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NONDIVERGENCE PARABOLIC EQUATIONS IN

WEIGHTED VARIABLE EXPONENT SPACES

SUN-SIG BYUN, MIKYOUNG LEE, AND JIHOON OK

Abstract. We prove the global Calderón-Zygmund estimates for second or-
der parabolic equations in nondivergence form in weighted variable exponent
Lebesgue spaces. We assume that the associated variable exponent is log-
Hölder continuous, the weight is of a certain Muckenhoupt class with respect
to the variable exponent, the coefficients of the equation are the functions of
small bonded mean oscillation, and the underlying domain is a C1,1-domain.

1. Introduction

This paper is devoted to the study of the following Dirichlet problem for a second
order parabolic equation in nondivergence form:

(1.1)

{
ut − aijDiju = f in ΩT ,

u = 0 on ∂pΩT .

Here ΩT stands for the space-time cylinder Ω × (0, T ] over a bounded C1,1 do-
main Ω ⊂ R

n with n ≥ 2, and its parabolic boundary is denoted by ∂pΩT :=
(∂Ω× [0, T ]) ∪ (Ω× {t = 0}). The coefficient matrix A = (aij) : Rn+1 → R

n×n

is assumed to be measurable and symmetric and satisfies the uniform parabolicity
condition; i.e., there exists a positive constant Λ, called the parabolicity constant,
such that

(1.2) Λ−1|η|2 ≤ 〈A(z)η, η〉 ≤ Λ|η|2 ∀η ∈ R
n and a.e. z = (x, t) ∈ R

n+1.

For the problem (1.1), we prove the Calderón-Zygmund type estimates in the
weighted variable exponent Lebesgue spaces like

‖ut‖Lp(·)(ΩT ,w) + ‖u‖Lp(·)(ΩT ,w)

+‖Du‖Lp(·)(ΩT ,w) + ‖D2u‖Lp(·)(ΩT ,w) ≤ c‖f‖Lp(·)(ΩT ,w),(1.3)

for any log-Hölder continuous function p(·) : Rn+1 → (1,∞) with

(1.4) 1 < inf
z∈Rn+1

p(z) ≤ sup
z∈Rn+1

p(z) < ∞,

for any weight w belonging to Ap(·) class, and for some constant c > 0 indepen-
dent of u and f under possibly a minimal regularity requirement on the coefficient

Received by the editors May 20, 2015.
2010 Mathematics Subject Classification. Primary 35K20; Secondary 46E30, 46E35.
Key words and phrases. Parabolic equation, Calderón-Zygmund estimate, variable exponent,

parabolic Muckenhoupt weight, BMO space.
The first author was supported by the National Research Foundation of Korea (NRF-

2017R1A2B2003877). The second author was supported by the National Research Foundation
of Korea (NRF-2015R1A4A1041675). The third author was supported by the National Research
Foundation of Korea (NRF-2017R1C1B2010328).

c©2017 American Mathematical Society

2263

http://www.ams.org/tran/
http://www.ams.org/tran/
http://dx.doi.org/10.1090/tran/7352


2264 SUN-SIG BYUN, MIKYOUNG LEE, AND JIHOON OK

matrix A. We will introduce the definitions of log-Hölder continuity, Ap(·) class,
and the weighted variable exponent space in the next section. The estimate (1.3)
ultimately implies the weighted Lp(·) solvability of the equation (1.1) with the im-
plication

(1.5) f ∈ Lp(·)(ΩT , w) =⇒ ut, D
2u ∈ Lp(·)(ΩT , w).

The main points in this paper are the variable exponent p(·) and the weight w.
Note that if p(·) ≡ p then the weighted variable exponent space is the classical
weighted Lebesgue space and if w ≡ 1, then it is the variable exponent Lebesgue
space. We aim to establish a weighted Lp(·) regularity theory that is a natural
generalization of the classical Lp regularity theory. The Calderón-Zygmund esti-
mates for linear equations have been extensively studied since the celebrated work
[11]. In particular, Chiarenza, Frasca, and Longo [13] obtained W 2,p-estimates for
solutions to nondivergence elliptic equations with discontinuous coefficients of van-
ishing mean oscillation (VMO) type, and Bramanti and Cerutti [6] extended this
result to nondivergence parabolic equations.

Over the past decades there has been much investigation into the variable expo-
nent spaces [14–18,20,30,33] and related partial differential equations [1,2,5,8,22].
The physical motivation for such research is concerned with the modeling of various
phenomena in physics, engineering, and other fields, such as electrorheological fluids
[28, 29], elastic mechanics [33], the thermister problem [34], and image restoration
[12]. Moreover, the weighted variable exponent Lebesgue spaces have been actively
studied; see [25–27,31] and the references therein. Especially, one of main research
interests for the weighted Lebesgue spaces has been to find the necessary and suffi-
cient condition on weights to ensure boundedness of the maximal operator. Quite
recently, Diening and Hästö [15, 18], in turn, characterized the class of weights for
which the maximal operator is bounded on the weighted variable exponent Lebesgue
spaces, that is, the Ap(·) class which is a generalization of the classical Muckenhoupt
class.

Recently some results of Lp theory have been generalized to the variable exponent
spaces. Diening, Lengeler, and Růžička [19] obtained W 2,p(·)-estimates and W 1,p(·)-
estimates for the Poisson equation Δu = f . The authors derived W 1,p(·)-estimates
for divergence linear elliptic equations with possibly measurable coefficients in a
nonsmooth domain [9] and W 2,p(·)-estimates for nondivergence linear elliptic equa-
tions with coefficients of bounded mean oscillation (BMO) type in a C1,1 domain [7].
On the other hand, as far as we know, there are no results either of weighted Lp(·)

estimates even for elliptic equations or of Lp(·) estimates for parabolic equations,
even for the heat equation ut −Δu = f .

We point out that the approach in this paper is different from the classical
one which uses representation formulas in terms of singular integral operators and
commutators, as in the previous papers [6,11,13,19]. In addition, our approach does
not employ any maximal function that has been frequently used in Lp theory. Our
method is influenced by the so-called large-M-inequality principle, which was first
introduced by Acerbi and Mingione [3] in order to prove the Calderón-Zygmund
type estimates for parabolic systems of p-Laplacian type. We first derive local
interior and boundary a priori estimates. To do this, we apply a certain stopping
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time argument to find a suitable Vitali type covering of the upper-levels{
z ∈ ΩT ∩Q : |ut|γ0

p(z)

p− + |D2u|γ0
p(z)

p− > λ

}
,

for sufficiently large numbers λ, where γ0 > 1 is to be selected as a suitable con-
stant satisfying γ0 ≤ inf p(z) and p− := infz∈Q p(z). We then estimate the weighted
measures of these upper-level sets by taking advantage of the comparison estimates
in the classical Lebesgue space Lγ0 , the log-Hölder continuity of the variable expo-
nent p(·), and the properties of Ap(·) class. The desired estimate (1.3) follows by
standard flattening and covering arguments along with an appropriate approxima-
tion procedure. We point out that in this procedure, we need to control the term
‖Du‖Lp(·)(ΩT ,w). For the particular case when p(·) ≡ p and w ≡ 1, i.e., the classical

Lebesgue space, this term can be easily controlled by ‖u‖Lp(ΩT ) and ‖D2u‖Lp(ΩT )

from the interpolation inequality for the Sobolev space W 2,p(Ω). For the case of
the weighted variable exponent Lebesgue space, however, it is not easy to do in a
similar way as in the constant exponent case, because the exponent p(·) and the
weight w depend on the t variable. To overcome this difficulty, we instead use a
certain compactness argument, which will be indicated in the last section.

The remainder of this paper is organized as follows. In the next section we
introduce some notation, the definitions of log-Hölder continuity, Ap(·) class and
weighted variable exponent spaces, and the main assumption on the coefficient
matrix to state the main results. In Section 3 we further discuss the properties
of the Ap(·) class and the weighted variable exponent spaces. In Section 4 the
comparison estimates are mainly provided in Lq spaces with 1 < q < ∞. In Section
5 we derive local interior and boundary a priori weighted W 2,1

p(·)-estimates. The

proof of our main result, Theorem 2.5, is presented in Section 6.

2. Main results

We first introduce some standard notation and definitions that will be used
throughout the paper. The variable in R

n+1 is termed z = (x, t) for the spatial
variables x = (x′, xn) = (x1, · · · , xn−1, xn) ∈ R

n and the time variable t ∈ R.
For a function g : U ⊂ R

n+1 → R, we denote the spatial gradient of g by Dg =
(D1g, · · · , Dng), the spatial Hessian of g by D2g = (Dijg), where Dig = Dxi

g =
∂g
∂xi

, Dijg = Dxixj
g = ∂2g

∂xi∂xj
for i, j = 1, · · · , n, while the time derivative of

g by gt = Dtg = ∂g
∂t . As usual, the parabolic distance dp between two points

ξ = (y, s), ξ̃ = (ỹ, s̃) ∈ R
n × R = R

n+1 is denoted by

dp(ξ, ξ̃) := max
{
|y − ỹ|,

√
|s− s̃|

}
,

where | · | is the Euclidean norm. In this paper, we shall use a parabolic cylinder of
the form

Qr(ξ) = Qr(y, s) := Br(y)×
(
s− r2, s+ r2

)
with center ξ=(y, s)∈R

n+1 and radius r>0, where Br(y)={x ∈ R
n : |x− y| < r}

is the open ball in R
n with center y and radius r. Its parabolic boundary is denoted

by

∂pQr(ξ) = ∂pQr(y, s) =
(
∂Br(y)×

[
s− r2, s+ r2

))
∪
(
Br(y)×

{
t = s− r2

})
.
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For the sake of simplicity, we abbreviate B+
r (y) = Br(y) ∩ {xn > 0}, Br = Br(0),

and B+
r = B+

r (0). We also write Qr = Br ×
(
−r2, r2

)
, Q+

r = B+
r ×

(
−r2, r2

)
.

In our further considerations, we shall use the notation Tr = Qr ∩ {xn = 0} and
Tr(y, s) = Tr + (y, s). Furthermore, we shall employ parabolic cubes of the form

Cr(ξ) = Cr(y, s) := {x ∈ R
n : |xi − yi| < r, i = 1, . . . , n} × (s− r2, s+ r2)

for ξ = (y, s) ∈ R
n+1 and r > 0.

For a vector valued function f : U → R
N , N ≥ 1, we denote f̄U by the integral

average of f on U , that is,

f̄U =

∫
−

U

f(z)dz =
1

|U |

∫
U

f(z)dz.

We consider the variable exponent p(z) = p(x, t) = p(·) : Rn+1 → R with

(2.1) 1 < γ1 := inf
z∈Rn+1

p(z) ≤ sup
z∈Rn+1

p(z) =: γ2 < ∞,

for some constants γ1 and γ2, and its conjugate exponent p′(·) = p(·)
p(·)−1 . Let

w : Rn+1 → (0,∞) be a locally integrable function, which is called a weight. For
U ⊂ R

n+1, we define the weighted variable exponent Lebesgue space Lp(·)(U,w) to
be the set of all measurable functions g : U → R such that the modular

�p(·),w(g) :=

∫
U

|g|p(z)w(z) dz

is finite. Then Lp(·)(U,w) becomes a Banach space equipped with the following
Luxemburg norm:

(2.2) ‖g‖Lp(·)(U,w) := inf
{
λ > 0 : �p(·),w

( g
λ

)
≤ 1
}
.

If w ≡ 1, we simply write Lp(·)(U) = Lp(·)(U, 1), which is the usual variable expo-
nent Lebesgue space. On the other hand, if the variable exponent p(·) is constant,
i.e., p(·) ≡ p, then the space Lp(·)(U,w) coincides with the weighted Lebesgue space
Lp(U,w); i.e., its norm becomes the classical norm of the space Lp(U,w) as follows:

‖g‖Lp(U,w) =

(∫
U

|g|pw(z) dz
) 1

p

.

We now present crucial conditions on the variable exponent p(·) and the weight
w.

Definition 2.1. We say that p(·) : Rn+1 → R is log-Hölder continuous, denoted
by p(·) ∈ P log(Rn+1), if

(2.3) |p(ξ)− p(ξ̃)| ≤ cLH

log
(
e+ 1/|ξ − ξ̃|

)
and

|p(ξ)− p∞| ≤ cLH

log(e+ |ξ|) ,

for all ξ, ξ̃ ∈ R
n+1 and for some p∞ ∈ R and cLH = cLH(p(·)) > 0. Here, cLH is

called the log-Hölder constant of p(·).
In particular, if p(·) ∈ P log(Rn+1) satisfies (2.1), we write p(·) ∈ P log

± (Rn+1).
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Hereafter, we abbreviate P log
± := P log

± (Rn+1) for the sake of simplicity. We point
out that the condition (2.3) implies that

(2.4) θ(r) log

(
1

r

)
≤ M, for all 0 < r < ∞,

where θ(·) : [0,∞) → [0, 2γ2] with θ(0) = 0 is the modulus of continuity of p(·) with
respect to the parabolic distance dp such that

(2.5) θ(r) := sup
{
|p(ξ)− p(ξ̃)| : dp(ξ, ξ̃) ≤ r and ξ, ξ̃ ∈ R

n+1
}

and the constant M > 0 depends only on cLH and γ2. Indeed, if dp(ξ, ξ̃) = r̃ ≤ r ≤
1, we have |ξ − ξ̃| ≤ r̃

√
1 + r̃2 ≤

√
2r̃. Then a direct computation yields

|p(ξ)− p(ξ̃)| log
(
1

r

)
≤ |p(ξ)− p(ξ̃)| log

(
1

r̃

)
≤ |p(ξ)− p(ξ̃)| log

( √
2

|ξ − ξ̃|

)

≤ |p(ξ)− p(ξ̃)| log
(
e+

1

|ξ − ξ̃|

)
+ |p(ξ)− p(ξ̃)| log

√
2,

which implies that

θ(r) log

(
1

r

)
≤ cLH + 2γ2 log

√
2 for all 0 < r ≤ 1.

