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CLASSIFICATION OF MODULES
FOR INFINITE-DIMENSIONAL STRING ALGEBRAS

WILLIAM CRAWLEY-BOEVEY

ABSTRACT. We relax the definition of a string algebra to also include infinite-
dimensional algebras such as k[z,y]/(zy). Using the functorial filtration
method, which goes back to Gelfand and Ponomarev, we show that finitely
generated modules and artinian modules (and more generally finitely con-
trolled and pointwise artinian modules) are classified in terms of string and
band modules. This subsumes the known classifications of finite-dimensional
modules for string algebras and of finitely generated modules for k[z, y]/(zy).
Unlike in the finite-dimensional case, the words parameterizing string modules
may be infinite.

1. INTRODUCTION

By a string algebra we mean an algebra of the form A = kQ/(p) where k is a
field, @ is a quiver, not necessarily finite, kQ is the path algebra, p is a set of zero
relations in kQ), that is, paths of length > 2, (p) denotes the ideal generated by p,
and we suppose that

(a) any vertex of @ is the head of at most two arrows and the tail of at most
two arrows, and

(b) given any arrow y in @, there is at most one path zy of length 2 with zy ¢ p
and at most one path yz of length 2 with yz ¢ p.

The name is due to Butler and Ringel [2], but they imposed a finiteness condition
(which we drop), which forces an algebra with a one to be finite-dimensional. Note
that the notion has a longer history, going back to the special biserial algebras of
Skowronski and Waschbiisch [14].

We consider left A-modules M which are unital in the sense that AM = M. If
is finite, then A has a one, and this corresponds to the usual notion. It is equivalent
that M is the direct sum of its subspaces e, M, where v runs through the vertices in
Q@ and e, denotes the trivial path at vertex v, considered as an idempotent element
in A. This ensures that A-modules correspond to representations of () satisfying
the zero relations in p, with the vector space at vertex v being e, M.

As usual, a module M is finitely generated if M = Amy + - -- + Am,, for some
elements myq, ..., m, € M. Slightly more generally, if () has infinitely many vertices,
we say that a module M is finitely controlled if for every vertex v, the set e, M is
contained in a finitely generated submodule of M. Similarly, slightly more general
than the notion of an artinian module, we say that a module M is pointwise artinian
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if for any descending chain of submodules M7 D My O M3 O ... and any vertex v
in @, the chain of subspaces e, M7 D e, My D e, M3 D ... stabilizes.

Given a string algebra, our main results classify modules satisfying these finite-
ness conditions in terms of so-called ‘string’ and ‘band’ modules. The results apply
in particular to the string algebra k[z,y]/(zy), which arises from the quiver with
one vertex and loops = and y with p = {xy, yz}, also to the algebra k(z, y)/(z?,y?),
with p = {22,9%}. As another example, one can take I' = kQ/(p) where Q is the

quiver
T_q

—1 %o 0o 1 1
. [ ] [ ] [ ] [ ] ...
Y1

Y—1 Yo Y2 Y3

and p = {zyi—1 : @ € Z} U {y;x;—1 : i € Z}. Clearly I-modules are the same
thing as Z-graded modules for k[z,y]/(zy), where x and y have degree 1, and
finitely controlled T-modules correspond to Z-graded k[z,y]/(zy)-modules whose
homogeneous components are finite-dimensional.

Words. As in previous work on string algebras, in order to describe the string and
band modules, we use certain ‘words’, and as in [I3], they may be infinite. These
words are also used to define functors used in the proofs, and it is for this purpose
that there are two trivial words for each vertex. By a letter ¢ one means either an
arrow z in Q (a direct letter) or its formal inverse z 1 (an inverse letter). The head
and tail of an arrow z are already defined, and we extend them to all letters so that
the head of 271 is the tail of z and vice versa. If I is one of the sets {0,1,...,n}
withn >0,or N={0,1,2,...},or -N={0,—-1,-2,...} or Z, we define an I-word
C as follows. If T # {0}, then C consists of a sequence of letters C; for all i € T
with ¢ — 1 € I, so that

C1Cy...C, (if I =1{0,1,...,n}),
D [elte e e (if I =N),

...C_5C_1Co (if I = —N),

L C1Co|CLCy... (f I =17)

(a bar shows the position of Cy and Cy if I = Z) satisfying:

a) if C; and C;,1 are consecutive letters, then the tail of C; is equal to the
+
head of Cj41;
(b) if C; and C;41 are consecutive letters, then C’i_1 # Ci11; and
¢) no zero relation 21 . .. Z,, in p nor its inverse 21 ... 27 ! occurs as a sequence
P m 1
of consecutive letters in C.

In case I = {0} there are trivial I-words 1, . for each vertex v in  and € = +1.
By a word, we mean an I-word for some I; it is a finite word of length n if I =
{0,1,...,n}. If C is an I-word, then for each ¢ € I there is associated a vertex
v;(C), the tail of C; or the head of Cj44, or v for 1, .. We say that a word C is
direct or inverse if every letter in C' is direct or inverse respectively.

The inverse C~! of a word C is defined by inverting its letters (with (z71)~! = x)
and reversing their order. For example the inverse of an N-word is a (—N)-word,
and vice versa. By convention (11,,6)_1 = 1,,—c, and the inverse of a Z-word is
indexed so that

-1

(...ColCy.. )t =...crhegt .
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If C is a Z-word and n € Z, the shift C[n] is the word ...C,|Cpi1.... We say
that a word C' is periodic if it is a Z-word and C' = C[n] for some n > 0. The
minimal such n is called the period. We extend the shift to I-words C' with I # Z
by defining C[n] = C. There is an equivalence relation ~ on the set of all words
defined by C' ~ D if and only if D = C[m] or D = (C~1)[m] for some m.

Modules given by words. Given any I-word C, we define a A-module M (C)
with basis b; (¢ € I) as a vector space, and the action of A given by

b {bi (if v:(C) = v),

0 (otherwise)
for a trivial path e, in A (v a vertex in @), and

bi—1 (ifi—1€Tland C; =x),
zh; = bi+1 (lf i1+ 1€l and Ci+1 = l‘_l),
0 (otherwise)

for an arrow x in Q. For example, for the algebra k[x,y]/(xy) and the word
C=y laayy™yly

the module M (C) may be depicted as

where the arrows show the actions of z and y.

For any word C there is an isomorphism ic : M(C) — M(C~1!) given by
reversing the basis, and for a Z-word C' and n € Z there is an isomorphism
ton : M(C) — M(C[n]), given by tc ,(b;) = bi—y,. Thus modules given by equiva-
lent words are isomorphic.

If C is a periodic word of period n, then M (C) becomes a A-k[T, T~*]-bimodule
with T acting as t¢ ,, and we define

M(C,V) = M(C) @V

for V a k[T, T-']-module. It is clear that M(C) is free over k[T,T!] of rank n,
so M(C,V) is finite-dimensional if and only if V' is finite-dimensional. Equivalent
periodic words give rise to the same modules, since for m € Z one has M(C,V) =
M(C[m],V) = M((C~1)[m],res, V), where ¢ is the automorphism of k[T, T~
exchanging T and T~! and res, denotes the restriction map via .

String and band modules. Let A = kQ/(p) be a string algebra. By a string
module we mean a module M (C') with C' a non-periodic word, and by a band module
we mean one of the form M (C, V) with C a periodic word and V' an indecomposable
k[T, T~1']-module. By a primitive injective band module we mean one of the form
M(C, V) where C is a direct or inverse periodic word and V is the injective envelope
of a simple k[T, T~']-module.
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Theorem 1.1. String modules, finite-dimensional band modules, and primitive
injective band modules are indecomposable. Moreover, there only exist isomorphisms
between such modules when the corresponding words are equivalent: there are no
isomorphisms between string modules and modules of the form M(C,V), string
modules M(C) and M (D) are isomorphic if and only if C ~ D, and M(C,V) =
M(D,W) if and only if D = C[m] and W 2V or D = (C~')[m] and W = res, V.
for some m.

