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PRUNED HURWITZ NUMBERS

NORMAN DO AND PAUL NORBURY

Abstract. Simple Hurwitz numbers count branched covers of the Riemann
sphere and are well-studied in the literature. We define a new enumeration
that restricts the count to branched covers satisfying an additional constraint.
The resulting pruned Hurwitz numbers determine their simple counterparts,

but have the advantage of satisfying simpler recursion relations and obeying
simpler formulae. As an application of pruned Hurwitz numbers, we obtain
a new proof of the Witten–Kontsevich theorem. Furthermore, we apply the
idea of defining useful restricted enumerations to orbifold Hurwitz numbers
and Belyi Hurwitz numbers.
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1. Introduction

In 1891, Hurwitz introduced the problem of enumerating connected branched
covers of CP1 with ramification over ∞ ∈ CP1 given by a partition μ = (μ1, μ2, . . . ,
μn) and simple ramification over m fixed points [18]. The Riemann–Hurwitz for-
mula asserts that the genus of the cover satisfies m = m(g,μ) = 2g − 2 + n+ |μ|,
where |μ| = μ1 +μ2 + · · ·+μn. Hurwitz described the following equivalent factori-
sation problem in the symmetric group S|μ|. We say that a product σ1σ2 · · ·σm

in S|μ| is transitive if the subgroup of S|μ| generated by σ1, σ2, . . . , σm acts tran-
sitively on the set {1, 2, . . . , |μ|}. Given μ = (μ1, μ2, . . . , μn), choose τ ∈ S|μ| of
cycle type μ and define Hg,n(μ) to be the number of transitive factorisations of τ
into m transpositions

(1.1) σ1σ2 · · ·σm = τ.

Note that the number Hg,n(μ) is independent of the choice of τ .
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This problem was studied further by various people, including Hurwitz [19],
Goulden–Jackson [15], and Ekedahl–Lando–Shapiro–Vainshtein [11], who showed
that

(1.2)
Hg,n(μ)

m(g,μ)!
=

n∏
i=1

μμi+1
i

μi!
Pg,n(μ1, . . . , μn),

where Pg,n is a polynomial of degree 3g − 3 + n. The celebrated ELSV formula
expresses the coefficients of these polynomials in terms of Hodge integrals over the
moduli space of stable curves Mg,n. See Section 2 for further details.

Each number in the set {1, 2, . . . , |μ|} appears in at least one of the factors σi on
the left hand side of equation (1.1) due to the transitivity condition. In this paper,
we introduce a new Hurwitz problem with one additional constraint.

Definition 1.1. Define the pruned simple Hurwitz number Kg,n(μ) to be the
number of transitive factorisations (1.1) of a permutation τ of cycle type μ into
m = 2g − 2 + n + |μ| transpositions such that each of the numbers 1, 2, . . . , |μ|
appears in at least two of the factors σi.

The seemingly innocuous additional constraint that each number appears in at
least two factors brings further deep structure to the problem. The pruned simple
Hurwitz number enumeration is a restriction of the simple Hurwitz number enu-
meration, and it is rather surprising that it exhibits better behaviour. For example,
pruned simple Hurwitz numbers obey a formula that is a vast simplification of the
formula (1.2) for the usual simple Hurwitz numbers. The pruned condition can also
be understood in terms of branched coverings, and the word pruned refers to the
graphical description of simple Hurwitz numbers described in Section 2.

Theorem 1. The pruned simple Hurwitz numbers satisfy:

(i) Kg,n(μ1, . . . , μn) is equal to (2g − 2 + n + |μ|)! multiplied by a polynomial
in μ1, . . . , μn of degree 6g − 6 + 3n;

(ii) Kg,n(μ1, . . . , μn) satisfies an effective recursion; and
(iii) the numbers Kg,n(μ1, . . . , μn) for fixed (g, n) determine the numbers

Hg,n(μ1, . . . , μn) for fixed (g, n) and vice versa.

The recursion referred to in part (ii) of Theorem 1 is given explicitly by Proposi-
tion 3.3. It is not simply the restriction of the cut-and-join recursion for simple Hur-
witz numbers, since the pruned condition — that each of the numbers 1, 2, . . . , |μ|
appear in at least two of the factors σi — is not preserved under the cut-and-join
operations. In Section 3, we prove that the top degree coefficients of the polynomial

1
m(g,μ)! Kg,n(μ1, . . . , μn) are intersection numbers on Mg,n. Combining this result

with the recursion leads to a new proof of the Witten–Kontsevich theorem. The
relation referred to in part (iii) of Theorem 1 is given explicitly by Proposition 3.5.

The following example demonstrates how formulae for Kg,n(μ1, . . . , μn) can be
simpler than those for Hg,n(μ1, . . . , μn).

Example 1.2. For a permutation τ ∈ S|μ| of cycle type μ = (μ1, μ2, μ3), consider
transitive factorisations σ1σ2 · · ·σ|μ|+1 = τ into transpositions. By the Riemann

existence theorem, these correspond to genus 0 branched covers of CP1. We have
the following two formulae for the number of such factorisations:

H0,3(μ1, μ2, μ3) = (|μ|+ 1)!

3∏
i=1

μμi+1
i

μi!
, K0,3(μ1, μ2, μ3) = (|μ|+ 1)!μ1μ2μ3.
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Note that the second, which takes into account the pruned condition, is much
simpler.

For any positive integer a, the orbifold Hurwitz number H
[a]
g,n(μ) is defined as

follows. Given a tuple μ = (μ1, μ2, . . . , μn), choose τ ∈ S|μ| of cycle type μ

and define H
[a]
g,n(μ) to be the number of transitive factorisations of τ into m =

2g − 2 + n+ |μ|
a transpositions and an element σ0 of cycle type (a, a, . . . , a):

(1.3) σ0σ1σ2 · · ·σm = τ.

In particular, |μ| must be divisible by a for the count to be non-zero. Such factori-
sations correspond to branched covers of CP1, and the Riemann–Hurwitz formula

in this case asserts that the genus of the cover satisfies m = 2g − 2 + n+ |μ|
a . The

factor σ0 in equation (1.3) defines a colouring of {1, 2, . . . , |μ|}, where each of the
|μ|
a cycles of σ0 is assigned a distinct colour. Each colour appears in at least one of
the factors σi for i > 0 of equation (1.3), due to the transitivity condition. We can
generalise the pruning condition as follows.

Definition 1.3. Define the pruned orbifold Hurwitz number K
[a]
g,n(μ) to be the

number of transitive factorisations (1.3) of a permutation τ of cycle type μ into

m = 2g − 2 + n + |μ|
a transpositions and an element σ0 of cycle type (a, a, . . . , a)

such that each colour — determined by σ0 — appears in at least two of the factors
σi for i > 0.

When a = 1, this reduces to the pruned simple Hurwitz numbers. Theorem 1 is
a special case of the following result.

Theorem 2. The pruned orbifold Hurwitz numbers satisfy:

(i) K
[a]
g,n(μ1, . . . , μn) is equal to

(
2g − 2 + n+ |μ|

a

)
! multiplied by a polynomial

in μ1, . . . , μn of degree 6g − 6 + 3n;

(ii) K
[a]
g,n(μ1, . . . , μn) satisfies an effective recursion; and

(iii) the numbers K
[a]
g,n(μ1, . . . , μn) for fixed (g, n) determine the numbers

H
[a]
g,n(μ1, . . . , μn) for fixed (g, n) and vice versa.

The notion of pruning applies to a broader set of combinatorial problems aris-
ing from geometry. It is related to the rational behaviour of certain generating
functions. For example, assemble the orbifold Hurwitz numbers into the following
generating functions:

H[a]
g,n(x1, . . . , xn) =

∞∑
μ1,...,μn=1

H
[a]
g,n(μ)

m!

xμ1

1 · · ·xμn
n

μ1 · · ·μn
.

Then H[a]
g,n(x1, . . . , xn) is a convergent power series that extends to a rational func-

tion in z1, . . . , zn, where xi = zi exp(−zai ). A local expansion of H[a]
g,n(x1, . . . , xn)

in z1, . . . , zn yields a generating function for K
[a]
g,n(μ1, . . . , μn). One of the main

observations of this paper is that K
[a]
g,n(μ1, . . . , μn) can be realised as the weighted

count of an interesting combinatorial and geometric problem.
Another application of pruning — in which expansion of certain generating func-

tions in a rational parameter gives rise to an interesting combinatorial and geometric
problem — arises in the case of Belyi Hurwitz numbers. Consider connected genus
g branched covers π : Σ → CP1 unramified over CP1 − {0, 1,∞}, with ramification
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(μ1, . . . , μn) at labelled points (p1, . . . , pn) over ∞, ramification (2, 2, . . . , 2) over 1,
and arbitrary ramification over 0. We call the weighted count of these branched
covers a Belyi Hurwitz number because such branched covers are known as Belyi
maps. Pruned Belyi Hurwitz covers are those with the additional constraint that
all points over 0 have non-trivial ramification. There is an analogue of Theorem 1
for the case of pruned Belyi Hurwitz numbers that is discussed further in Section 5.

By pruning an enumerative problem, one aim is to produce a simpler problem
that uncovers structure of the original version. Belyi Hurwitz numbers provide a
good example of a case where the pruned and unpruned versions have independent
interest. Unpruned Belyi Hurwitz numbers arise from discrete surfaces and matrix
integral calculations, whereas pruned Belyi Hurwitz numbers can be interpreted as
the enumeration of lattice points in the moduli space of curves Mg,n. The latter
viewpoint gives rise to deep geometric information, such as intersection numbers
on Mg,n and the orbifold Euler characteristic of Mg,n [25].