In addition, from (2.5) we have

(2.6) |p(ξ)− p(ξ̃)| ≤ θ(dp(ξ, ξ̃)).

Definition 2.2. For U ⊂ R
n+1, we say that the weight w is of Ap(·)(U) class,

denoted by w ∈ Ap(·)(U), if

[w]Ap(·)(U) := sup
C⊂U

|C|−pC‖w‖L1(C)‖w−1‖Lp′(·)/p(·)(C) < ∞,

where C is any parabolic cube and pC is the harmonic average of p(·) over C denoted
by

pC :=

(∫
−

C

p(z)−1 dz

)−1

.

In particular, when U = R
n+1, we simply write Ap(·) = Ap(·)(R

n+1).

Here, [w]Ap(·)(U) is called the Ap(·)-constant of w and ‖ · ‖Lp′(·)/p(·)(C) is defined

by (2.2) with p(·) replaced by p′(·)/p(·). Note that p′(·)/p(·) might be less than one
and, in this case, ‖ · ‖Lp′(·)/p(·)(C) is not a norm but is only a quasi-norm. When

p(·) is constant, i.e., p(·) ≡ p, the Ap(·)(U) class is the ordinary Muckenhoupt class
Ap(U), and we have

[w]Ap(U) = sup
C⊂U

(∫
−

C

w(z) dz

)(∫
−

C

w(z)−
1

p−1 dz

)p−1

,

which is the classical definition of the Ap-constant of w.

Remark 2.3. We adopted parabolic cubes instead of usual cubes in the definition
of Ap(·) class. This is suitable for our problem dealing with parabolic equations.
We also note that the weight w ∈ Ap(·) satisfies the doubling property in the same
way as the classical Muckenhoupt weight. On the other hand, we still used the
Euclidean distance in the definition of log-Hölder continuity.
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We suppose p(·) ∈ P log
± and w ∈ Ap(·) and recall the bounded domain ΩT =

Ω× (0, T ]. The parabolic weighted variable exponent Sobolev space W 2,1
p(·)(ΩT , w) is

defined as

W 2,1
p(·)(ΩT , w) :=

{
g ∈ Lp(·)(ΩT , w) : |Dg|, |D2g|, gt ∈ Lp(·)(ΩT , w)

}
,

endowed with the norm

‖g‖W 2,1
p(·)(ΩT ,w) = ‖g‖Lp(·)(ΩT ,w)+‖Dg‖Lp(·)(ΩT ,w)+‖D2g‖Lp(·)(ΩT ,w)+‖gt‖Lp(·)(ΩT ,w),

where we abbreviate ‖Dg‖Lp(·)(ΩT ,w) := ‖|Dg|‖Lp(·)(ΩT ,w) and ‖D2g‖Lp(·)(ΩT ,w) :=

‖|D2g|‖Lp(·)(ΩT ,w) for the sake of convenience. We also define W 2,1
p(·)(Qr(ξ), w) and

W 2,1
p(·)(Q

+
r , w) for parabolic cylinders Qr(ξ) and Q+

r in the same way. In addition,

we denote
◦
W 2,1

p(·)(ΩT , w) =
{
g ∈ W 2,1

p(·)(ΩT , w) : g = 0 on ∂pΩT

}
.

We remark that the log-Hölder continuity is considered as an unavoidable condi-
tion, because given the variable exponent p(·) with this condition, the properties of
the classical Lebesgue and Sobolev spaces, such as Sobolev embeddings, Poincaré’s
inequality, and the boundedness of singular integral operators are valid in vari-
able exponent Lebesgue and Sobolev spaces. We further discuss weighted variable
exponent spaces in the next section.

The following is our principal assumption on the coefficient matrix A.

Definition 2.4. For δ, R > 0, we say that the coefficient matrix A = (aij) is
(δ, R)-vanishing if

(2.7) [A]R := sup
0<r≤R

sup
ξ∈Rn+1

∫
−

Qr(ξ)

|A(z)−AQr(ξ)| dz ≤ δ.

The above condition means that A has a small bounded mean oscillation (BMO)
seminorm. We note that Bramanti and Cerutti [6] showed that if f ∈ Lp(ΩT ) for
any constant p with 1 < p < ∞, there exists a unique strong solution u, i.e., a
function u ∈ W 2,1

p (ΩT ) which satisfies the equation (1.1) almost everywhere in ΩT

and u ≡ 0 on ∂pΩT in the trace sense, whose coefficient matrix belongs to the class of
functions of VMO type. This result can be naturally extended to the same equation
whose coefficient matrix is (δ, R)-vanishing for some sufficiently small δ > 0 and
any R > 0.

Our main result in this paper is the following.

Theorem 2.5. Let p(·) ∈ P log
± with the log-Hölder constant cLH and the modulus

of continuity θ(·), and w ∈ Ap(·). Assume ∂Ω ∈ C1,1 and f ∈ Lp(·)(ΩT , w). Then
there is a small δ = δ(n,Λ, γ1, γ2, cLH , w, ∂Ω) > 0 so that if A is (δ, R)-vanishing

for some R > 0, the problem (1.1) has a unique strong solution u ∈
◦
W 2,1

p(·)(ΩT , w),

and we have the estimate

(2.8) ‖u‖W 2,1
p(·)(ΩT ,w) ≤ c‖f‖Lp(·)(ΩT ,w),

for some positive constant c = c(n,Λ, γ1, γ2, cLH , θ(·), w,R,Ω, T ).

Thanks to the linearity of the equation (1.1), we have a direct consequence of
the above theorem as follows.
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Corollary 2.6. Let p(·) ∈ P log
± with the log-Hölder constant cLH and the modulus

of continuity θ(·), and w ∈ Ap(·). Assume that ∂Ω ∈ C1,1, f ∈ Lp(·)(ΩT , w), and

φ ∈ W 2,1
p(·)(ΩT , w). Then there is a small δ = δ(n,Λ, γ1, γ2, cLH , [w]w, ∂Ω) > 0 so

that if A is (δ, R)-vanishing for some R > 0, the problem{
ut − aijDiju = f in ΩT ,

u = φ on ∂pΩT

has a unique solution u ∈ W 2,1
p(·)(ΩT , w) with u − φ ∈

◦
W 2,1

p(·)(ΩT , w), and we have

the estimate

(2.9) ‖u‖W 2,1
p(·)(ΩT ,w) ≤ c

(
‖f‖Lp(·)(ΩT ,w) + ‖φ‖W 2,1

p(·)(ΩT ,w)

)
,

for some positive constant c = c(n,Λ, γ1, γ2, cLH , w,Ω, R, T ).

3. Muckenhoupt classes and weighted variable exponent spaces

3.1. Ap class. We introduce the properties of weights belonging to Ap class for
1 < p < ∞. For their proofs, we refer to [10, 23, 32]. Let us define

w(E) :=

∫
E

w(z) dz,

for a measurable set E ⊂ R
n+1, and let U ⊂ R

n+1 be an open set. We first remark
that u ∈ Ap(U) if and only if there exists c ≥ 1 such that

(3.1)

(∫
−

C

g dz

)p

≤ c

w(C)

∫
C

gpw(z) dz,

for all nonnegative measurable functions g and all parabolic cubes C ⊂ U . In
particular, the smallest constant c satisfying the inequality (3.1) is equal to [w]Ap(U).

Lemma 3.1. Let w ∈ Ap(U) for some 1 < p < ∞.

(1) There exist positive constants ν1 and d1 ≥ 1 depending only on n, p and
[w]Ap(U) such that(∫

−
C

w(z)1+ν1 dz

) 1
1+ν1

≤ d1

∫
−

C

w(z) dz

for all parabolic cubes C ⊂ U .
(2) We have

1

[w]Ap(U)

(
|E|
|C|

)p

≤ w(E)

w(C)
≤ d1

(
|E|
|C|

) ν1
1+ν1

for all parabolic cubes C ⊂ U and all measurable subsets E of C, where ν1
and d1 have been determined in (1).

(3) There exist ε1 ∈ (0, p− 1) and d̃1 ≥ 1 depending only on n, p and [w]Ap(U)

such that w ∈ Ap−ε1(U) with [w]Ap−ε1
(U) ≤ d̃1.

Remark 3.2. In view of the proofs of Theorem 9.2.2, Theorem 9.2.5, and Corollary
9.2.6 in [23], we see that the constants ν1, ε1, d1, d̃1 depend continuously on the
values p and [w]Ap(U), respectively.

From Lemma 3.1 and Remark 3.2, we have the following lemma.
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Lemma 3.3. Let 1 < γ1 ≤ γ2 < ∞ and A0 ≥ 1.

(1) There exist positive constants ν0 and d̃0 depending only on n, γ1, γ2 and A0

such that for any p ∈ [γ1, γ2] and any weight w ∈ Ap(U) with [w]Ap(U) ≤ A0,
we have

1

A0

(
|E|
|C|

)γ2

≤ w(E)

w(C)
≤ d0

(
|E|
|C|

)ν0

for all parabolic cubes C ⊂ U and all measurable subsets E of C.
(2) There exist ε0 ∈ (0, γ1 − 1) and d̃0 ≥ 1 depending only on n, γ1, γ2 and A0

such that for any p ∈ [γ1, γ2] and any weight w ∈ Ap(U) with [w]Ap(U) ≤ A0,

we have w ∈ Ap−ε0(U) with [w]Ap−ε0
(U) ≤ d̃0.

3.2. Weighted variable exponent Lebesgue spaces. We recall basic properties
for weighted variable exponent Lebesgue spaces. The results in the following lemma
can be found in [17, Chapter 2] by letting ϕ(x, t) = tp(x)w(x).

Lemma 3.4. Let p(·) : Rn+1 → (1,∞) satisfy (2.1) and let w be a weight.

(1) Norm-modular unit ball property:

(3.2) ‖g‖Lp(·)(U,w) ≤ 1 ⇐⇒ �p(·),w(g) ≤ 1.

(2) Relationship between norm and modular:

min
{(

�p(·),w(g)
) 1

γ1 ,
(
�p(·),w(g)

) 1
γ2

}
≤ ‖g‖Lp(·)(U,w) ≤ max

{(
�p(·),w(g)

) 1
γ1 ,
(
�p(·),w(g)

) 1
γ2

}
.(3.3)

(3) Hölder’s inequality: For q(·) : Rn+1 → (1,∞), let 1
s(·) := 1

p(·) +
1

q(·) . Then

we have

(3.4) ‖fg‖Ls(·)(U,w) ≤ 2‖f‖Lp(·)(U,w)‖g‖Lq(·)(U,w).

(4) C∞
0 (U) is dense in Lp(·)(U,w).

(5) Lp′(·)(U,w−1/(p(·)−1)) is isomorphic to the dual space (Lp(·)(U,w))∗ of the

space Lp(·)(U,w) in the sense that for g ∈ Lp′(·)(U,w−1/(p(·)−1)), we define
Jg ∈ (Lp(·)(U,w))∗ by

Jg(f) :=

∫
U

fg dz.

In particular, there exists c = c(γ1, γ2, w) ≥ 1 such that

1

c
‖g‖Lp′(·)(U,w−1/(p(·)−1)) ≤ ‖Jg‖(Lp(·)(U,w))∗ ≤ c‖g‖Lp′(·)(U,w−1/(p(·)−1)).

We next show two properties of Ap(·) class. The first one is duality, and the
second one is monotonicity. Similar results can be found in [15, 18]. In contrast
with [15, 18], however, we adopted parabolic cubes in the definition of Ap(·) class,
Definition 2.2.

Lemma 3.5. Let p(·) ∈ P log
± and let U ⊂ R

n+1 be bounded. Then we have the
relation that

w ∈ Ap(·)(U) ⇐⇒ w−1/(p(·)−1) ∈ Ap′(·)(U).
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Proof. It suffices to show that w ∈ Ap(·)(U) implies w−1/(p(·)−1) ∈ Ap′(·)(U), since
this means that this reverse is also valid. Suppose w ∈ Ap(·)(U). Then we will show
that

[w−1/(p(·)−1)]Ap′(·)(U)

= sup
C⊂U

|C|−(p′)C‖w−1/(p(·)−1)‖L1(C)‖w1/(p(·)−1)‖Lp(·)/p′(·)(C) < ∞.(3.5)

Here (p′)C is the harmonic mean of p′ in C and (p′)C = (pC)
′. We first compute

|C|−(p′)C :

|C|−(p′)C = |C|−pC/(pC−1) = |C|−pC/(p+
C−1)|C|−pC(p+

C−pC)/{(p+
C−1)(pC−1)}.

