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PACKET STRUCTURE AND PARAMODULAR FORMS

RALF SCHMIDT

Abstract. We explore the consequences of the structure of the discrete auto-
morphic spectrum of the split orthogonal group SO(5) for holomorphic Siegel
modular forms of degree 2. In particular, the combination of the local and
global packet structure with the local paramodular newform theory for GSp(4)
leads to a strong multiplicity one theorem for paramodular cusp forms.

Introduction

As is well known, Siegel modular forms of degree n can be considered as vectors
in automorphic representations of the group GSp(2n,AQ). In many interesting
cases the representations involved will have trivial central character, hence descend
to representations of the group PGSp(2n,AQ). For n = 2, there is an exceptional
isomorphism of the algebraic group PGSp(4) with the split orthogonal group SO(5).
The latter is among the groups for which Arthur [2] has given a classification of the
discrete automorphic spectrum in terms of automorphic representations of general
linear groups. The assumptions made in [2] have recently been verified, mostly
thanks to the efforts of Moeglin and Waldspurger. In this work we explore the
consequences of the structure of the discrete automorphic spectrum of SO(5) for
Siegel modular forms of degree 2.

Let F be any number field and A its ring of adeles. Let G be any group for
which the theory of [2] applies; this includes all symplectic and split orthogonal
groups. According to [2], there is a certain set Ψ2(G) of parameters , which are
formal objects composed of cuspidal, automorphic data on general linear groups. To
each ψ ∈ Ψ2(G) is associated a packet Πψ of irreducible, admissible representations
π = ⊗πv of G(A). The packets are constructed by choosing the local representations
πv from finite, local packets Πψv

, for each place v. The global packets may be finite
or infinite, depending on whether finitely or infinitely many of the local packets
have more than one element. Arthur’s main result, Theorem 1.5.2 of [2], gives
a precise condition, and multiplicity, for any π = ⊗πv in a packet Πψ to occur
in the discrete automorphic spectrum L2

disc(G(F )\G(A)), and asserts that all of
L2
disc(G(F )\G(A)) is exhausted by such π.
From now on let G be the split orthogonal group SO(5). We identify representa-

tions of G(A) with representations of GSp(4,A) for which the center acts trivially.
The classification of [2] for the discrete automorphic spectrum of G(A) has been
extended to GSp(4,A), and made more explicit, in the work [1]. Whenever we refer
to [1], we will restrict ourselves to representations with trivial central character, for
which all results are unconditional.
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The parameters ψ ∈ Ψ2(G), and with them the corresponding packets Πψ and
the representations in these packets, fall naturally into six classes. The simplest of
these is the class (F), which consists of finite-dimensional (in fact, one-dimensional)
representations. There are three classes (Q), (P) and (B) consisting mostly of CAP
representations (cuspidal associated to parabolics); their names come from the three
proper parabolic subgroups Q, P and B of G = SO(5). The representations in these
three classes are all non-tempered and non-generic. We further have the Yoshida
class (Y), consisting of conjecturally tempered representations. The representa-
tions in this class are characterized by their L-functions being the product of two
L-functions of cuspidal, automorphic representations of GL(2,A). Finally, there
is the “general” class (G), which contains all the remaining representations. The
representations in this class are characterized by admitting a functorial transfer
to a cuspidal, automorphic representation on GL(4,A). In Table 2 below we will
give a characterization of the six classes in terms of the analytic properties of their
associated degree 4 (spin) and 5 (standard) L-functions.

The Siegel modular forms we will consider are all holomorphic and vector-valued.
Let Sk,j(Γ) be the space of cuspidal Siegel modular forms of weight detk symj

with respect to the congruence subgroup Γ. As explained in [22], such modular
forms originate as vectors in cuspidal, automorphic representations π = ⊗πp of
G(AQ) with a certain archimedean component π∞. An eigenform F ∈ Sk,j(Γ)
(with respect to almost all good Hecke operators) will in fact determine a unique
parameter ψ ∈ Ψ2(G). We can hence talk about F being of type (G), (Y), (Q),
(P) or (B) (the type (F) cannot occur). One can tell from a single Euler factor
at a good place whether F is of one of the (conjecturally) tempered types (G) or
(Y), as opposed to one of the CAP types; see Proposition 2.1. Since it is easy to
distinguish between the tempered and non-tempered types, our approach in this
work is to prove results about eigenforms of types (G) or (Y); a more detailed
investigation of modular forms that can be found inside the CAP classes will be
part of a future work.

One immediate consequence of the parametrization of discrete automorphic forms
on G(A) by cuspidal data on general linear groups is that the analytic properties
of the spin and standard L-functions are known. This has been a problem for
holomorphic Siegel modular forms, since the non-generic nature of the underlying
archimedean representation prevents the direct application of standard techniques
in automorphic forms. As a consequence of Arthur’s work, we can now say that
the partial spin L-function of any eigenform F in Sk,j(Γ) of type (G) or (Y) can
always be completed to a “nice” L-function; see Proposition 2.4 for details. Note
that this does not solve the problem of determining the Euler factors at the bad
places, given a specific F . For paramodular forms we will come back to this problem
in Section 2.3.

The paramodular group of level N is defined as

(0.1) K(N) = Sp(4,Q) ∩
[

Z NZ Z Z

Z Z Z N−1Z
Z NZ Z Z

NZ NZ NZ Z

]
.

Siegel modular forms with respect to K(N) have received much attention in recent
years because of their appearance in what has become known as the paramodular
conjecture; see [3], [17]. There is also a local theory of paramodular fixed vectors,
developed in [19], with properties similar to the familiar local newform theory
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for GL(2). As explained in [18], this local theory results in a global theory of
paramodular oldforms and newforms, which we briefly recall in Section 2.2.

In Lemma 2.5 we will prove the important fact that a paramodular eigen-
cuspform cannot be of type (Y). The key here is Theorem 1.1, which connects the
structure of the local non-archimedean packets Πψv

with the existence of paramod-
ular vectors. More precisely, it states that if ψ is of type (G) or (Y), then Πψv

contains a unique paramodular representation, and it coincides with the unique
generic representation. This is closely related to Theorem 7.5.8 of [19], which says
that a tempered representation is paramodular if and only if it is generic. Hence
a (holomorphic!) paramodular eigen-cuspform generates a representation π = ⊗πp

which is generic everywhere except at the archimedean place. Such π violate a sign
condition imposed on representations of type (Y).

We may therefore concentrate on paramodular eigenforms of type (G). Theo-
rem 2.6 is the expected strong multiplicity one result for paramodular newforms.
It follows from the combination of local multiplicity one (Theorem 7.5.1 of [19])
and global multiplicity one (Theorem 1.5.2 of [2]), and again Theorem 1.1 about
paramodularity in local packets. As a consequence, one can prove (Corollary 2.8)
multiplicity one for the spaces Sk(Sp(4,Z)), which to the best of our knowledge
was an open problem.

In the final Section 2.3 we turn to the problem of determining the Euler factors
at places p|N for a given newform F in Sk,j(K(N)) of type (G). If the local
component πp of the underlying automorphic representation would be known, one
could just look up this factor in Table A.8 of [19]. Typically though, only the
classical object F is given, maybe in terms of a number of Fourier coefficients,
and determining πp can be a difficult problem. It turns out that one can still
calculate the spin Euler factor Lp(s, F ) := L(s, πp) from F without knowing πp.
This is accomplished with the help of two paramodular Hecke operators, T0,1(p)
and T1,0(p). Every newform is automatically an eigenform for these two operators,
and the two resulting eigenvalues encode all the information one needs to write
down Lp(s, F ). In a local context, this has been observed in Sect. 7.5 of [19]. Here,
we rewrite T0,1(p) and T1,0(p) in a form in which they can be applied to classical
modular forms; see Proposition 2.10.

1. Packet structure

For any commutative ring R, let

GSp(4, R) = {g ∈ GL(4, R) | tgJg = μ(g)J, for some μ(g) ∈ R×}, J =
[

12
−12

]
.

The kernel of the multiplier homomorphism μ : GSp(4, R) → R× is the group
Sp(4, R). The split orthogonal group SO(n) is defined by

SO(n,R) = {g ∈ SL(n,R) | tgJg = J}, J =

[
1

. .
.

1

]
.

There is an isomorphism of algebraic groups PGSp(4) ∼= SO(5). For an explicit
realization of this isomorphism in characteristic zero, see Appendix A.7 of [19].

Let B, P , Q be the Borel subgroup, the Siegel parabolic subgroup and the
Klingen parabolic subgroup of GSp(4), respectively, defined as the matrices of
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the following shapes:

(1.1) B =

[ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗

]
, P =

[ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

]
, Q =

[ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗

]
.

We denote the images of P , B, Q under the map GSp(4) → SO(5) by the same
letters.

1.1. Global parameters. Let A be the ring of adeles of an algebraic number
field F . Let G be one of the groups for which the classification theorems of [2]
apply; among such are the symplectic groups Sp(2n) and the split orthogonal groups
SO(n). The central result of [2], Theorem 1.5.2, takes the form

(1.2) L2
disc(G(F )\G(A)) ∼=

⊕
ψ∈Ψ2(G)

⊕
{π∈Πψ : 〈·,π〉=εψ}

mψπ.

Here, ψ runs through certain Arthur parameters , which are formal objects com-
posed of cuspidal data on general linear groups; Πψ is a global Arthur packet ,
consisting of certain equivalence classes of global representations of G(A) deter-
mined by the parameter ψ; the quantities εψ and 〈·, π〉 are characters of a central-
izer group Sψ

∼= (Z/2Z)t; and mψ is a multiplicity which can only take the values
1 or 2.

Assume from now on that G = SO(5). In this case the multiplicities mψ are all
1 and the groups Sψ have at most two elements. The characters εψ and 〈·, π〉 will
be explained in Section 1.3. The set Ψ2(G) consists of formal expressions

ψ = (μ1 � ν1) � . . .� (μr � νr),

where μi is a self-dual, unitary, cuspidal automorphic representation of GL(mi,A),
and νi is the irreducible representation of SL(2,C) of dimension ni. The following
conditions need to be satisfied:

i)
∑r

i=1 mini = 4.
ii) μi � νi 	= μj � νj for i 	= j.
iii) If ni is odd (resp. even), then μi is symplectic (resp. orthogonal), i.e.,

the exterior (resp. symmetric) square L-function L(s, μi,Λ
2) (resp.