Our main result is as follows.

Theorem 1.2. Every finitely controlled A-module is isomorphic to a direct sum of
copies of string modules and finite-dimensional band modules.

Note that string modules may be given by infinite words, but that not all such
words give finitely controlled or finitely generated modules. This is addressed in §12
For example the k[x, y]/(zy)-module M (C), with C as before, is finitely generated,
while the I-module M (D) with I as above and

D = .. .ysyoxs yoynay gy |y @y
is finitely controlled, but not finitely generated. For the pointwise artinian case we
prove the following—in fact the proof in this case is slightly easier.

1 1

Ty ...

Theorem 1.3. Every pointwise artinian A-module is isomorphic to a direct sum of
copies of string modules, finite-dimensional band modules, and primitive injective
band modules.

Concerning uniqueness of the decomposition, we prove the following.

Theorem 1.4 (Krull-Remak-Schmidt property). If a finitely controlled or point-
wise artinian module is written as a direct sum of indecomposables in two different
ways, then there is a bijection between the summands in such a way that corre-
sponding summands are isomorphic.

Theorem [[L3] is proved in §I0, and the others are proved in §I21 Our results
extend existing work on the classification of finite-dimensional modules for string
algebras (or related special biserial algebras) due to several authors [21[4L5,12][15].
These authors used the so-called functorial filtration method, which relies on cer-
tain functorially defined filtrations of modules. The original work of Gelfand and
Ponomarev [5] applied to k[z, y]/(xy), and Ringel [12], in what is probably the best
reference for the method, adapted it to k(z,y)/(z2, y?). We modify the method so
that it works for infinite-dimensional modules. In particular we change the defini-
tion of C” for a relation C' in Definition ] and prove a splitting lemma, Lemma
We consider functors C* for C' an N-word in §6} we prove finite-dimensionality
results for refined functors in §7t and we prove our Realization Lemma and
covering properties in 0l Finally we use our Extension Theorem to overcome
a limitation of the functorial filtration method.

Our results include the classification of finitely generated k[z,y]/(zy)-modules.
The possibility of such a classification is hinted at in a footnote in [II] (on page
652 of the English translation), was worked out by Levy [§] more generally for
Dedekind-like rings, and was again discussed by Laubenbacher and Sturmfels [7].
These authors all used a different method, sometimes called ‘matrix reductions’.
The functorial filtration method is essentially different, although the last part of
our proof of Theorem [[L2] using the Extension Theorem [I1.2] is reminiscent of
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matrix reductions. Our proof offers new insight even for the algebra k[z,y|/(zy);
for example Theorem identifies the summands of a finitely generated module.
As discussed above, our results also give a classification of graded modules for
this algebra with finite-dimensional homogeneous components, where = and y have
degree 1; this appears to be new. The same ideas would work for any grading.

Instead of a string algebra, one can consider its localization or completion with
respect to the ideal generated by the arrows. Algebras of this type have occasion-
ally been studied by matrix reductions. For example Burban and Drozd [I] study
the derived category for certain ‘nodal’ algebras, including k((z,y))/(2%,y?). The
functorial filtration method should adapt to classify finitely generated modules for
such localizations and completions. Note that Theorem would no longer be
necessary in this case, as there would be no primitive simples.

2. MORE ABOUT WORDS

We introduce some more constructions which will be needed later. Let A =
kQ/(p) be a string algebra. We choose a sign ¢ = £1 for each letter ¢, such that
if distinct letters £ and ¢’ have the same head and sign, then {¢,¢'} = {z~!, y} for
some zero relation zy € p. (This is equivalent to the use of ¢ and € in [2].) Note
that if C; and C;41 are consecutive letters in a word, then C’i_1 and C;41 have
opposite signs.

The head of a finite word or N-word C' is defined to be vg(C), so it is the head of
Cq, or v for C =1, . The sign of a finite word or N-word C' is defined to be that
of Cq, or € for C = 1,.. The tail is defined for a word C of length n to be v,(C)
and for C' a (—N)-word to be vy(C).

The composition CD of a word C' and a word D is obtained by concatenating
the sequences of letters, provided that the tail of C' is equal to the head of D, the
words C~' and D have opposite signs, and the result is a word. By convention
1y,ely,e = 1y, and the composition of a (—N)-word C' and an N-word D is indexed
so that

CD = ...C_lcolDng....

If C = CiC5y...C, is a non-trivial finite word and all powers C™ are words, we
write C*° and *°C* for the N-word and periodic word

Cp...C,C1...C,Cy... and ...Cq...CL|Cy...CLCh. ...
If Cis an I-word and ¢ € I, there are words
Csi=Ciy1Ciqo... and C< =...Ci1C;
with appropriate conventions if 7 is maximal or minimal in I, such that
C = (C<iCsy)[—1].

We say that a word C is repeating if C' = D for some non-trivial finite word
D. We say that a word C is eventually repeating (respectively direct, respectively
inverse) if Cs; is repeating (respectively direct, respectively inverse) for some i.
We say that an I-word C' is right vertex-finite if for each vertex v there are only
finitely many ¢ > 0 in I with v;(C) = v.

Lemma 2.1. No word can be equal to a shift of its inverse.
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Proof. If C is finite of length n, then C' = C'~! implies C[l = Chp41-; for all i. The

same holds if C' is a Z-word and C' = C~'[~n]. Now if n is even, then C; ' = C;1,
for i = n/2, which is impossible, and if n is odd, then C’Z-_1 =C;fori=(n+1)/2,
which is also impossible. O

3. PRIMITIVE CYCLES AND k[z]-MODULE STRUCTURE

By a primitive cycle P we mean a non-trivial finite direct word (so a non-trivial
path in @ which is non-zero in A) such that *° P is a periodic word of period equal
to the length of P. Equivalently P is not itself a power of another word, and every
power of P is a word. For example the primitive cycles for k[x,y]/(xy) are x and
y; for k(x,y)/(z% y?) they are xy and yz. The algebra I' in the introduction has
no primitive cycles.

A non-trivial finite direct word is uniquely determined by its first arrow and
length, so there are at most two primitive cycles with any given head v. Moreover
if P and R are distinct primitive cycles with head v the string algebra condition
implies that PR = RP =0 in A. For any vertex v we define z, € e, Ae, to be the
sum of all primitive cycles with head v. If 2, = P + R, then 2] = P" 4+ R" and,
for example, 2P = P"tL

Let k[z] denote the polynomial ring in an indeterminate z. We turn any A-module
M (including A itself) into a k[z]-module by defining zm = z,m for m € e, M. The
following lemma shows that this turns A into a k[z]-algebra.

Lemma 3.1. The actions of k[z] and A on M commute.

Proof. If a is an arrow with head v and tail u, then z,a = az,, for z,a is either
zero or it is a word of the form Pa where P is a primitive cycle whose first letter is
a. Then Pa = aR where R is a primitive cycle at u, so aR = az,. O

Lemma 3.2. e, Ae, is a finitely generated k[z]-module for all vertices u,v.

Proof. Consider non-trivial paths from « to v in @ which are non-zero in A. They
correspond to finite direct words C' with head v and tail u. By the string algebra
condition all such words with the same sign must be of the form D, PD, P?D, ...
for some non-trivial words D and P. If there are infinitely many such words, then P
is a primitive cycle, and these words are equal in e,Ae, to D, 2,D,22D,.... Thus
e, e, is a finitely generated k[z]-module. O

Lemma 3.3. For a A-module M, the following are equivalent.

(i) M is finitely controlled.

(ii) M is pointwise noetherian, meaning that for any ascending chain of sub-
modules M1 C My C Ms C ... and any vertex v in @, the chain of
subspaces e, M1 C e, My C e, Mz C ... stabilizes.

(iii) e,M is a finitely generated e, Ae,-module for every vertex v in Q.

(iv) e, M is a finitely generated k[z]-module for every vertex v in Q.

