows from the fact that the sum of lengths of two opposite
edges of a circumscribed quadrilateral equals the semiperimeter of the quadrilateral.
Using the fact that the distances between the touching points on two exterior
tangent lines common to two disjoint discs are equal it is easy to see that both 2|xz|
and 2|yt| are equal to the sum of semiperimeters of quadrilaterals (xayp), (ybzp),
(zctp), and (tdxp) minus the semiperimeter of (abcd). �
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Figure 5. Proof of the Ivory theorem

We note that the Poncelet theorem (for an exhaustive presentation see [14]) can
also be proven by induction using Lemma 2.3; see [5].

We complete this section with another definition of IC-nets equivalent to Defini-
tion 2.1. Let us denote by �i andmj the combinatorially “vertical” and “horizontal”
lines of the IC-net respectively. From the Graves–Chasles theorem it follows that
the intersection points mj ∩ mj+1 and �i ∩ �i+1 lie on the same conic from the
confocal family. Varying i and j we obtain that this conic is independent of i and
j. Using this observation, we can define IC-net in the following way.

Definition 2.3. Let α and α′ be confocal conics. Let �i and mj be lines tangent
to α such that all the intersection points mj ∩ mj+1 and �i ∩ �i+1 lie on α′ (see
Figure 8). We call �i,mj , i, j ∈ Z the lines of an IC-net and the points fi,j = �i∩mj

the vertices of this IC-net.

2.3. Construction of IC-nets. Construction of IC-nets is based on the following
incidence theorem.

Theorem 2.9 (3× 3 incircles incidence theorem). Consider a quadrilateral which
is cut in nine quadrilaterals by two pairs of lines �1, �2 and m1,m2 (see Figure 6).
Suppose all quadrilaterals except one at a corner are circumscribed. Then the ninth
quadrilateral is also circumscribed.

Proof. Consider the conic α which touches five lines �0, �1, �2, m0, m1. Applying
Corollary 2.6 several times we obtain that all lines in the figure are tangent to
α. Denote by fi,j the intersection points fi,j = �i ∩ mj . Theorem 2.5 implies
that the pairs f2,3 and f1,2, f1,2 and f2,1, f2,1 and f3,2 lie on conics confocal with
α. Due to Lemma 2.7 f2,3 and f3,2 also lie on a conic confocal with α. Finally
Theorem 2.5 implies that the quadrilateral formed by the lines �2, �3,m2,m3 is
circumscribed. �

There is a natural way to construct an IC-net starting from two circles.
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Figure 7. Construction of an IC-net from two circles and their
five tangent lines

Corollary 2.10. IC-nets considered up to Euclidean motions and homothety build a
real four-dimensional family. An IC-net is uniquely determined by two neighboring
circles ω0,0, ω1,0 and tangent lines �0, �1, �2, m0, m1 (see Figure 7).

Proof. Choose two non-intersecting circles ω0,0 and ω1,0 with tangent lines �0, �1,
�2, m0, m1 (see Figure 7). Now the circles ω0,1, ω1,1, ω2,0 are uniquely determined.
Next the common tangent line m2 and, further, the circles ω0,2, ω1,2, ω2,1 are
determined. They determine the tangent lines �3 and m3. Finally the inscribed
circle ω2,2 exists due to the incidence Theorem 2.9. Proceeding further this way
one constructs the whole IC-net. �

2.4. Proof of Theorem 2.1. Actually we have proven already an essential part
of Theorem 2.1.

(i),(ii) The corresponding properties were already proven for a 3 × 3 piece of an
IC-net in Theorem 2.9. The global statement follows immediately.

(iii) follows directly from Theorem 2.5 and (i), (ii).
(iv) follows from the Ivory theorem (Corollary 2.8). Indeed, due to (ii) the

points fi−c,j , fi,j−c, fi+c,j , fi,j+c are the intersection points of two pairs of
confocal ellipses and hyperbolas.
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(v) It is well known (see, for example, [4]) that for any two lines tangent to a
conic α the map from one to another generated by tangent lines to α is a
projective map. Therefore it preserves cross-ratios of points. The map

(fi1,j1 , fi1,j2 , fi1,j3 , fi1,j4) �→ (fi2,j1 , fi2,j2 , fi2,j3 , fi2,j4)

is exactly of this type.
(vi) follows from the fact that the map of a conic to another conic of the same

signature from a confocal family defined through intersections by confocal
conics with another signature is an affine map (see, for example, [15] or
[16]). This fact follows immediately from the equations of confocal conics.

(vii) The proof is the same as the proof of property (ii) of Theorem 4.1.
(viii) follows from item (v) of Theorem 3.1.

(ix),(x) Let �i and mj be the combinatorially “vertical” and “horizontal” lines of
an IC-net (see Definition 2.3). Let �′i and m′

j be the bisectors of the lines �i
and �i+1, and mj and mj+1 respectively. Segments of the lines �i build
a billiard trajectory in α′ since they touch the confocal conic α (see, for
example, [15] or [14]). Thus the lines �′i and m′

j are tangent to the conic α′.
Both claims (ix) and (x) follow from the following simple lemma.

Lemma 2.11. Let α and α′ be confocal conics defining an IC-net as in Defini-
tion 2.3. The lines �i are tangent to α and intersect on α′; �i ∩ �i+1 ∈ α′. Let α′′

be the conic that contains the intersection points �′i ∩ �′i+1 of the bisector lines (see
Figure 8). Then there exists an affine transformation that maps α′ to α and α′′ to
α′.

Proof. Let
x2

a2
+

y2

b2
= 1,

x2

a′2
+

y2

b′2
= 1

be the equations of α and α′ respectively. Points of α′′ are dual with respect to α′

to lines tangent to α. Thus, the conic α′′ is given by

x2a2

a′4
+

y2b2

b′4
= 1.