L(s, μi, sym
2)) has a pole at s = 1.

For GL(2) and GL(4), there are alternative characterizations of symplectic and
orthogonal cuspidal automorphic representations, as explained in Sect. 4 of [1].
The above conditions lead to six different types of parameters:

(G) ψ = μ�1, where μ is a self-dual, symplectic, unitary, cuspidal automorphic
representation of GL(4,A). This is the general type of Arthur parameter.

(Y) ψ = (μ1�1) � (μ2�1), where μ1 and μ2 are distinct, unitary, cuspidal au-
tomorphic representations of GL(2,A) with trivial central character. These
parameters are said to be of Yoshida type.

(Q) ψ = μ�ν(2), where ν(2) is the two-dimensional irreducible representation of
SL(2,C), and μ is a self-dual, unitary, cuspidal automorphic representation
of GL(2,A) with non-trivial central character. These parameters are said
to be of Soudry type .

(P) ψ = (μ� 1) � (χ� ν(2)), where μ is a unitary, cuspidal automorphic rep-
resentation of GL(2,A) with trivial central character, and χ is a quadratic
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Hecke character1. These parameters are said to be of Saito-Kurokawa
type.

(B) ψ = (χ1 � ν(2)) � (χ2 � ν(2)), where χ1, χ2 are distinct, quadratic Hecke
characters. These parameters are said to be of Howe–Piatetski-Shapiro
type.

(F) ψ = χ� ν(4), where ν(4) is the four-dimensional irreducible representation
of SL(2,C), and χ is a quadratic Hecke character.

The parameters (Q), (P) and (B) get their names from the parabolic subgroups Q,
P and B. The cusp forms in the Arthur packet corresponding to a parameter in (Q)
are CAP (cuspidal associated to parabolics) with respect to the Klingen parabolic
subgroup Q; similarly for (P) and (B). The parameters of type (F) correspond to
one-dimensional representations.

Each parameter ψ comes with a group Lψ and a homomorphism ψ̃ : Lψ ×
SL(2,C) → Sp(4,C); see (1.4.4) and (1.4.5) of [2]. In general the groups Lψ are
extensions of the absolute Galois group ΓF by a complex reductive group, but in
our case we can neglect the Galois part. We will describe Lψ and ψ̃ for each of the
six types of parameters above. They depend only on the type of parameter.

For parameters of type (G), we have Lψ = Sp(4,C). The map ψ̃ : Lψ ×
SL(2,C) → Sp(4,C) is the projection onto the first component. For parameters of

type (Y), we have Lψ = SL(2,C)×SL(2,C). The map ψ̃ : Lψ×SL(2,C) → Sp(4,C)
is trivial on the second factor, and is given by

(1.3) (
[
a b
c d

]
,
[
a′ b′

c′ d′

]
) 
−→

[
a b

a′ b′

c d
c′ d′

]
on Lψ. For parameters of type (Q), we have

Lψ = O(2,C) = {g ∈ GL(2,C) | tg [ 1
1 ] g = [ 1

1 ]}.
The identity component of O(2,C) consists of all matrices [ x x−1 ] with x ∈ C×,

and the non-identity component is represented by [ 1
1 ]. The homomorphism ψ̃ :

O(2,C)× SL(2,C) −→ Sp(4,C) maps

(1.4) ([ x x−1 ], 1) 
−→
[ x

x−1

x−1

x

]
, ([ 1

1 ], 1) 
−→
[

1
1

1
1

]
,

and

(1.5) (1,
[
a b
c d

]
) 
−→

[
a b

a b
c d

c d

]
.

For parameters of type (P), we have Lψ = SL(2,C) × {±1}, and the map ψ̃ :
SL(2,C)× {±1} × SL(2,C) → Sp(4,C) is given by

(1.6) (
[
a b
c d

]
,±1, 1) 
−→

[
a b

±1
c d

±1

]
, (1, 1,

[
a b
c d

]
) 
−→

[
1
a b

1
c d

]
.

For parameters of type (B), we have Lψ = {±1} × {±1}, and ψ̃ : {±1} × {±1} ×
SL(2,C) → Sp(4,C) maps

(1.7) (x, y, 1) 
→
[ x

y
x

y

]
, (1, 1,

[
a b
c d

]
) 
→

[
a b

a b
c d

c d

]
.

1Meaning χ is a character of F×\A× satisfying χ2 = 1.
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For parameters of type (F), we have Lψ = {±1}. The map ψ̃ : {±1} × SL(2,C) →
Sp(4,C) identifies {±1} with the center of Sp(4,C). Its restriction to SL(2,C)
is given by the four-dimensional irreducible representation of this group (in some
realization that takes values in Sp(4,C)).

In each case, let Sψ be the centralizer of the image of ψ̃ and S0
ψ its identity

component. The group Sψ = Sψ/S
0
ψZ, where Z ∼= {±1} is the center of Sp(4,C),

has either one or two elements. Easy verifications show that Sψ = 1 for types
(G), (Q), (F), and Sψ

∼= Z/2Z for types (Y), (P), (B). In the latter cases, the
non-trivial element of Sψ is represented by diag(−1, 1,−1, 1).

1.2. Local parameters. Let ψ be one of the global parameters of the previous
section. We shall describe how to localize ψ to a family of local parameters

(1.8) ψv : LFv
× SU(2) −→ Sp(4,C),

for each place v of F . Here, LFv
is the Weil group WFv

if v is archimedean, and
the Weil-Deligne group WFv

× SU(2) if v is non-archimedean. The localizations fit
into a commutative diagram:

(1.9) LFv
× SU(2)

ψv ��

φv×id

��

Sp(4,C)

∼ id

��

Lψ × SL(2,C)
ψ̃

�� Sp(4,C)

We will define ψv by defining the left vertical map φv. The general procedure is
explained after Theorem 1.4.2 of [2]; we will describe it in our simplified situation.
Essentially, φv is the Langlands parameter of the local component at v of the GL(n)
data in the parameter ψ.

Let ψ = μ�1 be a parameter of type (G). Recall that μ is a self-dual, symplectic,
unitary, cuspidal automorphic representation of GL(4,A). We factor μ = ⊗μv,
where μv is an irreducible, admissible representation of the local group GL(4, Fv).
Let

φv : LFv
−→ GL(4,C)

be the parameter of μv attached to it by the local Langlands correspondence, deter-
mined up to conjugation. Since μ is symplectic, Theorem 1.4.2 of [2] asserts that,
after a suitable conjugation, the image of φv is contained in Sp(4,C). This is the
map φv in (1.9). Observe that the resulting ψv is trivial on the factor SU(2).

We similarly localize parameters ψ = (μ1�1)� (μ2�1) of type (Y). Recall that
μ1 and μ2 are distinct, unitary, cuspidal automorphic representations of GL(2,A)
with trivial central character. Each μi gives rise to local parameters φi,v : LFv

→
GL(2,C). Since μi has trivial central character, the image of φi,v lies in SL(2,C).
We combine φ1,v and φ2,v to a map φv from LFv

into Lψ = SL(2,C) × SL(2,C).
Again, the resulting ψv is trivial on the factor SU(2).

Next consider ψ = μ � ν(2), a parameter of type (Q), where μ is a self-dual,
unitary, cuspidal automorphic representation of GL(2,A) with non-trivial central
character ωμ. Since ωμ is non-trivial and quadratic, it determines a quadratic
extension E of F . We have μ = μ⊗ ωμ because μ is self-dual. It follows that there
exists a character θ of A×

E , not Galois-invariant, such that μ is obtained from θ by
automorphic induction. It is then not difficult to see that the L-parameter φv of each
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local representation μv, after a suitable conjugation, takes values in Lψ = O(2,C).
This defines the map φv in the diagram (1.9), and thus the localization ψv.

Recall that parameters of type (P) are of the form ψ = (μ � 1) � (χ � ν(2)),
where μ is a unitary, cuspidal automorphic representation of GL(2,A) with trivial
central character, and χ is a quadratic Hecke character. The local components of μ
give rise to L-parameters φ1,v taking values in SL(2,C), and the local components
of χ give rise to L-parameters φ2,v taking values in {±1}. We thus obtain the map
φv = φ1,v × φ2,v from LFv

into Lψ = SL(2,C)× {±1}.
It is now obvious how to define φv for a parameter ψ = (χ1�ν(2)) � (χ2�ν(2))

of type (B), where χ1, χ2 are distinct, quadratic Hecke characters. Each χi gives
rise to local parameters φi,v, and we combine them to a map φv = φ1,v × φ2,v from
LFv

into Lψ = {±1} × {±1}.
Finally, for a parameter ψ = χ� ν(4) of type (F), where χ is a quadratic Hecke

character, we let φv be the L-parameter of the local character χv. It takes values
in {±1} = Lψ.

Local packets, centralizers and characters. For a global ψ ∈ Ψ2(G), recall the cen-
tralizer groups Sψ = Sψ/S

0
ψZ, which have either one or two elements. For each

localization ψv we make an analogous definition. Let Sψv
be the centralizer of

the image of ψv in Sp(4,C), and S0
ψv

its identity component. We define the local
centralizer group to be

(1.10) Sψv
= Sψv

/S0
ψv

Z,

where Z is the center of Sp(4,C). It is obvious from (1.9) that Sψ ⊂ Sψv
. It follows

that there is a natural map Sψ → Sψv
.