Proof. (iv) = (ii) = (iii) = (i) are straightforward. For (i) = (iv), suppose that
M is finitely controlled. Then e, M is contained in a finitely generated submodule
Zle Am;. We may assume that each m; belongs to e,,M for some v;. Then
ey M is contained in a k[z]-submodule of M which is isomorphic to a quotient of
Zle ey Ae,,, so is finitely generated as a k[z]-module. O
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Lemma 3.4. For a A-module M, the following are equivalent.
(i) M is is pointwise artinian.
(ii) ey, M is an artinian e,Ae,-module for every vertex v in Q.
(iii) e,M is an artinian k[z]-module for every vertex v in Q.

Proof. (iii) = (i) = (ii) are straightforward. For (ii) = (iii), since e,Ae, is a
finitely generated k[z]-module, it is noetherian and its simple modules are finite-
dimensional. Thus a finitely generated e, Ae,-submodule of e, M is both noetherian
and artinian, so finite length, hence finite-dimensional. It follows that e, M is locally
finite-dimensional as a k[z]-module.

If e, Ae, is generated as a k[z]-module by n elements, then there is a k[z]-module
map from k[z]" onto e,Ae,. If S is a simple k[z]-submodule of e, M, tensoring
with S, we get a map from S™ onto e,Ae, ®y[,) S, and so onto (e,Ae,)S. Thus
(eyAey)S has length at most n as a k[z]-module, so also as an e, Ae,-module, and
hence (e, Ae,)S is contained in the n-th term in the socle series of e, M as an e, Ae,-
module. It follows that the k[z]-socle of e, M is contained in the n-th term in the
socle series of e, M as an e, Ae,-module; and as e, M is artinian as an e, Ae,-module,
the modules in the socle series have finite length, so they are finite-dimensional.
Thus the k[z]-socle of e, M is finite-dimensional.

Now (iii) follows from the following characterization: a k[z]-module is artinian
if and only if it is locally finite-dimensional and has finite-dimensional socle. This
follows from the fact that the injective envelopes of simple k[z]-modules are artinian.

O

4. LINEAR RELATIONS

In this section we generalize known results about linear relations to the infinite-
dimensional case. Let V and W be vector spaces. Recall that a linear relation from
V to W (or on V if V = W) is a subspace C of V @ W, for example the graph of a
linear map f:V — W. If C is a linear relation from V to W, v € V,and H C V,
we define

Cv={weW:(v,w)eC} and CH = U Cv,
veEH
and in this way we can think of C' as a mapping from elements of V' (or subsets of
V) to subsets of W. If D is a linear relation from U to V, then CD is the linear
relation from U to W given by

CD ={(u,w) : v €V with w € Cv and v € Du}.
We write C~! for the linear relation from W to V given by
C™h = {(w,v) : (v,w) € C},

and hence we can define powers C™ for all n € Z.

If M is a A-module and x is an arrow with head v and tail u, then multiplication
by z defines a linear map e, M — e, M, and hence a linear relation from e, M to
e, M. By composing such relations and their inverses, any finite word C' defines a
linear relation from e, M to e, M, where v is the head of C' and u is the tail of C.
We denote this relation also by C'. Thus, for any subspace U of e, M, one obtains
a subspace CU of e, M. We write CO for the case U = {0} and CM for the case
U = e, M. (The last makes sense if we consider C' as a linear relation from M to
itself.)
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Definition 4.1. If C is a linear relation on a vector space V', we define subspaces
C'CC”"CVhby

C" ={v eV :3vg,v1,vs,... with v =19 and v, € Cv,,1Vn}, and
¢’ =[Jcmo.
n>0

The first of these differs from the definition used previously, for example in [12],
but that work only involved relations on finite-dimensional vector spaces, for which
the two definitions agree:

Lemma 4.2. If C is a linear relation on V, then
c'c(emv
n>0

with equality if V is finite-dimensional.

Proof. The inclusion is clear. If V is finite-dimensional, the chain of subspaces

V O CV D C?V D ... stabilizes, with C"V = C"™'V = ... for some r. Then any
v € C"V belongs to C” since for any v, € C"V we can choose v,+1 € C"V with
U, € Cpyq. O

Definition 4.3. If C is a linear relation on V' we define subspaces ctcotcv
by C* = C" N (C~1)" and C* = C" N (C~1) +C"' N (C~)". (Note the symmetry
between C' and C~1.)

Lemma 4.4. (i) C* C CC*, (i) C* = C* nCC”, (iii) C* C C~'C*¥, and (iv)
Cc*=ctnc-ic’.

Proof. (i) If v € C*, then there are v, (n € Z) with vy = v, v,, € Cv,4; for all n.
Now v € Cv; and clearly v; € C¥, so C* C CCH.

(ii) Suppose b € C’. We write it as b = bt 4+ b~ with bT € C” n (C~ 1Y
and b~ € C' N (C~')". Now there are b} (n € Z) with b* = b3, bt € ObF
for all n, bf = 0 for n < 0, and b, = 0 for n > 0. Clearly bj +b; € C” and
b=>b"+b" € C(bf +by), 50 C* C C*NCC®. Conversely, suppose that v € C*NCb.
Then b*, € Cb*, so

v—bt, —b,eCtNCO-bT b )=CtNnCoOCCtNC CC.
Clearly also bfl eC’ sovel.

(iii) and (iv) follow by symmetry between C' and C~1. O
Lemma 4.5. A linear relation C' on V induces an automorphism 6 of C*/C” with
0(C" +v) = C* +w if and only if w € C* N (C” + Cv).

Proof. For v € C* we define § by 6(C” 4+ v) = C°* + w where w is any element of
C* N (C® + Cv). There always is some w by Lemma EA4Yiii), and 6 is well-defined
since if w’ € C* N (C® + Cv') and v — v’ € C°, then

w—w eCPN(C°+Cl—v)CC+C*NC—v)CC’+C nCC® ="
by Lemma [4Y(ii). Clearly 6 is a linear map, and by symmetry between C' and C~*
it is an automorphism. O

If C is a linear relation on V', we say that C' is split if there is a subspace U of
V such that C* = C* @ U and the restriction of C' to U is an automorphism.
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Lemma 4.6 (Splitting Lemma). If C is a linear relation on V and C*/C” is finite-
dimensional, then C is split.

Proof. Let 6 be the induced automorphism of C*/C” and let A = (a;;) be the
matrix of § with respect to a basis C* + vy,...,C? 4+ v of C*/C®. Thus

k
Cb—l—vj Za” c’ +v;) Cb—i—Zaijvi,
so there are by, ...b, € C° with

k
b]‘ + Zaijvi S C’Uj
i=1
for all j. We write b; = bJr +b; with bJr e C"N(C~ 1) and b; € C'N(C™")". Now
there are b;-%n (neZ) Wlth bjE = bjto, bﬂE € ijtnle for all n, bjfn =0 for n < 0,
and b;, =0 for n > 0. Deﬁne matrices MﬂE "= (m w ") for n € Z by

—~

3

0 n > 0) _ A" (n>0)
+,n _ ) no__ 3
M™" = Cien and M™" =
(A7) (n<0) 0
and let
k
w=vi+ Y Zm* "bh Y Y Tmi
nez i=1 nez i=1

These are finite sums since M ™" = 0 for n > 0 and b;-fn =0 for n < 0, and
M—"=0forn <0 and b;n =0 for n > 0. Now

k
b]‘ + Zaijvi S C’Uj
i=1
implies that
k
bjo+ Zaw”z + Z Zm+ "o+ Z Zm;j’"b;n_l € Cu;.
nezZ i=1 nez i=1
If 6,4 is the Kronecker delta function, we have

6HOI+M:|:,H+1 — 14]\4:|:,n7

which enables this to be rewritten as

k
E ajjui € C’Uj
=1

for all j. Then C* = C” @ U where U has basis u, . .., us, and C induces on U the
automorphism with matrix A. ([l
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5. TORSION

A E[z]-module V is torsion if and only if it is locally finite-dimensional. The
torsion submodule 7(V) of an arbitrary module V' decomposes as the direct sum of
(V) ={v e V:z" =0 for some n > 0} and
(V) ={v e V: f(z)v =0 for some f(z) € k[z] with f(0) =1},
which we call the nilpotent torsion and primitive torsion submodules of V.