The affine transformation A that maps α′ to α is given by A(x, y) = (λx, μy) with
λ = a

a′ , μ = b
b′ . Obviously A maps α′′ to α′. �

The affine transformation A maps the centers of circles and the lines through the
centers of circles of an IC-net to the vertices of an IC-net and its lines respectively.
This completes the proof of the theorem.

3. Checkerboard IC-net

3.1. Definition and geometric properties of checkerboard IC-nets.

Definition 3.1. A checkerboard IC-net is a map f : P → R
2 satisfying the following

conditions:

(1) For any integer i the points {fi,j |j ∈ Z} lie on a straight line preserving the
order; i.e., the point fi,j lies between fi,j−1 and fi,j+1. The same holds for
points {fi,j |i ∈ Z}. We call these lines the lines of the checkerboard IC-net.

(2) For any integers i and j with the same parity the quadrilateral with vertices
fi,j , fi+1,j , fi+1,j+1, fi,j+1 is circumscribed.



2836 ARSENIY V. AKOPYAN AND ALEXANDER I. BOBENKO

α
α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′α′

α′′

�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i

�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1�i+1

�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�i+2�′i
�′i+1

Figure 8. Three conics related by an affine transformation A in
Lemma 2.11: A(α′′) = α′, A(α′) = α. The conics α and α′ are
confocal.

Figure 9. Checkerboard IC-nets: circumscribed net-squares

This class of nets with inscribed circles is in some sense more natural then IC-
nets. The reason is that all circles and lines of a checkerboard IC-net can be
consistently oriented. This shows that this class of nets belongs to Laguerre ge-
ometry, which studies oriented lines and circles that are in oriented contact (see,
for example, [6]). We will use the Laguerre geometric description to prove some
non-trivial incidence theorems that we have not found in the literature.

We call quadrilaterals�i,j with vertices fi,j , fi+1,j , fi+1,j+1, fi,j+1 with even i+j
unit net-squares of checkerboard IC-net. The quadrilaterals �c

i,j with vertices fi,j ,
fi+c,j , fi+c,j+c, fi,j+c with even i+ j and odd c we call net-squares.
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Figure 10. Checkerboard IC-nets: perspective net-squares

Figure 11. Checkerboard IC-nets as circular-conical nets

Theorem 3.1. Let f be a checkerboard IC-net. Then the following properties hold:

(i) All net-squares are circumscribed (Figure 9).

(ii) Net-squares �c
i,j and �c+2l

i−l,j−l, where l is odd, are perspective (Figure 10).

(iii) The points fi,j , where i + j is an odd constant, lie on a conic. The points
fi,j , where i− j is an even constant, lie on a conic as well.

(iv) (Ivory-type theorem) We define the distance dC(�a,b, �c,d) between two unit
net-squares �a,b and �c,d of a checkerboard net as the distance between the
tangent points on a common exterior tangent line to the circles ωa,b and
ωc,d inscribed in �a,b and �c,d respectively. In case a = c or b = d these
tangent lines are the lines of the checkerboard IC-net.
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Figure 12. Six incircles lemma

For any (i, j) ∈ Z2, with even i+ j and any integer even c one has

(3) dC(�i−c,j ,�i+c,j) = dC(�i,j−c,�i,j+c).

(v) Let ωi,j be the inscribed circle of the unit net-square �i,j . Consider the
cone in R3 intersecting the plane along ωi,j at constant oriented angle (all
the apexes ai,j of these cones lie in one half-space). Then all the apexes
{ai,j |i + j = 4n, n ∈ Z} lie on a one-sheeted hyperboloid. Then the apexes
{ai,j |i+ j = 4n+ 2, n ∈ Z} lie on a one-sheeted hyperboloid as well.

(vi) The centers oi,j of the incircles of a checkerboard IC-net build a circle-
conical net, (see Figure 11) i.e., a net that is simultaneously circular and
conical (see [9]). Recall that circular nets are the nets with circular quadri-
laterals (oi,joi+1,j+1oi,j+2oi−1,j+1), and conical nets in plane are charac-
terized by the condition that the sums of two opposite angles at a vertex are
equal (and equal to π).

We start with the following classical lemma, which can be found for example in
[24, Sect. 67].

Lemma 3.2. Consider a quadrilateral that is cut into nine quadrilaterals by two
pairs of lines (see Figure 12). Suppose the center quadrilateral and all the corner
quadrilaterals are circumscribed. Then the “big” quadrilateral is also circumscribed.

An elementary proof of this lemma is based on the fact that the distances between
the touching points on two exterior tangent lines common to two disjoint discs are
equal. Using this fact one can show that the differences of the sums of the lengths
of the opposite sides of the central “small” and “big” quadrilaterals are equal. This
implies that they are simultaneously circumscribed.

Proof of Theorem 3.1.

(i) We will prove this by induction on c. From the definition we obtain the
claim for c = 1. Suppose the circumscribability is known for all net-squares
of size c. Let us prove it for net-squares of size c+2. Applying Lemma 3.2
for the unit net-squares �i,j , �i,j+c+1, �i+c+1,j+c+1, �i+c+1,j and the net-

square �c
i+1,j+1 we get that the net-square �c+2

i,j is also circumscribed.

(ii) The proof is the same as the proof of property (ii) of Theorem 4.1.
(iii) We will prove the claim for vertices fi,j with i− j = 0; for other cases the

proof is the same. For that we will show that any six successive points lie on
some conic. Without loss of generality, we assume that i = 1. By the Pascal
theorem it is enough to show that the following three points of intersection
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of lines (f0,0f1,1)∩ (f3,3f4,4), (f1,1f2,2)∩ (f4,4f5,5), (f2,2f3,3)∩ (f5,5f0,0) are
collinear.

The point f0,0 is the center of positive homothety of incircles of the net-
squares �0,0 and �3

0,0. The point f1,1 is a center of negative homothety of

incircles of the net-squares �0,0 and �3
1,1. Therefore, by the Monge theorem

(see [23, Sect. 20]), the line (f0,0f1,1) passes through the center of nega-
tive homothety of incircles of the net-squares �3

1,1 and �3
0,0. Analogously

the line (f3,3f4,4) passed through this center. We obtain that the point
(f0,0f1,1) ∩ (f3,3f4,4) is the center of negative homothety of the incircles
of �3

1,1 and �3
0,0.