The theory of [2] attaches to each ψv a finite packet of admissible representations
Πψv

of G(Fv); see Theorem 1.5.1 of [2] and the remarks following it. It is expected,
but not known in general, that the elements of Πψv

are irreducible and unitary.
The packets Πψv

come with a canonical mapping

(1.11) πv 
−→ 〈·, πv〉, πv ∈ Πψv
,

into the group of characters Ŝψv
of the centralizer group Sψv

. If πv is unramified,
then 〈·, πv〉 = 1. If ψv is trivial on SU(2) and has bounded image, i.e., a tempered

L-parameter, then the map Πψv
→ Ŝψv

is injective; see Theorem 1.5.1 of [2].
As an archimedean example, consider a discrete series parameter, or a limit of

discrete series parameter, as in Sects. 1.2, 1.3 of [22]. Then Πψv
consists of two

elements, a holomorphic (limit of) discrete series representation πhol, and a large,
or generic, (limit of) discrete series representation πgen. The centralizer group has

two elements, so that the map Πψv
→ Ŝψv

is a bijection. By Proposition 8.3.2 of

[2], the generic representation is assigned the trivial character of Ŝψv
. Thus

(1.12) 〈·, πgen〉 = 1, 〈·, πhol〉 = −1,

where we wrote −1 for the non-trivial character of Ŝψv
.

Local packets for types (G) and (Y). Assume that ψ ∈ Ψ2(G) is a global parameter
of type (G) or (Y). Let v be a place of F , and consider the localization ψv. Then
ψv is trivial on the factor SU(2). We may thus think of ψv as a “traditional”
L-parameter LFv

→ Sp(4,C). The representations in Πψv
are irreducible and

unitary by the remarks after Conjecture 8.3.1 of [2]. If v is archimedean, then the
packets Πψv

defined in [2] coincide with the packets defined by the local Langlands
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correspondence. For our group G = SO(5), the same statement is true for non-
archimedean v as well; this follows from the results of [4]. In general, it is not
known whether the packets of [2], which are characterized by endoscopic character
identities, satisfy the desiderata of the local Langlands correspondence; see the
remarks made on pages 43 and 44 of [2].

If v is non-archimedean, we say that an irreducible, admissible representation of
G(Fv), viewed as a representation of GSp(4, Fv) with trivial central character, is
paramodular , if it admits a non-zero vector fixed by the paramodular group

(1.13) K(pn) := {g ∈ GSp(4, Fv) | μ(g) ∈ o×} ∩
[

o p
n

o o

o o o p
−n

o p
n

o o

p
n

p
n

p
n

o

]
for some n ≥ 0; here o is the ring of integers of Fv, and p is the maximal ideal of o.
The following result is key in connecting paramodular cusp forms with the packet
structure on the group G(A).

Theorem 1.1. Let ψ ∈ Ψ2(G) be of type (G) or (Y). For a place v of F , let Πψv

be the associated local packet.

i) The packet Πψv
contains a unique generic representation πgen

ψv
. It has the

property that the character 〈·, πgen
ψv

〉 of Sψv
is trivial.

ii) Assume that v is non-archimedean. Then the packet Πψv
contains a unique

paramodular representation. It coincides with the unique generic represen-
tation πgen

ψv
from i).

Proof. i) follows from Proposition 8.3.2 of [2] and the Remark 2 following it. For
ii) recall from Theorem 7.5.4 of [19] that generic representations are paramodular.
Hence Πψv

contains at least one paramodular representation, namely πgen
ψv

. We have
to show that there are no other paramodular representations in Πψv

. If Πψv
consists

entirely of supercuspidal representations, this follows from the fact that non-generic
supercuspidals are not paramodular; see Theorem 3.4.3 of [19]. Assume that Πψv

contains at least one non-supercuspidal representation. Then, by the requirements
of the local Langlands correspondence, Πψv

must be one of the L-packets exhibited
in Sect. 2.4 of [19] and summarized in Appendix A; it is here that we are using the
fact that the packets of [2] coincide with the packets of [9], and thus with those of
[19] in the non-supercuspidal cases. We may assume that Πψv

has more than one
element, since otherwise we have nothing to prove. There are exactly four types of
L-packets with more than one element, namely

{VIa,VIb}, {VIIIa,VIIIb}, {Va,Va∗}, {XIa,XIa∗}.
Observe that VIa, VIIIa, Va and XIa are the generic members of the packet. The
representations Va∗ and XIa∗ are certain supercuspidals; all we need to know about
them is that they are not generic, which follows from the uniqueness statement
in i). By Theorem 3.4.3 of [19], the non-generic member in each packet is not
paramodular. This concludes the proof. �

Local packets for types (Q), (P), (B) and (F). Now assume that ψ ∈ Ψ2(G) is
not of type (G) or (Y). Theorem 1.5.1 of [2], or rather a slight variation of it as
explained on p. 45 of [2], attaches a finite packet Πψv

of admissible representations
to each localization ψv. In general it is not known whether these representations are
irreducible or unitary, and we will not use these assumptions. There is, however,
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always one irreducible representation contained in Πψv
, which is obtained as follows.

Define φψv
: LFv

→ Sp(4,C) by

(1.14) φψv
(w) = ψv(w,

[
|w|1/2

|w|−1/2

]
)

(where ψv has been extended to a map on LFv
× SL(2,C)). Then φψv

is a Lang-
lands parameter whose image is contained in a proper Levi subgroup. Therefore
the irreducible, admissible representation πψv

corrresponding to φψv
via the local

Langlands correspondence for GSp(4) is easily identified; one can use [9], or even
the explicit description in Sect. 2.4 of [19]. This πψv

is an element of the packet
Πψv

(see Proposition 7.4.1 of [2]).
We will describe πψv

more explicitly. Assume that ψ = μ� ν(2) is of type (Q).
Let μ = ⊗μv, and let φv : LFv

→ O(2,C) be the Langlands parameter of μv. It
follows from (1.4), (1.5) and (1.9) that

(1.15) φψv
(w) =

[
|w|1/2φv(w)

|w|−1/2 tφv(w)−1

]
.

Taking duality for GSp(4) into account, as in (2.40) of [19], we see that πψv
is the

Langlands quotient of the Klingen induced representation

(1.16) | · |v ωμv
� | · |−1/2

v μv,

where ωμv
is the central character of μv. If μv is unramified, then πψv

is either of
type IIIb, Vd or VId in the classification of [19].

Next assume that ψ = (μ � 1) � (χ � ν(2)) is of type (P). Let μ = ⊗μv and

w 
→
[
a(w) b(w)
c(w) d(w)

]
be the Langlands parameter of μv. Let χ = ⊗χv, and identify χv

with a character LFv
→ {±1}. It follows from (1.6) and (1.9) that

(1.17) φψv
(w) =

⎡⎣ a(w) b(w)

χv(w)|w|1/2
c(w) d(w)

χv(w)|w|−1/2

⎤⎦ .

Again taking duality into account, as in (2.46) of [19], we see that πψv
is the

Langlands quotient of the Siegel induced representation

(1.18) χv| · |1/2v μv � χv| · |−1/2
v .

If μv is unramified, then πψv
is a representation of type IIb in the classification of

[19].
Now assume that ψ = (χ1 � ν(2)) � (χ2 � ν(2)) is of type (B). We factor

χi = ⊗χi,v and identify χi,v with a character LFv
→ {±1}. By (1.7) and (1.9),

φψv
(w) =

⎡⎣ χ1,v(w)|w|1/2

χ2,v(w)|w|1/2

χ1,v(w)|w|−1/2

χ2,v(w)|w|−1/2

⎤⎦ .(1.19)
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It follows, similarly to (2.28) of [19], that πψv
is the Langlands quotient of the Borel

induced representation

(1.20) χ1,vχ2,v| · |v × χ1,vχ2,v � χ2,v| · |−1/2
v .

If χ1,v and χ2,v are unramified, πψv
is either of type Vd or VId in the classification

of [19].
Finally, assume that ψ = χ � ν(4) is of type (F). We factor χ and identify the

local components χv with maps LFv
→ {±1}. In this case

(1.21) φψv
(w) =

⎡⎣ χv(w)|w|1/2

χv(w)|w|3/2

χv(w)|w|−1/2

χv(w)|w|−3/2

⎤⎦ .

We have πψv
= χv1GSp(4), a one-dimensional representation. It is of type IVd in

the classification of [19].

1.3. Global packets and L-functions. Let ψ ∈ Ψ2(G) be a global parameter. In
the previous section we defined localizations ψv : LFv

× SU(2) → Sp(4,C), for each
place v. To each ψv there is associated a packet Πψv

of admissible representations
of G(Fv). We now define the global packet associated to ψ as

(1.22) Πψ =
{
π = ⊗πv | πv ∈ Πψv

for all v
}
.

Each π ∈ Πψ defines a character of Sψ by

(1.23) 〈x, π〉 =
∏
v

〈xv, πv〉.

Here, x 
→ xv denotes the natural map Sψ → Sψv
. The characters (1.23) are the

ones appearing in (1.2). Of course, in cases (G), (Q), (F), where Sψ = 1, we have
〈·, π〉 = 1 for any π.

The only ingredient of (1.2) that has not been explained yet are the characters εψ.
They are given in [1], and we simply copy the result: They are always trivial, except
for parameters ψ = (μ� 1) � (χ� ν(2)) of type (P) for which ε(1/2, χ⊗μ) = −1,
in which case εψ is non-trivial. Writing −1 for the unique non-trivial character
of Sψ

∼= Z/2Z, we thus have εψ = ε(1/2, χ ⊗ μ). Arthur’s main result (1.2) for
G = SO(5) now takes the following form:

L2
disc(G(F )\G(A)) ∼=

⊕
ψ∈(G)

⊕
π∈Πψ

π(1.24)

⊕
⊕

ψ∈(Y)

⊕
{π∈Πψ : 〈·,π〉=1}

π(1.25)

⊕
⊕

ψ∈(Q)

⊕
π∈Πψ

π(1.26)
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⊕
⊕

ψ∈(P)
ψ=(μ�1) � (χ�ν(2))

⊕
{π∈Πψ : 〈·,π〉=ε(1/2,χ⊗μ)}

π(1.27)

⊕
⊕

ψ∈(B)

⊕
{π∈Πψ : 〈·,π〉=1}

π(1.28)

⊕
⊕

ψ∈(F)
ψ=χ�ν(4)

χ.(1.29)

We see that the global packets of type (G), (Q) and (F) are stable, meaning
we can choose representations from the local packets arbitrarily. Global packets of
type (Y), (P) and (B) are unstable; if π = ⊗πv is in such a packet, then the πv

have to satisfy a parity condition in order for π to appear in the discrete spectrum.
For n ∈ {1, 4, 5}, let ρn be the irreducible n-dimensional representation of

Sp(4,C). Of course, ρ1 is the trivial representation, and ρ4 is given by the natural
action on column vectors of length 4. An explicit form of ρ5 is given in Appendix
A.7 of [19]; it can be realized as a map Sp(4,C) → SO(5,C). Note that

(1.30) Λ2ρ4 = ρ1 ⊕ ρ5.