If |C| ≥ 1 we have

|C|−(p′)C ≤ |C|−pC/(p+
C−1),

and if |C| = |Cr(ξ)| = (2r)n+2 ≤ 1 we have from (2.4) that

|C|−pC(p+
C−pC)/{(p+

C−1)(pC−1)} ≤
(

1

2r

)θ(2
√
2r)(n+2)γ2/(γ1−1)2

≤ c

and so

|C|−(p′)C ≤ c|C|−pC/(p+
C−1).

As for ‖w−1/(p(·)−1)‖L1(C) and ‖w1/(p(·)−1)‖Lp(·)/p′(·)(C), we estimate by (3.3) that

‖w−1/(p(·)−1)‖L1(C) =

(∫
C

w−1/(p(z)−1) dz

)(p+
C−1)/(p+

C−1)

≤ max
{
w(U)(γ2−γ1)(γ1−1), 1

}
‖w−1‖1/(p

+
C−1)

Lp′(·)/p(·)(C)

and

‖w1/(p(·)−1)‖Lp(·)/p′(·)(C) ≤ max
{
w(U)(γ2−γ1)/(γ1−1)2 , 1

}
‖w‖1/(p

+
C−1)

L1(C) .

Therefore, we have

|C|−(p′)C‖w−1/(p(·)−1)‖L1(C)‖w1/(p(·)−1)‖Lp(·)/p′(·)(C) ≤ c[w]
1/(p+

C−1)
Ap(·)

≤ c[w]
1/(γ1−1)
Ap(·)

,

which implies (3.5). �

Lemma 3.6. Let p(·), q(·) ∈ P log
± with 1 < γ1 ≤ p(·) ≤ γ2 < ∞ and 1 < γ3 ≤

p(·) ≤ γ4 < ∞. If p(·) ≤ q(·) and U ⊂ R
n+1 are bounded, then there exists cm ≥ 1

depending only on n, γ1, γ2, γ3, γ4 and the log-Hölder constants of p(·) and q(·) such
that

[w]Aq(·)(U) ≤ cm max
{
|U |γ2−γ1+γ4−γ3 , 1

}
[w]Ap(·)(U).

In particular, if q(·) is a constant function, then the constant cm depends only on
n, γ1, γ2 and the log-Hölder constant of p(·).

Proof. For a parabolic cube C = Cr(ξ) ⊂ U , we first observe from (3.3) and (3.4)
that

‖w−1‖Lq′(·)/q(·)(C) ≤ 2‖w−1‖Lp′(·)/p(·)(C)‖1‖Ls(·)(C)

≤ 2‖w−1‖Lp′(·)/p(·)(C) max
{
|C|1/s

+
C , |C|1/s

−
C

}
,
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where s(·)−1 = q(·)− p(·). Note that if |C| ≥ 1 we see that

max
{
|C|1/s

+
C , |C|1/s

−
C

}
|C|pC−qC ≤ |C|p

+
C−p−

C+q+C−q−C ≤ |U |γ2−γ1+γ2−γ1 ,

and if |C| = (2r)n+2 ≤ 1 we see that

max
{
|C|1/s

+
C , |C|1/s

−
C

}
|C|pC−qC ≤ |C|−(p+

C−p−
C )−(q+C−q−C )

≤
(

1

2r

)(θp(2
√
2r)+θq(2

√
2r))(n+2)

≤ c,

where θp and θq are the modulus of constant of p(·) and q(·), respectively. Therefore,
we have

|C|−qC‖w‖L1(C)‖w−1‖Lq′(·)/q(·)(C)

≤ max
{
|C|1/s

+
C , |C|1/s

−
C

}
|C|pC−qC |C|−pC‖w‖L1(C)‖w−1‖Lp′(·)/p(·)(C)

≤ cmax
{
|U |γ2−γ1+γ4−γ3 , 1

}
|C|−pC‖w‖L1(C)‖w−1‖Lp′(·)/p(·)(C).

This implies the desired result. �

The following lemma plays a crucial role in Sections 5 and 6.

Lemma 3.7. Let p(·) ∈ P log
± , let w ∈ Ap(·), and let U ⊂ R

n+1 be bounded. There
exist γ̃0 = γ̃0(n, γ1, γ2, cLH , [w]Ap(·)) ∈ (1, γ1) and c = c(n, γ1, γ2, cLH , w, U) > 0
such that

(3.6) ‖f‖Lγ̃0 (U) ≤ c‖f‖Lp(·)(U,w).

Proof. We extend f from U to R
n+1 by zero. Let C = Cr(ξ) be a parabolic cube.

We first note that if |C| ≤ 1 we have from Lemma 3.6 that w ∈ Aq(C) with
[w]q(U) ≤ cm[w]p(·) for all q ≥ p(·) in C and for some cm = cm(n, γ1, γ2, cLH).

Therefore, since p+C ≥ p(·) in C and γ1 ≤ p+C ≤ γ2, applying (2) of Lemma 3.3 to
A0 = cm[w]Ap(·) , there exists ε0 = ε0(n, γ1, γ2, cLH , [w]Ap(·)) ∈ (0, γ1 − 1) such that

w ∈ Ap+
C−ε0

(C) for all parabolic cubes C with |C| ≤ 1, where [w]A
p
+
C

−ε0
(C) depends

only on n, γ1, γ2, cLH and [w]Ap(·) .
We now consider parabolic cubes C such that

(3.7) |C| = (2r)n+1 ≤ 1 and θ(2
√
2r) ≤ ε0

4
.

Note that p+C − ε0/2 ≤ p(·) in C. Moreover, we infer from (3.3) and (3.4) that

‖f‖
Lp

+
C

−ε0/2(C,w)
≤ 2‖1‖

L(1/(p
+
C

−ε0/2)−1/p(·))−1
(C,w)

‖f‖Lp(·)(C,w)

≤ 2max

{
w(C)

1

p
+
C

−ε0/2
− 1

p
+
C , w(C)

1

p
+
C

−ε0/2
− 1

p
−
C

}
‖f‖Lp(·)(C,w)

≤ 2max

{
w(C)

− 1

p
+
C , w(C)

− 1

p
−
C

}
w(C)

1

p
+
C

−ε0/2 ‖f‖Lp(·)(C,w)

≤ 2max
{
w(C)−

1
γ1 , 1

}
w(C)

1

p
+
C

−ε0/2 ‖f‖Lp(·)(C,w)
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and from (3.1) that⎛
⎝∫−

C

|f |
p
+
C

−ε0/2

p
+
C

−ε0 dz

⎞
⎠

p+
C−ε0

≤
[w]Ap+

C−ε0(C)

w(C)

∫
C

|f |p
+
C−ε0/2w(z) dz.

Consequently, letting

(3.8) γ̃0 :=
γ2 − ε0/2

γ2 − ε0
= 1 +

ε0
2(γ2 − ε0)

we have

(∫
−

C

|f |γ̃0 dz

) 1
γ̃0

≤

⎛
⎝∫−

C

|f |
p
+
C

−ε0/2

p
+
C

−ε0 dz

⎞
⎠

p
+
C

−ε0

p
+
C

−ε0/2

≤ 2[w]

1

p
+
C

−ε0/2

Ap+
C−ε0(C)

max
{
w(C)−

1
γ1 , 1

}
‖f‖Lp(·)(C,w),

and hence,

(3.9) ‖f‖Lγ̃0 (C) ≤ 2[w]

1

p
+
C

−ε0/2

Ap+
C−ε0(C)

max
{
w(C)−

1
γ1 , 1

}
‖f‖Lp(·)(C,w),

for all C satisfying (3.7). By a standard covering argument, the desired estimate
(3.6) follows from the previous estimate (3.9). �

4. Comparison estimates

We start this section by recalling the interior and boundary a priori W 2,1
q -

estimates and the global W 2,1
q -estimates in a C1,1 domain that have been proved

in [6].

Lemma 4.1. Let 1 < q < ∞. There exist a small δ = δ(Λ, n, q) > 0 and c =
c(Λ, n, q) > 0 such that the following hold for any fixed r > 0 :

(i) (Interior estimates) If A is (δ, 2r)-vanishing and f ∈ Lq(Q2r), then for any
strong solution u ∈ W 2,1

q (Q2r) of

ut − aijDiju = f in Q2r,

we have the estimate

‖ut‖Lq(Qr) + ‖D2u‖Lq(Qr) ≤ c

(
‖f‖Lq(Q2r) +

1

r2
‖u‖Lq(Q2r)

)
.

(ii) (Boundary estimates) If A is (δ, 2r)-vanishing and f ∈ Lq(Q+
2r), then for

any strong solution u ∈ W 2,1
q (Q+

2r) of{
ut − aijDiju = f in Q+

2r,
u = 0 on T2r,

we have the estimate

‖ut‖Lq(Q+
r ) + ‖D2u‖Lq(Q+

r ) ≤ c

(
‖f‖Lq(Q+

2r)
+

1

r2
‖u‖Lq(Q+

2r)

)
.
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Moreover, let ∂Ω ∈ C1,1. Then there exists a small δ = δ(Λ, n, q, ∂Ω) > 0 such that
if f ∈ Lq(ΩT ) and A is (δ, R)-vanishing for some R > 0, then the problem (1.1)

has a unique strong solution u ∈
◦
W 2,1

q (ΩT ), and we have the estimate

(4.1) ‖u‖W 2,1
q (ΩT ) ≤ c‖f‖Lq(ΩT ),

for some c = c(n,Λ, q,Ω, R, T ) > 0.

We next derive the comparison estimates in Lq spaces with 1 < q < ∞ by using
a compactness argument. These estimates play crucial roles in the proofs of the
interior and boundary a priori W 2,1

p(·)-estimates in Section 4. In what follows, we

denote by c any positive constant depending only on n,Λ and q, which may vary
from line to line.

We first prove the Poincaré type inequalities in Sobolev space W 2,1
q .

Lemma 4.2. For any 1 < q < ∞, let h ∈ W 2,1
q (Q4). Then there is a positive

constant c depending only on q and n so that

(4.2)

∫
−

Q4

|h− hQ4
− (Dh)Q4

· x|qdz ≤ c

∫
−

Q4

(
|ht|q + |D2h|q

)
dz.

Proof. We argue by contradiction. Suppose that (4.2) is not true. Then there exists
a sequence {hk}∞k=1 in W 2,1

q (Q4) satisfying

(4.3)

∫
−

Q4

|hk − hkQ4
− (Dhk)Q4

· x|qdz > k

∫
−

Q4

(
|(hk)t|q + |D2hk|q

)
dz.

By normalization, we may assume that∫
−

Q4

|hk − hkQ4
− (Dhk)Q4

· x|qdz = 1,

and then the inequality (4.3) implies that∫
−

Q4

(
|(hk)t|q + |D2hk|q

)
dz <

1

k
.

Now let us consider h̃k := hk − hkQ4
− (Dhk)Q4

· x. Then it is easy to check that

(4.4)

∫
−

Q4

h̃kdz =

∫
−

Q4

Dh̃kdz = 0,

(4.5)

∫
−

Q4

|h̃k|qdz = 1, and

∫
−

Q4

(
|(h̃k)t|q + |D2h̃k|q

)
dz <

1

k
≤ 1.

In addition, we use the interpolation inequality (see [4, Theorem 5.2]) for each time
slice B4 × {t} with t ∈ [−42, 42] to obtain∫

Q4

|Dh̃k|qdz ≤
∫
[−42,42]

c

(∫
B4

|h̃k|qdx+

∫
B4

|D2h̃k|qdx
)
dt

= c

(∫
Q4

|h̃k|qdz +
∫
Q4

|D2h̃k|qdz
)
,(4.6)

and in turn, it follows from (4.5) that

(4.7)

∫
Q4

|Dh̃k|qdz ≤ c.
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In view of (4.5) and (4.7), we then see that {h̃k}∞k=1 is bounded in W 2,1
q (Q4).

Therefore there exist a subsequence of {h̃k}∞k=1, which we still denote by {h̃k}∞k=1,

and a function h̃ ∈ W 2,1
q (Q4) such that{

h̃k ⇀ h̃ weakly in W 2,1
q (Q4),

h̃k → h̃ strongly in Lq(Q4),
as k → ∞.

Then we infer from (4.5) that

(4.8)

∫
−

Q4

|h̃|qdz = 1 and h̃t = D2h̃ = 0.

So we can write h̃ = c1 · x + c2 for some constants c1 ∈ R
n and c2 ∈ R. However,

it follows from (4.4) that

c1 =

∫
−

Q4

Dh̃dz = 0 and c2 =

∫
−

Q4

h̃dz = 0.

In turn, we see that h̃ = 0 in Q4, which is a contradiction to the first equality in
(4.8). �

Lemma 4.3. For any 1 < q < ∞, let h ∈ W 2,1
q (Q+

4 ) with h = 0 on T4. Then there
is a constant c depending only on q and n so that

(4.9)

∫
−

Q+
4

|h− (Dnh)Q+
4
xn|qdz ≤ c

∫
−

Q+
4

(
|ht|q + |D2h|q

)
dz.

Proof. Suppose that (4.9) is not true. Then there exists a sequence {hk}∞k=1 in
W 2,1

q (Q+
4 ) with hk = 0 on T4 such that

(4.10)

∫
−

Q+
4

|hk − (Dnhk)Q+
4
xn|qdz > k

∫
−

Q+
4

(
|(hk)t|q + |D2hk|q

)
dz.