The enumerative problems that are amenable to pruning discussed above have a
further feature in common. They each satisfy the topological recursion of Chekhov,
Eynard, and Orantin. Given a rational plane curve C known as a spectral curve, the
topological recursion defines a multidifferential ωg,n(p1, . . . , pn) — that is, a tensor
product of meromorphic 1-forms — for integers g ≥ 0 and n ≥ 1 on the product
Cn [7, 13]. When 2g − 2 + n > 0, the multidifferential ωg,n(p1, . . . , pn) is defined
recursively in terms of local information around the poles of ωg′,n′(p1, . . . , pn′) for
2g′ +2− n′ < 2g− 2+ n. The generating functions for each of the examples above
have been shown to arise as expansions of these multidifferentials arising from
particular rational plane curves. For simple Hurwitz numbers, this was known as
the Bouchard–Mariño conjecture [6] and was subsequently proven in [4, 12]. A
generalisation of this result to orbifold Hurwitz numbers was proven in [5, 8], and
an analogue of this result for Belyi Hurwitz numbers was proven in [14, 25]. A
natural question that arises is whether one can apply the idea of pruning to other
enumerative problems that satisfy the topological recursion of Eynard and Orantin.
A good candidate of geometric interest is the stationary Gromov–Witten theory of
CP

1, which is known to satisfy the topological recursion [10,27]. We discuss this in
Section 6.

2. Simple Hurwitz numbers

In this section, we consider the case of pruned simple Hurwitz numbers separately
from pruned orbifold Hurwitz numbers. This is due to the independent interest of
simple Hurwitz numbers and also because this easier case should help the reader
understand the general case of orbifold Hurwitz numbers treated in Section 4.

We begin by formally defining simple Hurwitz numbers via branched covers. For
g ≥ 0 and n ≥ 1, define the set of simple Hurwitz covers as follows:

Hg,n(μ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
f : Σ → CP

1

∣∣∣∣∣∣∣∣∣∣∣∣

Σ a connected genus g Riemann surface;

simple ramification over mth roots of unity;

f−1(∞) = (p1, . . . , pn) with respective

ramification μ = (μ1, . . . , μn);

f unramified elsewhere

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.
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Figure 1. The star graph.

Here, m = 2g−2+n+ |μ| and we consider two branched covers f1 : Σ1 → CP
1 and

f2 : Σ2 → CP1 to be equivalent if there exists h : Σ1 → Σ2 that satisfies f1 = f2 ◦h
while preserving the labels over ∞.

Define the simple Hurwitz numbers

(2.1) Hg,n(μ1, . . . , μn) =
∑

f∈Hg,n(μ)

μ1 · · ·μn

|Aut f | .

The summands in equation (2.1) are integral essentially because the automorphism
group is small. An automorphism of the branched cover f : (Σ; p1, p2, . . . , pn) →
(CP1;∞) is an automorphism φ of the marked Riemann surface (Σ; p1, p2, . . . , pn)
such that f = f ◦ φ. The automorphism group is only non-trivial for hyperelliptic
covers of CP1 with one point at infinity. In such cases, the automorphism group
has order 2, while the numerator of the summand in equation (2.1) is also 2.

Remark 2.1. By the Riemann existence theorem, such a branched cover is pre-
scribed by the location of the ramification points and the monodromy around each.
Therefore, equations (1.1) and (2.1) give equivalent definitions. Any cycle of τ acts
by conjugation on factorisations (1.1) since it fixes τ and preserves the cycle type of
transpositions. The orbits of this action have size equal to the summands of (2.1),
which turns out to be μ1 · · ·μn generically, or 1 in the exceptional case μ = (2).

Remark 2.2. Different normalisations of simple Hurwitz numbers are often defined
in the literature. They may differ by factors of μ1 · · ·μn and |Aut μ| where Aut μ
consists of the permutations of the tuple μ = (μ1, μ2, . . . , μn) that leave it fixed.
Differing normalisations may arise depending on whether one labels the preimages of
∞ in the branched cover. For this reason, the form of the cut-and-join relation and
the ELSV formula may appear different from other appearances in the literature.

Given f ∈ Hg,n(μ), its branching graph is f−1(Γm) ⊂ Σ, where Γm ⊂ C is the
star graph given by the cone on the mth roots of unity [2].

Conversely, a branching graph gives rise to f ∈ Hg,n(μ), so the simple Hurwitz
number Hg,n(μ) can be interpreted as an enumeration of branching graphs. These
are fatgraphs with certain edge labellings, where we allow fatgraphs to contain half-
edges as well as full edges. For more information on fatgraphs — also referred to
as ribbon graphs, embedded graphs, and graphs with rotation — see the book of
Lando and Zvonkin [22].
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Definition 2.3. We define a branching graph of type (g;μ) to be an edge-labelled
fatgraph of type (g, �(μ)) such that for m = 2g − 2 + �(μ) + |μ|:

there are |μ| vertices and each of them is adjacent to m half-edges that are
cyclically labelled 1, 2, . . . ,m;
there are exactly m full edges that are labelled 1, 2, . . . ,m;
the n faces are labelled 1, 2, . . . , n and have perimeters given by (mμ1,
mμ2, . . . ,mμn); and
each face has a marked m-label. (Note that the face labelled k has μk

appearances of an m-label.)

The set of all branching graphs of type (g;μ) is denoted Brg,n(μ).

The marked m-labels give locations for removing or attaching edges in the cut-
and-join recursion below and remove non-trivial automorphisms. They also give
rise to an unweighted count that produces simple Hurwitz numbers.

Proposition 2.4. The simple Hurwitz number Hg,n(μ1, . . . , μn) enumerates
branching graphs in the following way:

Hg,n(μ1, . . . , μn) =
∑

Γ∈Brg,n(μ)

1.

We now assemble three fundamental results concerning simple Hurwitz numbers,
using the normalisation

Ĥg,n(μ1, . . . , μn) =
Hg,n(μ1, . . . , μn)

(2g − 2 + n+ |μ|)! .

The cut-and-join recursion for simple Hurwitz numbers can be obtained by con-
sidering the removal of an edge from a branching graph [16]:

mĤg,n(μS) =
∑
i<j

μiμj Ĥg,n−1(μS\{i,j}, μi + μj)

(2.2)

+
1

2

n∑
i=1

μi

∑
α+β=μi

[
Ĥg−1,n+1(μS\{i}, α, β)(2.3)

+
∑

g1+g2=g

I�J=S\{i}

Ĥg1,|I|+1(μI , α) Ĥg2,|J|+1(μJ , β)

]
.

Here, we have used the notation S = {1, 2, . . . , n} and μI = (μi1 , μi2 , . . . , μik) for
I = {i1, i2, . . . , ik}.

Proposition 2.5 (ELSV formula [11]). The simple Hurwitz number Ĥg,n(μ1, . . . , μn)
satisfies

Ĥg,n(μ1, . . . , μn) =

n∏
i=1

μμi+1
i

μi!

∑
|d|+�=3g−3+n

(−1)� 〈τd1
· · · τdn

λ�〉g μd1
1 · · ·μdn

n ,

where 〈τd1
· · · τdn

λ�〉g =
∫
Mg,n

ψd1
1 · · ·ψdn

n λ� is an intersection number of tautologi-

cal classes on the moduli space of stable pointed curves.
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Let ωg,n denote the multidifferentials output by the topological recursion applied
to the spectral curve

x(z) = z exp(−z) and y(z) = z.

The Bouchard–Mariño conjecture [6] was proven in [4,12] and states the following.

Theorem 3. The expansion of ωg,n at x1 = x2 = · · · = xn = 0 is given by

(2.4) ωg,n =
∞∑

μ1,...,μn=1

Ĥg,n(μ1, . . . , μn)
n∏

i=1

xμi−1
i dxi.

3. Pruned Hurwitz numbers

3.1. Pruned simple Hurwitz numbers. In the previous section, we interpreted
simple Hurwitz numbers as an enumeration of branching graphs. In this section,
we define pruned simple Hurwitz numbers by restricting to the set of branching
graphs that satisfy an additional constraint on the vertex degrees. We will show
that simple Hurwitz numbers can be recovered from their pruned counterparts and
vice versa. One advantage of studying pruned simple Hurwitz numbers is that they
possess an inherent polynomial structure that allows geometric information to be
easily extracted. We conclude the section with an application of this methodology
to obtain a new proof of the Witten–Kontsevich theorem.

We define the essential degree of a vertex in a branching graph to be the number
of incident full edges. The branching graph of f ∈ Hg,n(μ) can be equivalently
described as a triple (X, τ0, τ1) where X = f−1({ζ0, ζ1, . . . , ζm−1}) for ζ a prim-
itive mth root of unity, equipped with automorphisms τ0 : X → X given by the
monodromy map around 0 and τ1 : X → X given by the monodromy maps around
the roots of unity. The full edges, often simply called edges, correspond to orbits
of τ1 of length 2, whereas half-edges correspond to fixed points of τ1.

For g ≥ 0 and n ≥ 1, define the set of pruned simple Hurwitz covers as follows.

Kg,n(μ) =
{
f ∈ Hg,n(μ) | all vertices of the branching graph f−1(Γm)

have essential degree at least two} .

We call a branching graph pruned if all of its vertices have essential degree at least
two and denote the set of pruned branching graphs of type (g;μ) by PFatg,n(μ).
Define the pruned simple Hurwitz numbers by

Kg,n(μ1, . . . , μn) =
∑

f∈Kg,n(μ)

μ1 · · ·μn

|Aut f | =
∑

Γ∈PFatg,n(μ)

1.

This definition agrees with the definition of pruned simple Hurwitz numbers given
in the introduction via factorisations in the symmetric group. Furthermore, let
m(g,μ) = 2g − 2 + n+ |μ| and define the normalisation

K̂g,n(μ) =
Kg,n(μ)

m(g,μ)!
.

Example 3.1. The edges of a branching graph with (g, n) = (0, 1) necessarily form
a tree. So in this case, there does not exist a pruned branching graph and we have
K0,1(μ1) = 0 for all positive integers μ1.
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Example 3.2. The edges of a branching graph with (g, n) = (0, 2) and μ = (μ1, μ2)
necessarily form a cycle with μ1 + μ2 edges. Remove the edge labelled μ1 + μ2 and
record the labels of the remaining edges in an anticlockwise fashion around face
1 to obtain a permutation of the set {1, 2, . . . , μ1 + μ2 − 1}. The contribution to
the perimeter of face 1 is one more than the number of ascents of the resulting
permutation. Therefore, we have

K0,2(μ1, μ2) = μ1μ2 A(μ1 + μ2 − 1, μ1 − 1)

for all positive integers μ1 and μ2. Here, A(m,n) represents the Eulerian number
that counts the number of permutations of the set {1, 2, . . . ,m} with n ascents.

The cut-and-join recursion provides a recursive method to calculate simple Hur-
witz numbers [15]. The next result establishes an analogous recursion for pruned
simple Hurwitz numbers.