Suppose that ψ is a parameter of type (G) or (Y). If π = ⊗πv is any representation
in the packet defined by ψ, we define the spin L-function of π by

(1.31) L(s, π, ρ4) :=
∏
v

L(s, ψv),

where the product extends over all places, and ψv : LFv
→ Sp(4,C) is the localiza-

tion of ψ. We further set

(1.32) L(s, π, ρ5) :=
∏
v

L(s, ρ5 ◦ ψv),

which is called the standard L-function of π.
Recall that an L-function is called nice if it has analytic continuation to an

entire function, satisfies the expected functional equation, and is bounded in vertical
strips.

Lemma 1.2. Let π be a representation in a packet of type (G). Then the L-
functions L(s, π, ρ4) and L(s, π, ρ5) are nice.

Proof. This is clear for L(s, π, ρ4), since it coincides with the standard L-function
L(s, μ) of the cuspidal, automorphic representation μ on GL(4,A) appearing in the
parameter ψ of π. It follows from Theorem A of [14] (see also [12]) that

L(s, π,Λ2) = L(s, μ,Λ2) =
m∏
i=1

L(s, τi)

for cuspidal, automorphic representations τi of GL(ni,A). Since L(s, μ,Λ2) has a
simple pole at s = 1, exactly one τi, say τm, is the trivial representation of GL(1,A).
In view of (1.30), it follows that

(1.33) L(s, π, ρ5) =
m−1∏
i=1

L(s, τi).

Hence L(s, π, ρ5) is nice. �
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Lemma 1.3. Let π be a representation in a packet of type (Y). Then L(s, π, ρ4)
is nice, while L(s, π, ρ5) has a simple pole at s = 1.

Proof. The parameter of π is of the form ψ = (μ1 � 1) � (μ2 � 1) with distinct,
cuspidal, automorphic representations μi of GL(2,A). It follows from (1.3) and
(1.9) that L(s, π, ρ4) = L(s, μ1)L(s, μ2). In particular, this L-function is nice. A
straightforward calculation shows that

(1.34) L(s, π, ρ5) = L(s, μ1 × μ2)ZF (s),

where ZF (s) denotes the L-function of the trivial representation of GL(1,A) (i.e.,
the Dedekind zeta function of the number field F ). Since μ1 and μ2 are self-dual
and distinct, the Rankin-Selberg L-function L(s, μ1×μ2) is entire. Hence L(s, π, ρ5)
has a simple pole at s = 1. �

The L-functions for representations π in a packet Πψ of type (Q), (P), (B)
or (F) will not only depend on ψ, but on the individual element π in the packet
(provided there is more than one element in the packet). A “base point” in each
global packet is

(1.35) πψ := ⊗πψv
,

where πψv
is the representation with L-parameter φψv

, defined in (1.14). We set

(1.36) L(s, πψ, ρn) :=
∏
v

L(s, ρn ◦ φψv
),

for n ∈ {4, 5}. In the rest of this section we present two tables listing these L-
functions and their analytic properties.

Table 1 shows L(s, πψ, ρn) for all types other than (G), disregarding the question
of whether πψ occurs in the discrete spectrum or not. The L-functions L(s, πψ, ρ4)
are immediate from (1.15), (1.17), (1.19) and (1.21), while the L(s, πψ, ρ5) are easily
calculated, for example, by using the explicit form of the map ρ5 given in A.7 of
[19]. For any other π in Πψ, the functions L(s, π, ρn) differ from the ones given in
Table 1 only by finitely many Euler factors.

The degree 5 L-function for type (Q) appearing in Table 1 contains the adjoint
L-function L(s, μ,Ad), which is defined by L(s, μ,Ad)ZF (s) = L(s, μ × μ∨). It
follows from the calculation on page 488 of [10] that

(1.37) L(s, μ,Ad) = L(s, ωμ)L(s, θ/θ
′),

where ωμ is the central character of μ, and θ is the Hecke character for the quadratic
extension E (determined by ωμ) such that μ is obtained from θ by automorphic
induction. The character θ′ is the Galois conjugate of θ, and L(s, θ/θ′) is the L-
function of the Hecke character θ/θ′ over E (hence an L-function of degree 2 over
F ).

Table 2 summarizes the analytic properties of the L-functions in Table 1. In this
table, the twist of an L-function L(s, π) =

∏
L(s, πv) by a Hecke character χ is to

be understood as follows: At each good place v, factor L(s, πv) =
∏

i L(s, ηi) with
unramified characters ηi, replace L(s, ηi) by L(s, χvηi) to obtain new local factors
L(s, πv, χv), and then take the product of these factors over unramified places only.
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Table 1. The L-functions L(s, πψ, ρ4) and L(s, πψ, ρ5) for the
representation πψ in packets parametrized by GL(2) and GL(1)
data. For type (Q), the symbol ωμ denotes the central char-
acter of μ, and L(s, μ,Ad) is the adjoint L-function, defined by
L(s, μ,Ad)ZF (s) = L(s, μ× μ∨).

type ψ L(s, πψ, ρ4) L(s, πψ, ρ5)

(Y) (μ1�1) � (μ2�1) L(s,μ1)L(s,μ2) L(s,μ1×μ2)ZF (s)

(Q) μ�ν(2) L(s+ 1
2 ,μ)L(s− 1

2 ,μ) L(s+1,ωμ)L(s−1,ωμ)L(s,μ,Ad)

(P) (μ�1) � (χ�ν(2)) L(s,μ)L(s+ 1
2 ,χ)L(s− 1

2 ,χ) L(s+ 1
2 ,χμ)L(s− 1

2 ,χμ)ZF (s)

(B) (χ1�ν(2)) � (χ2�ν(2)) L(s+ 1
2 ,χ1)L(s− 1

2 ,χ1) L(s+1,χ1χ2)L(s−1,χ1χ2)

L(s+ 1
2 ,χ2)L(s− 1

2 ,χ2) L(s,χ1χ2)
2ZF (s)

(F) χ�ν(4) L(s+ 3
2 ,χ)L(s+ 1

2 ,χ) ZF (s+2)ZF (s+1)ZF (s)

L(s− 1
2 ,χ)L(s− 3

2 ,χ) ZF (s−1)ZF (s−2)

Table 2. Analytic properties of L(s, πψ, ρ4) and L(s, πψ, ρ5).

type ψ L(s, πψ, ρ4) L(s, πψ, ρ5)

(G) μ� 1 nice nice

(Y) (μ1 � 1) � (μ2 � 1) nice pole at s = 1

(Q) μ� ν(2) nice pole at s ∈ {1, 2}
after twist by ωμ

(P) (μ� 1) pole at s = 3
2 L( 12 , χμ) = 0: nice

� (χ� ν(2)) after twist by χ L( 12 , χμ) 	= 0: pole at s = 1

(B) (χ1 � ν(2)) pole at s = 3
2 pole at s ∈ {1, 2}

� (χ2 � ν(2)) after twist by χ1 or χ2 after twist by χ1χ2

(F) χ� ν(4) pole at s ∈ { 3
2 ,

5
2} pole at s ∈ {1, 2, 3}

after twist by χ
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2. Siegel modular forms

In this section we work exclusively over the number field Q. Let A be its ring of
adeles. In Section 2.1 we briefly explain our conventions on Siegel modular forms.
We exploit the fact that Siegel modular forms can be understood as special vectors
in automorphic representations of the group GSp(4,A). For more details on the
relationship between modular forms and representations, see [22] and [16].

All L-functions attached to either automorphic representations or Siegel mod-
ular forms are given in analytic normalization, meaning they satisfy a functional
equation relating s and 1− s.

2.1. Modular forms and parameters. By a congruence subgroup Γ of Sp(4,Q)
we mean a group of the form

Γ = GSp(4,Q) ∩GSp(4,R)+
∏
p<∞

Kp,

where Kp is an open-compact subgroup of GSp(4,Qp) containing diag(a, a, b, b)
with a, b ∈ Z×

p , and Kp = GSp(4,Zp) for almost all p. The good primes for Γ are
those p for which Kp = GSp(4,Zp).

Let GSp(4,R)+ be the subgroup of GSp(4,R) consisting of elements g for which
the multiplier μ(g) is positive. Let H2 be the Siegel upper half-space of degree 2, i.e.,
the space of all symmetric complex 2×2-matrices Z whose imaginary part is positive
definite. For g = [A B

C D ] ∈ GSp(4,R)+ and Z ∈ H2, let gZ = (AZ +B)(CZ +D)−1

and J(g, Z) = CZ +D.
Let k be an integer, and let j be a non-negative integer. Let Uj � symj(C2) be

the space of all complex homogeneous polynomials of degree j in the two vari-
ables S and T . For g ∈ GL(2,C) and P (S, T ) ∈ Uj define ηk,j(g)P (S, T ) =
det(g)kP ((S, T )g). Then (ηk,j , Uj) gives a concrete realization of the irreducible

representation detk symj of GL(2,C). We define a right action of GSp(4,R)+ on
the space of Uj-valued functions on H2 by
(2.1)

(F
∣∣
k,j

g)(Z) = μ(g)k+
j
2 ηk,j(J(g, Z))−1F (gZ) for g ∈ GSp(4,R)+, Z ∈ H2.

The center of GSp(4,R)+ acts trivially. A Siegel modular form of weight

detk symj (or simply of weight (k, j)) with respect to the congruence subgroup
Γ is a holomorphic function F : H2 → Uj satisfying F |k,jγ = F for all γ ∈ Γ. In
this work we will only consider cusp forms, which can be defined as usual. Let
Sk,j(Γ) be the space of Siegel cusp forms of weight (k, j) with respect to Γ.