By normalization, we may assume that∫
−

Q+
4

|hk − (Dnhk)Q+
4
xn|qdz = 1.

Then the inequality (4.10) yields∫
−

Q+
4

(
|(hk)t|q + |D2hk|q

)
dz <

1

k
.

Setting h̃k := hk − (Dnhk)Q+
4
xn, we then easily see that

(4.11)

∫
−

Q+
4

|h̃k|qdz = 1 and

∫
−

Q+
4

(
|(h̃k)t|q + |D2h̃k|q

)
dz <

1

k
≤ 1.

In a way analagous to how (4.7) was deduced, we can infer from (4.11) instead of
(4.4) that

(4.12)

∫
Q+

4

|Dh̃k|qdz ≤ c.

We also know that

(4.13)

∫
−

Q+
4

Dnh̃kdz =

∫
−

Q+
4

(
Dnhk − (Dnhk)Q+

4

)
dz = 0.
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From (4.11) and (4.12), we see that {h̃k}∞k=1 is bounded in W 2,1
q (Q+

4 ), and so

there exist a subsequence of {h̃k}∞k=1, which we still denote by {h̃k}∞k=1, and a

function h̃ ∈ W 2,1
q (Q+

4 ) with h̃ = 0 on T4 such that

{
h̃k ⇀ h̃ weakly in W 2,1

q (Q+
4 ),

h̃k → h̃ strongly in Lq(Q+
4 ),

as k → ∞.

For 1 ≤ i ≤ n − 1, since Dih̃k = 0 on T4, we apply the standard Poincaré
inequality for each time slice of Q+

4 in order to discover that∫
−

Q+
4

∣∣∣Dih̃k

∣∣∣q dz ≤ c

∫
−

Q+
4

|D2h̃k|qdz = c

∫
−

Q+
4

|D2hk|qdz <
c

k
−→ 0

as k → ∞, which implies that

Dih̃ = 0.

Furthermore, it is easy to check from (4.11) that

(4.14)

∫
−

Q+
4

|h̃|qdz = 1 and h̃t = D2h̃ = 0.

So we can write h̃ = c1xn + c2 for some constants c1, c2 ∈ R. However, since h̃ = 0
on T4, we have c2 = 0, and then by (4.13) we see that

c1 =

∫
−

Q+
4

Dnh̃dz = 0.

Therefore, we finally have h̃ = 0 in Q+
4 , which is a contradiction to the first equality

in (4.14). This completes the proof. �

Let us now derive the following comparison estimates.

Lemma 4.4. Let 1 < q < ∞. Assume that B = (bij) : R
n+1 → R

n×n satisfies the
uniform parabolicity condition (1.2). For any ε ∈ (0, 1), there is δ = δ(ε, n,Λ, q) > 0
such that the following hold:

If B is (δ, 4)-vanishing and h ∈ W 2,1
q (Q4) is a solution of

(4.15) ht − bijDijh = g in Q4

satisfying ∫
−

Q4

(
|ht|q + |D2h|q

)
dz ≤ 1 and

∫
−

Q4

|g|qdz ≤ δ,

then there exist a constant matrix B̃ = (b̃ij) with ‖BQ4
− B̃‖L∞(Rn+1) ≤ ε and a

solution v ∈ W 2,1
q (Q4) of

(4.16) vt − b̃ijDijv = 0 in Q4

satisfying

(4.17)

∫
−

Q4

(
|vt|q + |D2v|q

)
dz ≤ 1

and ∫
Q4

|h− hQ4
− (Dh)Q4

· x− v|qdz ≤ ε.
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Proof. We argue by contradiction. If not, there exist ε0 > 0, hl ∈ W 2,1
q (Q4),

gl ∈ Lq(Q4), and Bl = (blij) : Rn+1 → R
n×n, where l = 1, 2, . . . , such that Bl is

uniformly parabolic with the parabolicity constant Λ satisfying [Bl]4 ≤ 1
l , which

implies that

(4.18)

∫
−

Q4

|Bl −BlQ4
|dz ≤ 1

l

and hl ∈ W 2,1
q (Q4) is a solution of

(hl)t − blijDijhl = gl in Q4

satisfying

(4.19)

∫
−

Q4

(
|(hl)t|q + |D2hl|q

)
dz ≤ 1 and

∫
−

Q4

|gl|qdz ≤ 1

l
,

but

(4.20)

∫
Q4

|hl − hlQ4
− (Dhl)Q4

· x− v|qdz > ε0,

for any constant matrix B̃ with ‖BQ4
− B̃‖L∞(Rn+1) ≤ ε0 and any solution v ∈

W 2,1
q (Q4) of (4.16) with (4.17).
By virtue of the uniform parabolicity on Bl and (4.18), we infer that∫

−
Q4

|Bl −BlQ4
|q′dz ≤ (2Λ)q

′−1

∫
−

Q4

|Bl −BlQ4
|dz ≤ (2Λ)q

′−1

l
,

where q′ = q
q−1 . On the other hand, it is clear that {BlQ4

}∞l=1 is bounded in R
n×n,

and so it has a subsequence, which is still denoted by {BlQ4
}, such that

(4.21) BlQ4
−→ B0 in R

n×n as l → ∞,

for some constant matrix B0 = (b0ij). Therefore it follows that

(4.22) Bl −→ B0 in Lq′(Q4) as l → ∞.

Let us now consider vl := hl − hlQ4
− (Dhl)Q4

· x. Then we see from Lemma 4.2
that
(4.23)∫

−
Q4

|vl|qdz ≤ c

∫
−

Q4

(
|(vl)t|q + |D2vl|q

)
dz = c

∫
−

Q4

(
|(hl)t|q + |D2hl|q

)
dz ≤ c,

where the last inequality follows from (4.19). Moreover, in an analogous way to
(4.6), the interpolation inequality leads us to get∫

Q4

|Dvl|qdz ≤ c

(∫
Q4

|vl|qdz +
∫
Q4

|D2vl|qdz
)
,

and then it follows from (4.23) that

(4.24)

∫
Q4

|Dvl|qdz ≤ c.
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Therefore, in view of (4.23) and (4.24), we see that {vl}∞l=1 is bounded in W 2,1
q (Q4),

and so there exist a subsequence of {vl}∞l=1, which is still denoted by {vl}∞l=1, and
a function v0 ∈ W 2,1

q (Q4) such that

(4.25)

{
vl ⇀ v0 weakly in W 2,1

q (Q4),
vl → v0 strongly in Lq(Q4),

as l → ∞.

From (4.19), (4.22), and (4.25), we observe that v0 ∈ W 2,1
q (Q4) is a solution of

(v0)t − b0ijDijv0 = 0 in Q4

satisfying

(4.26)

∫
−

Q4

(
|(v0)t|q + |D2v0|q

)
dz ≤ lim inf

l→∞

∫
−

Q4

(
|(vl)t|q + |D2vl|q

)
dz ≤ 1.

However, it is a contradiction to (4.20). This completes the proof. �

Corollary 4.5. Under the hypotheses and conclusion of Lemma 4.4, we have∫
−

Q1

(
|(h− v)t|q + |D2(h− v)|q

)
dz ≤ ε.

Proof. From the assumptions of Lemma 4.4, we see that

(4.27)

∫
−

Q4

|g|qdz ≤ δ and

∫
−

Q4

|B−BQ4
|dz ≤ δ.

Apply Lemma 4.4 with any κ > 0 in place of ε in order to find a constant matrix
B̃ = (b̃ij) with ‖BQ4

− B̃‖L∞(Rn+1) ≤ κ and a solution v ∈ W 2,q(Q4) of (4.16) such
that

(4.28)

∫
−

Q4

(
|vt|q + |D2v|q

)
dz ≤ 1 and

∫
Q4

|h− hQ4
− (Dh)Q4

· x− v|qdz ≤ κ

by taking δ = δ(κ, n,Λ, q) > 0 sufficiently small. Then we use the local estimates
on derivatives of solutions to the equation (4.16) (see Theorem 9 in [21, page 61])
to obtain

(4.29) ‖vt‖qL∞(Q2)
+ ‖D2v‖qL∞(Q2)

≤ c

∫
−

Q4

(
|vt|q + |D2v|q

)
dz ≤ c.

Setting h̃ := h− hQ4
− (Dh)Q4

· x− v, one can readily see that h̃ ∈ W 2,1
q (Q4) is

a solution of

h̃t − bijDij h̃ = g + (bij − b̃ij)Dijv in Q4.

Then Lemma 4.1 gives

(4.30)

∫
−

Q1

(
|h̃t|q + |D2h̃|q

)
dz ≤ c

(∫
−

Q2

∣∣∣g + (bij − b̃ij)Dijv
∣∣∣q dz + ∫−

Q2

|h̃|qdz
)

if we take δ = δ(κ, n,Λ, q) > 0 sufficiently small.
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In view of (4.27)-(4.30) and (1.2), we consequently deduce that∫
−

Q1

(
|(h− v)t|q +

∣∣D2(h− v)
∣∣q) dz =

∫
−

Q1

(
|h̃t|q + |D2h̃|q

)
dz

≤ c

(∫
−

Q2

∣∣∣g + (bij − b̃ij)Dijv
∣∣∣q dz + ∫−

Q2

|h̃|qdz
)

≤ c

(∫
−

Q4

|g|qdz + ‖D2v‖qL∞(Q2)

∫
−

Q4

∣∣∣B− B̃
∣∣∣q dz + κ

)

≤ c

(∫
−

Q4

|g|qdz + 2q−1

∫
−

Q4

(∣∣B−BQ4

∣∣q + ∣∣∣BQ4
− B̃

∣∣∣q) dz + κ

)

≤ c

(
δ + (4Λ)q−1

∫
−

Q4

∣∣B−BQ4

∣∣ dz + 2q−1κq + κ

)
≤ c(δ + κ),

where the elementary inequality (a+b)β ≤ 2β−1(aβ+bβ) for any a, b > 0 and β ≥ 1
has been used in the third inequality. Hence, the proof is completed by choosing
κ = κ(ε, n,Λ, q) > 0 and δ = δ(ε, n,Λ, q) > 0 small enough so that c(δ+κ) < ε. �

The following is the flat boundary version of Lemma 4.4, which will be proved
by the same argument as in Lemma 4.4 with Lemma 4.3 instead of Lemma 4.2.

Lemma 4.6. Let 1 < q < ∞. Assume that B = (bij) : R
n+1 → R

n×n satisfies the
uniform parabolicity condition (1.2). For any ε ∈ (0, 1), there is δ = δ(ε, n,Λ, q) > 0
such that the following hold:

If B is (δ, 4)-vanishing and h ∈ W 2,1
q (Q+

4 ) is a solution of

(4.31)

{
ht − bijDijh = g in Q+

4 ,
h = 0 on T4

satisfying ∫
−

Q+
4

|ht|q + |D2h|qdz ≤ 1 and

∫
−

Q+
4

|g|qdz ≤ δ,

then there exist a constant matrix B̃ = (b̃ij) with ‖BQ+
4
− B̃‖L∞(Rn+1) ≤ ε and a

solution v ∈ W 2,1
q (Q+

4 ) of

(4.32)

{
vt − b̃ijDijv = 0 in Q+

4 ,
v = 0 on T4

satisfying

(4.33)

∫
−

Q+
4

|vt|q + |D2v|qdz ≤ 1

and ∫
Q+

4

|h− (Dnh)Q+
4
xn − v|qdz ≤ ε.

Proof. We argue by contradiction. If not, there exist ε0 > 0, hl ∈ W 2,1
q (Q+

4 ),

gl ∈ Lq(Q+
4 ), and Bl = (blij) : Rn+1 → R

n×n, where l = 1, 2, . . . , such that Bl
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is uniformly parabolic with the parabolicity constant Λ satisfying [Bl]4 ≤ 1
l , and

hl ∈ W 2,1
q (Q+

4 ) is a solution of{
(hl)t − blijDijhl = gl in Q+

4 ,
hl = 0 on T4

satisfying

(4.34)

∫
−

Q+
4

|(hl)t|q + |D2hl|qdz ≤ 1 and

∫
−

Q+
4

|gl|qdz ≤ 1

l
,

but

(4.35)

∫
Q+

4

|hl − (Dnhl)Q+
4
xn − v|qdz > ε0,

for any constant matrix B̃ with ‖BQ+
4
− B̃‖L∞(Rn+1) ≤ ε0 and any solution v ∈

W 2,1
q (Q+

4 ) of (4.32) satisfying (4.33).

From the condition [Bl]4 ≤ 1
l , a simple computation gives∫

−
Q+

4

|Bl −BlQ+
4
|dz ≤ 2

∫
−

Q4

|Bl −BlQ4
|dz + |BlQ+

4
−BlQ4

|

≤ 2

∫
−

Q4

|Bl −BlQ4
|dz + 2

∫
−

Q4

|Bl −BlQ4
|dz ≤ 4

l
.(4.36)

By the same argument as in (4.22) along with (4.36), we deduce that

(4.37) Bl −→ B0 in Lq′(Q+
4 ) as l → ∞ (up to subsequence),

for some constant matrix B0 = (b0ij).