Lemma 5.1. IfV is a torsion k[z]-module and C = {(v,zv) : v € V'} is the graph
of multiplication by z, then C is a split relation.

Proof. Multiplication by z is invertible on 71(V), so 71(V) € C”. Also C' = 0,
(C™YH" =V and (C71) = 79V). Thus

Ct=C"n@EW)er (V) =C" nPV)er(V)=Car' (V). O

Now we return to the string algebra A = kQ/(p). If M is a A-module, we
consider it as a k[z]-module, and hence define 7(M), 7°(M) and 71(M). They are
A-submodules of M, and we have

T(M)=EPr(e,M) and (M) =P (e, M).
We say that M is nilpotent torsion if M = 79(M) and primitive torsion if M =

71(M). If P is a primitive cycle with head v we can also consider e, M as a k[P]-
module, and we write

mp(esM) = TR (e, M) @ Th (e, M)
for the corresponding torsion submodules. They are k[z]-submodules of e, M.

Lemma 5.2. We have
0 _ 0 1 _ 1
T (ey M) = ﬂTP(GUM) and T (e,M) = @TP(%M),
P P

where P runs through the (up to two) primitive cycles with head v.

Proof. We only need to deal with the case when there are two primitive cycles P, R
with head v. If m € 7°%(e, M), then z"m = 0 for some n. Thus (P" + R")m = 0,
so P""lm = R""m = 0, and hence m € 78(e, M) N 79(e,M). Also 7h(e,M)
is annihilated by R, so its intersection with 74 (e, M) must be zero. Now suppose
that m € e,M and f(z)m = 0 with f(z) = 1+ g(2) where g(0) = 0. Then 0 =
f(P+R)m = m—+g(P)m+g(R)m. Thus 0 = g(P)(m+g(P)m+g(R)m) = g(P)m+
g(P)?>m = f(P)g(P)m, so g(P)m € 7p(e,M). Similarly g(R)m € Th(e,M), so
m = —g(P)m — g(R)m is in the direct sum. O

Lemma 5.3. Suppose P is a primitive cycle with head v and M is a A-module.
Let I =[50 P"M.

(i) If M is finitely controlled, then I = P" = 1}(e,M).

(ii) If M s finitely controlled or pointwise artinian, then I C PI.

Proof. (i) Clearly 7j(e,M) C P” C I. Now e, M is a finitely generated module for
the ring k[P], or k[P, R]/(PR) if there is another primitive cycle R with head v.
Then by Krull’s Theorem [9, Theorem 8.9] applied to e, M and the ideal generated
by P, we have I C 75(e, M).
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(ii) The finitely controlled case follows from (i). The subspaces P"M are k[z]-
submodules, so in the pointwise artinian case we have P"M = P"T'M = ... for
some n, so [ = P"t'M = PJ. O

6. FUNCTORIAL FILTRATION GIVEN BY WORDS

For v a vertex and € = +1, we define W, . to be the set of all words with head
v and sign €. They are necessarily either finite words or N-words. There is a total
order on W,  given by C < C" if
(a) C = ByD and C' = Bx~'D’ where B is a finite word, x,y are arrows, and
D, D’ are words, or
(b) €’ is a finite word and C' = C'yD where y is an arrow and D is a word, or
(c) C is a finite word and €’ = Cz~'D’ where z is an arrow and D’ is a word.

For any A-module M and C' € W, . we define subspaces
C™(M) C CH(M) Ce,M

as follows. First suppose that C is a finite word. Then C* (M) = Cx~10 if there
is an arrow z such that Cz~! is a word, and otherwise C* (M) = CM. Similarly,
C~ (M) = CyM if there is an arrow y such that Cy is a word, and otherwise
C~ (M) = C0. Now suppose that C'is an N-word. Then C* (M) is the set of m € M
such that there is a sequence m,, (n > 0) such that mg = m and m,,_1 € C,m,
for all n. One defines C'~ (M) to be the set of m € M such that there is a sequence
my, as above which is eventually zero. Equivalently C~ (M) = J,, C<,0. Observe
that if C € W, ¢ is repeating, say C' = D>, then C~ (M) = D' and C*(M) = D",
where D is considered as a linear relation on e, M.

Clearly one has (C*(M)) € C*(N) for a homomorphism 6 : M — N of A-
modules. Thus C* define subfunctors of the forgetful functor from A-modules to
vector spaces (or k[z]-modules).

Lemma 6.1. The functors C* commute with arbitrary direct sums.
Proof. Straightforward. O
Lemma 6.2. IfC,D € W, . and C < D, then C*(M) C D~ (M).

Proof. Standard. For finite words, see the lemma on page 23 of [12]. O

7. REFINED FUNCTORS

If B and D are words with the same head v and opposite signs and M is a
A-module, we define:

Ff p(M) = B*(M)n D* (M),
Fg p(M)=(B"(M)Nn D~ (M))+ (B~ (M)nD*(M)), and
Fpp(M) = F;,D(M)/Fg,D(M)'
If C = B7'D is a non-periodic word, we consider Fp p as a functor from the
category of A-modules to vector spaces.
If C = B7'D is a periodic word, say of period n, then C' = *°E* for some word

E of length n and head v. If M is a A-module, then E induces a linear relation
on e, M, and Fg)D(M) = E¥ and Fgp(M) = E’ as in @ Thus E induces an
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automorphism of Fp p(M) = E”/E", and hence Fp p defines a functor from A-
modules to k[T, T~ !]-modules, with the action of T' given by this automorphism.
We say that M is E-split or C-split if the relation E on e, M is split.

Let v be a vertex. If (B, D) € W, 1 x W, _1 and M is a A-module, we define

G%.p(M) =B~ (M)+D*(M)nB*(M) C e, M.

Clearly G (M) C GED(M) and G‘E7D(M)/G§7D(M) = Fp.p(M). We totally
order W, 1 X W, _1 lexicographically, so

(B,D)< (B',D') & ifB<B or(B=B andD<D).
We have GJBC’D(M) C Gpi p/(M) for (B,D) < (B',D') by Lemma 6.2

Lemma 7.1.
(i) F,p commutes with direct sums.
) If B71D is not a word, then Fp p = 0.
ii) If B~'D is a non-periodic word, then Fpp=Fpp.
) If B7'D is a periodic word, then Fpp=res, Fpp.
) If C is a fized word, the functors Fg p with B~*D = C|[n], for any n, are
all isomorphic.

Proof. (i) This follows from Lemma [6.1]

(ii) B~'D must involve a zero relation, and exchanging B and D if necessary, we
may assume that B = x,!. ..xflC and D=y ...y.EF with xq...2,y1 ...y, € p.
If m € Fi (M), then m =y ...y,m’ with m’ € E*(M), so m € x,,! xpto C
B~ (M), som € F p(M).

(iii), (iv) Clear.

(v) This is the same as the corresponding lemma at the top of page 25 in [I2]. The
extension to functors to k[T, T~ !]-modules in case C is periodic is straightforward.

|

Lemma 7.2. Suppose that B and D are non-trivial words with head v and opposite
signs and that the first letters of both are direct. If M is finitely controlled or
pointwise artinian, then BT (M) N D (M) is finite-dimensional.

Proof. The action of z annihilates BT (M) N D (M), since any arrow with tail v
has zero composition with the first arrow of B or D. Now since e, M is either
finitely generated or artinian as a k[z]-module, the subspace {m € e, M : zm = 0}
is finite-dimensional. O

Lemma 7.3. Suppose that M is a finitely controlled or pointwise artinian A-
module. Suppose that C = B~'D is periodic of period n, so C = ®E> for some
word E of length n and head v, and B = (E~1)* and D = E>. Then either

(i) Fg p(M) is finite-dimensional or
(ii) Fp p(M) is an artinian k[T,T~']-module and E or E~' is a primitive
cycle.