Let F ∈ Sk,j(Γ) be an eigenform , by which we mean that F is non-zero, and is
an eigenfunction for the local Hecke algebra Hp for almost all good primes p (for Γ).
As explained in [22], even though F is in general vector-valued, it can be adelized
to a scalar-valued function on GSp(4,A). Let π be the representation generated by
this adelization under right translation. Since F is a cusp form, π decomposes into
a direct sum

π = π1 ⊕ . . .⊕ πn

of irreducible, cuspidal, automorphic representations of G(A). The assumption that
F is an eigenform implies that the πi are all near-equivalent. Keeping in mind the
structure (1.24)–(1.29) and the strong multiplicity one theorem for GL(n), it follows
that there exists a parameter ψ ∈ Ψ2(G) such that πi ∈ Πψ for all i. We have thus
unambigously assigned a parameter ψ to each eigenform F ∈ Sk,j(Γ). We say that
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the type of F is the type of ψ. Hence, F can be of type (G), (Y), etc. Note that F
can never be of type (F), since one can prove that one-dimensional representations
do not occur in the cuspidal spectrum of GSp(4).

The space Sk,j(Γ) has a basis consisting of eigenforms. Let Sk,j(Γ)X be the
subspace spanned by eigenforms of type X, where X ∈ {(G), (Y), (Q), (P), (B)}.
Then Sk,j(Γ)X is well defined, and we have the type decomposition

(2.2) Sk,j(Γ) =
⊕

X∈{(G),(Y),(Q),(P),(B)}
Sk,j(Γ)X .

The space Sk,j(Γ)X is spanned by those eigenforms that can be found in cuspidal,
automorphic representations in packets Πψ, where ψ is of type X. The decompo-
sition (2.2) is orthogonal with respect to the Petersson inner product.

Given an eigenform F , it is desirable to have a practical way of determining
the type of F . If the partial L-functions LS(s, F, ρ4) and LS(s, F, ρ5) are known,
this determination can often be made using Table 2. The following result provides
alternative criteria using only a single Euler factor at a good place.

Proposition 2.1. Let (k, j) ∈ Z>0 × Z≥0. Let F ∈ Sk,j(Γ) be an eigenform. Let
p be a good prime for which F is an eigenform under the local Hecke algebra at p.
Let Qp(F ) =

∏4
j=1(1− αjX) be the degree 4 Hecke polynomial at p.

i) If |αj | = 1 for all j, then F is of type (G) or (Y).

ii) If |αj | = p±1/2 for all j, then F is of type (Q) or (B).

iii) If |αj | = 1 for exactly two j’s and |αj | = p±1/2 for the other two j’s, then
F is of type (P).

Proof. This follows from the shape of the Euler factors of the L-functions in Table
1, together with (weak) general estimates on Satake parameters. �

Remark 2.2. The proposition implies in particular that Gritsenko lifts (see [11]),
which are paramodular forms of type (P), can be detected using a single good
prime. A similar result for full level is given in Theorem 4.1 of [8].

Given any eigenform F ∈ Sk,j(Γ), we can always write down the incomplete
L-functions LS(s, F, ρn) for n ∈ {4, 5}, where S is a large enough set of places such
that any prime p /∈ S is good for Γ. The problem of determining the correct Euler
factors at the bad places directly from the cusp form F is in general unsolved. If Γ
is the paramodular group K(N) of some level, we will provide a method in Section
2.3. For arbitrary Γ, we at least have the existence and uniqueness statement
Proposition 2.4 below.

Lemma 2.3. Let (k, j) ∈ Z>0×Z≥0. Let F ∈ Sk,j(Γ) be an eigenform of type (G)
or (Y). Then k ≥ 2.

Proof. The underlying archimedean representation of an eigenform F ∈ S1,j(Γ) is
one of the non-tempered lowest weight modules discussed in Sect. 1.4 of [22]. By
weak Ramanujan estimates for GL(2) and GL(4), such non-tempered archimedean
parameters cannot occur in packets of type (G) or (Y). �
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Proposition 2.4. Let (k, j) ∈ Z>0 × Z≥0. Let F ∈ Sk,j(Γ) be an eigenform. Let
S be a set of finite places such that for each prime p /∈ S, p is good for Γ and F is
an eigenform for the local Hecke algebra at p. Let

LS(s, F, ρ4) =
∏
p/∈S

Lp(s, F, ρ4), LS(s, F, ρ5) =
∏
p/∈S

Lp(s, F, ρ5)

be the resulting incomplete spin and standard L-functions of F .

i) If F is of type (G) or (Y), then there exist uniquely determined Euler
factors Lp(s, F, ρ4) for p ∈ S such that the completed L-function

L(s, F, ρ4) := ΓC

(
s+

2k + j − 3

2

)
ΓC

(
s+

j + 1

2

)( ∏
p∈S

Lp(s, F, ρ4)

)
LS(s, F, ρ4)

is nice.
ii) If F is of type (G), then there exist uniquely determined Euler factors

Lp(s, F, ρ5) for p ∈ S such that the completed L-function

L(s, F, ρ5) := ΓC(s+ k + j − 1)ΓC(s+ k − 2)ΓR(s)

( ∏
p∈S

Lp(s, F, ρ5)

)
LS(s, F, ρ5)

is nice.

Proof. i) By the nature of the parameters, LS(s, F, ρ4) is the partial L-function of a
cuspidal automorphic representation of GL(4,A) (in the (G) case), or the product
of two partial L-functions of cuspidal automorphic representations of GL(2,A) (in
the (Y) case). In either case we can complete LS(s, F, ρ4) to a nice L-function.
The Γ-factors follow from the archimedean local Langlands correspondence; see
Proposition 2.5.1 of [22]. The uniqueness statement is a general rigidity property
of L-functions; see Proposition 2.1 of [7].

ii) The proof is analogous to that of i), keeping in mind that LS(s, F, ρ5) is the
product of partial L-functions of cuspidal automorphic representations of certain
GL(n,A)’s; see (1.33). The archimedean Euler factor is again given by Proposition
2.5.1 of [22]; observe here that k ≥ 2 by Lemma 2.3 (the archimedean factor for
k = 1 is slightly different). �

2.2. Paramodular oldforms and newforms. For a positive integer N , let K(N)
be the paramodular group of level N , defined in (0.1). We consider the spaces
Sk,j(K(N)) of paramodular cusp forms of weight (k, j) ∈ Z>0×Z≥0. These spaces
admit a theory of oldforms and newforms, which we now describe. For proofs, see
[18].

Let p be any prime. At the heart of the theory are three level raising operators:

θp : Sk,j(K(N)) −→ Sk,j(K(Np)),(2.3)

θ′p : Sk,j(K(N)) −→ Sk,j(K(Np)),(2.4)

ηp : Sk,j(K(N)) −→ Sk,j(K(Np2)).(2.5)

(They should really be called θN,p, etc., but we suppress N to ease the notation.)
These three operators commute with each other; operators for different primes
commute as well; and they commute with the local Hecke algebras at primes not
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dividing Np. Explicit formulas are as follows:

(2.6) θpF = F
∣∣
k,j

( [ p
p
1
1

] [
1

1
−1

1

] )
+

∑
c∈Z/pZ

F
∣∣
k,j

( [ p
p
1
1

] [
1
1

c 1
1

] )
,

(2.7) θ′pF = F
∣∣
k,j

[
1
p
1
p−1

]
+

∑
c∈Z/pZ

F
∣∣
k,j

[ 1
1 cp−1N−1

1
1

]
,

(2.8) ηpF := F
∣∣
k,j

[
1
p
1
p−1

]
.

Here θ′p is Atkin-Lehner conjugate to θp, while ηp commutes with Atkin-Lehner
involutions. All three operators are well-behaved with respect to Fourier-Jacobi
expansions. While it is obvious that ηp is injective, the same is also true of θp and
θ′p; see Theorem 6.2 of [18].

As in the classical Atkin-Lehner theory, we define the space Sold
k,j (K(N)) of old-

forms as the space spanned by all cusp forms coming from strictly smaller levels
via repeated applications of the three level raising operators for primes dividing N .
The space of newforms Snew

k,j (K(N)) is by definition the orthogonal complement of

Sold
k,j (K(N)) inside Sk,j(K(N)).

It is clear that the level raising operators preserve the spaces Sk,j(K(N))X ap-
pearing in (2.2). We may thus define oldforms and newforms for each of the spaces
Sk,j(K(N))X . A moment’s consideration shows that

(2.9) Sold
k,j (K(N)) =

⊕
X

Sold
k,j (K(N))X , Snew

k,j (K(N)) =
⊕
X

Snew
k,j (K(N))X .

Paramodular cusp forms can in fact not be of type (Y).

Lemma 2.5. Sk,j(K(N))(Y) = 0.

Proof. Assume that F is a non-zero eigenform in Sk,j(K(N))(Y); we will obtain
a contradiction. Let π = ⊗πp be an irreducible constituent of the automorphic
representation generated by the adelization of F . By definition, π is an element
of a global packet Πψ, where ψ ∈ Ψ2(G) is a parameter of type (Y). Since F is a
paramodular form, each πp for p < ∞ is paramodular. By Theorem 1.1, the local
character 〈·, πp〉 is trivial for p < ∞. Since F is holomorphic, the archimedean
component π∞ is one of the lowest weight representations considered in Sect. 2.5 of
[22]. More precisely, since k ≥ 2 by Lemma 2.3, π∞ is a holomorphic discrete series
representation of G(R), or a limit of such. By (1.12), the character 〈·, π∞〉 is non-
trivial. Since the map Sψ → Sψv

is easily seen to be a bijection, it follows from (1.23)
that 〈·, π〉 is non-trivial. In view of (1.25), this is the desired contradiction. �
Theorem 2.6. Let N,N1, N2 and k, k1, k2 be positive integers, and j, j1, j2 be non-
negative integers.

i) Assume that F ∈ Sk,j(K(N))(G) is an eigenform for the unramified local
Hecke algebra Hp for almost all p not dividing N . Then F is an eigenform
for Hp for all p � N . The cuspidal, automorphic representation π of G(A)
generated by the adelization of F is irreducible and lifts to a cuspidal, au-
tomorphic representation of GL(4,A). The conductor of π divides N , with
equality if and only if F is a newform.
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ii) Let Fi ∈ Snew
ki,ji

(K(Ni))(G), i = 1, 2, be two eigenforms. Assume that for
almost all primes p the Hecke eigenvalues of F1 and F2 coincide. Then
(k1, j1) = (k2, j2), N1 = N2, and F1 is a multiple of F2.