Proposition 3.3 (Cut-and-join recursion for pruned simple Hurwitz numbers).
The following equation holds for all 2g − 2 + n > 0 and μ = (μ1, . . . , μn) :

m(g,μ) K̂g,n(μ) =
∑
i<j

μiμj

∑
α+β=μi+μj+1

β K̂g,n−1(μS\{i,j}, α)

+
1

2

n∑
i=1

μi

∑
α+β+γ=μi+1

γ

[
K̂g−1,n+1(μS\{i}, α, β)

+
stable∑

g1+g2=g

I�J=S\{i}

K̂g1,|I|+1(μI , α) K̂g2,|J|+1(μJ , β)

]
.

We use the notation S = {1, 2, . . . , n} and μI = (μi1 , μi2 , . . . , μik) for I =
{i1, i2, . . . , ik}. The word stable over the final summation indicates that summands

involving K̂0,1 or K̂0,2 are to be excluded.

Example 3.4. As an example of the cut-and-join recursion for pruned simple

Hurwitz numbers in action, consider the following calculation of K̂0,4(μ1, μ2, μ3, μ4),

which uses K̂0,3(μ1, μ2, μ3) = μ1μ2μ3:

(|μ|+ 2) K̂0,4(μ1, μ2, μ3, μ4) = μ1μ2μ3μ4

∑
i<j

∑
α+β=μi+μj+1

αβ

= (|μ|+ 2)μ1μ2μ3μ4
1
2 (μ

2
1 + μ2

2 + μ2
3 + μ2

4 + μ1 + μ2 + μ3 + μ4).

Therefore, we conclude that

K0,4(μ1, μ2, μ3, μ4) =
1
2 (|μ|+ 2)!μ1μ2μ3μ4

4∑
i=1

(μ2
i + μi).

In contrast, the calculation of H0,4(μ1, μ2, μ3, μ4) via the cut-and-join recursion
(2.2) is far from straightforward since it involves combinatorial identities more dif-
ficult than sums of polynomials. In particular, note that H0,4 terms would appear
on both sides of the recursion.
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i

i

α β
m

Figure 2. The edge labelled m is adjacent to the face labelled i
on both sides.

Proof of Proposition 3.3. We begin by expressing the cut-and-join recursion with-
out the normalisation:

Kg,n(μ) =
∑
i<j

μiμj

∑
α+β=μi+μj+1

β
(m− 1)!

(m− β)!
Kg,n−1(μS\{i,j}, α)

+
1

2

n∑
i=1

μi

∑
α+β+γ=μi+1

γ (m− 1)!

[
Kg−1,n+1(μS\{i}, α, β)

(m− γ)!

+

stable∑
g1+g2=g

I�J=S\{i}

Kg1,|I|+1(μI , α) Kg2,|J|+1(μJ , β)

m1!m2!

]
.

Here, we use the notationm1 = 2g1−1+|I|+|μI |+α andm2 = 2g2−1+|J |+|μJ |+β.
The conditions g1 + g2 = g, I 
 J = S \ {i}, and α + β + γ = μi + 1 imply that
m1 +m2 = m− γ.

Recall that Kg,n(μ) is the number of pruned branching graphs in PFatg,n(μ).
Choose such a branching graph and remove the edge labelled m from it. Repeat-
edly remove vertices with essential degree one and their incident edges until all
of the vertices of the resulting branching graph have essential degree at least two.
When removing an edge with a given label, we also remove all half-edges with the
corresponding label. The removed edges necessarily form a path in the original
branching graph. Observe that one of the following three cases must arise (see
Figures 2 and 3).

The edge labelled m is adjacent to the face labelled i on both sides and its
removal leaves a connected graph.

Suppose that γ edges are removed in total, so that a branching graph in
PFatg−1,n+1(μS\{i}, α, β) remains, where α+ β + γ = μi + 1.

Conversely, there are 1
2 μiγ

(m−1)!
(m−γ)! ways to reconstruct a branching graph

in PFatg,n(μ) from a branching graph in PFatg−1,n+1(μS\{i}, α, β) by
adding a path of γ edges. When adding an edge with a given label, we
also add all possible half-edges with the corresponding label, while main-
taining the correct cyclic ordering of the half-edges at every vertex. The
factor μi accounts for the position of the new marked m-labelled edge. The
factor γ accounts for the position of the edge labelled m along the path.
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i jm

Figure 3. The edge labelled m is adjacent to two distinct faces
labelled i and j.

The factor (m−1)!
(m−γ)! accounts for the edge labels appearing on the remaining

edges of the path. It is then necessary to adjust by the factor 1
2 due to the

overcounting caused by the symmetry in α and β.
The edge labelled m is adjacent to the face labelled i on both sides and its
removal leaves the disjoint union of two connected graphs.

Suppose that γ edges are removed in total, so that the disjoint union of
two branching graphs in PFatg1,|I|+1(μI , α) and PFatg2,|J|+1(μJ , β) remain,
where α+ β + γ = μi + 1, g1 + g2 = g, and I 
 J = S \ {i}.

Conversely, there are 1
2 μiγ

(m−1)!
m1!m2!

ways to reconstruct a branching graph

in PFatg,n(μ) from a pair of branching graphs in PFatg1,|I|+1(μI , α) and
PFatg2,|J|+1(μJ , β) by adding a path of γ edges. When adding an edge with
a given label, we also add all possible half-edges with the corresponding
label, while maintaining the correct cyclic ordering of the half-edges at
every vertex. The factor μi accounts for the position of the new marked
m-labelled edge. The factor γ accounts for the position of the edge labelled

m along the path. The factor (m−1)!
m1!m2!

accounts for the distribution of the

edge labels {1, 2, . . . ,m− 1} between the two branching graphs. It is then
necessary to adjust by the factor 1

2 due to the overcounting caused by the
symmetry in (g1, I, α) and (g2, J, β).
The edge labelled m is adjacent to two distinct faces labelled i and j.

Suppose that β edges are removed in total, so that a branching graph in
PFatg,n−1(μS\{i,j}, α) remains, where α+ β = μi + μj + 1.

Conversely, there are μiμjβ
(m−1)!
(m−β)! ways to reconstruct a branching graph

in PFatg,n(μ) from a branching graph in PFatg,n−1(μS\{i,j}, α) by adding
a path of β edges. When adding an edge with a given label, we also add
all possible half-edges with the corresponding label, while maintaining the
correct cyclic ordering of the half-edges at every vertex. The factor μiμj

accounts for the positions of the marked m-labelled edges on faces i and j.
The factor β accounts for the position of the edge labelledm along the path.

The factor (m−1)!
(m−β)! accounts for the edge labels appearing on the remaining

edges of the path.
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Figure 4. A subtlety arises when the edge labelled m is adjacent
to two distinct faces.

There is a crucial subtlety that arises in the third case, which we now address.
One can discern the issue by considering the sequence of diagrams in Figure 4, in
which μi increases from left to right, relative to μj .

The factor μiμjβ
(m−1)!
(m−β)! in the third case actually contributes to diagrams like

the one on the far right, in which face i completely surrounds face j, or vice versa.
In fact, the edge labelled m that we remove can lie anywhere along the dashed
path in the schematic diagram. Note that this contributes to the second case, in
which the edge labelled m is adjacent to the face labelled i on both sides and its
removal leaves the disjoint union of two connected graphs. However, observe that
this surplus contribution is precisely equal to the terms from the second case that

involve K̂0,2, so one can compensate simply by excluding such terms. Given that

we have already witnessed in Example 3.1 that K̂0,1 = 0, we can restrict to the so-
called stable terms in the second case, which are precisely those that do not involve

K̂0,1 or K̂0,2.
Therefore, to obtain all fatgraphs in PFatg,n(μ) exactly once, it is necessary to

perform the reconstruction process:

in the first case for all values of i and α+ β + γ = μi + 1;
in the second case for all stable values of i, α+ β+ γ = μi +1, g1 + g2 = g,
and I 
 J = S \ {i}; and
in the third case for all values of i, j, and α+ β = μi + μj + 1.

We obtain the cut-and-join recursion for pruned simple Hurwitz numbers by sum-
ming up over all these contributions. �

3.2. The pruning correspondence. Despite the fact that Kg,n(μ) only counts
a subset of the branching graphs enumerated by Hg,n(μ), simple Hurwitz numbers
can be determined from their pruned counterparts, and vice versa. The crucial
observation is the following result.

Proposition 3.5. The following equation holds for all (g, n) �= (0, 1) and μ =
(μ1, . . . , μn) :

Ĥg,n(μ1, . . . , μn) =

μ1,...,μn∑
ν1,...,νn=1

K̂g,n(ν1, . . . , νn)

n∏
i=1

μμi−νi

i

(μi − νi)!
.

Proof. We begin by writing the proposition in the following way:

Hg,n(μ)=

μ1,...,μn∑
ν1,...,νn=1

Kg,n(ν)
(2g − 2 + n+ |μ|)!

(2g − 2 + n+ |ν|)! (μ1 − ν1)! · · · (μn − νn)!

n∏
i=1

μμi−νi

i .
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This equation encapsulates the fact that, from a branching graph, one obtains
a unique pruned branching graph by repeatedly removing vertices with essential
degree one and their incident edges. The process continues until all of the vertices
of the resulting branching graph have essential degree at least two. When removing
an edge with a given label, we also remove all half-edges with the corresponding
label. It is then necessary to relabel the edges and half-edges in the resulting
branching graph so that the new labels come from a set of the form {1, 2, . . . ,m},
while maintaining the correct cyclic ordering of the half-edges at every vertex. We
refer to the process described above as pruning and observe that it can be carried
out one face at a time.

Conversely, every branching graph of type (g;μ) can be reconstructed from a
pruned branching graph of type (g;ν) for 1 ≤ νi ≤ μi by adding μi − νi edges to
face i, for all i = 1, 2, . . . , n. When adding an edge with a given label, we also add all
possible half-edges with the corresponding label. It is then necessary to relabel the
edges and half-edges in the resulting branching graph so that the new labels come
from a set of the form {1, 2, . . . ,m}, while maintaining the correct cyclic ordering
of the half-edges at every vertex.