In either case, the relation E on e, M is split.
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Proof. If C is not direct or inverse, then by Lemma [Z.1] we may apply a shift, and
hence we may suppose that the situation of Lemma applies, so case (i) holds.
Supposing otherwise and interchanging B and D if necessary, we may suppose that
C is direct, so since it is periodic, £ = P, a primitive cycle. Now if M is finitely
controlled, we have Fjf (M) = P" = 7h(e,M) by Lemma [53] which is finite-
dimensional. If not, then F_p(M) is a quotient of a k[z]-submodule of e, M, with
the action of T" being the same as the action of z, so it is artinian. Now the splitting
follows from the Splitting Lemma [£.0] in case (i) or Lemma [B.Ilin case (ii). O

8. EVALUATION ON STRING AND BAND MODULES

The results in this section are essentially the same as those in [12] §§4,5]. Suppose
C is an I-word. For i € I, the words C~; and (C<;) ™! have head v;(C) and opposite
signs. For e = 1, let C'(4, €) denote the one which has sign e. We define d;(C,¢e) =1
if C(i,e) = (Cs; and di(C, 6) =—1if C(i,e) = (Cgi)_l.

String modules. Recall that if C' is a non-periodic I-word, the string module
M (C) has for basis the symbols b; for ¢ € I.

Lemma 8.1. If D € W,  then
(i) DY(M(C)) has basis {b; : v;(C) = v,C(i,e) < D} and
(i) D= (M(C)) has basis {b; : v;(C) = v,C(i,€) < D}.

Proof. Let M = M(C). Using the ordering on words and functors, it suffices to
show that b; € C(i,€)* (M) and that if a linear combination m of the basis elements
b; belongs to C(i,€) (M), then the coefficient of b; in m is zero.

If C(i,€) is finite, let 1, be the trivial word with C(i, €)1, , defined (and hence
equal to C(i,€)). Define d = d;(C,€). For n > 1 and not greater than the length of
C(i,e), we have b, qn—1) € C(i,€)nbiran. Moreover, if C(i,€) has length n, then
biyan € 1}, (M). Tt follows that b; € C(i, €)™ (M).

By induction on n, the following is straightforward. Suppose n is not greater
than the length of C(i,e). If m is an element of M whose coefficient of b; is A,
and m € C(i,e)<,m', then the coefficient of b;14, in m’ is also A\. Clearly if
C(i, €) has length n, then no element of 1, (M) has b; 4, occurring with non-zero
coefficient. It follows that no element of C(i,e)” (M) can have b; occurring with
non-zero coefficient. ]

Lemma 8.2. Let M = M(C) where C is a non-periodic I-word.
(i) Ifi eI, then Bl 1 o —1y(M) = Foy op.1) (M) @ kbi.
(i) If B-'D = C, then Fg.p(M) = k.
(iii) If B~'D is not equivalent to C, then Fg p(M) = 0.
Proof. (i) By Lemma [B1]
Flin.ou-1M) =Fguq cunyM) @,

where U is spanned by the b; with C(j,1) = C(i,1) and C(j,—1) = C(i,—1). By
Lemma [2.]] and since C' is not periodic, this condition holds only for j = 4.

(ii) We have {B,D} = {C(3,1),C(i,—1)} for some i.

(iii) Exchanging B and D if necessary, and letting v be the head of B and D,
we have (B,D) € W, 1 X W, _1. Lemma BJ]implies that the spaces G};D(M) are
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spanned by sets of basis elements b;, so if Fg p(M) # 0, then some b; belongs to
GJBC’D(M) but not to G ,(M). But by (i) we have

bi € Gé(i@),ca,q)(M) \Gegy,ci,—1) (M)

Then (B,D) = (C(i,1),C(i,—1)) by the total ordering of the GED, so B71D is
equivalent to C. O

Lemma 8.3. Suppose that C is a non-periodic I-word. Suppose thati € I, B =
C(i,1), and D = C(i,—1). Let M be a A-module and consider M(C) ®@y Fg p(M)
as a direct sum of copies of M(C') indexed by a (possibly infinite) basis of Fg p(M).
Then there is a map Op,p pm 2 M(C) Qk Fp,p(M) — M such that Fg p(0p,p M) 1S
an isomorphism.

Proof. Take a basis (fy) of Fg p(M), and lift the elements fy to elements my €
Fg p(M) = B*(M)ND*(M). In each case there is a A-module map 6 : M(C) —
M sending b; to my. These combine to give a map 0 p a : M(C) Q@ Fp,p(M) —
M. By Lemma 82 the map F p(0p,p am) is an isomorphism. O

Band modules. Suppose that C is a periodic word of period n and V is a
k[T, T~'-module. The module M (C,V) = M(C) @yr,r-1] V can be written as

M(C7V):VO@V1@."EBVR—17

where each V; = b; ® V' is identified with a copy of V. (It is a band module provided
V is indecomposable.)

Lemma 8.4. If D € W, ., then
(i) DHM)=P,c;+ Vi, IT={0<i<n:v(C)=0vC(ie) <D},
(ii)) D(M) =D,c;- Vi, I~ ={0<i<n:v(C)=0C(i,¢) < D}.

Proof. Similar to Lemma [l O

Lemma 8.5. Let M = M(C,V).
(i) If0<i<n, then F&, 1) o1y (M) = Fgi 1y cp_1y(M) @ Vi
(ii) If B7'D = C, then Fg,p(M) =V as k[T, T~']-modules.
(iii) If B~'D is not equivalent to C, then Fg p(M(C,V)) =0.

Proof. Similar to Lemma O

Lemma 8.6. Suppose that C = B™'D is a periodic word and M is a C-split
module. Let V = Fp p(M). Then there is a homomorphism 0p p v : M(C,V) —
M such that Fp p(0p.p.m) is an isomorphism.

Proof. We have D = E* and B = (E~')>®. Then V = E*/E’, and as a k[T, T~ ']-
module, the action of T is induced by E. By assumption Ef = E’ @ U, such
that E induces an automorphism on U, and of course U = V. As in [12] §5,
Proposition], one gets a mapping 0 p v : M(C,V) — M such that Fg p(0p,p,m)
is an isomorphism. Namely, there are elements u,; € M for 1 < ¢ < n and r
in some indexing set R, with (u,0)rer and (u,n)recr bases of U connected by
Upo = TUpy, and u,;—1 € Eju,; for all r,4. Using these elements one defines
Oppr:M(C,U)— M, sending b; @ w0 € V; for 0 < i < n to uy;. O
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9. DIRECT SUMS OF STRING AND BAND MODULES

Theorem 9.1. Suppose that M is a direct sum of copies of string modules and
modules of the form M(C,V), say

M= (@ M(CA)> @ (@ M(C“,V”)) .

(i) If B71D is a non-periodic word, then dim Fg p(M) is equal to the number
of string module summands M(C*) with C* ~ B71D.

(ii) If B™1D is a periodic word, then dim Fg p(M) is isomorphic to the direct
sum of the V# for u such that C* a shift of B~'D and of res, V¥ for
such that C* is a shift of D' B.

Proof. Follows immediately from Lemmas and O

If V is a finite-dimensional (respectively artinian) k[T, T~']-module, we can write
it as a finite direct sum of indecomposables V = V; & - - ®V,,, where the summands
are finite-dimensional (respectively finite-dimensional or injective envelopes of sim-
ple modules). Thus if C' is a periodic word (respectively a direct or inverse periodic
word) we can write M(C,V) 2 M(C, Vi) & ---® M(C,V,,), a direct sum of finite-
dimensional band modules (respectively finite-dimensional or primitive injective
band modules).

Theorem 9.2. Suppose that M is a finitely controlled (respectively pointwise ar-
tinian) A-module. Then there is a homomorphism 0 : N — M where N is a direct
sum of string and finite-dimensional band modules (respectively a direct sum of
string, finite-dimensional band modules and primitive injective band modules) with
the property that Fg p(0) is an isomorphism for all refined functors Fp p.