Using the same argument we can prove that f1,1f2,2∩f4,4f5,5 is the center
of negative homothety of incircles of �3

1,1 and �3
2,2. The point (f2,2f3,3) ∩

(f5,5f0,0) is the center of positive homothety of incircles of �3
0,0 and �3

2,2.
Applying the Monge theorem again we obtain that these three centers of
homotheties lie on one line.

(iv) Since the net-square �c+1
i,j is circumscribed the sums of the lengths of its

opposite sides are equal. The sum of the lengths of two opposite sides
of �c+1

i,j is equal to dC(�i,j ,�i+c,j) + dC(�i,j+c,�i+c,j+c) plus the sum of

the lengths of the intervals from the corners of �c+1
i,j to the touching points

with the inscribed circles of corresponding corner unit net-squares. We
obtain

dC(�i,j ,�i+c,j) + dC(�i,j+c,�i+c,j+c) = dC(�i,j ,�i,j+c) + dC(�i+c,j ,�i+c,j+c).

Applying this equality to �c+1
i−c,j−c, �c+1

i−c,j , �c+1
i,j−c, �c+1

i,j and �2c+1
i−c,j−c we

get

2dC(�i−c,j ,�i+c,j) = 2dC(�i−c,j ,�i,j) + 2dC(�i,j ,�i+c,j)(4)

= dC(�i−c,j−c,�i−c,j) + dC(�i,j−c,�i,j)− dC(�i−c,j−c,�i,j−c)

+ dC(�i−c,j ,�i−c,j+c) + dC(�i,j ,�i,j+c)− dC(�i−c,j ,�i,j)

+ dC(�i,j−c,�i,j) + dC(�i+c,j−c,�i+c,j)− dC(�i,j−c,�i+c,j−c)

+ dC(�i,j ,�i,j+c) + dC(�i+c,j ,�i+c,j+c)− dC(�i,j ,�i+c,j)

= dC(�i−c,j−c,�i−c,j+c) + dC(�i+c,j−c,�i+c,j+c)

− dC(�i−c,j−c,�i+c,j−c)− dC(�i−c,j+c,�i+c,j+c) + 2dC(�i,j−c,�i,j+c)

= 2dC(�i,j−c,�i,j+c).

(v) The apexes of the cones of unit net-squares with fixed i (or fixed j) are
collinear. The lines of different types (with fixed i or fixed j) intersect each
other. Therefore they are asymptotic lines (of two different families) of a
one-sheeted hyperboloid.

(vi) Both angle conditions of circularity and of conicality follow immediately.

�

3.2. Construction of checkerboard IC-nets. The following theorem is a gen-
eralization of Theorem 2.9.

Theorem 3.3 (Checkerboard incircles incidence theorem). Consider a quadrilat-
eral that is cut by two sets of four lines in 25 quadrilaterals. Color the quadrilat-
erals in a checkerboard pattern with black quadrilaterals at the corners. Assume
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Figure 13. Checkerboard incircles incidence theorem

that all black quadrilaterals except one at a corner are circumscribed. Then the
last black quadrilateral at the corner (thirteenth quadrilateral) is also circumscribed
(Figure 13).

Before we prove this theorem let us make an important comment. As we have
already pointed out in Section 3.1 checkerboard IC-nets can be oriented in such
a way that their circles and lines are in oriented contact. They can be naturally
described in frames of Laguerre geometry. Let us briefly introduce the cyclographic
model of Laguerre geometry in the plane (see [6]).

In this model the space of oriented circles C = {x ∈ R2||x − c|2 = r2} is in
one-to-one correspondence with the points a = (c, r) of the Minkowski space R2,1.
They can be seen as the apexes of the cones of revolution intersecting the plane
R2 ⊂ R2,1 at the angle π/4 along the circles C. The oriented lines � ∈ R2 are
modelled as oriented planes L ⊂ R2,1 intersecting the plane R2 along the lines � at
the angle π/4.

An oriented circle C is in oriented contact with an oriented line � if and only if
a ∈ L. Two oriented circles C1, C2 ⊂ R2 are in oriented contact if and only if their
representatives in the Minkowski space a1, a2 ∈ R2,1 differ by an isotropic vector
|a1 − a2| = 0.

In this model a one-parameter family of circles that are in oriented contact to
two oriented lines is represented by a straight line in R2,1. The points of this line
are the apexes of the corresponding cones.

Proof. Let us orient the circles ωi,j with even i, j positively, the circles ωi,j with
odd i, j negatively, and the tangent lines �,m so that they are in oriented contact to
these circles. Due to Lemma 3.2 the net-square �3

1,1 is also circumscribed. Denote

its inscribed circle as ω3
1,1 and orient it so that it is in oriented contact to the lines.
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Figure 14. Projective octahedron incidence theorem

Consider the Laguerre geometry of this pattern in the cyclographic model de-
scribed above. Let ai,j be the apex of the cone which intersects the plane at the
angle π/4 along ωi,j . Denote by a′2,2 the apex on the cone corresponding to the

circle ω3
1,1. The orientation described above implies that the points a1,1, a1,3, a3,1,

a3,3, a
′
2,2 lie in one halfspace of R2,1 (let us say, positive third component r) and

the points ai,j with even i, j in the other halfspace (negative r).
Apexes a’s are collinear if and only if the corresponding circles share two com-

mon tangent lines. The following triples of points are collinear: {a′2,2, a1,1, a0,0},
{a′2,2, a1,3, a0,4}, {a′2,2, a3,1, a4,0}, {a2,0, a2,2, a2,4}, and {a0,2, a2,2, a4,2}. Moreover
if the circles share a common tangent line, then the corresponding apexes are copla-
nar, and the following quintuples of points are coplanar: {a0,2, a2,2, a4,2, a1,1, a3,1},
{a0,2, a2,2, a4,2, a1,3, a3,3}, {a2,0, a2,2, a2,4, a1,1, a1,3}, {a2,0, a2,2, a2,4, a3,1, a3,3}.