There are Kg,n(ν) possibilities for the pruned branching graph and the factor

(2g − 2 + n+ |μ|)!
(2g − 2 + n+ |ν|)! (μ1 − ν1)! · · · (μn − νn)!

accounts for the number of ways to choose the set of edge labels for the underlying
pruned branching graph as well as the set of μi− νi edge labels to be added to face
i for i = 1, 2, . . . , n.

All that remains is to show that the factor μμ−ν is equal to the number of ways
to add μ − ν edges to a pruned face with perimeter ν. To do this, we invoke the
following generalisation of Cayley’s formula:

Let N ⊆ M be sets of size ν ≤ μ, respectively. Then the number
of rooted forests on μ vertices labelled by M with ν components
whose roots are labelled by N is precisely T (μ, ν) = νμμ−ν−1.

See for example [1] for a proof of the formula for T (μ, ν).
Consider a face of perimeter μ in a branching graph that has perimeter ν after

pruning. By the definition of a branching graph, each edge label occurs precisely
ν times in the pruned face, so we can divide its perimeter into ν disjoint intervals,
each of which contains all of the edge labels. From the unpruned face of perimeter
μ, construct a rooted forest by contracting each of the intervals to a root vertex
and reassign each edge label to the adjacent vertex that is further away from the
root. We thus obtain a rooted forest with ν components, μ − ν edges, and hence
μ vertices. The ν roots are labelled by their corresponding intervals, while the
remaining μ− ν vertices are labelled by distinct positive integers derived from the
original edge labels.

As an example, consider Figure 5, which shows a pruned face of perimeter ν = 3
with μ−ν = 8 edges added to create a face of perimeter μ = 11. The corresponding
rooted forest is shown on the right.

So there are μ
ν T (μ, ν) = μμ−ν possibilities for the resulting rooted forest. Con-

versely, the process may be reversed to construct a face of perimeter μ from a
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Figure 5. From a face in a branching graph to a pruned forest.

pruned face of perimeter ν together with a labelled rooted forest with ν compo-
nents and μ vertices. The edge labels determine the cyclic orientations of the edges
adjacent to a given vertex. �

Note that the system of linear equations in Proposition 3.5 relating the values

of Ĥg,n to those of K̂g,n is triangular in the sense that Ĥg,n(μ) depends only on

values of K̂g,n(ν) for which ν ≤ μ in the lexicographical order. Therefore, all of
the information stored in the simple Hurwitz numbers is theoretically also stored
in their pruned counterparts.

Theorem 3 states that the simple Hurwitz numbers comprise a natural enumer-
ative problem in the context of the topological recursion. The following result
demonstrates that the same is true of the pruned simple Hurwitz numbers and,
furthermore, that they can be derived from the same spectral curve.

Proposition 3.6. For 2g − 2 + n>0, the expansions of the simple Hurwitz multi-
differentials of equation (2.4) at the point z1 = z2 = · · · = zn = 0 satisfy

ωg,n =

∞∑
μ1,...,μn=1

K̂g,n(μ1, . . . , μn)

n∏
i=1

zμi−1
i dzi.

Proof. Recall that the simple Hurwitz multidifferentials are defined in equation (2.4)
by the formula

ωg,n =

∞∑
μ1,...,μn=1

Ĥg,n(μ1, . . . , μn)

n∏
i=1

xμi−1
i dxi.

Furthermore, recall that ωg,n is a meromorphic multidifferential on Cn, where C is
the rational spectral curve given parametrically by the equation x(z) = z exp(−z)
and y(z) = z. We let z1, z2, . . . , zn be the rational coordinates on Cn and define
x1 = x(z1), x2 = x(z2), . . . , xn = x(zn).

Now define another family of multidifferentials ωg,n on Cn by the following local
expansion at the point z1 = z2 = · · · = zn = 0:1

ωg,n =

∞∑
μ1,...,μn=1

K̂g,n(μ1, . . . , μn)

n∏
i=1

zμi−1
i dzi.

1Proposition 3.8 below asserts that ̂Kg,n is a polynomial, so the equation does indeed define

an analytic multidifferential.
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Of course, we wish to prove that ωg,n = ωg,n and we proceed by calculating the
following residue:

Res
x1=0

· · · Res
xn=0

ωg,n

n∏
i=1

x−μi

i

= Res
z1=0

· · · Res
zn=0

∞∑
ν1,...,νn=1

K̂g,n(ν1, . . . , νn)

n∏
i=1

zνi−1
i dzi [zi exp(−zi)]

−μi

= Res
z1=0

· · · Res
zn=0

∞∑
ν1,...,νn=1

K̂g,n(ν1, . . . , νn)

n∏
i=1

zνi−μi−1
i dzi

∞∑
mi=0

μmi

i

mi!
zmi
i

=

μ1,...,μn∑
ν1,...,νn=1

K̂g,n(ν1, . . . , νn)
n∏

i=1

Res
zi=0

zνi−μi−1
i dzi

∞∑
mi=0

μmi
i

mi!
zmi
i

=

μ1,...,μn∑
ν1,...,νn=1

K̂g,n(ν1, . . . , νn)

n∏
i=1

μμi−νi

i

(μi − νi)!

= Ĥg,n(μ1, . . . , μn).

The last equality here is a direct consequence of Proposition 3.5. It now follows
from the above residue calculation that

ωg,n =

∞∑
μ1,...,μn=1

Ĥg,n(μ1, . . . , μn)

n∏
i=1

xμi−1
i dxi = ωg,n. �

In Example 3.8, we observed that the linear factor m(g,μ) = 2g− 2+n+ |μ| on
the left hand side of the cut-and-join recursion divides the right hand side in the

case (g, n) = (0, 4), thereby establishing the fact that K̂0,4 is a polynomial. In fact,
we will see that this phenomenon is general.

Lemma 3.7. For non-negative integers d, define the sequence qd(1), qd(2), qd(3), . . .
by the triangular system of linear equations

μμ+d+1

μ!
=

μ∑
ν=1

qd(ν)
νμμ−ν

(μ− ν)!
for μ = 1, 2, 3, . . . .

Then qd is a polynomial of degree 2d.

Proof. First, observe that q0(ν) = 1 for ν = 1, 2, 3, . . ., since this fact is equivalent
to the identity

μ2 T (μ, 1) =

μ∑
ν=1

μ!

(μ− ν)!
T (μ, ν) for μ = 1, 2, 3, . . . .

As in the proof of Proposition 3.5, T (μ, ν) = νμμ−ν−1 denotes the number of rooted
forests on μ labelled vertices with ν labelled roots. We interpret the left hand side
of this equation as the number of trees with vertices labelled 1, 2, . . . , μ, along with
a choice of an initial vertex and a terminal vertex, which are allowed to coincide.
Given such a tree, suppose that there are ν vertices on the unique path from the
initial vertex to the terminal vertex. Note that 1 ≤ ν ≤ μ and that there are μ!

(μ−ν)!

possibilities for the labels of the vertices along the path. Removing the edges on
the path yields a rooted forest, whose roots are precisely those vertices on the
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path. The number of such rooted forests is T (μ, ν) by definition, which leads to the
expression on the right hand side of this equation.

Second, consider the following sequence of equalities:
μ∑

ν=1

qd+1(ν)
νμμ−ν

(μ− μ)!
= ν

μ∑
ν=1

qd(ν)
νμμ−ν

(μ− ν)!

=

μ∑
ν=1

νqd(ν)
νμμ−ν

(μ− ν)!
+

μ∑
ν=1

(μ− ν)qd(ν)
νμμ−ν

(μ− ν)!

=

μ∑
ν=1

νqd(ν)
νμμ−ν

(μ− ν)!
+ μ

μ∑
ν=1

(ν − 1)qd(ν − 1)
μμ−ν

(μ− ν)!

=

μ∑
ν=1

νqd(ν)
νμμ−ν

(μ− ν)!
+

μ∑
ν=1

(ν − 1)qd(ν − 1)
νμμ−ν

(μ− ν)!

+ μ

μ∑
ν=1

(ν − 2)qd(ν − 2)
μμ−ν

(μ− ν)!

=

μ∑
ν=1

νqd(ν)
νμμ−ν

(μ− ν)!
+

μ∑
ν=1

(ν − 1)qd(ν − 1)
νμμ−ν

(μ− ν)!

+ · · ·+
μ∑

ν=1

1qd(1)
νμμ−ν

(μ− ν)!

=

μ∑
ν=1

[νqd(ν) + (ν − 1)qd(ν − 1) + · · ·+ 1qd(1)]
νμμ−ν

(μ− ν)!
.

Since the sequences qd(1), qd(2), qd(3), . . . are defined by triangular systems of linear
equations, we may deduce from the above sequence of equalities that

(3.1) qd+1(ν) =

ν∑
i=1

iqd(i) and qd+1(ν) = qd+1(ν − 1) + vqd(ν).

Using the base case q0(ν) = 1 and equation (3.1), it is now straightforward to prove
by induction that qd is a polynomial of degree 2d. �
Proposition 3.8. For 2g−2+n > 0, the normalised pruned simple Hurwitz number

K̂g,n(μ1, . . . , μn) is a polynomial in μ1, . . . , μn of degree 6g − 6 + 3n.

Proof. Substitute the ELSV formula — see Proposition 2.5 — into the equation in
the statement of Proposition 3.5 to obtain the following:∑

|d|+�=3g−3+n

(−1)� 〈τd1
· · · τdn

λ�〉g
n∏

i=1

μμi+di+1
i

μi!

=

μ1,...,μn∑
ν1,...,νn

K̂g,n(ν1, . . . , νn)

n∏
i=1

μμi−νi

i

(μi − νi)!
.

From the definition of the polynomials qd for d = 0, 1, 2, . . ., we may deduce from
this equation that for all positive integers ν1, ν2, . . . , νn,

(3.2) K̂g,n(ν1, . . . , νn) =
∑

|d|+�=3g−3+n

(−1)� 〈τd1
· · · τdn

λ�〉g
n∏

i=1

νiqdi
(νi).
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Since we have already shown that qd is a polynomial of degree 2d, the desired result
follows. �

The sequence of polynomials q0, q1, q2, . . . plays a crucial part in the relation
between simple Hurwitz numbers and their pruned counterparts. The numerators
of the corresponding triangle of coefficients appear as sequence A202339 in the On-
Line Encyclopedia of Integer Sequences [30]. We state without proof some simple
facts about this sequence of polynomials, which follow from the base case q0 = 1
and the recursive definition in equation (3.1).