Proof. If C = B~'D is a non-periodic word, then Lemma B3] gives a map 0B.,D,M
from a direct sum of copies of M(C) to M. If C = B~'D is a periodic word, then
M is C-split by Lemma [7.3] and Lemma gives a map 6p p s from a module
of the form M(C,V) to M. As indicated above, we can decompose M (C,V) =
M(CV) @@ M(C,V,), a direct sum of finite-dimensional band modules (or
finite-dimensional and primitive injective band modules). Let N be the direct sum
of all of these string and band modules as (B, D) runs through pairs in such a way
that C = B~!D runs through the equivalence classes of words, once each. The
maps 0p p,m combine to give a map 6 : N — M with Fp p(f) an isomorphism
for all these pairs, and hence for any pair of words B, D with the same head and
opposite signs. O

Lemma 9.3. Suppose 0 : N — M is a homomorphism, with M finitely controlled
and such that Fg p(0) is an isomorphism for all refined functors Fg p. Then Im(0)
contains the primitive torsion submodule T*(M) of M.

Proof. By Lemma it suffices to show 75 (e, M) C Im(6) for P a primitive cycle
with head v. Let m € 75(e,M). By Lemma [5.3
meP"=P'n(P 1) =F§ (M),

where B = (P71)* and D = P>. Thus by hypothesis m = m’ + 6(n) for some
n € N and
m' € Fy p(M) = (P'0(P~H") + (P"n (P7)).
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Now P’ = 0 since P is direct, and P" N (P~1) = 15(e, M) N 79%(e, M) = 0. Thus
m’ =0, so m = 6(n) € Im(6). O

Lemma 9.4. Suppose 6 : N — M is a homomorphism, with N a direct sum of
string and band modules and such that Fp p(6) is an isomorphism for all refined
functors Fp p. Then 0 is injective.

Proof. Suppose that n is a non-zero element of e, N with (n) = 0. We can write
n as a sum of components in different summands of N. Let S be one of these
summands. If S is a string module, the component can be written as a linear
combination of the basis elements b;, and if S is a band module M(C,V), the
component can be written as a sum of elements in the vector spaces V;. By Lem-
mas and 85 there is (B, D) € W, 1 X W, _1 with FJ;D(S) =Fpp(S)oU
where U = kb; or V;. Tt follows that G}, ,(S) = Gp.p(S) ®U. Only finitely many
b; and V; from finitely many summands S of N make a non-zero contribution to
n, and among the finitely many pairs (B, D) which arise, choose B maximal, and
for the pairs with this B, choose D maximal. Then n is in GED(N) but not in

Gp.p(N). But this means that n induces a non-zero element of Fg p(IN). Thus

by assumption #(n) induces a non-zero element of Fg p(M). But this is impossible
since 6(n) = 0. O

10. COVERING PROPERTY

Lemma 10.1. Let C be an N-word and M a A-module. If

(i) M is pointwise artinian or

(il) M is finitely controlled and C' is not (direct and repeating),
then the descending chain C<i1M 2 C<oM D C<3sM D ... stabilizes.

Proof. Case (i) is clear. For case (ii), suppose that C is direct. If P is a primitive
cycle with the same head as C' and length r, then the first letter C; cannot be the
same as Pp, for that would force C' = P*°, which is direct and repeating. Thus
P.C; =01in A, so PC1M = 0. Tt follows that C1M C Z, where Z = {m € e, M :
zm = 0} and v is the head of C. The hypothesis on M ensures that Z is finite-
dimensional, so the terms in the descending chain are finite-dimensional, so it must
stabilize.

If C is eventually inverse the chain stabilizes at C<, M with n chosen so that
Cs,, is inverse.

Thus we may suppose C' is not direct and not eventually inverse. It follows
that C = Dz~ 'yB for some words D, B, and distinct arrows z,y, say with head
v. We need the chain Dx~lyB<, M to stabilize. This holds since Dz~ 'yB<, M =
Dz~ (xM NyB<,M), and M NyB<,M is finite-dimensional by Lemma [T.2] so
the chain M NyB<, M stabilizes. O

Lemma 10.2 (Realization Lemma). If M is finitely controlled or pointwise artinian
and C is an N-word, then C*(M) = 1,50 C<n M.

Proof. Tt suffices to show that if D is a word with ¢ a letter, then

(¢D<nM C | () D<nM
n>0 n>0
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This is trivial if £ is an inverse letter, so suppose £ is a direct letter. If the descending
chain D<,, M stabilizes, the result is clear. Thus by Lemma [[0.I] we may suppose
that D is direct and repeating. Then, since ¢ is a direct letter, so is £D. Thus
{D = P for a primitive cycle P = ¢B. Then

ﬂ (D<M = ﬂ P M,

n>0 m>0

and by Lemma [5.3] this is contained in

P ﬂ P"M | Cv ﬂ BP™M | =¢ ﬂ D<M
m>0 m>0 n>0
O

Lemma 10.3 (Weak covering property). Let M be a A-module, let v be a vertex,
and let € = £1. Suppose that S is a non-empty subset of e, M with 0 ¢ S. Then
there is a word C € W, . such that either (a) C is finite and S meets CT (M) but
does not meet C— (M) or (b) C is an N-word and S meets C<, M for all n but does
not meet C~(M).

Proof. Suppose there is no finite word C' € W, . such that S meets CT (M) but
not C~(M). Starting with the trivial word 1, ., we iteratively construct an N-word
C € W, ¢ such that S meets C<,,M but not C<,,0. Suppose we have constructed
D = C,,. If there is a letter y with Dy a word and S meets DyM, then we define
Cp41 = y and repeat. Otherwise S does not meet D~ (M). If there is a letter z with
Dz~! a word and S does not meet Dz 10, then we define C,,.; = 2~ ! and repeat.
Otherwise S meets DV (M). By our assumption, one of these two possibilities must
occur. ]

Lemma 10.4 (Covering property for one-sided functors). Let M be a A-module,
let v be a vertex, and let ¢ = £1. Suppose U is a k[z]-submodule of e, M, H is a
subset of e, M, and m € H\U. Suppose that either M is pointwise artinian or that
M s finitely controlled and ze,M C U. Then there is a word C € W, . such that
HN(U+m) meets CT(M) but does not meet C~(M).

Proof. The set S = H N (U + m) contains m but not 0, so the weak covering
property gives a word C' such that S does not meet C~(M). If C is a finite word,
then S meets CT (M), as required. If C' is an N-word and C is not direct and
repeating, then by Lemma [[0.J] and the realization lemma, S doesn’t meet C (M),
as required. Thus suppose C' is direct and repeating. Then C' = P for some
primitive cycle P. Then U + m meets P2M = zPM C U, contradicting that
m¢U. O

Lemma 10.5 (Covering property for refined functors). Let M be a A-module, and
let v be a vertex. Suppose U is a k[z]-submodule of e, M and m € e, M\U. Suppose
that either M is pointwise artinian or that M is finitely controlled and ze,M C U.
Then U + m meets GE,D(M) but not G (M) for some (B, D) € Wy 1 X Wy 1.

Proof. By the covering property for one-sided functors, with H = e, M there is B
with head v and sign 1 such that U + m meets BT (M) but not B~ (M). Then we
can write U +m = U +m/ for some m’ € BT (M). Letting U' = U + B~ (M) we
have m’ ¢ U’. We now apply the covering property for one-sided functors with the
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submodule U’ and H = B+ (M) and the element m’ to get a word D with head
v and sign —1, such that BT (M) N (U’ +m') meets DT (M) but not D~ (M). Tt
follows that U +m meets G ,(M) but not G ,(M). O

Lemma 10.6. Suppose 0 : N — M is a homomorphism such that Fp p(0) is an
isomorphism for all refined functors Fp p.

(i) If M is pointwise artinian, then 6 is surjective.
(ii) If M s finitely controlled, then the cokernel of 6 is primitive torsion.