Proof. i) The adelization of F generates a representation π = π1 ⊕ . . . ⊕ πr,
where each πi is a cuspidal, automorphic representation of G(A). The πi are
all near-equivalent, and thus lie in a packet Πψ for some ψ ∈ Ψ2(G). Since
F ∈ Sk,j(K(N))(G), the parameter ψ is of type (G). The archimedean compo-
nent of each πi is the lowest weight representation denoted by Bk,j in [22]. Since F
is a paramodular form, the non-archimedean components of each πi are paramodu-
lar, for each prime p. Theorem 1.1 ii) thus implies that all πi are isomorphic. Since
the representations in (1.24) occur with multiplicity one, it follows that there can
be only one πi, i.e., π is irreducible. By definition of parameters of type (G), π lifts
to a cuspidal, automorphic representation μ of GL(4,A). The non-archimedean
components of π outside N must be unramified, implying that F is an eigenform
for Hp for all p � N . The last statement follows from the fact that the minimal
paramodular level of any irreducible, admissible, generic representation of G(Qp)
coincides with the conductor of the representation; see Corollary 7.5.5 of [19].

ii) For i = 1, 2, let πi be the cuspidal, automorphic representation of G(A)
generated by the adelization of Fi. By hypothesis, π1 and π2 are near-equivalent.
Therefore, they are elements of the same packet Πψ, for some ψ ∈ Ψ2(G). Since
π1 and π2 are both holomorphic at infinity and paramodular at all finite places,
it follows that π1

∼= π2. By multiplicity one, π1 = π2 (as spaces of automorphic
forms). In particular, (k1, j1) = (k2, j2). The conductor of πi is Ni by i), and hence
N1 = N2. Since the adelization of Fi is a pure tensor consisting of distinguished
vectors in the local components of πi, it follows from local multiplicity one (see
Theorem 7.5.1 of [19] for the non-archimedean places, and the uniqueness of the
minimal K-type at the archimedean place) that F1 and F2 are multiples of each
other. �

Corollary 2.7. Let (k, j) ∈ Z≥3×Z≥0. Let F ∈ Sk,j(K(N)) be an eigenform. For

a good place p let QF,p(X) =
∏4

j=1(1− αp,jX) be the degree 4 Hecke polynomial of

F at p (so that QF,p(p
−s)−1 is the spin L-factor of F at p). Then the following are

equivalent:

i) F ∈ Sk,j(K(N))(G).
ii) |αp,j | = 1 for all p � N and all j ∈ {1, . . . , 4}.
iii) |αp,j | = 1 for some p � N and all j ∈ {1, . . . , 4}.

Proof. i) ⇒ ii) Assume that F ∈ Sk,j(K(N))(G). Let π = ⊗πp be the automorphic
representation of GSp(4,A) generated by the adelization of F . Our hypothesis
k ≥ 3 implies that π∞ is a discrete series representation. By Theorem 3.3 of
[24], the Ramanujan conjecture holds at all good places, implying that the Satake
parameters of πp have absolute value 1 for all p � N (since π can be transferred to
a cuspidal representation on GL(4,A), we can alternatively apply the main result
of [5]).

Since ii) ⇒ iii) is trivial, it remains to prove iii) ⇒ i). Hence assume that
|αp,j | = 1 for some p � N and all j ∈ {1, . . . , 4}. By Lemma 2.5, F cannot be of
type (Y). The size of the Satake parameters precludes F from being of type (Q),
(P) or (B); see Table 1. Hence F must be of type (G). �
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Corollary 2.8. For any integer k, eigenforms in Sk(Sp(4,Z)) are determined, up
to scalars, by almost all of their Hecke eigenvalues.

Proof. Let F1, F2 ∈ Sk(Sp(4,Z)) be two eigenforms whose eigenvalues coincide for
almost all primes. From their L-functions it is clear that F1 and F2 are either
both Saito-Kurokawa liftings, or neither one of them is. Assume that they are
both Saito-Kurokawa liftings. Then they come from elliptic modular forms f1, f2 ∈
S2k−2(SL(2,Z)); see Corollary 1 on page 80 of [6]. Strong multiplicity one for GL(2)
implies that f1 is a multiple of f2. Consequently F1 is a multiple of F2. Now assume
that F1 and F2 are not Saito-Kurokawa liftings. Then Theorem 5.1.2 of [15] implies
that F1, F2 ∈ Sk(Sp(4,Z))(G). We can thus apply Theorem 2.6 ii). �

Remark 2.9. Let F be any number field. For i = 1, 2 let πi
∼= ⊗πi,v be a cuspidal,

automorphic representation of G(AF ) of type (G) or (Y). Assume that the follow-
ing holds: π1,v

∼= π2,v for all archimedean v; πv is paramodular for all finite v; and
π1,v

∼= π2,v for almost all finite v. Then π1 = π2 as spaces of automorphic forms.
The argument is as in the proof of ii) of Theorem 2.6.

2.3. Paramodular Hecke operators. Let F ∈ Snew
k,j (K(N))(G) be an eigenform.

By Theorem 2.6 i), F is an eigenform for the local Hecke algebra Hp for all primes
p outside N . We may thus attach to F a partial L-function, defined as an Euler
product over all places p � N .

In this section we describe a way to attach Euler factors to F at the places p
dividing N . The method is based on two paramodular Hecke operators T0,1(p) and
T1,0(p). It follows from the local theory of the paramodular group that F is an
eigenform under these operators. In general, knowledge of the resulting eigenvalues
is not enough to determine the underlying local representation, but it is sufficient
to determine the Euler factor.

There is more than one way to attach a (spin) Euler factor L(s, π) to an irre-
ducible, admissible representation (π, V ) of GSp(4,Qp) with trivial central char-
acter. We always understand L(s, π) to be the local factor attached to the L-
parameter φ : LQp

→ Sp(4,C) of π, using the local Langlands correspondence of
[9]. Assume that π appears in a global representation of type (G), thus transferring
to a representation μ of GL(4,Qp) appearing in a global cuspidal representation of
GL(4,A). Since the results of [4] imply that the L-packets of [9] coincide with the
L-packets of [2] for SO(5), we have L(s, π) = L(s, μ), the standard L-factor for the
representation μ of GL(4,Qp).

For generic π, there is also the spin Euler factor attached to π via the theory of
local zeta integrals, as in [23]. It has been verified in [19] for non-supercuspidal,
generic π that this Euler factor coincides with the one defined via the local Lang-
lands correspondence. The same is true for generic, supercuspidal π as well, since
in this case both types of Euler factors are 1: See Proposition 3.9 of [23] and Sect.
7 of [9]. Since in the following we will apply Theorem 7.5.3 of [19], which makes a
statement about L(s, π) defined via zeta integrals, it is important to know that this
Euler factor coincides with the one defined via the local Langlands correspondence,
thus is the correct factor to fit into a global L-function.

Review of some local theory. Let p be any prime. Let (π, V ) be an irreducible,
admissible representation of GSp(4,Qp) with trivial central character. For a non-
negative integer n, let V (n) be the subspace of vectors fixed by the paramodular
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group

(2.10) K(pn) = {g ∈ GSp(4,Qp) | det(g) ∈ Z×
p } ∩

⎡⎣ Zp pnZp Zp Zp

Zp Zp Zp p−nZp

Zp pnZp Zp Zp

pnZp pnZp pnZp Zp

⎤⎦ .

We assume that π is paramodular, i.e., V (n) 	= 0 for some n. Let n0 be the
minimal n for which V (n) 	= 0. Then, by the results of [19], n0 coincides with the
(exponent of the) conductor a(π) of the representation. Moreover, dimV (n0) =
1. Therefore, the paramodular Hecke algebra consisting of locally constant, left
and right K(pn0)-invariant functions, acts on V (n0) via a character. Consider in
particular the elements
(2.11)

T0,1 = char(K(pn0)

[ p
p
1
1

]
K(pn0)), T1,0 = char(K(pn0)

[ p

p2

p
1

]
K(pn0)),

where “char” means “characteristic function of”. In general, the action of the
characteristic function T of a double coset K(pn)gK(pn), where g ∈ GSp(4,Qp),
on V (n) is given by

Tv =

r∑
i=1

π(gi)v, if K(pn)gK(pn) =

r⊔
i=1

giK(pn).

Explicit coset representatives for the double cosets in (2.11) are given in Lemma
6.1.2 of [19], provided that n0 ≥ 1. In the unramified case n0 = 0 the coset
representatives are well known from the classical theory of Siegel modular forms;
see (6.5) and (6.6) of [19].

To each π as above are thus associated the two eigenvalues λ0,1 and λ1,0 of the
Hecke operators T0,1, respectively T1,0, on the one-dimensional space V (n0). These
eigenvalues can be calculated explicitly for each π; the results are listed in Table
A.14 of [19]. We further have the eigenvalue επ = ±1 of the Atkin-Lehner involution

(2.12) un0
=

[
−1

1
pn0

−pn0

]
on V (n0). The relevance of these eigenvalues for us is that they determine the spin
L-factor of π. More precisely, by Theorems 7.5.3 and 7.5.9 of [19] we have the
following:

i) Assume n0 = 0, so that π is unramified. Then
(2.13)

L(s, π) =
1

1− p−3/2λ0,1p−s + (p−2λ1,0 + 1 + p−2)p−2s − p−3/2λ0,1p−3s + p−4s
.

ii) Assume that n0 = 1, and let επ = ±1 be the Atkin-Lehner eigenvalue on
V (n0). Then

(2.14) L(s, π) =
1

1− p−3/2(λ0,1 + επ)p−s + (p−2λ1,0 + 1)p−2s + επp−1/2p−3s
.

iii) Assume n0 ≥ 2. Then

(2.15) L(s, π) =
1

1− p−3/2λ0,1p−s + (p−2λ1,0 + 1)p−2s
.