Proposition 3.9. The function qd is in fact a polynomial of degree 2d with leading
coefficient ad = 1

(2d)!! . For all non-negative integers d and positive integers ν,

qd(ν) = S(ν + d, ν), the Stirling number of the second kind that represents the
number of ways to partition a set with ν + d objects into ν non-empty subsets.

The combinatorial significance of the Stirling numbers of the second kind for
pruned simple Hurwitz numbers is presently unclear.

d qd(ν)

0 1

1 1
2 (ν

2 + ν)

2 1
24 (3ν

4 + 10ν3 + 9ν2 + 2ν)

3 1
48 (ν

6 + 7ν5 + 17ν4 + 17ν3 + 6ν2)

4 1
5760 (15ν

8 + 180ν7 + 830ν6 + 1848ν5 + 2015ν4 + 900ν3 + 20ν2 − 48ν)

5 1
11520 (3ν

10+55ν9+410ν8+1598ν7+3467ν6+4055ν5+2120ν4+ 52ν3−240ν2)

3.3. Witten–Kontsevich theorem. We apply the earlier results of this section
to give a direct proof of the Witten–Kontsevich theorem, which governs intersection
numbers of psi-classes on Deligne–Mumford moduli spaces of stable pointed curves
Mg,n. We adopt the following notation of Witten for such intersection numbers,

which are defined to be zero unless the condition |d| = dimC Mg,n = 3g − 3 + n is
satisfied:

〈τd1
· · · τdn

〉g =

∫
Mg,n

ψd1
1 · · ·ψdn

n .

The psi-classes ψ1, ψ2, . . . , ψn ∈ H2(Mg,n;Q) are the first Chern classes of the
cotangent line bundles at the marked points. For more information on Deligne–
Mumford moduli spaces of curves, psi-classes, and the Witten–Kontsevich theorem,
see the book of Harris and Morrison [17].

One of the virtues of the cut-and-join recursion for pruned simple Hurwitz num-
bers is that, although it is primarily an equality of numbers, it can be interpreted
as an equality of polynomials in light of Proposition 3.8. In order to do this, we
define the following functions for non-negative integers i and j:

Pi(x, y) =
∑

α+β=x+y+1

αβ qi(α) and Pi,j(x) =
∑

α+β+γ=x+1

αβγ qi(α) qj(β).
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The following lemma will be useful to determine the leading order behaviour of Pi

and Pi,j .

Lemma 3.10. The expression ∑
α1+···+αm=n

αk1
1 · · ·αkm

m

is a polynomial in n of degree |k|+m− 1 with leading coefficient k1!···km!
(|k|+m−1)! .

One proof of this fact expresses monomials αk as linear combinations of binomial
coefficients αk = k!

(
α
k

)
+ · · · and uses the combinatorial fact

∑
α1+···+αm=n

(
α1

k1

)
· · ·

(
αm

km

)
=

(
n+m− 1

|k|+m− 1

)
.

As a direct consequence of this lemma and Proposition 3.9, we have the following
result.

Corollary 3.11. For non-negative integers i and j, Pi is a polynomial of degree
2i+ 3 and Pi,j is a polynomial of degree 2i+ 2j + 5. Their leading coefficients are
given by the formulae

[
x2a+1y2b

]
Pa+b−1(x, y) =

(2a+ 2b− 1)!!

(2a+ 1)! (2b)!

and

[
x2a+2b+5

]
Pa,b(x) =

(2a+ 1)!! (2b+ 1)!!

(2a+ 2b+ 5)!
.

Example 3.12. The summations over α, β, γ in the cut-and-join recursion for
pruned simple Hurwitz numbers can be replaced by expressions involving Pi and
Pi,j . For example, consider the case (g, n) = (1, 2):

(μ1 + μ2 + 2) K̂1,2(μ1, μ2)

=
∑

α+β=μ1+μ2+1

αβ K̂1,1(α) +
1

2

∑
α+β+γ=μ1+1

αβγ K̂0,3(μ2, α, β)

+
1

2

∑
α+β+γ=μ2+1

αβγ K̂0,3(μ1, α, β)

=
∑

α+β=μ1+μ2+1

αβ
q1(α)− q0(α)

24
+

∑
α+β+γ=μ1+1

αβγ
q0(μ2)q0(α)q0(β)

2

+
∑

α+β+γ=μ2+1

αβγ
q0(μ1)q0(α)q0(β)

2

=
1

24
P1(μ1, μ2)−

1

24
P0(μ1, μ2) +

1

2
P0,0(μ1) q0(μ2) +

1

2
P0,0(μ2) q0(μ1).
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We are now in a position to deduce the Witten–Kontsevich theorem from equa-
tion (3.2) and Proposition 3.3, the cut-and-join recursion for pruned simple Hurwitz
numbers.

Theorem 4 (Witten–Kontsevich theorem). The intersection numbers of psi-classes
on the Deligne–Mumford moduli spaces of stable pointed curves Mg,n satisfy the
following equation for all d1, d2, . . . , dn:

〈τd1
· · · τdn

〉 =
n∑

j=2

(2d1 + 2dj − 1)!!

(2d1 + 1)!! (2dj − 1)!!
〈τdS\{1,j}τd1+dj−1〉

+
1

2

∑
i+j=d1−2

(2i+ 1)!! (2j + 1)!!

(2d1 + 1)!!

[
〈τiτjτdS\{1}〉+

∑
I�J=S\{1}

〈τiτdI
〉 〈τjτdJ

〉
]
.

Remark 3.13. In actual fact, the original formulation of Witten posited that a
certain natural generating function for intersection numbers of psi-classes — the
Gromov–Witten potential of a point — is a solution to the KdV integrable hierar-
chy [32]. This is equivalent to the fact that the generating function is annihilated by
the Virasoro differential operators L−1, L0, L1, . . ., which satisfy the Virasoro rela-
tion [Lm, Ln] = (m−n)Lm+n. The annihilation by L−1 and L0 is equivalent to the
dilaton and string equations, which have straightforward geometric interpretations
that already appear in the original paper of Witten. It is straightforward to prove
that Theorem 4 is equivalent to the fact that Ld1−1 annihilates the Gromov–Witten
potential of a point.

Proof of Theorem 4. Take the cut-and-join recursion for pruned simple Hurwitz
numbers and consider the coefficient of μ1μ

2d = μ2d1+1
1 μ2d2

2 · · ·μ2dn
n for |d| = 3g −

3 + n. This condition ensures that no terms involving non-trivial Hodge classes λ�

appear.
The desired coefficient of the left hand side of the cut-and-join recursion can be

expressed as follows:

[
μ1μ

2d
]
(2g − 2 + n+ |μ|) K̂g,n(μS)

=
[
μ1μ

2d
]
(2g − 2 + n+ |μ|)

∑
|k|+�=3g−3+n

(−1)� 〈τk1
· · · τkn

λ�〉g
n∏

i=1

qki
(μi)

=〈τd1
· · · τdn

〉g
n∏

i=1

adi
.

The first equality uses equation (3.2), while the second makes use of the fact that
qd is a polynomial of degree 2d with leading coefficient ad = 1

(2d)!! , as stated in

Proposition 3.9.
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The desired coefficient of the first term on the right hand side of the cut-and-join
recursion can be expressed as follows:[
μ1μ

2d
]∑
i<j

∑
α+β=μi+μj+1

αβ K̂g,n−1(μS\{i,j}, α)

=
[
μ1μ

2d
]∑
i<j

∑
|kS\{i,j}|+s+�=3g−4+n

(−1)�〈τkS\{i,j}τsλ�〉g Ps(μi, μj)
∏

m∈S\{i,j}
qkm

(μm)

=

n∑
j=2

〈τdS\{i,j}τd1+dj−1〉g
[
μ2d1+1
1 μ

2dj

j

]
Pd1+dj−1(μ1, μj)

∏
m∈S\{1,j}

adm

=

n∑
j=2

〈τdS\{i,j}τd1+dj−1〉g
(2d1 + 2dj − 1)!!

(2d1 + 1)!(2dj)!

∏
m∈S\{1,j}

adm
.

The first equality uses equation (3.2), the second takes into account the fact that
|d| = 3g − 3 + n, while the third follows from Corollary 3.11.

In an analogous fashion, the desired coefficients of the second and third terms
on the right hand side of the cut-and-join recursion can be expressed as follows:

1

2

∑
s+t=d1−2

〈τdS\{1}τsτt〉g−1

[
μ2d1+1
1

]
Ps,t(μ1)

∏
m∈S\{1}

adm
,

1

2

stable∑
g1+g2=g

I�J=S\{1}

∑
s+t=d1−2

〈τdI
τs〉g1〈τdJ

τt〉g2
(2s+ 1)!!(2t+ 1)!!

(2d1 + 1)!

∏
m∈S\{1}

adm
.

Now substitute these expressions into the cut-and-join recursion and divide both
sides by ad1

ad2
· · · adn

to obtain the desired result. �

It is worth remarking that Okounkov and Pandharipande also deduce theWitten–
Kontsevich theorem using the ELSV formula as a starting point [29]. Their ap-
proach expresses the asymptotics of simple Hurwitz numbers as a sum over triva-
lent fatgraphs, thereby obtaining Kontsevich’s combinatorial formula [21]. The
Witten–Kontsevich theorem is then derived as a consequence of this formula using
the theory of matrix models. In contrast, the notion of pruning reduces the enu-
meration of simple Hurwitz numbers to an equivalent problem that is inherently
polynomial. The asymptotic analysis of pruned simple Hurwitz numbers is then
stored in the top degree terms of the cut-and-join recursion. As shown in the proof
of Theorem 4 above, the Witten–Kontsevich theorem emerges directly from this
analysis without necessitating the use of a matrix model.