We obtain an octahedron1 a2,2, a1,1, a3,1, a3,3, a1,3, a
′
2,2 as in Figure 14. The in-

tersection line of the face planes (a1,1a1,3a2,2) and (a3,1a3,3a2,2) intersects the planes
(a1,1a3,1a

′
2,2) and (a3,3a1,3a

′
2,2) at the points a2,0 and a2,4 respectively. Analogously,

a0,2 = (a1,1a3,1a2,2) ∩ (a1,3a3,3a2,2) ∩ (a1,1a1,3a
′
2,2),(5)

a4,2 = (a1,1a3,1a2,2) ∩ (a1,3a3,3a2,2) ∩ (a3,1a3,3a
′
2,2).

The rest of the proof follows from Theorem 3.4. �

Theorem 3.4 (Octahedron incidence theorem). Consider an octahedron as in Fig-
ure 14 and define the points a0,2, a2,0, a4,2, a2,4 as the intersection points of the
corresponding face planes like (5). Choose an arbitrary point a0,0 ∈ (a1,1a

′
2,2), de-

termine a4,0 := (a0,0a2,0) ∩ (a3,1a
′
2,2) and a0,4 := (a0,0a0,2) ∩ (a1,3a

′
2,2). Then the

lines (a0,4a2,4) and (a4,0a4,2) intersect the line (a3,3a
′
2,2) in a common point (which

we denote by a4,4).

1Here by octahedron we mean a polytope with combinatorics of the regular octahedron.
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Figure 15. Proof of Lemma 3.5 from Pappus theorem

Proof. Since the claim is projective we may simplify the presentation by mapping
the lines (a2,0a2,4) and (a0,2a4,2) to the infinity plane. Then point a2,2 also lies in
this plane. The planes (a1,1a3,1a2,2) and (a1,3a3,3a2,2) become two parallel planes;
the planes (a1,1a1,3a2,2) and (a3,1a3,3a2,2) are parallel as well.

The straight line (a0,0a4,0) is the intersection line of the planes (a1,1a3,1a
′
2,2)

and (a0,0a2,0a2,2). After our normalization the latter becomes the plane paral-
lel to (a1,1a1,3a2,2) (and (a3,1a3,3a2,2)) and passing through a0,0. Finally we ob-
tain the lines (a0,0a4,0), (a0,4a2,4) and (a0,0a0,4), (a4,0a4,2) as the intersections of
the corresponding face planes at a′2,2 with the planes parallel to (a1,1a1,3a2,2) and
(a1,1a3,1a2,2) respectively.

Now projecting the whole geometry to a plane (transversal to the line (a2,2a1,1),
etc.) we obtain the incidence statement from Lemma 3.5 in plane geometry. �

Lemma 3.5. Let (abcd) be a parallelogram and let o be a point in the plane that
does not lie on the lines of the sides of the parallelogram. Let a′ be a point on (oa).
Then there exists a unique parallelogram (a′b′c′d′) such that lines (bb′), (cc′), (dd′)
pass through the point o and the non-corresponding sides are parallel to the sides of
the original parallelogram: (a′d′) ‖ (ab) and (c′d′) ‖ (bc).

Proof. Without loss of generality one can assume a′ = a. After that the claim is
just the Pappus theorem for points b, c, d, b′, c′, d′, o and two points at infinity
(see Figure 15). �

The dual version of this lemma formulated for conics can be found in [1].

Corollary 3.6. Checkerboard IC-nets considered up to Euclidean motions and ho-
mothety build a real eight-dimensional family. A checkerboard IC-net is uniquely
determined by five neighboring circles ω0,0, ω2,0, ω0,2, ω2,2, ω1,1 and circle ω3,3

(see Figure 16).

Proof. For constructing a checkerboard IC-net we start with a circle ω1,1 and its
four tangents �1, �2, m1 and m2. Then we inscribe circles ω0,0, ω0,2, ω2,2 and ω2,0 in
the corners (see Figure 16). The four common tangent lines �0, �3, m0, and m3 are
uniquely determined. Further, the circles ω1,3 and ω3,1 are uniquely determined.
By choosing the circle ω3,3 we have one degree of freedom. Now, the whole net is
fixed. Indeed, we consequently determine the lines �4 and m4, then the circles ω4,0,
ω4,2, ω0,4, ω2,4, and lines �5 and m5. The existence of the circle ω4,4 follows from
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Figure 16. Construction of a checkerboard IC-net

the incidence Theorem 3.3. Applying this theorem again and again one generates
the whole checkerboard IC-net. �
3.3. Confocal checkerboard IC-net. IC-nets can be considered special checker-
board IC-nets. Indeed, if for every second line and every second column of a
checkerboard IC-net the incircles degenerate to points, then the lines of the net
merge in pairs, all non-circumscribed quadrilaterals disappear, and one obtains an
IC-net.

There is however an interesting class of IC-nets which lies between the two we
have considered. These are special checkerboard IC-nets related to confocal conics.

Definition 3.2. We call a checkerboard IC-net confocal if all lines of it are tangent
to a conic.

This class is a natural generalization of IC-nets introduced in Section 2. How-
ever in contrast to IC-nets, here all circles and lines can be oriented so that the
corresponding circles and lines are in oriented contact. This class can be studied in
Laguerre geometry.

The following important geometric property of confocal checkerboard IC-nets can
be proven in exactly the same way as the corresponding theorems in Sections 2.1
and 3.1.

Theorem 3.7. Let f be a confocal checkerboard IC-net all lines of which are tangent
to a conic α. Then the points fi,j , where i + j is an odd constant, lie on a conic
confocal to α. The points fi,j, where i−j is an even constant, lie on a conic confocal
to α as well.