We now set vl = hl − (Dnhl)Q+
4
xn. It is clear that vl ∈ W 2,1

q (Q+
4 ) with vl = 0

on T4, and then Lemma 4.3 implies that∫
−

Q+
4

|vl|qdz ≤ c

∫
−

Q+
4

|(vl)t|q + |D2vl|qdz

= c

∫
−

Q+
4

|(hl)t|q + |D2hl|qdz ≤ c,(4.38)

where the last inequality comes from (4.34). In an analogous way to (4.24) with
(4.38) in place of (4.23), we also have

(4.39)

∫
Q+

4

|Dvl|qdz ≤ c

(∫
Q+

4

|vl|qdz +
∫
Q+

4

|D2vl|qdz
)

≤ c.

In turn, it follows from (4.34), (4.38), and (4.39) that {vl}∞l=1 is bounded in
W 2,1

q (Q+
4 ). Then there exist a subsequence of {vl}∞l=1, which is still denoted by

{vl}∞l=1, and a function v0 ∈ W 2,1
q (Q+

4 ) such that

(4.40)

{
vl ⇀ v0 weakly in W 2,1

q (Q+
4 ),

vl → v0 strongly in Lq(Q+
4 ),

as l → ∞.

By (4.34), (4.37), and (4.40), it is easy to check that v0 ∈ W 2,1
q (Q+

4 ) is a solution
of {

(v0)t − b0ijDijv0 = 0 in Q+
4 ,

v0 = 0 on T4
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satisfying

(4.41)

∫
−

Q+
4

|(v0)t|q + |D2v0|qdz ≤ lim inf
l→∞

∫
−

Q+
4

|(vl)t|q + |D2vl|qdz ≤ 1.

However, this is a contradiction to (4.35). This completes the proof. �

Corollary 4.7. Under the hypotheses and conclusion of Lemma 4.6, we have∫
−

Q+
1

|(h− v)t|q + |D2(h− v)|qdz ≤ ε.

Proof. We proceed as in Corollary 4.5 with Lemma 4.6 in place of Lemma 4.4. �

5. Local estimates

In this section, we establish interior and boundary a priori weighted W 2,1
p(·)-

estimates, which are a core part of the proof of our main result, Theorem 2.5.
The following is the main theorem in this section.

Theorem 5.1. Let p(·) ∈ P log
± with (2.1), let the log-Hölder constant cLH > 0, and

let the modulus of continuity be θ(·), and suppose w ∈ Ap(·). Then there exists a
small ρ0 = ρ0(n, γ1, γ2, cLH , [w]Ap(·)) ∈ (0, 1) such that the following hold:

For any ρ ∈ (0, ρ0], there exists a small δ = δ(n,Λ, γ1, γ2, cLH , [w]Ap(·) , w(Q4ρ)) ∈
(0, 1) such that:

(i) (Interior estimates) If A is (δ, 4ρ)-vanishing and f ∈ Lp(·)(Q4ρ, w), then

for any solution u ∈ W 2,1
p(·)(Q4ρ, w) of

ut − aijDiju = f in Q4ρ,

we have

‖ut‖Lp(·)(Qρ,w) + ‖D2u‖Lp(·)(Qρ,w)

≤ cρ−
(n+2)γ2

γ1

(
‖f‖Lp(·)(Q4ρ,w) +

1

ρ2
‖u‖Lp(·)(Q4ρ,w)

)
(5.1)

for some c = c(n,Λ, γ1, γ2, cLH , [w]Ap(·) , w(Q4ρ)) > 1.

(ii) (Boundary estimates) If A is (δ, 4ρ)-vanishing and f ∈ Lp(·)(Q+
4ρ, w), then

for any solution u ∈ W 2,1
p(·)(Q

+
4ρ, w) of

(5.2)

{
ut − aijDiju = f in Q+

4ρ,
u = 0 on T4ρ,

we have

‖ut‖Lp(·)(Q+
ρ ,w) + ‖D2u‖Lp(·)(Q+

ρ ,w)

≤ cρ−
(n+2)γ2

γ1

(
‖f‖Lp(·)(Q+

4ρ,w) +
1

ρ2
‖u‖Lp(·)(Q+

4ρ,w)

)
(5.3)

for some c = c(n,Λ, γ1, γ2, cLH , [w]Ap(·) , w(Q4ρ)) > 1.

Since the proof of the interior estimate (5.1) in Theorem 5.1 is analogous to that
of the boundary estimate (5.3) in Theorem 5.1, we shall only establish the boundary
estimate (5.3). We divide the proof of the boundary case into several subsections.
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5.1. Setting and notation. We first take ρ0 as follows. Recall that

ε0 = ε0(n, γ1, γ2, cLH , [w]Ap(·)) ∈ (0, γ1 − 1)

determined in (2) of Lemma 3.3 with A0 = cm[w]Ap(·) . Without loss of generality,
we assume that

(5.4) ε0 ≤ 2γ2
3

.

Then we take ρ0 > 0 to be the largest number satisfying

(5.5) ρ0 ≤ 1

8
, |C4ρ0

| ≤ 1, and θ(8
√
2ρ0) ≤ min

{
γ1ε0

2γ2 − ε0
,
ε0
4
, 1

}
.

From now on, we fix ρ ≤ ρ0 and suppose that A is (δ, 4ρ)-vanishing, where δ > 0
will be determined later; see Remark 5.4. Setting

p− := inf
z∈Q+

2ρ

p(z) and p+ := sup
z∈Q+

2ρ

p(z)

and recalling γ̃0 = 1 + ε0
2(γ2−ε0)

< γ1 in (3.8) of Lemma 3.7, define

(5.6) γ0 :=
1 + γ̃0

2
= 1 +

ε0
4(γ2 − ε0)

=
4γ2 − 3ε0
4(γ2 − ε0)

.

Then we see that

1 < γ0 < γ̃0 < γ1 ≤ p− ≤ p+ ≤ γ2 < +∞.

Moreover, using the restriction θ(4ρ) ≤ θ(4ρ0) ≤ min
{

γ1ε0
2γ2−ε0

, ε0
4 , 1

}
as in (5.5),

along with (5.4), we obtain that

(5.7)
γ0p(z)

p−
≤ γ0

(
1 +

θ(4ρ)

γ1

)
≤ γ0

(
1 +

ε0
2γ2 − ε0

)
= γ̃0 for z ∈ Q+

2ρ

and

p+ − ε0 = p+ − 4(γ2 − ε0)p
−

4γ2 − 3ε0
+

p−

γ0
− ε0 = p+ − p− +

ε0p
−

4γ2 − 3ε0
+

p−

γ0
− ε0

≤ θ(4ρ) +
ε0γ2

4γ2 − 3ε0
+

p−

γ0
− ε0 ≤ ε0

4
+

ε0
2

+
p−

γ0
− ε0

<
p−

γ0
.(5.8)

To simplify the proof of (5.3), we assume that

(5.9) ‖f‖Lp(·)(Q+
4ρ,w) ≤ 1 and ‖u‖Lp(·)(Q+

4ρ,w) ≤ ρ2,

and then show that

(5.10) ‖ut‖Lp(·)(Q+
ρ ,w) + ‖D2u‖Lp(·)(Q+

ρ ,w) ≤ cρ−
(n+2)γ2

γ1

for some c = c(n,Λ, γ1, γ2, cLH , [w]Ap(·) , w(Q4ρ)) > 1. In fact, by virtue of the
standard normalization argument, defining

ũ :=
u

‖f‖Lp(·)(Q+
4ρ,w) +

1
ρ2 ‖u‖Lp(·)(Q+

4ρ,w)

and

f̃ :=
f

‖f‖Lp(·)(Q+
4ρ,w) +

1
ρ2 ‖u‖Lp(·)(Q+

4ρ,w)

,
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for u and f given in Theorem 5.1(ii), we have that

‖f̃‖Lp(·)(Q+
4ρ,w) ≤ 1, ‖ũ‖Lp(·)(Q+

4ρ,w) ≤ ρ2

and ũ is a solution of {
ũt − aijDij ũ = f̃ in Q+

4ρ,
ũ = 0 on T4ρ.

Then (5.10) implies that

‖ũt‖Lp(·)(Q+
ρ ,w) + ‖D2ũ‖Lp(·)(Q+

ρ ,w) ≤ cρ−
(n+2)γ2

γ1 ,

which means the desired estimate (5.3). Therefore, from now on, we prove the
estimate (5.10), instead of (5.3), under the additional assumption (5.9).

We remark that in view of Lemma 3.7, especially (3.9), we have from (5.9) and

the restriction |C4ρ| ≤ |C4ρ0
| ≤ 1 and θ(8

√
2ρ) ≤ θ(8

√
2ρ0) ≤ ε0

4 in (5.5) that

(5.11) ‖f‖Lγ̃0 (Q+
4ρ)

≤ c and ‖u‖Lγ̃0 (Q+
4ρ)

≤ cρ2

for some c = c(n, γ1, γ2, [w]Ap(·) , w(Q4ρ)) > 0. Therefore, recalling (ii) of Lemma
4.1 we see that

‖ut‖Lγ̃0 (Q+
2ρ)

+ ‖D2u‖Lγ̃0 (Q+
2ρ)

≤ c,

and hence, it follows from (3.3) that

(5.12)

∫
Q+

2ρ

|ut|γ̃0 dz +

∫
Q+

2ρ

|D2u|γ̃0 dz ≤ c

for some c = c(n,Λ, γ1, γ2, cLH , θ(·), [w]Ap(·) , w(Q4ρ)) > 0.
Hereafter, in this section, we denote by the letter c any positive constant de-

pending only on n,Λ, γ1, γ2, cLH , [w]Ap(·) , and w(Q4ρ), and it is possibly varying
from line to line.

5.2. Covering argument. Let us define

(5.13) λ0 :=

∫
−

Q+
2ρ

[
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p− +
1

δ

(
|f |

γ0p(z)

p− + 1

)]
dz > 1.

We choose any s1, s2 with 1 ≤ s1 < s2 ≤ 2, and for λ > 0, define the upper-level
set

(5.14) E(λ) :=

{
z ∈ Q+

s1ρ : |ut(z)|
γ0p(z)

p− + |D2u(z)|
γ0p(z)

p− > λ

}
.

Using a stopping time argument and the Vitali covering lemma, we will find an
appropriate covering of the upper-level set E(λ), where λ is large enough so that

(5.15) λ ≥ Aλ0, where A :=

(
240

s2 − s1

)n+2

.

For each ξ ∈ E(λ), define a continuous function Φξ : (0, (s2 − s1)ρ] → [0,∞) by

Φξ(τ ) :=

∫
−

Q+
τ (ξ)

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p− +
1

δ
|f |

γ0p(z)

p−

)
dz.
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Note that Q+
τ (ξ) ⊂ Q+

s2ρ ⊂ Q+
2ρ for τ ∈ (0, (s2 − s1)ρ). Then, for any ξ ∈ E(λ) and

any τ ∈
[
(s2−s1)ρ

120 , (s2 − s1)ρ
]
, we have

Φξ(τ ) =

∫
−

Q+
τ (ξ)

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p− +
1

δ
|f |

γ0p(z)

p−

)
dz

≤
∣∣Q+

2ρ

∣∣∣∣Q+
τ (ξ)

∣∣
∫
−

Q+
2ρ

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p− +
1

δ
|f |

γ0p(z)

p−

)
dz

=

(
2ρ

τ

)n+2 ∫
−

Q+
2ρ

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p− +
1

δ
|f |

γ0p(z)

p−

)
dz

<

(
240

s2 − s1

)n+2 ∫
−

Q+
2ρ

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p− +
1

δ
|f |

γ0p(z)

p−

)
dz

< Aλ0 ≤ λ,

where the inequalities in the last two lines come from (5.13) and (5.15). On the
other hand, Lebesgue’s differentiation theorem leads us to obtain

lim
τ→0

Φξ(τ ) = lim
τ→0

∫
−

Q+
τ (ξ)

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p− +
1

δ
|f |

γ0p(z)

p−

)
dz > λ,

for almost every ξ ∈ E(λ). Hence, for almost every ξ ∈ E(λ), there exists

τξ ∈
(
0,

(s2 − s1)ρ

120

)

such that

Φξ(τξ) = λ and Φξ(τ ) < λ, for all τ ∈ (τξ, (s2 − s1)ρ].

According to the Vitali covering lemma, we consequently find ξk ∈ E(λ) and

τk := τξk ∈
(
0, (s2−s1)ρ

120

)
, k = 1, 2, . . . , such that the family of parabolic cylinders{

Q+
τk
(ξk)

}∞
k=1

is mutually disjoint and satisfies the relation

(5.16) E(λ) ⊂
∞⋃
k=1

Q+
5τk

(ξk) ⊂ Q+
s2ρ,

except a Lebesgue measure zero set. Note that for each k we have

(5.17) Φξk(τk) = λ and Φξk(τ ) < λ, for all τ ∈ (τk, (s2 − s1)ρ].