PACKET STRUCTURE AND PARAMODULAR FORMS 3105

In the following we will translate the local operators T0,1 and T1,0 into operators
on classical Siegel modular forms.

The operators T0,1 and T1,0 on Siegel modular forms. Let F ∈ Sk,j(K(N)) with
adelization Φ. Let p be a prime and assume that pn is the maximal power of p
dividing N ; we indicate this by writing pn‖N . The case n = 0 is allowed. The Hecke
operators T0,1 and T1,0 at the place p act on Φ by right translation by elements
of GSp(4,Qp), producing automorphic forms with the same invariance properties.
Translating back to functions on the Siegel upper half-space, we obtain elements
T0,1(p)F and T1,0(p)F of Sk,j(K(N)). We thus have endomorphisms T0,1(p) and
T1,0(p) for each p|N . If n = 0, so that p � N , then T0,1(p) and T1,0(p) commute,
since the unramified local Hecke algebra Hp is commutative. If p|N , then T0,1(p)
and T1,0(p) do not in general commute. However, from the local nature of their
definition it is clear that two such endomorphisms for different primes commute
with each other.

Proposition 2.10. Let (k, j) ∈ Z>0×Z≥0, and let N be a positive integer. Let p be
a prime such that pn‖N with n ≥ 1. Let M be any integer such that M(N/pn) ≡ 1
mod p. Then, for F ∈ Sk,j(K(N)),

T0,1(p)F =
∑

x,y,z∈Z/pZ

F |k,j
[
1
1
p
p

][ 1 x y

1 y zp−n

1
1

]

+
∑

x,z∈Z/pZ

F |k,j
[ p

1
1
p

] [ 1
x 1 zp−n

1 −x
1

]

+
∑

x,y∈Z/pZ

F |k,j
[
1
p
p
1

] [ 1 −yMN x
1

1
yMN 1

]

+
∑

x∈Z/pZ

F |k,j
[ p

p
1
1

] [
1

1
xMN 1

xMN 1

]
(2.16)

and

T1,0(p)F =
∑

x,y∈Z/pZ

∑
z∈Z/p2Z

F |k,j

[
p
1
p

p2

][
1 y

1 y zp−n

1
1

] [
1
x 1

1 −x
1

]

+
∑

x,y∈Z/pZ

F |k,j
[ p

p2

p
1

] [
1

1
xMN 1

xMN 1

] [ 1 −yMN
1

1
yMN 1

]

+
∑

x,y∈Z/pZ

z∈(Z/pZ)×

F |k,j

[
1

−xp−1 1 zp−n−1

1 xp−1

1

] [ 1 −yMN
1

1
yMN 1

]
.(2.17)

Proof. This follows in a straightforward way from the double coset decomposition
given in Lemma 5.1 of [16]. See Proposition 5.2 of [16] for details in the scalar-valued
case; the proof in the vector-valued case is similar. �

The local Atkin-Lehner element (2.12) can also be globalized to an operator on
Sk,j(K(N)); see Sect. 3.3 of [13]. This operator is an involution on Sk,j(K(N))
which we denote by up. For primes p � N it is trivial, and for p|N it splits
Sk,j(K(N)) into ±1 eigenspaces.
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Lemma 2.11. Let (k, j) ∈ Z>0 × Z≥0, and let N be a positive integer. Suppose
that F ∈ Snew

k,j (K(N))(G) is an eigenform (at almost all good places). Then F is

an eigenform for T0,1(p) and T1,0(p), and for the Atkin-Lehner involutions up, for
all primes p.

Proof. Let π ∼= ⊗πp be the automorphic representation of G(A) generated by the
adelization of F . As explained in the proof of Theorem 2.6, this adelization cor-
responds to a pure tensor ⊗vp. For finite primes, vp is the local newform in πp,
i.e., it spans the one-dimensional space of paramodular vectors of the smallest pos-
sible level. The corresponding local paramodular Hecke algebra therefore acts by
scalars on this space. In particular, vp is an eigenvector for the local operators
T0,1, T1,0 and up. It follows that F is an eigenvector for the corresponding global
operators. �

To any eigenform F ∈ Snew
k,j (K(N))(G), and any prime p, we have thus attached

three eigenvalues λ0,1(p), λ1,0(p) and εp, defined by

(2.18) T0,1(p)F = λ0,1(p)F, T1,0(p)F = λ1,0(p)F, upF = εpF.

We define local Euler factors Lp(s, F ) using the right-hand sides of the formulas
(2.13)–(2.15), where n0 is the maximal power of p dividing N ; in (2.14), επ is to
be replaced by εp. If p � N , then Lp(s, F ) is the usual spin Euler factor of F (in
analytic normalization).

Proposition 2.12. Let (k, j) ∈ Z>0×Z≥0, and let N be a positive integer. Suppose
that F ∈ Snew

k,j (K(N))(G) is an eigenform. Let

(2.19) L(s, F ) = ΓC

(
s+

2k + j − 3

2

)
ΓC

(
s+

j + 1

2

) ∏
p<∞

Lp(s, F ),

where Lp(s, F ) are the Euler factors defined above. Then L(s, F ) has analytic con-
tinuation to an entire function, is bounded in vertical strips, and satisfies the func-
tional equation

(2.20) L(s, F ) = (−1)k
(∏

p|N
εp

)
L(1− s, F ),

where εp are the Atkin-Lehner eigenvalues of F .

Proof. Let π = ⊗πp be the automorphic representation of G(A) generated by F .
By definition, Lp(s, F ) = L(s, πp) for all primes p. The Γ-factors coincide with
the L-factor of π∞; see Proposition 2.5.1 of [22]. Hence L(s, F ) = L(s, π). Since
F is of type (G), L(s, π) is the L-function of a self-dual, cuspidal, automorphic
representation of GL(4,A). This proves most of our claims about the analytic
properties. The sign in the functional equation is the product of the root numbers
ε(1/2, πp) over all places (they are all ±1 and independent of the choice of additive
characters). We have ε(1/2, π∞) = (−1)k by Proposition 2.5.1 of [22]; note here that
j is necessarily even. The fact that ε(1/2, πp) coincides with εp, the Atkin-Lehner
eigenvalue on the newform, for each prime p is a feature of the local paramodular
theory; see Corollary 7.5.5 of [19]. �
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We remark that the product
∏

p|N εp coincides with the eigenvalue of F under

the Fricke involution

(2.21)

[
1

1
N

N

]
,

which normalizes K(N).

The square-free case. As explained above, the Euler factors for an eigenform F ∈
Snew
k,j (K(N))(G) can be obtained with the help of the paramodular Hecke operators

T0,1 and T1,0. In practice, if F is given in terms of its Fourier expansion, it may
still be difficult to calculate the action of these operators, owing to the presence of
lower triangular coset representatives in the decompositions given in Proposition
2.10. For an example of how this difficulty can be overcome in certain situations,
see Sect. 5 of [16].

In the square-free case, however, all coset representatives can be brought into
block upper triangular form, i.e., taken from the Siegel parabolic subgroup P (Qp).
This is due to the “Iwasawa decomposition”

(2.22) GSp(4,Qp) = P (Qp)K(p);

see Proposition 5.1.2 of [19]. In fact, the matrix identity

(2.23)

[ 1
1
xp 1

xp 1

] [
1
1
p
p

]
=

[
1 x−1p−1

1 x−1p−1

1
1

] [ 0 p
1 0

0 1
p 0

][ −x−1 0
0 −x−1p−1

x 0 0 1
0 px p 0

]
is all that is needed to replace the lower triangular representatives appearing in
Lemma 4.1.1 of [16] by block upper triangular matrices. This leads to the following
formulas for the endomorphisms T0,1(p) and T1,0(p) of the space Sk,j(K(p)), for
any prime p:

T0,1(p)F =
∑

x,y,z∈Z/pZ

F |
[
1
1
p
p

] [ 1 x y

1 y zp−1

1
1

]

+
∑

x,z∈Z/pZ

F |
[ p

1
1
p

] [ 1
x 1 zp−1

1 −x
1

]
+

∑
x,y∈Z/pZ

F |
[
1
p
p
1

] [ 1 −yp x
1

1
yp 1

]

+ F |
[ p

p
1
1

]
+

∑
x∈(Z/pZ)×

F |
[ 0 p
1 0

0 1
p 0

] [ 1 xp−1

1 xp−1

1
1

]
,(2.24)

T1,0(p)F =
∑

x,y∈Z/pZ

∑
z∈Z/p2Z

F |
[

p
1
p

p2

][
1 y

1 y zp−1

1
1

][
1
x 1

1 −x
1

]

+
∑

y∈Z/pZ

F |
[ p

p2

p
1

] [ 1 −yp
1

1
yp 1

]

+
∑

y∈Z/pZ

x∈(Z/pZ)×

F |
[

0 p2

1 0
0 1
p2 0

][
1 xp−1

1 xp−1

1
1

][ 1 −yp
1

1
yp 1

]

+
∑

x,y∈Z/pZ

z∈(Z/pZ)×

F |
[

1
−xp−1 1 zp−n−1

1 xp−1

1

] [ 1 −yp
1

1
yp 1

]
.(2.25)
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In case p||N but N has additional prime factors, one has to be more careful in
globalizing the middle matrix on the right-hand side of (2.23). One way to do this
is by choosing an integer M such that M(N/p) ≡ 1 mod p, and observing that[ 0 p

1 0
0 1
p 0

]
∈
[ p

−1
1
−p

] [
1
−1 1

1 1
1

][ 1 MN/p
1

1
−MN/p 1

]
K(p).