This allows us to define confocal checkerboard IC-nets through confocal conics
similarly to Definition 2.3 of IC-nets (see Figure 17).

Definition 3.3. Let α, α′ and α′′ be confocal conics. Let �i andmi be lines tangent
to α such that all the points �i ∩ �i+1 and mi ∩ mi+1 lie on α′ for odd i and on
α′′ for even i. A confocal checkerboard IC-net is a map f : Z2 → R3 given by the
intersection points fi,j = �i ∩mj .
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Figure 17. To a definition of confocal checkerboard IC-nets

4. Checkerboard inspherical nets in R
3

4.1. Definition and geometric properties of checkerboard IS-nets. In this
section we introduce a natural three-dimensional version of checkerboard IC-nets.
All results and proofs can be generalized for higher dimensions. We consider images
of the integer lattice f : Z3 → R3 or of a cuboid P ⊂ Z3 of full dimension. Let us
denote �

c
i,j,k the cube with the vertices fi,j,k, fi+c,j,k, fi,j+c,k, fi,j,k+c,fi+c,j+c,k,

fi,j+c,k+c, fi+c,j,k+c, fi+c,j+c,k+c.
We call �

c
i,j,k a net cube if i, j, k are all even or all odd and c is odd. Unit

net-cubes are the net-cubes of unit size �i,j,k = �
1
i,j,k.

Definition 4.1. A checkerboard IS-net (inscribed spherical net) is a map f : P →
R3 satisfying the following conditions:

(i) For any integer i, j the points {fi,j,k|k ∈ Z} lie on a straight line preserving
the order; i.e., the point fi,j,k lies between fi,j,k−1 and fi,j,k+1. The same
holds for points {fi,j,k|i ∈ Z} and {fi,j,k|j ∈ Z}.

(ii) The unit net-cubes �i,j,k are circumscribed cubical polytopes, i.e., polyhe-
dra with quadrilateral faces combinatorially equivalent to the three-dimen-
sional cube.

A special case of IS-nets when all cells �i,j,k with all odd coordinates i, j, k
degenerate to points was introduced and investigated by Böhm [11].

An example of an IS-net is shown in Figure 18.
We denote by �j,k the line of the checkerboard IS-net that contains the ver-

texes {fi,j,k|∀i}. Similarly we denote the lines of the other two families by mi,k ⊃
{fi,j,k|∀j} and ni,j ⊃ {fi,j,k|∀k}. The planes of the checkerboard IS-net are denoted
by

Li ⊃ {fi,j,k|∀j, k}, Mj ⊃ {fi,j,k|∀i, k}, Nk ⊃ {fi,j,k|∀i, j}.

Theorem 4.1.

(i) All net-cubes of an IS-net are circumscribed.
(ii) The net-cubes �

c
i,j,k and �

c+4s+2
i−2s−1,j−2s−1,k−2s−1 are perspective.
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Figure 18. 3× 3× 3 block of an IS-net

(iii) For sufficiently large IS-nets (all sides of the cuboid are at least of length
4) all net-cubes are projective images of the standard cube. We will call
them projective cubes.

(iv) The lines �j,k, where j + k = const, lie on a one-sheeted hyperboloid. The
same holds for the lines �j,k with j − k = const and for the corresponding
lines mi,k and ni,j.

(v) Let oi,j,k be the centers of the spheres inscribed in �i,j,k. The points oi,j,k
with all i, j, k even build a grid projectively equivalent to an orthogonal grid
(which is built by the intersection points of planes parallel to the coordinate
planes). The same claim holds for oi,j,k with all i, j, k odd.

4.2. Construction of checkerboard IS-nets. Our construction of checkerboard
IS-nets is based on an incidence theorem on circumscribed cubical polytopes. We
start with a rather obvious result.

Lemma 4.2. Given all but one face planes of a circumscribed projective cube, the
last face plane is uniquely determined.

There are three “infinity” points associated with a three-dimensional projective
cube. If one deletes two opposite faces of a three-dimensional projective cube the
remaining four face plains intersect in a point. The last face plane in the lemma is
uniquely determined by the conditions that it passes through two such “infinity”
points and touches the inscribed sphere.

Lemma 4.3. Suppose a cubical polytope � in R
3 is split by 6 planes in 27 =

3 × 3 × 3 combinatorial cubes as shown in Figure 18. Let us label them naturally
by �0,0,0, �1,0,0, . . . ,�2,2,2. Assume that the central cube �1,1,1 is circumscribed
and the “frame” cubes �0,0,0, �2,0,0, �0,2,0, �0,0,2 are projective cubes and circum-

scribed as well. Then � is an IS-net �
3
0,0,0; i.e., the unitary net cubes �2,2,0, �2,0,2,

�0,2,2, �2,2,2 are circumscribed as well. Moreover the cubes �k,l,m, k, l,m ∈ {0, 2},
are projective cubes.
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Figure 19. Combinatorics of the IS-net planes. The plane L1

contains the points f1,i,j , ∀i, j. The planes L 1
2
and L2 1

2
are the

bisectors of L0 and L1 and of L2 and L3 respectively.

Proof. Let us denote by oi,j,k the centers of the spheres inscribed in �i,j,k (if they
exist). Then the central cube �1,1,1 has vertices f1,1,1, f2,1,1, f1,2,1, f1,1,2, f2,2,1,
f1,2,2, f2,1,2, f2,2,2 and its insphere is centered at o1,1,1. Consider the projective
map σ that preserves the point o1,1,1 and maps four vertices of the central cube to
the centers of the corresponding “frame” spheres: σ(f1,1,1) = o0,0,0, σ(f2,1,1) =
o2,0,0, σ(f1,2,1) = o0,2,0, σ(f1,1,2) = o0,0,2. This projective map preserves four
straight lines in general position passing through o1,1,1 and therefore preserves all
straight lines through o1,1,1.