Lemma 5.2. Under the above settings, we have for each k = 1, 2, . . . ,

w(Cτk(ξ
k)) ≤ 2ca

λp+−ε0

×
[∫

Q+
τk

(ξk)∩{|ut|
γ0p(z)

p− +|D2u|
γ0p(z)

p− > λ
4ca

}

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p−

)p+−ε0

w(z) dz

+

∫
Q+

τk
(ξk)∩{|f |

γ0p(z)

p− > λδ
4ca

}

(
δ−1|f |

γ0p(z)

p−

)p+−ε0

w(z) dz

]
,(5.18)

for some ca = ca(n, γ1, γ2, cLH , [w]Ap(·)) > 1.
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Proof. By the first equality of (5.17), we have

λ ≤ 2n+1

|Cτk(ξ
k)|

∫
Q+

τk
(ξk)

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p− +
1

δ
|f |

γ0p(z)

p−

)
dz.

Since w ∈ Ap+−ε0(Q4ρ), we apply (3.1) to obtain

w(Cτk(ξ
k)) ≤ ca

λp+−ε0

[∫
Q+

τk
(ξk)

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p−

)p+−ε0

w(z) dz

+

∫
Q+

τk
(ξk)

(
δ−1|f |

γ0p(z)

p−

)p+−ε0

w(z) dz

]
,(5.19)

for some ca = ca(n, γ1, γ2, cLH , [w]Ap(·)) > 1. Note that∫
Q+

τk
(ξk)

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p−

)p+−ε0

w(z) dz

≤
∫
Q+

τk
(ξk)∩{|ut|

γ0p(z)

p− +|D2u|
γ0p(z)

p− > λ
4ca

}

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p−

)p+−ε0

w(z) dz

+
λp+−ε0

4ca
w(Cτk(ξ

k))

and∫
Q+

τk
(ξk)

(
δ−1|f |

γ0p(z)

p−

)p+−ε0

w(z) dz

≤
∫
Q+

τk
(ξk)∩{|f |

γ0p(z)

p− > λδ
4ca

}

(
δ−1|f |

γ0p(z)

p−

)p+−ε0

w(z) dz +
λp+−ε0

4ca
w(Cτk(ξ

k)).

Therefore, inserting the above two inequalities into (5.19), we conclude the desired
estimate (5.18). �

Now, we seek comparison estimates on each cylinder Q5τk(ξ
k). We first divide

the covers Q5τk(ξ
k), k = 1, 2, . . . , into two cases: the interior case B20τk(y

k) ⊂ B+
s2ρ

and the boundary case B20τk(y
k) �⊂ B+

s2ρ, i.e., B20τk(y
k) ∩ {x ∈ R

n : xn < 0} �= ∅,
where ξk := (yk, sk). In particular, for the boundary case, we can find a point

ξ̃k := (ỹk, sk) where ỹk ∈ Bs2ρ(0) ∩ {x ∈ R
n : xn = 0} satisfying |yk − ỹk| < 20τk.

Lemma 5.3. Under the above settings, the following hold:

(a) (Interior case) If B20τk(y
k) ⊂ B+

s2ρ, we have
(5.20)∫

−
Q20τk

(ξk)

(
|ut|γ0 + |D2u|γ0

)
dz ≤ c0λ

p−

p
+
k and

∫
−

Q20τk
(ξk)

|f |γ0dz ≤ c0λ
p−

p
+
k δ

γ1
γ2 ,

for some c0 = c0(n,Λ, γ1, γ2, cLH , [w]Ap(·) , w(Q4ρ)) > 1. Moreover, for

any ε ∈ (0, 1), there exist δ = δ(ε, n,Λ, γ1, γ2, cLH , [w]Ap(·)) > 0 and vk ∈
W 2,1

γ0
(Q20τk(ξ

k)) ∩W 2,1
∞ (Q5τk(ξ

k)) such that

(5.21)

∫
−

Q5τk
(ξk)

(
|(u− vk)t|γ0 + |D2(u− vk)|γ0

)
dz ≤ εc0λ

p−

p
+
k
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and

(5.22) ‖(vk)t‖γ0

L∞(Q5τk
(ξk))

+ ‖D2vk‖γ0

L∞(Q5τk
(ξk))

≤ c1λ
p−

p
+
k ,

for some c1 = c1(n,Λ, γ1, γ2, cLH , [w]Ap(·) , w(Q4ρ)) > 1.

(b) (Boundary case) If B20τk(y
k) �⊂ B+

s2ρ, we have
(5.23)∫

−
Q+

100τk
(ξ̃k)

(
|ut|γ0 + |D2u|γ0

)
dz ≤ c2λ

p−

p
+
k and

∫
−

Q+
100τk

(ξ̃k)

|f |γ0dz ≤ c2λ
p−

p
+
k δ

γ1
γ2 ,

for some c2 = c2(n,Λ, γ1, γ2, cLH , [w]Ap(·) , w(Q4ρ)) > 1. Moreover, for

any ε ∈ (0, 1), there exist δ = δ(ε, n,Λ, γ1, γ2, cLH , [w]Ap(·)) > 0 and vk ∈
W 2,1

γ0
(Q+

100τk
(ξ̃k)) ∩W 2,1

∞ (Q+
25τk

(ξ̃k)) such that

(5.24)

∫
−

Q+
25τk

(ξ̃k)

(
|(u− vk)t|γ0 + |D2(u− vk)|γ0

)
dz ≤ εc2λ

p−

p
+
k

and

(5.25) ‖(vk)t‖γ0

L∞
(
Q+

25τk
(ξ̃k)

) + ‖D2vk‖γ0

L∞
(
Q+

25τk
(ξ̃k)

) ≤ c3λ
p−

p
+
k ,

for some c3 = c3(n,Λ, γ1, γ2, cLH , [w]Ap(·) , w(Q4ρ)) > 1.

Proof. Let us first consider the interior case (a) B20τk(y
k) ⊂ B+

s2ρ. One can easily
see that

20τk ≤ (s2 − s1)ρ ≤ ρ0 and B20τk(y
k) ⊂ B+

s2ρ.

For the sake of simplicity, we write

(5.26) p−k := inf
z∈Q20τk

(ξk)
p(z) and p+k := sup

z∈Q20τk
(ξk)

p(z),

and then it follows from (2.6) that

(5.27) p+k − p−k ≤ θ(40τk).

From (5.5) we know that 40τk ≤ 1, θ(40τk) ≤ 1 and |Q20τk | ≤ 1. Using these facts,
along with (5.12) and (5.27), we deduce that[∫

−
Q20τk

(ξk)

(
|ut|γ0 + |D2u|γ0

)
dz

]p+
k −p−

k

≤
[

1

|Q20τk(ξ
k)|

∫
Q+

2ρ

(
|ut|γ̃0 + |D2u|γ̃0 + 2

)
dz

]p+
k −p−

k

≤ c

(
1

|Q20τk(ξ
k)|

)θ(40τk)

≤ c

(
1

40τk

)(n+2)θ(40τk)

≤ c,(5.28)

where the last inequality comes from (2.4). In an analogous way to (5.28), we can
obtain from (2.4), (5.11), and (5.27) that(∫

−
Q20τk

(ξk)

|f |γ0dz

)p+
k −p−

k

≤ c.
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According to Hölder’s inequality with facts γ1 ≤ p+k and p− ≤ p−k , we then infer
from (5.17) and (5.28) that

∫
−

Q20τk
(ξk)

(
|ut|γ0 + |D2u|γ0

)
dz ≤ c

[∫
−

Q20τk
(ξk)

(
|ut|γ0 + |D2u|γ0

)
dz

] p
−
k

p
+
k

≤ c

[∫
−

Q20τk
(ξk)

(
|ut|

γ0p
−
k

p− + |D2u|
γ0p

−
k

p−

)
dz

] p−

p
+
k

≤ c

[∫
−

Q20τk
(ξk)

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p−

)
dz + 2

] p−

p
+
k

≤ cλ
p−

p
+
k ,

and moreover, using the same argument as above, we also deduce that

∫
−

Q20τk
(ξk)

|f |γ0dz ≤ c

(∫
−

Q20τk
(ξk)

|f |
γ0p(z)

p− dz + 1

) p−

p
+
k

≤ c(δλ+ 1)
p−

p
+
k ≤ cλ

p−

p
+
k δ

γ1
γ2 ,

where the last inequality comes from the fact that 1 < δλ0 < δλ, which is induced
by (5.13) and (5.15). In turn, the desired estimate (5.20) follows.

We now rescale Q20τk(ξ
k) to Q4 by setting

hk(z̃) :=
u
(
5τk(x̃− yk), 25τ2k (t̃− sk)

)
25τ2k

(
c0λ

p−

p
+
k

) 1
γ0

, gk(z̃) :=
f
(
5τk(x̃− yk), 25τ2k (t̃− sk)

)
(
c0λ

p−

p
+
k

) 1
γ0

,

and

(bkij(z̃)) := Bk(z̃) := A
(
5τk(x̃− yk), 25τ2k (t̃− sk)

)
,

for z̃ := (x̃, t̃) ∈ Q4. By a straightforward calculation, one can check from (1.2),
the (δ, 4ρ)-vanishing condition of A, and the above resulting estimates (5.20) that
Bk also satisfies (1.2) with A(z) replaced by Bk(z̃):

[Bk]4 ≤ δ,

∫
−

Q4

(
|(hk)t|γ0 + |D2hk|γ0

)
dz ≤ 1, and

∫
−

Q4

|gk|γ0dz ≤ δ
γ1
γ2 .

Besides, hk ∈ W 2,1
p(·)(Q4, w) ⊂ W 2,1

γ0
(Q4) is a solution of

(5.29) (hk)t − bkijDijh = gk in Q4.

Therefore, applying Lemma 4.4 and Corollary 4.5 to the equation (5.29) with B,

q, and δ replaced by Bk, γ0, and δ
γ1
γ2 , respectively, we obtain that there exist a

constant matrix B̃k = (b̃kij) and a solution ṽk ∈ W 2,1
γ0

(Q4) of

(ṽk)t − b̃kijDij ṽk = 0 in Q4

satisfying ∫
−

Q1

(
|(hk − ṽk)t|γ0 + |D2(hk − ṽk)|γ0

)
dz ≤ ε
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and ∫
−

Q4

(
|(ṽk)t|γ0 + |D2ṽk|γ0

)
dz ≤ 1

by choosing sufficiently small δ = δ(n,Λ, γ1, γ2, θ(·)) > 0. Moreover, we also have

‖(ṽk)t‖γ0

L∞(Q1)
+ ‖D2ṽk‖γ0

L∞(Q1)
≤ c.

Therefore, letting

vk(z) := 25τ2k

(
c0λ

p−

p
+
k

) 1
γ0

ṽk

(
yk +

1

5τk
x, sk +

1

25τ2k
t

)

for all z := (x, t) ∈ Q20τk(ξ
k), we conclude that vk is in W 2,1

γ0
(Q20τk(ξ

k))∩
W 2,1

∞ (Q5τk(ξ
k)) and satisfies the estimates (5.21) and (5.22).

Next we deal with the boundary case (b) B20τk(y
k) �⊂ B+

s2ρ
. Note that |yk−ỹk| <

20τk. From the fact that 120τk ≤ (s2 − s1)ρ ≤ ρ0, it is clear that

(5.30) B5τk(y
k) ⊂ B+

25τk
(ỹk) ⊂ B+

100τk
(ỹk) ⊂ B+

120τk
(yk) ⊂ B+

s2ρ.

We abbreviate

(5.31) p−k := inf
z∈Q+

100τk
(ξ̃k)

p(z) and p+k := sup
z∈Q+

100τk
(ξ̃k)

p(z).

We also get from (2.6) that

p+k − p−k ≤ θ(200τk).

We recall (5.17) to discover that∫
−

Q+
120τk

(ξk)

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p−

)
dz ≤ λ and

∫
−

Q+
120τk

(ξk)

|f |
γ0p(z)

p− dz ≤ δλ.

By means of (5.30), we then obtain∫
−

Q+
100τk

(ξ̃k)

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p−

)
dz ≤ 2n+2λ

and ∫
−

Q+
100τk

(ξ̃k)

|f |
γ0p(z)

p− dz ≤ 2n+2δλ.