Substituting appropriately, we find that all local representatives can be globalized,
meaning they have the property that, as elements of GSp(4,Qq) for q 	= p, they lie
in K(qn), where qn‖N . This way we arrive at the formulas

T0,1(p)F = F |k,j
[ p

p
1
1

]
+

∑
x,y,z∈Z/pZ

F |k,j
[
1
1
p
p

][ 1 x y

1 y zp−1

1
1

]

+
∑

x,z∈Z/pZ

F |k,j
[ p

1
1
p

] [ 1
x 1 zp−1

1 −x
1

]

+
∑

x,y∈Z/pZ

F |k,j
[
1
p
p
1

] [ 1 −yMN x
1

1
yMN 1

]

+
∑

x∈(Z/pZ)×

F |k,j

[
1−MN/p MN

1 −p
p 1

MN MN/p−1

][
1 xp−1

1 xp−1

1
1

]
(2.26)

and

T1,0(p)F =
∑

x,y∈Z/pZ

∑
z∈Z/p2Z

F |k,j

[
p
1
p

p2

][
1 y

1 y zp−1

1
1

] [
1
x 1

1 −x
1

]

+
∑

y∈Z/pZ

F |k,j
[ p

p2

p
1

] [ 1 −yMN
1

1
yMN 1

]

+
∑

y∈Z/pZ

x∈(Z/pZ)×

F |k,j

⎡⎣ 1−MN/p MNp

1 −p2

p2 1
MNp MN/p−1

⎤⎦[
1 xp−1

1 xp−1

1
1

]

[ 1 −yMN
1

1
yMN 1

]
+

∑
x,y∈Z/pZ

z∈(Z/pZ)×

F |k,j

[
1

−xp−1 1 zp−n−1

1 xp−1

1

][ 1 −yMN
1

1
yMN 1

]
(2.27)

for p||N . These formulas are designed to be easily applicable to the Fourier expan-
sion of an element in Sk,j(K(N)).

Proposition 2.13. Let (k, j) ∈ Z>0 × Z≥0, and let N be a positive integer. Let
p be a prime with p‖N . Let F be an eigenform in Snew

k,j (K(N))(G). Let λ0,1(p),

λ1,0(p) and εp be the eigenvalues defined by (2.18). Then

(2.28) λ0,1(p)εp + λ1,0(p) + p+ 1 = 0.
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We have λ0,1(p) 	= 0, so that two of the three quantities λ0,1(p), λ1,0(p) and εp
determine the third. The Euler factor at p is given by
(2.29)

Lp(s, F ) =
1

1− p−3/2(λ0,1(p) + εp)p−s + (p−2λ1,0(p) + 1)p−2s + εpp−1/2p−3s
.

Proof. Let π ∼= ⊗πp′ be the cuspidal, automorphic representation generated by F .
The local component πp has conductor a(πp) = 1, because F is a newform and
p‖N . Thus πp, being Iwahori-spherical, occurs among the representations listed in
Table A.15 of [19]. Since π is of type (G), weak estimates on Satake parameters
show that the only possibility for πp is the representation χStGL(2) � σ of type IIa,

where χ and σ are unramified characters of Q×
p with χ2σ2 = 1 and (χσ)(p) = −εp.

For these one can readily verify the relation (2.28); see the remark at the end of
Sect. 7.2 of [19]. It follows easily from the unitary conditions given in Table A.2 of
[19] that λ0,1(p) 	= 0. �

Remarks. a) The polynomial in the denominator of (2.29) factors as

(2.30) (1− αp−s)(1− α−1p−s)(1 + εpp
−1/2p−s),

where α + α−1 = p−3/2(λ0,1(p) + εp(p + 1)). The Ramanujan conjecture predicts
that |α| = 1.

b) The L-factor (2.29) determines the underlying representation πp = χStGL(2)�
σ completely. Knowing this L-factor, we can thus derive additional quantities. For
example, the degree 5 L-factor can be read off Table A.10 of [19]. In non-square-
free cases, it is not in general possible to determine the degree 5 from the degree 4
L-factor.

Appendix A. L-parameters for non-supercuspidal representations

of GSp(4, F )

Let F be a non-archimedean local field of characteristic zero. In this appendix
we reproduce, in a modified form, Table A.7 of [19], which lists the L-parameters
of all non-supercuspidal representations of GSp(4, F ).

Let WF be the Weil group of F , and let LF = WF × SU(2) be the Weil-Deligne
group of F . A representation of LF is a continuous homomorphism LF → GL(n,C)
whose restriction to SU(2) comes from a holomorphic representation of SL(2,C).
Let νi be the irreducible representation of SU(2) of dimension i. Then the irre-
ducible representations of LF are precisely those of the form σ � νi, where σ is an
irreducible representation of WF .

The dual group of the algebraic F -group GSp(4) is Ĝ = GSp(4,C). An L-

parameter for GSp(4) is a continuous homomorphism φ : LF → Ĝ such that φ(WF )
consists of semisimple elements, and such that the restriction of φ to SU(2) comes
from a holomorphic representation of SL(2,C). Each such φ is a semisimple, four-
dimensional representation of LF . Two L-parameters are equivalent if they are
conjugate by an element of Ĝ.

Table 3 shows the L-parameters associated to all irreducible, admissible, non-
supercuspidal representations of GSp(4, F ). Listed are the parameters as four-
dimensional representations; not given is the way that these parameters map into
Ĝ. For the latter one should consult Table A.7 of [19], which is the basis for Table
3, and in which the L-parameters are given in their “(ρ,N)” form. To translate
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Table 3. L-parameters for non-supercuspidal representations of GSp(4, F ).

representation φ #Sφ g

I χ1 × χ2 � σ (irreducible) χ1χ2σ ⊕ χ1σ ⊕ χ2σ ⊕ σ 1 •

II a χStGL(2) � σ χ2σ ⊕ (ν−1/2χσ � ν2)⊕ σ 1 •
b χ1GL(2) � σ χ2σ ⊕ ν1/2χσ ⊕ ν−1/2χσ ⊕ σ 1

III a χ� σStGSp(2) (ν−1/2χσ � ν2)⊕ (ν−1/2σ � ν2) 1 •
b χ� σ1GSp(2) ν1/2χσ ⊕ ν−1/2χσ ⊕ ν1/2σ ⊕ ν−1/2σ 1

IV a σStGSp(4) ν−3/2σ � ν4 1 •
b L(ν2, ν−1σStGSp(2)) (ν1/2σ � ν2)⊕ (ν−3/2σ � ν2) 1

c L(ν3/2StGL(2), ν
−3/2σ) ν3/2σ ⊕ (ν−1/2σ � ν2)⊕ ν−3/2σ 1

d σ1GSp(4) ν3/2σ ⊕ ν1/2σ ⊕ ν−1/2σ ⊕ ν−3/2σ 1

V a δ([ξ, νξ], ν−1/2σ) (ν−1/2σ � ν2)⊕ (ν−1/2ξσ � ν2) 2 •
b L(ν1/2ξStGL(2), ν

−1/2σ) ν1/2σ ⊕ (ν−1/2ξσ � ν2)⊕ ν−1/2σ 1

c L(ν1/2ξStGL(2), ξν
−1/2σ) ν1/2ξσ ⊕ (ν−1/2σ � ν2)⊕ ν−1/2ξσ 1

d L(νξ, ξ � ν−1/2σ) ν1/2σ ⊕ ν1/2ξσ ⊕ ν−1/2ξσ ⊕ ν−1/2σ 1

VI a τ (S, ν−1/2σ) •
b τ (T, ν−1/2σ)

(ν−1/2σ � ν2)⊕ (ν−1/2σ � ν2) 2

c L(ν1/2StGL(2), ν
−1/2σ) ν1/2σ ⊕ (ν−1/2σ � ν2)⊕ ν−1/2σ 1

d L(ν, 1F× � ν−1/2σ) ν1/2σ ⊕ ν1/2σ ⊕ ν−1/2σ ⊕ ν−1/2σ 1

VII χ� π χϕπ ⊕ ϕπ 1 •

VIII a τ (S, π) •

b τ (T, π)
ϕπ ⊕ ϕπ 2

IX a δ(νξ, ν−1/2π) ν−1/2ϕπ � ν2 1 •
b L(νξ, ν−1/2π) ν1/2ϕπ ⊕ ν−1/2ϕπ 1

X π � σ σωπ ⊕ σϕπ ⊕ σ 1 •

XI a δ(ν1/2π, ν−1/2σ) σϕπ ⊕ (ν−1/2σ � ν2) 2 •
b L(ν1/2π, ν−1/2σ) ν1/2σ ⊕ σϕπ ⊕ ν−1/2σ 1

Va∗ δ∗([ξ, νξ], ν−1/2σ) same as Va 2

XIa∗ δ∗(ν1/2π, ν−1/2σ) same as XIa 2
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between the two ways of writing representations of the Weil-Deligne group, see the
proposition in Section 6 of [21].

The symbols χ, χ1, χ2, σ and ξ in the table denote characters of F×, and π
denotes an irreducible, admissible, supercuspidal representation of GL(2, F ). Often
these have to satisfy additional conditions, for which we refer to Table A.1 of [19].
As usual, we identify characters of WF and of F×. We simply write σ for the
representation σ � ν1 of LF . The symbol ν (not to be confused with νi) stands
for the normalized absolute value of F×. The notation for the representations of
GSp(4, F ) is explained in Sect. 2.2 of [19].

For any φ : LF → GSp(4,C) in the table, let Sφ be the centralizer of its image,
and S0

φ the identity component of Sφ. Let Sφ = Sφ/S
0
φZ, where Z ∼= C× is the

center of Ĝ. The order of this centralizer group is listed in the next-to-last column
of Table 3. It is the size of the L-packet associated to φ. The last column in the
table indicates the generic representations.

In addition to all non-supercuspidal representations, Table 3 also lists two types
of supercuspidals, namely Va∗ and XIa∗. The reason they are included is that Va∗

constitutes a two-element L-packet with Va, and XIa∗ constitutes a two-element
L-packet with XIa. We refer to Sect. 4 of [20] for a construction of Va∗ and XIa∗

in terms of the theta correspondence.
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