The cells �2,0,0 and �0,2,0 are projective cubes with inscribed spheres. The face
planes of the cell �2,2,0 coincide with the corresponding face planes of the cells �2,0,0

and �0,2,0. It it easy to see that this implies that the cell �2,2,0 is circumscribed. Its
center is the image of the corresponding vertex o2,2,0 = σ(f2,2,1). Indeed, the plane
L1 (see Figure 19) is mapped by σ to the plane L 1

2
passing through o0,0,0, o0,2,0

and o0,0,2. This plane is the bisector of the planes L0 and L1. The intersection
point L 1

2
∩ (f1,2,2, o1,1,1) = σ(f1,2,2) is equidistant from the planes L1,M2, N2 as

a point of (f1,2,2, o1,1,1) and from L0 as a point of L 1
2
. Thus it is the center of

the inscribed sphere. The same argument shows that the cells �2,0,2, �0,2,2 have
inscribed spheres centered at o2,0,2 = σ(f2,1,2) and o0,2,2 = σ(f1,2,2) respectively.

Finally, the last corner cell �2,2,2 also has an inscribed sphere. It is centered at
the intersection point of three bisector planes o2,2,2 = L2 1

2
∩M2 1

2
∩ N2 1

2
. Indeed,

this point lies on the straight line (o1,1,1, f2,2,2) and thus is equidistant from all the
face planes of �2,2,2. �

Corollary 4.4 (9 inspheres incidence theorem). Suppose a cubical polytope in R3

is split by 6 planes into 27 = 3 × 3 × 3 combinatorial cubes. Suppose the central
and seven of the corner cells are circumscribed. Then the last corner cell is also
circumscribed.
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Figure 20. To the proof of Lemma 4.6

This claim is an immediate corollary of Lemma 4.3. For example, the “infinity”
points of the projective cube �2,0,0 are homothetic centers of the pairs of spheres
inscribed in �2,0,0 and in the cells �0,0,0, �2,2,0 and �2,0,2.

Theorem 4.5 (Global construction of an IS-net from a 2×2×2 block). An IS-net
is uniquely determined by its 2 × 2 × 2 block, which is the union of 8 = 2 × 2 × 2
cubic cells with the vertices fi,j , i, j ∈ {0, 1, 2}, and the cells �0,0,0 and �1,1,1 are
circumscribed projective cubes.

Proof. The initial 2 × 2 × 2 block determines uniquely the blocks along the co-
ordinate axes, i.e., all the vertices fi,j,k with the indexes {j, k ∈ {0, 1, 2}, ∀i},
{i, k ∈ {0, 1, 2}, ∀j}, {i, j ∈ {0, 1, 2}, ∀k}. Indeed, there is a unique sphere touch-
ing the planes M0,M1, N0, N1 and L2. The corresponding cubic cell should be a
circumscribed projective cube. Due to Lemma 4.2 its last face plane L3 is uniquely
determined. Proceeding further this way we determine all the planes of the net.
Now, applying Lemma 4.3 we prove that all unit net-cubes �i,j,k, (i, j, k are either
all even or all odd) are circumscribed. Here we start with the sequence of the cells
�

3
0,0,0, �

3
1,1,1, �

3
2,0,0, �

3
3,1,1, �

3
4,0,0, �

3
5,1,1, �

3
6,0,0, �

3
7,1,1, . . . and proceed further

with the shifted ones �
3
0,2,0, �

3
1,3,1, �

3
2,2,0, �

3
3,3,1, �

3
4,2,0, �

3
5,3,1, �

3
6,2,0, �

3
7,3,1 , . . . ,

�
3
0,0,2, �

3
1,1,3, �

3
2,0,2, �

3
3,1,3, �

3
4,0,2, �

3
5,1,3, �

3
6,0,2, �

3
7,1,3, . . . , and so on. �

4.3. Proof of Theorem 4.1. We start with two claims of independent interest.
As in previous sections the claims and the proofs can be directly generalized for
higher dimensions.

Lemma 4.6. Suppose σ is a projective map of R3 (with infinite plane) to itself
which preserves a point o and all lines that pass through o. Then the image of any
sphere with center at o is a quadric with focus at o; i.e., this quadric is an image
of rotation of a conic with focus at o around its major axis.

Proof. Consider R3 embedded in three-dimensional projective complex space CP3:
the points of R3 have coordinates (z1, . . . , z4) with z4 = 1 and real z1, z2, and z3.
The map σ can be naturally extended to a projective transformation of CP3.

The center of any sphere ω ⊂ CP3 is the pole of the infinite plane P∞ with
respect to ω. The sphere ω intersects P∞ in a conic C∞ given by

∑3
i=1 z

2
i = 0, and

any quadric containing C∞ is a sphere (see Figure 20).
Let o be the center of ω. For any z ∈ C∞ the line oz touches ω, and all these

lines form a cone Co with the tip o and circumscribed around ω. The cone Co is
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fixed under σ; therefore σ(ω) is also inscribed in it, which means it touches all lines
forming Co.

In fact, this implies that o is a focus of the real part of σ(ω). Indeed, let π be the
duality map with respect to the unit sphere Ω centered at o. Note that π(Co) = C∞,
since Ω touches Co exactly at C∞. Since the quadric π(σ(ω)) contains C∞ it is a
sphere.

Denote by ωR the points of ω with real coordinates. We know that π(σ(ωR)) is
a sphere.

That implies that σ(ωR) = π(π(σ(ωR))) is an image of rotation of a conic with
focus at o around its major axis. Indeed, it is known that the polar image of a circle
with respect to another circle is a conic with a focus at the center of the latter circle
(see [4]). Therefore, for any plane L passing through o and the center of the sphere
ωR we have

σ(ωR) ∩ L = π(π(σ(ωR))) ∩ L = πL(πL(σ(ωR ∩ L))) = γL.