Proof. In case (i), if 6 is not surjective, say e, Im(6) # e, M, let U = e, Im(#) and
choose m € e, M \ U. In case (ii), if the cokernel of # is not primitive torsion,
choose a vertex v with e, M/e, Im(#) not primitive torsion. Then this module has
a 1-dimensional quotient killed by z, so there is a k[z]-submodule U of codimension
1in e, M with e, Im(f) C U and ze,M C U. Choose m € e, M \ U.

The covering property for refined functors gives B, D such that U + m meets
GJBCyD(M) but not G ,(M). Thus there are u € U, b € B~ (M), and d € B¥(M)N
Dt (M) such that w4+ m = b+ d. Since # induces an isomorphism in refined
functors, there is n € e, N with d = 6(n) + ¢+ ¢ with ¢ € D~ (M) N B*(M) and
¢ € DY(M)N B~ (M). Then 6(n) € U, so U +m contains b+ ¢ + ¢/, so it meets
Gp.p(M), a contradiction. O

Proof of Theorem [L3l The map 6 : N — M of Theorem is injective by Lemma
and surjective by Lemma [I0.6] so an isomorphism. O

11. EXTENSIONS BY A PRIMITIVE SIMPLE

We fix a primitive simple S for A, that is, a simple, primitive torsion module. It is
easy to see (for example using Theorem [[3)) that it is of the form S = M (*®P>,V)
where P is a primitive cycle, say with head v, sign € and length p, and V is a
simple k[T, T~']-module, so of the form V = k[T, T-1]/(f(T)) where f(T) is an
irreducible polynomial in k[T] with f(0) = 1. Since P has sign e, it follows that
P~1 and (P~1)* have sign —e.

Definition 11.1. Let C' be an I-word. We say that ¢« € I is P-deep for C if
C(i,—€) = (P~1)*. Equivalently if the basis element b; in M (C) is not killed by
any power of P. We say that ¢ € I is a P-peak for C if it is P-deep for C' and C(i, €)
is not of the form PD for some word D. Equivalently, it is P-deep for C' and b; is
not in PM(C).

Clearly only an infinite word can have a P-peak, and then it has at most two
P-peaks (and if so it is a Z-word). Our aim in this section is to prove the following
result.

Theorem 11.2 (Extension Theorem). Suppose that M is a finitely controlled A-
module and N is a submodule of M with (M) C N and M/N = S. Suppose that
N is a direct sum of string and finite-dimensional band modules,

N =D M,

red
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indexed by some set ®. Then there is some p € ® with N, of the form M(C) for
some word C, which has a P-peak, such that M = N|, & N’ where

N= € N,
AeD~{u}
and N), is a submodule of M with N, = N,.
The following is straightforward.
Lemma 11.3. There is a projective resolution
0— Ae, — Ae, =S —0
where the first map is right multiplication by f(P).

For any A-module M, the resolution of S gives an exact sequence

0 —s Hom(S, M) — ey M 250 ¢ M 925 Bt (S, M) — 0.
We denote the pullback of ¢ € Ext*(S, M) along a € End(S) by &a, and if § : M —
N is a homomorphism, we denote the pushout map Ext*(S, M) — Ext*(S, N) by
0.

Lemma 11.4. If a € End(S) and ¢ € Ext' (S, M), then £a = 1.(€) for some 1 in
the centre of End(M).

Proof. For any A-module M, the action of k[z] on M defines a homomorphism
v ¢ k[z] = End(M). If N is another A-module, the actions of k[z] on M and N
induce left and right actions of k[z] on Hom(V, M), but these are the same since the
action of z on e, M or e, N is given by multiplication by z, € A. Using a projective
resolution of N, the same holds for the two actions of k[z] on Ext'(N,M). It is
clear that g induces an isomorphism

k[z]/(f(2)) = End(S).
Thus, writing a = yg(h(z)) for some h(z) € k[z], we can take ¢ = ypr(h(z)). It is

central by the discussion above. ]

If C is an I-word and i is a P-peak for C, consider the exact sequence
€ci:0—>M(C)— Ec; —S—0

formed from the pushout of the projective resolution in Lemma [I1.3] along the
homomorphism Ae, — M(C) sending e, to b;. Thus

o = an(e)(bs) € Ext!(S, M(C)).

Lemma 11.5. The middle term Ec; of the exact sequence {c; is isomorphic to

M(C).

Proof. We define ¢ € End(M(C)) as follows. If d(C,—e) = 1, so that Cs; =
(P71, let j be minimal with C-; an inverse word. Since i is a P-peak for C, we
have i —p < j < i, where p is the length of P. We define ¢(by) = by, for k > j
and ¢(bx) = 0 for k < j. Dually, if d;(C, —€) = —1, so that (C<;)~! = (P71)*, let
j € I be maximal such that (C<;)~! is an inverse word, and define ¢(by,) = by,
for k < j and ¢(by) =0 for k > j.
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It is straightforward to see that f(¢) is an injective endomorphism of M (C) with
cokernel isomorphic to S. We fix an isomorphism between S and the cokernel of
f(#) and hence obtain an exact sequence

e -0 — M(C) 2% o) & s 0.

Let M = M(C). The exact sequences above lead to a commutative diagram with
exact rows and columns:

0 0 0

l l l

0 —— Hom(S,M) —— Hom(S,M) —— End(S)

| | |
e, M & ey M _— eyS — 0
f(P)l | f(P)l

0 —— eM 29 oM 2, o5 — 0

(XAIJ/ OtJWJ/ O’Sl
(

Ext'(S,M) —— Ext'(S,M) —— Ext'(S,S)

l l |

0 0 .

0 ——

The Snake Lemma gives a connecting map ¢ : End(S) — Ext'(S, M) sending
a € End(S) to n¢a. Now f(¢)b; = f(P)b;, so by the diagram chase defining the
connecting map there is a € End(S) with ¢(a) = aps(b;). Moreover a # 0 since
b; & f(¢)M, so g(b;) # 0. Then ncia = am(b;) = &c,i, so there is a map of exact
sequences

¢ci:0 —— M(C) —— E¢; S 0
nc; 0 —— M(C) —— M(C) S 0
and since a is an isomorphism, E¢; = M(C). O

Lemma 11.6. If C is a word which is not equivalent to P, then the elements
£ci with i a P-peak for C' form an End(S)-basis for Ext'(S, M(C)).

Proof. Observe that e, M (C), as a k[P]-module, is the direct sum of free submod-
ules k[P]b; where i runs through the P-peaks and a nilpotent torsion submod-
ule spanned by the b; with v;(C) = v and i not P-deep. Now the isomorphism
eoM(C)/f(P)e,M(C) — Ext'(S, M(C)) induced by aprc) gives the result. O

Let X be a set of representatives of the equivalence classes of words.

Definition 11.7. We define a P-class to be a pair (C,i) where C' € ¥ and ¢
is a P-peak for C. The set of P-classes is totally ordered by (C,i) > (D,j) if
C(i,e) > D(j,€).
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Henceforth, we write b$ instead of b; for the basis elements of M(C), so as to
identify the word C.

Lemma 11.8. Suppose that (C,i) > (D,j) are P-classes. Then there is a homo-
morphism 0;; : M(C) — M (D) such that (8;;)«(§c,s) = €p,j. Moreover, if C = D,
then Hfj =0.

Proof. By assumption C(i,€) > D(j,¢). Let r be maximal with
C(iae)gr = D(J? E)S’r‘ = B7
say. Then C(i,€),41 is an inverse letter and D(j, €)1 is a direct letter (or one of

(4
them is absent if the relevant word C(i,€) or D(j,€) has length 7). Let ¢ = d;(C,€)
and d = d; (D, €). We define

N L oy (cli—k) = —r),
ezj(bk)_{o ¢ b (C(’i—k‘)<—r),

Then 6;; is a homomorphism from M (C) to M (D) sending b to bjD . Thus

(6:5)« (Eci) = (05)«(anr(c) (b)) = gy (b)) = &p 5.