Using an analogous argument to the above interior case (a) by taking into ac-
count (5.31), the previous two estimates, Lemma 4.6, and Corollary 4.7, in place of
(5.26), (5.17), Lemma 4.4, and Corollary 4.5, respectively, we can derive the desired
estimates (5.23) and find the desired vk satisfying (5.24) and (5.25). �

5.3. The proof of (5.10). For constants c1 and c3 given in Lemma 5.3, let us set

(5.32) K := (2γ0−1c4)
γ2
γ1 where c4 := max{c1, c3}.
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Recalling the upper-level set (5.14), an elementary calculus yields

∫
Q+

s1ρ

(
|ut|p(z) + |D2u|p(z)

)
w(z) dz

≤ c

∫
Q+

s1ρ

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p−
) p−

γ0
w(z) dz

=
c p−

γ0
K

p−
γ0

∫ ∞

0

λ
p−
γ0

−1w(E(Kλ)) dλ

≤ c

(∫ Aλ0

0

λ
p−
γ0

−1w(E(Kλ)) dλ+

∫ ∞

Aλ0

λ
p−
γ0

−1w(E(Kλ)) dλ

)

≤ c

(
(Aλ0)

p−
γ0 w(Q+

s1ρ) +

∫ ∞

Aλ0

λ
p−
γ0

−1w(E(Kλ)) dλ

)
=: c(I1 + I2).(5.33)

Taking into account the definitions of λ0, A, and K in (5.13)), (5.15), and (5.32),
we deduce from (5.7), (5.11), and (5.12) that

I1 ≤
cw(Q+

s1ρ)

(s2 − s1)
(n+2)p−

γ0

[∫
−

Q+
2ρ

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p−

)
dz

+
1

δ

∫
−

Q+
2ρ

(
|f |

γ0p(z)

p− + 1

)
dz

] p−
γ0

≤ cw(Q4ρ)

(s2 − s1)
(n+2)γ2

γ0 |Q2ρ|
p−
γ0

[∫
Q+

2ρ

(
|ut|γ̃0 + |D2u|γ̃0

)
dz

+
1

δ

∫
Q+

2ρ

(
|f |γ̃0 + 1

)
dz

] p−
γ0

≤
c
(
1 + 1

δ

) γ2
γ0 |Qρ|−γ2

(s2 − s1)
(n+2)γ2

γ0

.(5.34)

Now we compute I2. We start by estimating w(E(Kλ)) for λ ≥ Aλ0. We recall

the covering
{
Q+

5τk
(ξk)

}∞
k=1

of E(λ) in Section 5.2. Since K ≥ 1, we see that

E(Kλ) ⊂ E(λ), and so it follows that

w(E(Kλ)) ≤
∞∑
k=1

w

({
z ∈ Q+

5τk
(ξk) : |ut(z)|

γ0p(z)

p− +
∣∣D2u(z)

∣∣ γ0p(z)

p− > Kλ

})

≤
∞∑
k=1

w

({
z ∈ Q+

5τk
(ξk) : |ut(z)|γ0 +

∣∣D2u(z)
∣∣γ0

> (Kλ)
p−
p(z)

})
.(5.35)

In order to estimate the sum of measures of the level sets on the right-hand side
of (5.35), we should consider two cases, the interior case B20τk(y

k) ⊂ B+
s2ρ and the

boundary case B20τk(y
k) �⊂ B+

s2ρ.
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For the interior case B20τk(y
k) ⊂ B+

s2ρ , which means Q+
5τk

(ξk) = Q5τk(ξ
k), we

infer from (5.21), (5.22), (5.26), (5.32), and the elementary inequality (a + b)β ≤
2β−1(aβ + bβ) for any a, b > 0 and β ≥ 1 that

∣∣∣∣
{
z ∈ Q+

5τk
(ξk) : |ut(z)|γ0 +

∣∣D2u(z)
∣∣γ0

> (Kλ)
p−
p(z)

}∣∣∣∣
≤
∣∣∣∣∣
{
z ∈ Q5τk(ξ

k) : |(u− vk)t(z)|γ0 +
∣∣D2(u− vk)(z)

∣∣γ0
> c1λ

p−

p
+
k

}∣∣∣∣∣
+

∣∣∣∣∣
{
z ∈ Q5τk(ξ

k) : |(vk)t(z)|γ0 +
∣∣D2vk(z)

∣∣γ0
> c1λ

p−

p
+
k

}∣∣∣∣∣
≤
(
c1λ

p−

p
+
k

)−1 ∫
Q5τk

(ξk)

(
|(u− vk)t|γ0 +

∣∣D2(u− vk)
∣∣γ0
)
dz ≤ εc0

c1

∣∣C5τk(ξ
k)
∣∣ .

Then (1) of Lemma 3.3 allows us to discover that

w

({
z ∈ Q+

5τk
(ξk) : |ut(z)|γ0 +

∣∣D2u(z)
∣∣γ0

> (Kλ)
p−
p(z)

})
≤ cεν0w(C5τk(ξ

k))

≤ cεν0w(Cτk(ξ
k)).(5.36)

Similarly, for the boundary case B20τk(y
k) �⊂ B+

s2ρ, it follows from (5.24), (5.25),
(5.30), and (5.31) that

∣∣∣∣
{
z ∈ Q+

5τk
(ξk) : |ut(z)|γ0 +

∣∣D2u(z)
∣∣γ0

> (Kλ)
p−
p(z)

}∣∣∣∣
≤
∣∣∣∣∣
{
z ∈ Q+

25τk
(ξ̃k) : |(u− vk)t(z)|γ0 +

∣∣D2(u− vk)(z)
∣∣γ0

> c3λ
p−

p
+
k

}∣∣∣∣∣
+

∣∣∣∣∣
{
z ∈ Q+

25τk
(ξ̃k) : |(vk)t(z)|γ0 +

∣∣D2vk(z)
∣∣γ0

> c3λ
p−

p
+
k

}∣∣∣∣∣
≤
(
c3λ

p−

p
+
k

)−1 ∫
Q+

25τk
(ξ̃k)

(
|(u− v)t|γ0 +

∣∣D2(u− v)
∣∣γ0
)
dz ≤ εc2

c3

∣∣∣C25τk(ξ̃
k)
∣∣∣ ,

and then we apply (1) of Lemma 3.3 to find that

w

({
z ∈ Q+

5τk
(ξk) : |ut(z)|γ0 +

∣∣D2u(z)
∣∣γ0

> (Kλ)
p−
p(z)

})
≤ cεν0w(C25τk(ξ̃

k))

≤ cεν0w(Cτk(ξ̃
k)).(5.37)
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Inserting (5.36) and (5.37) into (5.35), we eventually obtain from (5.18) that

w(E(Kλ)) ≤ cεν0

∞∑
k=1

w(Cτk(ξ
k))

≤ cεν0

λp+−ε0

∞∑
k=1

[∫
Q+

τk
(ξk)∩{|f |

γ0p(z)

p− > λδ
4ca

}

⎛
⎝ |f |

γ0p(z)

p−

δ

⎞
⎠

p+−ε0

w(z) dz

+

∫
Q+

τk
(ξk)∩{|ut|

γ0p(z)

p− +|D2u|
γ0p(z)

p− > λ
4ca

}

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p−
)p+−ε0

w(z) dz

]

≤ cεν0

λp+−ε0

×
[∫

Q+
S2ρ∩{|ut|

γ0p(z)

p− +|D2u|
γ0p(z)

p− > λ
4ca

}

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p−
)p+−ε0

w(z) dz

+

∫
Q+

s2ρ∩{|f |
γ0p(z)

p− > λδ
4ca

}

⎛
⎝ |f |

γ0p(z)

p−

δ

⎞
⎠

p+−ε0

w(z) dz

]
.(5.38)

Accordingly, this estimate (5.38) leads us to discover that

I2 =

∫ ∞

Aλ0

λ
p−
γ0

−1w(E(Kλ)) dλ

≤ cεν0

∫ ∞

0

λ
p−
γ0

−(p+−ε0)−1

×
[∫

Q+
S2ρ∩{|ut|

γ0p(z)

p− +|D2u|
γ0p(z)

p− > λ
4ca

}

(
|ut|

γ0p(z)

p− + |D2u|
γ0p(z)

p−
)p+−ε0

w(z) dz

]
dλ

+cεν0

∫ ∞

0

λ
p−
γ0

−(p+−ε0)−1
∫
Q+

s2ρ∩{|f |
γ0p(z)

p− > λδ
4ca

}

⎛
⎝ |f |

γ0p(z)

p−

δ

⎞
⎠

p+−ε0

w(z) dzdλ.

Then applying the basic identity

∫
U

|g(z)|q w(z) dz = (q − q̃)

∫ ∞

0

λq−q̃−1

∫
{z∈U :|g(x)|>λ}

|g(z)|q̃ w(z) dzdλ

for q > q̃ ≥ 1, together with (5.8) and the additional assumption (5.9), we deduce
that

I2 ≤ cεν0

{∫
Q+

s2ρ

(
|ut|p(z) + |D2u|p(z)

)
w(z) dz +

(
1

δ

) γ2
γ0
∫
Q+

s2ρ

|f |p(z)w(z) dz
}

≤ cεν0

∫
Q+

s2ρ

(
|ut|p(z) + |D2u|p(z)

)
w(z)dz + c

(
1

δ

) γ2
γ0

.(5.39)
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Therefore, combining (5.33), (5.34), and (5.39), we arrive at∫
Q+

s1ρ

(
|ut|p(z) + |D2u|p(z)

)
w(z) dz ≤ c5ε

ν0

∫
Q+

s2ρ

(
|ut|p(z) + |D2u|p(z)

)
w(z) dz

+
c
(
1 + 1

δ

) γ2
γ0 |Qρ|−γ2

(s2 − s1)
(n+2)γ2

γ0

+ c

(
1

δ

) γ2
γ0

,

for some c5 = c5(n,Λ, γ1, γ2, cLH , [w]Ap(·) , w(Q4ρ)) > 0. At this stage, we take

ε = ε(n,Λ, γ1, γ2, cLH , [w]Ap(·) , w(Q4ρ)) > 0 small enough so that

(5.40) 0 < c5ε
ν0 ≤ 1

2

to establish∫
Q+

s1ρ

(
|ut|p(z) + |D2u|p(z)

)
w(z) dz

≤ 1

2

∫
Q+

s2ρ

(
|ut|p(z) + |D2u|p(z)

)
w(z) dz +

c |Qρ|−γ2

(s2 − s1)
(n+2)γ2

γ0

+ c.

Since s1 and s2 with 1 ≤ s1 < s2 ≤ 2 are arbitrary, we apply the standard iteration
lemma [24, Lemma 4.3] to conclude that

(5.41)

∫
Q+

ρ

(
|ut|p(z) + |D2u|p(z)

)
w(z) dz ≤ c |Qρ|−γ2 + c ≤ c6ρ

−(n+2)γ2

for some c6 = c6(n,Λ, γ1, γ2, cLH , [w]Ap(·) , w(Q4ρ)) > 1. By virtue of (3.3), we

consequently obtain the desired estimate (5.10). This completes the proof.

Remark 5.4. From the choice of ε > 0 in (5.40), one can select δ > 0 depending
only on n,Λ, γ1, γ2, [w]Ap(·) , and w(Q4ρ).

6. Global estimates

The proof of our main result, Theorem 2.5, proceeds in three steps. In the first
step we show that it suffices to derive the estimate (2.8) only for the solutions u

of (1.1) belonging to W 2,1
p(·)(ΩT , w). Then in the next two steps, by using standard

covering and flattening arguments, we obtain the a priori estimate (2.8) from the
interior and boundary a priori weighted estimates that have been established in
the previous section. In what follows, we denote by c a universal constant being
dependent only on n,Λ, γ1, γ2, θ(·), w,Ω, and R, and possibly varying from line to
line.

6.1. Approximation. We first suppose that we have the a priori estimate; that
is, the estimate (2.8) holds for any W 2,1

p(·)(ΩT , w)-solution of the problem (1.1). To

get rid of this a priori assumption, we show that the solution u of the problem
(1.1) can be suitably approximated by solutions uk, k = 1, 2, . . . , in W 2,1

p(·)(ΩT , w)

to regular equations.
Given A = (aij), we choose a sequence {Ak}∞k=1 = {(akij)}∞k=1 of smooth ma-

trix functions satisfying the uniform parabolicity condition with the parabolicity
constant Λ and (δ, R)-vanishing property, which converges to A = (aij) in Lα(ΩT )
for each 1 < α < ∞. For instance we may define (akij) := (aij ∗ ϕ1/k), where
ϕ1/k(x) := knϕ(kx) and ϕ is a standard mollification function. On the other hand,
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for given f ∈ Lp(·)(ΩT , w), we also find a sequence {fk}∞k=1 of smooth functions in

C∞
0 (ΩT ) converging to f in Lp(·)(ΩT , w) and satisfying that

(6.1) ‖fk‖Lp(·)(ΩT ,w) ≤ ‖f‖Lp(·)(ΩT ,w) + 1 for all k = 1, 2, . . . .

Since w ∈ Ap(·) ⊂ Aγ2+1 and w−1/(p(·)−1) ∈ Ap′(·) ⊂ Aγ1/(γ1−1)+1, by Lemmas
3.5 and 3.6, we note that in view of (1) of Lemma 3.1, there exist positive constants
ν1 and ν̃1 such that w ∈ L1+ν1(Rn+1) and w−1/(p(·)−1) ∈ L1+ν̃1(Rn+1). Therefore,

we have that for g ∈ L
γ2(1+ν1)

ν1 (ΩT ),

∫
ΩT

|g|γ2+1w dz ≤
(∫

ΩT

|g|
(γ2+1)(1+ν1)

ν1 dz

) ν1
1+ν1

(∫
ΩT

w1+ν1 dz

) 1
1+ν1

,

from which together with (3.4) one can find q1 = (γ2+1)(1+ν1)
ν1

∈ (γ2 + 1,∞) such
that

(6.2) Lq1(ΩT ) ↪→ Lγ2+1(ΩT , w) ↪→ Lp(·)(ΩT , w).

In the same argument, there exists q2 ∈ (γ1/(γ1 − 1) + 1,∞) such that

(6.3) Lq2(ΩT ) ↪→ Lγ1/(γ1−1)+1(ΩT , w
−1/(p(·)−1)) ↪→ Lp′(·)(ΩT , w

−1/(p(·)−1)).

Since Ak and fk are smooth, according to [6, Theorem 4.3], there exists the
unique solution uk ∈ W 2,1

q1 (ΩT ) of

(6.4)

{
(uk)t − akijDijuk = fk in ΩT ,

uk = 0 on ∂ΩT .