Here πL is the two-dimensional polar transformation with respect to the unit circle
lying in L and centered at o, and γL is a conic in L with a focus at o. Finally, the
rotational symmetry in the choice of L implies the claim. �

Theorem 4.7. Suppose a cubical polytope � in R3 is split by 6 hyperplanes into
27 = 3× 3× 3 cubical polytopes. Suppose the central and 8 = 2× 2× 2 corner cells
are circumscribed. Then the cube � is also circumscribed.

Proof. Let J , |J | = 8, be a set of indices of corner cells �j , j ∈ J . Denote by oj
the centers of their inscribed spheres and by aj and bj the corresponding vertices
of � and of the central cell respectively. Let o be the center of the inscribed sphere
of the central cell.

As was mentioned in the proof of Lemma 4.3, there is a projective map σ which
preserves the point o and maps points bj to points oj . Denote the image of the
central cell under σ by �

′.
From Lemma 4.6 it follows that σ maps the inscribed sphere of the central cubical

polytope to an ellipsoid α with focus at o. This ellipsoid touches faces of �
′. Let us

show that the second focus o′′ of this ellipsoid is the center of the sphere inscribed
in �.

Take a face plane L of �, let L′ and L′′ be the corresponding face planes of
�

′ and of the central cell respectively. Let the inscribed sphere of the central
cell touch L′′ at x. Then the ellipsoid α touches L′ at a point y lying on the
line (ox). Let z be the point symmetric to x with respect to the hyperplane L′

(the two-dimensional analogue of this construction is shown in Figure 21). The
optical property of ellipsoids implies that z, y, and o′ are collinear. Note that the
corresponding line is perpendicular to L since the line (xy) is perpendicular to L′′.
Thus,

|zo′| = |zy|+ |yo′| = |xy|+ |yo′| = l − |ox|,

where l is the big axis of the ellipsoid α. Since l− |ox| is independent of the choice
of the L, we have that o′ lies at equal distances from all face planes of �. �
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Figure 21. To the proof of Theorem 4.7

Proof of Theorem 4.1.

(i) follows from Theorem 4.7, which we apply inductively similarly to the proof
of (i) of Theorem 3.1.

(ii) Let s be positive (negative case proved analogously). Sides of the small
cube �

c
i,j,k divide the big cube �

c+4s+2
i−2s−1,j−2s−1,k−2s−1 into 27 cells; note

that 8 corner cells are net-cubes. Denote them by �l, where l = 1, . . . , 8.
Denote by al and by bl the corresponding vertices of �

c
i,j,k and

�
c+4s+2
i−2s−1,j−2s−1,k−2s−1 respectively. Let ωl be the inscribed spheres of �l

and Ω and Ω′ be inscribed spheres of �
c
i,j,k and �

c+4s+2
i−2s−1,j−2s−1,k−2s−1.

Note that al is the negative homothety center of Ω′ and ωl. Analo-
gously bl is the positive homothety center of Ω and ωl. From the Monge
theorem it follows that the line (albl) passes through the negative homoth-
ety center of Ω and Ω′. Therefore all lines (albl) pass through one point.

(iii) Consider the net-cube �
c
i,j,k. The planes Li, Li+c, Mj , and Mj+c pass

through the center of the positive homothety of spheres inscribed in �
c
i,j,k

and �
c
i,j,k+2. This is one of three “infinity” points of a projective cube.

The existence of another two “infinity” points is proven in the same way.
(iv) Let �i1,j1 and �i2,j2 be two lines where i1 and i2 are of different parities and

i1 + j1 = i2 + j2. Then there is a net-cube with edges on �i1,j1 and �i2,j2 .
Since net-cubes are projective cubes these lines intersect.

So we can separate the family of lines �i,j into two subfamilies with
odd and even i. Any two lines from different families intersect (or are
parallel). Therefore they lie on a hyperboloid of one sheet, and these lines
are asymptotic lines of two families on the hyperboloid.

(v) As in the proof of Lemma 4.7 we show that the points oi+1±1.j+1±1,k+1±1

are vertices of a cube projectively equivalent to �i+1,j+1,k+1. The latter
is a projective cube due to (iii). Thus all elementary cells of the grid
oi,j,k, i, j, k ∈ 2Z, are projective cubes. It is easy to see that the infinite
points of all elementary cells coincide, which implies the claim.

�

5. IC- and IS-nets in hyperbolic space

For almost all results of the previous sections there exist natural analogues in
hyperbolic and spherical spaces.
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Figure 22. Hyperbolic six incircles lemma and checkerboard in-
circles incidence theorem

Figure 23. Hyperbolic checkerboard IC-net

In this section we discuss the case of hyperbolic space. For simplicity we as-
sume that the combinatorics of the corresponding geodesics coincides with those in
Euclidean space. In particular, we assume that the lines from different coordinate
families intersect. In this case the embedded pieces f : P → H of patterns in the
hyperbolic space look similar to their Euclidean analogues, and the claims and the
proofs almost coincide.

On Section 2.
For the proof of the hyperbolic version of Theorem 2.5 we use the Klein model.

It is well known that conics (as a set such that sum or difference of distances to
two fixed points is constant) in the Klein model are Euclidean conics, and confocal
conics build a dual pencil containing the circle of absolute as an element [17].
Thus, we can use the Euclidean version of Lemma 2.4 for the proof, as we did for
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Theorem 2.5. In that proof we also use the equal angle lemma, which is valid in
the hyperbolic plane as well.

Corollaries 2.6 and 2.8 and Lemma 2.7 have similar proofs for the hyperbolic
case as well as Theorem 2.9, which follows from them.

Since in the hyperbolic space there is no homothety transformation, IC-nets
build a five-dimensional family. The construction of Corollary 2.10 is valid in the
hyperbolic plane as well.

Items (i)-(iv), (viii), and (ix) of Theorem 2.1 hold true in the hyperbolic case
as well. The proof is the same, except of (ix). Here we observe that the picture
in the Klein model coincides with the Euclidean one: the bisectors are tangent to
the conic α′, and their points of intersection lie on the conic dual to α with respect
to α′.