There are now myriad proofs of the Witten–Kontsevich theorem, most of which
involve the theory of matrix models in one way or another. Exceptional in this re-
spect is the proof by Mirzakhani, who analyses the volume Vg,n(L1, . . . , Ln) of the
moduli space of genus g hyperbolic surfaces with n geodesic boundary components
of lengths L1, . . . , Ln [23]. Her proof consists of two parts: a theorem that relates
Vg,n(L1, . . . , Ln) to the intersection theory of moduli spaces of curves and a recur-
sion that can be used to compute Vg,n(L1, . . . , Ln). It is natural to consider these
as analogous to the ELSV formula and the cut-and-join recursion, respectively.
Our proof of the Witten–Kontsevich theorem bears strong resemblance to that of
Mirzakhani, but uses a combinatorial argument rather than hyperbolic geometry
to obtain the recursion.
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We finish the section with a table of the polynomials K̂g,n(μ1, . . . , μn), which
give pruned simple Hurwitz numbers.

g n K̂g,n(μ1, μ2, . . . , μn)

0 3 1

0 4 1
2

∑
μ2
i +

1
2

∑
μi

0 5 1
8

∑
μ4
i +

1
2

∑
μ2
iμ

2
j +

5
12

∑
μ3
i +

1
2

∑
μ2
iμj +

3
8

∑
μ2
i +

1
2

∑
μiμj +

1
12

∑
μi

1 1 1
48μ

2
1 +

1
48μ1 − 1

24

1 2 1
192 (μ

4
1 + μ4

2) +
1
96μ

2
1μ

2
2 +

5
288 (μ

3
1 + μ3

2) +
1
96 (μ

2
1μ2 + μ1μ

2
2)

− 1
192 (μ

2
1 + μ2

2) +
1
96μ1μ2 − 5

288 (μ1 + μ2)

2 1 1
442368μ

8
1 +

1
36864μ

7
1 +

271
3317760μ

6
1 − 7

276480μ
5
1 − 1873

6635520μ
4
1

− 53
552960μ

3
1 +

329
1658880μ

2
1 +

13
138240μ1

4. Orbifold Hurwitz numbers

4.1. Orbifold Hurwitz numbers. In this section, we generalise the results for
simple Hurwitz numbers in the previous section to the case of orbifold Hurwitz
numbers.

Definition 4.1. For a fixed positive integer a, the orbifold Hurwitz number

H
[a]
g,n(μ1, . . . , μn) is the weighted enumeration of connected genus g branched covers

f : (Σ; p1, . . . , pn) → (CP1;∞) such that

the preimage of ∞ is given by the divisor μ1p1 + μ2p2 + · · ·+ μnpn;
the ramification profile over 0 is (a, a, . . . , a); and

the only other ramification is simple and occurs over m = 2g − 2 + n+ |μ|
a

fixed points.

Note that we recover the definition of simple Hurwitz numbers in the case a = 1.
Justification for the terminology orbifold Hurwitz number stems from the following
generalisation of the ELSV formula due to Johnson, Pandharipande, and Tseng [20].

Theorem 5 (Orbifold ELSV formula [20]). The orbifold Hurwitz number

H
[a]
g,n(μ1, . . . , μn) satisfies

H
[a]
g,n(μ1, . . . , μn)(

2g − 2 + n+ |μ|
a

)
!
= a1−g+

∑
{μi/a}

n∏
i=1

μ
�μi/a�+1
i

�μi/a�!

∫
Mg,[−μ](BZa)

∑∞
i=0(−a)iλU

i∏n
i=1(1− μiψi)

,

where Mg,γ(BZa) is the moduli space of stable maps to BZa, the classifying stack of
Za given by a point with trivial Za-action, and λU

i are generalisations of the Hodge
class.

The following result is the orbifold analogue of Theorem 3 [5, 8].

Theorem 6. For a fixed positive integer a, consider the topological recursion applied
to the rational spectral curve C given by

x(z) = z exp(−za) and y(z) = za.
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The expansion of the resulting multidifferential ωg,n at x1 = x2 = · · · = xn = 0 is
given by

(4.1) ωg,n =

∞∑
μ1,...,μn=1

H
[a]
g,n(μ1, . . . , μn)(

2g − 2 + n+ |μ|
a

)
!

n∏
i=1

xμi−1
i dxi.

Definition 4.2. For a fixed positive integer a, we define an a-fold branching graph
of type (g;μ) to be an edge-labelled fatgraph of type (g, �(μ)) such that for m =

2g − 2 + �(μ) + |μ|
a :

there are |μ|
a vertices and at each of them there are am adjacent half-edges

that are cyclically labelled

1, 2, 3, . . . ,m, 1, 2, 3, . . . ,m, . . . , 1, 2, 3, . . . ,m;

there are exactly m full edges that are labelled 1, 2, 3, . . . ,m;
the n faces are labelled 1, 2, . . . , n and have perimeters given by (mμ1,
mμ2, . . . ,mμn); and
each face has a marked m-label. (Note that the face labelled k has μk

appearances of an m-label.)

Of course, this definition anticipates the following result [8].

Proposition 4.3. The orbifold Hurwitz number H
[a]
g,n(μ1, . . . , μn) enumerates a-

fold branching graphs of type (g;μ).

4.2. Pruned orbifold Hurwitz numbers. One obtains pruned orbifold Hurwitz
numbers by restricting the enumeration to the set of pruned orbifold branching
graphs, which are obtained by introducing a simple condition on vertex degrees. We
call an orbifold branching graph pruned if all of its vertices have essential degree at

least two. Let K
[a]
g,n(μ1, . . . , μn) be the number of pruned a-fold branching graphs of

type (g;μ), where μ = (μ1, . . . , μn). Furthermore, letm = m(g,μ) = 2g−2+n+ |μ|
a

and define the normalisation

K̂ [a]
g,n(μ1, . . . , μn) =

Kg,n(μ1, . . . , μn)

m!
.

Proposition 4.4 (Cut-and-join recursion for pruned orbifold Hurwitz numbers).
For 2g − 2 + n > 0,

m(g,μ) K̂ [a]
g,n(μ) =

∑
i<j

μiμj

∑
α+aβ=μi+μj+a

βK̂
[a]
g,n−1(μS\{i,j}, α)

+
1

2

n∑
i=1

μi

∑
α+β+γ=μi+1

γ

[
K̂

[a]
g−1,n+1(μS\{i}, α, β)

+

stable∑
g1+g2=g

I�J=S\{i}

K̂
[a]
g1,|I|+1(μI , α) K̂

[a]
g2,|J|+1(μJ , β)

]
.

The proof follows from considering the behaviour of removing an edge from a
branching graph and pruning the result. It is essentially the same as the proof of
Proposition 3.3.
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4.3. The pruning correspondence.

Proposition 4.5. For (g, n) �= (0, 1),

Ĥ [a]
g,n(μ1, . . . , μn) =

μ1,...,μn∑
ν1,...,νn=1

K̂ [a]
g,n(ν1, . . . , νn)

n∏
i=1

μ
μi−νi

a

i

(μi−νi

a )!
.

Proof. As in the proof of Proposition 3.5, the factor

(2g − 2 + n+ |μ|
a )!

(2g − 2 + n+ |ν|
a )! (μ1 − ν1)! · · · (μn − νn)!

accounts for the number of ways to choose the set of edge labels for the underlying
pruned branching graph as well as the set of μi−νi

a edge labels to be added to face
i for i = 1, 2, . . . , n. The only difference from the proof of Proposition 3.5 is that

we now require T
[a]
k,e, which we define to be the number of rooted forests with k

labelled components and e labelled edges, counted with weight a#internal edges. We
have the following generalisation of Cayley’s formula:

T
[a]
k,e = k(ae+ k)e−1.

One uses μ
μ−ν
a = μ

ν T
[a]

ν,μ−ν
a

in the proof of Proposition 3.5 to obtain the desired

result. �

Proposition 4.6. For 2g − 2 + n > 0, the expansions of the orbifold Hurwitz
multidifferentials of equation (4.1) at the point z1 = z2 = · · · = zn = 0 satisfy

ωg,n =

∞∑
μ1,...,μn=1

K̂ [a]
g,n(μ1, . . . , μn)

n∏
i=1

zμi−1
i dzi.

Proof. Recall that the orbifold Hurwitz multidifferentials are defined in equation
(4.1) by the formula

ωg,n =
∞∑

μ1,...,μn=1

Ĥ [a]
g,n(μ1, . . . , μn)

n∏
i=1

xμi−1
i dxi.

Furthermore, recall that ωg,n is a meromorphic multidifferential on Cn, where C is
the rational spectral curve given parametrically by the equation x(z) = z exp(−za)
and y(z) = za. We let z1, z2, . . . , zn be the rational coordinates on Cn and define
x1 = x(z1), x2 = x(z2), . . . , xn = x(zn).

Now define another family of multidifferentials ωg,n on Cn by the following local
expansion at the point z1 = z2 = · · · = zn = 0:

ωg,n =
∞∑

μ1,...,μn=1

K̂ [a]
g,n(μ1, . . . , μn)

n∏
i=1

zμi−1
i dzi.
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We will prove that ωg,n = ωg,n by calculating the following residue:

Res
x1=0

· · · Res
xn=0

ωg,n

n∏
i=1

x−μi

i

= Res
z1=0

· · · Res
zn=0

∞∑
ν1,...,νn=1

K̂ [a]
g,n(ν1, . . . , νn)

n∏
i=1

zνi−1
i dzi [zi exp(−zai )]

−μi

= Res
z1=0

· · · Res
zn=0

∞∑
ν1,...,νn=1

K̂ [a]
g,n(ν1, . . . , νn)

n∏
i=1

zνi−1
i dzi z

−μi

i

∞∑
mi=0

μami
i

mi!
zami

i

=

μ1,...,μn∑
ν1,...,νn=1

K̂ [a]
g,n(ν1, . . . , νn)

n∏
i=1

Res
zi=0

zνi−1
i dzi z

−μi

i

∞∑
mi=0

μami
i

mi!
zami
i

=

μ1,...,μn∑
ν1,...,νn=1

K̂ [a]
g,n(ν1, . . . , νn)

n∏
i=1

μ
μi−νi

a
i

(μi−νi

a )!

= Ĥ [a]
g,n(μ1, . . . , μn).

It follows that

ωg,n =
∞∑

μ1,...,μn=1

Ĥg,n(μ1, μ2, . . . , μn)
n∏

i=1

μix
μi−1
i dxi = ωg,n. �

A consequence of Theorem 5 is that we may express the orbifold Hurwitz numbers
as

Ĥ [a]
g,n(μ1, . . . , μn) = a1−g+

∑
{μi/a}

n∏
i=1

μ
�μi/a�
i + 1

�μi/a�!
×Q[a]

g,n(μ1, . . . , μn),

where Q
[a]
g,n is a quasi-polynomial modulo a of degree 3g − 3 + n. The following

result is the orbifold analogue of Proposition 3.8.