We then see from (6.2) that uk ∈ W 2,1
p(·)(ΩT , w). Hence, by the a priori assumption

we have the estimate

‖uk‖W 2,1
p(·)(ΩT ,w) ≤ c‖fk‖Lp(·)(ΩT ,w).

Moreover, it follows from (6.1) that

(6.5) ‖uk‖W 2,1
p(·)(ΩT ,w) ≤ c‖fk‖Lp(·)(ΩT ,w) ≤ c

(
‖f‖Lp(·)(ΩT ,w) + 1

)
,

where c is independent of k, and so {uk}∞k=1 is bounded in W 2,1
p(·)(ΩT , w). Therefore,

there exist a subsequence, which is still denoted by {uk}∞k=1, and a function u0 ∈
W 2,1

p(·)(ΩT , w) such that

uk ⇀ u0 weakly in W 2,1
p(·)(ΩT , w).

On the other hand, for the sequence {Ak}, we see from (6.3) that

Ak → A strongly in Lp′(·)(ΩT , w
−1/(p(·)−1)) = (Lp(·)(ΩT , w))

∗.

Hence, taking into account the convergence properties of akij , fk, and uk, we

conclude that u0 ∈ W 2,1
p(·)(ΩT , w) is a solution of (1.1). The uniqueness of strong

solutions of (1.1) directly follows from Lemma 3.7 and [6, Theorem 4.3].
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6.2. Flattening and covering. In this subsection, we assume that the strong
solution u of (1.1) satisfies that

(6.6) u ∈ W 2,1
p(·)(ΩT , w)

and then prove

‖ut‖Lp(·)(ΩT ,w) + ‖D2u‖Lp(·)(ΩT ,w)

≤ c
(
‖f‖Lp(·)(ΩT ,w) + ‖u‖Lp(·)(ΩT ,w) + ‖Du‖Lp(·)(ΩT ,w)

)
.(6.7)

In fact, it suffices to show that

(6.8) ‖ut‖Lp(·)(ΩT ,w) + ‖D2u‖Lp(·)(ΩT ,w) ≤ c,

under the additional assumption that

(6.9) ‖f‖Lp(·)(ΩT ,w) + ‖u‖Lp(·)(ΩT ,w) + ‖Du‖Lp(·)(ΩT ,w) ≤ 1.

First, we extend the solution u and the function f in (1.1) to Ω∗
T := Ω×(−T, 2T )

by letting u(x, t) = f(x, t) = 0 for −T < t < 0 and u(x, t) = u(x, 2T − t), f(x, t) =
f(x, 2T − t) for T < t < 2T and redefine the coefficient matrix A(x, t) by

A(x, t) =

{
(aij(x, t)) in R

n × (−∞, T ],
(aij(x, 2T − t)) in R

n × (T,∞).

Then the extended function f is obviously in Lp(·)(Ω∗
T , w), and the redefined A

satisfies the uniform parabolicity condition with the parabolicity constant Λ and
(4δ, R)-vanishing property. Furthermore, it is clear that w ∈ Ap(·), and we observe

that u is in W 2,1
p(·)(Ω

∗
T , w) and solves{

ut − aijDiju = f in Ω∗
T ,

u = 0 on ∂pΩ
∗
T .

From the additional assumption (6.9), we also have that

‖f‖Lp(·)(Ω∗
T ,w) + ‖u‖Lp(·)(Ω∗

T ,w) + ‖Du‖Lp(·)(Ω∗
T ,w)

≤ 2
(
‖f‖Lp(·)(ΩT ,w) + ‖u‖Lp(·)(ΩT ,w) + ‖Du‖Lp(·)(ΩT ,w)

)
≤ 2.(6.10)

Now, let us fix any point ξ = (y, s) = (y′, yn, s) ∈ ∂Ω × [0, T ]. From the
boundary regularity assumption that ∂Ω ∈ C1,1, there exist r > 0 and a C1,1

function μ = μ(x′) : Rn−1 → R in a new spatial coordinate system with origin at
y, which is obtained by a translation and a rotation from the original one and will
still be defined by the x-coordinate system, such that

(6.11) Ω ∩Br(0) = {x ∈ Br(0) : xn > μ(x′)},

(6.12) μ(0) = 0, ∇x′μ(0) = 0, and ‖∇2
x′μ‖L∞(Rn−1) < ∞.

Note that (6.11) is also valid for all r̃ < r as well as r, and hence we further assume
that r < min{T,R}.

In order to flatten out the boundary near the origin by changing coordinates, we
define

(6.13)

{
x̃i = xi =: ϕi(x) if i = 1, 2, . . . , n− 1,
x̃n = xn − μ(x′) =: ϕn(x)
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and write x̃ = ϕ(x). Setting ψ := ϕ−1, we see that x = ψ(x̃). Then we let

Ã(x̃, t̃) = (ãlm(x̃, s+ t̃)) = [∇ϕ(ψ(x̃))] ·A(ψ(x̃), s+ t̃) · [∇ϕ(ψ(x̃))]T , and p̃(x̃, t̃) =

p(ψ(x̃), s + t̃). Note that Ã is uniformly parabolic with the parabolicity constant
Λ. On the other hand, p̃ satisfies that γ1 ≤ p̃(·) ≤ γ2 and∣∣∣p̃(ξ̃1)− p̃(ξ̃2)

∣∣∣ ≤ θ
(
dp((ψ(ỹ

1), s+ s̃1), (ψ(ỹ2), s+ s̃2))
)

≤ θ
(
(‖∇ψ‖L∞ + 1)dp(ξ̃

1, ξ̃2)
)
=: θ̃

(
dp(ξ̃

1, ξ̃2)
)
,

where ξ̃1 := (ỹ1, s̃1), ξ̃2 := (ỹ2, s̃2) ∈ R
n+1, and θ̃(ρ) := θ ((‖∇ψ‖L∞ + 1) ρ), and

hence there holds

θ̃(ρ) log

(
1

ρ

)
≤ M̃ for all 0 < ρ < ∞,

for some constant M̃ = M̃ (μ,M) = M̃ (μ, γ2, cLH) > 0.
We now choose ρ = ρ(ρ0, r, μ) > 0 so small that Q+

4ρ ⊂ ϕ(Ω∩Br(0))× (−r2, r2)

with ρ ≤ ρ0 in the (x̃, t̃)-coordinate system, where ρ0 is given by (5.5), and define

ũ(x̃, t̃) := u
(
ψ(x̃), s+ t̃

)
and w̃(x̃, t̃) := w

(
ψ(x̃), s+ t̃

)
for (x̃, t̃) ∈ Q+

4ρ.

Then we deduce that ũ is in W 2,1
p̃(·)(Q

+
4ρ, w̃) and solve

(6.14)

{
ũt̃ − ãlmDx̃lx̃m

ũ = f̃ in Q+
4ρ,

ũ = 0 on T4ρ,

where

f̃(x̃, t̃) = f(ψ(x̃), s+ t̃) + aij(ψ(x̃), s+ t̃)ϕl
xixj

(ψ(x̃))Dx̃l
ũ.

From the assumption ∂Ω ∈ C1,1, we can see that w̃ ∈ Ap̃(·) with [w̃]Ap̃(·) ≤
c(n, γ1, γ2, cLH , [w]Ap(·) , μ). Moreover, a direct computation yields

[Ã]4ρ ≤ c
(
[A]R + ‖∇x′μ‖L∞(B′

r(0))
+ ‖∇x′μ‖2L∞(B′

r(0))

)
≤ c

(
δ + ‖∇x′μ‖L∞(B′

r(0))
+ ‖∇x′μ‖2L∞(B′

r(0))

)
≤ c

(
δ + r‖∇2

x′μ‖L∞(B′
r(0))

+ r2‖∇2
x′μ‖2L∞(B′

r(0))

)
≤ c

(
δ + r + r2

)
,

where we used the third inequality in (6.12) for the last inequality.

Taking into account the conditions on f , A, and ∂Ω, it is also clear that f̃ ∈
Lp̃(·) (Q+

4ρ, w̃
)
with the estimate

(6.15) ‖f̃‖Lp̃(·)(Q+
4ρ,w̃)

≤ c(μ)
(
‖f
(
ψ(x̃), s+ t̃

)
‖Lp̃(·)(Q+

4ρ,w̃)
+ ‖Dũ‖Lp̃(·)(Q+

4ρ,w̃)

)
,

where c(μ) is a constant depending only on n,Λ, and μ.
In turn, all the hypotheses of Theorem 5.1(ii) are fulfilled with respect to the

above equation (6.14) by taking δ = δ(n,Λ, γ1, γ2, cLH , θ(·), [w]Ap(·) , w(Q4ρ), μ) >

0 and r = r(n,Λ, γ1, γ2, θ(·), R, T, [w]Ap(·) , μ) > 0 sufficiently small, and hence,

Theorem 5.1(ii) gives

‖ũt̃‖Lp̃(·)(Q+
ρ ,w̃) + ‖D2ũ‖Lp̃(·)(Q+

ρ ,w̃) ≤ c
(
‖f̃‖Lp̃(·)(Q+

4ρ,w̃)
+ ‖ũ‖Lγ1(Q+

4ρ,w̃)

)
.
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In view of (2.2) and (6.13), the change of variables from (x̃, t̃) to (x, t) finally
yields from the previous estimate and (6.10) that

‖ut‖Lp(·)(Vξ,w) + ‖D2u‖Lp(·)(Vξ,w)

≤ c
(
‖f‖Lp(·)(Uξ,w) + ‖u‖Lγ1 (Uξ,w) + ‖Du‖Lp(·)(Uξ,w)

)
≤ c

(
‖f‖Lp(·)(Qr(ξ),w) + ‖u‖Lp(·)(Qr(ξ),w) + ‖Du‖Lp(·)(Qr(ξ),w)

)
≤ c

(
‖f‖Lp(·)(Ω∗

T ,w) + ‖u‖Lp(·)(Ω∗
T ,w) + ‖Du‖Lp(·)(Ω∗

T ,w)

)
≤ c,(6.16)

where Vξ := ψ(B+
ρ )×

(
s− ρ2, s+ ρ2

)
and Uξ := ψ(B+

4ρ)×
(
s− (4ρ)2, s+ (4ρ)2

)
.

Thanks to the compactness of ΩT , we can cover it with a finite number of sets
Vξ1 , Vξ2 , . . . , VξN for some points ξj ∈ ∂Ω × (0, T ), j = 1, 2, . . . , N , as above, and

V � Ω∗
T such that ΩT ⊂ V ∪

(⋃N
j=1 Vξj

)
. On the other hand, applying a standard

covering argument, it follows from (5.1), along with (6.10), that

(6.17) ‖ut‖Lp(·)(V,w) + ‖D2u‖Lp(·)(V,w) ≤ c
(
‖f‖Lp(·)(Ω∗

T ,w) + ‖u‖Lp(·)(Ω∗
T ,w)

)
≤ c.

Consequently, by summing the estimates (6.16) for ξ = ξ1, ξ2, . . . , ξN , together with
(6.17), we obtain (6.8).

6.3. Elimination of lower order terms. From (6.7), we have

(6.18) ‖u‖W 2,1
p(·)(ΩT ,w) ≤ c

(
‖f‖Lp(·)(ΩT ,w) + ‖u‖Lp(·)(ΩT ,w) + ‖Du‖Lp(·)(ΩT ,w)

)
.

It only remains to drop the last two terms on the right-hand side of the previous
estimate in order to arrive at the desired estimate (2.8). To deal with this, we argue
by contradiction. If the estimate (2.8) is false, then there exist sequences {uk}∞k=1

and {fk}∞k=1 such that uk is a solution of{
(uk)t − aijDijuk = fk in ΩT ,

uk = 0 on ∂ΩT

satisfying

(6.19) ‖uk‖W 2,1
p(·)(ΩT ,w) > k‖fk‖Lp(·)(ΩT ,w),

for any k = 1, 2, 3, . . . . By a usual normalization argument, we may assume that

(6.20) ‖uk‖W 2,1
p(·)(ΩT ,w) = 1.

Then (6.19) and (6.20) turn into

(6.21) ‖fk‖Lp(·)(ΩT ,w) <
1

k
→ 0 as k → ∞.

Furthermore, by (3.6), (4.1) with q = γ̃0, and (6.21), we deduce that

‖uk‖W 2,1
γ̃0

(ΩT ) ≤ c‖fk‖Lγ̃0 (ΩT ) ≤ c‖fk‖Lp(·)(ΩT ,w) → 0 as k → ∞,

which implies that there exists a subsequence of {uk}∞l=1, still say {uk}∞k=1, such that
limk→∞ |uk(z)| = limk→∞ |Duk(z)| = 0 for almost every z ∈ ΩT . Then Lebesgue’s
dominant convergence theorem along with (6.20) yields that∫

ΩT

|uk|p(z)w(z) dz,
∫
ΩT

|Duk|p(z)w(z) dz → 0 as k → ∞,
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which means that

‖uk‖Lp(·)(ΩT ,w), ‖Duk‖Lp(·)(ΩT ,w) → 0 as k → ∞.

However, from the above result and (6.18), we discover that

1 ≤ c
(
‖fk‖Lp(·)(ΩT ,w) + ‖uk‖Lp(·)(ΩT ,w) + ‖Duk‖Lp(·)(ΩT ,w)

)
→ 0 as k → ∞.

This contradiction establishes the desired estimates (2.8).
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