Now suppose that C = D. Then C(i,€) is of the form E(P~1)* and C(j,€) is of
the form E~1(P~1)> where E has length |i —j|. Then E > E~! and r is maximal
with E<, = (E7')<,. Then Lemma 21 implies that E has length > 2r and that
E = BFB~! for some word F of length > 1 whose first and last letters are inverse.
But then the basis elements b{ in the image of 6;; are all sent to zero by 6;;. O

Lemma 11.9. Let M = M(D,U) be a finite-dimensional band module.
(i) If D is not equivalent to P>, then Ext' (S, M) = 0.
(ii) If D is equivalent to *° P>, then Ext' (S, M) has dimension < 1 as a vector
space over End(S).
(iit) If Ext'(S,M) # 0 and (C,i) is a P-class, then ¥.(Eci) # 0 for some
homomorphism ¢ : M(C) — M.

Proof. (i) The projective resolution of S realizes Ext' (S, M) as the cokernel of the
map f(P) from e, M to e, M. If D is not equivalent to °°>P°°, then there are no
P-deep basis elements for D. It follows that each element of e, M is killed by a
power of P, so f(P) acts invertibly on e, M.

(ii) We may assume that D = ©*P*. We have M = Uy @ U1 & --- & Up,_4
using the notation preceding Lemma R4 where p is the length of P. Now as a
k[P]-module, e, M is isomorphic to the direct sum of Uy, which is a copy of U with
P acting as T, and a nilpotent torsion submodule, spanned by the other U; with
Ui = eUUi. Thus

Ext'(S, M) = e,M/f(P)M = U/ f(T)U = Ext"(V,U).
Since U is an indecomposable k[T, T~!]-module and V is simple, this has dimension
<1 as a module for End(V) = End(S).

(iii) We may assume we are in case (ii). Then Ext*(V,U) # 0, so we can identify
U = K[T)/(f(T))" for some r > 0. There is a homomorphism M (C) — M(D)
sending b to bY. It induces a homomorphism v : M(C) — M sending b to
m=>bP @1 ¢€e,M, and

Pu(€0si) = Pulanre) (b)) = an V(b)) = anr(m).
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This is non-zero since m ¢ f(P)M, which follows from the observation in (ii)
about the k[P]-module structure of e, M, as we can identify m with the element
Te Uy. O

Proof of Theorem [[1.2. Letting i) denote the inclusion of Ny in N, we can write
the class ¢ € Ext'(S, N) of the extension

O—-N—-M-—=85—=0

as

¢=> (in):()

A€eD

for elements y € Ext!(S, Ny), all but finitely many zero.

If N is a string module, since equivalent words give isomorphic string modules,
we may assume that it is of the form M(C?*) with C* € %, our chosen set of
representatives of the equivalence classes of words, and by Lemma we can
write

G = Z Eon it
i

where i runs through the P-peaks for C* and ay; € End(9).

There must be at least one string module N, with ¢, # 0, for otherwise, by
Lemma [IT.9] S only extends band modules which are primitive torsion, so there is
a primitive torsion submodule of M mapping onto S, contradicting the assumption
that 71(M) C N. Among all pairs ()\,4) where Ny is a string module M(C?), i is
a P-peak for C* and ay; # 0, choose a pair (),4) for which the P-class (C*,1) is
maximal. We denote it (p, 7).

Suppose that N, is a band module and ¢ # 0. By Lemma [IT.9] there is a map
0y : N, — Ny such that (0)).(§cu ;) # 0. Then by Lemmal[IT4and Lemma [TT9(ii)
there is ¥, € End(V,,) such that ¢ = 10, satisfies (¢x)«(Ecn jau;) = Ca.

Suppose that N is a string module and () # 0. If i is a P-peak for C* with
(A\,4) # (u,7) and ay; # 0, then by the choice of (u,j), by Lemma [IT.8 (or triv-
ially if (C*,i) = (C*,j)), there is a homomorphism y; : N, — Ny such that
(0xi)«(Ecn,j) = €ox ;- By Lemma [IT.4] there is 1)y; in the centre of End(Ny) such
that (’(/),\ie,\i)*(gcu,jauj) = fcx’ia)\i. We define ¢, : NM — N, by

by = > Uxifxi (if X # p),
1+ Zz UxiOxi (if A= M),

where i runs through the P-peaks for C* (with i # j in case A\ = p, so the second
sum has at most one term). It follows that (¢x)«(Ecn jau;) = ¢r. Observe that ¢,
is invertible since v,; is in the centre of End(N,), so (¢Yuif.:)* = 2,62, = 0 by
Lemma [TT§

Now consider the pullback diagram

Ecu jau; 0 N, 2+ E 25§ 0

Ecnyt O N, N, S 0.

—
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Since a,,; is an isomorphism, so is 7. The map ¢ = Y, ix¢x : N, — N satisfies
¢+ (&cn jau;) = ¢, so there is a pushout diagram

Eon ja; 0 N, 25 B 2558 0
L
¢: 0 N M S 0.

Since ¢,, is invertible, ¢ is a split monomorphism and N = N’ @ Im(¢). It follows
that M = N’ @ Im(¢) and Im(t) = E = N,. O

12. PROOFS OF THE MAIN RESULTS

Theorem [[.3] has already been proved in §I0

Proof of Theorem [I1l It is known that string modules are indecomposable: see
Krause [6] for a special case and [3, §1.4] in general. If M(C,V) is a finite-
dimensional or primitive injective band module, then it is artinian, so if it were
to decompose, each of the summands would be a direct sum of string and band
modules by Theorem But then Theorem ensures that string module sum-
mands and other bands do not occur and gives a decomposition of V. But since
M(C,V) is a band module, V is indecomposable. The statement about isomor-
phisms follows from Theorem O

Proof of Theorem [L.2. We may suppose that @ is connected. Theorem and
Lemma [0.4] give a submodule N of M, such that

N:@NA,

Aed

a direct sum of string and finite-dimensional band modules. Moreover N contains
71 (M) by Lemma[03] and L = M/N is primitive torsion by Lemma

Since @ is connected it has only countably many vertices, and since L is finitely
controlled and primitive torsion, e, L is finite-dimensional for all v. It follows that
we can write L as a union L = |J L; of a finite or infinite sequence of submodules

O=LgCcLiCclyC...

with the quotients S; = L;/L;_1 being primitive simples. Let M, be the inverse
image of L; in M. Thus we have exact sequences

0—)Mj,1—)Mj—>Sj—>0

with My = N and M = J,, M,,.

Let Ny,0 = Nx. By TheoremIT.2we can write M; = g Na,; for submodules
Ny ; = Ny and such that Ny ; = Ny ;_1 unless N} is isomorphic to a string module
M(C) such that C has a P-peak for some primitive cycle P with S; supported at
the head of P.

For any vertex v, only finitely many of the simples S; can be supported at v. It
follows that for each A there is some j with

Nxj=Nrj+1=Nrjt2="-...
Defining N oo = Ny j, it follows easily that M = @Aeq) Ny oo 0
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Proof of Theorem [[L4l By Theorems[.2]and [[.3]the indecomposable summands are
string and band modules. The result thus follows from Theorem and the Krull-
Remak-Schmidt property for finite-dimensional or artinian k[T, T~!]-modules. [

Finally, from Lemmas 3.3 and B.4] one easily obtains the following characteri-
zation of direct sums of string and band modules which are finitely controlled or
pointwise artinian.

Proposition 12.1. If M is a direct sum of string and finite-dimensional band
modules, then M is

(i) finitely generated if and only if, for any string module M (C') which occurs,
C and C~' are eventually inverse, and the sum is finite;

(i) finitely controlled if and only if, for any string module M (C') which occurs,
C and C~! are eventually inverse or right vertex-finite, and, for every
verter v, only finitely many summands are supported at v.

Proposition 12.2. If M is direct sum of string modules, finite-dimensional band
modules, and primitive injective band modules, then M is

(iii) artinian if and only if, for any string module M(C) which occurs, C' and
C~' are eventually direct, and the sum is finite;

(iv) pointwise artinian if and only if, for any string module M (C') which occurs,
C and C~1 are eventually direct or right vertex-finite, and, for every vertex
v, only finitely many summands are supported at v.
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