Proposition 4.7. For a fixed positive integer a and 2g−2+n > 0, the normalised

pruned orbifold Hurwitz number K̂
[a]
g,n(μ1, . . . , μn) is a quasi-polynomial modulo a

in μ1, . . . , μn of degree 6g − 6 + 3n.

Proof. One can prove this in an analogous way to Proposition 3.8. However, we
will adopt here an approach that instead uses the spectral curve. Recall from
Proposition 4.6 that

ωg,n =
∞∑

μ1,...,μn=1

K̂ [a]
g,n(μ1, . . . , μn)

n∏
i=1

zμi−1
i dzi.

By the general theory of topological recursion, ωg,n is a meromorphic multidiffer-
ential on the spectral curve

x(z) = z exp(−za) and y(z) = za.

Therefore, it is rational in z1, . . . , zn. Furthermore, it has poles only at the zeros
of dxi, which are the ath roots of unity in this case. A rational function in z with
poles only at {z | za = 1} has an expansion

∑
p(n) zn at z = 0, where p(n) is a

quasi-polynomial modulo a. The degree of K
[a]
g,n follows from the order of the poles

of ωg,n, which is 6g− 4+2n by the general theory of topological recursion [13]. �
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5. Belyi Hurwitz numbers

For g ≥ 0 and n ≥ 1, define the set of Belyi Hurwitz covers as follows:

Zg,n(μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
f : Σ → CP1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Σ a connected genus g Riemann surface;

f−1(∞) = (p1, . . . , pn) with

respective ramification μ = (μ1, . . . , μn);

ramification (2, 2, . . . , 2) over 1;

arbitrary ramification over 0; f unramified

elsewhere

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Here, we consider two branched covers f1 : Σ1 → CP1 and f2 : Σ2 → CP1 to be
equivalent if there exists h : Σ1 → Σ2 that satisfies f1 = f2 ◦ h while preserving the
labels over ∞.

Define the Belyi Hurwitz numbers

Mg,n(μ1, . . . , μn) =
∑

f∈Zg,n(μ)

1

|Aut f | .

Now define the set of pruned Belyi Hurwitz covers

Z0
g,n(μ) =

{
f ∈ Zg,n(μ) | all points in f−1(0) have non-trivial ramification

}
,

as well as the corresponding pruned Belyi Hurwitz numbers

Ng,n(μ1, . . . , μn) =
∑

f∈Z0
g,n(μ)

1

|Aut f | .

There is a recursion for Mg,n that uses a cut-and-join argument and is known as
the Tutte recursion in the planar case [31]. More generally, such a recursion arises
from expansions of matrix integrals [3, 14]. See also [9], where Mg,n(μ) is treated
as a generalised Catalan number. An analogous recursion for Ng,n appears in [24].

To any f ∈ Zg,n(μ), one can associate a fatgraph Γf = f−1([0, 1]) ⊂ Σ. Note
that Σ− f−1([0, 1]) is a union of disks, so that Γf can be considered as a discrete
surface of genus g obtained by gluing together n polygonal faces of perimeters
μ1, . . . , μn. Equivalently, a fatgraph is defined by the set X of its oriented edges,
equipped with automorphisms τ0, τ1 : X → X. Then Γf is the fatgraph given
by (Xf , τ0, τ1), where Xf = f−1(0, 1), τ0 : Xf → Xf is the monodromy map
around 0, and τ1 : Xf → Xf is the monodromy map around 1. The vertices of
the fatgraph correspond to Vf = f−1(0) ∼= Xf/τ0, while the edges correspond to
Ef = Xf/τ1 ∼= f−1(1). The boundary components correspond to Xf/τ2 ∼= f−1(∞)
for τ2 = τ0τ1, and its perimeter is simply the size of the corresponding orbit of τ2.
An automorphism of a fatgraph Γ = (X, τ0, τ1) is a map g : X → X that commutes
with τ0 and τ1. From the fatgraph, one can reconstruct the map f . Hence the Belyi
Hurwitz numbers can be equivalently defined as

Mg,n(μ1, . . . , μn) =
∑

Γ∈Fatg,n(μ)

1

|Aut Γ| ,
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where Fatg,n(μ) is the set of all genus g fatgraphs with n labelled boundary com-
ponents of respective lengths (μ1, . . . , μn). Similarly,

Ng,n(μ1, . . . , μn) =
∑

Γ∈Fat2g,n(μ)

1

|Aut Γ| ,

where Fat2g,n(μ) ⊂ Fatg,n(μ) consists of those fatgraphs without degree one vertices,
namely, pruned fatgraphs. It is this graph representation that justifies the term
pruned Belyi Hurwitz number.

Let Mg,n be the moduli space of genus g curves with n marked points. For each
μ = (μ1, . . . , μn), there is the Penner–Harer–Mumford–Thurston cell decomposition

(5.1) Mg,n
∼=

⋃
Γ∈Fat3g,n

PΓ(μ1, . . . , μn),

where the indexing set Fat3g,n is the finite set of genus g fatgraphs with all vertices
of degree at least three and n labelled boundary components.

The cell decomposition (5.1) arises from the existence and uniqueness of Strebel
differentials on a compact Riemann surface Σ with n marked points (p1, . . . , pn)
and n positive reals (μ1, . . . , μn). A Strebel differential is a meromorphic quadratic
differential ω that is holomorphic on Σ − {μ1, . . . , μn} that satisfies further con-
ditions. Any quadratic differential gives rise to vertical and horizontal foliations
along which ω is positive and negative, respectively. In terms of a local coordinate
z away from zeros and poles, one can write ω = (dz)2 = (dx)2 − (dy)2 + 2i dx dy.
This is positive when y is constant and negative when x is constant. A Strebel
differential is distinguished by the fact that its horizontal foliation has compact
leaves and its poles occur at the pk with principal part μk

z2 (dz)2. It has a unique
singular compact leaf that is a fatgraph endowed with a positive length on each
edge. The important point is that this singular compact leaf has no degree one
vertices, since such a vertex would correspond to a singularity of the form 1

z (dz)
2.

In summary, Strebel differentials give rise to pruned fatgraphs without degree two
vertices, endowed with a positive length on each edge.

Consider the natural map Zg,n(μ) → Mg,n that sends f : Σ → CP1 to its
domain curve (Σ; p1, . . . , pn), where f−1(∞) = {p1, . . . , pn}. It can be combined
with the cell decomposition of equation (5.1) with the same μ to assign to f a
fatgraph Γf without degree two vertices. Note that in general, Γf �= Γf .

Underlying Γf is a fatgraph Γ̃f without degree two vertices, obtained by ignoring

the degree two vertices of Γf . On the level of the sets Xf and X̃f of oriented edges,

there exist maps π : Xf → X̃f and ι : X̃f → Xf satisfying π ◦ ι = id, π ◦ τ1 = τ1 ◦π,
and ι◦τ0 = τ0◦ι. The induced map π∗ : Ef → Ẽf is surjective and one-to-one except

on edges adjacent to degree two vertices. The induced map ι∗ : Ṽf → Vf is injective
with image all of Vf except for degree two vertices. For general f ∈ Zg,n(μ), we

have Γ̃f �= Γf since Γf usually has degree one vertices. However,

f ∈ Z0
g,n(μ) ⇒ Γ̃f = Γf .

In other words Z0
g,n(μ) sits naturally inside Mg,n and this gives rise to a third

description of Ng,n(μ1, . . . , μn) as the number of integral points inside rational
polytopes that form a cell decomposition of Mg,n. The cells described by (5.1) are
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convex polytopes

PΓ(μ1, . . . , μn) = {x ∈ R
E(Γ)
+ | AΓx = μ},

where μ = (μ1, . . . , μn) ∈ Rn and AΓ : RE(Γ) → Rn is the incidence matrix that
maps an edge to the sum of its two incident boundary components. If we define

NΓ(μ1, . . . , μn) = #{ZE(Γ)
+ ∩ PΓ(μ1, . . . , μn)}, then

Ng,n(μ1, . . . , μn) =
∑

Γ∈Fat3g,n

1

|Aut Γ| NΓ(μ1, . . . , μn).

An important consequence of this interpretation of Ng,n(μ) as the enumeration of
lattice points in Mg,n is the identity

Ng,n(0, . . . , 0) = χ(Mg,n).

One makes sense of evaluation of Ng,n at (0, . . . , 0) by using the fact that
Ng,n(μ1, . . . , μn) is quasi-polynomial in μ1, . . . , μn [25].

5.1. The pruning correspondence. Both the Belyi Hurwitz numbers and their
pruned counterparts arise from topological recursion on the spectral curve

x(z) = z +
1

z
and y(z) = z.

More explicitly, the results of [26] and [25] show that for 2g− 2+ n > 0, the multi-
differentials arising from the topological recursion have the following expansions on
the spectral curve:

ωg,n =
∞∑

μ1,...,μn=1

Mg,n(μ1, . . . , μn)
n∏

i=1

μix
−μi−1
i(5.2)

=

∞∑
ν1,...,νn=1

Ng,n(ν1, . . . , νn)

n∏
i=1

νiz
νi−1
i .

Proposition 5.1. We have

(5.3) Mg,n(μ1, . . . , μn)
n∏

i=1

μi =

μ1,...,μn∑
ν1,...,νn=1

Ng,n(ν1, . . . , νn)
n∏

i=1

νi

(
μi

μi−νi

2

)
.
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Proof. In the context of Belyi Hurwitz numbers, the pruning correspondence follows
immediately from equation (5.2):

Mg,n(μ1, . . . , μn)

n∏
i=1

μi

= Res
x1=∞

· · · Res
xn=∞

ωg,n

n∏
i=1

xμi

i

= Res
z1=0

· · · Res
zn=0

∞∑
ν1,...,νn=1

Ng,n(ν1, . . . , νn)
n∏

i=1

νiz
νi−1
i dzix

μi

i

= Res
z1=0

· · · Res
zn=0

∞∑
ν1,...,νn=1

Ng,n(ν1, . . . , νn)

n∏
i=1

νiz
νi−1
i dzi

(
zi +

1

zi

)μi

= Res
z1=0

· · · Res
zn=0

∞∑
ν1,...,νn=1

Ng,n(ν1, . . . , νn)
n∏

i=1

νiz
νi−1
i dzi

μi∑
ki=0

(
μi

ki

)
zμi−2ki

i

=

μ1,...,μn∑
ν1,...,νn=1

Ng,n(ν1, . . . , νn)
n∏

i=1

νi

(
μi

μi+νi

2

)

=

μ1,...,μn∑
ν1,...,νn=1

Ng,n(ν1, . . . , νn)

n∏
i=1

νi

(
μi

μi−νi

2

)
.