On Section 3.
All claims of Theorem 3.1 except (vi) hold true also in the hyperbolic case. In

the proof we used the following results, which are all valid in the hyperbolic case
as well:

• Lemma 3.2;
• the Pascal theorem (conics in Klein model are Euclidian conics and geo-
desics are straight lines);

• the Monge theorem (it can be proven through a special construction in
three-dimensional space, which works also in the hyperbolic plane (see [2]).

To prove the hyperbolic version of Theorem 3.3 (see Figure 22, right) we repeat
the construction of Section 3.2. Consider the conformal ball model of the three-
dimensional hyperbolic space H3, and take its equator plane as a conformal model
of the two-dimensional hyperbolic space H2. Draw the circles and geodesics pattern
in H2 as shown in Figure 13. Construct the corresponding cones intersecting H2 at
constant angle. As in the Euclidean case of Theorem 3.3 the corresponding apexes
are collinear. Passing to the Klein model we obtain a projective picture, and the
projective incidence Theorem 3.4 completes the proof.

Checkerboard confocal IC-nets in the hyperbolic space are defined exactly as in
subsection 3.3 and a hyperbolic version of Theorem 3.7 holds.

On Section 4.
In hyperbolic space Theorem 4.1 holds with a modified version of items (iii)

and (v). A “projective cube” there means a polytope which in the Klein models is
the projective image of a cube. The proof is the same as for the Euclidean case,
but hyperbolic versions of lemmas used in the proof require some comments.

The proof of Lemma 4.3 consists of two parts: an observation that the centers
of certain inscribed spheres lie on planes and an incidence theorem of lines and
planes, which we prove by considering appropriate projective transformation. In
the hyperbolic case we have the same condition on centers of inscribed spheres, and
the required incidence theorem in the Klein model is equivalent to the Euclidean
one.

For the proof of the hyperbolic version of Theorem 4.7 we use Lemma 4.6 with
the following observation: if an o focus of a quadric coincides with the center of the
Klein model, then it is also an Euclidean focus of it (and vice versa). We move o
to the center of the Klein model. By Lemma 4.6 there is an (Euclidean) ellipsoid
touching �

′ with focus at o, and thus its hyperbolic focus is also at o. Now we
choose the second hyperbolic focus o′ and repeat the Euclidean arguments.
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Appendix. A direct proof of the Graves–Chasles theorem

Here we give a direct computational proof of the Graves–Chasles Theorem 2.5.

Proof. Let us show that (ii) implies (i). We assume that α is an ellipse with foci f1
and f2. The case of hyperbola can be proven in the same way. Let α1 be the ellipse
passing through the points a and c, and b1 := (af1) ∩ (bf2), d1 := (af2) ∩ (bf1).
Let f ′

1 be a reflection of f1 in line (ab). Note that |f ′
1f2| equals the length l of the

big axis of the ellipse α. We denote by l1 the length of the big axis of α1.
Since a and c lie on the ellipse α1, we have |f1a|+ |f2a| = |f1c|+ |f2c|. Therefore

the quadrilateral (ab1cd1) is circumscribed. Denote the center of its circle by o.
From Poncelet’s isogonal lemma (see, for example, Theorem 1.4 in [4]) it follows
that ∠b1ab = ∠dad1 and ∠b1cb = ∠dcd1. So, it is sufficient to show that the
distances from o to (ad) and (cd) are equal (see Figure 24). We observe that

d(o, ad)

d(o, ad1)
=

sin∠iad
sin∠iad1

=
cos 1

2 (π − ∠bad)
cos 1

2 (π − ∠b1ad1)
=

cos 1
2∠f ′

1af2

cos 1
2∠f1af2

.

Further, 2(cos 1
2∠f ′

1af2)
2 = cos∠f ′

1af2 + 1 holds, and from the cosine formula

we obtain cos∠f ′
1af2 = |f1a|2+|f2a|2−l2

2|f1a|·|f2a| , and we get cos∠f ′
1af2/2 =

√
l21−l2

2|f1a|·|f2a| .

An analogous computation gives 2(cos 1
2∠f1af2)2 = cos∠f1af2 + 1, cos∠f1af2 =

|f1a|2+|f2a|2−|f1f2|2
2|f1a|·|f2a| , cos 1

2∠f1af2 =
√

l21−|f1f2|2
2|f1a|·|f2a| . Therefore

d(o, ad)

d(o, ad1)
=

cos 1
2∠f ′

1af2

cos 1
2∠f1af2

=

√
l21 − l2

l21 − |f1f2|2
.

We see that the ratio d(o,ad)
d(o,ad1)

is independent of the point a. Hence

d(o, ad)

d(o, ad1)
=

d(o, bd)

d(o, bd1)
,

and finally d(o, ad) = d(o, cd), since d(o, ad1) = d(o, cd1).
Let us show now that (i) implies (ii).
If c does not lie on the ellipse with foci f1 and f2 passing through a we can choose

another point c′ on (bc) such that it is on the ellipse and define d′ as the point of
intersection of (ad) with the tangent line from c′ to α. The quadrilateral abc′d′ is
circumscribed. But on the other hand, the incircles of (abc′d′) and (abcd) coincide,
and (cd) and (c′d′) are the common interior tangent lines of α and this incircle.
They should coincide, thus c′ = c. The equivalence (i) ⇔ (iii) can be shown in the
same way. �
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Figure 24. To the proof of the Graves–Chasles theorem

Note added in proof

A discretization of classical confocal coordinates based on a characterization
thereof as factorizable orthogonal coordinate systems was suggested in [8]. It was
shown that IC-nets belong to this family. In particular IC-nets were described
explicitly in terms of elliptic functions.
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[12] Gaston Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques
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congruences et les équations linéaires aux dérivées partielles. Les lignes tracées sur les surfaces;
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