Hence, we have deduced equation (5.3). �

One can also give a combinatorial proof that simply formalises the fact that
repeatedly removing vertices of degree one and their incident edges from a fatgraph
yields a pruned fatgraph in a unique way.

Remark 5.2. We could have naturally definedMg,n(μ1, . . . , μn) andNg,n(μ1, . . . , μn)
to include an extra factor of μ1 · · ·μn, in which case (5.3) would further resemble
the pruning correspondence for simple Hurwitz numbers in Proposition 3.5.

6. Gromov–Witten invariants of CP1

In this section, we apply the idea of pruning to the Gromov–Witten invariants
of CP1. Unlike the previous sections, the picture is not yet complete and the aim
here is to predict interesting structure.

The Gromov–Witten invariants of CP1 are known to arise from the spectral curve
C given parametrically by

(6.1) x(z) = z +
1

z
and y(z) = log z ∼

∞∑
k=1

− (1− z2)k

2k
.

In particular, one can apply the topological recursion to the rational spectral curve
CN that uses the Nth partial sum for the above expansion of y. In that case, the
multidifferentials ωg,n stabilise for N ≥ 6g − 6 + 2n.

Assemble the Gromov–Witten invariants of CP1 into the generating function

(6.2) Ωg
n(x1, . . . , xn) =

∞∑
μ1,...,μn=1

〈 n∏
i=1

τμi
(ω)

〉g

d

n∏
i=1

(μi + 1)!

xμi+2
i

dxi.
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The following was predicted and proven in [27] for the case g = 0, 1 and for all g in
[10].

Theorem 7. For 2g − 2 + n > 0, the multidifferentials obtained from topological
recursion on the spectral curve defined by (6.1) agree with the generating function
for Gromov–Witten invariants of CP1 defined by (6.2):

ωg
n ∼ Ωg

n(x1, . . . , xn).

More precisely, Ωg
n(x1, . . . , xn) is an analytic expansion of ωg

n around a branch of
x1 = x2 = · · · = xn = ∞.

By analogy with the pruning correspondence of the previous sections, it is natural
to consider the expansion of ωg

n at z1 = z2 = · · · = zn = 0. The equation

ωg
n ∼

∞∑
μ1,...,μn=1

Gg,n(μ1, . . . , μn)

n∏
i=1

μiz
μi−1
i dzi

defines the coefficients Gg,n(μ1, . . . , μn), which are quasi-polynomials modulo 2 in
μ1, . . . , μn. These quasi-polynomials are shown for small values of g and n in the
table below.

g n # odd μi Gg,n(μ1, . . . , μn)

0 3 0, 2 0

0 3 1, 3 1

1 1 0 0

1 1 1 1
48 (μ

2
1 − 3)

0 4 0, 4 1
4 (μ

2
1 + μ2

2 + μ2
3 + μ2

4)

0 4 1, 3 0

0 4 2 1
4 (μ

2
1 + μ2

2 + μ2
3 + μ2

4 − 2)

1 2 0 1
384 (μ

2
1 + μ2

2 − 8) (μ2
1 + μ2

2)

1 2 1 0

1 2 2 1
384 (μ

2
1 + μ2

2 − 6) (μ2
1 + μ2

2 − 2)

2 1 0 0

2 1 1 1
216335 (μ

2
1 − 1)2 (5μ4

1 − 186μ2
1 + 1605)

One can show that the quasi-polynomials satisfy the following relations:

Gg,n+1(0, μ1, . . . μn) =
n∑

j=1

μj∑
k=1

k Gg,n(μ1, . . . , μn)|μj=k,

Gg,n+1(1, μ1, . . . , μn) =
n∑

j=1

μj∑
k=1

k Gg,n(μ1, . . . , μn)|μj=k

− 2g − 2 + n+ |μ|
2

Gg,n(μ1, . . . , μn).

A natural question is whether these quasi-polynomials Gg,n obtained from the
expansion of ωg

n around z1 = z2 = · · · = zn = 0 yield an interesting and useful
enumerative problem. In all calculated cases, the values of G0,n take on integral
values, which lends credence to the idea that there is an underlying enumerative
problem.
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6.1. Cycle Hurwitz problem. The following Hurwitz problem was introduced
and studied by Okounkov and Pandharipande [28]. Given {x1, . . . , xn} ⊂ CP1,
define

Cg,n(μ)=
{
f :Σ → CP1

∣∣∣∣∣ Σ a connected genus g Riemann surface; ramification

(μk, 1, . . . , 1) over xk; f unramified elsewhere

}
.

Now define the cycle Hurwitz numbers by the equation

Pg,n(μ1, . . . , μn) =
∑

f∈Cg,n(μ)

1

|Aut f | .

The Gromov–Witten invariants of CP1 compactify the cycle Hurwitz enumeration
by allowing stable domains, in the following precise sense.

Theorem 8 (Okounkov–Pandharipande [28]). The cycle Hurwitz number
Pg,n(μ1, . . . , μn) is precisely the contribution to the Gromov–Witten invariant∏n

i=1(μi − 1)!

〈∏n

i=1τμi−1(ω)

〉g

d

by stable maps with smooth domain curves.

Lemma 6.1. Let μ1, μ2, μ3 be positive integers that sum to an odd integer and
satisfy the triangle inequalities. Then P0,3(μ1, μ2, μ3) = G0,3(μ1, μ2, μ3) = 1.

Proof. We already know that G0,3(μ1, μ2, μ3) = 1 if and only if μ1, μ2, μ3 are posi-
tive integers that sum to an odd integer. So the point is to calculate P0,3(μ1, μ2, μ3)
with the added constraint that μ1, μ2, μ3 satisfy the triangle inequality.

One only obtains a non-trivial cycle Hurwitz problem if μ1 + μ2 + μ3 is odd,
since we require μ1+μ2+μ3 = 2d+1, where d is the degree of the branched cover.
Furthermore, we require μ1, μ2, μ3 ≤ d, from which one can deduce the triangle
inequalities. So let us assume henceforth that μ1, μ2, μ3 are positive integers that
sum to an odd integer and satisfy the triangle inequalities.

Denote by Cμ ⊂ Sd the conjugacy class in the symmetric group consisting of
all permutations with cycle structure (μ, 1, . . . , 1). The lemma is equivalent to the
statement
(6.3)

#{(σ1, σ2, σ3) | σi ∈ Cμi
and σ1σ2σ3 = id is a transitive factorisation} = d!.

To obtain the cycle Hurwitz number, we divide (6.3) by d!, which corresponds to
identifying equivalent products

(σ1, σ2, σ3) ∼ (gσ1g
−1, gσ2g

−1, gσ3g
−1), for g ∈ Sd.

These factorisations in turn correspond to isomorphic branched covers. Further-
more, if a product is fixed by conjugation, then this defines an automorphism of
the branched cover.

So it remains to prove equation (6.3). By the Riemann–Hurwitz formula, the
degree d of the cover satisfies μ1 + μ2 + μ3 = 2d + 1. As a preliminary example,
suppose that (μ1, μ2, μ3) = (d, d, 1), which describes the unique cover of CP1 with
two totally ramified points. It has automorphism group of size d, leading to a
contribution of 1

d . Equivalently, the number of transitive factorisations σ1σ2 = id
is (d − 1)!. However, an extra factor of d comes from the choice of the point
corresponding to σ3 = id. Equivalently, one can think of the third point making
the automorphism group trivial.
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More generally, identify σi with its cycle of length μi, and if μi = 1, identify
σi with one of the d 1-cycles (i). For the factorisation to be transitive and have
product equal to the identity, there must be exactly one number common to all
three cycles, which we suppose to be 1. Also suppose that σ1 is given by the cycle
(1, . . . , a) ∈ Sd. The numbers 2, 3, . . . , a appear in exactly one of σ2 and σ3 and
their location is uniquely determined. Also, σ2 and σ3 both contain the numbers
1, a + 1, a + 2, . . . , d, and the order of these numbers in σ2 determines their order
in σ3. Hence, the number of transitive factorisations that we are interested in is(

d

a

)
· (a− 1)! · a · (d− a)! = d!.

Here, the factor
(
d
a

)
chooses the elements of σ1, the factor (a−1)! chooses the cycle

σ1, the factor a chooses the number common to all three factors, and the factor
(d− a)! chooses the order of a+ 1, a+ 2, . . . , d in σ2. �

In general Gg,n(μ1, . . . , μn) �= Pg,n(μ1, . . . , μn), which can be seen from the cal-
culations G0,3(2d − 1, 1, 1) = 1 and P0,3(2d − 1, 1, 1) = 0 for d > 1. Nevertheless,
Lemma 6.1 suggests that Pg,n(μ1, . . . , μn) may equal Gg,n(μ1, . . . , μn) under cer-
tain conditions on (μ1, . . . , μn). More generally, Gg,n(μ1, . . . , μn) might be realised
as the solution to a generalised cycle Hurwitz problem that corresponds to allowing
certain stable curves for the domains of branched covers.

References

[1] Martin Aigner and Günter M. Ziegler, Proofs from The Book, 5th ed., Springer-Verlag, Berlin,
2014. MR3288091

[2] V. I. Arnol′d, Topological classification of complex trigonometric polynomials and the combi-
natorics of graphs with an identical number of vertices and edges (Russian, with Russian sum-
mary), Funktsional. Anal. i Prilozhen. 30 (1996), no. 1, 1–17, 96, DOI 10.1007/BF02383392;
English transl., Funct. Anal. Appl. 30 (1996), no. 1, 1–14. MR1387484

[3] D. Bessis, C. Itzykson, and J. B. Zuber, Quantum field theory techniques in graphical enu-
meration, Adv. in Appl. Math. 1 (1980), no. 2, 109–157, DOI 10.1016/0196-8858(80)90008-1.
MR603127
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